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Chapter 1

Introduction

Figure 1.1: Timescales of climate-driven surface processes and associated stress varia-
tions. From Burgmann et al. 2024

The Earth’s surface represents the interface of the lithosphere with the atmosphere,
the hydrosphere and the cryosphere and, as such, its dynamics reflects the interaction
processes among these components [Burgmann et al. 2024]. These processes can pro-
duce measurable (up to several cm) deformation of the Earth surface at a wide range of
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Figure 1.2: Summary of geodetic techniques and their use in hydrological monitoring. The table
reports the key hydrological parameters, the physical principles exploited for their detection,
and the typical spatial and temporal scales of the measurements. [Jaramillo et al. 2024]

spatial (local to global) and temporal (seasonal to multi-year) time scales (Figure 1.1).
Examples are surface deformation resulting from climate-driven variations in surface
mass load (e.g. terrestrial water storage, snow) and groundwater storage (e.g, aquifer
withdrawal/recharge). Since the past century, advances in measurement systems—
particularly the development of satellite geodesy techniques—have significantly improved
the spatio-temporal resolution and accuracy of surface deformation measurements. In
parallel, our ability to analyze the increasing volume of deformation data has improved,
both through advances in the physical modeling of deformation processes and in the
development of statistical approaches aimed at identifying relevant deformation signals
within the data.

An increasing number of studies focus on deformation processes associated with the
redistribution of water associated within the hydrological cycle. The use of geode-
tic techniques—primarily Global Navigation Satellite System (GNSS), Gravity Recov-
ery and Climate Experiment (GRACE), and Interferometric Synthetic Aperture Radar
(InSAR)—to characterize water distribution and storage is referred to as hydrogeodesy
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[Jaramillo et al. 2024](Figure 1.2).
These processes are of interest for several reasons. On one hand, we aim to isolate

and model the hydrological contribution in geodetic time series as a noise component,
in order to better identify other geophysical signals. On the other hand, we aim to
extract information on geological and hydrological variables by studying the associated
surface deformation. In fact, by measuring variations in the Earth’s surface and gravity
field, it is possible to infer changes in hydrological quantities independently of tradi-
tional hydrological methods such as groundwater level measurements from piezometers
or river discharge data from streamflow gauges. When the hydrological forcing is known,
the study of the resulting deformation processes can provide estimates of the terrain
mechanical parameters [Jaramillo et al. 2024].

The Po Plain is a lowland region in northern Italy that hosts abundant freshwater re-
sources stored within sediment layers. The variable geological structure and topography
give rise to a complex hydrological system that includes both surface and groundwater
reservoirs [De Donatis et al. 2007,De Luca et al. 2020]. Measurable surface deformation
has been associated with water resource variations within these reservoirs, resulting from
both natural processes and human extraction activities [Carminati et al. 2002, Farías et
al. 2024, Pintori et al. 2024].

The strong socio-economic relevance of the region further increases the importance of
characterizing these deformation processes. This is essential for assessing related risks —
such as damage to infrastructure and increased flood hazard due to subsidence — as well
as for complementing traditional investigation methods in understanding the variability
of water dynamics and distribution, ultimately supporting informed water management
decisions.

In this work, I analyzed InSAR-derived surface deformation data provided by the
European Ground Motion Service (EGMS) over the Po Plain to investigate possible
effects of hydrological processes. The EGMS service offers freely available deformation
time series with a spatial resolution of 100m×100m and a temporal sampling of 6 days.

I analyzed the dataset relative to the interval 2018-2022. This period was marked
by significant climatic variability, including a severe drought event. This is reflected
in below-average precipitation across the region and record-low water levels in the Po
River — indicative of a major decline in terrestrial water storage [Baronetti et al. 2020,
Montanari et al. 2023]. This loss was also accompanied by a regional-scale elastic up-
lift, observed in GNSS time series by Pintori et al. 2024. The uplifting response was
attributed to the lithosphere’s elastic deformation due to the decrease in surface load
associated with Terrestrial Water Storage (TWS). Terrestrial water storage refers to the
total amount of water on land, encompassing all form of water stored on the surface
and subsurface, including surface water, soil moisture, groundwater, snow, ice and water
stored in vegetation.

My intent is to employ high spatial resolution data in the region to investigate the
effect of variable climate conditions on deformation processes occurring at regional-to-
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local (tens of kilometers to hundreds of meters) spatial scales.
In addition to gravitational loading water masses can exert other type of interaction

with the solid earth. At local scales, groundwater storage (GWS) variation due to fluids
recharge/withdraw in porous terrain layers (aquifers) can cause measurable deformation.
This is due to poroelastic deformation processes and is typically investigated through
InSAR technique, leveraging its high spatial resolution (tens of meters). This effect has
been recognized and studied in detail in alluvial plains — in particular Central Valley
in California where it has been found to contribute to a relevant part of the deformation
signal [Kang et al. 2023].

Poroelastic deformation results from fluid pressure increase/decrease in saturated
porous terrain layers, and manifests as, respectively, uplift and subsidence. The response
in term of vertical deformation is therefore the opposite of the one produced by increase
in hydrosphere loading. Additionally, the two types of deformation commonly occur
together and may overlap.

To analyze hydrologically-driven deformation at the local scale, it is first necessary
to detect and isolate the signals of interest. Statistical analysis techniques have been
widely applied to detect areas characterized by similar deformation patterns [Kang et al.
2023], or to separate signals associated with independent sources [Gualandi et al. 2016].
In this work, I applied different data-analysis techniques and compared the identified
signal with precipitation trends to identify processes likely influenced by hydrological
dynamics.

Subsequently, I aimed to characterize the detected deformation processes and relate
them to their respective forcing mechanisms. Since various coexisting processes through
which water influences deformation can overlap and produce contrasting effects—as in
the case of loading and pore pressure variations—it is necessary to quantitatively char-
acterize their individual contributions in order to properly describe the dynamics of each
individual process. To do this, I used the result of the Total Water Storage variation
estimated by Pintori et al. (2024) and employed models of elastic loading response to
estimate the elastic loading effect in the study region and separate poroelastic and elastic
loading contributions.

Several areas across the study region exhibited deformation signals potentially asso-
ciated with hydrological forcing at both seasonal and multi-year temporal scales. Among
these, the Brescia area showed particularly clear multi-year trends and was selected for
a more detailed analysis

I found that this area, in which the subsurface is characterized by a 100m-thick
aquifer body corresponding to the apical sector of an alluvial fan, undergoes significant
poroelastic deformation in response to multi-year water variability. By comparing the
poroelastic deformation contribution with groundwater level data, I then estimated the
elastic parameters of the aquifer layers in correspondence with six groundwater measure-
ment points.
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Chapter 2

Study Area

2.1 Po plain

The region analyzed in this thesis is part of the broader Po Plain (Figure 2.1), the
largest plain in Italy and one of the largest alluvial plains in Europe. The Po Plain is
located in the north of Italy, between latitudes 44◦N and 46◦N. It covers an area of
approximately 46 000 km2 and it is enclosed between the mountain belts of Apenninens
to the south and the Alps to the north and west. The terrain gently slopes from the
mountain belt towards the center of the plain and from the west to the east, towards the
Adriatic Sea.

The climate in the Po Plain is classified as humid subtropical (Köppen Cfa), char-
acterized by hot and humid summers, with mean temperatures ranging from 22 ◦C to
25 ◦C, and cool winters with mean temperature from 1 ◦C to 4 ◦C. Annual precipitation
ranges from 700mm to 1200mm with peaks in spring and autumn [Baronetti et al. 2020].

The region is crossed by numerous rivers. The largest is the Po River, which is Italy’s
longest river (691 km). It flows centrally approximately from West to East, crossing the
entire plain before it reaches the Adriatic sea. Several tributaries from the surrounding
mountain ranges flow towards the center of the plain and feed into the Po. The region
also hosts some of the largest lakes in Italy which are located on the border between
the mountainous area and the alluvial plain, over the course of Po tributataries. The
abundance of surface water resources is associated with significant groundwater reserves,
as the terrain in this region is composed of sedimentary deposits containing porous layers
capable of storing large amounts of water.

Water availability, in combination with the favorable terrain conformation, makes
this region very suitable for farming and for human settlements, which have existed in
the area for millennia. Nowadays this region is extremely relevant from a socio-economic
point of view, hosting approximately one-third of the Italian population and a significant
portion of the country’s agricultural and industrial production [Baronetti et al. 2020].
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Figure 2.1: Map of northern Italy. The blue rectangle represent the study area.

2.2 Hydrogelogy

The sediments that nowadays constitute the Po Plain have been produced by erosion
of the surrounding mountain belts and have progressively accumulated, transforming the
basin, which 1.7 million years ago was an oceanic basin [De Donatis et al. 2007]. The
rocky substrate is part of the Adriatic Plate, which is subsiding under the Apennine
mountain belt. The tectonic subsidence is the primary cause of sediment accumulation
[Carminati et al. 2002]. Materials transported by rivers were deposited in the lowest parts
of the basin, forming an accretionary wedge prograding from west to east. Climatic
and eustatic oscillations further influenced stratification dynamics [De Donatis et al.
2007]. The study by Regione Lombardia (2002), using borehole and seismic profile data,
reconstructed in detail the evolution of the basin and terrain stratigraphy, identifying
four hydrostratigraphic units, i.e. aquifer groups separated by permeability barriers of
regional extension. These have been denoted, from the surface downward, A, B, C, D
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Figure 2.2: 3D reconstruction of the shape of the four hydrostratigraphic units in the Lombar-
dian Plain (left). Stratigraphy of the Po Plain (right) [De Donatis et al. 2007]

(Figure 2.2).
The deepest groups (C,D) correspond to marine and transitional depositional phases.

The alternation of marine, deltaic, and continental alluvial plain sediments results in a
variety of permeable strata (aquifers), where sandy deposits dominate, and impermeable
strata (aquitards), where clay prevails. Groups A and B are composed of continental
deposits. Sediments are composed of sand and gravel with high permeability, with grain
size decreasing toward the center of the plain, reflecting the loss of energy of the depo-
sitional systems. Impermeable layers of fine sediments are less relevant in continental
layers and are found mainly in the deepest part of the sequence. Their thickness and
frequency increase towards the center of the plain, producing a progressive confinement
of the aquifers [Regione Lombardia 2002].

The ground structure in the plain can host substantial water resources, both in con-
tinental and oceanic sediments. The continental sediments host unconfined aquifers,
which are directly recharged by precipitation in the whole plain area due to the per-
meable characteristics of the terrain, while the oceanic sediments host confined aquifers
which are vertically limited by permeability barriers. These aquifers are recharged near
the mountain fronts, where coarser material allows water to infiltrate and reach the
deepest layers.

2.3 Water stress in the Po Plain

The complex hydrogeological setting of the Po Plain, shaped by a variety of depo-
sitional environments and hosting both confined and unconfined aquifers, results in a
highly dynamic water system. This system is sensitive to natural climatic variability but
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Figure 2.3: Vertical movement of Earth’s surface in the Po Plain estimated by combination of
GNSS and InSAR data showing subsidence in the northeastern sector of the Plain [Farolfi et al.
2019]

also increasingly exposed to anthropogenic pressures and climatic extremes, which have
recently intensified the region’s water stress.

Among the most prominent geophysical consequences of this increasing water stress
is land subsidence, primarily driven by groundwater overexploitation. In particular,
excessive pumping from the shallow unconfined aquifer systems has been recognized
as the main driver of the high subsidence rates observed in the eastern sector of the
Plain, where values exceed 10mmy−1 (Figure 2.3) [Farías et al. 2024, Farolfi et al. 2019,
Carminati et al. 2002]. This phenomenon has been extensively documented and is largely
attributed to the compaction of sediments following prolonged aquifer depletion.

While subsidence due to groundwater over-exploitation represents a long-recognized
anthropogenic impact on the region’s geodynamics, more recent climatic shifts have
introduced additional sources of stress, leading to distinct but equally significant defor-
mation signals. In particular, the evolving climate regime of the 21st century has led to
an increase in both the frequency and intensity of drought events, with notable episodes
occurring in 2003, 2007, and 2011, linked to rising mean temperatures and shifts in sea-
sonal precipitation patterns [Baronetti et al. 2020]. In 2022, the region experienced the
worst drought in the last two centuries (Figure 2.4), with the Po River reaching record
low levels [Montanari et al. 2023]. This decline was caused by a combination of reduced
snowfall, earlier snowmelt, and increased evapotranspiration. Additionally, the expan-
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Figure 2.4: Standardized Precipitation and Evapotranspiration Index [Vicente-Serrano et al.
n.d.] at 6-months (orange line) and 12-months (purple line) aggregation timescales. The drought
period of 2022 is evident in both indices [Slovenian Environment Agency et al. 2022]

sion of irrigated land, which doubled between 1900 and 2015, likely contributed to the
progressive depletion of water resources [Montanari et al. 2023].

Beyond its hydrological implications, this extreme drought also triggered measurable
geophysical responses. The associated loss of water mass caused an elastic uplift of
the ground, detected through GNSS (Global Navigation Satellite System) observations.
Based on a regional-scale analysis of GNSS data across the Po Plain, Pintori et al.
(2024) identified a multi-year deformation signal strongly correlated with both the Po
River discharge and the SPEI-12 index. This signal was interpreted as the solid Earth’s
elastic response to drought-induced depletion of water storage. From the observed uplift
— reaching values of up to approximately 7mm — they estimated a total terrestrial
water loss of around 70Gt between January 2021 and August 2022 (Figure 2.5).

The critical socio-economic role of the Po Plain and the importance of water resources
for its development make the study of groundwater dynamics in this region a topic of
high interest. Furthermore, as demonstrated by the cases of long-term anthropogenic
subsidence and drought-related elastic uplift, water dynamics in the region is responsible
for the occurrence of relevant geophysical processes that could pose significant risks to
human settlements and activities. The characterization of hydrological processes and
their interaction with the solid earth can thus be very useful for the quantification and
mitigation of these risks, as well as providing useful information to help an informed
management of water resources.
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Figure 2.5: Estimated distribution of water loss in the Po Plain by inversion of GNSS data
[Pintori et al. 2024]

2.4 Brescia area

In this work I conducted further analyses focusing on a sub-region of the Lombardy
plain (Figure 2.6) which revealed to exhibit a clear hydrology-related deformation (Sec-
tion 7). The selected area is located in the high plain sector, between the foothills of
the Alps to the north and the central Lombard plain to the south, and approximately
corresponds to the province of Brescia. The area lies between two major Po tributaries:
the Oglio river and the Chiese river. In this area the terrain is mainly made of the result
of deposition from the Mella river, a minor stream originating in the Trompia Valley and
flowing into the Oglio river. This stream is responsible for the creation of an alluvial
fan [Fontana et al. 2014]. In this kind of structure coarse, highly permeable sediments
accumulate in their upper sector creating favorable recharge conditions and favoring
significant groundwater storage [Zhu et al. 2017]. The regional environmental agency
ARPALombardia collected and analyzed data on the subsurface geology and hydrology
obtained through a network of boreholes, and summarized the results in technical re-
ports [ARPALombardia 2018a, ARPALombardia 2018b, ARPALombardia 2019]. The
data allowed for a 3D reconstruction of the aquifer body, represented in cross-sections
and 2D maps (Figure 2.8,2.7).

In the northern sector, the uppermost layer is composed of coarse gravel sediments,
about 50 m thick, associated with aquifer group A. This overlies layers of compacted
gravel and sand conglomerates of variable thickness, associated with group B. Both

10



Figure 2.6: Location of Brescia area in the region of interest.

deposits are of continental origin. Marine and transitional deposits of group C are
absent in this section but appear progressively southward at shallower depths. In the
northern section, the two layers of continental deposits are only locally separated by a
layer of clay-rich material which does not present sufficient extension to produce complete
hydraulic separation. This results in a mostly unconfined aquifer directly overlying the
carbonate substrate. In this section, the aquifer reaches a thickness of over 100 meters.
This has been attributed to local morphological characteristics, in particular a buried
fault, which in the northern section could have displaced the substrate towards lower
depth creating space for sediment accumulation [ARPALombardia 2018a]. Southward,
the combined thickness of the two units decreases due to the thinning of conglomerates
and the increasing height of group C deposits.

The aquifer, hosted in gravel and conglomerates, acts as a high-capacity reservoir
recharged by groundwater inflow from the Trompia Valley and by local precipitation.
From this reservoir, groundwater flows southward under the influence of gravity, con-
tributing to the recharge of deeper aquifer systems in the Po Plain.

Previous studies conducted a detailed reconstruction of the spatial and temporal
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Figure 2.7: Reconstruction of the basal surface of the aquifer in the Brescia area (left)[Provinca
di Brescia 2016] and in the Trompia Valley (right)[Provinca di Brescia 2015]. A deepening of
the substrate from approximately 140m a.s.l. to 60m a.s.l. is observed in the southern section
of the Trompia Valley.

variations of the water table in the area. Combined with an in-depth characterization
of aquifer geometry and lithology, this has supported the development of a groundwater
flow model [ARPALombardia 2018a]. The main boundary conditions and hydrological
inputs of the model are schematized in Figure 2.9. Groundwater flow is directed from
the mountainous area towards the plain, following the natural topographic gradient.
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Figure 2.8: 3D qualitative sketch of the terrain structure in the Brescia area (left). Different
colors represent respectively gravel (G, yellow), conglomerates (C, blue) and clay (A, brown)
[Pastore et al. 2024]

Figure 2.9: Conceptual scheme of the main hydrological inputs and outputs governing the
groundwater balance in the Brescia area. Blue arrows indicate inflows from the Trompia Valley
(1), western aquifer bodies (2), and surrounding slopes (3, 4, 5). Red arrows represent ground-
water outflows directed towards the Po Plain. Orange, green, and yellow arrows correspond to
anthropogenic components—industrial, residential, and agricultural activities—that contribute
to both recharge and extraction processes [ARPALombardia 2018a].
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Chapter 3

Data

3.1 Deformation Data

The deformation data used in this study were retrieved by Synthetic Aperture Radar
Interferometry (InSAR) . In particular, I used a standardized and scientifically validated
dataset processed and freely available within the framework of the European Ground Mo-
tion Service (EGMS) [Crosetto et al. 2021], an initiative of the Copernicus Programme.

Thanks to increasing availability of SAR observations, and improvements in process-
ing algorithms and computational capabilities, InSAR data offer nowadays the possibility
to monitor ground deformation at large spatial scales and sub-centimeter accuracy. These
features allow for both large-scale characterization of ground deformation and focused
analysis on specific areas of interest. The following section introduces the basic principles
of the InSAR technique and describes the processing workflow adopted by the EGMS.
Further details can be found in [Ferretti, Passera, et al. 2023].

3.1.1 InSAR

SAR

InSAR is based on Synthetic Aperture Radar (SAR), a remote sensing technique
based on the use of satellite Earth’s surface images acquired by microwave SAR sensors.
SAR sensors emit an electromagnetic pulse and recover both amplitude and phase of the
signal backscattered from the ground to the satellite. Typical frequency bands used by
SAR sensors are L-band, C-band and X-band, with wavelengths respectively of about
24 cm, 5 cm and 3 cm. By using microwaves in an active configuration, radar sensors
present some key benefits with respect to optical ones: they can work day and night
and, employing long wavelengths, they can see through canopy and clouds (Figure 3.1)
[Ferretti, Passera, et al. 2023].

The acquisition geometry of a SAR sensor is sketched in Figure 3.2. The sensor
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Figure 3.1: Comparison between SAR and optical image of the same area [Ferretti, Passera,
et al. 2023]

Figure 3.2: Geometry of SAR sensor acquisition and satellite orbit [Ferretti, Passera,
et al. 2023]
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Figure 3.3: Representation of a synthetic aperture [Ferretti, Passera, et al. 2023]

is mounted on the satellite facing ground and is side-looking at an angle α called the
off-nadir angle. It acquires images of the Earth’s surface in two dimensions, cross-track
(range) and along-track (azimuth). The resolution of the image in the two directions is
a key characteristic of the system and depends on different factors. In the cross-track
direction, it depends on the pulse length and bandwidth, and resolutions of the order of
meters can be achieved using a frequency-modulated pulse of high bandwidth. In the
along-track direction, the resolution is instead limited by the dimension of the satellite
antenna:

L ≈
R0λ

D
(3.1)

where L is the ground resolution, R0 the distance of the sensor from the target, λ the
wavelength of the signal, and D the antenna length in the along-range direction. For
a sensor imaging the Earth’s surface from a satellite orbiting at an altitude of 900 km
with a wavelength of 5.5 cm (C-band), an antenna length of 10m would yield a ground
resolution in the along-track direction of 4950 km, which is too low for detailed surface
monitoring. To overcome this limitation, SAR employs the synthetic aperture technique.
This consists of combining acquisitions along the satellite motion to simulate a larger
antenna (Figure 3.3) and increase resolution at the cost of additional processing. In this
way ground resolution of the order of meters can be achieved in both imaging directions.

The possibility to measure surface movements from SAR images derives from their
active characteristic, i.e. the capability to measure both amplitude and phase of the
backscattered signal. In fact, while amplitude values are related to the backscattered
energy, and can yield information on the physical characteristics of the surface, the phase
value is related to the time delay between the emission and the registration of the signal,
which contains information on the travel path and thus the distance between the satellite
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and a target on the surface.
In the next section I describe how this information is exploited in Interferometric

SAR to measure ground movement.

SAR Interferometry (InSAR)

SAR Interferometry (InSAR) consists of using SAR images to create an interferogram,
i.e. a map of the difference of the measured phase values for each pixel between two
images acquired from the satellite in two passes over the area of interest.

Typically, the satellites carrying the sensor orbit the Earth in sun-synchronous polar
orbit with a revisit time of some days, acquiring images in two geometries: ascending,
when the satellites moves from south to north and descending, in the opposite case
(Figure 3.2). If two or more images of the same area, acquired in the same geometry,
are available and can be aligned with a sub-pixel precision, then the phase difference
between the two images can be exploited to obtain information on topography and
surface deformation.

When images are taken from two slightly different angles, the relative phase shift
in each pixel is produced by the different lengths of the path traveled by the pulse to
reach that pixel, from the two slightly different viewpoints of the satellite. With precise
knowledge of the satellite position and orientation in the two passes, the phase shift can
be related to the distance of the satellite from each reflecting point on the surface, and
thus yields a measure of surface topography.

If instead the topographic contribution is removed from the phase shift values using
a Digital Elevation Model (DEM), then the residual phase shift reflects the variation
of the travel path of the signal is related to the movement of the target that ocurred
between the two acquisitions. Thus, phase shift measure can yield a measure of the
cumulative surface deformation occurred in the line-of-sight direction of the satellite, in
that interval, e.g. a phase shift of 2π corresponds to a displacement of the target towards
the sensor by half a wavelength (Figure 3.4).

The process by which the displacement-related phase shift is isolated from the other
contributions is referred to as Differential InSAR (DInSAR). Different factors besides
deformation and topography however contribute to the measured phase shift. The total
phase shift can be therefore expressed as:

∆ϕ = ∆ϕd +∆ϕTOPO +∆ϕATM +∆ϕNOISE (3.2)

where:

• ∆ϕd =
4π
λ
dLOS is the phase shift due to displacement in the line-of-sight direction

between the two satellite passes.

• ∆ϕTOPO is the phase shift produced by different viewing angles over varying to-
pography
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Figure 3.4: Representation of InSAR measurement of topography ad displacement [Australia
2017]
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• ∆ϕATM is related to changes in ionospheric and tropospheric delay effect between
the two acquisitions.

• ∆ϕNOISE includes all remaining noise sources.

From Equation 3.2 it is evident that not all pixels provide useful information on
surface displacement. In fact, in areas where vegetation changes, erosion or rapid move-
ment of the surface cause inconsistent interaction of the electromagnetic signal with the
surface in the two images, the noise component ∆ϕNOISE can overwhelm the signal.
Therefore, the phase signal can be used to obtain information on displacement only in
areas characterized by a high coherence of the reflected signal, typically associated with
the presence of highly reflective and stable surfaces such as buildings or rock outcrops
[Ferretti, Passera, et al. 2023].

In these coherent areas, once topographic and atmospheric contributions have been
removed, the remaining phase signal reveals fringe patterns in the interferogram (Figure
3.4). Each fringe is associated wit a displacement of half wavelength between the two
images, therefore, to obtain surface deformation, an additionital ’unwrapping’ operation
must be performed. This consists in estimating, for each pixel, the correct number of 2π
phase cycles to be added to the phase signal to retrieve the full phase shift.

From the above discussion two key points related to InSAR measurement are high-
lighted:

• InSAR, being obtained from differences in the travel path of a signal between two
acquisition, are relative measurements of surface displacement both in time and in
space, and are not therefore immediately comparable measurement.

• In order to obtain surface deformation, SAR data have to undergo several pro-
cessing steps: alignment of the SAR images, topographic correction, atmospheric
denoising, and phase unwrapping. These operations, given also the high spatial
resolution of SAR images, can be computationaly intensive.

In the next section I describe the procedure by which the EGMS chain performs
these processing operations and the calibration procedure applied to the measurements
to provide surface deformation in an absolute reference frame.

3.1.2 EGMS InSAR processing

This section outlines the main steps of the EGMS processing workflow, including in-
terferogram generation, correction of topographic and atmospheric effects, identification
of measurement points, and geocoding.
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Figure 3.5: EGMS processing workflow [Ferretti, Passera, et al. 2023]

Acquisition

Data processed by the EGMS consortium are derived from SAR images acquired by
the Sentinel-1 satellites. These satellites are equipped with twin SAR sensors operating
in the C-band and are put in orbits with a minimum revisiting time of 6 days for each
acquisition geometry covering most of the Earth’s surface. Images are acquired in the
Interferometric Wide (IW) swath mode, with a resolution of 20m (azimuth) by 3.5m
(range). The acquisition mode combines different burst to obtain an overall 250 km by
180 km image.

The acquired images are saved in Single Look Complex (SLC) format in which each
pixel has a complex value representing the amplitude and phase of the radar signal.
Multiple SLC images of the same area are then processed togheter through several steps
(Figure 3.5) which are syntethically described hereafter.

Reference image selection

The first step is the selection of the master image of the interferogram, that is the
image used as reference to perform the interferometry. The interferograms produced by
SAR images are characterized by the parameters:

• Temporal baseline Bt: time interval between two acquisition. This parameter in-
fluences the noise values of the interferogram. The smaller is the temporal baseline
the higher is the signal to noise ratio.

• Normal baseline Bn: difference in position of the sensor between the two acquisi-
tions. The larger the normal baseline, the more sensitive is the system to topogra-
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Figure 3.6: Master image is selected to minimize dispersion of baseline [Ferretti, Passera, et al.
2023]

phy. Values of the normal baseline above a critical value, called critical baseline Bc,
which depends on satellite acquisition geometry and bandwidth, produce temporal
decorrelation of the phase values of the signal.

In EGMS processing, the master images of the stack is selected as the one minimizing
the dispersion of the temporal and normal baseline values (Figure 3.6) and maximizing
the expected coherence of the interferogram:

max
i

(

N
∑

j

(

1−
|Bij

n |

Bc

)

e−|Bij
t |/τ

)

(3.3)

where Bij
n Bij

t are the values of the normal and temporal baseline between images i and
j, N is the number of images, Bc the critical baseline of the system and τ a temporal
decorrelation constant, usually set to 30 days.

Co-registration

Co-registration consists in the resampling of all secondary images to the master im-
ages. This procedure is necessary since the same target does not correspond to the
same pixel in different images due to difference in the acquisition geometry and in the
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sensor characteristics. The second effect is limited in Sentinel-1 data since the two satel-
lites carry twin sensors. The first effect is corrected using an approach based on cross-
correlation computation to find analogous image patches, combined with a geometric
approach that corrects for different viewpoints using precise satellite orbits information.
Due to the high precision required (up to 0.001 pixel), this step is one of the most
computationally intensive of the whole process.

Differential interferogram creation

From co-registered images the interferogram is then created by multiplying the com-
plex value of each pixel in the master image by the conjugate of the corresponding pixel
in the other image. The resulting phase shift is composed of the terms in equation 3.2.
Using an high-resolution digital elevation model (DEM) and information on satellite
track, a synthetic interferogram containing only the topographic component ∆ϕTOPO is
computed and then subtracted pixel by pixel to the original interferogram (Figure 3.7).
The phase shift in the topographically-corrected interferogram, ∆ϕc then contains the
displacement-related term, the difference in the contribution of phase delay, a term pro-
portional to the normal baseline Bn and the error ϵ associated with the used DEM, plus
noise:

∆ϕc = ∆ϕd + ϵBn +∆ϕATM +∆ϕNOISE (3.4)

Selection of candidate measurement points

The core of EGMS processing is represented by the Permanent Scatters (PS) tech-
nique [Ferretti, Prati, et al. 2001]. This technique involves the search in multiple SAR
images of the same area for points exhibiting stability of the reflected signal. These points
are referred to as Permanent Scatters (PS). In EGMS, PS are searched by approaches
based on both phase and amplitude information:

• In phase-based approaches PS are identified as pixels with high values of the tem-
poral coherence:

γ =

∣

∣

∣

∣

∣

1

N

N
∑

j

ei∆ϕcj

∣

∣

∣

∣

∣

(3.5)

where ∆ϕcj is the topographic-corrected phase shift of a given pixel in the j-th
image.

• Amplitude based methods instead relies on the fact that pixels with low values of
the amplitude dispersion index - the ratio between mean and standard deviation
of aplitude values - also exhibit low values of phase dispersion.
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Figure 3.7: Topographic correction of interferogram [Ferretti, Passera, et al. 2023]
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Measurement point selection is performed both before and after the estimation and
removal of the atmospheric effect since additional points could be identified after the
operation.

Phase unwrapping

The set of selected PS constitutes a sparse grid of points with relative phase shift
∆ϕij between them (Figure 3.8). The unwrapping operation in EGMS is performed
modeling each displacement induced phase shift between neighbouring pixels P1 and P2

as produced by a relative linear motion with rate a v, assuming atmospheric effect to be
very similar and thus canceling out:

∆ϕj12 ≈
4π

λ
Bj
t v12 + Cj

zϵz = ∆̂ϕ
j

12 j = 1, ..., N (3.6)

where Cz is a constant and ϵ′ is the error in the DEM. The values of v12 and ϵ′ are
estimated maximizing the temporal coherence:

γ = max
v12,ϵz

(

1

N

N
∑

k

ei∆ϕ
j
12e−i∆̂ϕ

j

12

)

(3.7)

The parameters provide an estimate of the phase shift between neighbouring points, from
which the unwrapped phase values are computed by integrating the estimated phase
difference across the PS network. Phase unwrapping is one of the most challenging steps
in the processing chain. Various algorithms have been developed to perform this task,
but they are not discussed here. For further details, the reader is referred to the EGMS
Algorithm Theoretical Basis Document [Ferretti, Passera, et al. 2023].

Atmospheric delay correction

A C-band radar signal passing through the atmosphere experiences a phase delay
mainly due to the interaction of radiation with tropospheric water vapor and to effects
related to variations of the index of refraction with heigth under stratified conditions
[Ferretti, Passera, et al. 2023]. The first effect has a characteristic length scale similar
to turbulence phenomena -which varies from 1 km to 10 km- while the second is strongly
correlated with topography. An additional, but marginal, effect is due to ionospheric
disturbances, which occur on a larger spatial scale and are well modeled by low-order
polynomials.

In EGMS these effects are estimated and corrected with a precedure that starts by
assuming a parametric model for the phase shift produced by the displacement of the
measurement point. Then, after fitting the unwrapped, topographically corrected, phase
shift ∆ϕc to the model, the atmospheric effect is isolated in the residuals with a filtering
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Figure 3.8: Sparse grid of candidate measurement points [Ferretti, Passera, et al. 2023]

procedure based on its statistical properties. The chosen model for the displacement-
induced phase shift is a low-order polynomial plus a seasonal component with a period
of one year:

∆ϕdi =

q
∑

p

CtpB
p
ti + Ss sin(2πBti) + Sc cos(2πBti) p = 1, .., q i = 1, .., N (3.8)

wehere Btj are values of the temporal baseline of the j-th image of the interferogram,
expressed in years, q the order of the polynomial. Both the parameter of the model,
Ct0, .., Ctq, Sc, Cc, and the error on the DEM (ϵ in Equation 3.4) are estimated from
the fit. The fitted curve is and estimate of the displacement-induced phase shift ∆ϕd,
while the residuals of the fit contain the contributions of ∆ϕATM and ∆ϕNOISE. Since
atmospheric delay effects are expected to be correlated in space but uncorrelated in
time, the residuals of the fit are low-pass filtered in space and high-pass filtered in time.
The phase shift resulting from this filtering operation is assumed to derive only from
atmospheric effects. The estimated atmospheric phase shift are then interpolated onto
the grid of the master image using a model for its expected spatial dependency:

∆ϕATM(r, x) = τ(x, r) + Chh(x, r) + Crr + Cxx+ C0 (3.9)

where x, r are the azimuth and range coordinates, τ the tropospheric delay, h(x, r) is the
elevation at pixel x, r and Ch, Cx, Cr, C0 are regressed constants. Obtained phase shift
values at each pixel are then removed from the differential interferogram.
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Selection of PS

After the estimation and correction of the atmospheric phase delay, another pixel-
by-pixel analysis is performed on the interferogram to identify potentially additional
measurement points. In this step, PS are identifed analyzing the dispersion of phase
values with respect to the one expected from a dispalcement model [Ferretti, Passera,
et al. 2023]:

γ(P ) = max
P
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∣
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(3.10)

where ∆ϕaj is the phase shift in the j-th image, corrected for both topography and
atmospheric delay, and ∆ϕmj(P ) is the expected phase shift from the displacement model
employed. P is the parameter vector of the model, estimated as the ones maximizing
γ. The displacement model used in EGMS for coherence estimation is a third-order
polynomial plus a seasonal component of period of one year:

d(t) = c0 + c1t+ c2t
2 + c3t

3 + A cos(2πt+ ϕ) (3.11)

where time is expressed in years and c0, c1, c2, c3, A, ϕ are the estimated model parameters.
Each PS characterized by value of γ above a given treshold is selected as a measurement
point.

Geocoding and time series computation

Phase values of selected PS are then unwrapped, and all displacement time series
obtained are referenced in time to the start of the displacement model in equation 3.11
used for coherence estimation (the value t0 at which d(t0) = 0). For each PS, the
image coordinates (range, azimuth) are converted into northing and easting coordinates
in the European Terrestrial Reference System 1989 (ETRS89) using satellite position
information at the time of acquisition.

The result of these processing steps is a set of single frames, each containing the time
dependent deformation of measurement points belonging to the same interferogram and
each having its own reference point. These data are the first type of product delivered
by EGMS with the name of baseline products.

EGMS displacement products

EGMS aims to provide a standardized information on surface displacement consistent
over a wide area. To achieve this goal, EMGS performs additional processing steps
and provides three layers of product, differing for the aim and the type of information
provided [Ferretti, Passera, et al. 2023].
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Figure 3.9: EGMS step for the creation of L2 and L3 products [Ferretti, Passera, et al. 2023]

• EGMS Basic product: This is the starting point for the generation of the other two
products. Displacement time series belonging to the various frames are referenced
spatially to a virtual point whose movement is estimated as the common mode of
the dataset. All the images are then mosaicked together, and the data are resam-
pled to a regular 100m x 100m grid. For all grid cells, all time series belonging
to the same acquisition geometry are averaged and referred to the center of the
cell. This dataset, while being standardized over the whole continental area, still
contains the relative displacement in the LOS direction.

• EGMS Calibrated product. In this product the reference point of the displacement
dataset is anchored to the network of Global Navigation Satellite System (GNSS)
stations from the European Reference Frame (EUREF) Permanent Network Den-
sification (EPND). This procedure has the double goal of making the deformation
measurement absolute and to validate, with GNSS data, low frequency displace-
ments, such as those caused by tectonic deformation, which in InSAR processing
could be misinterpreted as phase artifact.
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The procedure by which the dataset is obtained consists in interpolating EPND
data onto PS positions and projecting them onto the LOS direction. The GNSS
derived displacement are subtracted from the InSAR displacements. The difference
is low-pass filtered and interpolated in space to create a smooth surface. This
surface does not contain the real high-wavelength displacement (assumed to have
been removed with the GNSS data), and it is removed from InSAR data. The
virtual reference point is estimated from the obtained dataset. Its movement is
estimated with GNSS then added back to the InSAR data to reference them to an
absolute reference frame.

Obtained displacement are still one dimensiomal measurements, i.e. they are in
the satellite LOS direction, thus the product is delivered in two datasets, one
containing the displacement measured in the ascending geometry, the other in
descending geometry.

• The EGMS Ortho product, the more advanced of the three, is intended to over-
come this limitation combining data from different acquisition geometries from
the Calibrated datasets to obtain 2D deformation components. This is done by
combining ascending and descending LOS displacement to retreive vertical and
horizontal (east-west) deformation components. It is relevant to note that, even
when combining different acquisition geometries, a SAR sensor is almost blind to
displacement components in the north–south direction, since this is approximately
the direction along which it moves. Therefore, this component of displacement is
entirely removed from InSAR data before performing the projection. The proce-
dure consists in interpolating northward displacement from GNSS data onto the
InSAR measurement points. Then, the northward displacement is projected onto
the LOS direction for each acquisition geometry, and the result is removed from
the Calibrated data. The resulting dataset should contain only the vertical and
eastward components of displacement.

All grid cells with at least one time series for both descending and ascending ac-
quisition geometry are then selected and for each grid cell all the time series are
resampled to a common 6-day time interval. At each time step the displacement
in vertical and eastward direction can then be determined from the ascending and
descending components using the following relation (Figure 3.10):

(

Ueast
Uvert

)

=
1

2 sin θ cos θ

(

− cos θ cos θ
sin θ sin θ

)(

Uasc
Udesc

)

(3.12)

where θ is the mean incidence angle. The resulting deformation data is delivered in
a product containing two datasets, one for the vertical component of displacement,
one for eastward component.
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Figure 3.10: Decomposition of ascending and descending LOS displacement in vertical and
eastward direction [Ferretti, Passera, et al. 2023]

The obtained displacement products are updated by EGMS on an annal basis and
each update contain 5 years of data processed togheter. Data are available for consulta-
tion and download from the EGMS official website [https://egms.land.copernicus.eu/].

3.1.3 Data used in this study

For this work, I used the Level 3 EGMS Ortho dataset produced during the second
update of EGMS dataset [European Environment Agency 2023]. This dataset spans
the time interval from 06-01-2018 to 17-12-2022 with a temporal resolution of 6 days.I
downloaded a total of four 100 km x 100 km tiles from the EGMS website. I mosaicked
them together and clipped them to the region of interest: a rectangular region bounded
by longitudes 9.5◦E and 11◦E and latitudes 45◦N 46◦N. I filtered the points by the value of
the root mean square error (RMSE) provided with the dataset. This gives and indications
of the sparsity of the time series as compared to a displacement model composed by a
quadratic and polynomial function. I retained gridpoints with RMSE lower than 1.2mm,
for a total of 183.972 gridpoints and 302 time steps for each deformation time series
(Figure 3.11).

3.2 Ancillary data

To explore the relationship between ground deformation and hydrological conditions,
I analyzed data describing the hydrological variability across the study area. These
include precipitation records collected by rain gauges during the time span covered by
the EGMS dataset.
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Figure 3.11: EGMS gridpoints (in green) analyzed

To better understand the processes underlying a deformation signal detected near the
city of Brescia—likely associated with groundwater dynamics—I also analyzed ground-
water level data from piezometers and stratigraphic information of the subsurface. The
datasets used in this analysis are described in the following section.

3.2.1 Precipitation data

Precipitation data were recorded by pluviometers of the ARPALombardia network
and are available for download from the Open Data Regione Lombardia portal [ARPA
Lombardia 2020a, ARPA Lombardia 2023]. Among available sensors in the region of
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interest, only sensors with a complete record in the considered period were selected,
resulting in a total of 53 sensors retained (Figure 3.12 ). Data are provided at a variable
sampling frequency, up to 10min.

Time series of precipitation were visually inspected to remove unrealistically high
values (example in Figure 3.13), which may be due to transcription errors. Afterwards,
I computed 6-day cumulative precipitation time series at the same time steps of EGMS.
Then, with the aim of highlighting multi-year variations in precipitation trends, I com-
puted a detrended cumulated precipitation time series for each sensor, removing a linear
trend from the series of cumulated precipitation (Figure 3.14).

This figure shows all the time series of cumulated detrended precipitation in gray,
with their average overlaid in red. The average shows seasonal oscillations with peaks
approximately in the months of December-January, reflecting the precipitation pattern
typical of the climate of the area. The seasonal oscillation is superimposed to a clear
multi-year trend showing an increase in cumulated detrended precipitation starting from
2018, which reaches the maximum values in 2021, followed by a sharp decrease starting in
January 2022 and continuing until July of the same year. This trend reflects the drought
conditions in the area in the year 2022 (Section 2.3) as cumulative detrend precipitation
values sharply declined starting in January.

I considering two separate intervals, T1 and T2, in which to compare deformation and
hydrological variability such that T1 is representative of the rainy period and T2 of the
period associated with the 2022 drought. I defined T1 as going from the beginning of
the EGMS time series, i.e. the 1st of August 2018 to the 1st of January of 2021, and T2
from 1st of January of 2021 to the 1st August 2022. These two intervals are shown as
blue and yellow stripes in FIgure 3.14.

3.2.2 Hydrogeological data

A particular region in the center of the study area, showed a deformation signal
correlated with precipitation. The area is located in the Brescia province (2.6) and it
extends from the outlet of the Trompia Valley in the north to the transition to the lower
plain in the south. For this region, I collected information on the underground structure
and hydrogeological features to characterize the distribution and dynamics of ground
water resources. Then I analyzed the variation of the groundwater level measured by
piezometric sensors to search for correlation between groundwater level variation and
surface deformation.

Piezometric data

Data of piezometric sensors in the Brescia area were not available in the ARPALom-
bardia dataset [Dati quantitativi | Brescia | 2023 - ARPA Lombardia 2025] for the pe-
riod of interest. Nevertheless I have been able to gather values of recorded piezometric
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levels from hydrogeological reports produced by ARPALombardia from 2018 to 2022 [
ARPALombardia 2018b, ARPALombardia 2019, ARPALombardia 2020b, ARPALom-
bardia 2021, ARPALombardia 2022 ]. The referred documents contain water head level
measurement in meters, with associated the date and hour of measurment, location and
depth of piezometers. Measurements are contained both in text and in the plots. I
gathered measurements for seven piezometers in the area of interest.

Data and location of piezometers are shown in Figure 3.15. All but one of the sensors
(Vantini) are located in the southern part of the area and record lower absolute values
of groundwater levels (above sea level) with respect to the Vantini piezometer. The
time variation of the water level reflects the general multi-year hydrological trend of
the area. A general increase in groundwater level is recorded from January 2018. This
increase reaches the maximum in the year 2021, with water table increase of up to 15m
(Vantini piezometer). Then, a decrease of the level is recorded by the piezometers. The
multiyear variation of the water table level is different among the piezometers, generally
piezometers located in the north register greater absolute variation of groundwater level
both in the first and in the second period.

I computed the multiyear water table variation at each well for the intervals previously
defined. Since time series of data end before the 1st August 2022 I computed the water
table variation for the drought period as the variation of water table between the 1s
January 2021 and the last available data for each piezometer, which is in January 2022.
The spatial distribution of the groundwater level variation between the start and the end
of these two interval is shown respectively in the left and right panel of Figure 3.16, from
which the positive values in the rainy period, the negative values in the drought period,
as well as the latitudinal dependency, can be appreciated.

Geological data

Employed geological data include estimates for the geometric and physical charac-
teristics of the terrain layers in the area of interest. This information is contained in re-
ports produced by ARPALombardia [ARPALombardia 2018a, Provinca di Brescia 2016,
Provinca di Brescia 2024]. In particular, I analyzed multiple geological cross sections,
realized on the basis of stratigraphic data obtained from a network of sampling wells.
Two exmples are shown in Figure 3.17.

I used these cross sections to assess the presence of an unconfined aquifer layer and to
make a first-order estimate of its geometrical parameters. In particular I am interested
in the thickness of the permeable layers of the ground. I made an estimate of these
quantity by summing the thicnkess of gravel and conglomerate deposit measured in
the cross section in correspondence of the wells (Figure 3.18). To account for errors
produced in this estimate of geological parameters I attribuited an uncertainty of 5m to
the estimates obtained in this way (Figure 3.19)

Furthermore, from these reports I collected information about aquifers hydrogeolog-
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Well Surface Gravel base Congl. base Gravel thickness Congl. thickness

(m a.s.l.) (m a.s.l.) (m a.s.l.) (m) (m)

vantini 183.6 130.0 80.0 53.6 50.0
caffaro 146.0 105.0 50.0 41.0 55.0
emporio 131.7 100.0 70.0 31.7 30.0
vivaio 127.8 80.0 50.0 47.8 30.0
caprera 121.5 70.0 50.0 51.5 20.0

Table 3.1: Elevation and thickness of main geological units at selected. All elevations
are expressed in meters above sea level (m a.s.l.). Data also shown in Figure 3.18 and
3.19

ical parameters, such as porosity and permeability (table 3.1)
The reconstruction of the terrain structure shows a multilayer aquifer composed of

two permeable rock layers differing for their geological characteristics but in hydraulic
contact with each other. The terrain altitude shows variations, decreasing towards the
southern part from approximately 200 m.s.l. in the valleys outlet to approximately 100
m.s.l. in the plain area. The aquifer layers underground also show a sloped structure
deepening towards the south. The thickness of the porous layers generally also decreases
towards the south while minor variations are present in the longitudinal direction (Figure
3.17).
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Figure 3.12: Locations of pluviometers of the ARPA monitoring network
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Figure 3.13: Example of unrealistically high values of 10min cumulated precipitation of sensor
8202.

Figure 3.14: Time series of cumulated detrended precipitation. The grey lines represent time
series at each sensor,and the red line is the mean time series. To better highlight the contribution
of seasonal and multiyear patterns, an STL decomposition (Section 4.2) is performed on the
mean time series. The blue and yellow stripe indicate the two intervals T1 and T2 respectively
associated with rainy and drought conditions
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Figure 3.15: Piezometric data time series (right) and piezometric sensor location (left).
The blue and yellow stripe indicate respectively the rainy and drought intervals.
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(a) (b)

Figure 3.16: Variation of piezometric levels in the rainy (left) and drought (right) interval
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Figure 3.17: Cross sections tracks in the study area (up) Examples of analyzed cross
sections (down) [Provinca di Brescia 2015]
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Figure 3.18: Ground surface elevation and depth of gravel and conglomerate layers at selected
wells. All elevations are expressed in meters above sea level (m a.s.l.).

Figure 3.19: Thickness of gravel and conglomerate aquifer units at selected wells.
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Chapter 4

Methods for data analysis

Given the high spatial resolution and precision of the InSAR deformation measure-
ment, we expect it to detect the effects of a variety of physical processes. This is partic-
ularly true in regions such as the Po Valley, where several geophysical mechanisms in-
fluencing surface displacements, such as tectonic movements, natural and anthropogenic
subsidence [Farías et al. 2024, Carminati et al. 2002] and elastic rebound due to varying
hydrosphere load [Pintori et al. 2024] are known to coexist. Since our goal is to investi-
gate the deformation associated with a specific class of processes — namely those related
to continental water dynamics — it is necessary to disentangle the deformation signals
associated with different processes.

In this thesis I approach the problem by applying a set of data analysis techniques to
characterize the spatiotemporal variability of the EGMS dataset. The final aim is to iden-
tify deformation patterns that, through comparison with independent hydro-geological
and geographical features or ongoing hydrological forcings, could be related to hydrolog-
ical processes.

Approaches commonly employed to highlight different deformative processes are gen-
erally classifiable in two groups:

• Parametric approaches: These approaches aim to find the parameters of a pre-
determined model of the surface deformation time series. The model is composed
by a superposition of analytic functions defined with free parameters. Typically
used function are linear trends, sinusoids and exponentials. In these kind of ap-
proaches, each time series is individually analyzed to find the best value for these
parameters in order to represent the observed data. Parametric approaches have
been used to characterize specific components of deformation, as linear trend and
seasonal oscillations. They have the advantage of facilitating the association of
each contribution to a determined physical process.

• Data-driven approaches These approaches do not assume any predefined functional
form for the fundamental signals. They instead exploit the statistical properties of
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the dataset to identify dominant spatiotemporal patterns of variability [Gualandi
et al. 2016]. These approaches are used when we are interested in characterizing the
deformation field resulting from a superposition of unknown processes for which
we do not have a predetermined model. In this case the shape of fundamental
signals results from the analysis and are then interpreted by comparison with the
deformation expected from physical processes.

In this work we apply methods belonging to both approaches to obtain o a robust
characterization of the ongoing deformation processes detected by the data:

• Identification of long term deformation trend has been performed through a para-
metric modeling as a degree-one polynomial, whose coefficients, for each time series,
have been estimated with least square regression. The estimated linear component
has been removed from each time series before the application of the following
analysis.

• The multivariate data-driven linear decomposition techniques Principal Compo-
nent Analysis (PCA) and Independent Component Analysis (ICA) have been ap-
plied to the dataset. These two techniques decompose the observed time dependent
deformation signal in a linear combination of a discrete number of spatio-temporal
components. Both techniques fall in the data-driven approaches as they do not
assume any pre-determined form for the spatio-temporal dependence of the defor-
mation components, which are instead characterized by their statistical properties.
The two techniques differ in the statistical properties which the components are
sought to satisfy. PCA finds a decomposition in terms of components which are
mutually uncorrelated while ICA enforces the more restrictive condition of statisti-
cal independence. Both decomposition techniques have been previously used in the
study area to isolate components of surface deformation linked to individual phys-
ical processes such as natural and anthropogenic subsidence and hydrologically-
related deformation [Farías et al. 2024, Nespoli et al. 2021].

• The non-parametric filtering procedure Seasonal Trend Decomposition based on
LOESS (STL) [Cleveland et al. 1990] has been applied to each time-series. This
techniques is used to isolate a seasonal component and a multi-year trend com-
ponent with flexibility in selecting the amount of variation contained in each of
them [Borsa et al. 2014]. While STL operates on single time series it does not rely
on predefined basis functions. Instead, it employs a procedure based on LOESS
(Locally Estimated Scatterplot Smoothing) technique to estimate the seasonal and
multi-year signals in a data-driven way. The application of STL to the detrended
EGMS time series yields two new datasets: one capturing the seasonal variation
and one describing the multiyear signal.
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• The unsupervised learning technique K-means clustering has been used to classify
deformation time series into distinct groups based on the similarity of their tempo-
ral evolution. This technique has been proven useful to separate areas dominated
by elastic deformation from areas dominated by poroelastic deformation in Central
Valley [Kang et al. 2023]. We applied the clustering to the original, detrended data
as well as on the output of the STL decomposition in order to identify spatially
coherent zones characterized by similar deformation behavior at both seasonal and
multiyear temporal scales.

• Computation of the cross-correlation between deformation and precipitation time
series has been performed to identify areas were deformation is possibly related to
hydrology-related processes.

The employed techniques are described in detail in the following sections.

4.1 Multivariate data-driven decomposition

Figure 4.1: Illustration of T-mode and S-mode decompositions highlighting the orienta-
tion of the input data matrix. [Rigamonti 2025]

The techniques described in this section belong to the class of multivariate linear
decomposition techniques, i.e., they decompose a time- and space-dependent deforma-
tion dataset into a set of spatiotemporal components using multivariate statistics. In
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this framework, time series of deformation at multiple locations are interpreted as a
collection of samples of a multivariate signal, i.e., a vector of random variables whose
components – called signal features – are the values of deformation at each time step.
This signal reflects the superposition of different processes (e.g., tectonic trends, seasonal
deformation, coseismic deformation), which are variably mixed in each of the time series.

The objective of these techniques is to find a set of signals – often referred to as
latent components or sources – whose linear combinations can reconstruct the observed
dataset. Depending on the specific decomposition used, these components are assumed
to be statistically independent or uncorrelated signal. Each of the obsered time series
is represented as a weighted sum of these components, with the weights indicating the
contribution of each component. If we organise the data in a N ×M matrix where N is
the number of observed samples and M the number of related features:

X =







x11 . . . x1M
...

. . .
...

xN1 . . . xNM






(4.1)

then a linear decomposition of the dataset in term of L components can be written as:

X = AS+N (4.2)

where:

• S ∈ R
L×M is the source matrix, and its rows represent the source signals

• A ∈ R
N×L is the mixing matrix, containing on the columns the contribution (called

score) of each component to the various samples

• N ∈ R
N×M collects the data noise

In a dataset containing both temporal and spatial dependency of the deformation,
the observed time series can be arranged in two different ways in the data matrix X

(Figure 4.1).

• In the first case (temporal “T-” mode), N represents the number of observations
(i.e., of the InSAR points), and M is the time series length. Therefore, each row
of X represents the full time series at a certain point. In this case, we treat every
time series as a sample, the sources are temporal functions, and the mixing matrix
is given by the associated spatial distributions.

• In the second case (spatial “S-” mode), N represents the time series length and
M the number of observations. Therefore, each row of X represents an InSAR
image (deformation map) at a certain time. In this case, we treat every image as
a sample, and the sources are images, and the mixing matrix contains the related
temporal functions.
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The two modes therefore differ in whether we are looking for independent sources in
terms of temporal functions (T-mode) or spatial patterns (S-mode). Therefore, we ex-
pect T-mode to capture the dominant modes of variation in the temporal evolution of
deformation across locations, whereas S-mode to capture the most significant spatial pat-
terns of deformation that change over time across multiple spatial locations. Whether
is better to use T- or S- mode mostly depends on the data. It is important to consider
that the ability to distinguish between two probability density functions (pdfs) depends
on both the number of available samples and the degree to which the pdfs differ across
space and time [Adriano Gualandi et al. 2021]. Since we are dealing with InSAR data,
characterized by a higher number of spatial samples (InSAR points) than temporal ones
(time series length), we applied the S-mode decomposition.

In this work we applied to the dataset two linear decomposition techniques sharing
the decomposition form 4.2: Principal Component Analysis (PCA) and Independent
Component Analysis (ICA).

In PCA the decomposition is performed by reprojecting the data - i.e. each of the
observed signal - onto a new reference frame in which the variables are uncorrelated.
This is achieved choosing the axes of the reference frame oriented in the direction of
the eigenvectors of the covariance matrix of the data. Thus the reprojection is done
on an orthogonal reference frame in which each of the basis vector is associated with a
value of the variance and it is uncorrelated with the others. The new axes represent the
latent components of the decomposition and each sample will be explained by a linear
combination of these component with weights given by the projections of that sample.

Using just the order-two statistical moment of the data (the covariance), PCA implies
the assumption that the data projected onto the extracted components are normally dis-
tributed. However, the probability density function distributions for some of the sources
most commonly present in deformation signals recorded through geodetic techniques are
often not Gaussian (such as a linear trend, annual signals, and post-seismic signals, Fig-
ure (4.2)). Therefore, in the case of a mix of such sources, the components extracted
through PCA would represent only a combination of the true physical sources beneath
the observed data, not having any physical meaning if individually taken.

A more stringent constraint, and potentially more suitable for the research of physical
signals, is the independence among the components, that is the condition imposed by
ICA [Gualandi et al. 2016]. This multivariate technique still remains in the field of linear
decompositions (i.e. assumes that the signals from the different sources are linearly
combined). However, the data are projected onto a system of coordinates where each
component is no longer constrained to be orthogonal to another one, and more statistical
moments are used to represent the underlying distribution of the observations. This
allows for a higher flexibility in the representation of source signals.

Different ICA algorithms exist based on how the statistical independence between the
source signals is achieved. The widely used FastICA algorithm [Hyvärinen et al. 2000] is
based on the central limit theorem, which states that the superposition of independent
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Figure 4.2: Probability density function associated with typical geodetic signals show signifi-
cant deviations from Gaussianity [Gualandi et al. 2016]

variables follows a distribution which is more similar to a Gaussian distribution than the
original ones. FastICA therefore extracts the independent components by maximizing
the non-Gaussianity of the extracted sources.

An alternative algorithm, the variational bayesian ICA (vbICA, Gualandi et al.
(2016)) employs a generative approach and it explicitly models the pdf of the recon-
structed source signals as a mix of Gaussians to better encompass multimodal behaviours.
The advantage of the vbICA approach consists in having a natural framework to describe
multimodal pdfs for the sources and to deal with missing data (a common problem in
geodetic time series). In this thesis, we employed the vbICA approach, which has proven
to generally achieve a better performance in similar contexts compared to FastICA al-
gorithm (e.g., Gualandi et al. (2016), Figure 4.3).

In the following two sections I describe the theory behind the two employed tech-
niques: PCA and vbICA.

4.1.1 Principal Component Analysis (PCA)

The goal of Principal Component Analysis is to find a new coordinate system in
which the data can be represented as uncorrelated components, ordered by the amount
of variance they explain. This is achieved by reprojecting the original dataset onto an
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Figure 4.3: Comparison of the results of a synthetic test performing a decomposition with
PCA, FastICA and vbICA. The red lines represent the sourcesignals, whose corresponding pdf
are displayed in the plot on the bottom right [Gualandi et al. 2016]
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orthogonal basis. In this transformed space, the directions (or components) are such
that the first one accounts for the maximum variance, the second is orthogonal to the
first and accounts for the largest remaining variance, and so on.

Let X ∈ R
N×M be the data matrix, arranged in S-mode: each of the N rows corre-

sponds to a deformation map (i.e., one observation in time), and each of the M columns
corresponds to a spatial point (i.e., a time series).

PCA is based on the analysis of the covariance matrix CX ∈ R
N×M , which quantifies

how the signal features vary together. CX is defined as:

CX = E[(X− E[X])(X− E[X])T ] (4.3)

and can be estimated as the sample covariance, which, assuming to have centered the
dataset so that each column has zero mean, has the form:

CX =
1

1−N
XTX (4.4)

This matrix contains on the diagonal the variance of each feature and off diagonal the
pairwise covariances between spatial points across time. If the off-diagonal terms are non-
zero, it means the corresponding features (spatial locations) are statistically correlated.

The new basis in which features are uncorrelated is found by computing the eigenvalue
decomposition of CX

CX = UΛU⊤ (4.5)

where:

• U ∈ R
M×M is the matrix containing on the columns the eigenvectors of C (or-

thonormal),

• Λ ∈ R
M×M is a diagonal matrix collecting the eigenvalues λi i = 1, ...,M which

represent the variance explained by each component.

We then express the transformed variables as:

Y = XU (4.6)

Each column of Y contains the projection of a sample of the signal onto one principal
direction. The set of projection is a new multivariate signal with N samples characterized
by a diagonal covariance matrix:

XY =
1

N − 1
YTY =

1

N − 1
UTXTXU = UTCU = Λ (4.7)

representing the fact that the new variables are mutually uncorrelated and to each is
associated a value of variance given by the corresponding eigenvector.
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A decomposition of the form 4.2 in terms of the defined component is found from the
Singular Value Decomposition (SVD) of X:

X = VΣUT (4.8)

In which:

• U ∈ R
M×M contains the right singular vectors, which are the eigenvectors of the

matrix XTX.

• V ∈ R
N×N contains the left singular vectors, which are the eigenvectors of the

matrix XXT .

• Σ ∈ R
N×M is a diagonal matrix containing the square root of the non-zero eigen-

values of the covariance matrix λi, called singular values:

From comparison between equation 4.6 and equation 4.8 in fact we can see that:

Y = XU = VΣ (4.9)

the principal components are the left singular vector V scaled by the singular values. In
the obtained form (Equation 4.8) the decomposition can be related to the generic form
of a linear decomposition. In this case the source matrix is the matrix UT , while the
mixing matrix is the Y matrix. In s-mode decomposition the first contain on each row
the spatial functions associated to the principal components, the second contains on each
column the associated temporal functions.

4.1.2 Variational Bayesian Independent Component Analysis

In this work, ICA was performed using the Variational Bayesian ICA algorithm
(vbICA) [Gualandi et al. 2016]. This algorithm employs a generative framework in
which the mixing process of L independent sources is simulated with a parametric model
in which the probability density functions (pdfs) of each source signal are modeled as a
Mix of Gaussians (MoG).

The model is characterized by a set of observable variables X and hidden variables
H. Observable variables are the data while hidden variables characterize the sources and
the mixing processes. The pdfs of both observable and hidden variables are defined in a
parametric way with a set of model parameters Θ. Both model parameters and hidden
variables are unknown and they are indicated as model ’weights’ W = {H,Θ}. The
goal of the generative approach to ICA is to find the best values for the weights that
can explain the data X under the framework of linear combination of independent source
signals. At this scope, the independence of the sources is enforced in the parametrization
of their pdfs, then the algorithm makes an estimate of the whole set of weights through the
computation of their posterior probability distribution, given the observed data p(W|X).
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In a Bayesian framework, given a generative model M and the observed data X,
maximising the posterior pdf over weights W given the data X is the best choice for W:

p(W|X,M) =
p(X|W,M) p(W|M)

p(X|M)
(4.10)

where p(X|W,M) is the likelihood of the data under the generative model M, p(W|M)
is the prior distribution of the weights in the model, and the denominator is a normalizing
factor called the model evidence:

p(X|M) =

∫

p(X|W,M) p(W|M) dW (4.11)

Variational Approximation

Since the expression for the model evidence (equation 4.11) contains an integral which
is generally intractable, as it spans the entire weight space, in the vbICA algorithm the
computation of the posterior is performed using the variational approach proposed by
Choudrey (2002). In this approach instead of directly computing the posterior probabil-
ity, we introduce an approximating pdf p′(W) whose parameters are refined in order to
minimize its distance from the true posterior [Gualandi et al. 2016].

Given an arbitrary pdf over the weight space p′(W), a measure of the distance
between p′(W) and the posterior p(W|X) is given by the the Kullback-Leibler (KL)-
divergence [Kullback et al. 1951]:

KL(p′(W)∥p(W|X)) =

∫

p′(W) ln
p′(W)

p(W|X)
dW. (4.12)

If we combine equation 4.12 and equation 4.10 we obtain the expression for the KL-
divergence.

KL(p′(W)∥p(W|X)) =

=

∫

p′(W) ln
p′(W)

p(W|X)
dW =

∫

p′(W) ln
p′(W)p(X)

p(W,X)
dW =

=

∫

p′(W) ln
p′(W)

p(X,W)
dW +

∫

p′(W) ln p(X)dW =

= −

∫

p′(W) ln
p(X,W)

p′(W)
dW + ln p(X)

where the dependency from the model M has been dropped for conciseness.
The integral quantity in the last expression is called the Negative Free Energy (NFE).

NFE[X] =

∫

p′(W) ln
p(X,W)

p′(W)
dW (4.13)
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We see that, since ln p(X) does not depend on the weights, maximizing the Negative
Free Energy with respect to the distribution p′(W) is equivalent to minimize the KL-
divergence between p′(W) and the true posterior p′(W|X).

To apply the variational approximation, it is necessary to choose a form for the
approximating pdf p′(W) which allows to make the maximization problem tractable.
The most common choice for p′(W) is that it factorizes in:

p′(W) =
k
∏

i

p′i(wi) (4.14)

for some partitions {wi, ...,wk} of the set of weights [Gualandi et al. 2016, Ormerod
et al. 2010].

With this form for p′(W), Choudrey (2002) showed that the maximization of the
Negative Free Energy results in explicit expressions for each marginal posterior p′i(wi)
in terms of the others. This in turns leads to an iterative procedure to find the joint
distribution p′(W) solution of the maximization problem [Gualandi et al. 2016].

Model specification

In the vbICA model it is necessary to define the distribution of the variables used in
the decomposition of equation (4.2), {A,S,N} and of the other hidden variables required
in the definition of their pdf. The definition depends on a set of parameters, and, for
each of these parameters, as well as for the hidden variables, it is necessary to define a
prior distribution.

Additionally, the variational approach requires to choose the form for the approx-
imating marginal densities p′i(wi) to use in equation 4.14. However, Choudrey (2002)
showed that there is no need to specify the functional form for the marginal densities if
the corresponding prior distribution of the weights p(wi) and data likelihood p(X|wi) are
modeled as distribution belonging to conjugate families, i.e. classes of distribution which
multiplied give distribution belonging to the same class. In this case, the expressions for
the marginal posteriors p′(wi) which maximize the NFE are analytical and the distri-
butions have a defined functional form. The parameters characterizing the distributions
p′(wi) can in general be expressed as functions of the parameters of the corresponding
prior p(wi), of the data, and of the expected values of hidden variables under the other
posterior [Choudrey 2002]. Then, after the specification of the model, a set of updat-
ing equations can be derived that allow us to compute the parameters that govern the
posterior densities [Gualandi et al. 2016].

The variable pdfs are specified as follows:

• Each source component si with i = 1, ..., L is modeled as a Mix of Gaussians
(MoG). The parameters defining the mix are the number of participating Gaus-
sians mi and for each of them a value of the mean µi,j, the variance βi,j and the
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weight given in the mix πi,j called mixing proportions with j = 1, ..,mi. For each
source, the set of parameters is indicated as θi = {µi,βi,πi} for i = 1, ..., L where
µi = {µi,1, ..., µi,mi

}, and similarly βi, πi are vectors of size mi. The complete set
of source parameters is indicated as θ = {µ,β,π} where µ = {µi, ...,µL} and
similarly β, π.

To complete the source model, an indicator variable called source state qi is used
to select which Gaussian of the i-th source is used to generate si. For each i,
qi is a vector of the same size of the sources vector and whose components qki
for k = 1, ...,M , take the values {1, ..,mi} with probability given by the mixing
proportions πi,qki . The complete collection of source states for all components is
indicated with q = {q1, ...,qL}.

• The mixing matrix elements are assumed to follow a zero-mean Gaussian distribu-
tion with column-dependent precision αi. The set of variances for all component
is indicated with α = {αi, ..., αL}

• The noise variables are modeled as a Gaussian with zero mean and precisions:
Λ = {Λ1, ...,ΛM}

The chosen factorization of the variational distribution p′(W) over the model weights
{A,S,Λ,α,µ,β,π, q} is therefore [Gualandi et al. 2016]:

p′(W) = p(A) p(Λ) p(S|q) p(q) p(µ) p(β) p(π) (4.15)

Statistical independence between the sources is enforced by further factorizing the vari-
ational posterior over S as:

p(S) =
L
∏

i=1

p(si) (4.16)

where L is the number of independent components used in the decomposition.
Finally it is necessary to define prior distributions over all model parameters {Λ,α,µ,β,π}.

On the basis of the consideration in the previous section the priors of the model parame-
ter are chosen from conjugate families of the corresponding variable pdfs. In particular:

• The component means µ of the MoG are modeled as independent Gaussian vari-
ables of given mean mi0 and variance τi0 for i = 1, ..L

p(µ) =
L
∏

i=1

mi
∏

qi=1

N (µi,qi ;mi0, τi0)

• The component precisions β are modeled using Gamma distributions with param-
eters bi0, ci0, i = 1, ..., L:

p(β) =
L
∏

i=1

mi
∏

qi=1

Γ(βi,qi ; bi0, ci0)
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• The mixture proportions π associated with the MoG for each source component are
assumed to follow symmetric Dirichlet distribution with parameters λi, i = 1, .., L

p(π) =
L
∏

i=1

Dir(πi;λi0)

• The mixing matrix precisions α are modeled with a product of Gamma distribu-
tions with parameters bαi, cαi, i = 1, ..., L:

p(α) =
L
∏

i=1

mi
∏

qi=1

Γ(αi; bαi
, cαi

)

• The noise precision Λ is modeled as a Gamma distribution with parameters bΛi, cΛi,
i = 1, ..., L:

p(Λ) =
M
∏

j=1

Γ(Λj; bΛj
, cΛj

)

These distributions depends on the values of a set of hyperparameters which have to
been choosen by the user. In this work we folllow the default settings which correspond to
weakly informative priors, allowing the data to reveal their internal structure [Gualandi
et al. 2016].

Selection of number of components

In the ICA technique the number L of source components is a parameter specified by
the user. The selection of the correct value for L is thus a crucial step in the application of
the technique since a suboptimal choice could yield a decomposition in which component
are not well separated, with signal leaking from one component to another, rendering
the interpretation of the results difficult.

Even thought ICA does not assign a relevance to each component, like PCA does
by ranking the components by explained variance, the employed variational Bayesian
approach allows to adopt a method known as Automatic Relevance Determination (ARD)
[Gualandi et al. 2016]. This method characterizes the relevancy of the components
through the inferred values of the mixing matrix precision parameters αi. Each αi in
fact defines how strong is the assumption that the mean value of the corresponding
column of the mixing matrix is zero. A large value of αi corresponds to a posterior
over the mixing matrix column i dominated by the prior density, effectively setting the
elements of the column i to zero. Since each column of the mixing matrix is associated
with a source components, the αi values inferred by the model characterize the relevance
of the corresponding component in the decomposition. Then, in each decomposition,
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we can directly compare the αi values associated with each component to assess if some
are more relevant than the other, and eventually identify the less relevant as noise and
discard it.

In this work, we selected the number of components by repeating the decomposi-
tion for various number of components. For each case, we computed and plotted the
ratio between the maximum and the minimum αi values as a function of the number of
components. This ratio generally decreases as more components are introduced, reflect-
ing the progressive inclusion of less relevant components into the model. We selected
the decomposition in which this ratio becomes smaller than one tenth, identifying the
component characterized by the greatest value of αi as noise and discarding it.
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4.2 STL decomposition

Figure 4.4: Example the decomposition result for a selected displacement time series.

STL is a decomposition technique which is applied to a single time series. This
procedure decomposes the input time series in a seasonal component, a trend component,
and a residual component (Figure 4.4) [Cleveland et al. 1990]. In this work, I employ
STL to characterize the deformation field in terms of seasonal and multi-year deformation
trends, which could be potentially linked to variations of the hydrological forcings at these
two timescales.

Supposing we denote a time series defined with N epochs ti as Yi with i = 1, .., N ,
the STL technique obtains an additive decomposition of Yi of the form:

Yi = Ti + Si +Ri (4.17)

In which the Ti, Si, Ri for i = 1, .., N indicates the time series respectively representing
the seasonal, trend, and residual components. The components time series are retrieved
applying a sequence of filtering operations to the original time series Yi, all but two of
them procedure employ the Locally Estimated Scatterplot Smoothing (LOESS) smoother
[Cleveland et al. 1990].

In this section I describe the theory behind the LOESS smoother and the steps
performed by the STL algorithm.

54



4.2.1 LOESS

LOESS (locally estimated scatterplot smoothing) is a procedure which obtains a
regression curve from a time series by fitting a linear or quadratic function of the inde-
pendent variable locally, in a moving fashion, analogous to the way in which a moving
average is computed .

La procedure takes as input a time series Yi with values relative to N epochs ti,
i = 1, .., N and [restituisce] a smoothed time series Y ′

k defined in an arbitrary set of
epochs t′k, k = 1, .., N ′.

Each Y ′
k is obtained performing a weighted polynomial regression of the time series

Yi and computing the result at the time t′k. In this regression, the values Yi are assigned
weights that depend on their temporal distance from t′k so that observations correspond-
ing to epochs ti closer in time to t′k, have greater influence on the fitted value. Repeating
the regression for each t′k we obtained a curve which locally represent a regression of the
time series Yi.

To regulate the effective smoothing window an integer parameter q, called ’smoothing
span’, is introduced. If q < N we define the quantity λq(t

′
k) as the time distance between

t′k and the q-th nearest epoch of the time series Yi. If q > N the definition is scaled as:

λq(t
′
k) =

q

N
λn(t

′
k) (4.18)

Then, when computing the regression curve for the value Y ′
k the weights w

(k)
i given

to each Yi in the fit are:

w
(k)
i = W

(

|ti − t′k|

λq(t′k)

)

(4.19)

in which the function W (u) is the tricube weight function:

W (u) =

{

(1− u3)3 if |u| < 1

0 otherwise
(4.20)

The LOESS procedure can be easily extended in the presence of a reliability measure,
or robustness weights, ρk associated with the observations. In this case, the weights w

(k)
i

are modified as:
ŵ

(k)
i = ρkw

(k)
i (4.21)

4.2.2 STL

I employ the implementation of STL contained in the statsmodel.tsa python
package [Perktold et al. 2024], derived from the original fortran implementation devel-
oped by Cleveland et al. (1990). The result of the decomposition for an EGMS time

55



Figure 4.5: Intermediate time series computed in an iteration of the inner loop

series is shown in Figure 4.4 and the intermediate series produced in the decomposition
procedure are shown in Figure 4.4.

The decomposition procedure depends on a set of parametrs which regulate the size
of the filtering windows employed, effectively determing the amount of variation to be
attributed respective to the seasonal and trend component. These parameters are syn-
thetized in the table 4.1 along with their meaning and effect on the decomposition. Also
reported are the values employed in this work. The most important one is the num-
ber of observation in a seasonal cycle, which determines the frequency of the seasonal
component to isolate.

In the next section I synthetize the fundamental steps performed by the algorithm to
decompose an example time series Yi, i = 1, ..., N while in the following section I discuss
the employed parameters and their effects.

Algorithm overview

The STL algorithm structure is iterative, performing a loop which refines the esti-
mates of the components in each iteration. Additionally, the algorithm can perform and
outer loop which repeats the decomposition refining the weights given to each value in
the series. This is done in order to obtain a result which is robust in case of data showing
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an outlier behaviour.
A complete run contains the following steps:

1. Initialization Performed only at the beginning. The trend component is initialized
as Ti = 0 and the robustness weigths as ρi = 0 for each i = 1, ..., N .

2. Inner loop

(a) A detrended time series Di = Yi − Ti, for i = 1, ..., N , is computed using the
trend Ti of the previous iteration.

(b) Given an integer parameter np representing the number of observation con-
tained in a seasonal cycle, np seasonal subseries Cp

j are extracted, with p =
1, ..., np and j going from 1 to the number of seasonal cycle spanned by the
time series. These are composed by grouping all observations with the same
position in the cycle (E.g. all January values for annual observations) and
ordering them by the index of the seasonal cycle - E.g. the year to which they
belong. They are referred as cycle subseries.

(c) Each cycle subseries is smoothed using LOESS with smoothing span defined
by an integer parameter ns. The smoothed time series are computed at all
times and are additionally extended one period of the seasonal cycle before
the start and after the end.

(d) The smoothed cycle subseries are recomposed and the resulting series is in-
dicated with Ci (purple line in Figure 4.5). Ci is a temporary seasonal series
and contains N + 2np times due to the additional values computed in the
previous step.

(e) To prevent low-frequencies to enter the seasonal component then an high pass
filter is applied to the series Ci. To do this, two running averages of length np,
a running average of length 3, and a LOESS smoothing with span defined by a
parameter nl, are applied to Ci. Each running average removes np points from
the series so the resulting series is defined at the same times of the original
one. The result is indicated with Li and it contains a low frequencies signal.

(f) The Li series is subtracted from Ci obtaining the estimation for the seasonal
component Si (blue curve in Figure 4.5).

(g) A deseasonalized time series is computed Zi = Yi − Si, i = 1, ..., N .

(h) The trend component Ti of the current iteration is found smoothing of the
deseasonalized Zi series with a loess span define by the parameter nt. This
component is used in the following iteration of the loop.

After a number of iteration sufficient to reach convergence of the component esti-
mates the decomposition residuals are computed as:

Ri = Yi − Si − Ti i = 1, .., N (4.22)
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Parameters meaning influences: value
np number of step in frequency of the 61

a seasonal cycle seasonal component
ns seasonal smoothing amount of interannual variation 7

span of seasonal component
nl low-pass smoothing low frequencies power 63

span in the seasonal component
nt trend smoothing time scale of variation 117

span in the trend component

Table 4.1: Parameters used in the decomposition along with selected values and effect on the
decomposition

3. Outer loop (robustness iterations)

By setting on the optional robust parameter, the algorithm performs a correction of
the decomposition after the estimation of the residuals. As explained by Cleveland
et al. (1990) this has the purpose to reduce the sensibility of the decomposition to
points showing abherrant behaviours (outliers). In fact, expecting that these points
will be characterized by higher values of the residuals, the robustness weight are
updated in this step as:

ρk = B(|R(tk)|/h) (4.23)

where h = 6 · median(|R(ti)|) and B is the bisquare function:

W (u) =

{

(1− u2)2 if |u| < 1

0 otherwise
(4.24)

Then the inner loop is repeated but in the LOESS smoothing steps (c) and (g)
the values of the weigths are modified as in 4.21 giving less importance to outlier
points.

The number of iteration of both the inner and outer loop are selectable parameters.
In this work I left the parameters to their default values by Cleveland et al. (1990) to
ensure convergence.

Parameter selection

In this section I describe the parameters of which the decomposition relies. They
are summarized in table 4.1 along their selected values. For some of these parameters a
data-independent optimal defaults is proposed by Cleveland et al. (1990) on the basis of
a frequency response analysis of the operators associated with the smoothing operations,
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Figure 4.6: Example of a seasonal diagnostic plot used for the selection of the ns parameter.
Each panel is realtive to a day-of-year. Points represent the cycle subseries from the data
and solid lines the corresponding points in the seasonal component as estimated from STL.
Robustness iteration not performed

and adopted by statsmodels. In each of these cases I have followed this indication
leaving the parameter value to its default.

• Number of data in a seasonal cycle np : It is used to determine the seasonal period-
icity. Its value naturally derives from the temporal sampling of the timeseries. In
our case, for a six day sampling rate and a periodicity of one year np = 365/6 ≈ 61

• Seasonal smoothing span ns : It is used in the smoothing of the cycle subseries,
its value determines how much variation should go into the seasonal component by
controlling the entity of the seasonal smoothing performed in step (c). It has no
default value but has to be choosen on the basis of the data. A smaller ns allows
the seasonal component to capture more interannual variation while with larger
ns the seasonal component becames more periodic. To help an informed choice,
a seasonal diagnostic plot, as in Figure 4.6, can be made, in which each panel
contains a subseries (circles) and the corresponding seasonal cycle (solid line). The
amount in which the solid line follows the points gives an indication of how much
of the variability is captured by the seasonal smoothing.
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In our case, with just 5 years of data available, we chose for ns the value 7 to
capture the interannual fluctuations without incurring in the risk of overfitting.

• Low-pass span nl : Controls the cutoff for the low frequency which should be
preserved by the LOESS smoothing of step. and thus the frequencies which should
be removed from the seasonal component. Cleveland et al. (1990) shows that an
optimal value is obtained setting it equal to the smallest odd integer greater or
equal to np.

• Trend smoothing span nt : Determines the amount of smoothing of the trend
component performed the step (g) of the inner loop. It should be as small as
possible to closely follow long term changes. At the same time, it should be large
enough to filter out the high frequencies that are selected by the seasonal smoother
at step (c) so that the trend and seasonal component do not compete for the same
frequencies. In Cleveland et al. (1990) it is shown that a lower bound for nt is the
smallest odd integer nt such that:

nt ≥
1.5np

1− 1.5n−1
s

(4.25)

• Robustness iterations In this work we have repeated the decomposition both with
and without robustness iterations and compared results.

4.3 K-mean clustering

K-means clustering is an unsupervised learning algorithm that classify time series in
a given number of groups (clusters) minimizing the intra-cluster variance. Given a set of

time series of N epochs indicated with X = {X(1)
i , ..., X

(M)
i , } with i = 1, . . . , N we define

the K-means cost function, given a parameter K indicating the number of clusters:

J =
K
∑

k=1

∑

Xi∈Ck

∥Xi − µ
(k)
i ∥2 =

K
∑

k=1

var(Ck) (4.26)

where Ck the set of time series assigned to cluster k (k = 1, ..., K), µ
(k)
i the average time

series of cluster k (i = 1, ..., N) and |Xi − µ
(k)
i ∥2 is the square of the Euclidean distance

between time series Xi and µ
(k)
i .

As can be seen from equation 4.26 the cost function correspond to the sum of the
intra-cluster variances var(Ck) of each cluster.

The algorithm used to minimize J follows an iterative procedure:

• The cluster centroid are initialized choosing K random time series among the group
in the M time series.
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• For each timeseries the euclidean distance from each of the centroids is computed
and the series is assigned to the cluster whose centroid has the less distance.

• Each cluster centroid is updated as the mean of the time series assigned to its
cluster.

The procedure is interrupted when either the cluster assignments do not change or the
cost function, as defined by Equation 4.26, changes by less than a threshold between two
iterations.

4.3.1 Silhouette score

Since the number of cluster is an input to the algorithm we need a method to assest
the quality of a given choice for K. A commonly used metric for this purpose is the
silhouette score [Kang et al. 2023]. Given a time series Xi, classified in the cluster k, the
silhouette score s(Xi, k) is defined as:

s(Xi, k) =
b(Xi, k)− a(Xi, k)

max (b(Xi, k), a(Xi, k))
(4.27)

where:

• a(Xi, k) is the average distance of Xi to all other time series in the same cluster k
(i.e., the intra-cluster distance). With Nk being the number of series classified in
cluster k:

a(Xi, k) =
1

Nk

∑

Yi∈Ck

∥Xi − Yi∥
2 (4.28)

• b(Xi, k) is the minimum average distance of Xi to all points in a different cluster,
computed over all other clusters (i.e., the nearest-cluster distance):

b(Xi, k) = min
k′ ̸=k

1

Nk′

∑

Yi∈Ck′

∥Xi − Yi∥
2 (4.29)

For each series Xi, s(Xi, k) ranges from −1 to 1. Values close to 1 indicate that the
time series is well matched to its own cluster and poorly matched to neighboring clusters.
Values close to 0 indicate that the time series lies between clusters, and negative values
suggest incorrect cluster assignment. Therefore the average silhouette score over all time
series in the dataset can be used as a measure of the goodness of the clustering.

We compute this metric for several values of K and we apply the elbow method (or
knee method) to the silhouette score curve. This technique identifies the value of K
beyond which the improvement in clustering quality starts to diminish, marked by a
change in slope. This value has been selected as the cluster number.
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4.4 Cross-correlation

To investigate the possible drivers of the signals extracted by the former analysis and
identify areas where the observed deformation is possibly related to hydrological-related
processes, we employed a lagged correlation analysis using precipitation data (Section
4.2.1) as a proxy of the hydrological trend. This consists in computing the Pearson corre-
lation coefficient between the time series of the deformation signal and the precipitation
time series, while varying the time lag applied to the latter. For each measurement point,
the lag that maximizes the absolute correlation was selected, providing both an estimate
of the strength of the correlation and an indication of the possible temporal relation
between the two variables.

The cross-correlation ρ at lag τ , between two time series of N data Xi and Yi,
i = 1, ..., N is defined as:

ρ(τ) =

∑n
i=1(Xi − X̄)(Yi+τ − Ȳ )

√
∑n

i=1(Xi − X̄)2
√
∑n

i=1(Yi+τ − Ȳ )2
(4.30)

with X̄ and Ȳ being the average values of the two time series. In this equation τ represent
the lag measured in number of time steps of the time series. To obtain the value of the
time lag τ is multiplied by the sampling period of the time series, in our case 6 d. For
τ = 0 the Pearson correlation coefficient is recovered.

ρ(τ = 0) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

√
∑n

i=1(Xi − X̄)2
√
∑n

i=1(Yi − Ȳ )2
(4.31)
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Chapter 5

Data analysis results

5.1 Linear deformation trend

The first post-processing operation performed on the EGMS data consisted in fitting
each time series wit a first order polynomial using least-squares regression. The coeffi-
cient of the first-order term represents the mean velocity at each location, the obtained
values are shown in Figure 5.1. The mean velocities are mostly negative in the study
area, indicating subsidence. The subsidence rates are higher in the center of the plain,
with average values of 5mmy−1 and localized maxima reaching 10mmy−1. These rates
decrease towards the Alps, reaching values slightly lower than 3mmy−1 in the foothills
regions.

Two localized areas exhibit an average uplift over the considered time period. One
is located at the center of the domain, corresponding to the city of Brescia, partially
extending northward into the Trompia Valley and broadening southward in latitude,
forming an inverted "T" shape. The second area is smaller and located in the easternmost
part of the domain, around latitude 45◦30′N and it corresponds to the Municipality of
Negrar di Valpolicella in the Verona Province.

The linear trend component is typically associated with long-term deformation pro-
cesses that are approximately uniform over the period of observation, such as tectonic
movements or sediment compaction [Farolfi et al. 2019]. Since the focus of this work is
on shorter-term deformation effects related to fluctuations in meteoclimatic conditions,
the estimated linear component was removed from each time series.

The subsequent analyses were conducted on the resulting detrended dataset. These
are STL decomposition, which I applied to each detrended time series to separate the
annual seasonal variability from the non linear multiyear variations, K-Means clustering
which I applied to both the detrended series an their STL components and the linear
decomposition techniques PCA and ICA which I applied to the detrended dataset.
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Figure 5.1: Linear fit coefficient values for vertical velocity dataset

5.2 STL

This section presents the results of the STL decomposition performed on each de-
trended time series. The decomposition separates each series into three components:
seasonal, multi-year trend, and residual. The spatial variability of each component’s
amplitude was examined by mapping the difference between maximum and minimum
values of the corresponding time series at each location (Figure 5.2). These amplitude
values were compared to the amplitude of the original time series to assess the relative
contribution of each component.

From the map of maximum deformation, it can be observed that in several locations
the maximum deformation during the study period reached values around 10mm. In
particular, the previously highlighted "T" shape corresponding to the city of Brescia
shows up, where deformation reaches up to 15mm. Other locations with significant
deformation include a valley in the northwest (corresponding to the municipality of
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Figure 5.2: Maps of deformation amplitude for the original time series (a), the STL-extracted
trend (b), seasonal (c), and residual (d) components. Red boxes highlight areas showing signif-
icant deformation signals.
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Clusone), an area on the southwestern edge of the domain corresponding to the city of
Piacenza, and some smaller localized areas in the western part of the plain. Among these,
the areas of Brescia, Piacenza and Clusone are also clearly visible in the amplitude map
of the multi-year trend component, indicating significant variability at the multi-year
timescale. An additional area southwest of the city of Bergamo is also identified, with
lower deformation values but still exceeding 5mm.

The seasonal component amplitude highlights a seasonal signal of up to 15mm in two
small areas located north and south of the city of Crema, anywhere else the amplitude
values do not exceed 5mm.

The residual component map also shows deformation values below 5mm through-
out the entire study area, including the locations highlighted in the other components.
Residual deformation is associated with high-frequency variability filtered out during the
STL smoothing process, e.g., short-term (weekly-monthly) signals removed during trend
smoothing.

5.3 K-means clustering

In this section I describe the results of the application of the K-means clustering
algorithm. If the procedure identifies areas characterized by similar deformation trends,
then the points of each cluster aggregate in localized areas. The average deformation
time series of these areas is represented by the cluster centroid.

The centroid time series are compared to the cumulative detrended precipitation
time series (see Section 3.2.1). The clustering procedure was applied to the detrended
dataset as well as to the datasets containing the STL-derived seasonal and multi-year
trend components. In the latter, the objective is to identify areas characterized by
similar seasonal or multi-year deformation patterns, analyzing each timescale separately.
Accordingly, the precipitation time series used for comparison was also decomposed into
two components—one representing seasonal variability and the other representing multi-
year variability—using the STL method.

Also, for each clustering result, the values of the silhouette coefficient were computed
for each time series. These coefficients quantify how much more similar is a series to the
members of its own cluster than to the members of other clusters. Higher values indicate
well-classified time series, while negative values suggest possible misclassification. The
average silhouette coefficient provides a general indication of the quality of the clustering.

In this work, K-means clustering was repeated for cluster numbers ranging from 2
to 8, and the average silhouette coefficient was plotted against the number of clusters.
From these plots, the optimal number of clusters was selected using the elbow method
(Section 4.3.1)
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5.3.1 Original dataset

For the original dataset the silouhette coefficient methods selected a number of three
clusters (Figure 5.3b). Figure 5.3a and 5.3c shows the clustering results while Figure 5.3b
shows the values of the silouhette coefficient for the different clusters.

The majority of the time series were classified into clusters 1 and 3, with a smaller
fraction in cluster 2. The centroid of cluster 2 is characterized by a deformation pattern
positively correlated with the precipitation trend. The average deformation in this cluster
shows an uplift starting in 2018 and peaking in 2021. During this period, the average
displacement reaches approximately 3mm. After 2021, a subsidence trend is observed,
with a total displacement exceeding 6mm by 2022. Time series belonging to cluster
2 are aggregated in five spatially distinct areas. These correspond to areas of Brescia,
Clusone, Bergamo and Negrar previously highlighted wthrought STL decomposition.

Outside these zones, points are divided between clusters 1 and 3. In most of the study
area, the spatial distribution of these clusters is scattered, although points classified as
cluster 3 generally surround those of cluster 2. Clusters 1 and 3 show small average
deformations - below 2mm - and no significant multi-year trend. Both corresponding
centroids exhibit seasonal oscillations of small amplitude - approximately 1mm - which
are in antiphase with seasonal oscillation of precipitation for cluster 1 and in phase for
cluster 3.

5.3.2 Multi year trend STL component

For the STL multi-year component, the silhouette method selected four clusters (Fig-
ure 5.4b). Results are shown in Figure 5.4a and 5.4c. The spatial distribution highlights
the same areas previously identified, although they are now separated into two groups.
Cluster 4 includes the time series from the Brescia area and the Clusone valley. Its
average deformation is strongly correlated with the detrended cumulative precipitation.
Cluster 3 has a similar temporal pattern, but a lower amplitude. It includes points in
from the southern area of Bergamo, Clusone, Negrar and in the Brescia.

The remaining series are divided between cluster 2 - characterized by a stable tem-
poral trend - and cluster 1, which exhibits low-amplitude trends that are negatively
correlated with precipitation (Figure 5.4a (up)). Comparison of the silhouette distri-
bution plot for this case (Figure 5.4d), with the one relative to the clustering of the
original dataset (Figure 5.3d) shows an improvement of the classification, when using
only the multi-year deformation component, reflected also in an higher value of the av-
erage silouhette coefficient.
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(a) Time dependence of cluster centroids (b) Average silhouette coefficient for
each clustering

(c) Spatial distribution of clusters (d) Distribution of values of the silhouette
coefficient

Figure 5.3: K-Means clustering of the original detrended dataset: (a) Time dependence of
cluster centroids, (b) spatial distribution of clusters, (c) average silhouette coefficient for each
clustering, (d) distribution of values of the silhouette coefficient.
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(a) Time dependence of cluster centroids (b) Average silhouette coefficient for
each clustering

(c) Spatial distribution of clusters (d) Distribution of values of the silhouette
coefficient

Figure 5.4: K-Means clustering of the STL multi-year component: (a) Time dependence of
cluster centroids, (b) spatial distribution of clusters, (c) average silhouette coefficient for each
clustering, (d) distribution of values of the silhouette coefficient.
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(a) Time dependence of cluster centroids (b) Average silhouette coefficient for
each clustering

(c) Spatial distribution of clusters (d) Distribution of values of the silhouette
coefficient

Figure 5.5: K-Means clustering of the STL seasonal component: (a) Time dependence of
cluster centroids, (b) spatial distribution of clusters, (c) average silhouette coefficient for each
clustering, (d) distribution of values of the silhouette coefficient.
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5.3.3 Seasonal STL component

For the clustering of the STL seasonal component, the silhouette method selected four
clusters. The results are shown in Figure 5.5b, and in this case the seasonal component
of the detrended precipitation was compared to the cluster centroids.

From Figure 5.5b, it is evident that clustering on the seasonal component does not
provide as meaningful a classification as in the multi-year case. Cluster distributions are
spatially scattered across the domain, and the silhouette plot (Figure 5.5c) reflects low
clustering quality, with many time series likely misclassified, as indicated by negative
values of the siouhette coefficient.

5.4 Summary of clustering results

The clustering analysis reveals that the multi-year deformation component plays a
significant role in several areas across the study domain. In contrast, the seasonal com-
ponent appears to be of limited relevance and is strongly expressed only in two small,
localized regions.

When clustering is applied to the original detrended dataset, three main groups of
time series are identified: one characterized by a pronounced multi-year trend positively
correlated with precipitation, and two exhibiting small-amplitude seasonal oscillations.
These seasonal trends show different behaviors in relation to precipitation—one group
oscillates in phase, while the other in antiphase with the seasonal precipitation pattern.

A more detailed classification emerges when clustering is performed exclusively on the
STL-derived multi-year trend component. In this case, four distinct types of deformation
behaviors are observed: (1) multi-year trends positively correlated with precipitation and
high amplitude, (2) multi-year trends positively correlated with precipitation but with
lower amplitude, (3) trends negatively correlated with precipitation, and (4) time series
that remain nearly stable throughout the observation period.

5.5 Data driven decomposition

The detrended dataset was analyzed using the linear decomposition techniques PCA
and ICA, in order to isolate spatiotemporal signals using the whole dataset.

In both cases, it was necessary to select the number of components to retain. To this
end, both decompositions were computed with a number of components ranging from 2
to 14. Two diagnostic plots were produced: one showing the variance explained by each
PCA component (Figure 5.6a), and the other showing the ratio between the maximum
and minimum ARD values obtained from ICA (Figure 5.6b).

The first plot allows for the evaluation of the relative importance of each PCA com-
ponent by examining how the explained variance is distributed. Since PCA components
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(a) (b)

Figure 5.6: (a) Variance explained by each PCA component, showing a decreasing trend and
plateauing after the fifth component. (b) Ratio between the maximum and minimum Automatic
Relevance Determination (ARD) values for each ICA component,.

are ordered by decreasing variance, the values decline as the number of components
increases. In this case, the curve reaches a plateau after the fifth component.

Even if showing some fluctuations the maximum-over-minimum ARD ratio associ-
ated with vbICA decreases with the components number and approximately stabilizes
starting from the sixth component. For this reason, the decomposition with six compo-
nents was selected as a reference and compared with those obtained using fewer or more
components.

The results of the PCA and ICA are presented graphically in Figures 5.7 and 5.8.
For each component, the temporal function is plotted above the corresponding spatial
function. For visualization purposes, the temporal signals were normalized to the [0,
1] interval using their amplitude range, and the same scaling factor was applied to the
spatial components. The displacement at a given pixel can be retrieved by multiplying
the spatial value at the pixel and the corresponding temporal function.

The results show that including the sixth component consistently led to the isolation
of a high-frequency temporal signal with a significantly lower deformation amplitude than
the others (Figure 5.7f, Figure 5.8f). Adding more components produced additional high-
frequency patterns, interpreted as noise. This behavior was observed for both PCA and
ICA, supporting the identification of the sixth component as noise. Consequently, only
the first five components were considered physically meaningful.

The results of the two decompositions show noticeable similarities. In both cases,
the most relevant signal is represented by the first component, which exhibits a similar
spatiotemporal pattern in both methods. This component reflects a multi-year trend with
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no superimposed oscillations, characterized by a decreasing behavior until 2021, followed
by an increase that continues until the end of the observation period. The associated
spatial function again highlights the areas of Brescia, Clusone, and Negrar, whit related
negative values of the spatial function exdeeding 10mm in absolute magnitude. In other

(a) PC1 (b) PC2 (c) PC3

(d) PC4 (e) PC5 (f) PC6

Figure 5.7: PCA decomposition results: temporal (top) and spatial (bottom) compo-
nents.
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(a) IC1 (b) IC2 (c) IC3

(d) IC4 (e) IC5 (f) IC6

Figure 5.8: ICA decomposition results: temporal (top) and spatial (bottom) components.

regions where a multi-year signal had previously been identified, i.e. the area south of
Bergamo and near the south-west border of the domain, the spatial function remains
negative but with lower absolute values. Outside these areas, the values of the spatial
function are positive and below 3mm in absolute terms. The deformation associated with
this component therefore matches what was previously observed: a multiyear uplift of
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localized region between 2018 and 2021, followed by subsidence thereafter, both occurred
with spatially variable amplitude, and an opposite multi-year deformation trend outside
these regions. Comparison with the detrended cumulative precipitation series, displayed
alongside the temporal functions, reveals a clear correlation between this deformation
signal and the multi-year evolution of precipitation.

The two techniques also produce similar results for components IC2 and PC5, which
exhibit comparable behavior in both their spatial and temporal functions (Figures 5.7e
and 5.8b). Both are characterized by small positive values in the eastern part of the
domain and negative values in the west. These two regions are separated by a roughly
north–south-oriented boundary located near longitude . The associated temporal func-
tions display oscillations of variable amplitude and period, with no evident correlation
to precipitation. The lack of correlation with known physical forcings, combined with
the sharp spatial transition that does not correspond to any notable geographic feature,
suggests that this component is unlikely to represent a physically meaningful process
and is possibly related with processing artefacts.

Differences between the two decomposition techniques are more relevant in the re-
maining components. ICA identifies two periodic components (IC3 and IC5) and one
additional multi-year component (IC4), whereas PCA extracts only one periodic (PC2)
component and two components with more complex temporal patterns (PC3 and PC4)
(see Figures 5.8c, 5.8e, 5.8d, and Figures 5.7b, 5.7c, 5.7d).

In the case of ICA, both periodic components exhibit annual seasonality and are
temporally shifted, with IC5 lagging behind IC3. In their spatial pattern, the most
notable feature of IC3 is the presence of two deformation hotspots in the western part of
the domain, located north and south of the city of Crema, where the seasonal oscillations
exceed 10 mm in amplitude (Figure 5.8c). Outside this zone, the spatial function of IC3
remains close to zero. The strong spatial localization of the signal is attributed to the
presence of a natural gas storage facility in this area, whose operations are responsible
for the observed deformation [Rigamonti 2025]. In such facilities, natural gas is injected
under pressure into a confined aquifer, replacing the pore water with gas. The gas
is typically stored during the summer and extracted in winter for consumption. The
resulting variations in pore pressure can induce seasonal ground deformation.

A deformation hotspot is also visible in component IC5 (Figure 5.8e), although the
associated amplitude values are lower and less concentrated around the Crema area.
IC5 can be associated with the main seasonal component identified by PCA (PC2; Fig-
ure 5.7b); both components likely capture, to varying degrees, the periodic localized
signal related to gas storage activities along with broader natural seasonal variations
present throughout the region.

The final component identified by ICA, IC4 (Figure 5.8d), displays a multi-year
character, with a temporal minimum and maximum occurring in the winters of 2019 and
2022, respectively. Its spatial pattern is defined by positive amplitudes in the central part
of the plain and negative values toward the surrounding mountainous areas, in both cases
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not exceeding 2mm amplitueds. The low correlation between its temporal evolution and
precipitation makes it difficult to directly associate this component with a hydrological
signal, as was done for IC1. This component might be driven by a low amplitude and
temporarily shifted response in some areas, but further investigation would be required
to confirm this hypothesis.

The PCA results for components PC3 and PC4 differ significantly from the corre-
sponding components obtained through ICA. As shown in the figures (Figures 5.7c and
5.7d), PCA does not successfully isolate the deformation observed in the Crema area
and the multiyear signal in IC4 into distinct components. Instead, both PC3 and PC4
exhibit seasonal oscillations superimposed on a multi-year trend, resembling that of IC4.
The overlap is also evident in their spatial patterns, showing both a broad signal similar
to the spatial function of IC4 and the two deformation hotspots in the area of Crema.

These results reflect the difference in the effectiveness of the two techniques in ad-
dressing the blind source separation problem. ICA successfully identifies and disentan-
gles deformation signals arising from distinct physical processes—namely, hydrological
forcing and anthropogenic deformation associated with gas storage—whereas PCA only
partially separates these contributions, yielding components that reflect a mixture of
different sources.

5.6 Cross-Correlation

The results of the cross-correlation between the detrended deformation dataset and
the cumulative detrended precipitation time series are shown in Figure 5.9. The left
panel displays the spatial distribution of the maximum correlation coefficient, while the
right panel maps the temporal lag (in days) at which the maximum correlation occurs.

The map of the correlation values confirms previous observations: the areas of Bres-
cia, Clusone, southern Bergamo, Negrar, and the southwestern sector of the study area
exhibit positive correlation. The magnitude of the correlation varies across the domain,
with the highest values observed in the Brescia and Clusone regions, where the correlation
coefficient exceeds ρ > 0.9 and shows minor time lag vaues (< 2-3 months)

In contrast, the correlation becomes negative across the central portion of the plain
but with lower absolute values, indicating a weaker inverse relationship between precip-
itation and deformation in these areas.

5.7 Summary

The data-driven decompositions confirmed the previously observed relevance of multi-
year deformation signals, which were detected with varying amplitude in almost all areas
and showed a temporal pattern strongly resembling that of precipitation. These signals
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(a) (b)

Figure 5.9: Maximum correlation coefficient between detrended deformation and cumulative
detrended precipitation time series (a) Time lag (in days) at which the maximum correlation
occurs (b)

exhibit significant amplitude in localized regions, typically situated in valleys located
in the mountains or at the boundary between the plain and the mountainous area. In
these zones, deformation is positively correlated with hydrological trends (ρ > 0.9),
uplifting in rainy periods and subsiding in drought periods, and reaches amplitudes up
to 15mm. A similar, though less pronounced, signal is also present in areas adjacent
to these, whereas in the plain, deformation shows smaller amplitude and a negative
correlation with precipitation (e.g., original cluster, multi-year cluster, PC1, IC1). The
contrasting correlation patterns observed suggest that the deformation field results from
the superposition of multiple processes driven by long-term hydrological variability, such
as elastic loading response and poroelastic deformation, each occurring with variable
magnitude across the study area. In the next chapter I explore the possible physical
mecahnism which could be associated to these deformation signals.
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Chapter 6

Models

In this work I studied transient deformation processes occurring on yearly to multi-
year time scales (up to 10 years). Both my results (5.7) and previous studies in the region
[Pintori et al. 2024], support the hypothesis that deformation in the region at these time
scale has a relevant contribution associated with hydrological processes. These processes
involve the redistribution of water masses, which can exert stress on the solid Earth
through different mechanisms.

One of the principal mechanism is due to the flexure of the lithosphere under the water
masses load. This effect is sketched in Figure 6.1 for an increase in the water storage.
The added weight produces surface deformation characterized by subsidence under the
load application point and horizontal movement towards it. Another mechanism occurrs
in presence of materials in which the solid matrix has void space (pores) that can be
saturated with water. Terrain layers with these characteristics are referred to as aqufiers.
In this case the deformation is due to the variations of the fluid pore-pressure whithin
these layers which produces stresses on the solid matrix. Processes of this type are termed
poroelastic processes, the effect is sketeched in Figure 6.1 for an increase in water storage.
The increased storage is reflected in an increase of the pore pressure trought the whole
saturated layers, which produce a local expansion of the medium [Larochelle, Chanard,
et al. 2022]. The resulting deformation is in this case of uplift and outward movement.

These two processes thus, altought both forced by variations and redistribution of
water masses, present some key difference, due to different physical mechanism inter-
veneing in each case. In the first process the responsible force is the weight of all water
masses above the lithosphere in a given point. The loading force is associated in fact
with the total Terrestrial Water Storage (TWS), which includes both water stored in
surface reservoir, i.e the Surface Water Storage (SWS) and in the underground, i.e the
Ground Water Storage (GWS). In the second process, instead, the forcing is associated
with the GWS term. Another key difference is the direction of the response which is
opposite between the two processes, i.e. elastic upflit and poroelastic contraction for a
decrease in water storage and elastic subsidence and poroelastic uplift for an increase. It
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Figure 6.1: Deformation due to change in water storage (A). The added weight of water
mass result in subsidence and movement towards the load (B). The increment in pore pressure
produce by an increase in groundwater storage produce uplift and outward horizontal movement
(C). From Larochelle, Chanard, et al. 2022

is therefore necessary to individually model both processes in order to disentangle their
effect on the observed deformation.

6.0.1 Elastic deformation

Governing equations

The elastic response to surface loading was computed employing the LoadDef software
[Martens et al. 2019b], which computes the elastic response of a stratified, spherically
symmetric, non-rotating, self-gravitating Earth. The exposition of the model follows the
formulation presented in Martens et al. 2019a with partially modified notation

The governing equations for the deformation of a spherical Earth of radius a due
to a surface mass distribution γ which exhert a gravitative load on the Earth are the
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momentum-conservation equation and Poisson equation.

ρ
∂2u⃗

∂t2
= ∇ · σ̂ + F⃗

∇2ψ = 4πGρ
(6.1)

Where u⃗ the displacement vector, t is the time, σ̂ is the stress tensor, ρ the mass density,
ψ is the gravitational potential and G the Universal gravitational constant. The term F⃗
represents the volume forces which in this case is the gravity:

F⃗ = ρg⃗ where g⃗ = ∇⃗ψ (6.2)

Equations are valid inside the Earth. Outside the Earth the potential satisfies Laplace’s
equation:

∇2ψ = 0 (6.3)

The equations (6.1) are linearized by expressing each variable as the sum of an unper-
turbed term, representing a state of spherically symmetric hydrostatic equilibrium, and
a small perturbation due to surface loading and Earth deformation. Using subscripts 0
and 1 for unperturbed and perturbation quantities respectively, we write:

σ̂ = σ̂0 + σ̂1

ρ = ρ0 + ρ1

ψ = ψ0 + ψ1

g⃗ = g⃗0 + g⃗1 where g⃗0 = ∇⃗ψ0 g⃗1 = ∇⃗ψ1

(6.4)

The stress tensor associated with a state of hydrostatic equilibrium can be written
as [Martens et al. 2019a]:

T̂0 = −p0Î (6.5)

with p0 satisfying:
∇⃗p0 = ρ0g⃗0 (6.6)

The umperturbed density distribution ρ0 is associated to the umperturbed potential
ψ0 with:

∇2ψ0 = 4πGρ0 (6.7)

In the umperturbed state, the displacement is assumed to be zero. When the surface
load is applied a deformation u⃗ is produced. The stress in the deformed body is com-
posed by the pre-stress, the advection of the pre-existing hydrostatic stress field by the
displacement field and the perturbation stress associated with the deformation:

σ̂ = T̂0 − (u⃗ · ∇⃗)T̂0 + σ̂1 = −p0Î + (u⃗ · ∇⃗)(p0Î) + σ̂1 (6.8)
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The perturbation density associated with the deformed earth density has to satisfy
the continuity equation for mass conservation:

ρ1 + ∇⃗ · (ρ0u⃗) = 0 (6.9)

Substituting the expressions in (6.4) into the base equations (6.1), and applying the
definitions in (6.8), (6.9), and (6.7), yields the following equations system:

ρ0
∂2u⃗

∂t2
= ∇ · σ̂1 + ρ0∇ψ1 +∇(ρ0 u⃗ · g⃗0)− g⃗0 ∇ · (ρ0 u⃗)

∇2ψ1 = −4πG∇ · (ρ0 u⃗)
(6.10)

where all terms involving products of perturbation quantities have been omitted, since
they can be considered negligible compared to the others.

From this point onward, the subscript 1 on perturbation quantity is dropped.
The perturbation potential ψ is the sum of two terms: ψE, generated by the Earth’s

internal mass redistribution, and ψM , generated by the external surface load:

ψ = ψE + ψM (6.11)

Since the loading mass lies entirely outside the Earth, the associated potential ψM sat-
isfies Laplace’s equation within the Earth’s interior:

∇2ψM = 0 (6.12)

As a result, the surface mass density γ which generates it does not appear explicitly in
the equations of motion within the Earth 6.1 but only in the boundary conditions.

These require that ψM , ψE are continous at the surface (r = a where a is the radius
of the Earth)

ψ(r = a−) = ψ(r = a+) (6.13)

that the quantity e⃗r ·(∇⃗ψ
E+4πρ0u⃗), where e⃗r is a unit-norm vector normal to the Earth’s

surface, is continous as well, thus

e⃗r · (∇⃗ψ
E|r=a− + 4πGρ0u⃗(r = a−)) = e⃗r · ∇⃗ψ

E|r=a+ (6.14)

since u⃗ is only defined inside the Earth, and that e⃗r · ∇⃗ψ
M changes by 4πGγ:

e⃗r · ∇⃗ψ
M |r=a− + 4πGγ = e⃗r · ∇⃗ψ

M |r=a+ (6.15)

which yields for ∇⃗ψ = ∇⃗ψE + ∇⃗ψM :

e⃗r · ∇ψ|r=a− + 4πGρ0e⃗r · u⃗(r = a−) = e⃗r · ∇ψ|r=a+ − 4πGγ (6.16)

where γ is the surface mass density.
Boundary conditions for the surface tractions are:

σ̂ · e⃗θ = 0

σ̂ · e⃗r = γg⃗0
(6.17)
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Numerical solution

The constitutive relation for the elastic rehology is given by Hooke’s Law,

σij = 2µϵij + λϵkkδij (6.18)

with λ and µ the (radius dependent) Lamé constant. Substituting 6.18 into the perturbed
equations (6.10) eliminates the stress variable σ̂, yielding a system expressed only in terms
of displacement and gravitational potential [Martens et al. 2019a].

IN spherical coordinates the displacement component are the radial ur, uθ and az-
imuthal component uϕ. Assuming an axis symmetric load distribution, the azimuthal
component uϕ vanishes. The remaining three variables ur, uθ, and ψ can be separated
in a radial and an angular part by expanding them in spherical harmonics:

ur(r, θ, t) =
∑

n

Un(r)Pn(cos θ) e
iωt

uθ(r, θ, t) =
∑

n

Vn(r)
∂Pn(cos θ)

∂θ
eiωt

ψ(r, θ, t) =
∑

n

Ψn(r)Pn(cos θ) e
iωt

(6.19)

Subsituting this expression, and the consitutive relation 6.18 into the equation of motion
6.10 leads to a system of second-order ODEs for Un(r), Vn(r),Ψn(r).

The obtained system can be further reduce to a first order system introducing the
additional variables T nrr and T nrθ which are the harmonic coefficient of the radial and
tangential stress, and the variable Qn is defined as

Qn =
dΨn

dr
− 4πGρ0Un (6.20)

The radial and tangential stress coefficients:

T nrr = λ

(

dUn
dr

+ 2
Un
r

−
n(n+ 1)

r
Vn

)

+ 2µ
dUn
dr

(6.21)

T nrθ = µ

(

dVn
dr

−
Vn
r

+
Un
r

)

(6.22)

are derived from the constitutive law (6.18), and the strain tensor expressions in spherical
coordinates:

ϵrr =
∂ur
∂r

ϵrθ =
1

2

(

∂uθ
∂r

−
uθ
r

+
1

r

∂ur
∂θ

) (6.23)
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As shown in Martens et al. (2019a), using the variables Un, T
n
rr, Vn, T

n
rθ, Ψn, Qnthe

system of three second-order ODEs for Un, Vn, and Ψn is reduced to a form:

dy⃗

dr
= Â(r) y⃗ (6.24)

where the state vector y⃗ is defined as:

y⃗(r) =

















y1
y2
y3
y4
y5
y6

















=

















Un
T nrr
Vn
T nrθ
Ψn

Qn

















(6.25)

and Â is a six by six matrix depending from r, µ, λ, ρ0, ω and n.
This system is integrated numerically using the Runge–Kutta method, initializing

three linearly independent solutions inside the Earth and propagating them to the sur-
face. Refer to [Martens et al. 2019b] for details on how these independent solutions are
initialized, the choice of starting radius for the integration, and the treatment of fluid
layers.

The solution has to satisfy the boundary conditions at the surface. These are obtained
by inserting the expressions in (6.19) into (6.16):

dΨn

dr

∣

∣

∣

∣

r=a−

− 4πGρ0Un(a−) =
dΨn

dr

∣

∣

∣

∣

r=a+

+ 4πGKn (6.26)

where Kn are the harmonic coefficients of the mass distribution:

γ(θ) =
∑

n

KnPn(cos θ) (6.27)

Outside the Earth (r > a), the potential ψ satisfies Laplace’s equation and can be
written as:

ψ(r, θ, t) =
∑

n

Ψn

(a

r

)n+1

Pn(cos θ)e
iωt (6.28)

thus:
dΨn

dr

∣

∣

∣

∣

r=a+

= −
n+ 1

a
Ψn(a+) (6.29)

and equation (6.26) becomes:

−4πGUn(a+) +
n+ 1

a
Ψn(a+) = 4πGKn (6.30)
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In terms of the y-variables:

y6(a+) +
n+ 1

a
y5(a+) = 4πGKn (6.31)

and for the stress-related variables:

y2(a+) = −g0Kn

y4(a+) = 0
(6.32)

A solution satisfying the boundary conditions is obtained by forming a linear combi-
nation of the three linearly independent solutions propagated to the surface. Indicating
them with yI, yII, yIII and letting m1,m2,m3 be the coefficients of the linear combination,
the following system must be satisfied:







yI2 yII2 yIII2

yI4 yII4 yIII4

yI6 +
n+ 1

a
yI5 yII6 +

n+ 1

a
yII5 yIII6 +

n+ 1

a
yIII5











m1

m2

m3



 =





−g0Kn

0
4πGKn



 (6.33)

Once the coefficients m1,m2,m3 are determined, the displacement and potential har-
monic coefficient at the surface can be reconstructed as:

Un(a) = m1 y
I
1 +m2 y

II
1 +m3 y

III
1 (6.34)

Vn(a) = m1 y
I
3 +m2 y

II
3 +m3 y

III
3 (6.35)

Ψn(a) = m1 y
I
5 +m2 y

II
5 +m3 y

III
5 (6.36)

from which the full solution for ur, uθ, ψ is found using (6.19).

Green Functions

Since the mass distribution enters linearly in the boundary conditions, without loss
of generality the response can be computed for surface point mass and then integrated
over a finite mass distribution [Farrell 1972]. When γ is a point mass load, the functions
decribing the solutions ur,uθ,ψ are termed Green Functions for the surface load and
indicated respectively with:

Γur(r, θ, ϕ; r
′, θ′, ϕ′) Γuθ(r, θ, ϕ; r

′, θ′, ϕ′) Γψ(r, θ, ϕ; r
′, θ′, ϕ′) (6.37)

where the primed coordinates are the source coordinates and the unprimed are the co-
ordinates in which the solution is computed.

The surface potential due to a point mass is [Farrell 1972]:

ψM =
∑

n

ag0
me

Pn(cos θ) =
∑

n

ΨM
n Pn(cos θ) (6.38)
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where ΨM are the harmonic coefficient of the surface potential associated with the loading
mass γ, and me is the mass of the Earth. Introducing the set of coefficient called loading
Love Numbers k′l, h

′
l, l

′
n, and defined as [Farrell 1972]:

Un(r) = h′n(r)
ΨM
n (r)

g0

Vn(r) = l′n(r)
ΨM
n (r)

g0
ΨE
n (r) = k′n(r)Ψ

M
n (r)

(6.39)

the Green functions (6.37) are written as a sum of harmonic terms as:

Γu(r, θ) =
a

me

∞
∑

n=1

h′n(r)Pn(cos θ)

Γv(r, θ) =
a

me

∞
∑

n=1

l′n(r)
∂Pn(cos θ)

∂θ

Γψ(r, θ) =
ag0
me

∞
∑

n=1

(1 + k′n(r))Pn(cos θ)

(6.40)

The employed definition of the Love Numbers follows Farrell (1972) which express them
as function of r. When the radial argument is not specified the value at surface of the
Earth (r = a) is to be taken.

By the superposition principle, once we obtained the Green Function the displacement
and the potential for a finite load is computed convolving the Green Functions with the
surface mass distribution.

ur(r, θ, ϕ) =

∫ 2π

0

∫ π

0

Γur(r, θ, ϕ; r
′ = a, θ′, ϕ′)γ(θ′, ϕ′)a2 sin(θ′)dθ′dϕ′

uθ(r, θ, ϕ) =

∫ 2π

0

∫ π

0

Γuθ(r, θ, ϕ; r
′ = a, θ′, ϕ′)γ(θ′, ϕ′)a2 sin(θ′)dθ′dϕ′

ψ(r, θ, ϕ) =

∫ 2π

0

∫ π

0

Γψ(r, θ, ϕ; r
′ = a, θ′, ϕ′)γ(θ′, ϕ′)a2 sin(θ′)dθ′dϕ′

(6.41)

where the integral span the whole extension of the surface mass load on the surface
(r = a).

LoadDef

The required inputs of the LoadDef model are a model of the interior properties of
the Earth, a load distribution model and a set of observation points in which to compute
the response.
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I employed the Preliminary Reference Earth Model (PREM). The load model can be
time dependent or static. If time dependent, the load model has to be provided as an
amplitude and phase value associated to a location. The phase value is used to model
harmonic load, such as the one of tidal origin. In our application this value was set to
zero, which corresponds to istantaneous load application [Martens et al. 2019b]. The
computation procedure employs threes steps:

1. Computation of the loading Love Numbers for the provided model of Earth struc-
ture and rheology. This is done by numerical integrating the equation of motion
with surface boundary conditions associated to a point mass. This yield the three
solution Un, Vn, Ψn from which the Love Numbers at the surface are computed as:

h′n =
Un(a)

a
(6.42)

l′n =
Vn(a)

a
(6.43)

k′n =
Ψn(a)

a gs
− 1 (6.44)

2. Green Functions computation from the values of the Love Numbers. This consists
in numerically performing the sum of Legendre polynomials in equation 6.40. See
Martens et al. 2019b for information on how this is done to ensure convergence.

3. Performing the convolution 6.41 on a numerical grid. The grid is defined for each
observation point dividing concentrical circles around the point location. Both
the Green Function and the load model are interpolated on the grid. Then the
convolution is performed as an arithmetical sum.

6.1 Poroelastic model

The description of poroelastic dynamics requires variables for both the solid matrix
and the pore fluid. The former is described with the strain and stress tensors, while the
latter is described with the fluid mass content in a control volume, ∆m, and the pore
pressure p. The constitutive relation for linear poroelasticity can be written with any
pair of a tensor variable and a scalar variable in dependence on the other two. Using
strain and mass content as dependent variables the constitutive relation results in [Segall
2010]:

Eϵij = (1 + ν)σij − νσkkδij − (1− 2ν)αpδij

∆m =
(1− 2ν)αρw
2µ(1 + ν)

[

σkk +
3

B
p

]

.
(6.45)
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where E is the Young’s Modulus, ν the Poisson’s ratio, α is the Biot-Willis coefficient,
and B the Skempton coefficient and ρw the denisty of water.

The description of the complete dynamics involves the Navier-Cauchy quasi-static
equilibrium equation:

∇ · σ̂ + F⃗ = 0 (6.46)

the strain compatibility equations:

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 (6.47)

the continuity equation for the fluid mass.

∂qi
∂xi

+
∂m

∂t
= 0 (6.48)

where q⃗ is the mass flux vector, and the Darcy’s law:

q⃗ = −ρw
κ

η
(∇p− ρwg⃗) (6.49)

where η is the fluid viscosity and the permeability k is assumed to be isotropic.
Combining equations 6.47,6.48,6.49, neglecting the term related to gravity in the

Darcy’s law, yields to two coupled equation for the three components of the displacement
field and the pore pressure [Segall 2010]:

µ∇2ui +
µ

(1− 2ν)

∂2uj
∂xi∂xj

− α
∂p

∂xi
+ fi = 0 (6.50)

Sα
∂p

∂t
−
κ

η
∇2p = −α

∂

∂t
(∇ · u) (6.51)

with:

Sα =
3α(1− 2ν)(1− αB)

2µB(1 + ν)
. (6.52)

The first equation is analogous to the equation of motion in traditional elasticity
with the additional term −α∇p representing the effect of the pore pressure gradient
which enters as a body force distribution. The second is a diffusion equation for the pore
pressure. The term α ∂

∂t
∇·u on the right-hand side of the equation represents the coupling

with the displacement field, entering this equation as a source term. The equations are
uncoupled if this term is neglected. In this case, we consider a one-way coupling, in which
variations of pore pressure produce displacement, but the displacement does not influence
pore pressure. We can then first solve for the equilibrium pore pressure distribution using
equation 6.51 and then insert the result in equation 6.50 to solve for the displacements
[Wang 2001]. The poroelastic problem in this case is analogous to the thermoelastic
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problem, with α analogous to the thermal expansion coefficient and the pore pressure to
the temperature.

The poroelastic deformation in this work has been described using the model devel-
oped by Larochelle, Chanard, et al. (2022). This model employs the eigenstrain theory
to obtain the vertical deformation of a disk of porous material embedded in an elastic
layer. Eigenstrain generally refers to deformation due to intrinsic material properties,
i.e., not associated with external stress, which, in the absence of a restraining medium,
would produce uniform deformation. In the case of poroelastic deformation, eigenstrain
arises from the variation of the pore pressure, associated with the variation of the water
table inside the aquifer [Mura 1982].

Assume that a uniform disk of radius a and of porous material, which is uniformly
saturated by water for a thickness b, undergoes an increase in water storage. This is
reflected in an increase in the water table h of a quantity ∆h. This produce an increase
in the pore pressure of :

∆p = ρwg∆hw (6.53)

over all the saturated thickness.
In the absence of the restraining medium, for an increase in pore pressure, the material

would undergo an uniform expansion given by Larochelle, Chanard, et al. (2022):

ϵeig =
α∆p(1− 2ν)

Eaq
=
αρwg∆h(1− 2ν)

Eaq
(6.54)

Employing a system of cyclindrical coordinate the first equation in 6.45 becomes:

εzz =
1

Eaq

[(1 + ν) σzz − ν (σrr + σθθ + σzz)] + εeig

εrr =
1

Eaq

[(1 + ν) σrr − ν (σrr + σθθ + σzz)] + εeig

εθθ =
1

Eaq

[(1 + ν) σθθ − ν (σrr + σθθ + σzz)] + εeig

(6.55)

Larochelle, Chanard, et al. (2022) assume that the horizontal strain εθθ and εrr are much
smaller than the eigenstrain due to the effect of the restraining medium, thus neglect
them in the equation 6.55, obtaining:

σrr = σθθ =
−Eaq εeig + ν σzz

1− ν
(6.56)

where σzz is the change in total vertical stress associated with a change in groundwater
level:

σzz = −ϕ ρwg∆h (6.57)
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Figure 6.2: The figure shows an example of the radial dependency of the solution for a disk-
shaped aquifer. The function is compared with the elastic response associated with the load
variation inside the same disk. From the comparison of vertical deformation responses, we
see that while the vertical elastic deformation is negative and affects points outside the load
application, the vertical poroelastic deformation is positive above the aquifer and zero outside,
reflecting the local character of the deformation.

Inserting 6.57 and 6.56 in the first of the Equations 6.55, a differential equation for the
vertical displacement is obtained, which can be integrated from the aquifer base through
all the saturated thickness of the aquifer (b), yielding [Larochelle, Chanard, et al. 2022]:

uz(r) =







(1 + ν)(1− 2ν)

(1− ν)

(α− ϕ) ρwg∆h b

Eaq

, r ≤ a

0, r > a
(6.58)

The equation therefore represents the vertical displacement, at the surface, associated
with a water level variation ∆h within a porous disk of radius a with porosity ϕ and
Biot-Wills coefficient α. The deformation is proportional to the thicnkess of the aquifer
b and to the water table variation ∆h and it is zero outside the aquifer.

6.2 Application

In the time interval considered in this study, the trend of hydrological variables
experienced significant multiannual fluctuations in the study area, as described in Sec-
tion 2.3. Using GNSS data over the whole Po Plain, Pintori et al. (2024) characterized
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the hydrologically-related ground deformation at the regional scale during the period
2010–2023. They identified a multi-year deformation signal strongly correlated with Po
River level time series and the SPEI-12 (Standardized Precipitation and Evapotranspi-
ration index) (Figure 6.3). By modeling this deformation signal as an elastic response
they estimated the spatial distribution of the total water storage variation (Figure 2.5).

The analysis of EGMS data confirmed the presence of deformation related to multi-
year hydrological variability. However, the spatial resolution of this dataset is higher than
that of GNSS data, allowing for the identification of hydrologically-related deformation
processes at smaller spatial scales. In Chapter 5, I showed that the application of different
data analysis methods to the dataset identifies a set of areas, with spatial extents on the
order of 1 to 10 km, uplifting in rainy periods and subsiding in drought periods. Here
therefore poroelastic effects are likely the predominant deformation mechanism.

The area characterized by the most evident poroelastic signal is located in the sur-
roundings of Brescia. Geologically, the terrain here consists of a layer of gravel and sand
deposits, over 100m thick, hosting an unconfined aquifer (Section 2.4).

I assumed that the observed deformation in this area ∆U is the superposition of
an elastic contribution ∆U e — associated with the regional-scale, multi-year variation
in total water storage (Figure 6.5) — and a contribution due to poroelastic processes
occurring at smaller spatial scales within the sediment layers ∆Up:

∆U = ∆U e +∆Up (6.59)

Under this assumption I analyzed the cumulative deformation in two periods character-
ized by different hydrological conditions: a ’rainy’ period, indicated as T1, spanning from
August 2018 to January 2021, and a ’drought’ period, indicated as T2 from Janury 2021
to August 2022 (Figure 6.5). To speed up computations, the modeling was performed
on a regular 500m× 500m rectangular grid, shown in Figure 6.4.

The EGMS deformation data were resampled onto this grid by averaging all time se-
ries located within each grid cell and assigning the result to the corresponding grid center.
Let p ∈ {1, . . . ,M} index the grid points containing at least one EGMS time series, and
let ti with i ∈ {1, . . . , N} denote the time steps. Then the resampled deformation value
at time ti for grid point xp is denoted as:

∆U(ti, xp) (6.60)

Let ts1 and tf1 be the starting and final times of the first interval T1 and ts2, t
f
2 be the

starting and final time for the second period T2, the cumulative deformation during each
period is computed as:

∆UT1(xp) = ∆U(tf1 , xp)−∆U(ts1, xp)

∆UT2(xp) = ∆U(tf2 , xp)−∆U(ts2, xp)
(6.61)
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Figure 6.3: Temporal trend (top) and spatial amplitud (bottom) of hydrologically-related
deformation, from PCA applied to GNSS vertical displacement. Temporal trend is compare
with Po River level, and SPEI-12 index. [Pintori et al. 2024]
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Figure 6.4: Regular grid used for elastic deformation computation with LoadDef.

I employed the models described in the previous section to quantify the two contri-
butions to the deformation in each period:

∆UT1(xp) = ∆U e
T1
(xp) + ∆Up

T1
(xp)

∆UT2(xp) = ∆U e
T2
(xp) + ∆Up

T2
(xp)

(6.62)

To compute the elastic component of deformation, I used the Equivalent Water Height
(EWH) variations shown in Figure 6.5, for T1 and T2, as input to the LoadDef software.
The output of the two integrations are the elastic contribution to deformation at each
gridpoint in the two periods:

∆U e
T1
(xp) and ∆U e

T2
(xp) (6.63)

The poroelastic contribution is then obtained by subtracting the modeled elastic
deformation from the observed cumulative deformation for each gridpoint.

∆Up
T1
(xp) = ∆UT1(xp)−∆U e

T1
(xp)

∆Up
T2
(xp) = ∆UT2(xp)−∆U e

T2
(xp)

(6.64)

To compare poroelastic deformation with water level data, I averaged ∆Up(xp) within
a radius of 600m around each piezometer, obtaining a cumulative deformation value
representative of the local behaviour at each site. The standard deviation of the values
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(a) (b)

Figure 6.5: Equivalent Water Height (EWH) variation during the rainy period T1 (a) and
drought period T2 (b), from [Pintori et al. 2024], used as input for elastic deformation modeling.

within each buffer area was used as the uncertainty associated with the deformation
estimate. I then used Equation(6.58) to estimate the Young’s modulus of the aquifer at
each well location.

Eaq =
(1 + ν)(1− 2ν)

(1− ν)
·
(β − ϕ) ρw g∆h b

∆Up
(6.65)

where ∆h is the water table variation at the considered well and ∆U is the poroelastic
deformation measured in the same time interval in correspondence of the same well.

Porosity values of sediment retrived from geological reports [ARPALombardia 2018a]
are 0.3 for the gravel layer and 0.2 for the underlying conglomerate. I therefore used the
average value of 0.25 along the whole sediment thickness. The Biot–Willis coefficient was
set to 0.8, a value typically adopted in literature in the absence of site-specific information
for the study area [Carlson et al. 2024, Larochelle, Chanard, et al. 2022] . The Poisson
ratio was set to 0.25.

The computational uncertainty associated with the Young’s modulus was then esti-
mated using standard error propagation:

δEaq =
(1 + ν)(1− 2ν)

(1− ν)
· (β − ϕ) · ρw · g ·

√

(

hb d∆U

∆U2

)2

+

(

h db

∆U

)2

+

(

dh b

∆U

)2

(6.66)

Additional sources of error, which have not been modeled, could be associated with the
model assumptions. These are discussed in Section 7.

6.2.1 Local elastic response

Up to this point, I assumed that the elastic component of the deformation was solely
due to regional-scale water storage variations (Figure 6.5) from GNSS. These have a
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spatial resolution of 0.25◦ [Pintori et al. 2024], thus are to be considered average values
over a gridcell of approximately 30 km side. Assuming that the elastic response is entirely
due these forcing I neglected the effect of heterogeneities of the surface load distribution
at the smaller scale, such as the ones that are associated to water mass changes in lakes
and groundwater reservoirs. These could be responsible for small-scale features in the
observed deformation signal which are due to elastic effects not considered in our model.
Neglecting these contributions could lead to an inaccurate estimate of the amplitude of
the poroelastic signal and distort the inferred value of the Young’s modulus Eaq.

To assess this effect, I additionally computed the elastic deformation associated with
the change in water storage inside the considered aquifer.

At this aim, I considered a simplified model of the piezometric level variation inside
the aquifer in the period T1 (Figure 6.6). The aquifer is assumed to be bounded by
shown perimeter, which was derived by tracing the results of the K-means clustering
(Section 5.3). I performed a two-dimensional linear interpolation of the water table
variation data at the water wells. I then assigned the resulting values to grid points
falling whitin the perimeter. The equivalent water height variation (∆EWH) was then
obtained multiplying the water table variation by the porosity ϕ.

∆EWH(x′p) = ϕ∆h(x′p) (6.67)

where x′p indicates gridpoints falling whitin the perimeter.
The value of ∆EWH(x′p) where used as a load model to force LoadDef. The response

was computed on the same 500m × 500m grid shown in Figure 6.4. The resulting
deformation is indicated with ∆U e,l

T1
(xp).

The total deformation is now assumed to be composed of three components:

∆UT1(xp) = ∆Up
T1
(xp) + ∆U e,r

T1
(xp) + ∆U e,l

T1(xp) (6.68)

where ∆U e,r
T1

(xp) is the regional elastic response previously defined as ∆U e
T1
(xp). The

estimate of the poroelastic component was then updated by subtracting both the regional
and local elastic contributions from the observed deformation.

∆Up
T1
(xp) = ∆UT1(xp)−∆U e,r

T1
(xp)−∆U e,l

T1(xp) (6.69)

The Young’s modulus was recomputed accordingly comparing the new estimate for the
poroelastic deformation with groundwater level data.

6.3 Results

In Figure 6.7, the cumulative total deformation ∆UT1(xp) and ∆UT2(xp) for the two
periods are shown. It can be seen that, in correspondence with the aquifer perimeter,
there is uplift during the rainy period T1, with average value of 3mm above the aquifer
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Figure 6.6: Model of the water table variation within the aquifer, used to estimate the local
elastic response. Bigger circles are the measured values of water table variation. Smaller circles
represent the reconstructed equivalent water heigth distribution
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(a) (b)

Figure 6.7: Cumulative deformation computed on the grid

and maxima above 5mm, and subsidence associated with the drought period T2, with
average values of 5mm. Maximum values of both uplift and subsidence are reached in
the northern part of the area, at the outlet of the Trompia Valley. In the plain to the
south, the values become much smaller in absolute magnitude and changes sign, being
negative during the rainy period and positive during the drought period, with absolute
displacements remaining below two millimeters.

In Figure 6.8, the elastic response ∆U e
T2
(xp) and ∆U e

T2
(xp) computed with LoadDef

are shown. The values of the elastic response are approximately uniform over the study
area, around −0.5mm for T1 and 1mm for T2.

By removing the elastic response to the cumulative deformation I obtained an esti-
mate of the poroelastic contribution (Figure 6.9). Given the uniformity of the elastic
response over the studied area, the poroelastic deformation results in a version of the
original cumulative deformation shifted towards more negative values in the first period
— when the elastic response is of subsidence — and towards positive value in the second
— when the elstic response is of uplift. The maximum poroelastic deformation reached
is of about 7mm for the rainy period and −10mm in the drought period.

The available groundwater time series (Figure 3.15) end before the conclusion of
the defined drought period T2. Therefore, the quantitative comparison between the
poroelastic deformations water table variations was only possible for the first period T1
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(a) (b)

Figure 6.8: Elastic response to the regional elastic load distribution.

associated with rainy condition. For this period I applied equation 6.66 using the average
values of the poroelastic deformation around each well (big circles in Figure 6.9) and the
value of the water table variation (Figure 3.16). Figure 6.10 shows the estimated values
of the Young’s modulus of the aquifer for each piezometer location and their spatial
distribution.

The aquifer Young’s modulus values span from 200MPa to 600MPa. The values are
higher in the northern part of the area and lower in the south, closer to the plain. The
uncertainty associated with the value also is higher for the piezometer located in the
north.

6.3.1 Local elastic deformation correction

In this section, the results obtained by considering the local elastic response due to
the aquifer load are shown. Due to the availability of groundwater data only in the first
period, this computation has been performed only for this interval.

The deformation (Figure 6.11) is characterized by small values of subsidence, with
maximum values around 1mm. The distribution shows the typical pattern of the elastic
response: the maximum subsidence value is found in the central part of the aquifer, and
the deformation drops to zero outside the aquifer area.
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(a) (b)

Figure 6.9: Poroelastic deformation obtained removing the regional elastic contribution. Small
points are the value at the defined gridpoints. Big circles are deformation values in correspon-
dence of each piezometer

The poroelastic deformation in this case is computed by removing both the contri-
bution due to the regional elastic response (Figure 6.8) and the local response (Figure
6.11). The result is shown in Figure 6.12. Maximum uplift values in this case are up to
8mm.

Using this result for the poroelastic deformation, I repeated the estimate of the aquifer
Young’s modulus. The obtained results are shown in Figure 6.13. Obtained result in this
case are lower since the removal of the additional contribution yield an higher poroelastic
deformation. Values span from around 150MPa to 400MPa and are characterized by
the same latitude dependency of the previous case.
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(a) (b)

Figure 6.10: Results for the aquifer Young modulus. Spatial distribution of value estimated for
each piezometer location (a). Estimated values with uncertainty shown in function of latitude
(b)
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Figure 6.11: Modeled vertical deformation induced by the local elastic response to groundwater
level variations within the aquifer during the rainy period T1. The deformation pattern exhibits
maximum subsidence in the central part of the aquifer, gradually decreasing to zero toward the
aquifer boundaries.
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Figure 6.12: Poroelastic deformation obtained removing both regional and local elastic
contributions. Small point are the deformation values at the defined gridpoints. Big
circles are the average deformation values in correspondence of each piezometer
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(a) (b)

Figure 6.13: Results for the aquifer Young modulus after removing also the load contribution
of the local aquifer. Spatial distribution of value estimated for each piezometer location (a).
Estimated values with uncertainty shown in function of latitude (b)
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Chapter 7

Discussion

I analyzed the EGMS Ortho L3 dataset, containing Sentinel-1 satellites InSAR-
derived vertical deformation time series with a 6-day sampling rate from 06/01/2018
to 22/12/2022, on a 100m × 100m grid over an area encompassing a section of the
Po Plain and part of the Alpine mountain belt. I employed different statistical data
analysis techniques to identify relevant deformation processes occurring in the area and
to compare their temporal evolution with seasonal and multi-year trends observed in
precipitation data measured by the ARPALombardia sensor network.

The majority of the time series in the region are characterized by negative average
vertical velocity (Figure 5.1), consistent with the subsidence effects known to occur in
the region [Carminati et al. 2002, Farolfi et al. 2019]. The subsidence signal has been
investigated in previous studies [Farías et al. 2024] and has been linked to a superposition
of natural and anthropogenic processes. In this work I focused on seasonal and multi-
year variations; therefore, I removed the estimated linear trend and applied statistical
analysis techniques to the detrended time series.

I identified different deformation processes occurring at seasonal and multi-year timescales
superimposed to the long-term trend.

The seasonal component is most evident in two small areas nearby the city of Crema,
likely associated with the periodic activity of nearby underground gas storage facilities
[Rigamonti 2025]. Both the amplitude map of the seasonal STL component and the ICA
results highlight these deformation patterns (Figure 5.2 and 5.8). Notably, PCA was
not able to isolate this localized seasonal deformation signal when applied to the entire
domain, as shown by the comparison between PC3 and PC4 with IC3 and IC4 (Figure
5.8 and 5.7). However, when the analysis was restricted to a smaller area encompassing
only the affected region, the two techniques yielded similar results (Figures 7.1 and 7.2)
These findings highlight that ICA is more effective than PCA at addressing the blind
source separation problem in the presence of multiple deformation sources, while the two
techniques yield similar results when a dominant deformation process is associated with
most of the variability.
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(a) (b) (c)

(d) (e) (f)

Figure 7.1: Comparison of PCA and ICA performed on the area characterized by the strongest
multiyear signal.
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(a) (b)

(c) (d)

Figure 7.2: Comparison of PCA and ICA performed on the are characterized by the strongest
seasonal signal.
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From the ICA results (Figures 5.8 and 7.2), it can be seen that the seasonal signal in
this region is split into two components. A possible reason is the non-stationarity of the
source signal. Larochelle, A. Gualandi, et al. 2018 showed that, since vbICA assumes
nonmoving sources, multiple components are necessary to fully recover the effects of a
potentially non-static source. For the case of a source moving at a constant speed in a
constant direction, the authors found that two components are sufficient to explain the
observations and that these two components must be derivatives of one another. Further
analysis would be required to verify this hypothesis.

For the multi-year trend, the application of clustering on both the original and STL-
filtered time series shows that this deformation component plays a significant role with
typical spatial scales ranging from a few kilometers to tens of kilometers (Figure 5.3
and 5.4). Among the main areas showing this deformation pattern, one is located in
a mountain valley (Clusone), three lie on the foothills of the Alpine valleys (including
Brescia and southern Bergamo), and one is situated on the foothills of the Apennines
(Piacenza). The data decomposition techniques confirmed the relevance of the multi-
year signal, which was identified as the most significant component by both PCA and
ICA (Figure 5.8a and 5.7a). The associated spatial distribution maps show that the
highest amplitude of this signal is located in the same areas previously identified through
clustering. The multi-year deformation in these areas is strongly correlated in time with
cumulative detrended precipitation (ρ > 0.8) (Figure 5.9).

In addition to positively correlated signals, both clustering and decomposition tech-
niques identified deformation patterns that are negatively correlated with precipitation,
although with smaller amplitude. These are mainly located in the central part of the
plain and in the area west of Lake Garda (Figure 5.8a, 5.7a, 5.4).

The magnitude of the observed deformation is relatively low (below 1 cm). At this
aim we rejected the pixels associated with highly variable time series (Section 3.1.3).
The evident spatio-temporal correlation with independent data (e.g., precipitation and
aquifers distribution) provide strong indication that the highlighted deformation patterns
are mostly related with hydrological or antropogenic processes, particularly in areas
affacted by the highest deformation (i.e, Brescia and Crema).

The presence of negatively correlated areas is consistent with what is observed in
GNSS measurements and could be attributed to elastic loading effects. In contrast, in the
Brescia area — where the positively correlated deformation signal is most prominent —
geological and hydrogeological data support the hypothesis that poroelastic deformation
is the dominant process. The subsurface in this area consists, in fact, of a sequence of
permeable sediments that host in the northern part an unconfined aquifer with thickness
up to over 100m. Water level data in this aquifer, measured by piezometers, show a
multi-year evolution that clearly matches the deformation and precipitation multi-year
variations (Figure 7.4).

The spatial distribution of deformation amplitude in this area closely resembles geo-
logical estimates of aquifer thickness (Figure 2.7 and reproduced in 7.3 for comparison
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(a) Saturated aquifer thicnkess b obtained from
geological surveys

(b) Basal surface of the aquifer layer
in the Trompia Valley

(c) Values of cumulated deformation occurred in
the first period

Figure 7.3: Comparison of cumulated deformation and aquifer thicnkess
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with deformation). This similarity is evident both in the plain and at the outlet of the
Trompia Valley, where the highest deformation values spatially coincide with areas of
deepening of the substrate. This observation is consistent with the model proposed by
Larochelle, Chanard, et al. 2022, which predicts a direct proportionality between the
amplitude of poroelastic deformation and the saturated thickness of the aquifer b.

(a) (b)

(c) (d)

Figure 7.4: Time series and spatial maps of poroelastic deformation at two representative
piezometer sites. (a) and (b) show the comparison between vertical deformation (blue) and
water table variations (purple) at the Flero and Vantini piezometers, respectively. (c) and (d)
spatial location of piezometers and gridpoints used in estimating deformation.

To isolate the poroelastic contribution in this area, I computed the expected elastic
response induced by surface water storage variations (Figures 6.5) and removed it from
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the observed deformation signal. The modeled amplitude of the elastic contribution
(Figure 6.8) is around one millimeter. This value is comparable to the amplitude of
the negative/positive values observed in the plain south of of the area characterized
by poroelastic signal in respectively the rainy/drought period. With correction of this
effect, in both periods the area characterized by signal anticorrelated with precipitation
is diminished (Figure 6.9), suggesting that the small-amplitude signals in this region are
mainly associated with elastic deformation.

Employing equation 6.66, I performed six point-based estimates of the aquifer’s Young
modulus, under the assumption that the residual deformation, after the removal of the
elastic contribution, is entirely due to poroelastic eigenstrain. The estimation was based
on assumed values of the material parameters appearing in equation 7.3—namely, poros-
ity and the Biot–Willis coefficient. These parameters were assumed to be spatially uni-
form and representative of the sediment types present in the aquifer.

I found values of Eaq ranging from 200MPa and 600MPa. From the data it appears
there is a decrease of the rigidity in the direction of the fan deposition. Quantitative
information found in literature for gravel and sand material reports values for the Young
Modulus ranging from 30MPa to 300MPa depending on the sediment looseness [Kezdi
1974]. This approximately agrees with what was found in the southernmost locations,
while higher values in the northern part could be associated with higher sediment ce-
mentification which is supported by geological observations [Provinca di Brescia 2016].

The models presented in this study have to be intended as first-order and present
inevitable simplifications which might have affected the inferred quantities (e.g. Eaq)
From Figures 7.5, 7.6 and 7.7, it can be observed that the estimated values of Eaq are
consistent across the four southernmost piezometers, for water table variations in the
range of 1.5m to 4.5m and poroelastic deformations between approximately 2.5mm to
5mm. In contrast, the two northernmost piezometers exhibit lower deformation values
associated with higher water table variation

This discrepancy may be attributed to errors in the water level values measured in
these two locations. In particular, the Vantini piezometer may be intercepting a perched
aquifer [ARPALombardia 2018a], hydraulically disconnected from the main saturated
system, thereby misrepresenting the effective load acting on the deforming medium. Ad-
ditionally, a replacement of the Vantini well in the month of April 2021 [ARPALombardia
2022] may have introduced inconsistencies in the measurement continuity. Both Van-
tini and Caffaro are also located in areas affected by intense anthropogenic groundwater
extraction, which may induce localized perturbations of the hydraulic head, further com-
plicating the interpretation of the poroelastic response [Pili et al. 2017].

Another possible source of error may arise from the assumed values of the material
parameters ϕ (porosity) and α (Biot-Willis coefficient). These parameters are intrinsic
properties of the subsurface layers. In particular, the Biot-Willis coefficient is often
linked to the degree of confinement of the aquifer. In this analysis, both ϕ and α were
considered uniform across the study area. However, the geological characteristics of the
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Figure 7.5: Estimated Young’s modulus E as a function of water table variation ∆h.

Figure 7.6: Estimated Young’s modulus E as a function of vertical poroelastic deformation
∆u.

region are known to vary gradually, with transitional features with a decrease in porosity
towards the plain and increase in aquifer confinement. As a consequence, the assumed
uniform values may lead to biased estimates of the aquifer stiffness.

It is also important to consider potential errors arising from the physical model em-
ployed. These may stem from unmodeled contributions to the observed deformation,
including both non-hydrological multi-year effects, such as thermoelastic processes, and
unresolved hydrological sources. In particular, deformation due to small-scale variations
in hydrological loading may not be adequately captured. The elastic deformation com-
ponent that was removed from the signal was derived from equivalent water height data
representing spatial averages over a relatively large area, which may miss localized load
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Figure 7.7: Water table variation ∆h as a function of vertical poroelastic deformation ∆u.

changes that could still produce significant elastic deformation at smaller scales.
To quantify this effect, the influence of small-scale load variations associated with

groundwater storage (GWS) changes within the aquifer was explicitly modeled. The
maximum predicted elastic deformation was found to be on the order of 1mm (Figure
6.12). The removal of this additional local elastic response resulted in slightly lower esti-
mates of Eaq across all sites, without significantly altering the spatial distribution (Figure
6.10). These results suggest that, if accurately modeled, the inclusion of this component
could help reduce biases in the estimation of Eaq. However, the adopted modeling ap-
proach relies on a simplified reconstruction of the water table signal, which may introduce
additional systematic errors due to extrapolation and limited data resolution.
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Chapter 8

Conclusions

In this work, I investigated surface deformation in a sector of the Po Plain between
2018 and 2022, using vertical InSAR data from the EGMS Ortho L3 dataset and hydro-
climatic observations from regional monitoring networks. The study aimed to investigate
the role of hydrological processes in driving surface displacements at seasonal to multi-
year scales.

To analyze the large volume of data, I employed several statistical techniques, includ-
ing STL decomposition, principal component analysis (PCA), variational Bayesian inde-
pendent component analysis (vbICA), and K-means clustering. These methods proved
effective in identifying distinct deformation sources related to natural and anthropogenic
processes. In particular, I found a class of deformation signals characterized by multi-
year vertical displacements strongly correlated with precipitation trends. These signals
are often localized near the Alpine-Po Plain transition zone and are likely associated
with poroelastic deformation of permeable sediment layer.

To investigate this mechanism quantitatively, I focused on the area showing the
strongest poroelastic signal, located near the city of Brescia. In this region, I mod-
eled the elastic deformation induced by the regional TWS variations, using equivalent
water heigth values estimated from GNSS [Pintori et al. 2024]. Removing this deforma-
tion component led to a clearer identification of the poroelastic contribution. I applied
a poroelastic model, using information on the local geology, to compare the residual de-
formation to available water table data and estimated the sediment Young’s modulus at
six locations. The estimated values ranged from 200MPa to 600MPa. These estimates
were compared with literature values and found to be consistent in magnitude with val-
ues relative to gravel and sand deposit, though potentially biased by assumptions in the
model and input parameters have been made.

Overall, this study demonstrates the potential of integrating InSAR data, hydro-
climatic records, and surface deformation modeling to detect and interpret surface de-
formations linked to water cycle dynamics and infer aquifer features at unprecedented
spatio-temporal resolution. Future work should focus on improving the resolution and
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continuity of hydrological input data, and accounting for lithological heterogeneity.
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Riassunto

Negli ultimi decenni, lo sviluppo delle tecniche di geodesia satellitare ha portato
alla possibilità di misurare la deformazione della superficie terrestre con precisione sub-
centimetrica ed elevata risoluzione spazio temporale. Tra i fenomeni che possono essere
caratterizzati da misure geodetiche, particolare interesse è associato a quelli legati alla
redistribuzione dell’acqua nel ciclo idrogeologico [Burgmann et al. 2024]. Lo studio di
questi processi risulta di interesse sia per isolare e rimuovere la componente idrologica
dai segnali geodetici, facilitando l’identificazione di segnali legati ad altre forzanti, sia
per ricavare in modo indiretto informazioni sulle proprietà idrogeologiche e meccaniche
del sottosuolo, difficilmente accessibili con metodi di indagine idrologica convenzionali,
come campionamenti in situ [Burgmann et al. 2024].

L’area di studio analizzata in questa tesi si colloca nella Pianura Padana, la più estesa
pianura italiana e una delle principali pianure alluvionali europee. Situata tra le Alpi
a nord e l’Appennino a sud, essa copre circa 46.000 km². Il clima è classificato come
subtropicale umido (Köppen Cfa), con estati calde e umide (22–25°C), inverni freddi
(1–4°C) e precipitazioni annue comprese tra 700 e 1200 mm [Baronetti et al. 2020]. La
regione è ricca sia di acque superficiali, rappresentate da numerosi laghi e fiumi – tra
cui il Po, il maggiore fiume italiano – sia di acque sotterranee, distribuite in sedimenti
porosi di origine alluvionale. Secondo una classificazione idrogeologica della Regione
Lombardia [Regione Lombardia 2002], i corpi idrici sotterranei sono suddivisi in quattro
gruppi (A, B, C, D), disposti in profondità decrescente e distinti per origine deposizionale
e caratteristiche idrauliche. I gruppi più profondi (C e D) sono costituiti da sedimenti
marini o transizionali, con alternanza di livelli sabbiosi permeabili (acquiferi) e strati
argillosi impermeabili (aquitardi), mentre i gruppi A e B sono composti da depositi
continentali, più permeabili, costituiti da sabbie e ghiaie, con granulometria maggiore,
specialmente nella fascia pedemontana.

La disponiblità di risorse idriche ha sostenuto per secoli lo sviluppo agricolo e industri-
ale della regione, che oggi ospita circa un terzo della popolazione italiana e include alcuni
dei principali poli industriali del paese. Questo ha portato a un considerevole stress sulle
risorse idriche, a cui di recente si è aggiunto l’impatto dei cambiamenti climatici, che ne
hanno accentuato la vulnerabilità: a partire dagli anni 2000 si è osservato un aumento
nella frequenza e nell’intensità degli episodi siccitosi, con eventi rilevanti negli anni 2003,
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2007, 2011 [Baronetti et al. 2020] e, più recentemente, nel 2022 [Montanari et al. 2023].
Le dinamiche idrologiche regionali inoltre influenzano direttamente la deformazione

della superficie terrestre. Diversi studi hanno documentato infatti segnali deformativi
legati sia a variazioni naturali dell’idrosfera [Pintori et al. 2024], sia all’effetto delle
attività di estrazione umana [Carminati et al. 2002; Farías et al. 2024], che sopratutto
nella parte sud orientale sono responsabili di una subsidenza del terreno con velocità
che superano i 10mmy−1 [Carminati et al. 2002; Farolfi et al. 2019]. Tali osservazioni
evidenziano l’importanza di monitorare e comprendere questi processi deformativi, sia
per valutare i rischi legati a fenomeni come la subsidenza e l’impatto sulle infrastrutture,
sia per sfruttarli come strumenti indiretti di indagine delle dinamiche idroclimatiche.

Nel presente lavoro si analizzano i dati di deformazione superficiale ottenuti con la tec-
nica InSAR e distribuiti dall’European Ground Motion Service (EGMS) con l’obiettivo di
individuare segnali di deformazione associabili a processi idrologici nel periodo 2018–2022..
Particolare attenzione è dedicata alla zona di Brescia, collocata nel settore nord-occidentale
della pianura lombarda, dove è stato rilevato un segnale deformativo a lungo termine
significativamente correlato con la variabilità multiannuale delle precipitazioni registrata
nello stesso periodo.

La tecnica InSAR (Interferometric Synthetic Aperture Radar) è una tecnica di teler-
ilevamento satellitare che permette di misurare spostamenti del suolo, con precisione
sub-centimetrica, a partire dalla differenza di fase tra due immagini radar acquisite su
una stessa area in due tempi diversi [Ferretti, Passera, et al. 2023].

Il principio alla base della tecnica si basa sul fatto che la differenza tra la fase del
segnale emesso e quella dell’eco ricevuto dipende dalla lunghezza del tragitto percorso
dal segnale e può quindi essere usata per misurare la distanza tra il satellite e il bersaglio
a terra (pixel) o la sua variazione nel tempo [Ferretti, Passera, et al. 2023].

Per misurare lo spostamento della superficie è necessario disporre di almeno due
immagini SAR della stessa area. Le due immagini vengono quindi allineate con precisione
sub-pixel in modo che i valori di fase possano essere confrontati. La differenza tra i valori
di fase misurati nei due passaggi è legata alla variazione della distanza tra il satellite e il
pixel. Se la superficie in corrispondenza del pixel ha subito uno spostamento, allora sarà
presente nello sfasamento un contributo legato alla proiezione dello spostamento della
superficie nella direzione di vista del satellite (Line Of Sight - LOS).

I dati InSAR utilizzati in questo lavoro sono stati elaborati e distribuiti dal servizio
europeo EGMS, un’iniziativa del programma Copernicus [European Environment Agency
2023]. I dati derivano da immagini SAR acquisite dai satelliti Sentinel-1 in banda C con
un tempo di rivisitazione minimo di 6 giorni. La procedura con cui, a partire da una serie
di immagini SAR si ottengono i prodotti di deformazione rilasciati dall’EGMS, prevede
una serie di passaggi, esposti in dettaglio in Ferretti, Passera, et al. (2023). Queste
operazioni hanno come scopo quello di:
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• Selezionare l’immagine da usare come riferimento (master image) per la creazione
dell’interferogramma,

• Allineare le altre immagini sulla griglia dell’immagine di riferimento e realizzare
l’interferogramm,

• Modellare e rimuovere, utilizzando un Digital Elevation Model, il contributo dello
sfasamento prodotto dalla topografia e da differenze tra i punti di vista del satellite
tra i due passaggi,

• Modellare e rimuovere gli effetti di sfasamento prodotti dall’atmosfera,

• Escludere pixel in cui caratteristiche variabili della superficie, come ad esempio
la presenza di vegetazione, producono segnali riflessi non consistenti tra i vari
passaggi del satellite, ed individuare punti, detti permanent scatterers (PS), in cui
dal segnale riflesso è possibile ottenere informazioni sullo spostamento

• Ricostruire, a partire da valori di fase noti modulo 2π, la fase assoluta per ciascun
pixel, attraverso un processo detto di phase unwrapping.

I dati di spostamento così ottenuti costituiscono il prodotto BASIC. Due prodotti più
avanzati sono rilasciati. Nel primo, (CALIBRATED), le misure InSAR sono ancorate
a dati GNSS dalla rete di stazioni EPND (European Permanent Network Densifica-
tion) dell’ European Reference Frame (EUREF). Nel secondo, (ORTHO), spostamenti
in direzione LOS ottenuti da misure effettuate in più geometrie di acquisizione, vengono
combinati per ottenere misure di spostamento verticale e orizzontale [Ferretti, Passera,
et al. 2023].

In questo studio sono stati utilizzati i dati di deformazione verticale contenuti nel
prodotto ORTHO, rilasciato con il secondo aggiornamento EGMS. Il dataset copre il
periodo compreso tra il 6 gennaio 2018 e il 17 dicembre 2022, con un campionamento
temporale di 6 giorni. Sono stati scaricati quattro quadranti di 100×100 km, successiva-
mente uniti e ritagliati su un’area compresa tra le longitudini 9.5◦E – 11◦E e le latitudini
45◦N – 46◦N.

Per indagare la relazione tra deformazioni del suolo e processi idrologici, i dati di
deformazione sono stati confrontati con dati di precipitazione misurati dalla rete di
monitoraggio di ARPA Lombardia, disponibili tramite il portale Open Data di Regione
Lombardia [Precipitazioni dal 2011 al 2020 | Open Data Regione Lombardia 2025; Precip-
itazioni dal 2021 | Open Data Regione Lombardia 2025]. Sono stati selezionati 53 sensori
con copertura completa nel periodo 2018–2022. I dati grezzi, con un campionamento
fino a 10 minuti, sono stati sottoposti a controllo qualità e aggregati in serie cumulative
a 6 giorni, in corrispondenza delle date del dataset EGMS. Su ogni serie è stato rimosso
un trend lineare per evidenziare la variabilità interannuale. La media spaziale delle se-
rie mostra una ciclicità stagionale sovrapposta a una chiara tendenza pluriannuale: un
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aumento progressivo delle precipitazioni fino al 2021, seguito da un forte calo durante la
siccità del 2022.

Nell’area di Brescia, analizzata più nel dettaglio, sono stati acquisiti anche dati
di livello piezometrico da sette pozzi, estratti da rapporti idrogeologici pubblicati da
ARPA Lombardia tra il 2018 e il 2022 [ARPALombardia 2018b; ARPALombardia 2019;
ARPALombardia 2020b; ARPALombardia 2021; ARPALombardia 2022]. Le serie piezo-
metriche mostrano un andamento coerente con quello delle precipitazioni: un progressivo
innalzamento della falda fino al 2021, seguito da una fase di calo nel 2022.

Per caratterizzare la struttura del sottosuolo in quest’area, sono state analizzate
sezioni stratigrafiche presenti nei rapporti ARPA [Provinca di Brescia 2016]. La strati-
grafia mostra un acquifero multistrato composto da due unità permeabili, geologicamente
distinte ma idraulicamente connesse. La topografia e la profondità degli strati acquiferi
mostrano una tendenza decrescente da nord verso sud, con variazioni più contenute lungo
l’asse est-ovest.

Ho applicato diverse tecniche di analisi statistica al dataset EGMS per individuare
nell’area i principali segnali di deformazione, e, successivamente, interpretare i processi
fisici responsabili sulla base di informazioni indipendenti sulle forzanti climatiche e le
caratteristiche geologiche dell’area. I metodi applicati sono i seguenti:

• Stima del trend lineare: effettuata tramite regressione ai minimi quadrati, per
evidenziare e rimuovere la componente di lungo termine della deformazione.

• Principal Component Analysis (PCA) e Independent Component Analysis (ICA):
entrambe queste tecniche decompongono l’intero dataset in un numero di compo-
nenti spazio-temporali che soddisfano determinate proprietà statistiche. La PCA
ricerca componenti non correlate tra loro, diagonalizzando la matrice di covarianza
del dataset. L’ICA, invece, ricerca componenti statisticamente indipendenti. Un
limite della PCA per le applicazioni geofisiche è l’assunzione che i dati seguando
delle distribuzioni di probabilità gaussiane, ipotesi spesso non soddisfatta nel caso
dei segnali geodetici [Gualandi et al. 2016]. L’ICA invece modellizza esplicitamente
la densità di probabilità delle sorgenti come combinazione di distribuzioni gaussiane
descritte da parametri. Nell’approccio utilizzato all’ICA [Gualandi et al. 2016] la
stima di questi parametri è effettuata tramite un modello generativo, che ricerca i
valori ottimali dei parametri massimizzano la probabilità a posteriori bayesiana in
modo variazionale (Variational Bayesian Independent Component Analysis).

• STL (Seasonal-Trend decomposition using LOESS): metodo non parametrico, ap-
plicato a singole serie temporali, basato su smoothing locale, utilizzato per separare
variazioni stagionali e tendenze pluriannuali [Cleveland et al. 1990]. L’algoritmo
STL applica alle serie temporali una sequenza di operazioni di filtraggio, basate su

123



regressioni locali (LOESS, Locally Estimated Scatterplot Smoothing), con l’obiettivo
di isolare una componente stagionale e una di trend a lungo termine. Il metodo
dipende da una serie di parametri che determinano la porzione di variabilità asseg-
nata alla componente stagionale e a quella multiannuale.

• Clustering K-means: utilizzato per classificare le serie temporali in base alla simili-
tudine della loro evoluzione. L’algoritmo suddivide le serie in un numero predefinito
di gruppi, minimizzando la varianza interna ad ogni gruppo. Il clustering è stato
applicato sia alle serie originali che ai risultati della decomposizione STL (com-
ponente stagionale e multiannuale), con l’obiettivo di identificare similitudini nel
comportamento delle serie temporali a diverse scale temporali.

• Cross-correlazione: è stata condotta un’analisi di cross-correlazione tra le serie
temporali di deformazione e la serie di precipitazione cumulata (detrendata). Per
ogni punto di misura è stato determinato il ritardo temporale che massimizza il val-
ore assoluto della correlazione con la precipitazione, al fine di quantificare l’accordo
tra deformazione osservata e forzanti climatiche.

L’applicazione delle tecniche sopra descritte alle serie di deformazione detrendate ha
permesso di evidenziare diversi processi deformativi che si verificano nell’area di studio.

La decomposizione STL ha mostrato che le componenti multiannuali sono predom-
inanti in diverse aree montane e pedemontane, dove raggiungono ampiezze superiori a
10mm. La componente stagionale, invece, risulta generalmente debole, ad eccezione
di due hotspot locali nell’area di Crema, corrispondenti con la posizione di due siti di
stoccaggio di gas naturale.

I risultati del clustering confermano, nelle stesse aree montane e pedemontane, la
presenza di serie temporali con comportamento coerente, caratterizzato da un solleva-
mento nella prima parte del periodo e una subsidenza nella seconda, ovvero con un
comportamento positivamente correlato alle precipitazioni. Nelle aree di pianura è stato
invece osservato un comportamento opposto, con ampiezze minori (≤ 2mm). Questa dis-
tinzione tra aree è visibile sia nei risultati del clustering applicato alle serie originali, sia
a quelli effettuati sulle componenti multiannuali. La componente stagionale ha prodotto
invece una classificazione meno informativa, con distribuzioni spaziali frammentate.

Le decomposizioni tramite PCA e ICA hanno confermato il ruolo dominante del
segnale multiannuale e permesso di identificare ulteriori segnali di deformazione. En-
trambe le tecniche hanno individuato una componente di deformazione associata alla
variabilità delle precipitazioni, con distribuzione spaziale coerente ai risultati precedenti:
segnale correlato positivamente alla precipitazione nelle aree montane e pedemontane con
ampiezze fino a 10mm, e comportamento opposto nelle zone pianeggianti, con ampiezza
minore (meno di 2mm).
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In aggiunta a questo segnale, la decomposizione ICA ha isolato un contributo sta-
gionale in corrispondenza dei siti di stoccaggio di gas naturale. Il segnale, con ampiezze
fino a 6mm, presenta un andamento stagionale evidente che riflette i cicli di iniezione
e prelievo. Si osserva che, mentre l’ICA ha permesso una separazione netta di questo
contributo dalla variabilità multiannuale, nel caso della PCA esso risulta mescolato ad
altre componenti.

Infine, l’analisi di cross-correlazione ha verificato un’elevata coerenza spaziale tra de-
formazione e precipitazione nelle aree identificate nella fascia pedemontana, con coeffici-
enti di correlazione positivi superiori a 0.9, mentre, prevalentemente in zone pianeggianti,
sono state individuate anche serie anticorrelate, con valori assoluti di correlazione più
bassi.

La presenza di aree caratterizzate da segnali di deformazione sia positivamente che
negativamente correlati con l’andamento delle precipitazioni, evidenziata dalle analisi
condotte, suggerisce la coesistenza di diversi meccanismi deformativi indotti dalla vari-
abilità idrologica.

In particolare, le aree che mostrano una chiara correlazione positiva, situate prevalen-
temente lungo il margine pedemontano, sono compatibili con una risposta poroelastica
del sottosuolo. In questi contesti, acquiferi poco confinati e con sedimenti grossolani
possono subire un’espansione in seguito all’aumento della pressione di poro durante i pe-
riodi piovosi, e quindi produrre un sollevamento superficiale [Larochelle, Chanard, et al.
2022]. Tale interpretazione è coerente con la distribuzione spaziale dei segnali osservati
e con le caratteristiche idrogeologiche note.

Al contrario, nelle aree di pianura, la correlazione negativa tra precipitazioni e de-
formazione è compatibile con una risposta elastica della litosfera a variazioni del carico
idrologico. Questo tipo di comportamento è in accordo con quanto osservato da Pintori
et al. (2024), che hanno documentato un sollevamento regionale della superficie terrestre
durante la siccità del 2022, associato alla diminuzione delle risorse idriche avvenuto in
questo periodo.

Queste osservazioni nel loro insieme suggeriscono che la deformazione osservata possa
essere il risultato della sovrapposizione di due effetti distinti: una risposta elastica re-
gionale al carico idrologico, dominante nelle aree di pianura, e una risposta poroelastica
lprevalente a scale locali in corrispondenza di depositi permeabili. Mentre il primo mec-
canismo produce sollevamento nei periodi di siccità e subsidenza in quelli piovosi, il
secondo induce un comportamento opposto, con sollevamento durante i periodi umidi e
subsidenza nei periodi secchi.

I due meccanismi sono stati studiati applicando dei modelli fisici di risposta al carico
[Martens et al. 2019a] e di deformazione poroelastica [Larochelle, Chanard, et al. 2022].
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La deformazione elastica della Terra in risposta ad un carico superficiale è calcola-
bile numericamente per una Terra stratificata, radialmente simmetrica, non rotante e
autogravitante, a partire dalle equazioni del moto perturbate rispetto ad uno stato di
riferimento di equilibrio idrostatico [Martens et al. 2019a].

ρ0
∂2u⃗

∂t2
= ∇ · σ̂1 + ρ0∇ψ1 +∇(ρ0 u⃗ · g⃗0)− g⃗0 ∇ · (ρ0 u⃗)

∇2ψ1 = −4πG∇ · (ρ0 u⃗)
(8.1)

dove u⃗ è il campo di spostamento, σ̂1 è la perturbazione del tensore degli sforzi, ρ0 è
la densità allo stato di riferimento, ψ1 è il potenziale gravitazionale perturbato, g⃗0 è il
campo gravitazionale imperturbato, G è la costante gravitazionale universale.

In virtù della simmetria sferica del problema, le variabili possono essere separate in
una parte radiale e una parte angolare, espressa in termini di armoniche sferiche. La
dipendenza temporale è assunta essere sinusoidale di frequenza ω (ω = 0 per carichi
indipendenti dal tempo).

ur(r, θ, t) =
∑

n

Un(r)Pn(cos θ) e
iωt

uθ(r, θ, t) =
∑

n

Vn(r)
∂Pn(cos θ)

∂θ
eiωt

ψ(r, θ, t) =
∑

n

Ψn(r)Pn(cos θ) e
iωt

(8.2)

dove: Pn(cos θ) sono i polinomi di Legendre, Un, Vn, Ψn sono i coefficienti radiali della
decomposizione armonica.

Inserendo nelle equazioni del moto la decomposizione 8.2 e la relazione costitutiva
per la reologia elastica data dalla legge di Hooke:

σij = 2µϵij + λϵkkδij (8.3)

si ottiene un sistema di equazioni differenziali ordinarie del secondo ordine nelle variabili
Un(r), Vn(r) e Ψn(r).

Il sistema è ulteriormente riducibile ad un sistema di primo ordine nella forma
[Martens et al. 2019a]:

dy⃗

dr
= Â(r) y⃗ (8.4)

definendo il vettore:

y⃗(r) =

















y1
y2
y3
y4
y5
y6

















=

















Un
T nrr
Vn
T nrθ
Ψn

Qn

















(8.5)
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dove T nrr e T nrθ sono i coefficienti armonici delle componenti dello sforzo radiale e
tangenziale rispettivamente, Ψn è il potenziale gravitazionale perturbato e la variabilie
Qn è legata alle derivate radiali del potenziale:

Qn =
dΨn

dr
− 4πGρ0Un (8.6)

Il sistema viene integrato numericamente propagando tre soluzioni linearmente indipen-
denti per il vettore y⃗ dall’interno della Terra fino alla superficie. Alla superficie le tre
soluzioni vengono poi combinate linearmente per soddisfare le condizioni al contorno
associate alla presenza del carico superficiale [Martens et al. 2019a].

Per una massa puntiforme unitaria, le funzioni che descrivono la risposta sono dette
Green Functions. I coefficienti della decomposizione armonica sono detti numeri di Love
[Farrell 1972]:

Γu(r, θ) =
a

me

∞
∑

n=1

h′n(r)Pn(cos θ)

Γv(r, θ) =
a

me

∞
∑

n=1

l′n(r)
∂Pn(cos θ)

∂θ

Γψ(r, θ) =
ag0
me

∞
∑

n=1

(1 + k′n(r))Pn(cos θ)

(8.7)

Dove:
Γur(r, θ, ϕ; r

′, θ′, ϕ′) Γuθ(r, θ, ϕ; r
′, θ′, ϕ′) Γψ(r, θ, ϕ; r

′, θ′, ϕ′) (8.8)

sono le funzioni di Green. Le variabili primate sono relative alla massa che genera la
perturbazione, le variabili non primate sono relative al punto in cui la risposta viene
calcolata.

La conoscenza dei numeri di Love, e quindi delle funzioni di Green (equazione 8.7)
permette il calcolo della risposta ad un carico di estensione generica γ(θ′, ϕ′) attraverso
una convoluzione:

ur(r, θ, ϕ) =

∫ 2π

0

∫ π

0

Γur(r, θ, ϕ; r
′ = a, θ′, ϕ′)γ(θ′, ϕ′)a2 sin(θ′)dθ′dϕ′

uθ(r, θ, ϕ) =

∫ 2π

0

∫ π

0

Γuθ(r, θ, ϕ; r
′ = a, θ′, ϕ′)γ(θ′, ϕ′)a2 sin(θ′)dθ′dϕ′

ψ(r, θ, ϕ) =

∫ 2π

0

∫ π

0

Γψ(r, θ, ϕ; r
′ = a, θ′, ϕ′)γ(θ′, ϕ′)a2 sin(θ′)dθ′dϕ′

(8.9)

In questo lavoro la deformazione in risposta ad un carico elastico è stata calcolata
con il software LoadDef. Questo esegue tre passaggi:
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1. Integrazione numerica delle equazioni del moto 8.1 con condizioni al contorno date
da una massa unitaria puntiforme. Da questo passaggio vengono calcolati i numeri
di Love per ogni grado armonico.

2. Calcolo delle Green Function attraverso la somma numerica della serie 8.7.

3. Calcolo della convoluzione su una griglia numerica, definita attorno a ciascun punto
di osservazione mediante cerchi concentrici. La funzione di Green e il modello di
carico fornito in input, definito su griglia numerica, sono interpolati sulla griglia
definita dal codice e la convoluzione è calcolata come somma aritmetica.

La deformazione poroelastica è stata descritta tramite il modello di Larochelle, Cha-
nard, et al. (2022), che calcola la deformazione di un disco omogeneo di materiale poroso,
saturo d’acqua fino ad un livello b, in conseguenza dell’aumento di ∆h del livello della
tavola d’acqua. L’effetto dell’aumento del livello dell’acqua è associato ad un eigenstrain
nel mezzo poroso che, in assenza di vincoli meccanici esterni, produrrebbe un’espansione
uniforme data da:

ϵeig =
αρwg∆h(1− 2ν)

Eaq

(8.10)

dove, α è il coefficiente di Biot-Wills, ρw è la densità dell’acqua, g è l’accelerazione
gravitazionale, ∆h è la variazione di carico piezometrico (livello della falda), ν ed Eaq

sono rispettivamente il rapporto di Poisson e il modulo di Young dell materiale poroso. La
relazione costitutiva poroelastica in presenza di eigenstrain è (in coordinate cilindriche)
[Larochelle, Chanard, et al. 2022]:

εzz =
1

Eaq

[(1 + ν) σzz − ν (σrr + σθθ + σzz)] + εeig

εrr =
1

Eaq

[(1 + ν) σrr − ν (σrr + σθθ + σzz)] + εeig

εθθ =
1

Eaq

[(1 + ν) σθθ − ν (σrr + σθθ + σzz)] + εeig

(8.11)

dove εij sono le componenti del tensore delle deformazioni, σij sono le componenti del
tensore degli sforzi. Larochelle, Chanard, et al. (2022) assume che le deformazioni oriz-
zontali εθθ e εrr siano molto minori di εeig, trascurandole nelle equazioni 8.11 e arrivando
ad un’equazione per uz che può essere integrata in verticale dalla base dell’acquifero,
risultando in:

uz(r) =







(1 + ν)(1− 2ν)

(1− ν)

(α− ϕ)ρwg∆h b

Eaq

, r ≤ a

0, r > a
(8.12)
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dove uz(r) è lo spostamento verticale alla superficie alla distanza radiale r, a è il raggio
della zona in cui avviene l’aumento del livello di falda, ϕ è la porosità del materiale, b è lo
spessore dell’acquifero.Tale soluzione è caratterizzata da un comportamento locale, con
deformazione solo in corrispondenza dell’aumento della tavola d’acqua e proporzionale
allo spessore dell’acquifero.

Per studiare la deformazione osservata sulla base dei processi fisici responsabili, il
periodo di studio è stato suddiviso in due intervalli temporali distinti, caratterizzati da
condizioni idrologiche opposte: un periodo umido (T1) e uno siccitoso (T2). Le serie
EGMS sono state ricampionate su una griglia regolare di 500m × 500m. In ciascun
punto xp della griglia, la deformazione cumulata osservata ∆U(xp) è stata modellata
come sovrapposizione di un contributo associato ai processi elastici e uno associato alla
risposta elastica:

∆UT1(xp) = ∆U e
T1
(xp) + ∆Up

T1
(xp)

∆UT2(xp) = ∆U e
T2
(xp) + ∆Up

T2
(xp)

(8.13)

La risposta elastica è stata calcolata utilizzando LoadDef nei due periodi considerati,
a partire dai dati di variazione di Equivalent Water Height (EWH) ottenuti nell’area
tramite inversione di dati GNSS [Pintori et al. 2024]. La componente poroelastica è
stata quindi ottenuta per differenza:

∆Up
T1
(xp) = ∆UT1(xp)−∆U e

T1
(xp)

∆Up
T2
(xp) = ∆UT2(xp)−∆U e

T2
(xp)

(8.14)

La deformazione poroelastica è stata confrontata con le variazioni del livello della
falda, ∆h, osservate in sette piezometri. Il modulo di Young dell’acquifero Eaq è stato
stimato utilizzando la seguente formula, derivata dal risultato di Larochelle, Chanard,
et al. (2022):

Eaq =
(1 + ν)(1− 2ν)

(1− ν)
·
(β − ϕ) ρw g∆h b

∆Up
(8.15)

dove:

• ∆h è la variazione piezometrica osservata;

• ∆Up è la deformazione poroelastica calcolata;

• ϕ = 0.25 è la porosità tipica dei sedimenti nella zona;

• β = 0.8 è il coefficiente di Biot–Willis assunto;

• ν = 0.25 è il rapporto di Poisson;

• b è lo spessore dell’acquifero stimato da cross-section geologiche;
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• ρw è la densità dell’acqua, ρw = 1000 kgm−3

L’analisi della deformazione cumulata ha mostrato una risposta coerente con processi
poroelastici nella zona di Brescia. Durante il periodo piovoso si osserva un sollevamento
dell’area corrispondente all’acquifero, con valori medi superiori a 3mm e picchi oltre
5mm, mentre durante il periodo siccitoso si osserva una subsidenza della stessa area,
con valori medi di circa 5mm. I massimi valori si concentrano nella zona settentrionale
dell’area di studio, in corrispondenza dello sbocco della Val Trompia, mentre verso sud
i segnali si attenuano e cambiano segno.

Sottraendo il contributo elastico regionale stimato mediante il modello LoadDef, i
segnali rimanenti sono stati interpretati come deformazione poroelastica. Questa appare
amplificata rispetto alla deformazione originaria, con valori fino a 7mm nel periodo
piovoso e −10mm nel periodo siccitoso.

La stima per il modulo di Young dell’acquifero ha ottenuto valori compresi tra
200MPa e 600MPa. I valori più elevati si osservano nella porzione settentrionale dell’area,
mentre quelli più bassi si localizzano nella pianura a sud. La distribuzione spaziale del
modulo di Young è consistente con le variazioni di granulometria e di compattazione dei
depositi caratteristiche della struttura dell’acquifero.

Le stime del modulo di Young dell’acquifero sono simili tra i piezometri della porzione
meridionale dell’area studiata, mentre sono maggiori in corripondenza dei pozzi più
settentrionali. Queste discrepanze possono derivare da errori nella misura del livello
piezometrico, come nel caso del piezometro Vantini, che potrebbe intercettare una falda
sospesa non rappresentativa della falda principale [ARPALombardia 2018a]. Altri fattori
che possono aver introdotto errori sistematici sono la sostituzione del pozzo durante il
periodo di osservazione [ARPALombardia 2022], l’influenza di emungimenti locali [Pili
et al. 2017], e l’assunzione di parametri geologici uniformi nello spazio (porosità ϕ e
coefficiente di Biot-Willis α). Inoltre, il modello fisico adottato include semplificazioni
che potenialmente trascurano contributi deformativi rilevanti (es. effetti termoelastici o
effetti idrologici non modellati). Come analisi ulteriore è stata calcolata anche la risposta
elastica associata alle variazioni di carico idrico a scala locale, mostrando che, sebbene
di entità contenuta (massimo 1mm), essa può influenzare le stime del modulo di Young.
L’inclusione di questo contributo ha portato a una lieve riduzione dei valori stimati,
suggerendo che una modellazione più accurata delle variazioni idriche locali potrebbe
contribuire a rimuovere fonti di errore.

In conclusione questo studio mostra che, integrando dati InSAR e dati meteoclimatici
è possibile caratterizzare i processi defomativi associati alla dinamica del ciclo dell’acqua
con una elevata risoluzione spaziale e ricavare informazioni sulla struttura e sulle carat-
teristiche dei corpi idrici sotterranei
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