
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA
 SEDE DI CESENA

SECONDA FACOLTÀ DI INGEGNERIA CON SEDE A CESENA
CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA INFORMATICA

TITOLO DELLA TESI

Semantic coordination tuple centres for eHealth Systems

Tesi in

Sistemi Multi-Agente LS

 Relatore Presentata da
 Omicini Andrea Olivieri Alex Carmine

Sessione terza

Anno Accademico 2010/2011

Contents

1 Introduction 3

1.1 Motivation . 4

1.2 Aims & Objectives . 4

1.3 Contribution, Scope and Significance 5

1.4 Overview of the Thesis 6

I Background 9

2 eHealth 11

2.1 Motivating Scenario . 12

2.2 Electronic Health Records (EHRs) 13

2.3 EHR Exchange Strategies 14

2.4 Integrate the Healtcare Enterprise 15

2.4.1 IHE Profiles . 16

2.5 Current Limitation of IHE for EHR exchange 18

2.6 Summary . 20

3 Knowledge Representation 21

3.1 History of Knowledge Representation 21

3.2 Description Logics . 22

3.2.1 Knowledge Base 24

i

3.2.2 SHOIN (D) . 28

3.2.3 Ontology Web Language (OWL) 29

3.3 Summary . 30

4 From tuple spaces to tuple centers 31

4.1 Coordination among entities 31

4.2 Tuple Space . 33

4.3 Tuple Centre . 33

4.3.1 TuCSoN . 34

4.3.2 ReSpecT . 34

4.3.3 Semantic TuCSoN 35

4.4 Summary . 37

II Framework 39

5 The Semantic Health Coordination Framework 41

5.1 The Architecture of the System 42

5.2 Ontology Community . 45

5.2.1 Entity Description 47

5.3 Policy Tuple Centre . 49

5.3.1 Adding and Removing a Community 49

5.3.2 Subscribing to Community Events 51

5.3.3 Notification Update 53

5.4 Community Tuple Centre 54

5.4.1 Searching a Patient 54

5.4.2 Searching a Community 56

5.5 Summary . 58

ii

6 Implementation 59

6.1 Integration of Semantic Component inside TuCSoN . . . 60

6.1.1 Semantic Component 60

6.1.2 Individuals & Concepts 61

6.1.3 Ability to create Semantic Tuple Centres with a
relative ontology 65

6.1.4 Inserting SemanticLogicTuple and retrieving/read-
ing SemanticLogicTupleTemplate 67

6.2 Modelling Semantic TuCSoN for eHealth context 68

6.2.1 Coordination Agent 70

6.2.2 Topology Agent 70

6.2.3 Update Agent . 74

6.3 Persistence in Semantic TuCSoN 79

6.4 Summary . 80

III Evaluation & Conclusions 81

7 Evaluation 83

7.1 Test Architecture . 83

7.2 Notify Updates . 85

7.3 Community Research . 86

7.4 Results Evaluation . 87

7.5 Summary . 87

8 Concluding Remarks 89

8.1 Conclusions . 89

8.2 Summary . 89

8.3 Future Work . 90

iii

A Reaction ReSpecT 91

A.1 Connection request . 91

A.2 Update subscribers . 93

A.3 Search community . 95

B Java Code 97

B.1 Connection request . 97

B.2 Jena Listener . 99

B.3 Persistence . 101

iv

List of Figures

2.1 The XDS Profiles . 18

3.1 Example of a network with Role relation 23

3.2 Knowledge Representation System based on Description
Logics . 25

3.3 Class Restrictions . 27

4.1 Semantic Component . 36

4.2 Block Scheme . 36

4.3 Extension of LogicTuple Class 37

5.1 Logic Architecture of a Community. 42

5.2 High view of the tree structure. 44

5.3 The OWL Community Ontology. 45

6.1 Semantic TuCSoN Health Coordination Framework . . . 60

6.2 Semantic Component . 62

6.3 Individual . 63

6.4 Elements Describing the Concept Related to a Semantic
Tuple Template . 64

6.5 Building path for a tuple centre 66

6.6 The implementation of the system. 69

6.7 Connection to the Topology. 71

6.8 Connection to the Topology. 73

v

6.9 Subscribe to a Patient. 75

6.10 Unsubscribe by a Patient. 76

6.11 Update Notification. 77

6.12 Research of a Community. 79

6.13 Reply about Community information. 80

7.1 Test Topology . 84

7.2 The Update Time. 85

7.3 The time to search in other communities. 86

vi

List of Tables

3.1 AL: Conventional Notation 26

vii

Abstract

In this thesis starting from the syntactic limits present in the exchange of
Electronic Patient Records (EHRs), we aim to create a framework that
provides the exchange of semantic information.

The framework created is called Semantic TuCSoN and it is an extension
of TuCSoN (Tuple Centres Spread over the Network) with the additional
feature of allowing to exchange semantic information and by reasoning
about them.

Semanitc TuCSoN is afterwards modelled on the eHealth context by
defining the Agents and coordination policies aimed at the exchange of
EHRs, by providing to it of the data persistence, required to work in a
real environment.

Finally we do some test, based on the scenarios of interest, in order to
evaluate its subsequent use in this area.

ii

This thesis is dedicated to all those people who,
despite having no special skills,

thanks to the perseverance and sacrifice
can overcome their limitations and difficulties that life reserves,

succeding to achieve goals that seemed unattainable.

1

Chapter 1

Introduction

In the context of Multi-agent Systems (MAS), coordination models and
languages based on syntactic mechanisms pose serious limitations on in-
teroperability, which is required in open and dynamic applications (e.g.
pervasive applications), where knowledge descriptions often involve dif-
ferent representations of conceptually equivalent concepts.

To overcome the limitations caused by syntactic matching mechanisms,
this research aims using a coordination environment based on tuples cen-
tres. Tuple Centres provide a coordination mechanism where agents can
exchange information, in totally spacial and temporaly decoupling, pro-
viding it of ability to work using semantic matching.

Additional Tuple Centre’s features are created by exploiting the Descrip-
tion Logics, and their reasoning abilities, which allows us to infer new
knowledge.

The resulting framework is applied to the scenario for exchange of elec-
tronic health record beetwen health organisations. This scenario has a
high heterogeneity of data, which needs a semantic representation to
enable the data exchange.

In this real world scenario, we meet challenges such as the scalability,
dinamicity and flexibility typical of large environment.

3

1.1 Motivation

There are two main motivations in this thesis, the first is to extend the
agent coordination framework semantic TuCSoN, as presented in [30],
to the context of Swiss eHealth, to exchange Electronic Health Record
(EHR). The second is to analise and model the concept of Community as
defined in IHE 1 and insert it inside the context of tuple centre. In partic-
ular we focus on enabling EHR exchange using the semantic component
of TuCSoN. Currently SemanticTuCSoN is a model where is possible
to insert and retrieve semantic information from a model based on an
Ontology, but it has some limits; firstly it does not allow to create real
semantic tuple centres, with all properties necessary for the proposed
scope; secondly it has no mechanisms for making the Knowledge Base
persistent.

1.2 Aims & Objectives

In this thesis we aim to:

• modelling the concept of Community, and use the tuple centres as
container of its informations;

• propose a framework that manages the concept of community as
described on IHE and the exchange of information among them;

• studying a model that permits to have the informations contained
in the community persistent over time;

• evaluate the proposed solution within the motivating case study;

Given this set of general aims, we want to achieve them by means of the
following specific objectives:

• permit the creation of semantic tuple centres leaving unchanged
the possibility to work on TuCSoN with the classic syntactic tuple
centres;

1http://www.ihe.net/

4

http://www.ihe.net/

• define the persistence model for the semantic knowledge base and
implementing it;

• extend the framework so that it permits to manage the concept of
community as described on IHE;

• extend Semantic TuCSoN equipping it of the possibility to ex-
change informations among communities, following the guidelines
of IHE;

• testing the performance of the resulting system on the basis of
sceneries identified in the motivating case study;

Specifically, we will provide an extension of semantic TuCSoN which can
totally work in the eHealth context that we are modelling.

1.3 Contribution, Scope and Significance

The contribution of this thesis can be summarized by the following points:

• provide the possibility to create semantic tuple centres, which con-
tain an ontology, so the agents can ask and decide if this is the
tuple centre searched or not;

• model the community concept applied to a tuple centre concept in
a way that respects all guide lines dictated by IHE;

• identify and create the agents nedeed to manage all the concepts
regarding a community, the relationships between them and their
exchange of informations;

• finally test the model created and analise the performance.

The significance of this work is to use the semantic techniques already
existing in order to provide a tuple centre system of the possibility to
contain and to exchange semantic informations. This framework, called
Semantic TuCSoN is applied in the context of eHealth, and it must follow
the constraints and the directives imposed by it.

Finally, we do a evaluation of the resulting framework in order to decide
if it is the ideal solution to reach the main objective proposed.

5

1.4 Overview of the Thesis

In this thesis, we assume that the reader is familiar with the concept
of agent and MAS. We also assume that the reader has a background
in object oriented programming. The thesis consists of three parts. In
the Background part we discuss about the relevant concepts that are
necessary to create the Semantic TuCSoN framework for eHealth context.
In the Framework part we model the Semantic Health Coordination
Framework and implement Semantic TuCSoN so as to adapt to it. Finally
the Evaluation & Conclusions part we evaluate the system and chart
out directions for future work.

Part I: Background
This part is composed of Chapter 2, Chapter 3 and Chapter 4. Chapter 2
introduces to the eHealth context, focussing the interest on the exchange
of information, precisely on Electronic Health Records (EHRs), by show-
ing the strategies already existing to the exchange, and focussing on IHE
initiative. After are showed the limits of the IHE profiles regarding the
exchange of EHR, and is proposed a solution to resolve these limitations.
Chapter 3 shows what is the Knowledge Representation, which are its
origins, and introduces the Description Logics as formalism to overcome
their lack of formal semantic representation. Finally is introduced the
Ontoloy Web Language and the Description Logic SHOIN (D) on which
it is based. Chapter 4 introduces TuCSoN as framework to information
exchange, and explains the peculiarities for which it is chosen. Are also
explained the changes that TuCSoN needs in order to be adapted to the
eHealth context.

Part II: Framework
This part is composed of Chapter 5 and Chapter 6. Chapter 5 models
the architecture of the system, by identifying the entities and the inter-
actions need for the exchange of EHR among communities. Chapter 6
implements the architecture resulting by Chapter 5, by creating a ver-
sion of Semantic TuCSoN framework provided of agents and coordination
primitives, in order to represent in each Tuple Centre a community, that
can exchange information with other communities.

Part III: Evaluation & Conclusions
This part is composed of Chapter 7 and Chapter 8. In Chapter 7 are per-
formed two tests based on Motivating Scenario, to verify the performance

6

of the framework created. In Chapter 8 the results of the evaluation per-
formed in Chapter 7 are used in order to draw conclusions on Semantic
TuCSoN. Finally are proposed some interesting future work.

7

Part I

Background

9

Chapter 2

eHealth

”eHealth is an emerging field in the intersection of medical informat-
ics, public health and business, referring to health services and informa-
tion delivered or enhanced through the Internet and related technologies.
In a broader sense, the term characterizes not only a technical devel-
opment, but also a state-of-mind, a way of thinking, an attitude, and
a commitment for networked, global thinking, to improve health care lo-
cally, regionally, and worldwide by using information and communica-
tion technology.” [17]. If used in an appropriate manner, the tools and
services which work on the eHealth field provide efficient healthcare ser-
vices for all. eHealth works on the interactions between patients and
health-service providers, institution-to-institution transmission of data,
or peer-to-peer communication between patients and/or health profes-
sionals. This includes various systems like health information networks,
electronic health records, health portals, wearable and portable systems
which communicate, telemedicine services, and many other ICT-based
tools assisting disease prevention, diagnosis, treatment, health monitor-
ing and lifestyle management.

In this chapter we introduce the eHealth context, with particular regard
to the exchange of particular informations. The chapter is organized as
follows: in the section 2.1 we introduce a motivating scenario which acts
as a base for our work; in section 2.2 we explain what is a Electronic
Health Record (EHR), the informations that it can contain and what
are the benefits that could lead; in the section 2.3 we show the already
existing EHR exchange strategies adapted in the field; in the section
2.4 we focus on the IHE initiative on informations sharing in eHealth

11

context, and we show its principal profiles; in section 2.5 we introduce
the current limitations of IHE regarding data exchange; finally in section
2.6 we summarise how this work relates to this thesis.

2.1 Motivating Scenario

As described in [34], our scenario is based in Switzerland, a federal coun-
try divided into 26 counties called cantons. The health system of Switzer-
land is a combination of public (i.e. hospitals) and private systems (i.e.
doctors in private clinics) and health conditions can be treated in any of
the competent healthcare providers. The Swiss Government has recently
recommended the adoption of IHE profiles to achieve interoperability.
The first pilot deployments have just been released, such as the eToile
project [19] in Geneva.

In this scenario, Mrs Roux who lives in Lausanne, canton Vaud, is spend-
ing her holidays in Sierre, canton Valais. She suddenly needs urgent
hospital care due to a strong chest pain. She explains to the receiving
nurse that she had a heart surgery in the Hospital of Lausanne, which is
also her home community and keeps all the updates of Mrs Roux health
records. Such a community, does not necessarily have a copy of all the
generated documents for Mrs Roux, but it knows where every document
is stored.

Unfortunately Ms Roux has not with her the insurance card, which is
needed to identify her home community. So, the personel of the hospital
of Sierre must search the home community of Ms Roux, based to the
informations that she can provide. After finding the informations of her
home community (Lausanne), the personel can search for her data. The
query returns all the meta-data information held on Mrs Roux (a list de-
scribing every document generated for Mrs Roux but not the documents
themselves). The doctor who visits Mrs Roux is provided with the discov-
ered information and can consult the documents of interest by retrieving
the content from the community where the documents are stored. This is
possible because Mrs Roux, through a web application, gave to medical
doctors the right to access her medical data. Also, the rights to access
Mrs Roux data can be overwritten in case of an emergency, provided that
logs are created to monitor doctor’s activities.

12

After such a consultation, the doctor asks for further investigation tests
to be carried out in the hospital of Sierre. After Mrs Roux’ agreement,
the tests together with the doctor’s diagnosis are notified to the hospital
of Lausanne. The general practitioner (GP) and the cardiologist curing
Mrs Roux are both subscribed with the hospital of Lausanne to receive
notifications of new generated data on Mrs Roux. Not only the hospital
of Lausanne is now aware of this emergency case, and her new treatment,
but also her two doctors.

After her return from vacation, the information has been already notified
to the hospital of Lausanne, which in turn has notified it to the two
interested private clinics where the two doctors work. Next time, when
Mrs Roux visits such facilities, her doctor can view the relevant new
information generated on Mrs Roux.

2.2 Electronic Health Records (EHRs)

Electronic Health Records (EHRs) refer to the systematic electronic col-
lection of health information data about individual patients or popula-
tions [21]. EHRs may include a wide range of data such as demographics,
medical history, medication, allergy list, lab results or radiology1. An
EHR is a record in digital format that is theoretically capable of being
shared across different health care settings. In some cases this sharing can
occur by way of network-connected enterprise-wide information systems
and other information networks or exchanges.

The terms EHR, EPR (electronic patient record) and EMR (electronic
medical record) are often used for describing the same concept, although
there are some differences among them. In fact an EMR is a patient
record created in hospitals and ambulatory environments, which can be
a data source for the EHR. An EHR is generated and maintained within
an institution, such as a hospital, integrated delivery network, clinic, or
physician office, to facility the access of interesting medical informations
by the institutions. In this thesis we focur only on EHR, but our consid-
erations remain valid also for EPR and EMR.

The benefits of EHR integration are strongly dependent on the ability of
the health care systems to share data among each other. In some cases,

1http://en.wikipedia.org/wiki/Electronic_health_record

13

http://en.wikipedia.org/wiki/Electronic_health_record

sharing EHR han been enabled through manual configuration of different
information systems. However, automatic exchange of EHR among any
health institution has yet to come.

2.3 EHR Exchange Strategies

The research activity concerning the information exchange strategies of
EHR is one of most important eHealth research activities. Some solutions
to EHR exchange have already been developed, but only for local and
national contexts. The medical data belonging to an EHR are called frag-
ments, and they can be distributed over different EHR systems. These
systems should ensure the interoperability of the EHR fragments for ob-
taining the benefits proposed. In EHR systems, interoperability should
satisfy the requirements of distribution, openness and security [30]. In
order to reach this goal, the first approach was the definition of standards
for EHR-fragment format and communication. The two most important
approaches that ensure the interoperability of EHR fragments are:

• Health Level Seven (HL72):is the global authority on standards
for interoperability of health information, which also includes the
exchange, management and integration of EHR fragments [14].

• Digital Imaging and Communications in Medicine (DICOM3): a
standard for handling and transmitting information in medical imag-
ing.

However, these standards are not enough to achieve interoperable health
systems. In fact, the result is that EHR systems use different set of
format and communication standards, often incompatible, incomplete or
involving overlapping scopes, thus breaking the interoperability require-
ment. As a response to these problems, and, as a complementary step
towards the requirements of interoperability among EHR fragments the
following standards and initiatives were proposed:

2http://www.hl7.org/
3http://medical.nema.org/

14

http://www.hl7.org/
http://medical.nema.org/

• openEHR4 and CEN EN 136065: standards aiming at facing inter-
operability among EHR fragments.

• Integrating the Healthcare Enterprise (IHE)6: a non-profit initiative
founded in 1998 led by professionals of the e-Health industry. The
initiative goal is not to develop standards as such, but to select and
recommend an appropriate usage of existing standards in order to
improve the sharing of information among EHR systems.

We focus on the IHE initiative because its makes a major contribution to
the integration the health-care information systems with the purpose to
facilitate the exchange of patient information between health-care profes-
sionals [24] and enjoys high acceptance due to its practical complement
to existing standards such as HL7 CDA [23, 13].

2.4 Integrate the Healtcare Enterprise

IHE is an initiative by healthcare professionals and industry to improve
the way computer systems in healthcare share information. In 1997, a
consortium of radiologists and information technology experts formed
IHE, how an international organisation that focuses on the development
of open and global Integration Profiles. IHE creates and operates a
process through which interoperability of health care IT systems can
be improved. The group gathers case requirements, identifies available
standards, and develops technical guidelines that manufacturers can im-
plement. Of all issues are made interoperability showcases which serve to
vendors to demonstrate that their products satisfy the interoperability
constraints imposed. Because of its limited resources, IHE concentrates
on specific projects. It solicits proposals and after surveying its members
to better understand their priorities, it chooses areas to focus on7.
The IHE work is focused in specifying the integration of different clinical
and organizational domanis. For each domain, IHE maintains technical
frameworks which contain all of the relevant information with regard to
a specific domain. The most important part of the technical frameworks

4http://www.openehr.org/
5http://www.en13606.org/
6http://www.ihe.net/
7http://en.wikipedia.org/wiki/Integrating_the_Healthcare_Enterprise

15

http://www.openehr.org/
http://www.en13606.org/
http://www.ihe.net/
http://en.wikipedia.org/wiki/Integrating_the_Healthcare_Enterprise

is the integration profiles. These profile create specific use cases and
communication scenarios based on standards, in order to provide some
functionalies.

2.4.1 IHE Profiles

IHE Profiles are defined in terms of IHE Actors and Transactions. They
describe the solution to a specific integration problem, and document
the system roles, standards and design details to develop systems that
cooperate to address that problem. Actors are components that act on
informations associated with clinical and operational activities in the en-
terprise. Transactions are interactions between actors that communicate
the required information through standards-based messages. IHE Inte-
gration Profiles are a convenient way for implementers and users to be
sure they’re talking about the same solution without having to restate
the many technical details that ensure actual interoperability.

Below we show a list of the main Integration Profiles defined from IHE,
which are involved in this thesis, with particular attention to two more
important for our context:

• Cross Enterprise Document Sharing (XDS): in the profile that dic-
tates the guidelines to exchange of clinic documentation among
companies and sanitary structures of various type (hospitals, med-
ical clinics, privates etc). This profile assumes that each organiza-
tion belongs to one or more Affinity Domain. Each Affinity Do-
main consists of sanitary organizations, which subscribe policies
and shared an technological infrastructure in order to exchange
among them clinical documents. The policies object of the agree-
ments regard aspects of patients identification, access control, ob-
taining consent for data treatment. They regard also the format,
the content, the structure, the organization and the representation
of clinical informations. So, it enables a number of health-care de-
livery organizations belonging to an XDS Affinity Domain to share
clinical records in the form of documents as they proceed with their
patients care delivery activities; Figure 2.1 shows the XDS profile.
At the core of XDS there is the document repository and docu-
ment registry actors which respectively deal with storing health

16

documents and storing meta-data about these documents to facili-
tate their discovery. The data are produced by a document source
actor, typically a medical doctor in a hospital. A community may
rely on more than one repository to store the produced documents,
however, all the meta-data must be stored and submitted within
one registry. A document consumer actor can use the meta-data
to know which repository contains the documents of interest. A
patient identity source actor feeds patient identities to the registry.
Since XDS does not resolve document sharing among multiple affin-
ity domains, the Cross-Community Access (XCA) profile specifies
how medical data held by other communities can be queried and
retrieved.[34]

• Cross Community Access (XCA): this profile defines the concrete
guidelines for exchange of documents. In it is defined the concept
of Community as set of sanitary structures, which subscribe poli-
cies and adopt shared communication protocols in order to shared
clinical documentation. Each community is identified by a unique
code (Home Community Id). In this profile are added two new
actors, Initialing Gateway (it takes in charge of all transaction in
exit from the local community and forwarding them towards the
other communities) and Responsing Gateway (it manages all en-
tering flows from other communities and it forwards it to actors
which belong to local community). In other words, it supports the
means to query and retrieve relevant patient medical data held by
other community. The big advantage deriving by the XCA use is
the interoperability that it permits. The operability is both be-
tween communities structured internally second the XDS profile,
both between communities that don’t adhere to XDS, or developed
according legacy principles;

• Patient Identifier Cross-referencing (PIX): supports the cross refer-
encing of patients identifiers from multiple Patients Identifier Do-
mains;

• Patient Demography Query (PDQ): provides ways for multiple dis-
tribuited applications to query a patient information server for a
list of patients, based on user-defined search criteria, and retrieve
a patients demographics information directly into the application.

17

• Audit Trail and Node Authentication (ATNA): establishes secrity
measures which, together with the Security Policy and Procedures,
provide patient information confidentiality, data integraty and user
accountability;

• Basic Patient Privacy Consents (BPPC): provides a mechanism to
record the patient privacy consent(s), and a method for Content
Consumers to use to enforce the privacy consent appropriate to the
use.

Document
Source

Document
 Repository

Document
Registry

Document
Consumer

Provide&Register
Document Set

Retrieve Document

Query Document

Register Document Set

Figure 2.1: The XDS Profiles

These profiles are building blocks upon which one can develop a number
of architectures, but they have also some limitations in the EHR exchange
that are explained in the next section.

2.5 Current Limitation of IHE for EHR ex-

change

IHE based systems supports interoperability on interface level so that
EHR applications of different vendors can be integrated. The IHE In-
tegration Profiles leave details open for implementation, thus different
vendors can create their own systems. This means that the interpre-
tation may lead to slyghtly different systems. IHE addresses this issue

18

defining a set of IHE compliant test process. The process culminates in
a week long interoperability-testing event known as ”Conectathon”[25].
Apart from the commercial IHE compliant software, there also exists
many open source solutions that define one or more of the above speci-
fied integration profiles.

Semantic interoperability is an important aspect to guarantee that data
are interpreted identically among EHR applications. IHE has recognized
the importance of semantic interoperability and aligned their Integration
Profiles with internationally accepted standards for semantic interoper-
ability such as the Clinical Document Architecture (CDA) [23] and com-
mon medical dictionaries such as LOINC [27] and SNOMED [9]. The
common data format increases the likelihood that identical meaning of
data can be preserved during exchange between EHR systems. With
currently available technology such as CDA, a very finegrained structure
can be applied to clinical data which allows even a languageindependent
identical interpretation [36]. CDA however comes with some limitations
such as has no ontological basis and lacks cognitive structure [33] (i.e. all
CDA based records are acts).[35]

The XDS profile defines a coupling of facilities/enterprises for the purpose
of patient-relevant document sharing.

Within the XDS profile, the health-care enterprises that agree to work
together for clinical document sharing is called the Affinity Domain.
Within an affinity domain, there can be more than one independent
repositories. The assumption is that there exists only one registry where
the meta-data regarding documents are stored, such data will indicate to
the interested document consumer, in which repository reside the docu-
ments of interest.

Another assumption is that XDS is not concerned with the management
of dynamic information that is not document-oriented, such as allergy
lists, medication lists, problem lists, etc [26]. A means to access this
information in a structured form and to manage updates to such dynamic
clinical information is still missing.

XDS defines document sharing within an XDS affinity domain. As ad-
dressed in [24], XDS does not resolve the sharing of patient-relevant
health-care information among multiple IHE environments. This would
mean to define how a request for EHR would identify other IHEs which
have data about a patient, how to identify the patient in the other IHE

19

and how to request patient information from the IHE.

The Cross-Community Access (XCA) profile already defines a means to
query and retrieve EHR held by other communities by specifying a gate-
way that encapsulates all the incoming and outgoing cross-community
communications. The XCA profile defines community a grouping of fa-
cilities/enterprises that have agreed to work together using a common
set of policies for the purpose of sharing clinical information via an es-
tablished mechanism. A community is identifiable by a globally unique
id called the homeCommunityId. Membership of a facility/enterprise in
one community does not preclude it from being a member in another
community. Such communities may be XDS Affinity Domains which de-
fine document sharing using the XDS profile or any other communities,
no matter what their internal sharing structure. Communities can be
composed into hierarchical collections of communities which are called
meta-communities.

XCA contains a gap in the communication of patient identities as it
requires the community who initiates a query towards another commu-
nity to determine the correct patient identifier of the patient under the
authority of the receiving community [24]. It is also assumed that the
communities have a pre-established agreements and knowledge of one
another.

2.6 Summary

In this chapter we have introduced the eHealth context, and the advan-
tages that it can lead. We started by explaining our motivating scenario.
We will carry this throughout the thesis. We focus on the part of eHealth
regarding the data exchange, We defined what are the Electronic Health
Records (EHRs), and illustrated the existing solutions to EHR exchange
that are proposed by IHE. We focused on IHE due to the high world-
wide adoption of such standards. We explained the IHE profiles that are
involved in the data exchange and pointed out some of the limitations of
such profiles. We also describe how these profiles limit the realisation of
our motivating scenario.

To Overcome such limitations we eill focus on semantic-agent based solu-
tions as they are regarded as a modular solution on the highly distribuited
and heterogeneous scenarios.

20

Chapter 3

Knowledge Representation

Knowledge Representation is a branch of artificial intelligence that stud-
ies the way in which the human reasoning is done, defining symbolisms
and languages which permit to formalize the knowledge, to make it un-
derstandable to the machines, allowing automatic reasoning (through in-
ference of already present knowledge) in order to get new knowledge. [29]

The research in the field of Knowledge Representation is usually focused
on the method to provide a high-level description of the world, that can
be actually used to build intelligent applications.[29]

Intelligence: system’s ability to find, based on knowledge acquired and
represented explicitly, some implicit consequences.

This chapter is organized as follows: in the Section 3.1 we briefly de-
scribe the origins of Knowledge Representation; in the Section 3.2 we
give an explaination of the basis of Description Logics, by introducing
the Description Logics SHOIN (D) by describing its characteristics. We
also present the Ontology Web Language, the standard of W3C1 that
implements the SHOIN (D). Finally in Section 3.3 we conclude and
summarise this Chapter.

3.1 History of Knowledge Representation

The first approaches in the field of Knowledge Representation were in
the years seventy, and they were divided in two different tipologies [4]:

1http://www.w3.org/

21

• based on the logic: their origin was the idea that the predicate
calculus could had been used to catch the world’s facts;

• not based on the logic: the idea was based on structures like net-
works, and they derive from experiments regarding the capacity of
human mind to remember concepts and performs tasks ;

The second approach [29] was the one pursued, but there was a need
to equip it with a semantic representation, seeing that each component
present in the Knowledge had a different behaviour, despite, it was iden-
tical to other. Therefore, to these specifications was given a semantics for
representing structures, so that hierarchical structures could be exploited.
This could have led to a gain, both in terms of easily of representation,
and efficency of reasoning. The basic elements identified were:

• unary predicates: representing sets of individuals;

• binary predicates: representing sets of binary relation between in-
dividuals;

Later, it was discovered that this representation did not captured the
constraints of interested structures with respect to the logic, but it could
only be considered as part of them.

3.2 Description Logics

These were the directly evolutions of structures based on networks , where
an additional element called Role was specified in addition to the classical
IS-A relation. A Role is a characteristic which permits to represent an
other type of relationship. The Role is a link which starts from a node,
arrives in another node, and holds a label.

The remaining problem was to define a precise characterization of the
present elements and which kinds of relationships could be present (ie
define the complete syntax and semantic for all elements involved).

Sintax: was introduced a new abstract language resembling to other
formalisms already present. So, first, were introduced two new disjoint
alphabets of symbols, used for denoting:

• Atomic Concept: represented by predicates of unary symbols;

22

Figure 3.1: Example of a network with Role relation

• Atomic Role:represented by predicates of binary symbols, whom
express links between nodes:

Semantic: was given a concrete meaning to these two alphabets, to
provide an unique interpretation;

• Concept: is a sets of individuals;

• Role: is a set of relations betweens of individuals:

The union of Concepts and Roles present in a context defines its domain,
that is the scheme of the Knowledge Base.

Figure 3.1 shows a network extended with the Role Relationship. In this
figure are shown some IS-A relations, which model the hierarchy of the
network, and a Role called hasChild. This meaning that a element of
set Patient can be connect to a element of the set Person through the
relationship hasChild.

23

3.2.1 Knowledge Base

The main idea was give a precise specification of the functionality pro-
vided to the Knowledge Base, particulary to the inference that it could
be capable to perform, and indipendently from the single implementa-
tion. So an interface Tell&Ask was created with the purpose of be able
to create the Knowledge Base (Tell), and provide a deduction service
(Ask).

A knowledge representation system based on the Description Logics pro-
vides the means for install the Knowledge Base, to make reasoning over
their contents and to modify them. As showed in figure 3.2 a Knowledge
Representation System contains three fundamental elements:

• Terminological Box (TBox) [29]: is the structure of the applica-
tion domain, which defines its vocabolary. It represents the syntax
of the domain, and it contains concepts and relationships between
them. The TBox is the fixed for a specific domain.

• Assertional Box (ABox) [29]: is the population of the applica-
tion domain, that represents the extensional knowledge. Here are
inserted the individuals, each of them with the concept to which
belongs and the relationships in which is involved. The ABox is in
continued changing.

• Reasoning [6], [15]: is the service thank to which is possible to
deduce new knowledge

The reasoning as central service is an important characteristic. It allows
to infer explicitely new knowledge from that implicitely contained in
the Knowledge Base. Some inference patterns already present in other
applications are used to understand and structure the world, in order to
classify concepts and individuals to permit reasoning.

• concept classification: determines the relation between concepts
of a given terminology, so that a subsumption’s hierarchy can be
build;

• individual classification: determines if a given individual is always
an instance of a determinate concept;

24

Figure 3.2: Knowledge Representation System based on Description Logics

In order to providing formal reasoning on the Knowledge Base were in-
troduced the Description Logics, which are explained in follow section.
The Description Logics should answer to queries in a reasonable time,
and primarily they should ensure that the response provided is certain.
Unfortunately the response time is not always ensured; decidability and
complexity of the inference problems are dependent by the expressive
power of the Description Language. In fact, Description Languages too
expressive are useful to resolve inference problem with high complexity,
but they can be undecidable, while Description Languages with efficent
reasoning procedures may not be sufficiently expressive to represent im-
portant concepts of an application [1].

The Description Logics descend from network infrastructures, and there
are based on three ideas on which have largely shaped their development:

1. the sintactic base blocks are:

a) atomic concepts (belong to the TBox);

b) atomic roles (belong to the TBox);

25

c) individuals (belong to the ABox);

2. implicit knowledge on the concepts and the individuals can be auto-
matically inferred with the help of inference’s procedures, of which
the main are:

a) subsumption relations between concepts;

b) instance relations between individuals and concepts;

3. the expressive power of the language is limited to a little set of
atomics constructors, starting by them is possible build complex
concepts and roles descriptions;

Above we have said that starting from the elementary descriptions of
atomic concepts and atomic roles, is possible build complex descriptions,
exploiting concept constructors. The set of the constructors used, iden-
tifies the complexity of the language. In Table 3.1 we show the set of
concept’s constructors for the less expressive language AL. Starting with
AL, and adding new constructors is possible obtain languages of any ex-
pressivity [5].

Symbol Description
A Atomic Concept
> Universal Concept
⊥ Empty Concept
¬A Atomic Negation

C uD Intersection
∀R.C Universal Restriction
∃R.C Existential Restriction

Table 3.1: AL: Conventional Notation

Abstract notation: A & B for atomic concepts, R for atomic role, C &
D for concept descriptions.

The explanation of the Conventional Notation showed in table 3.1 is the
following:

• the Atomic Concept is a set of individuals;

• the Universal Concept is the set of all individuals of the universe;

26

• the Empty Concept is an empty set;

• the Atomic Negation is the set of individuals of the universe that
are not present in the Atomic Concept A;

• the Intersection between C and D is the set of individuals present
either in C that in D;

• figure 3.3 shows the Universal Restriction, and, it is a set of indi-
viduals that participate or not in the relationship called rel1. But
if an individual participates in this relationship, this one can be
directed solely towards individuals of Class1.

• figure 3.3 shows the Existential Restriction, and, it is a set of in-
dividuals that participate in the relationship called rel1. Unlike
the Universal Restriction if an individual participates in this rela-
tionship, this one can be directed towards individuals of different
Classes.

Figure 3.3: Class Restrictions

As introduced previously the TBox is fixed, and it defines the domain
to be modeled. It can be compared with the schema of a Database.
The ABox, which changes continuously, is the actual instance contained
inside the Database. There is a substantial semantic difference between

27

ABox and a instance of Database, because an instance of a Database
represent exactly one interpretation, precisely that are the classes and
relations present in the schema that are interpreted from the object in the
instance, while an ABox represents some different interpretations, exactly
all various domains modeled. This means that absence of information,
contrary what happens in the Database where is interpreted as negative
information, in the ABox, it is interpreted only as lack of knowledge. In
other words the semantics of the ABox is an open-world semantics [28].

3.2.2 SHOIN (D)

This is the Description Logic used in the semantic extension of TuCSoN
[30]. It extends the expressive capabilities of the AL with this charac-
terization:

• S: indicates the possibility of write expressions of logic equivalence
and of subsumption using base terms (true & false), terms com-
pounded from operators (and, or & not), quantificators role simple
(∀R.C & ∃R.C) and the roles transitivity axiom;

• H: indicates the possibility to make subsumption between roles, in
order to establish their hierarchies.

– subsumption (R v S): the role S subsume the role R;

– equivalence (R ≡ S): the role R is equivalent to the role S.
This is not directly expressible, but obtainable by the double
subsumption R v S and S v R;

• O: indicates the possibility to define terms for enumeration;

• I: indicates the possibility to define inverse role, which permits to
invert domain and range of a role;

• N : indicates the possibility to define cardinality not quantified;

• D: indicates the possibility to use concrete domains, denoted by
atomic terms, like naturals, floats, characters, strings;

For more detail about the Description Logics refer to [6]

28

3.2.3 Ontology Web Language (OWL)

Since 2044 OWL is a W3C recommended standard, it is a practical real-
ization of a Description Logic known as SHOIN (D) [22]. Using OWL
it is possible to define classes (also called concepts in the DL literature),
properties, and individuals. An OWL ontology consists of a set of class
axioms that specify logical relationships between classes, which consti-
tutes a TBox (Terminological Box); a set of property axioms to specify
logical relationships between properties, which constitutes a RBox (Role
Box); and a collection of assertions that describe individuals, which con-
stitutes an ABox (Assertional Box). Classes are formal descriptions of
sets of objects. Class axioms allow one to specify that subclass (v) or
equivalence (≡) relationships hold between certain classes and the do-
main and range of a property. Assertions allow one to specify that an
individual belongs to a class (C(a) means that the object denoted by a
belong to the class C), and that an individual is (or is not) related to
another individual through an object property (R(b,c) means the object
denoted by b is related to the object denoted by c through the property
R). As said in section 3.2.1 complex classes can be specified by using
Boolean operations on classes: C t D is the union of classes, C u D is
the intersection of classes, and ¬ C is the complement of class C. Classes
can be specified through property restrictions: ∃ R.C denotes the set of
all objects that are related through property R to some objects belong-
ing to class C at least one; if we want to specify to how many objects an
object is related we should write: ≤nR, ≥nR, =nR where n is any natural
number; ∀ R.C denotes the set of all objects that are related through R
only to objects belonging to class C. To realise the framework, we need
to express some preconditions for the reaction part of the reaction rules.
Every precondition can be a class assignment as defined by OWL DL, a
query executed thanks to the reasoning services of a reasoning tool or, a
Prolog predicate used to construct some specific function2. In order to
execute a reaction, all its preconditions must be satisfied3.

Given that there is not an official standard query formalism for OWL
DL, in this paper we decide to adopt this one that is inspired from [8]

2In what follows we do not give the specification details of such predicates as they
are intuitive, and, with a straightforward specification.

3 As in Prolog, it is possible to specify preconditions to be executed in or by
surrounding those with round brackets followed by a semicolon. Section 5.4 makes
use of such specification.

29

and allows to express the queries that are available in the DL Query tab
of Protègè4.

?-C v D ⇒ true/false checks the subclass relationship;
?-C ≡ D ⇒ true/false checks class equivalence;
?-C ⇒ true/false checks if the class is satisfiable;
?-C(a) ⇒ true/false instance checking;
?-C(*) ⇒ {a1,....an} retrieval, C can be a complex class.

In our implementation those queries are executed using the Java Jena
API 5.

3.3 Summary

In this chapter we introduce the concepts behind the description logics.
We explain the SHOIN (D) which is an extension of AL. In this thesis
each tuple centres contains a ontology which model the eHealth context.
We show how we model these issues in Chapter 5. In the next chapter we
explain how Semantic TuCSoN uses SHOIN (D) to reason about tuples
generated in the system framework.

4http://protege.stanford.edu/
5http://incubator.apache.org/jena/

30

Chapter 4

From tuple spaces to tuple
centers

In this chapter we introduce TuCSoN, a framework to share information
that we use in order to modelling the exchange of EHR among commu-
nities. TuCSON is a framework that permits to exchange information on
form of Tuple, in a distribuited environment.

This chapter is organized in this mode: in the section 4.1 we explain the
context of information’s dimension introducing the coodination amond
entities; in the section 4.2 we explain the tuple space argument, speak-
ing briefly of the most important, the Linda tuple space, introducing its
limitations; in section 4.3 we speak of the tuple centres and how they
can overcome the limitation of tuple spaces, and we focus our interest on
TuCSoN, explaining its characteristics and introducing its semantic ex-
tension. Finally in Section 4.4 we conclude and summarise this Chapter.

4.1 Coordination among entities

In any meta-model of software engineering there are two different dimen-
sions:

• computation: general elaboration of data, that consists, given an
algorithm and some input data, obtain some data in output;

• coordination: how the space of the interactions is constrained;

31

In this thesis we are interested to the argument of data exchange, so,
we focus our attention only on the coordination. In the coordination’s
dimension the first class entities are [7]:

• coordination model: is the glue that binds separate activities into
an ensemble;

• coordination language: is the linguistic embodiment of a coordina-
tion model;

• coordination middleware: is the execution environment for deploy-
ment, execution and manage of the coordination abstractions.

and the meta-model of coordination proposed is:

• coordination entities: the entities which interactions are governed
by the model;

• coordination media: the abstractions that allow and regulate the
interaction among coordinables;

• coordination laws: the laws that define how the coordination media
behaves in response to interaction events;

There are two main types of coordination models. In the first, called
data-driven, the coordinables cooperate and/or compete among them
producing and using information that are presents in some shared space.
And the second, called control-driven, where the coordinables work gener-
ating and reacting to events or signals exchanged in well defined channels.
Both approaches have some positive and some negative features. In this
thesis, we are interested in the data-driven approach. The context of our
work has the following characteristics, ideals to work with a data-driven
approach:

• it involves open system environments, where the set of coordinables
is not known;

• coordinables are in a environment with a high level of autonomy,
and they encapsulate their behaviour;

• the focus is on the exchange of information among coodinables;

32

• the environment is a concurrent and distributed system;

The most famous type of data-driven model is the Tuple Space model.
In the next section we describe this type of model, and we introduce its
main features.

4.2 Tuple Space

Linda is the language for the most important data-driven model called
Tuple Space model [20]. It is a coordination language which extends
the traditional languages, allowing the construction of application on
distribuited environment. It has the feature to be indipendent from ar-
chitecture underlying and by the programming language used. Linda im-
plements an associative memory (Tuple Space) logically divided among
all processes present in the application. Linda is characterized from the
following entities individuated below:

• tuple space as coordination media;

• tuple as communication language;

• primitive (in, read, out, eval) as coordination language;

In this model the coordination is always left to the coordinables, and
this is a big limit, because they have to know the coordination policies of
the system, and implement them. This solution is not elegant and it is
in conflict with the ortogonality between computation and coordination,
in fact, in this model the coordinables have these two behaviours mixed
between their.

4.3 Tuple Centre

In order to overcome such a limitation, a number of tuple-based coor-
dination models and languages were proposed. The intent was extend
the original tuple-space model, by allowing to its behaviour to be pro-
grammable so as to embed coordination policies within the coordination
media. The concept of tuple centre was developed starting from [10],

33

where the notion of programmable coordination medium was explicited
for the first time. Tuple centres are tuple spaces whose behaviour can
be determined through a specification language. This language defines
how a tuple centre should react to incoming/outgoing communication
events [31]. Unlike tuple spaces, the behaviour of tuple centres can be
programmed with reactions, in order to encapsulate coordination policies
within the coordination medium.

4.3.1 TuCSoN

TuCSoN (TupleCentres Spread over the Network) [32] is an infrastruc-
ture based on the Tuple Centre concept. It permits communication and
coordination among agents, which work by inserting, reading and con-
suming tuples in this Tuple Centre. The operations needed to work on
the tuple centre can be either blocking or non-blocking. TuCSoN has
all the features present in a classic Tuple Centre, and it provides a ulte-
rior one, which has already been discussed as extension of Tuple Space.
This feature is the possibility of create multiple Tuple Centres in the
same node, allowing the subdivision of the work among more Tuple Cen-
tres. TuCSoN implements the idea of programmability of Tuple Centres
through ReSpecT [2]. ReSpecT is a logic-based language that allow to
specification the tuple centre behavior through a set of first-order logic
tuples.

4.3.2 ReSpecT

Since ReSpecT is Turing-equivalent any computable coordination policy
required by specific application scenario can be in principle embedded
inside a ReSpecT Tuple Centre. A specific ReSpecT can associate to any
primitive performed on the Tuple Centre, a specific reaction implemented
to manage the coordination of the system.

An reaction can be inserted into the tuple centre with a special primitive
called set spec, which must contain the ReSpecT code (or must specify
the file where the ReSpecT code is). A reaction ReSpecT has this form
reaction (Event, Guard, Body), which has the following meaning:

• Event: is the event (primitive in the Tuple Centre) that triggers
the reaction;

34

• Guard: is a couple of parameters whom defining the proprieties of
the triggering event;

• Body: is a list of instructions that the reaction must perform;

In the body can be writing a set of elementary non-blocking operations,
but not only, in fact TuCSoN is build over tuProlog, and it is integrated
with JAVA [12], so is possible use Java and Prolog code inside the re-
action. ReSpecT being a coordination language, must check that all is
well done for the correct execution, otherwise it must go back. To satisfy
this requirement it has a rool-back mechanism, which deletes all actions
already done if something go wrong before the end of the reaction.

4.3.3 Semantic TuCSoN

Semantic TuCSoN is an extension of TuCSoN which aims to overcome
the syntactic limits of the classical Tuple Centre, and provide a semantic
support. The idea has been developed in [30], and the work done had
two main targets, strictly dependent to one to another. The first target
was the necessity to insert in this framework the possibilty of working
with semantics, in order to overcome the syntactic limitations. For this,
the ontologies and well known tecnologies for work over them, have been
used. In fig 4.1 are showed all components created to permit semantic in
TuCSoN.

The correlation between the components and the technologies is the fol-
lowing, as showed in figure 4.2 :

• Ontology Manager: uses the OWL Ontology to obtain and manage
an ontology;

• Reasoner: uses Pellet Java Library 1 to permit reasoning on the
ontologies;

• Query Generator: uses Jena Library 2 to create Query SPARQL 3,
in order to query the ontology;

1clarkparsia.com/pellet/
2incubator.apache.org/jena/
3www.w3.org/TR/rdf-sparql-query

35

clarkparsia.com/pellet/
incubator.apache.org/jena/
www.w3.org/TR/rdf-sparql-query

Figure 4.1: Semantic Component

• Semantic Component: is the component, that using the other com-
ponents, permits to coordinate all work regarding the new semantic
part of TuCSoN;

Figure 4.2: Block Scheme

In the second extension, a mechanism was provided to insert and retrieve
information exploiting not only the Tuples seen as up at this time, but
also in a semantic way. To realize this, the Java class LogicTuple, has
been extended in two directions, as showed in fig 4.3. One to permit
the inserting semantic information through a new definition of Semantic

36

Logic Tuple, and the second one to permit to get semantic information
through a new definition of Semantic Logic Tuple Template.

Figure 4.3: Extension of LogicTuple Class

These extensions use the theory of Description Logic SHOIN (D). In
fact the SemanticLogicTuple is modelled in a way that it permits to ex-
press sentences whose describing the name of individuals, their data and
their relationship on this Description Logic. While the SemanticLogic-
TupleTemplate permits to express sentences whose describing all concept
descriptions allowed by SHOIN (D), in order to retrieve the information
required.

At the present this extension permits to insert and retrieve knowledge
throught Semantic Tuple and Semantic Template, but it does not permit
to use a Tuple Centre as very Semantic Tuple Centre, which should
contain a Knowledge Base, and can not works in persistent manner as
the objective of this thesis requires. In fact a Semantic Tuple Centre
should be a container of persistent knowledge, where should be possible
insert information (Tell), retrieve information (Ask) and reasoning about
it.

4.4 Summary

In this chapter we have introduced the theory behind the TuCSoN frame-
work, starting from the concept of coordination, arriving to the concept

37

of Tuple Centre, via Tuple Space. We have also described the extension
of the semantic component which enables TuCSoN with the capability to
work on Knowledge Base. Finally we have explained that this extension
is still not complete in order apply it to our motivation scenario a real
working framework. In the implementation chapter we will show all the
mechanisms that it needs in order to work in a complete mode. We also
show how we apply it to Semantic Health Coordination Framework.

38

Part II

Framework

39

Chapter 5

The Semantic Health
Coordination Framework

Motivated by the need to have a system for EHR exchange in an dis-
tribuited environment, in this chapter we describe how model the con-
cept of distributed communities. We connect them in a tree structure,
and define coordination primitives to support the EHR exchange. We
specify such framework using Semantic TuCSoN and a set of agent that
coordinate over the platform.

We define a semantic knowledge base and assume that every community
has the same schema. The difference among them is not their semantic
structure, but is the data that this structure contains. In fact every
community can be different from the others in terms of its organisation,
the services it offers, the policies it uses, and others characteristics as we
show later in this chapter.

What it follows has been previously discussed in [34].

The chapter is organized as it follows: in section 5.1 we model the system,
explaining how each community is structured, what type of tuple centres
are present inside the community, and how is built the topology of the
system; in section 5.2 we explain the ontology community present in each
tuple centre of to the system, we then describe all present entities in it
(Classes and Properties); in section 5.3 we introduce the concept of Policy
Tuple Centre, explaining all tasks that it performs, and all primitives of
coordination defined inside this type of tuple centre; in section 5.4 we
introduce the concept of Community Tuple Centre, which is the tuple

41

centre that takes in charge the task to perform the more expensive queries
in the knowledge base (research of patients and communities). Finally
in Section 5.5 we conclude and summarise this Chapter.

5.1 The Architecture of the System

Every community containt a set of data which are semantically described
with an ontology. The ontology describes the concepts of the community,
using the TBox. The actual data, represented in the ABox, will be
different in the various communities. The union of ABox and TBox
builds the Knowledge Base of a single community, on which the system
can reasoner to obtain the information wished.

An Affinity Domain as defined and described in Chapter 2 can be seen
as a Community. The Community will encapsulate the EHR system and
the mechanisms for modeling, modifying and exchanging EHR data.

Figure 5.1 shows the logical architecture of a Community.

Figure 5.1: Logic Architecture of a Community.

In this figure is shown that each community has inside it two tuple centre,
the Policy Tuple Centre and the Community Tuple Centre. The Policy
Tuple Centre (PTC) deals with incoming requests from other communi-
ties to either connect into a tree structure or to subscribe to notification
of events. For every Community there can be a Father Commu- nity and

42

many Child Communities (See Fig). PTC specifies the coordination
primitives for adding, and removing a child or a father to a Community
and the primitives for allowing subscription and unsubscriptions from
other Communities. These tuple centres are semantics tuple centres of
Semantic TuCSoN framework. At the moment we use a soft model of
agency where agents simply react to specific messages exchanged in the
tuple centres as opposed to a hard model of agency where the agents
have complex cognitive models to perform complex reasoning. TuCSoN
thanks to the ReSpecT language [2] can enable the coordinations of the
different communities. In fact, in each Policy Tuple Centre and the Com-
munity Tuple Centre are specified the ReSpecT reactions that coordinate
the interested communities. The Community Tuple Centre (CTC) is an
additional coordination module used to evaluate search queries that are
generated in the system. Communities generate queries to search a new
community or to search data related to a patient. Such search queries are
computationally expensive thereby we evaluate them outside the PTC.
In fact the PTC receives also requests for search queries, but it forwards
them to the CTC which may either find the result of a query or prop-
agate it to the PTC-s of the father and the child communities. In this
way we evaluate expensive queries in parallel to the normal functionali-
ties offeered in PTC, and do not directly expose the CTC to the whole
system.

For each community we have identified two main agents needed for this
infrastructure :

• Topology Agent: is the agent responsible of sending and catching
messages regarding the context of manage the topology of the entire
community system;

• Update Agent: is the responsible of sending and catching messages
regarding the manage of the knowledge base;

After a careful analysis we have decided to structure our topology in a
tree structure as showed in figure 5.2. There are two reasons for our
choise. The first is that the structure will be a dinamic one, where the
communities can be added or removed in a self-organising manner. In this
way, only the direct interested have to be involved. The second is, because
there could be present some queries, where the addressee community
is not known. The search of the community could be computationally

43

Figure 5.2: High view of the tree structure.

expensive for each node. With a tree structure, the queries propagation is
enabled only in the branches connected with the requester, and possibly
forwarded in their connections. The research will continue up to which
the information will not be found. In this way, can be avoided the send of
search message in a broadcast manner. In this tree structure, you can see
two type of community, the meta-community and the community. The
difference between them is that in the meta-community there is only
the infrastructure shown in figure 5.1, while in the community there is
also the physical healthcare system inside them. Furthermore, real world
communities are usually organised following a tree structure due to their
geographical disposition within a region and a state. Therefore, keeping a
tree structure, we simplify the representation of real communities within
our system.

Figure 5.2 shows also the presence of some interaction. We model the
system in a way such as all communications must pass through the PTC.
In this way, it can check the policies and decides if the communication is
allowed or not. Instead, the CTC can only send information to PCT.

44

5.2 Ontology Community

As we explained above, every community has its own knowledge base.
The schema, represented by the TBox and RBox, is fixed and invariable
for all the Communities. The TBox represents all the classes present in
the knowledge base, and their IS-Relationships, while the RBox repre-
sents all object properties and datatype properties present in the knowl-
edge base. Each property has its domain and range. Figure 5.3 shows
the complete schema of the OWL Community Ontology 1 present in each
node.

CommunityCommunity

DocumentDocument

PatientPatient

identifier
name
address

identifier
date

identifier
name
address

father
children

status
author

hasHomeCommunity

RoleRole

identifier
name

activities

PolicyPolicy

identifier
name

category
description

ServiceService

ActorActor profession

name

contact

address

identifier

speciality

assumes

member

complies

follows

provideshas

cares

subscribe

identifier
name
link

description

∐
relates

attachment

Datatype
Property

Class
Object
Property

∐

home

Union

Figure 5.3: The OWL Community Ontology.

Based on [8], we formilise the schema presented in Figure 5.3 The RBox
of the Community Ontology contains the following object properties,
where their name is followed by the domain and the range for everyone.

1The full ontology can be found in
http://aislab.hevs.ch/assets/OntologyCommunity.xml

45

has : Patient → Document;
cares : Community → Patient;
subscribe : Community → Patient;
member : Actor → Community;
provides : Community → Service;
follows : Community → Policy;
assumes : Actor → Role;
complies : Role → Policy;
relates : Policy → (Patient t Role);
hasHomeCommunity : Patient → Community;

We also specify if any property has got the attribute of functionality (or
inverse functionality), as follows:

InvFun(has);
InvFun(cares);
InvFun(provides);
InvFun(follow);
Fun(relates);
Fun(hasHomeCommunity);

The TBox contains the subsequent axioms that defines cardinality re-
strictions for the defined properties:

Document v =1 has−;
Service v =1 provides−;
Patient v =1 cares−;
Actor v =1 member;
Policy v =1 follows;
Policy v =1 complies;

We provide an example in order to clarify the meaning of the formalism
above used: the property relates has how domain an individual of Policy
class and how range an individual of union of Patient class with Role
class, and has the attribute of functionality

46

This means that an individual belonging to Policy class can partecipate
to an only one property relates. And the property has how range or an
individual of a Patient class or a individual of Role class.

In the following section we give a description of any definition introduced
above, explaining their meaning in our domain.

5.2.1 Entity Description

Community: represents a community, which can be a meta-
community or a community

• each Community can provide a set of Services and a service have to
be provided always and only to a community;

• each Community can follow a set of Policies and a policy have to be
followed always and only to a community;

• each Community can cares about Patients and a patient have to be
cared always and only from the home community of this commu-
nity;

• each Community can subscribe to a Patient of another Community
in order to receive notification in case of somewhere regarded this
patient happened.

Service: represents a set of services provided from a community

Are the service that each community makes available to patients and
involving the possible content of EHRs.

Policy: represents a set of policies that a community has to
follow

The Policies are aimed to aid the integration of the Communities by mak-
ing explicit under which rules the data are shared. In particular, they
state which policies are applied to other communities which require pa-
tient data or subscribe to patient data in a community, or merge or delete

47

themselves from the community structure. Such policies are enforced in
the Policy Tuple Centre.

• each Policy can be related to a Role or to a Patient, but not at same
time;

• each Patient has one and only one Community as home community;

Patient: represents a patient of a community

• each Patient has got a set of Documents, and a document has to
belong always and only to a patient;

• each Patient has one and only one Community as home community;

Document: represents part of a patient health record

Are generated and stored within a community. Every document relates
to a specific patient. When a document is generated, it has an author,
which is an actor in the community and has a set of properties which in-
dicates the content of the document. The community that generates such
documents can also update their status by making documents obsolete
or deleting them.

Actor: represents an actor of the community

Such actors must perform their activities in complying way with the
Policies of the Community.

• each Actor must be member of Community, exactly the home com-
munity of this community;

• each Actor can assume a set of Role;

48

Role: represents a role that an Actor can assume

• each Actor have to be comply to one and only one Policy;

The thing that changes in every Community Ontology is how the knowl-
edge base is filled, and this represents the extensional knowledge (ABox).
Each community can interrogate for information or subscribe to updates
happening in the knowledge bases of other communities.

5.3 Policy Tuple Centre

The Policy Tuple Centre (PTC) deals with incoming requests from other
communities to either connect into a tree structure or to subscribe to
notification of events. All the communications to a community are made
to the PTC. For every Community there can be a Father Community and
many Child Communities (See Figure 5.2). PTC specifies the coordination
primitives for adding, and removing a child or a father to a Community
and the primitives for allowing subscription and unsubscriptions from
other Communities.

5.3.1 Adding and Removing a Community

As said above, is possible add or remove dynamically the Community
in the tree structure shown in Fig. 5.2. Topology Agent is the entity
recognised to execute this job, and it has a twofold function. The first,
is react to commands from administrator users, and ,the second is, to
listen to the communications of other communities. The behaviour the
Topology Agent can be described as follows:

• It interfaces with the users, which decide how a community con-
nects to the rest of the topology structure. The user can also decide
if the community must disconnect from the topology structure. The
Topology Agent writes the request message (in case of connect re-
quest) or a delete message (in case of disconnect request) in the
PTC of the community from which the user specifies it wants con-
nect or disconnect;

49

• The Topology Agent also listens to accept, reject, add and remove
messages generated in its own Policy Tuple Centre;

– In case of an accept message, it adds the father community to
the knowledge base;

– In case of an add message, adds the requester community as
child community in the knowledge base;

– In case of a remove message it deletes the community form
the knowledge base. If the removed community was the fa-
ther, then it must perform a request to connect to an other
community;

– In case of a reject message, it must perform a request connec-
tion to another community;

The PTC specifies the following coordination primitive for a request mes-
sage:

reaction(out(request(id, name, addr, policies),

(operation, invocation),

?-Community(id) ⇒ false ,
?-Policy(*) ⇒ {p1...pn} ,
subset(policies,{p1..pn}),
out(add(id, name, addr),

out(id, accept(myid, myname, myaddr)).

The above reaction specifies that the communities accept as their children
only those communities that are not already connected to the community
(?-Community(id)⇒ false) and whose policies are a subset of its own poli-
cies (?-Policy(*) ⇒ {p1...pn}), and in this case, it sends an add message
to its PTC, and an accept message to PTC of requester community.

In a similar manner a community can be deleted from the tree structure.
In order to delete a community, the Topology Agent sends a delete mes-
sage to the community father of the requester community and, if there
are any, to its children community . The coordination primitive for such
operation is defined as follows:

reaction(out(delete(id)),

50

(operation,invocation),

?-Community(id) ⇒ true ,
out(remove(id))).

The reaction above specifies that the community deletes the community
requester only if it is present in the knowledge base. For this this scope
it sends a remove message to its PTC.

5.3.2 Subscribing to Community Events

A community can subscribe to events generated by other communities.
We are envisaging three types of subscriptions: subscriptions to events
regarding a patient, subscriptions to changes on the services a community
offers and subscriptions to the changes of the policies that a community
offers.

In this thesis we treat only a simplified subscription mechanism for re-
ceiving updates regarding patients from other communities. The two
others subscriptions have similar considerations to the ones presented
here.

The Update Agent is used to subscribe its own community to patients
of other communities for the purpose of receiving patients updates, and
also manages the information received from the updates. Its persistent
behaviour is the following:

• If the home community and the community interested on a patient
differ, the Update Agent generates a subscribe (when the patient
is recorded)/ unsubscribe (when the patient is deleted) message in
the PTC of the home community of the patient. In case of a sub-
scribtion of a patient without a home community, then it before
generates a searchCommunity message containing the criteria that
it knows about the new patient. The query must produce a com-
plete description of the patient’s home community.

• The Update Agent listens to add, remove, and reply messages gen-
erated in its own Policy Tuple Centre;

– In case of an add message, it performs this two action: firstly,
if the community that wants subscribe a patient is not present

51

in the knowledge base of the patient’s Home Community, the
Update Agent adds this community to this knowledge base;
secondly, the Update Agent adds the subscription relationship
between the subscriber community and the patient.

– In case of a remove message, it removes in the home commu-
nity the subscribe relationship between the community sub-
scribed and the interested patient from the knowledge base;

– In case of a reply message, it delivers the data to an human
actor, which can decide if the received information should be
added to the knowledge base.

The coordination primitive for subscribing to patient updates is specified
as follows:

reaction(out(subscribe(community, patient)),

(operation, invocation),

?- Patient(patient) ⇒ true ,
?- Policy u (∃relates.{patient}) u
(∃category.{“filesharing”}) u (∃description.{“consent”})⇒ true,
out(add(community, patient))).

The primitive is activated when another community requests a subscrip-
tion to the PTC of a given community regarding the information of a
given patient. In this case, the PTC checks if the identified patient has
already contained in the knowledge base and if exists a policy describing
the patient consent into sharing its own files.

In a similar way, communities may choose to unsubscribe to communities.
This may happen because the patient is not anymore in care at the
community and such updates are no longer necessary.

reaction(out(unsubscribe(community, patient)),

(operation, invocation),

?- (∃subscribes.{patient})(community) ⇒ true,
out(remove(community, patient))).

The above primitive specifies what happens in case of an unsubscribe
request performed by an Update Agent. The PTC which receives the
request checks first if the unsubscribing community has previously sub-
scribed the patient, then it sends the remove message to its PTC.

52

5.3.3 Notification Update

When a new document regarding a patient is generated, modified or
removed anywhere in the tree structure, the home community of the pa-
tient is notified by default, as defined by the first of the two following
coordination primitives. If the change happens in the home community
or an update about a patient arrives into home community, such update
is propagated to all interested subscribers, as defined by the second co-
ordination primitives. The following coordination primitives dealing of
such discrimination:

Updates for a patient with a different home community

reaction(out(update(patient, document)),

(operation, invocation),

?- Document(document) ⇒ true ,
?- Patient(patient) ⇒ true ,
(∃homeCommunity−.{patient})(*) ⇒ {home},
home 6= myid,

out(home,update(patient, document))).

Updates for a patient within the home community

reaction(out(update(patient, document)),

(operation, invocation),

?- Document(document) ⇒ true ,
?- Patient(patient) ⇒ true ,
(∃homeCommunity−.{patient})(*) ⇒ {home},
home = myid,

?- Community u (∃subscribes.{patient})(*) ⇒ {c1...cn},
out({c1...cn},update(patient, document))).

The above coordination primitives respectively check first if the docu-
ment and the patient are presents in the knowledge base, then retrieve
the home community of the patient. After there is a checking which
disciminates between two different behaviours. If the patient’s home
community is not the community of this node, this means that an up-
date for a patient with a different home community from the one who

53

generated the update have to be propagated to the home community
with send of an update message to its PTC. While, if the patient’s home
community is the community of this node, this means that an update for
a patient is generated in its home community and all subscribers to such
event should be notified with an update message to the their PTC. No
agents are used in this operation as the PTC can directly update other
PTCs by using TuCSoN coordination primitives.

5.4 Community Tuple Centre

The Community Tuple Centre (CTC) is an additional coordination mod-
ule used to evaluate search queries which are generated in the system.
Communities generate queries to search a new community or to search
data related to a patient. Such search queries are computationally expen-
sive thereby we evaluate them outside the PTC. In fact the PTC receives
also requests for search queries, but it forwards them to the CTC which
may either find the result of a query or propagate it to the PTC of the
father and the child communities. In this way we evaluate expensive
queries in parallel to the normal functionalities offered in PTC, and do
not directly expose the CTC to the whole system.

5.4.1 Searching a Patient

A community can search patients by generating a query to the father
community and to the eventual children communities. If the community
which receiving the query does not find the requested data, it will prop-
agate the query to its father and to its eventual children (excluding the
community that has sent the query). The Update Agent is in charge of
generating patientSearch message. In the query message it indicates
the sender of the message, the community that is requesting the data
(in the first step these two coincide) and a list of criterias used for the
search. The same query is propagated in the tree structure until the
data is found following a flooding-like algorithm that stops when all the
nodes are visited, and this is reason, because the sender changes during
the query’s propagation.

In the search of a patient some criteria are not specified. For example,
in an emergency case, the patient may not be able to produce a home

54

community therefore the homeCommunity of the patient may be unknown.
A community can search the data of the patient by specifying some of
the patient’s demographic data for example. The coordination primitive
for searching a patient is defined as follows:

reaction(out(patientSearch(community, sender, listCriteria)),

(operation,invocation),

Criteria1 ≡ Criteria2 ≡ Criteria3
≡ Criteria4 ≡ >
(member((’identifier’, id), listCriteria),

Criteria1 ≡ (∃identifier.{id}));
(member((’name’, name), listCriteria),

Criteria2 ≡ (∃name.{name}));
(member((’address’, addr), listCriteria),

Criteria3 ≡ (∃address.{addr}));
(member((’hasHomeCommunity’, community), listCriteria),

Criteria4 ≡ (∃hasHomeCommunity.{community}));
?-(Patient u Criteria1u Criteria2 u Criteria3
u Criteria4)(*) ⇒ {p1,...pn }

(empty({p1,...pn }, false),

out(community, reply(myID, {p1,....pn})));

reaction(out(patientSearch(community, sender, listCriteria)),

(operation,invocation),

Criteria1 ≡ Criteria2 ≡ Criteria3
≡ Criteria4 ≡ >
(member((’identifier’, id), listCriteria),

Criteria1 ≡ (∃identifier.{id}));
(member((’name’, name), listCriteria),

Criteria2 ≡ (∃name.{name}));
(member((’address’, addr), listCriteria),

Criteria3 ≡ (∃address.{addr}));
(member((’hasHomeCommunity’, community), listCriteria),

Criteria4 ≡ (∃hasHomeCommunity.{community}));
?-(Patient u Criteria1u Criteria2 u Criteria3
u Criteria4)(*) ⇒ {p1,...pn }

(empty({p1,...pn }, true),

?- (Communityu(∃ father.{”true”})

55

t(∃ child.{”true”}))(*) ⇒ {c1,....cn},
remove(sender,{c1,....cn}, {c1,....cj}),
out({c1,....cj},

patientSearch(myID, community, Criteria)));).

The above primitives specify the reactions for coordinate the retrieve
operation on the basis of the submitted parameters in the listCriteria.
To test which are the specified criteria we use member/2 Prolog clause.

The first primitive covers the case in which the list of specified criteria
identifies one or more patients that satisfy the query, while the second
one covers the case in which the data which satisfy the query are not
found. The empty/2 is the control that discriminates between the two
case, in fact it is used to check if the result of the query returns or not,
one or more individuals. If some result are returned, a reply message
containing all the found result will be sent to the requester of the query.
In the second case, the message patientSearch is forwarded to the father
and eventual children communities. We exclude from the propagation of
the query the sender using the remove/2 predicate).

5.4.2 Searching a Community

A community can search other communities by generating a query to the
father community and to the eventual children communities. If the com-
munity which receives the query does not find the requested data, it will
propagate the query to its father and to eventual its children if any (ex-
cluding the community that has sent the query). The Update Agent is in
charge of generating communitySearch messages. In the query message
it indicates the sender of the message, the community that is requesting
the data (in the first step these two coincide) and a list of criterias used
for the search. The query is similar to the ones described in the previ-
ous section. The coordination primitives for searching a community are
defined as follows:

reaction(out(communitySearch(community, sender,listCriteria)),

(operation,invocation),

Criteria1 ≡ Criteria2 ≡ Criteria3
≡ >

56

(member((’identifier’, id), listCriteria),

Criteria1 ≡ (∃identifier.{id}));
(member((’name’, name), listCriteria),

Criteria2 ≡ (∃name.{name}));
(member((’address’, addr), listCriteria),

Criteria3 ≡ (∃address.{addr}));
?-(Patient u Criteria1u Criteria2 u Criteria3)(*) ⇒ {p1,...pn}
(empty({p1,...pn }, false),

out(community, reply({p1,....pn})));

reaction(out(communitySearch(community, sender,listCriteria)),

(operation,invocation),

Criteria1 ≡ Criteria2 ≡ Criteria3
≡ >
(member((’identifier’, id), listCriteria),

Criteria1 ≡ (∃identifier.{id}));
(member((’name’, name), listCriteria),

Criteria2 ≡ (∃name.{name}));
(member((’address’, addr), listCriteria),

Criteria3 ≡ (∃address.{addr}));
?-(Patient u Criteria1u Criteria2 u Criteria3)(*) ⇒ {p1,...pn}
(empty({p1,...pn }, true),

?- (Communityu(∃ father.{”true”})
t(∃ child.{”true”}))(*) ⇒ {c1,....cn},
remove(sender,{c1,....cn}, {c1,....cj}),
out({c1,....cj},

communitySearch(myID, community, Criteria)));).

The above primitives specify the reactions for coordinate the retrieve
operation on the basis of the submitted parameters in the listCriteria.
To test which are the specified criteria we use member/2 Prolog clause.

The first primitive covers the case in which the list of specified criteria
identifies one or more community that satisfy the query, while the sec-
ond one covers the case in which the data which satisfy the query are not
found. The empty/2 is the control that discriminates between the two
case, in fact it is used to check if the result of the query returns or not,
one or more individuals. If some result are returned, a reply message con-
taining all the found result will be sent to the requester of the query. In

57

the second case, the message communitySearch is forwarded to the father
and eventual children communities. We exclude from the propagation of
the query the sender using the remove/2 predicate).

5.5 Summary

In this chapter we presented the architecture of the Semantic Health Co-
ordination Framework. We identified the Topology and Update Agents
which are in charge respectively to connect the communities in a tree
structure and to propagate updates regarding patients to interested com-
munities.

We describe a community in terms of an Ontology, the structure of which
can be shared among the communities. The Ontology serves as a basis
for the interpretation of data from other communities.

We also specified two Semantic Tuple Centres. The PCT which specifies
the coordination primitives for adding/removing/subscribing and insub-
scribing to other communities, and to forward to the subscribers the
updates. The CTC which takes in charge the duty to perform queries
about research of communities and patients.

In the next chapter we will implement the system modelled, adapting
Semantic TuCSoN to this context.

58

Chapter 6

Implementation

In this chapter we aim to implement the objectives identified in the intro-
duction chapter. Figure 6.1 shows the entire Semantic TuCSoN Health
Coordination Framework implemented in this thesis, with all relations
between the components which compose it.

The implementation is divided in three main parts: in the Section 6.1 we
take the semantic component already created in [30], that permits to work
in a semantic mode, and we integrate it inside TuCSoN in order to provide
a more complete semantic framework. This framework is called Semantic
TuCSoN and it contains knowledge base that permits to work on it. In
the Section 6.2 we adapt Semantic TuCSoN to the context of eHealth.
We create the agents useful to manage the interactions and implement
the coordination primitives needed to exchange EHR. To do this, we show
the main scenarios, so that it is possible identify all tasks that the agents
must perform, and all the coordination primitives needed for the system’s
coordination. In the Section 6.3, we implement the persistence of the data
in the framework, using as support the PostgreSQL Database, which has
the task to contain the persistent version of the knowledge base. Finally
in Section 6.4 we conclude and summarise this Chapter.

59

Figure 6.1: Semantic TuCSoN Health Coordination Framework

6.1 Integration of Semantic Component in-

side TuCSoN

Semantic TuCSoN extends the previous versions of TuCSoN in three
main directions:

• possibility of contain knowledge base inside the tuple centres;

• creation of a semantic component to manage the knowledge base;

• extend the Logic Tuple concept in a way that permits to express
individuals and concepts of the Description Logic SHOIN (D)

In the following Sections we explain those extensions in more detail.

6.1.1 Semantic Component

Figure 6.2 shows the semantic component structure. The semantic com-
ponent is a tool which is possible manages a knowledge base contained

60

inside a tuple centre. The knowledge base is composed by three parts,
the TBox and the RBox, which are provided from an ontology and the
Abox that is the set of the informations inserted into it. This compo-
nent permits to load the ontology into the tuple centre, and thereafter to
insert information into the knowledge base, and to retrieve informations
from it.

An ontology is a structure like the schema of a Database. It is loaded in-
side the Semantic TuCSoN, through the use of the Java Jena API. During
the load operation it is transformed in a OntModel. The semantic com-
ponent, permits to insert, or retrieve information, transforming the sen-
tences of the Description Logic written by agents, in operations, which,
also work using the Java Jena API, in order to handle the OntModel.
An OntModel is an enhanced view of a Jena model that is known to con-
tain ontology data, under a given ontology vocabulary (such as OWL).
The interface of this component towards TuCSoN is ISemanticKB, and
all methods that it provides in order to work on the knowledge base are
provided from its implementation, the class SemanticKB, which uses the
methods presents in others three interfaces.

6.1.2 Individuals & Concepts

To represent the individuals and concepts of the Description Logics was
extended the concept of Logic Tuple so that individividual and concepts
could be modelled as tuples these two items.

Individuals in the description logics have the following well defined fea-
tures:

• a name;

• a concept to which belongs;

• some eventual relationships in which it is involved;

The Java class alice.semantics.tuple.SemanticLogicTuple was created to
extend the Logic Tuple class, and model the structure of the individual
of description logics.
Figure 6.3 shows the features of an individual. In fact here we can see
an individual called alex which belongs to Concept1 and has two object

61

Figure 6.2: Semantic Component

62

relationships rel1, rel2 with other individuals, whom belong to others con-
cepts, and a set others datatype relationships about its characteristic set
of relationships. Each relationship, regardless of the type, has a domain,
which is the start point, and has a range, which is the arrival point.
A SemanticLogicTuple allows agents to insert informations which repre-
sent individuals of description logics, by writing sentences (Java String)
with the following form, which is based on the example in figure 6.3:
semantic alex : ’Community1’(rel1 : range1,, relN : rangeN)

Figure 6.3: Individual

The concepts can be atomic or complex descriptions of them. Figure 6.4,
shows a structure that models conceptss, and it is on this structure that
are based the Semantic Tuple Template.

This structure permits to model all types of concepts existing in the de-
scription logic SHOIN (D) , and based on it , was created a Java class al-
ice.semantics.tuple.SemanticLogicTupleTemplate which extends the Logic
Tuple class and models the structure of a concept description. A Se-
manticLogicTupleTemplate allows agents to request informations which
represent a concept description of the description logics SHOIN (D).
Sentences (Java String) with the two following form:

a) semantic alex matching concept description

63

Figure 6.4: Elements Describing the Concept Related to a Semantic Tuple Template

b) semantic ’Result’ matching concept description

describe respectively an individual called alex, which must belong to a
concept described from the concept description, while and a Result that
requires an individual without specifying its name, which must belong to
a concept described from the concept description.

For more details concerning the construction of the semantic component,
and its features, refer to [16].

The first implementing step of this thesis is to integrate the extensions
made on TuCSoN to allow the construction of semantic tuple centres.
We want to enable agents to insert individuals in the knowledge base
and read/retrieve informations from it. The idea is to achieve this goal,
without upsetting the structure of TuCSoN.

To do this, has been made a deep analisys of the TuCSoN framework,
in order to understand where and how we should make the necessary
changes. There main arguments were identified which we explain in the
following sections.

64

6.1.3 Ability to create Semantic Tuple Centres with
a relative ontology

The idea is to extend TuCSoN withe the ability to create semantic tuple
centres, without changing the possibility to create classics tuple centres.
The reason for this conclusion is that not always we have the need of a
knowledge base. Also a semantic tuple centre ccan be omputationally
expensive. When there is not a real need for it, the users can create a
traditional tuple centre. The knowledge base inside the semantic tuple
centre is defined from the ontology loaded in it. We want also that each
tuple centre may contain the desidered ontology, which can be different
among various tuple centres. So, we must provide a mode to define the
ontology which we want to load into the tuple centre, at its startup,
and this mode has to be avalaible from outside, and not dedicated inside
Semantic TuCSoN.

The way to construct a tuple centre is shown in figure 6.5. The figure
illustrates the changes needed in order to build semantic tuple centres
inside TuCSoN. The following extension are identified

1. construction of an agent called setOntologyAgent that through an
out primitive specifies which ontology has to be loaded into the
tuple centre;

2. the AgentContextSkeleton must recognize the tuple inserted from
the setOntologyAgent; when this special tuple is inserted, it must
call a new method resolveSemanticCore, in which it specifies the
ontology decided by the setOntologyAgent

3. add the method resolveSemanticCore(String tcName, String ont),
which wants the additional argument ont, in the Node class. This
method invokes the method bootTupleCentre of the same class,
which also has to know the chosen ontology;

4. add the method bootTupleCentre(String tcName, String ont), which
wants the additional argument ont, in the Node class. This method
invokes the method createTC of the TucsonTCContainer class, which
also has to know the chosen ontology;

65

Figure 6.5: Building path for a tuple centre

5. add the method createTC(TucsonTupleCentreId tcName, int q, String
ont), which wants the additional argument ont, in the TucsonTC-
Container class. This method creates a new Java Object PelletOn-
tology which is part of the semantic component. It has as argument
the ontology that the setOntologyAgent wants loaded inside the tu-
ple centre. This method invokes the method tupleCentreCreator
of the Respect22Resolver class, with in addition the PelletOntology
object just created as argument;

6. modify the method tupleCentreCreator in the Respect22Resolver class,
adding to it the argument PelletOntology. It invokes the method
createRespectTC of the RespectTCContainer class, where in addic-
tion it must pass the PelletOntology;

7. modify the method createRespectTC in the RespectTCContainer class,
adding to it the argument PelletOntology. This method creates a
new Java Object RespectTC which is the real tuple centre, passing
it to the PelletOntology as argument.

66

8. RespectTC is the class with more changes more. We must create
here the main item of semantic component, the class ISemanticKB.
Once this component is created, we must load the ontology, so,
the OntModel can be build and the tuple centre from this moment
works in a semantic mode.

6.1.4 Inserting SemanticLogicTuple and retrieving/read-
ing SemanticLogicTupleTemplate

In order test the functionality of the semantic component the possibility
to use an out primitive to insert information through a SemanticLogic-
Tuple and to uses an rd/in primitive to retrieve an information through
SemanticLogicTupleTemplate was introduced. As said above, the infor-
mation contained inside the SemanticLogicTuple and SemanticLogicTu-
pleTemplate is a Java String. This must be transformed in an individual
in case of SemanticLogicTuple or in a concept description in the other
case. In order to perform this transformation two PROLOG parser are
used. The assert parser.prolog which given a string it returns an indi-
vidual, and the template parser.prolog which given a string it returns a
concept description. The parsing mechanism is based on the ontology
loaded inside the tuple centre, thus the agents have to create the Java
Object PelletOntology to perform the parsing.

After a careful analisys, we have decided that this behaviour was not
good, because we did not want that an agent manages the semantic
component. So, we studied a strategy, where, at the startup of the tuple
centre, a tuple containing a string representing the used ontology, has to
be inserted into the tuple centre. With this modification, an agent can
require the ontology used inside the tuple centre through a new special
getOntology primitive. This primitive returns a string representing the
ontology. An agent can also decide if the ontology contained in this
tuple centre is the ontology on which it wants to work. In this mode, we
can also shift the parsing of the sentences from the agents to the class
AgentContextStub, which is part of the system, in such a way that the
semantic component is now invisible to the agents. To permit this change,
we have created, for any primitive involved in the semantic operation, a
new correspondent primitive, with an additional String argument. This
string represents the ontology. In a semantic tuple centre, the agents
must use these new primitives, which has four arguments instead of three.

67

The last consideration about the semantic extension is that, the individ-
uals and the concepts description are utilised to work on the knowledge
base, but their presence is not important in the physical structure that
contains the inserted tuples. So we decide that this structure, which
is a Java Dataset, must contain only syntactic tuples, as usual. When
an semantic primitive out is done in the Dataset, only a classic tuple
with a special name semantic, containing as argument the name of the
individual will be inserted. This tuple can not be replicated because in
the semantic field is not allowed to have two individuals with the same
name. This special tuple can be seen as a pointer to an individual in
the knowledge base, in order to avoid the attempt to insert individuals
already present in the knowledge base, or to avoid the attempt to search
individuals not present in the knowledge base, that could lead to unnec-
essary computation. To do this, the SpeakingState class, which is the
class that represents the speaking-state of the tuple centre’s virtual ma-
chine, is changed to recognize if a tuple is instance of SemanticLogicTuple
or instance of SemanticLogicTupleTemplate, and in this case, checks the
presence or not of the tuple that points the individual required.

6.2 Modelling Semantic TuCSoN for eHealth

context

The implementation of our framework is based on the semantic compo-
nent for TuCSoN tuple centres as defined in [30] and integrated inside it
to create a new version called Semantic TuCSoN as described in Section
6.1. Additionally, we interface with openXDS1, an open source imple-
mentation of the XDS profile, in order to have documents stored and
retrieved in an IHE compatible manner. Both of these infrastructures
are JAVA based.

Figure 6.6 shows how the architecture of the system is related to TuC-
SoN. Every community is represented with a TuCSoN node and has its
own semantic knowledge base. The semantic knowledge base is used by
Jena to manage the defined ontology and from Pellet/SPARQL to per-
form queries and reasoning over the ontology. In order to provide the
persistence of the data model, the semantic knowledge base is stored in

1https://www.projects.openhealthtools.org/sf/projects/openxds/

68

https://www.projects.openhealthtools.org/sf/projects/openxds/

a PostgreSQL database, of which its implementing details are explained
in Section 6.3.

The User Agent is an external agent which interfaces with the users of
the system. After a user’s request to add or retrieve informations to
the knowledge base takes place, the system has to work on the knowl-
edge base. In case of the addition or modifications of documents, IHE
compatible meta-data are generated to be stored in the registry of the
XDS profile and the same meta-data are stored as semantic data in the
community knowledge base. Updates to the meta-data of the documents
of a patient are propagated towards the home community of the patient
and to the subscribed communities. We assume that the actual fetching
of the documents is realised using one of the existing IHE profiles (XCA
already addresses this issue).

OpenXDSCOMMUNITY

User
Agent

Data Base

Community
Component

Legend

System
Agent

TuCSoN
NodePTC

CTC

Postgre
SQL

Postgre
SQL

OWL

SPARQLSPARQL

PelletPellet

Jena
Jena Library
Query Lang.
Reasoner

Logic
Connection

OpenXDS

TuCSoN
NodePTC

CTC

Postgre
SQL

Postgre
SQL

OWL

SPARQLSPARQL

PelletPellet

Jena

OpenXDS

TuCSoN
NodePTC

CTC

Postgre
SQL

Postgre
SQL

OWL

SPARQLSPARQL

PelletPellet

Jena

Figure 6.6: The implementation of the system.

In the Chapter 5 we introduced two agents (Topology Agent and Update
Agent), which are persistent in the system. Each one of them has a
particular characteristics, and has the behaviour specified before. In
this section we illustrate their implementation details, accompanied by
sequence diagrams, to explain better the system’s behaviour.

69

There are three differences between what explained in the chapter about
the System Architecture 5 and the implementation. The first is that,
not needing for now of a mechanism to check all policies present in the
community, the Policy Tuple Centre (PTC) is not considered. The co-
ordination primitives specified for a Community are all included in the
Community Tuple Centre (CTC). The second is that we want to cre-
ate a prototype to test the motivating scenario introduced in Section
2.1, our attention is focused on it, so, only the Topology Agent and
the Update Agent are implemented. It is also seen the need to model
a new agent, called Coordination Agent, whose job is charged into the
CTC the ReSpecT specification, which defines the coordination policies
enabled inside it.

The three agents are created in the class RespectTC, where the out prim-
itive related to the tuple inserted by the setOntologyAgent is taken.

6.2.1 Coordination Agent

This agent is very simple, and its only duty is specified into the tuple cen-
tre the ReSpecT specification defined. This specification is contained in a
file called CommunityReaction.rsp. The reaction primitives content inside
the specification calling JAVA code. This is possible because TuCSoN
is based on tuProlog [11], a Java based implementation of Prolog that
allows a seamless integration between Java code and Prolog predicates.
For more informations about the use of TuCSoN refer to [3].

6.2.2 Topology Agent

There is a Topology Agent for each community node. The agent reacts
to tuples generated by external User Agents or to tuples generated by
the CTC of the community. The Topology Agent uses non-blocking in
operations in the CTC and reacts to messages either by writing in the
semantic knowledge base or by performing out operations in the CTC.

In the Section 5.3.1 we said that the Topology Agent listens for tuples.
The tuples that this agent is interested have the following template:
topologyAgent(operationName,[args]).
Its behaviour changes in base of the type of operation specified in the

70

operationName argument. There are six types of operation to which it is
interested:

• connect

• accept

• reject

• add

• disconnect

• remove

The connect, accept, reject, add operations are relative to Connection
phase, while disconnect, remove operations are relative to Disconnection
phase. These two phases are described below, with all actions performed
by all entities involved.

Connection to Topology

The sequence diagram in figure 6.7 shows what happens when an users,
usually an administrator user, asks to connect this community to a topol-
ogy. In this figure are present two Communities, the Community Sierre,
which asks to be added to a topology, precisely as child community of
the Community Valais.

Figure 6.7: Connection to the Topology.

71

The behaviour is explained as follows:

1. An actor triggers the Topology Agent Sierre to require a connection
to the topology, by inserting a tuple with this template
topologyAgent(”connect”,idFather,nameFather), where it specifies the
identifier and the name of the community Valais of which Sierre
wants to become a child. Topology Agent Sierre creates an out
primitive called request with this template
request(idSierre, nameSierre, addressSierre, policiesSierre, nameValais)
containing the information of the community where it lives, and
sends it to the CTC of community Valais.

2. The CTC reacts automatically at this out primitive, thanks to a
reaction ReSpecT, which retrieves the tuple and checks if the condi-
tions are satisfied how specified in reaction 5.3.1. Here the policies
checking is performed, associating to each community a number,
that identifies the level of policies of the community, in such a way
that can be done a check on the values of the two communities. If
the reaction is done, at the end, it sends an out primitive called
add with this template
topologyAgent(add,idSierre, nameSierre, addressSierre, policiesSierre)
to its CTC, and an out primitive called accept with this template
topologyAgent(accept,idValais, nameValais, addressValais, policiesValais)
to the Sierre CTC, otherwise it sends an out primitive called reject
to the Sierre CTC. The code of this reaction is showed in A.1

3. The Topology Agent Valais when an out primitive called add is
made, retrives the tuple from its CTC and create a semantic out
primitive for add the community Sierre to its knowledge base spec-
ifying that is its child.

4. The Topology Agent Sierre when an out primitive called accept
is made, retrieves the tuple from its CTC and create a semantic
out primitive for add the community Valais to its knowledge base
specifying that is its father. In case of out primitive called reject the
Topology Agent Sierre, retrieves the tuple from its CTC, creates
an other out primitive request, and sends it to its CTC for trying
to connect itself to an another eventual father.

The java code of the Topology Agent to perform the activity of connection
is showed in B.1

72

Disconnect from Topology

The sequence diagram in figure 6.8 shows what happens when an users,
usually an administrator user, asks to disconnect this community from
a topology. In this figure are present two Communities, the Community
Sierre, which asks to be removed to a topology, and Community Valais,
which must delete the Community Sierre from its knowledge base.

Figure 6.8: Connection to the Topology.

The behaviour is explained here:

1. An actor triggers the Topology Agent Sierre to required a discon-
nection from the topology, by inserting a tuple with this template
topologyAgent(”disconnect”). Topology Agent Sierre creates an out
primitive called delete with this template delete(nameSierre), and
sends it to the CTC of community Valais.

2. The CTC reacts automatically at this out primitive, thanks to a
reaction ReSpecT, which retrieves the tuple and checks if the con-
ditions are satisfied how specified in reaction 5.3.1. If the reaction
is done, at the end, it sends an out primitive called remove with
this template topologyAgent(remove, nameSierre) to its CTC. The
code of this reaction is showed in Appendix A.1

3. The Topology Agent Valais when an out primitive called remove is
made, retrives the tuple from its CTC and delete the community
Sierre as its child.

Verily, the community which asks to be deleted from a topology must
send the topologyAgent(”disconnect”) to its father and all its children.

73

But here we have showed the procedure only for the relation between
Sierre and his father Valais. The eventual children of Sierre, in case of
its deletion, lose the father, so, they must request to become children to
another community.

6.2.3 Update Agent

There is a Update Agent for each community node. The agent reacts
to tuples generated by external User Agents or to tuples generated by
the CTC of the community. The Update Agent uses non-blocking in
operations in the CTC and reacts to messages either by writing in the
semantic knowledge base or by performing out operations in the CTC.

In the Section 5.3.2 we said that the Update Agent listens for tuples.
The tuples of which it is interested have the follows template:
updateAgent(operationName,[args]).
Its behaviour changes in base to the type of operation specified in the
operationName argument. There are nine types of operation in which it
is interested:

• subscribe

• unsubscribe

• add

• remove

• update

• searchCommunity

• searchPatient

• replyCommunity

• replyPatient

These operations can be divided in three groups, the subscribe, unsub-
scribe, add, remove operations are relative to Subscription phase, the up-
date operation is relative to Update Notification phase, the searchCommu-
nity, searchPatient, replyCommunity, replyPatient operations are relative to

74

Research of informations phase, These three phases are described below,
with all actions performed by all entities involved.

Subscription to information

The sequence diagram in figure 6.9 shows what happens when an users,
usually an administrator user, asks to subscribe this community to a pa-
tient of another community. In this figure are present two Communities,
the Community Sierre, which asks to subscribe a patient which has as
home community, the Community Valais.

Figure 6.9: Subscribe to a Patient.

The behaviour is explained here:

1. An actor triggers the Update Agent Sierre to require a subscrip-
tion, by inserting a tuple with this template
updateAgent(”subscribe”, idValais, nameValais, homeCommunityPa-
tientID)), where is specified the identifier and the name of the com-
munity Valais and the identifier of the patient in his home commu-
nity. Update Agent Sierre creates an out primitive called subscribe
with this template
subscribe(idSierre, nameSierre, addressSierre, policiesSierre, homeCom-
munityPatientID) containing the information of the community Sierre
and the patient’s identifier, and sends it to the CTC of community
Valais.

2. The CTC reacts automatically at this out primitive, thanks to a
reaction ReSpecT, which retrieves the tuple and checks if the con-
ditions are satisfied how specified in reaction 5.3.2. If the reaction

75

is done, at the end, it sends an out primitive called add with this
template
updateAgent(add,idSierre, nameSierre, addressSierre, policiesSierre,
homeCommunityPatientID) to its CTC.

3. The Update Agent Valais when an out primitive called add is made,
retrieves the tuple from its CTC and create a semantic out primitive
in order to insert in the knowledge base the information about the
subscription.

The sequence diagram in figure 6.10 shows what happens when an users,
usually an administrator user, asks to unsubscribe this community by a
patient of another community. In this figure are present two Communi-
ties, the Community Sierre, which asks to unsubscribe a patient which
has as how home community, the Community Valais.

Figure 6.10: Unsubscribe by a Patient.

The behaviour is explained here:

1. An actor triggers the Update Agent Sierre to require a unsubscrip-
tion, by inserting a tuple with this template
updateAgent(”unsubscribe”, idValais, nameValais, homeCommunity-
PatientID)), where is specified the identifier and the name of the
community Valais and the identifier of the patient in his home
community. Update Agent Sierre creates an out primitive called
unsubscribe with this template
unsubscribe(nameSierre, homeCommunityPatientID) containing the
name of the community Sierre and the patient’s identifier, and
sends it to the CTC of community Valais.

76

2. The CTC reacts automatically at this out primitive, thanks to a
reaction ReSpecT, which retrieves the tuple and checks if the con-
ditions are satisfied how specified in reaction 5.3.2. If the reaction
is done, at the end, it sends an out primitive called remove with
this template
updateAgent(remove, nameSierre, homeCommunityPatientID) to its
CTC.

3. The Update Agent Valais when an out primitive called remove is
made, retrieves the tuple from its CTC and it deletes the sub-
scription object property between the community Sierre and the
interested patient from the knowledge base.

Update Notification

In this part of implementation we use a functionality of Jena API that
permits to catch the changes in the OntModel. It provides various types
of changes captured, in form of methods that the user must implement 2.
Implementing them each one can choose what type of change recognise.
In our case we want recognise the change of something regarding any
Document of a subscribed Patient. The Java code of our implementation
for this case is showed in Appendix B.2.

The sequence diagram in figure 6.11 shows what happens when a change-
ment of a document of a patient subscribed happen.

Figure 6.11: Update Notification.

The behaviour is explained here:

2com.hp.hpl.jena.rdf.listeners

77

1. The listener catch the changement, and creates an out primitive
called update with this template
update(patientId, documentId, homeCommunityId, caresCommunityId),
where is specified the identifier of the patient, the identifier of the
document, the identifier of the home community of the patient, and
the identifier of the community where the change happens.

2. The CTC reacts automatically at this out primitive, thanks to
a reaction ReSpecT, which retrieves the tuple and checks if the
homeCommunityId is the same of caresCommunityId as defined in
reactions 5.3.3 and 5.3.3.

• in case the two identifier are equal, this means that the change
happens in the home community, and it must send the change’s
information to all subscribers of that patient with a out prim-
itive called update with this template
updateAgent(”update”,changements). In the Appendix A.2 is
shown the reaction that performs this behaviour;

• otherwise, the community where the change happens, must
send the information of this event to the home community of
the patient.

3. The Update Agent when an out primitive called update is made,
retrieves the tuple from its CTC and work on the knowledge base
in order to insert the modifications received.

Research of information

The sequence diagram in figure 6.12 shows what happens when an users,
usually an administrator user, asks to search informations about a com-
munity. In this figure are present two community, the Community Sierre,
which performs the request, and the community which represents the set
of the communities connected to Sierre in the topology.

The behaviour is explained here:

1. An actor triggers the Update Agent Sierre to require a research of
a community, by inserting a tuple with this template

78

Figure 6.12: Research of a Community.

updateAgent(”comSearch”, criteria)), where is specified a list of ar-
guments. The list of arguments called criteria represents the infor-
mations known by the user about the community searched. Update
Agent Sierre creates an out primitive called comSearch with this
template
comSearch(idSierre, nameSierre, criteria, nameSierre) containing the
identifier and the name of the community Sierre, the list of argu-
ments for the research and the name of the tuple centre sender.
This tuple is send to all CTC of communities connected to Sierre.

• If a connected community finds the community searched, it
sends a tuple with this template
replyCom(criteriaSearched)), to the Community Sierre. So, the
Community Sierre can insert the informations into the knowl-
edge base as shown in the sequence diagram in figure 6.13.

• If the connected communities do not find the community searched,
they forward the tuple comSearch changing the fourth argu-
ment with its name, to all connected communities except the
sender community.

6.3 Persistence in Semantic TuCSoN

An important requirement for a real system that contains knowledge is
the persistence. In fact is vain have a container of information if this can

79

Figure 6.13: Reply about Community information.

lose some important informations. Jena API can provide the persistence
to the OntModel using a database [18]. In order to reach this goal we use
a PostgreSQL database and we implement the persistence in the follows
manner. We create two classes, one used for the startup of the tuple
centre, in order to load the ontology and transform it in a OntModel.
While the other one used for reload the OntModel if the tuple centre
collapses. The Java code of these two classes is showed in Appendix B.3.
For the persistence is necessary use the JDBC driver for PostgreSQL and
do this three operations in it:

• create a database called ”persistence”;

• create an user called ”tucson”

• create an user called ”tucson”

6.4 Summary

In this chapter we have implemented all elements needed to have a first
implemented version. This version satisfies all requirements identified
in the previous chapters. The resulting system will be utilized in next
chapter to realize the evaluation based on the use cases identified in the
motivating scenario.

80

Part III

Evaluation & Conclusions

81

Chapter 7

Evaluation

In this chapter we test the Semantic TuCSoN based on the sceneries
identified in the motivation case 2.1. These sceneries are the follows:

a) notification of updates to subscribed communities;

b) research of a community based on some informations.

The chapter is organized as follows: in the section 7.1 we explain the
architecture of the machine where we are making the tests, and the char-
acteristics of the Knowledge base used for the tests; in the section 7.2 we
test the performance of our framework in the scenario of notification of
updates to subscribed communities; in the section 7.3 we test the perfor-
mance of our framework in the scenario of research of a community based
on some informations; in the section 7.4 we evaluate the perfomance of
the framework, and we do some reflections of it, basing on the tests; in
the section 7.5 we summarise the work done in this chapter, and we say
for what we use the results obtaining.

7.1 Test Architecture

We performe tests to evaluate the proposed solution on a 24 cores Intel,
2.93 GHz and 96GB RAM machine. We create 7 semantic tuple centres,
each of them represents a different community and contains the ontology
showed in figure 5.3, and we install each one in separate virtual machine.

83

In each community we insert some informations, which consist of Indi-
viduals of description logic with their object and datatype properties.
The step for make the tests are the follows:

• insertion of an individual that represent the home community of
the tuple centre;

• insertion of some individual for each Class presents in the ontology;

• insertion of one thousand individuals belonging to Patient class.

Furthermore, for both of the tests, we give to the 7 tuple centres, other
communities, starting by one hundred communities present in each tuple
centre, up to arrive to one thousand communities present in each one.
These communities are not deployed in virtual machines. We did this to
understand how the computation time of the different queries increases
as the semantic knowledge base increases in size, because in the context
of eHealth there is the needs of contain a large number of informations.

For both test, before, we create a topology as showed in figure 7.1 in
order to check all procedures to simulate a real use environment. The
figure shows the tree structure considerated.

Valais Vaud

LausanneSierre

Swiss

Geneva

Figure 7.1: Test Topology

84

7.2 Notify Updates

In this test we varied the number of subscriptions for a patient from 1 to
6 and measured the average time that a community takes to send updates
regarding that patient to the subscribed communities.
The interval time for the evaluation is the time that intercorre from the
moment when a update is done in the home community to the moment
when it is sended to all subscribers.

Figure 7.2: The Update Time.

Fig. 7.2 shows how the update time changes with a growing number of
known communities and subscriptions to a patient. The time to update
other communities grows linearly with the number of community individ-
uals held in the knowledge base. This is due to the increase on the time
to search for the communities that are subscribed to a specific patient.
Also a growing number of subscriptions per patient introduces a latency
as more than one update message has to be sent into other tuple centres.

85

7.3 Community Research

In this test we measured the time that a distributed search takes to find
the results. We searched data that were at 1 then 2 and then 3 hops in
the tree structure.
The interval time for the evaluation is the time that intercorre from the
moment when a research of community start to the moment when the
reply arrives.

Figure 7.3: The time to search in other communities.

Fig.7.3 shows how the search time in other communities of the tree
structure changes as the number of community individuals held in ev-
ery knowledge base grows. The results show that the time to search in
other communities grows exponentially as the search gets propagated in
the tree structure. This is to be expected as the search has no prior
knowledge as to where to send the query and each node has to evaluate
the query before establishing that there is no data held and forward it
to the neighbouring nodes.

86

7.4 Results Evaluation

The tests shown that for the update notification, the growth, at the
increase of quantity of informations contained inside the knowledge base
is linear, and it is a good result. But, for the research of community, in
the same conditions, we have a exponential growth. This is not good, in
a context where must be present a large number of communities. After a
careful analysis, our evaluation is that the guilt of this incremental growth
is to charged to the TuCSoN limitation to work with a large number of
tuple, that has a decadence of performance, when this number grows too.

7.5 Summary

In this chapter we have evaluated the performance of the system for the
main scenarious identified. After these evaluations we have evaluated the
results obtained, which are the bases for the conclusions present in the
next chapter.

87

Chapter 8

Concluding Remarks

8.1 Conclusions

Based on the evaluations done in Chapter 7 we can draw the following
conclusions about the new framework Semantic TuCSoN applied to the
eHealth context:

a) it works well to resolve the deficiencies of the IHE profiles. In fact it
is perfect in order to reach the goal of information exchange among
communities without syntactic constrains.

b) a controindication is that Semantic TuCSoN does not support a
large number of informations inside a single tuple centre, and the
eHealth is a context where a lot of informations should be managed.
The solution of this, is inserted inside the tuple centre only the
informations needed to drive the coordination of the system.

8.2 Summary

In this thesis we were motivated by the need to have a framework over-
comes the limits of the IHE profiles about the exchange of semantic
informations. We have identified the framework TuCSoN to reach the
objective. This is because it permits to exchange information in dis-
tribuited environment and was provided of semantic functions in order

89

to work on the knowledge base. Our work has been to integrate these
functions inside TuCSoN in order to have tuple centres really semantics,
thus having a first functional version of Semantic TuCSoN. The second
work has been apply this resulting framework to the context of eHealth,
creating all entities needed to the exchange of informations and for their
coordination, by following the model developed in Chapter 5. As final
step we have made the test of the main sceneries identified in order to
obtain some performance evaluation that will help us to decide if the
work will continue with Semantic TuCSoN or not.

8.3 Future Work

As our future work we focus on the inserting of this framework in a
real use for sanitary organisations. We plan to provide the framework of
Graphic Interfaces dedicated for every user, based on access rights. The
build of Graphic Interfaces will permit to overcome the present need to
know the SHOIN (D) in order to use the framework. We plan also to
address security issues arising from an open environment. Apart from
the logging of events, for which we can use a Log Agent, the set of policies
may help to check that the emerging behaviour of the actors performing
the queries is that expected within the community sub-system. Finally
we plan to allow communities to subscribe to different types of events
(other than patient updates) and allow for filters to be applied to the ex-
changed information. Both of these extensions will require more complex
semantic reasoning than the one presented in this thesis.

90

Appendix A

Reaction ReSpecT

A.1 Connection request

r e a c t i o n (out (r eque s t (X,Y,W, Z , RequestedName)) ,
(operat ion , complet ion) ,
(
get semanticKB (KB) ,
KB<−getBase r e tu rn s Base ,
KB<−getModel r e tu rn s Model ,
t ext te rm (Ytext ,Y) ,
t ex t conca t (Base , Ytext , IndividualName) ,

Model<−g e t I n d i v i d u a l (IndividualName) r e tu rn s Ind iv idua l ,

I n d i v i d u a l = ,

text te rm (RequestedNameText , RequestedName) ,
t ex t conca t (Base , RequestedNameText , MyIndividualName) ,
Model<−g e t I n d i v i d u a l (MyIndividualName) r e tu rn s

IndividualThisCommunity ,

t ex t conca t (Base , ’ p o l i c i e s ’ , NamePol ic iesProperty) ,
Model<−getDatatypeProperty (NamePol ic iesProperty) r e tu rn s

Po l i c i e sPrope r ty ,
IndividualThisCommunity<−getProperty (P o l i c i e s P r o p e r t y) r e tu rn s

MyPolicy ,
MyPolicy<−getObject r e tu rn s Pol icyObject ,
Pol icyObject<−a s L i t e r a l r e tu rn s P o l i c y L i t e r a l ,
P o l i c y L i t e r a l <−ge t In t r e tu rn s Pol icyValue ,

Z >= PolicyValue ,

t ex t conca t (Base , ’ i d e n t i f i e r ’ , NameIdProperty) ,
t ex t conca t (Base , ’ name ’ , NameNameProperty) ,
t ex t conca t (Base , ’ address ’ , NameAddressProperty) ,

91

Model<−getDatatypeProperty (NameIdProperty) r e tu rn s
IdProperty ,

Model<−getDatatypeProperty (NameNameProperty) r e tu rn s
NameProperty ,

Model<−getDatatypeProperty (NameAddressProperty) r e tu rn s
AddressProperty ,

IndividualThisCommunity<−getProperty (IdProperty) r e tu rn s
MyId ,

IndividualThisCommunity<−getProperty (NameProperty) r e tu rn s
MyName,

IndividualThisCommunity<−getProperty (AddressProperty) r e tu rn s
MyAddress ,

MyId<−getObject r e tu rn s IdObject ,
MyName<−getObject r e tu rn s NameObject ,
MyAddress<−getObject r e tu rn s AddressObject ,
IdObject<−a s L i t e r a l r e tu rn s I d L i t e r a l ,
NameObject<−a s L i t e r a l r e tu rn s NameLiteral ,
AddressObject<−a s L i t e r a l r e tu rn s Addres sL i t e ra l ,
I d L i t e r a l <−g e t S t r i n g r e tu rn s IdStr ing ,
NameLiteral<−g e t S t r i n g r e tu rn s NameString ,
Addres sL i te ra l<−g e t S t r i n g r e tu rn s AddString ,

c u r r e n t t c (TC) ,
TC ? in (r eque s t (X,Y,W, Z , RequestedName)) ,
out (topologyAgent (add ,X,Y,W, Z , ’ nu l l ’ , ’ nu l l ’)) ,
ou t t c (Y @ X, topologyAgent (accept , IdStr ing , NameString ,

AddString , Pol icyValue))
)

) .

The reaction rule specifies that when an out of a subscribe tuple is made
into the tuple centre, then the reference to the JAVA object representing
the semantic knowledge base KB is used (the ← notation represent a
call to a java module) to obtain the URI and the model Model of the
ontology. Now we calls the Java method getIndividual(nameOfIndividual)
in order to retrieve from the OntModel the Individual with name name-
OfIndividual. The Individual represent the home community of this tuple
centre. Of this home community we obtain the number that identifies
the policy level, so, it can be compared with the policy level of the com-
munity that has submitted the request. If the result of comparison is
true, the reaction retrieves from the OntModel all properties of the in-
dividual home community, in the similar mode as before has taken the
policy value. At the end, the reaction picks up the tuple request from the
tuple centre, and perform an out primitive topologyAgent(add,X,Y,W,Z
towards the local tuple centre, and perform an out primitive topologyA-
gent(accept,IdString,NameString,AddressString,PolicyValue) towards the tu-
ple centre of the requester.

92

A.2 Update subscribers

r e a c t i o n (
out (update (A,B,C,D,E, F ,G)) ,
(i n t e r n a l , complet ion) ,
(
cu r r en t t ime (Time1) ,

C = D,
text te rm (Btext ,B) ,
text te rm (Etext ,E) ,
text te rm (Ftext ,F) ,
t ext te rm (Gtext ,G) ,

c u r r e n t t c (TC) ,
TC ? in (update (A,B,C,D,E, F ,G)) ,

get semanticKB (KB) ,
KB<−getBase r e tu rn s Base ,
KB<−getModel r e tu rn s Model ,

j a v a o b j e c t (’ c oo rd ina t i on . UpdateAgentUti l ity ’ , [Model , Base] ,
MyUpdateUtil ity) ,

MyUpdateUtility<−ut i l i t yUpdat e (A, ’ subsc r ibe ’) r e tu rn s I t e r a t o r ,

memberAll (I t e r a t o r , L i s tPr) , p r i n t l n (’ semReaction ’ (L i s tPr)) ,

f o r a l l (member(Mem, Lis tPr) , (
t ex t conca t (Base , ’ i d e n t i f i e r ’ , NameIdProperty) ,
Model<−getDatatypeProperty (NameIdProperty) r e tu rn s

IdProperty ,
Mem<−getProperty (IdProperty) r e tu rn s IdStatement ,
IdStatement<−getObject r e tu rn s IdObject ,
IdObject<−a s L i t e r a l r e tu rn s I d L i t e r a l ,
I d L i t e r a l <−g e t S t r i n g r e tu rn s IdValue ,

Mem<−getLocalName re tu rn s CommunityName ,

ou t t c (ComName @ IdValue ,
updateAgent (update , Btext , Etext , Ftext , Gtext))

)
) ,
)

) .

The reaction rule specifies that when an out of a subscribe tuple is made
into the tuple centre, then the reference to the JAVA object representing
the semantic knowledge base KB is used (the← notation represent a call
to a java module) to obtain the URI and the model Model of the ontology.
We use an UpdateUtility java module to check if the policies allow us to
subscribe the community Community to the patient Patient. MyUpdateU-
tility is a variable containing an UpdateUtility object constructed with the

93

model Model and URI of the ontology. Finally, the tuple add is sent to
the Update Agent which inserts the new information in the knowledge
base.

94

A.3 Search community

r e a c t i o n (
out (communitySearch (A,B,C,D,E)) ,
(operat ion , complet ion) ,
(
c u r r e n t t c (TC) ,
TC ? in (communitySearch (A,B,C,D,E)) ,

get semanticKB (KB) ,
KB<−getBase r e tu rn s Base ,
KB<−getModel r e tu rn s Model ,

j a v a o b j e c t (’ c oo rd ina t i on . UpdateAgentUti l ity ’ , [Model , Base] ,
MyUpdateUtil ity) ,

MyUpdateUtility<−checkCommunityCriteria (D) r e tu rn s I t e r a t o r ,

I t e r a t o r = ,

text te rm (Etext ,E) ,
t ex t conca t (Base , Etext , LocalComNameIndividual) ,

Model<−g e t I n d i v i d u a l (LocalComNameIndividual) r e tu rn s
IndividualLocalCom ,

MyUpdateUtility<−getCommunities (LocalIndividualCom , A) r e tu rn s
IteratorCom ,

memberAll (IteratorCom , Lis tPr) , p r i n t l n (’ semReaction ’ (L i s tPr)) ,

f o r a l l (member(Mem, Lis tPr) ,
(

t ex t conca t (Base , ’ i d e n t i f i e r ’ , NameIdProperty) ,
Model<−getDatatypeProperty (NameIdProperty) r e tu rn s

IdProperty ,
Mem<−getProperty (IdProperty) r e tu rn s IdStatement ,
IdStatement<−getObject r e tu rn s IdObject ,
IdObject<−a s L i t e r a l r e tu rn s I d L i t e r a l ,
I d L i t e r a l <−g e t S t r i n g r e tu rn s IdValue ,

Mem<−getLocalName re tu rn s ComName,

ou t t c (CommunityName @ IdValue ,
communitySearch (E,B,C,D,ComName))

)
)
)

) .

The reaction rule specifies that when an out of a communitySearch tuple
is made into the tuple centre, then the reference to the JAVA object
representing the semantic knowledge base KB is used (the ← notation
represent a call to a java module) to obtain the URI and the model

95

Model of the ontology. We use an UpdateUtility java module to verify if
the knowledge base contains the community searched. MyUpdateUtility is
a variable containing an UpdateUtility object constructed with the model
Model and URI of the ontology. Now we calls the Java method chechCri-
teria(Criteria) in order to verify if the OntModel contains a Community
Individual with the Criteria inserted. The Iterator represents the list of
arguments of the Community searched. The content of Iterator discrim-
inates the behaviour. If the content is null the communitySearch tuple
(with the sender updated) is forwarded to all connected communities
excluding the sender.

96

Appendix B

Java Code

B.1 Connection request

if(tupleArgumentName.equals(”connect”)){
System.err.println(”[Topology Agent] Connect tuple arrived”);
/∗
∗ a) from the tuple, the agent must retrieve the ID and the name of the community which
∗ the Actor (normally an administrator of the local community) wants as father
∗
∗ b) it sends to the requested father the tuple with all the information about own community;
∗ the template is the follow:
∗ request(String:myIdentifier, String:myName, String:myAddress, int:myPolicies,

String: fatherName)
∗ P.S. the fatherName is an additional information for various reasons.
∗
∗ c) the agent must wait an answer from the father;
∗ The answer can be of two type
∗ request accepted −> template: topologyAgent(accept,String:fatherID,

String:fatherName, String:fatherAddress, int:fatherPolicy)
∗ request rejected −> template: topologyAgent(reject)
∗
∗ d) request accepted:
∗ 1) create his father as Semantic Individual with class Community
∗ 2) exit to the waitAnswer while
∗/

Individual ind = model.getIndividual(base+localTC);
Statement idStatement = ind.getProperty(idProp);
Statement nameStatement = ind.getProperty(nameProp);
Statement addresstatement = ind.getProperty(addressProp);
Statement policiesStatement = ind.getProperty(policiesProp);
String id = idStatement.getString();
String name = nameStatement.getString();
String address = addresstatement.getString();
int policies = policiesStatement.getInt();

String fatherId = tuple.getArg(1).toString();
String fatherName = tuple.getArg(2).toString();

97

LogicTuple requestTuple = new LogicTuple(”request”, new Value(id),new Value(name),
new Value(address),new Value(policies),new Value(fatherName));

externalId = new TucsonTupleCentreId(fatherName+”@”+fatherId);
cnt.out(externalId, requestTuple, (Long) null);

boolean waitAnswer = true;

while(waitAnswer){
LogicTuple topologyAnswer = new LogicTuple(”topologyAgent”,new Var(”A”),

new Var(”B”),new Var(”C”),new Var(”D”),new Var(”E”),
new Var(”F”),new Var(”G”));

tuple = cnt.in(tid, topologyAnswer, (Long)null);
tupleArgumentName = tuple.getArg(0).getName();

waitAnswer = false;

if(tupleArgumentName.equals(”accept”)){

id = tuple.getArg(1).toString();
name = tuple.getArg(2).toString();
address = tuple.getArg(3).toString();
int father = 1;
int children = 0;
policies = tuple.getArg(4).intValue();

String community = ”semantic ”+name+” : ’Community’(identifier : ”+id+
”, name : ”+name+ ”, address : ”+address+”, father : ”+father+
”, children : ”+children+”, policies : ”+policies+”)”;

LogicTuple getOntology = new LogicTuple(”ontology”, new Var(”Ontologia”));
LogicTuple res = cnt.getOntology(tid, getOntology, (Long)null);
String ontology1 = res.getArg(0).getName();
cnt.out(tid, community, (Long) null, ontology1);

}else if(tupleArgumentName.equals(”reject”)){
System.out.println(”[TopologyAgent] Reject case not yet implemented”);

}
}

98

B.2 Jena Listener

/∗∗
∗ Listener over the statement’s change
∗ The interested change in this case is about documents of patients.
∗
∗ @param com.hp.hpl.jena.rdf.model.Statement
∗
∗/

public void addedStatement(Statement arg0) {

String base = tc.getSemKB().getBase();
OntModel model = tc.getSemKB().getModel();

Resource documentClass = model.getResource(base+”Document”);
Resource resourcePatient = model.getResource(base+”Patient”);
Resource resourceCommunity = model.getResource(base+”Community”);

OntProperty hasProp = model.getOntProperty(base+”has”);
OntProperty caresProp = model.getOntProperty(base+”cares”);
OntProperty hasHomeCommunityProp = model.getOntProperty(base+

”hasHomeCommunity”);

Individual documentIndividual;
Individual patientIndividual;
Individual communityIndividual;

boolean flag = false;

/∗
∗ Retrieve all individuals present in the Class ”Document”
∗/

ExtendedIterator<Individual> documentIndividualIterator =
model.listIndividuals(documentClass);
while(documentIndividualIterator.hasNext()&& !flag){

documentIndividual = documentIndividualIterator.next();
/∗
∗ We are interest only to a changes relates to a Document
∗ So, here we check if the subject of the statement is the individual extracts

from the iterator
∗/

if(documentIndividual.getLocalName().equals(arg0.getSubject().getLocalName())){
/∗
∗ Retrieve all individuals present in the Class ”Patient”
∗/

ExtendedIterator<Individual> itPatient = model.listIndividuals(resourcePatient);
while(itPatient.hasNext()&& !flag){

patientIndividual = itPatient.next();
/∗

∗ Retrieve all Statements where a individual patient is the Subject of
the property ”hasProp”

∗/
StmtIterator iter = patientIndividual.listProperties(hasProp);
while(iter.hasNext()&& !flag){

/∗
∗ We are interest only to a patient who has the document which changed
∗ So, here we check if the subject of the statement is an individual belonging

∗ to class Document

99

∗/
if(iter.next().getSubject().asResource().getLocalName()
.equals(patientIndividual.getLocalName())){

String patient = patientIndividual.getLocalName();
String document = documentIndividual.getLocalName();
String homeCommunity =
patientIndividual.getProperty(hasHomeCommunityProp)
.getObject().asNode().getLocalName();
ExtendedIterator<Individual> itCommunity =
model.listIndividuals(resourceCommunity);
while(itCommunity.hasNext()&& !flag){

communityIndividual = itCommunity.next();
StmtIterator iter2 = communityIndividual.listProperties(caresProp);
while(iter2.hasNext()&& !flag){

if(iter2.next().getObject().asResource().getLocalName()
.equals(patientIndividual.getLocalName())){

flag = true;
String caresCommunity = communityIndividual.getLocalName();
LogicTuple lT = new LogicTuple(”updateAgent”
, new Value(”updates”), new Value(patient),new Value(document)
, new Value(homeCommunity), new Value(caresCommunity)
, new Value(”remove”));
LogicTuple removed = (LogicTuple) tc.getVM()

.getRespectVMContext().readMatchingTuple(lT);
if(removed == null){

tc.getVM().getRespectVMContext().addTuple(lT);
}

}
}

}

}
}

}
}

}
}

100

B.3 Persistence

public class SetModel {

public static final String DB URL = ”jdbc:postgresql://localhost/persistence”;
public static final String DB USER = ”tucson”;
public static final String DB PASSWD = ”tucson”;
public static final String DB = ”PostgreSQL”;
public static final String DB DRIVER = ”org.postgresql.Driver”;

// source URL to load data from; if null, use default
private static String s source;

// if true, reload the data
private static boolean s reload = true;

public static OntModel setModel(String path){

// load the driver class
try {

Class.forName(DB DRIVER);
} catch (ClassNotFoundException e) {

System.err.println(”Failed to load the driver for the database: ” + e.getMessage());
System.err.println(”Have you got the CLASSPATH set correctly?”);

}

PersistentOntology po = new PersistentOntology();

// we pass cleanDB=true to clear out existing models
// NOTE: this will remove ALL Jena models from the named persistent store, so
// use with care if you have existing data stored
ModelMaker maker = po.getRDBMaker(DB URL, DB USER, DB PASSWD, DB, true);

// now load the source data into the newly cleaned db
return po.loadDB(maker, path);

}
}

101

public class LoadModel {

public static final String DB URL = ”jdbc:postgresql://localhost/persistence”;
public static final String DB USER = ”tucson”;
public static final String DB PASSWD = ”tucson”;
public static final String DB = ”PostgreSQL”;
public static final String DB DRIVER = ”org.postgresql.Driver”;

// source URL to load data from; if null, use default
private static String s source;

// if true, reload the data
private static boolean s reload = true;

public static OntModel loadModel(String path){

// load the driver class
try {

Class.forName(DB DRIVER);
} catch (ClassNotFoundException e) {

System.err.println(”Failed to load the driver for the database: ” + e.getMessage());
System.err.println(”Have you got the CLASSPATH set correctly?”);

}

PersistentOntology po = new PersistentOntology();

// we pass cleanDB=true to clear out existing models
// NOTE: this will remove ALL Jena models from the named persistent store, so
// use with care if you have existing data stored
ModelMaker maker = po.getRDBMaker(DB URL, DB USER, DB PASSWD, DB, false);

return po.openDB(maker, path);
}

}

102

Bibliography

[1] The description logic handbook. page 622, 2007.

[2] Andrea and Omicini. Formal respect in the a & a perspective.
Electronic Notes in Theoretical Computer Science, 175(2):97 – 117,
2007. ¡ce:title¿Proceedings of the Fifth International Workshop on
the Foundations of Coordination Languages and Software Architec-
tures (FOCLASA 2006)¡/ce:title¿.

[3] apiCE Lab. Tucson guide. http://apice.unibo.it/xwiki/bin/download/
TuCSoN/Documents/manual.pdf, 2006.

[4] F. Baader. Logic-based knowledge representation. In Artificial In-
telligence Today, pages 13–41, 1999.

[5] F. Baader, R. Küsters, and F. Wolter. Extensions to description
logics. In Description Logic Handbook, pages 219–261, 2003.

[6] F. Baader and W. Nutt. Basic description logics. In Description
Logic Handbook, pages 43–95, 2003.

[7] P. Ciancarini. Coordination models and languages as software inte-
grators. ACM Comput. Surv., 28(2):300–302, June 1996.

[8] M. Colombetti. Dispense corso di Ingegneria
della conoscenza: modelli semantici, Facolta di in-
gegneria dell informazione, Politecnico di Milano.
http://home.dei.polimi.it//colombet/IC/materiale/IC2011.

[9] S. CT. Systematized Nomenclature of MEDicine Clinical Terms,
2011. http://www.nlm.nih.gov/research/umls/Snomed/snomed_
main.html.

103

http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html

[10] E. Denti, A. Natali, and A. Omicini. Programmable coordination
media. In D. Garlan and D. Le Mtayer, editors, Coordination Lan-
guages and Models, volume 1282 of Lecture Notes in Computer Sci-
ence, pages 274–288. Springer Berlin / Heidelberg, 1997. 10.1007/3-
540-63383-986.

[11] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm Java-Prolog in-
tegration in tuProlog. Sci. Comput. Program., 57(2):217–250, 2005.

[12] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm javaprolog in-
tegration in tuprolog. Science of Computer Programming, 57(2):217
– 250, 2005.

[13] R. H. Dolin, L. Alschuler, S. Boyer, and C. Beebe. An update on
hl7s xml-based document representation standards. Proceedings of
the AMIA Symposium, pages 190–194, 2000.

[14] R. H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F. M. Behlen, P. V.
Biron, and A. S. Shvo. Model formulation: Hl7 clinical document
architecture, release 2. JAMIA, 13(1):30–39, 2006.

[15] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity
of concept languages (extended abstract). In Description Logics,
pages 87–90, 1991.

[16] N. Elena. SEMANTIC COORDINATION
THROUGH PROGRAMMABLE TUPLE SPACES.
http://apice.unibo.it/xwiki/bin/download/Theses/
NardiniPhdTheses/NardiniPhdThesis.pdf, 2011.

[17] G. Eysenbach. What is e-health? J Med Internet Res, 3(2):e20, Jun
2001.

[18] S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills, editors.
Proceedings of the 13th international conference on World Wide Web
- Alternate Track Papers & Posters, WWW 2004, New York, NY,
USA, May 17-20, 2004. ACM, 2004.

[19] A. Geissbuhler, S. Spahni, A. Assimacopoulos, M. Raetzo, and
G. Gobet. Design of a patient-centered, multi-institutional health-
care information network using peer-to-peer communication in a
highly distributed architecture. Medinfo, 11(Pt 2):1048–52, 2004.

104

[20] D. Gelernter. Generative communication in linda. ACM Trans.
Program. Lang. Syst., 7(1):80–112, Jan. 1985.

[21] D. T. Gunter and P. N. Terry. The emergence of national electronic
health record architectures in the united states and australia: Mod-
els, costs, and questions. J Med Internet Res, 7(1):e3, Mar 2005.

[22] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic
Web Technologies. Chapman & Hall/CRC, 2009.

[23] HL7, 2011. http://www.hl7.org/.

[24] IHE. Ihe iti cross couminity information exchange, 2008.
http://www.ihe.net/Technical_Framework/upload/IHE_ITI_

TF_White_Paper_Cross_Community_2008-11-07.pdf.

[25] IHE. Connectathon, 2011. http://www.ihe.net/connectathon/.

[26] IHE. Ihe integration profiles vol 1, 2011. http://www.ihe.net/

Technical_Framework/upload/IHE_ITI_TF_Rev8-0_Vol1_FT_

2011-08-19.pdf.

[27] LOINC. Logical Observation Identifiers Names and Codes, 2011.
http://loinc.org/.

[28] S. MAZZOCCHI. Closed world vs. open world: the first semantic
web battle. http://www.betaversion.org/~stefano/linotype/

news/91/.

[29] D. Nardi and R. J. Brachman. An introduction to description logics.
In Description Logic Handbook, pages 1–40, 2003.

[30] E. Nardini, M. Viroli, and E. Panzavolta. Coordination in open
and dynamic environments with TuCSoN semantic tuple centres.
In Proceedings of the 2010 ACM Symposium on Applied Computing
(SAC).

[31] A. Omicini and E. Denti. From tuple spaces to tuple centres. Science
of Computer Programming, 41(3):277 – 294, 2001.

[32] A. Omicini and F. Zambonelli. Coordination for internet application
development. Autonomous Agents and Multi-Agent Systems, 2:251–
269, 1999. 10.1023/A:1010060322135.

105

http://www.hl7.org/
http://www.ihe.net/Technical_Framework/upload/IHE_ITI_TF_White_Paper_Cross_Community_2008-11-07.pdf
http://www.ihe.net/Technical_Framework/upload/IHE_ITI_TF_White_Paper_Cross_Community_2008-11-07.pdf
http://www.ihe.net/connectathon/
http://www.ihe.net/Technical_Framework/upload/IHE_ITI_TF_Rev8-0_Vol1_FT_2011-08-19.pdf
http://www.ihe.net/Technical_Framework/upload/IHE_ITI_TF_Rev8-0_Vol1_FT_2011-08-19.pdf
http://www.ihe.net/Technical_Framework/upload/IHE_ITI_TF_Rev8-0_Vol1_FT_2011-08-19.pdf
http://loinc.org/
http://www.betaversion.org/~stefano/linotype/news/91/
http://www.betaversion.org/~stefano/linotype/news/91/

[33] R. Sojer, H. Muller, D. Aronsky, and P. Ruch. e-Heallth Semantic
And Content For Switzerland, 2011.

[34] V. Urovi, A. C. Olivieri, S. Bromuri, M. I. Schumacher, and
N. Fornara. An agent coordination framework for ihe based cross-
community health record exchange, 2012.

[35] U. Visara. Semhealthcoord - first technical report. SemHealthCoo.
HES-SO, 2012.

[36] F. Wozak, E. Ammenwerth, A. Hrbst, P. Sgner, R. Mair, and T. Sch-
abetsberger. Ihe based interoperability - benefits and challenges. In
S. K. Andersen, G. O. Klein, S. Schulz, and J. Aarts, editors, MIE,
volume 136 of Studies in Health Technology and Informatics, pages
771–776. IOS Press, 2008.

106

Acknowledgements

Ho sempre pensato che i ringraziamenti dovessero essere rivolti solo verso
chi ha contribuito in qualche maniera alla realizzazione della tesi, e resto
convinto di questa idea.

Ma la tesi è la fine di un percorso, quindi, senza entrare troppo nel
dettaglio, voglio spendere qualche parola anche per tutte le persone che
mi hanno accompagnato a questo traguardo.

Vorrei partire ringraziando tutte le persone che ho avuto il piacere di
conoscere durante questi splendidi anni universitari. Non farò nomi per
paura di tralasciare qualcuno, e poi sareste in troppi, ma tutti quanti
in un modo o nell’altro avete lasciato una traccia del vostro passaggio.
Qualcuno se n’è andato, qualcun’altro lo farà, ma l’importante sono le
persone che restano, e sono sicuro che alcuni di voi, soprattutto il gruppo
UaUa, in un modo o nell’altro sarete sempre al mio fianco, e questo mi
rende orgoglioso della persona che sono.

Ora vorrei fare un ringraziamento speciale alla mia famiglia, che è stata
la più grande fortuna della mia vita. A partire dai miei fantastici nipoti,
ho sempre sentito la presenza di tutti voi in qualsiasi fase della mia vita,
grazie di cuore. Qui però quattro nomi in particolare li devo fare.
Parto ringraziando mio Babbo, che nonostante le difficoltà che ha dovuto
affrontare, ha avuto il coraggio di tenere uniti e crescere sette figli, e
nonostante i suoi metodi rudi e a volte scorbutici, ha fatto in modo che
diventassimo sette persone fantastiche, che si supportano e si aiutano in
ogni situazione. GRAZIE BABBO.
Poi voglio ringraziare mia sorella Barbara e mio cognato Leandro, che
mi hanno accolto in casa loro, e mi hanno cresciuto come un figlio, anzi
meglio. Penso che poche persone possano dire di avere avuto genitori
al loro pari. Nel loro piccolo non mi hanno mai fatto mancare niente, a
costo di rinunciare loro stessi a tante cose. Di sicuro non senza di voi la

107

mia vita sarebbe stata diversa, e non sarei mai diventato quello che sono
ora. GRAZIE BABI E LEO.
Infine vorrei ringraziare mio fratello Giuseppe, che ho sempre visto come
un esempio da seguire. Diciamo che la pacatezza e tranquillità che ha
saputo trasmettermi hanno bilanciato la parte oscura presente in me.
Hai sempre creduto in me, dandomi tutto il supporto possibile senza mai
dubitare e senza che ti dovessi mai chiedere nulla. GRAZIE GIUSEPPE.
Sono tutto tranne che un santo, ma ho un gruppo di angeli che hanno
sempre rispettato la mia indipendenza, ma in punta di piedi hanno saputo
rimettermi sul binario giusto ogni volta che imboccavo la strada sbagliata.

Ecco, ora che le lacrime, che non mi rigavano il viso da 12 anni, sono
finite, voglio ringraziare le sei persone cha hanno avuto un ruolo attivo
durante il periodo di svolgimento della mia tesi.

Parto ringraziando il mio Relatore, Andrea Omicini, una persona che ha
creduto in me, dandomi la possibilità di fare questa bellissima esperienza
all’estero, e con il quale è sempre bastata una semplice email di una riga
per capirsi.
Poi devo fare un ringraziamento speciale a Michael I. Schumacher, che
mi ha accolto a braccia aperte nel suo Team, non facendomi mai pesare
il mio inglese un pò zoppicante.
Voglio fare un ringraziamento anche a Johannes per l’aiuto che mi ha
dato in fase di Evaluation.
Un grande grazie a Karine, la prima persona che ho conosciuto in Svizzera,
che dal primo momento mi ha fatto sentire a mio agio e mi ha aiutato in
ogni ambito burocratico durante la mia permanenza.
Ora arriviamo a due persone che per un caso della vita ho ritrovato al
Techno Pole dopo averci studiato insieme, e mi hanno fatto sentire come
se fossi a casa. Inizio dal ringraziare Stefano, che ho scoperto essere un
vero amico, con cui abbiamo condiviso tante passeggiate al lago a parlare
di tante cose di cui molte volte non si parla neanche con persone che si
conoscono da tanti anni. Il suo aiuto è stato fondamentale. A ogni dub-
bio o ostacolo bastava andare a porre a lui la questione, e come un Google
umano, in pochi secondi ti forniva la soluzione. Infine ringrazio Visara,
con cui ho collaborato in questo progetto. Una persona fantastica, una
vera amica sempre disponibile, che mi ha aiutato fino all’ultimo istante
(nel vero senso della parola) e che si prodigata per farmi fare una tesi
di un livello al quale da solo non avrei mai potuto aspirare.

Anche questo capitolo della vita si è concluso, e un piccolo ringrazia-

108

mento lo faccio anche a me stesso, per la tenacia che ho sempre avuto
nell’affrontare ogni situazione. Nella vita ho perso tante volte, e di si-
curo perderò ancora, ma quando qualcosa dipende dalle mia capacità farò
sempre di tutto per riuscire ad uscire da ogni situazione vittorioso.

109

	Introduction
	Motivation
	Aims & Objectives
	Contribution, Scope and Significance
	Overview of the Thesis

	I Background
	eHealth
	Motivating Scenario
	Electronic Health Records (EHRs)
	EHR Exchange Strategies
	Integrate the Healtcare Enterprise
	IHE Profiles

	Current Limitation of IHE for EHR exchange
	Summary

	Knowledge Representation
	History of Knowledge Representation
	Description Logics
	Knowledge Base
	SHOIN(D)
	Ontology Web Language (OWL)

	Summary

	From tuple spaces to tuple centers
	Coordination among entities
	Tuple Space
	Tuple Centre
	TuCSoN
	ReSpecT
	Semantic TuCSoN

	Summary

	II Framework
	The Semantic Health Coordination Framework
	The Architecture of the System
	Ontology Community
	Entity Description

	Policy Tuple Centre
	Adding and Removing a Community
	Subscribing to Community Events
	Notification Update

	Community Tuple Centre
	Searching a Patient
	Searching a Community

	Summary

	Implementation
	Integration of Semantic Component inside TuCSoN
	Semantic Component
	Individuals & Concepts
	Ability to create Semantic Tuple Centres with a relative ontology
	Inserting SemanticLogicTuple and retrieving/reading SemanticLogicTupleTemplate

	Modelling Semantic TuCSoN for eHealth context
	Coordination Agent
	Topology Agent
	Update Agent

	Persistence in Semantic TuCSoN
	Summary

	III Evaluation & Conclusions
	Evaluation
	Test Architecture
	Notify Updates
	Community Research
	Results Evaluation
	Summary

	Concluding Remarks
	Conclusions
	Summary
	Future Work

	Reaction ReSpecT
	Connection request
	Update subscribers
	Search community

	Java Code
	Connection request
	Jena Listener
	Persistence

