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Sommario

Questa tesi si concentra su un modello di sorgente costituito da un’inclusione termo-
poro-elastica (TPE) immersa in un mezzo elastico, omogeneo e limitato. Sono stati
analizzati casi in cui la sorgente ha una geometria sferica o a guscio sferico, e subisce
variazioni di temperatura e pressione di poro. Si forniscono soluzioni analitiche per le
componenti di spostamento, deformazione e stress, sia all’interno della sorgente che nel
mezzo circostante. Sono inoltre effettuati confronti con soluzioni preesistenti ottenute in
un mezzo illimitato.
Lo studio mostra anche che gli effetti superficiali di una sorgente TPE a simmetria sferica
sono, per una scelta adeguata dei parametri, equivalenti a quelli di una sorgente di Mogi.
Questo tipo di soluzioni è rilevante per spiegare le deformazioni e la sismicità osservate
in regioni geotermiche e vulcaniche, come alternativa ai modelli di sorgenti magmatiche.
Per la sfera, le soluzioni sono completamente validate, mentre per il guscio sferico
viene presentato un primo passo verso soluzioni complete. Il modello a guscio qui
proposto risulta affidabile quando la sorgente si trova a una profondità paragonabile
al suo diametro esterno, poiché l’errore nel soddisfare la condizione al contorno sulla sua
superficie sferica interna rimane entro il 15%.
È stato analizzato il massimo sforzo di taglio sul piano mediano del guscio in funzione del
raggio interno, mostrando che gusci più sottili presentano un massimo sforzo di taglio
maggiore all’interno e minore all’esterno, con la conseguente possibilità di favorire la
sismicità all’interno della sorgente. Il regime tettonico all’interno dell’inclusione risulta
essere compressivo nel caso della sfera e trascorrente nel caso del guscio sferico.



Abstract

This thesis focuses on a source model consisting of a thermo-poro-elastic (TPE) inclusion
embedded within a homogeneous, bounded elastic medium. I investigate cases where the
source region has either a spherical or spherical shell geometry and undergoes variations
in temperature and pore pressure. Analytical solutions are provided for displacement,
strain, and stress components both within the source and in the surrounding medium.
Comparisons are also made with pre-existing solutions obtained in an unbounded
medium. The study also shows that the surface effects of a spherically symmetric TPE
source are equivalent to those of a Mogi source for a suitable choice of parameters.
This kind of solutions are relevant to explain deformation and seismicity observed in
geothermal and volcanic regions, as alternatives to magmatic-source models.
For the sphere, the solutions are fully validated, while for the shell, an initial step
toward complete solutions is presented. The present shell model proves reliable when
the source lies at a depth comparable to its outer diameter, as the error in satisfying
the boundary condition at the shell’s inner surface remains within 15%.
The maximum shear stress on the shell’s equatorial plane was analyzed as a function of
the inner radius, showing that thinner shells have higher maximum shear stress inside
and lower outside, potentially promoting seismicity within the source. The tectonic
regime inside the source is compressive for the sphere and strike-slip for the shell.
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Chapter 1

Introduction

Thermo-poro-elastic (TPE) inclusions represent deformation sources suitable to model
deformation observed in volcanic and hydrothermal regions.
This chapter provides a general overview of the possible applications of the thermo-
poro-elasticity theory, with a particular focus on volcanic regions, hence, the theoretical
and methodological framework required to develop these results. In particular,
the applicability of this theory to recent phenomena observed on Vulcano Island is
summarized.
Subsequently, a portion of the TPE framework is presented, leading to the constitutive
relation for TPE media and to Eshelby (1957) method, which allows for the solution of
problems involving an inclusion of arbitrary shape undergoing inelastic transformations
within an elastic space.
The main objective of this thesis is to extend the model proposed by Belardinelli et al.
(2019) for TPE inclusions with spherical symmetry to include the presence of a free
surface resembling the Earth surface. For this reason, the analytical solutions developed
by Belardinelli et al. (2019) are presented at the end of this chapter, as they will serve
as the theoretical foundation for the present work.
The other parts of the thesis are briefly described as follows:

• Chapter 2 presents the methodology used to derive the analytical solutions for
the displacement, strain, and stress fields discussed previously, together with their
explicit expressions. These solutions are obtained by following the method adopted
by Bonafede (1990) for a spherical magmatic chamber (i.e., a Mogi source), which
full-space solutions were originally derived by Mogi (1958). In particular, the
employed methods include the image source technique and the approach described
in section (2.1). I also present the equivalence of the TPE sources here considered
with a Mogi source, for a suitable parameter choice, as far as deformation fields at
the free surface are concerned.

• Chapter 3 presents the results obtained in chapter 2 through color maps of each
field component on vertical sections for two configurations: one where the source
center is closer to the free surface, and another where it is positioned farther
away. To highlight the differences caused by the presence of the free surface,
the difference between the solutions for the bounded and unbounded media is also
shown. Furthermore, the field components and the maximum shear stress are
visualized both in the median plane and at the surface. Finally, tectonic regime
considerations are discussed based on the deviatoric stress state observed in the
median plane and at the surface.
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• Chapter 4 discusses the main results expressed in previous chapters and examines
how the maximum shear stress generated by the shell varies with its inner radius.
While the solutions obtained for the spherical TPE source are exacts, a notable
challenge encountered with the shell inclusion concerns the boundary condition
requiring continuity of the radial stress component across the internal spherical
surface. This chapter provides a quantitative analysis of the magnitude of the
boundary condition error (compared to the correct value) along the median plane
and the axis of the shell. To address this error, corrections similar to those
proposed by McTigue (1986) for a Mogi source would be appropriate. Therefore,
the work presented in this thesis represents a preliminary step toward obtaining
fully consistent analytical solutions.
Finally, possible applications and future developments are discussed.

• Chapter 5 summarizes the work carried out and the results obtained throughout
the thesis. It also includes some concluding remarks.

• The appendix contains the procedure for converting a vector or tensor from
spherical to cylindrical coordinates (and vice versa), the displacement and
stress components derived by Belardinelli et al. (2019) expressed in cylindrical
coordinates, the complete calculations leading to the solutions presented in chapter
2, and a series of plots auxiliary to the discussion presented in chapter 4.

1.1 Applications of thermo-poro-elasticity theory
Fluids are naturally present throughout the Earth’s crust, from the shallow subsurface
to several kilometers of depth. Their presence significantly influences the mechanical
behavior of rocks, challenging the view of the crust as a purely elastic medium. The
interaction between fluids and the solid matrix, governed by pore pressure, modifies
stress distribution, deformation, and, in some cases, seismic activity. To capture these
effects, poro-elasticity theory provides a framework that incorporates the influence of
fluid pressure within porous rocks. When temperature differences between fluids and the
surrounding medium are significant, poro-elasticity extends to thermo-poro-elasticity,
accounting for thermal expansion and additional coupling mechanisms. Understanding
the role of fluids in geophysical processes requires an interdisciplinary approach,
combining observational data, analytical models, and numerical simulations. As
summarized by Nespoli et al. (2025), the Earth’s crust contains a variety of fluids,
primarily water, carbon dioxide (CO2), and hydrocarbons such as methane (CH4) (Fyfe,
2012). Water (H2O), the most abundant, originates mainly from atmospheric sources
and infiltrates the crust through recharge processes. It accumulates in permeable rock
layers, forming aquifers that serve as crucial groundwater reservoirs (Wang and Manga,
2021). Recharge can occur via direct infiltration from the surface or through lateral
water flow from mountain regions (Markovich et al., 2019). However, water is not
confined to shallow depths, subduction processes transport it deep into the mantle,
potentially reaching the core-mantle boundary (Karato et al., 2020; Walter, 2021).
CO2 in the crust mainly originates from metamorphic processes and mantle degassing,
with volcanic and hydrothermal systems acting as major emission sources (Chiodini
et al., 2021; Piombo et al., 2005). Magmatic reservoirs store volatile components,
including water (H2O), carbon dioxide (CO2), hydrogen disulfide (H2S), sulphur dioxide
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(SO2), halogen compounds (HCl, HF), and trace of other elements (Edmonds and
Woods, 2018). Methane, predominantly of biogenic origin, forms through bacterial
or thermogenic degradation of organic matter (Schoell, 1988). These fluids not only
participate in natural geological cycles, but also play a central role in anthropogenic
activities such as energy extraction and carbon storage.
The role of thermo-poro-elasticity is widely acknowledged as critical in understanding
seismic events triggered by anthropogenic activities. A notable example is geothermal
exploitation, where the presence of both permeable and fractured rock formations
allows for the extraction of heat from hot underground fluids. In many geo-technical
applications, processes such as fluid injection or extraction take place in soft, permeable
reservoirs that are susceptible to significant deformation, whether through compaction
during production or uplift during injection. These deformations, coupled with changes
in pore pressure, may alter the stress field contributing to fault failure.
Fluid-earthquake interaction effects are typically categorized into static and dynamic
mechanisms (e.g., Rice and Cleary 1976; Manga and Wang 2015). Static mechanisms
are generally dominant in regions close to the earthquake source, within approximately
one fault length (near field), while dynamic mechanisms are invoked to explain far field
effects. Static effects are associated with permanent modifications to the surrounding
deformation field, caused by the earthquake. These can be approximated by modeling
static dislocations within an elastic half-space framework. During the coseismic
phase, which often occurs under undrained conditions, static stress changes can raise
pore pressure, potentially reducing the effective normal stress on a nearby fault and
facilitating slip. Nevertheless, this increase in pore pressure can be mitigated by
dilatancy, as fault movement might generate additional fractures, promoting fluid flow
and thereby decreasing pore pressure. In contrast, dynamic effects arise from the
transient passage of seismic waves, inducing short-lived variations in stress and strain.
These wave-induced disturbances can cause abrupt pore pressure fluctuations, possibly
triggering fault slip earlier than static stress models would predict. Although such effects
are often temporary and poro-elastic in nature, they may still result in irreversible
alterations in porosity and permeability, significantly impacting the hydro-mechanical
properties of the medium. Observable manifestations of dynamic effects include shifts in
groundwater levels, fluctuations in stream discharge, changes in water temperature, and
occurrences of soil liquefaction. The lack of detailed descriptions of fault zones in many
studies makes it challenging to precisely determine the mechanical impacts involved.
Volcanic regions demand the development of models to represent the mechanical effects
induced by hot and pressurized fluids within the Earth’s crust, and this work will
primarily focus on this topic.

1.1.1 Volcanic regions and TPE inclusion model
Hydrothermal systems are dynamic environments resulting from igneous activity at
depth, typically linked to the presence of a magma reservoir or a crystallizing intrusion.
These systems are often classified as expressions of secondary volcanism, as the fluids
involved can either be derived from magmatic degassing or from external sources such
as meteoric groundwater, which infiltrates the surrounding rocks and becomes heated in
proximity to the intrusive body.
The interaction between hot, pressurized fluids and the surrounding rock occurs through
a network of fractures, faults, and porous zones, often leading to increased permeability
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in certain regions, while others remain sealed by impermeable layers. This heterogeneous
structure allows for a variety of phenomena to develop over relatively short timescales,
many of which are observable at the surface in the form of gas emissions, hydrothermal
alterations, or ground deformation. Hydrothermal regions are widespread, occurring
both in continental and oceanic settings. In several cases, they are associated with
large volcanic depressions such as calderas, which are typically formed by the collapse
of a magma chamber following major eruptive episodes. Calderas are among the most
hazardous volcanic environments on Earth, capable of producing highly explosive
eruptions with potentially global consequences. From a geophysical perspective, these
regions represent key areas for the study and application of fluid diffusion models within
the Earth’s crust. Volcanic regions often show deformation patterns that may reflect
the interplay between magmatic activity and hydrothermal circulation. Traditional
models describe such deformation using elastic representations of magma-filled sources
(e.g., dikes, sills, reservoirs), while more recent approaches incorporate the effects of
temperature and pore pressure variations through TPE formulations (e.g., Rinaldi
et al. 2010; Todesco 2021). The recent development of TPE inclusion models allows
such effects to be modeled using analytical or semi-analytical formulations that are
sufficiently fast and accurate to be employed in real-time applications or in data
inversion processes, enabling the simultaneous modeling of stress (and thus seismicity),
displacement, and deformation.
TPE inclusion models allow us to simulate the mechanical effects induced by the
arrival of hot and pressurized fluids, even in the absence of new magma emplacement.
This modeling framework is particularly useful for interpreting episodes of volcanic
unrest, during which increased seismicity, gas emissions, or ground deformation may
occur. Accurately capturing the role of hydrothermal processes is essential not only for
advancing the scientific understanding of these systems but also for improving volcanic
hazard assessment and early warning capabilities. Although many geothermal areas are
located in volcanic systems that have remained dormant for millennia or are considered
extinct, they still pose potential risks to nearby populations. The development of robust
and realistic models that include hydrothermal dynamics is therefore a key objective in
both scientific research and risk mitigation efforts related to volcanic environments.
The inclusion method introduced by Eshelby (1957), described in section (1.3.1), is
the starting point for modeling the mechanical response of a finite region, commonly
referred to as an inclusion, undergoing changes in temperature and pore pressure,
while embedded in an elastic medium. This approach has been extensively adopted
in the literature, particularly in the context of geothermal reservoir deformation
and the assessment of induced seismicity (Segall, 1992). Following the foundational
studies by Segall and Fitzgerald (1998), TPE inclusions have proved effective in
explaining the variety of fault mechanisms observed in hydrocarbon extraction zones.
Initially developed for geothermal contexts involving anthropogenic fluid injection and
withdrawal, they have since been applied to model stress and deformation in volcanic
regions where such variations arise instead from the natural exsolution of magmatic
volatiles (Belardinelli et al., 2019).
Physically, hydrothermal areas are characterized by mass and energy transport driven
by the convection of heated fluids. These processes are commonly triggered by the
emplacement of shallow magmatic intrusions, which release volatiles, especially water
and carbon dioxide, into the surrounding porous rocks, resulting in increases in
temperature (T ) and pore pressure (p) (Belardinelli et al., 2019). The TPE inclusion
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model captures such phenomena by representing a limited porous and permeable region
where T and p variations occur (highlighted in yellow in Fig. 1.1), enclosed in a
poro-elastic matrix assumed to be isothermal and drained (gray area). The degassing
magmatic source (orange area) acts as the driver of these changes. According to the
constitutive equations and physical laws of thermo-poro-elasticity, one can calculate
the displacement, strain, and stress induced in the surrounding medium by the TPE
inclusion, which thus behaves as a deformation source, contributing to the observed
deformation field together with the magmatic source.

Figure 1.1: Conceptual model, modified from Belardinelli et al. (2019), of the Thermo-Poro-
Elastic source (yellow), surrounded by an embedding matrix (gray) in isothermal
and undrained conditions, subject to changes in pore pressure, p, and temperature,
T . In orange, a hypothetical deeper magma chamber is shown, from which the fluids
originate.

The theoretical framework underpinning TPE inclusion models is the linear theory
of thermo-poro-elasticity (McTigue, 1986), which has been employed to derive both
analytical and semi-analytical solutions. These include spherical and spherical shell
inclusions (Belardinelli et al., 2019), thin disk geometries (Mantiloni et al., 2020), and
thick cylindrical inclusions obtained by the stacking of two or more thin disks (Nespoli
et al., 2021). The numerical code EFGRN/EFCMP (Nespoli et al., 2022) allows for
the incorporation of geometric complexity, non-uniform distributions of pressure and
temperature, and vertically stratified elastic properties.
In particular, unlike pressurized magma chamber models that typically neglect internal
shear stress, TPE inclusions can produce significant deviatoric stress fields even within
them (Nespoli et al., 2023a). This makes them suitable to explain seismicity occurring
within the inclusion itself, even in volcanic systems lacking clear evidence of shallow
magmatic bodies (Nespoli et al., 2021). To model transient effects induced by the fluid
flow inside a TPE inclusion, analytical solutions were proposed by Belardinelli et al.
(2022), Nespoli et al. (2021) and Nespoli et al. (2023b).
Recent applications of TPE inclusion models include the persistent deformation observed
at Campi Flegrei. Uplift up to 1.8 m was recorded between 1982 and 1984, followed by
a two-decade period of subsidence, and again uplift since 2005. Uplift episodes correlate
with increased seismicity and fumarolic activity (Del Gaudio et al., 2010; Tramelli et al.,
2021). Disk-shaped TPE models were shown to reproduce both the surface displacement
patterns and the spatial-temporal evolution of seismicity during these episodes (Mantiloni
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et al., 2020; Nespoli et al., 2021).
A similar modeling strategy was also applied at Vulcano Island, where spherical and
cylindrical TPE sources were used to reproduce the inflation pattern observed in 2021
(Stissi et al., 2023).

1.1.2 Thermo-poro-elastic deformations at Vulcano Island
during the 2021 unrest

Vulcano Island, the southernmost of the Aeolian Islands, is a small but active volcanic
edifice with a surface area of approximately 21 km2 (Selva et al., 2020). Despite its
limited size and low number of permanent residents, it experiences a significant seasonal
increase in population due to its popularity as a tourist destination, mainly related to
volcanic features such as fumaroles and thermal muds (Galderisi et al., 2013). The last
eruption occurred between 1888 and 1890 and led to the definition of the "Vulcanian"
eruptive style.
Since then, the island has shown persistent fumarolic activity, primarily along major
structural alignments (Selva et al., 2020). Several episodes of volcanic unrest have
been recorded, particularly during the 1970s, 1990s, and 2000s. These phases were
characterized by increased fumarole temperatures, expansion of degassing zones, and
a rise in local seismicity, although without significant ground deformation or tectonic
activity.
The observed phenomena are associated with an active hydrothermal system located
beneath the La Fossa caldera, where fluid circulation occurs between 500 and 1500
meters below sea level. This interpretation is supported by both geophysical and
geochemical investigations (Stissi et al., 2023). Although no eruptive activity has
taken place in recent decades, the combination of persistent surface manifestations,
the presence of residential areas, and high tourist exposure contributes to a significant
volcanic risk (Galderisi et al., 2013).
The most recent unrest episode began in September 2021 and was characterized by
an anomalous increase in gas emissions. Carbon dioxide fluxes reached values up to
34,000 g·m−2·day−1, approximately twenty times higher than average values measured
in previous decades, and sulfur dioxide emissions peaked at 2.7 kg/s, which is one
order of magnitude greater than the mean value of the previous thirteen years (Aiuppa
et al., 2022; Inguaggiato et al., 2022). The persistence of such anomalies suggests the
possibility of escalating hazard levels, particularly concerning the occurrence of phreatic
explosions, which are among the most hazardous events in volcanic systems with active
shallow hydrothermal circulation (Barbano et al., 2017; Kobayashi et al., 2018; Selva
et al., 2020).
Stissi et al. (2023) inverted data measured by GPS monitoring stations, by combining
the thermo-poro-elastic equations with a genetic algorithm. The steady radial expansion
of the volcanic edifice, observed until mid-October 2021 and most prominent at stations
near the summit crater with displacement rapidly decreasing with distance, points to
a shallow deformation source. The geometry of both horizontal and vertical ground
movements is consistent with an almost isotropic deformation source, which could be
associated with either a pressurized spherical magmatic body (as described by the Mogi
model) or with deformation related to thermo-poro-elastic processes. According to
Stissi et al. (2023), it appears more plausible that the observed deformation is primarily
driven by thermo-poro-elastic effects rather than by the emplacement or pressurization
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of a shallow magmatic intrusion.
Stissi et al. (2023) suggested that a spherical source could represent a confined zone
within the porous medium where local variations in porosity or permeability hinder
fluid migration, resulting in an increase in pore pressure. However, a vertically extended
cylindrical source, approximately 1 km in height, may reflect the pressurization of a
narrow fluid pathway connecting deeper regions of the hydrothermal system to the
surface. They came to the conclusion that, due to the similarly good fit of both
geometries to the observed deformation data, it is not possible to definitively prefer
one model over the other. This is also because the available data come from only a
few GPS stations, which is not sufficient to justify the choice of one source geometry
over another. The resulting increase in pore pressure may vary between 0.01 and 7
MPa. The deformation source is located at an approximate depth of 800 m from the
surface, which falls within the depth range between 0 and 1.5 km below sea level,
commonly associated with the hydrothermal system as proposed in earlier investigations.

1.2 Constitutive relation of a thermo-poro-elastic
medium

1.2.1 Strain Tensor
In continuum mechanics, bodies are considered deformable: the distances between their
volume elements are not fixed. To describe the position of a body at a given time t,
it is necessary to know the coordinates of each point. Considering a material point
initially at position x = (x1, x2, x3) at time t = 0, which undergoes a displacement
u(x, t) = (u1, u2, u3), its final position is x + u.
The vector u(x, t) is defined as the “displacement vector”, which represents the movement
of the point over time. It is a continuous and differentiable function of spatial and
temporal coordinates in the absence of dislocations.
Now, let us consider another material point initially located at x + dx, meaning that it
is close to the first one. At time t, when deformation occurs, this point is displaced by
the vector u(x + dx, t) = u(x, t) + du(x, t), where du(x, t) has components expressible
using Einstein notation:

∂ui

∂xj

dxj. (1.1)

Taking into account the initial distance ds0 at time t = 0 and the distance ds at time t,
we obtain:

ds2
0 = dxidxi, (1.2)

whereas at time t:

ds2 = (dxi + dui)(dxi + dui) ≃ dxidxi + 2 ∂ui

∂xj

dxidxj, (1.3)

where second-order terms are neglected by assuming small deformations (|du|≪ |dx|).
Thus, we obtain the following:
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ds2 − ds2
0 ≃ 2 ∂ui

∂xj

dxidxj. (1.4)

The displacement gradient ∂ui

∂xj
, being a second-rank tensor, can be decomposed into a

symmetric and an antisymmetric part:

∂ui

∂xj

= 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ 1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (1.5)

Contracting with dxidxj in eq. (1.4), the antisymmetric component is eliminated, leading
to ds2 − ds2

0 ≃ 2ϵijdxidxj, where

ϵij
.= 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(1.6)

is called the “infinitesimal strain tensor”.
This tensor is symmetric, which means its matrix representation with respect to any basis
admits three real eigenvalues, known as the “principal strain values”, and an orthonormal
basis of eigenvectors, called the “principal strain axis”.
A first-order approximation of the relative change in distance between two points can be
determined as:

ds − ds0

ds0
= ϵij

dxi

ds0

dxj

ds0
. (1.7)

The diagonal components of ϵij represent the relative change in length of a vector
aligned with a Cartesian axis. A negative component value corresponds to a contraction,
while a positive value corresponds to an elongation.
The trace ϵkk, corresponding to the divergence of the displacement vector u(x, t),
represents the relative volume change of an infinitesimal volume V0 of the body:

ϵkk = ∂uk

∂xk

= ∇ · u = δV

V0
. (1.8)

The infinitesimal strain tensor can be decomposed into a component whose elements are
equal to the mean of the diagonal elements, known as the “isotropic” component, which
describes the relative volume change, and a component that describes shape change at
constant volume, known as the “deviatoric” component.
The isotropic component is given by:

ϵ0
ij = 1

3ϵkkδij, (1.9)

whereas the deviatoric component is:

ϵ′
ij = ϵij − 1

3ϵkkδij. (1.10)

1.2.2 Stress Tensor
To define the concept of traction, it is necessary to consider a body characterized by a
certain spatial configuration at a given time t. Within this body, one can imagine a closed
surface S, on which a small portion ∆S can be considered. Thanks to the direction of the
unit normal vector n̂, it is possible to distinguish a “positive” face, facing the normal,
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and a “negative” one. The material adjacent to the positive face exerts a force ∆F
on the material adjacent to the negative face, and this force depends on the position,
orientation, and area of the surface. We assume that the ratio between ∆F and ∆S

tends to a finite limit dF
dS

as ∆S approaches zero, and that the moment of the forces on
∆S is zero (Euler and Cauchy’s principle). The limiting vector is called “traction” and
is defined as follows:

T(n̂, x, t) .= dF
dS

(n̂, x, t), (1.11)

where x represents the point to which ∆S tends and t is the time.
Considering a Cartesian coordinate system with an orthonormal basis (e(1), e(2), e(3)),
and a surface dSi with a normal vector e(i) directed along the positive semi-axis of xi

(i = 1, 2, 3), the component along the xj axis (j = 1, 2, 3) of the traction acting on the
surface dSi is called “stress” and is defined as follows:

τij
.= T(ei) · ej. (1.12)

The diagonal components of the tensor are called “normal stresses”, as they act
perpendicularly to the plane, while the other elements are called “shear stresses”, acting
tangentially to the plane.
Knowing the components τij, the traction Ti(n̂) on a generic surface dS with normal n̂
is given by “Cauchy’s Formula”:

Ti(n̂) = τjinj. (1.13)

The stress tensor is symmetric; therefore, its matrix representation in any basis has
three real eigenvalues, called “principal stress values”, and an orthonormal basis of
eigenvectors, called “principal stress axis”. The principal axis define three planes,
called “principal planes”, where only normal stresses are present. This tensor can be
decomposed into an “isotropic” component, which has elements equal to the average of
the diagonal elements, and a “deviatoric” component. The isotropic component is:

τ 0
ij

.= 1
3τkkδij, (1.14)

while the deviatoric component is:

τ ′
ij

.= τij − 1
3τkkδij. (1.15)

The isotropic component generates normal tractions on the application surface, with a
constant magnitude regardless of its orientation:

Ti(n̂) = τ 0
ijnj = 1

3τkkδijnj = 1
3τkkni. (1.16)

Thus, a “mean pressure” can be defined as the negative of the average of the normal
stresses:

p̄
.= −1

3τkk. (1.17)

From eq. (1.15), it follows that the trace of the deviatoric stress τ ′
ij is zero. Eq. (1.14)

shows that the isotropic stress is a multiple of the identity tensor and is therefore diagonal
in any reference system. These facts imply that the principal axis of τij coincide with
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those of τ ′
ij, while the eigenvalues of the deviatoric stress σ′

1, σ′
2, and σ′

3 differ from
those of τij by an additive scalar term 1

3τkk. The deviatoric stress components are
important because they can give us information about the stress regime. In particular,
if σ′

1 ≤ σ′
2 ≤ σ′

3, then σ′
1 ≤ 0 and σ′

3 ≥ 0, which means that σ′
1 is the most compressive

deviatoric stress and σ′
3 is the most tensile deviatoric stress. In general, motion along

a fracture surface in the depths of the lithosphere is tangential to the surface itself.
Therefore, the stresses that generate such motion must be shear stresses. In the Earth’s
lithosphere, tectonic movements produce stresses that increase over time, particularly
concentrated along plate boundaries. Based on equilibrium considerations, we expect
the one principal axis of the deviatoric stress is vertical and the basic classification of
the different tectonic regimes in the Earth’s crust:

• extensional regime: τ ′
33 = σ′

1, where the vertical axis corresponds to the
compressive deviatoric stress. At least one horizontal direction experiences a
positive deviatoric stress (i.e., a principal stress smaller in absolute value than the
mean pressure). Normal faults are typical of this setting;

• compressional regime: τ ′
33 = σ′

3, where the vertical axis corresponds to the
tensile deviatoric stress. At least one horizontal direction experiences a negative
deviatoric stress (i.e., a principal stress greater in absolute value than the mean
pressure). Reverse (or thrust) faults are typical of this setting;

• strike-slip regime: τ ′
33 = σ′

2, where the vertical axis corresponds to the
intermediate stress. In the principal horizontal directions, one deviatoric stress is
negative and the other is positive; hence, one principal horizontal stress is greater
and the other is smaller (in absolute value) than the mean pressure. Strike-slip
faults are typical of this setting.

The minimum and maximum normal stresses are applied to the principal surfaces
relative to the minimum σmin and maximum σmax eigenvalues, and on each principal
surface, the shear tractions are zero. The surfaces where maximum shear stresses are
present are thus intermediate between the principal surfaces. The plane on which the
maximum shear traction acts forms a 45° angle between the minimum and maximum
principal axis and contains the intermediate axis. The magnitude of this traction is:

Smax = 1
2 (σmax − σmin) . (1.18)

The analysis of the maximum shear stress is crucial for understanding earthquake
generation. Indeed, it allows to identify the planes most susceptible to failure. The
“Coulomb failure criterion” is a fundamental law used to describe the conditions under
which rocks or materials fail (fracture or slip) due to applied stress. It is especially
important in earthquake mechanics, faulting, and rock mechanics. The law states that
failure occurs when the absolute value of the shear stress |τ | on a potential failure plane
exceeds a critical value, which depends on the normal stress acting on that plane σn

and the material’s properties (friction f and cohesion C):

|τ |≥ −fσn + C. (1.19)

At this point, it is important to state that the axis x1, x2, and x3 mentioned in this
chapter will sometimes be denoted as x, y, and z, respectively, to simplify the notation.
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1.2.3 Constitutive Relation for elastic media
The term “constitutive relation” refers to a relation that provides the stress components
as a function of other variables characterizing a system. In general, the stress tensor
τij depends on the strain tensor ϵij and its time derivatives ˙ϵij, so a general constitutive
relation is:

F (ϵij, ˙ϵij, τij, ˙τij) = 0. (1.20)
For an elastic material, τij depends only on ϵij through a one-to-one relation, expressible
via the “generalized Hooke’s law”:

τij = Cijklϵkl, (1.21)

where Cijkl is a fourth-rank tensor representing the elastic constants of the material. In
the case of a linear, isotropic elastic material, its constitutive relation can be written
through a proportionality relation between stress and isotropic strain and between stress
and deviatoric strain, given by:

1
3τkk = Kϵkk, τ ′

ij = 2µϵ′
ij. (1.22)

In the previous equation, K is the “bulk modulus”, and µ is called “shear modulus”,
which can be measured in a shear deformation experiment where the only nonzero stress
tensor components are τ12 = τ21. In this case, we have µ = τ12

2ϵ12
.

Using eqq. (1.22), (1.10), and (1.15), the constitutive relation and its inverse can be
derived, respectively expressed as:

τij = λϵkkδij + 2µϵij, ϵij = 1
2µ

(
τij − λ

3λ + 2µ
τkkδij

)
, (1.23)

where λ
.= K − 2

3µ. The parameters λ and µ are called “Lamé constants”.
The constitutive relation can also be expressed in terms of the shear modulus and
“Poisson’s ratio”, denoted by ν and defined as the ratio between transverse contraction
and longitudinal extension following the application of a uniaxial stress state (at constant
temperature). If x1 is the traction direction and x2 is an orthogonal direction, we have
ν = − ϵ22

ϵ11
. Since the only nonzero component of τij is τ11, using the inverse constitutive

relation from eq. (1.23) and the definition of ν, we obtain ν = λ
2(λ+µ) . Substituting this

relation into eq. (1.23), we obtain an expression for the inverse constitutive relation in
terms of µ and ν:

ϵij = 1
2µ

(
τij − ν

1 + ν
τkkδij

)
. (1.24)

1.2.4 Constitutive Relation of a TPE medium
A poro-elastic medium is a material composed of a solid “matrix” (or “frame”) with
elastic behavior, containing interconnected cavities, known as “pores”, filled with fluid.
Such a medium is described in terms of pointwise-defined properties, which are referred to
a representative “elementary volume”: a volume element small enough for the properties
to be considered constant within it, yet large enough compared to the size of the pores,
grains, or solid matrix components to ensure that these properties vary smoothly in space
and satisfy continuity requirements. Some quantities used to describe a porous medium
are as follows:
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• the “porosity” Φ, defined as the volume of empty space per unit volume of the
medium. It can refer to all types of pores, called “total porosity”, or it may
refer only to pores that can transfer fluid between them, in which case it is called
“effective porosity”;

• the “fluid quantity” vi, defined as the volume of the i-th type of fluid contained
within the pores per unit volume of the material. If only one type of fluid is present,
this quantity coincides with the porosity;

• the “pore pressure” p, defined as the pressure of the fluid filling the pores. This
quantity can be considered uniform within the elementary volume, assuming that
the fluid flows sufficiently slowly through the pores or that the volume is sufficiently
small;

• the “confining pressure” PC , defined when a stress state is applied to the porous
medium and coincides with the isotropic component of the stress tensor, hence
PC

.= −1
3τkk.

It is assumed that the poro-elastic medium is isotropic and that the deformations from
one equilibrium state to another are reversible. The constitutive relation for a poro-
elastic medium was described in the works of Biot (1941) and Rice and Cleary (1976),
where a cubic-shaped element is considered. The volume of this element is assumed to
have dimensions pertinent to the elementary volume of the poroelastic material. If we
consider that the element undergoes reversible deformations, the macroscopic variables
ϵij, τij, p, v must be state functions. Given these assumptions, suppose the element is
initially in an equilibrium state, described by the variables ϵ0

ij, τ 0
ij, p0, v0, and since there

is no deformation initially, we have ϵ0
ij = 0. After the deformation process, a change in

these quantities can be expressed as ∆ϵij
.= ϵij, ∆τij

.= τij, ∆p
.= p, ∆v

.= v, where the
equalities marked with ‘ .=’ are used for notational convenience.

Constant Pore Pressure (Drained Conditions)

If the medium is subjected only to external pressure, no variation in the pore pressure
would occur, so p = 0. In this case, the constitutive relation is given by eq. (1.24), since
the material is purely elastic. In this type of transformation, the fluid quantity must
vary in such a way that the pore pressure remains constant, so a linear relation between
v and τij is assumed:

v = aijτij, (1.25)
where aij

.= aδij is an isotropic rank-2 tensor. We define the quantity H1
.= 1

3a
, so that:

v = 1
3H1

τkk = − 1
H1

PC . (1.26)

H1 represents the reciprocal of the fluid volume that flows out from a unit volume of
material per unit confining pressure applied to the surface of the medium while the pore
pressure remains constant.
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Constant Stress

Consider the case where the medium is not subjected to any additional stress at the
surface, and thus τij = 0, and suppose it is surrounded by an impermeable, flexible
membrane completely sealed except for a tube through which fluid flows inward. As
long as the material is free to expand, the injection of new fluid causes a change in
volume v and pressure p. In this case, we expect the deformation to be:

ϵij = bijp = 1
3H2

pδij, (1.27)

where bij is an isotropic rank-2 tensor, and H2 is the “Biot constant”, which represents
the reciprocal of the volume change per unit volume for a unit pore pressure increment
while the stresses remain constant. The relation between p and v is also linear:

v = 1
R

p, (1.28)

where 1
R

represents the volume increment of fluid in the pores per unit material volume
for an increment of p; R has the dimensions of stress.

Constitutive Equations

Consider the case of a general thermo-poro-elastic transformation, where both the stress
and the pore pressure vary. The process can be divided into two distinct transformations:
the first involves the application of stress at constant pressure (p = 0), and the second
involves a variation in pressure at constant stress (τij = 0). Using eqq. (1.24) and (1.27),
we obtain an expression for the deformation:

ϵij = 1
2µ

(
τij − ν

1 + ν
τkkδij

)
+ 1

3H2
pδij. (1.29)

Using eqq. (1.26) and (1.27), we obtain an equation for the fluid quantity:

v = 1
3H1

τkk + 1
R

p, (1.30)

and it can be shown that H1 = H2 = H (Biot, 1941). The constant H can be determined
from the incompressibility K of the poro-elastic medium under drained and isothermal
conditions, and K ′

s, which can be interpreted as the incompressibility of the solid phase
(Wang and Manga, 2021):

1
H

= 1
K

− 1
K ′

s

. (1.31)

The eq. (1.29) can be generalized for the case of a thermo-poro-elastic medium, where
both temperature T and pore pressure p change:

ϵij = 1
2µ

(
τij − ν

1 + ν
τkkδij

)
+ 1

3H
pδij + 1

3αTδij, (1.32)
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where α is the “thermal expansion coefficient”. It is also possible to derive the inverse
constitutive relation of eq. (1.32):

τij = 2µϵij + λϵkkδij − K
( 1

H
pδij + αTδij

)
. (1.33)

The eq. (1.32) can be rewritten using the “stress-free strain tensor” ϵ0δij, which is an
isotropic tensor representing the strain produced by p and T in the absence of stress:

ϵij = 1
2µ

(
τij − ν

1 + ν
τkkδij

)
+ ϵ0δij, (1.34)

so that:
ϵ0δij

.=
( 1

3H
p + 1

3αT
)

δij. (1.35)

It can be observed that ϵ0 (also called “potency”) depends linearly on the variations of
pressure and temperature. It is possible to observe that eq. (1.34) reduces to eq. (1.24)
in the case where temperature and pressure changes are zero. Hence, in isothermal and
drained conditions, the TPE medium is equivalent to an elastic medium.

Undrained Conditions

“Undrained deformations” refer to processes that occur on a timescale too short to allow
the gain or loss of pore fluid mass in a material element through diffusive transport
from or to nearby elements. Under these conditions, the variation in fluid mass per unit
volume of material is zero. Applying a stress τij to the material in a short time generates
a pressure:

p = −B

3 τkk, (1.36)

where B is the “Skempton parameter”. Under these conditions, since the pressure can
be expressed through the Skempton parameter, the eq. (1.29) can be rewritten as an
undrained elastic constitutive relation:

ϵij = 1
2µ

(
τij − νu

1 + νu

τkkδij

)
, (1.37)

where νu is the “undrained Poisson’s ratio”, given by the relation:

νu =
3ν + B(1 − 2ν)K

H

3 − B(1 − 2ν)K
H

. (1.38)

1.3 TPE inclusion model in an unbounded space

1.3.1 Eshelby’s Method
Eshelby (1957) provided a solution to certain problems in continuum mechanics in which
the uniformity of an elastic medium is disturbed by the presence of a region undergoing
volume and shape changes or possessing elastic parameters different from those of the
surrounding medium. Specifically, Eshelby determined the deformation and stress within
a region, called the “inclusion”, enclosed by a closed surface S in a homogeneous and
elastic material, referred to as the “matrix”, which undergoes a spontaneous change
in volume and shape. Before describing these steps, it is necessary to introduce the
assumptions made by Eshelby:

16



I. The inclusion and the matrix remain bonded during the transformation. Thus,
considering any pair of adjacent points immediately inside and outside the region,
there is no relative displacement between them at the end of the process.

II. Before the transformation, both the inclusion and the matrix are stress-free and
share the same elastic parameters.

The conceptual steps formulated by Eshelby are as follows:

1. A cut is made along S, and the inclusion is removed from the matrix, leaving a
cavity with the same volume and shape as the inclusion. At the end of this step,
both the inclusion and the matrix remain stress-free, and their original shapes are
preserved due to the “Kirchhoff’s Uniqueness Theorem”.

2. The inclusion undergoes its volume and shape change, which in the case of TPE is
generated by increments in pore pressure and temperature, resulting in a uniform
stress-free strain ϵ∗

ij.

3. To reintegrate the inclusion into the cavity, it is restored to its original volume and
shape by applying surface tractions Tj on S. These tractions can be expressed as
Tj = τ ∗

ijni, where ni is the i-th normal component of the inclusion’s surface S, and
τ ∗

ij = −(λϵ∗
kkδij + 2µϵ∗

ij) is the stress tensor derived from ϵ∗
ij, resulting in a strain

of −ϵ∗
ij. The negative sign in τ ∗

ij is due to the necessity of removing the previous
strain ϵ∗

ij to restore the inclusion to its original shape and volume.

4. The inclusion is then reinserted into the cavity, and the material is bonded back
together along S, maintaining the applied surface tractions, which now become
an infinitesimal layer of distributed forces over the entire surface S. Each point
of the matrix and inclusion occupies the same position as it did initially. Thus,
the displacement field is zero everywhere, and the matrix remains stress-free, while
within the inclusion, the stress is given by τ ∗

ij.

5. The previously introduced force layer on each infinitesimal surface element dS is
given by dFi = τ ∗

ijnjdS. To eliminate it and impose traction continuity on the
surface, an additional force distribution −dFi = −τ ∗

ijnjdS must be applied on S.
This is equivalent to allowing the body forces that kept the inclusion in its previous
shape to relax, enabling the matrix to constrain the inclusion. This new opposite
force layer results in a nonzero displacement field, uc

i , both within the matrix and
the inclusion.
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Figure 1.2: Illustration of the conceptual steps of Eshelby’s method (modified from Belardinelli
et al. 2019), where assumption II is not made, but an initial stress field τ

(0)
ij is

considered, and the tractions required to restore the inclusion’s shape are indicated
as ∆τijn−

j .

As stated in Belardinelli et al. (2019), we can consider a bounded TPE region Vs,
undergoing a change of temperature T and pore pressure p, surrounded by an unbounded
elastic medium in drained and isothermal condition.
The first step is to evaluate the stress-free strain ϵ∗

ij inside the inclusion once it has been
removed from the matrix and allowed to undergo a change in temperature T and pore
pressure p. In stress-free condition, eq. (1.34) can be written as follow:

ϵ∗
ij = 1

3H
pδij + 1

3αTδij = ϵ0δij. (1.39)

The inclusion volume of course changes from Vs to V ′
s ; if pore pressure and temperature

are constant within the inclusion (drained and isothermal conditions), the thermo-poro-
elastic medium can be treated as purely elastic; hence, we can consider the inclusion and
the matrix as both elastic. The stress field due to the restoration of the inclusion to its
original shape is

τ ∗
ij = −(λϵ∗

kkδij + 2µϵ∗
ij), (1.40)

and by inserting eq. (1.39) we obtain

τ ∗
ij = −3Kϵ0δij, (1.41)

where K = λ + 2
3µ is the drained isothermal bulk modulus in an isotropic medium.

In order to relax the body forces spread over the surface separating the inclusion and
the matrix S, it is necessary to apply a further distribution −τ ∗

ijnj over S. Now, the
body is free of external forces, but it is in a self-state stress due to the transformation
of the inclusion. In the following sections we will show displacement, strain and stress
field, uc

i , ϵc
ij, τ c

ij, caused by the application of the traction −τ ∗
ijnj = 3Kϵ0ni. Outside the

source region Vs, the medium is assumed to be in isothermal free drainage conditions; its
constitutive relation is then perfectly elastic, employing drained and isothermal elastic
parameters.
Once we have uc

i , we can compute ϵc
ij

.= 1
2

(
∂uc

i

∂xj
+ ∂uc

j

∂xi

)
and τ c

ij
.= λϵc

kkδij + 2µϵc
ij.

The total stress inside the inclusion will be τij = τ c
ij + τ ∗

ij Due to previous considerations,
expression of the stress field is given by:

τij =
2µ{ϵc

ij + 1
1−2ν

[νϵc
kk − (1 + ν)ϵ0] δij} if x ∈ Vs

2µ
(
ϵc

ij + ν
1−2ν

ϵc
kkδij

)
otherwise

. (1.42)

1.3.2 Deformation field provided by a change in pore pressure
p and temperature T

As outlined in various textbooks (e.g., Aki and Richards, 2002), a fundamental objective
of elasticity theory is to express the displacement field generated by complex sources in
terms of the response to the simplest possible source a unit impulse force applied in a
single direction, precisely localized in both space and time (i.e., a delta-function body
force). In the static case, such as the one considered here, the displacement field caused
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by a unit force applied in a point of the medium is described by the elastic Green’s
function.
The general equation of elastostatics states that:

∂τij

∂xi

+ fj = 0, (1.43)

where τij is the stress tensor and fj is the j−th component of the body force acting on
it.
If we insert eq. (1.21), we obtain eq. (1.44) in terms of the displacement field:

Cijkl
∂2uk

∂xl∂xi

+ fj = 0. (1.44)

When the body force is a unit point force in the n−th direction, fj(x) = δ (|x − x’|) δjn,
centered at the point x’, the solution at a point x is the elastic Green’s function
Gkn(x, x’):

uk(x) = Gkn(x, x’)fn(x’). (1.45)
Hence, Gkn(x, x’) represents the k−th component of displacement at point x due to the
n−th component of a point force at x’.
Thanks to the linearity of the equations of elastostatics, we are then able to write the
displacement due to a distribution of volume forces fn(x’) in the form:

uk(x) =
∫

V
Gkn(x, x’)fn(x’)dV ′, (1.46)

where dV ′ denotes an elementary volume in the surroundings of the point x’.
In the case where the medium is unbounded, homogeneous, isotropic and elastic, the
constitutive relation in eq. (1.23) can be inserted into eq. (1.44), and after a few
algebraic steps and by writing λ+µ

µ
= 1

1−2ν
the following expression of the Green function

is obtained:

Gkn(x, x’) = 1
16πµ(1 − ν)

[
(3 − 4ν)δkn

r
+ (xk − x′

k)(xn − x′
n)

r3

]
, (1.47)

where r = |x − x’| is the distance between x and x’.
The displacement ui is exactly the displacement uc

i in the previous paragraph (section
1.3.1). From now on, we will not use the superscript ‘c’ to lighten the notation.
By considering what we stated in section (1.3.1), the displacement field originated by the
layer of body force dFi = −τ ∗

ijnjdS can be obtained by integrating over the infinitesimal
volume V where the forces are present:

ui(x) =
∫

V
Gij(x, x’)dFj(x’) = −

∫
S

Gik(x, x’)τ ∗
kjnj(x’)dS(x’). (1.48)

And, by applying the Gauss’ theorem, eq. (1.48) becomes:

ui(x) = −
∫

Vs

∂Gik(x, x’)
∂x′

j

τ ∗
kjdV (x’) −

∫
Vs

Gik(x, x’)
∂τ ∗

kj

∂x′
j

dV (x’), (1.49)

and the last term is identically null, as τ ∗
kj is constant and Vs is the volume of the

inclusion. Hence, substituting in eq. (1.49) τ ∗
ij from eq. (1.41), the expression of the

displacement field produced by the traction ∆Tk = 3Kϵ0nk is:

ui(x) = 3Kϵ0

∫
Vs

∂Gik(x, x’)
∂x′

k

dV ′, (1.50)

19



where ∂Gik(x,x’)
∂x′

k
may be interpreted as the displacement in x produced by three

orthogonal force dipoles with unit moment centered in x’.
In order to compute the displacement field it is necessary to determine ∂Gik(x,x’)

∂x′
k

as
follows:

∂Gik(x, x’)
∂x′

k

= 1 − 2ν

8πµ(1 − ν)
xi − x′

i

r3 = 1 − 2ν

8πµ(1 − ν)
∂

∂x′
i

(1
r

)
. (1.51)

In an unbounded medium the Green’s function has the following property: Gik(x, x’) =
Gik(x − x’). By applying previous property one obtains:

∂Gik(x, x’)
∂x′

k

= − 1 − 2ν

8πµ(1 − ν)
∂

∂xi

(1
r

)
= − 1 − 2ν

8πµ(1 − ν)∇
(1

r

)
. (1.52)

By using eq. (1.52) we can rewrite eq. (1.50) in vector form as:

u(x) = −ϵ0
1 + ν

4π(1 − ν)∇
∫

Vs

1
|x − x’|

dV ′ = − ϵ1

4π
∇Φd, (1.53)

where
Φd(x) .=

∫
Vs

1
|x − x’|

dV ′ (1.54)

is the scalar displacement potential, and

ϵ1
.= ϵ0

1 + ν

1 − ν
. (1.55)

It is possible to observe that the displacement field is irrotational, i.e. ∇ × u = 0, and,
taking to account that ∇2

(
1
r

)
= −4πδ(x − x’), we get:

∇ · u = − ϵ1

4π
∇2Φd = ϵ1

∫
Vs

δ(x − x’)dV ′, (1.56)

hence, ∇ · u = ϵ1 if x ∈ Vs and is equal to zero otherwise. This means that ϵ1 represents
the dilatation within the TPE source. The displacement potential Φd obeys the Poisson
equation ∇2ΦS = −4π within the TPE source and the Laplace equation ∇2ΦM = 0 in
the embedding matrix.
In the embedding matrix we have, according to eq. (1.56), ϵkk = 0, while within the
TPE source ϵkk = ϵ1. The strain and the stress fields can be determined from eq. (1.42):

ϵij
.=
ϵ

(S)
ij if x ∈ Vs

ϵ
(M)
ij otherwise

= − ϵ1

4π


∂2ΦS

∂xi∂xj
if x ∈ Vs

∂2ΦM

∂xi∂xj
otherwise

; (1.57)

τij
.=
τ

(S)
ij if x ∈ Vs

τ
(M)
ij otherwise

= −2µϵ1

4π


∂2ΦS

∂xi∂xj
+ δij if x ∈ Vs

∂2ΦM

∂xi∂xj
otherwise

. (1.58)

As mentioned before, we must have the continuity of the tractions Ti(n) = τijnj applied
on the boundary Σ of the source region Vs, but this requires a discontinuity in the second
derivatives of Φ: (

∂2ΦM

∂xi∂xj

− ∂2ΦS

∂xi∂xj

)
Σ

nj = 4πni. (1.59)

This statement is equivalent to require that the linear dilatation ϵijninj in the normal
direction to the boundary of the TPE region has a discontinuity of the first kind across
Σ, with jump amplitude −ϵ1, that means a contraction outside the TPE source and a
dilatation inside along the normal direction.
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1.3.3 Displacement and stress for a spherical TPE inclusion
located in an unbounded elastic medium

Due to the geometry of the problem, Belardinelli et al. (2019) used spherical coordinates,
(r, θ, ϕ), in order to describe such components. In particular, r is the distance from the
origin of the reference system, θ is the colatitude, and ϕ the longitude (for more details,
see Appendix A). They used a reference system, showed in Fig. (2.1), centered in the
center of a sphere of radius a, located at a depth z0. The only non-vanishing component
of the displacement is ur, since invariance arguments suggested that u = ur(r)r

r
.

The potential displacement field obtained from Belardinelli et al. (2019) is given by:

Φd(r) = 2πa2


(
1 − 1

3
r2

a2

)
if r < a

2
3

a
r

if r ≥ a
. (1.60)

It is possible to compute the displacement field from eq. (1.61):

ur(r) = 1
3ϵ1a


r
a

if r < a
a2

r2 if r ≥ a
. (1.61)

From eq. (1.58) it is possible to obtain the stress components. In spherical coordinates,
the non-vanishing components of the stress field are the following:

τrr(r) = −4
3µϵ1

1 if r < a(
a
r

)3
if r ≥ a

, (1.62)

and

τθθ(r) = τϕϕ(r) = −4
3µϵ1

1 if r < a

−1
2

(
a
r

)3
if r ≥ a

. (1.63)

1.3.4 Displacement and stress for a spherical shell TPE
inclusion located in an unbounded elastic medium

A formally similar problem that has closed-form solutions is the spherical TPE shell
enclosing a spherical fluid-like reservoir with radius a at pressure P0, bounded by a
spherical surface with radius b > a. The region r ≤ a can be considered as a magmatic
fluid reservoir at pressure P0 or, more generally, as a viscoelastic region surrounding a
magmatic reservoir where, in the long term (after a few Maxwell times), an isotropic
stress state τij = −P0δij is reached (Belardinelli et al., 2019). The displacement field
obtained from Belardinelli et al. (2019) is given by:

ur(r) =


P0a3

4µr2 + 1
3ϵ1

(
r − a3

r2

)
if a ≤ r ≤ b

P0a3

4µr2 + 1
3ϵ1

b3−a3

r2 if r > b
. (1.64)

In spherical coordinates, the non-vanishing components of the stress field are the
following:

τrr(r) =
−P0

a3

r3 − 4
3µϵ1

(
1 − a3

r3

)
if a ≤ r ≤ b

−P0
a3

r3 − 4
3µϵ1

b3−a3

r3 if r > b
, (1.65)
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and

τθθ(r) = τϕϕ(r) =
P0

a3

2r3 − 4
3µϵ1

(
1 + a3

2r3

)
if a ≤ r < b

P0
a3

2r3 + 2
3µϵ1

b3−a3

r3 if r > b
. (1.66)

The displacement um
i and stress τm

ij (associated to the inner magmatic chamber) existing
prior to the onset of degassing processes can be simply obtained by setting ϵ1 = 0 and
P0 = Pm in eqq. (1.64); (1.65); (1.66). Degassing is plausibly associated with a pressure
decrease from Pm to P0 < Pm within the magmatic reservoir (r < a). The incremental
displacement and stress fields, defined as u

(S/M)
i − um

i and τ
(S/M)
ij − τm

ij , respectively, are
then obtained by replacing P0 with (P0 − Pm) in eqq. (1.64); (1.65); (1.66). Here, the
superscripts (S) and (M) denote the solutions inside the source (i.e., a ≤ r ≤ b) and in
the matrix (i.e., r > b), respectively.
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Chapter 2

Spherically-symmetric TPE
inclusions located in a half-space

This chapter presents the core contribution of this thesis: the generalization of the
solutions proposed by Belardinelli et al. (2019) to compute displacement, stress, and
strain throughout the entire half-space using a method described in section (2.1). The
approach leads to closed-form expressions for the components of the displacement, stress,
and strain fields generated by both a spherical TPE source embedded in a half-space with
a free surface. Unlike many previous studies (e.g., Stissi et al. 2023), which focus on
surface displacements, the formulation developed here provides the complete vector field
within the medium, including stress and strain components. Such a step is essential for
comparing the TPE inclusion model with seismic and gravimetric data, as interpreting
these data requires knowledge of displacements, deformations, and stresses not only at
the free surface, but also at depth and in the near-surface region. Since the problem is
axi-symmetric, results expressed in section (1.3) can be written in cylindrical coordinates
(ρ, φ, z). The adopted reference system is that centered on the free surface z = 0
and with the z axis oriented in the direction of the increasing depth. The model of
a TPE inclusion located within the half-space z > 0 must therefore satisfy the stress-free
boundary condition at the surface:

τρz(ρ, φ, 0) = τφz(ρ, φ, 0) = τzz(ρ, φ, 0) = 0. (2.1)

The τφφ component is vanishing for the axi-symmetry hypothesis; in order to remove the
τρz component, the method of a source “image” can be exploited. Since the TPE source
center is placed at z = +z0, we can consider the image source center located in z = −z0.
To remove the normal component τzz, it is necessary to apply a procedure that starts
with the method explained in the following subsection.

2.1 Introduction of the free surface for a spherical
source

In cylindrical coordinates the expression of the non-vanishing components of the
displacement field in an unboundend medium, expressed in eq. (1.61), are the following:

uI
z(ρ, z) = 1

3ϵ1a


z−z0

a
if
√

ρ2 + (z − z0)2 < a
a2(z−z0)

(ρ2+(z−z0)2)3/2 if
√

ρ2 + (z − z0)2 ≥ a
; (2.2)
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uI
ρ(ρ, z) = 1

3ϵ1a


ρ
a

if
√

ρ2 + (z − z0)2 < a
a2ρ

(ρ2+(z−z0)2)3/2 if
√

ρ2 + (z − z0)2 ≥ a
. (2.3)

In Fig. (2.1) the reference system used in this work is represented. In the same figure I
show the reference system used by Belardinelli et al. (2019) (i.e., spherical coordinates
(r, θ, ϕ), with origin in the center of the sphere) with the only difference being that the
z-axis was oriented in the opposite direction.

Figure 2.1: Spherical TPE region (yellow) of radius a surrounded by an embedding matrix
(gray) in drained isothermal conditions. The reference system, in cartesian (black)
coordinates (x, y, z) and cylindrical (blue) coordinates (ρ, φ, z), is also represented.
The origin of the reference system lies on the free surface (z = 0) and the z−axis
is taken positive in the downward direction. The center of the median plane of the
TPE sphere is located at (0; 0; z0). The reference system used by Belardinelli et al.
(2019), expressed in spherical coordinates (r, θ, ϕ) and with the origin located in the
center of the sphere, is also reported.

In Appendix A.1 we computed the expressions of the non-vanishing stress components
generated by the spherical TPE inclusion in an unbounded medium.
If we sum the contribution of the image source, placed in z = −z0, the displacement’s
components in eqq. (2.3) and (2.2) assume the form:

uII
z (ρ, z) = 1

3ϵ1a


z−z0

a
+ a2(z+z0)

(ρ2+(z+z0)2)3/2 if
√

ρ2 + (z − z0)2 < a
a2(z−z0)

(ρ2+(z−z0)2)3/2 + a2(z+z0)
(ρ2+(z+z0)2)3/2 if

√
ρ2 + (z − z0)2 ≥ a

; (2.4)

uII
ρ (ρ, z) = 1

3ϵ1a


ρ
a

+ a2ρ
(ρ2+(z+z0)2)3/2 if

√
ρ2 + (z − z0)2 < a

a2ρ
(ρ2+(z−z0)2)3/2 + a2ρ

(ρ2+(z+z0)2)3/2 if
√

ρ2 + (z − z0)2 ≥ a
. (2.5)

In the same way we can obtain the stress components.
As expected, the component τ II

zρ vanishes in z = 0 because we have considered the
contribution of an image source in z = −z0 (this statement will be proved analytically
at the end of the paragraph). In order to remove the stress component τ II

zz in z = 0 it
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is necessary to add the solution of the elastic problem in a half-space with the imposed
boundary condition −τ II

zz in z = 0. Hence, it is important to determine the expression,
in cylindrical coordinates, of τ II

zz . We can determine τ I
zz from eq. (A.11) or with the

relations reported in Appendix A:

τ I
zz(ρ, φ, z) = τrr cos2 θ − τθr sin θ cos θ + τθθ sin2 θ. (2.6)

The last equation, considering that τθr = 0 and, for the geometry of the problem, cos2 θ =
(z−z0)2

ρ2+(z−z0)2 , and for the first fundamental relation of goniometry sin2 θ = 1 − cos2 θ, can
be rewritten as follows:

τ I
zz = −2

3µϵ1a
3
(

3(z − z0)2

(ρ2 + (z − z0)2)5/2 − 1
(ρ2 + (z − z0)2)3/2

)
. (2.7)

In order to determine the expression of τ II
zz one has to consider the contribution of the

image source, which, outside the inclusion (as it is at the free surface), is:

(2.8)
τ II

zz = −2
3µϵ1a

3
(

3(z − z0)2

(ρ2 + (z − z0)2)5/2 − 1
(ρ2 + (z − z0)2)3/2 + 3(z + z0)2

(ρ2 + (z + z0)2)5/2

− 1
(ρ2 + (z + z0)2)3/2

)
.

In z = 0 the previous expression becomes:

τ II
zz (ρ, 0) = −4

3µϵ1a
3
(

3z2
0

(ρ2 + z2
0)5/2 − 1

(ρ2 + z2
0)3/2

)
̸= 0. (2.9)

Similarly, from eq. (A.12) or with the relations in Appendix A, and by adding the
contribution of the image source, it is also possible to obtain the stress component τ II

ρz :

(2.10)τ II
ρz = −2µϵ1a

3
(

ρ(z − z0)
(ρ2 + (z − z0)2)5/2 + ρ(z + z0)

(ρ2 + (z + z0)2)5/2

)
,

and we can notice that τ II
ρz (ρ, 0) = 0, and hence the prove that free surface condition is

verified.
To remove the traction component in eq. (2.9), Bonafede (1990) showed the importance
of the following strategy, by applying this method for a magmatic chamber.
Let us consider a solution of an axi-symmetric elasto-static problem in an unbounded
medium (labeled with the superscript Z) such that:τZ

zz = −S0(ρ) in z = 0;
τZ

ρz = τZ
φz = 0 in z = 0,

(2.11)

where S0(ρ) is a known function as the one in the second member of eq. (2.9). Besides
this boundary condition, the solution is bounded in term of displacement, deformation
and stress at z → +∞. The axial symmetry can be exploited by expanding S0 through
Hankel transforms:

S0(ρ) =
∫ ∞

0
dc J0(ρc)S̃0(c), (2.12)

where:
S̃0(c) =

∫ ∞

0
dρ cρJ0(ρc)S0(ρ), (2.13)
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and J0(ρc) is the Bessel function of order zero.
It can be shown that in the absence of body forces this solution can be determined from
the so called strain function of Love Z which fulfills the biharmonic equation:

∇4Z(ρ, z) = 0. (2.14)

Knowing Z it is possible to derive displacement and stress from the following equations:

uZ
ρ = − 1

2µ

∂2Z

∂ρ∂z
; (2.15)

uZ
z = 1

2µ

[
2(1 − ν)∇2 − ∂2

∂z2

]
Z. (2.16)

τZ
ρρ = ∂

∂z

(
ν∇2 − ∂2

∂ρ2

)
Z; (2.17)

τZ
zz = ∂

∂z

[
(2 − ν)∇2 − ∂2

∂z2

]
Z; (2.18)

τZ
ρz = ∂

∂ρ

[
(1 − ν)∇2 − ∂2

∂z2

]
Z. (2.19)

If we sum the solution with superscript “II” to the solution with superscript “Z”, and
if S0(ρ) equals the normal traction at z = 0 expressed by eq. (2.9), by construction,
the total solution represents zero normal traction in z = 0. It is important to state that
the application of this procedure does not change τρz, which is identically null at the
free surface. For an axi-symmetric elastostatic problem, the Z function is the only non
vanishing component of the so called Galerkin vector. The solutions for Z and uZ

i are
reported in Appendix B.

2.2 Expressions of displacement, stress and strain
components for a spherical source

2.2.1 Displacement components
Once we have determined uZ

z and uZ
ρ , respectively in eq. (B.57) and eq. (B.64), we must

add the results at uII
z and uII

ρ , respectively expressed in eq. (2.4) and eq. (2.2). By
defining with R(ρ, z) .= ((z − z0)2 + ρ2)1/2 the distance from the TPE source and with
R∗(ρ, z) .= ((z + z0)2 + ρ2)1/2 the distance from the image TPE source, we get:

uz(ρ, z) = −1
3ϵ1a

3

− z−z0
a3 + (3 − 4ν) z+z0

R∗3 − 2 z
R∗3 + 6 z(z+z0)2

R∗5 if R < a

− z−z0
R3 + (3 − 4ν) z+z0

R∗3 − 2 z
R∗3 + 6 z(z+z0)2

R∗5 if R ≥ a
; (2.20)

uρ(ρ, z) = 1
3ϵ1a

3


ρ
a3 + (3 − 4ν) ρ

R∗3 − 6 z(z+z0)ρ
R∗5 if R < a

ρ
R3 + (3 − 4ν) ρ

R∗3 − 6 z(z+z0)ρ
R∗5 if R ≥ a

. (2.21)

If a vector field is irrotational, it can be expressed as the gradient of a scalar potential;
in three dimensions, this implies that its curl is zero:

∇ × u = 0. (2.22)
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In cylindrical coordinates, we have that:

∇ × u =
(

1
ρ

∂uz

∂φ
− ∂uφ

∂z

)
ρ̂ +

(
∂uρ

∂z
− ∂uz

∂ρ

)
φ̂ + 1

ρ

(
∂(ρuφ)

∂ρ
− ∂uρ

∂φ

)
ẑ. (2.23)

By substituting eq. (2.20) and eq. (2.21) into eq. (2.23), and knowing that uφ is
identically null, we get in each point in the domain:

∇ × u = −8ϵ1a
3(1 − ν)ρ(z + z0)

R∗5 φ̂. (2.24)

We obtained that, in general, ∇ × u does not vanish, hence the displacement field is not
irrotational, and so we cannot find an associated scalar potential, unlike in the case of
an unbounded medium (section 1.3.3).

2.2.2 Strain components
From eq. (2.20) and eq. (2.21) is possible to determine the strain components ϵij. In
principle, we can state that, for the geometry of the problem, the components ϵφρ, ϵφz

are identically null.
The diagonal component ϵρρ can be determined as follows:

ϵρρ = ∂uρ

∂ρ
, (2.25)

and its expression is:

ϵρρ(ρ, z) = 1
3ϵ1a

3


1
a3 + (3−4ν)

R∗3 − 3(3−4ν)ρ2

R∗5 − 6z(z+z0)
R∗5 + 30z(z+z0)ρ2

R∗7 if R < a
1

R3 − 3ρ2

R5 + (3−4ν)
R∗3 − 3(3−4ν)ρ2

R∗5 − 6z(z+z0)
R∗5 + 30z(z+z0)ρ2

R∗7 if R ≥ a
.

(2.26)
The other diagonal component ϵφφ can be determined as follows:

ϵφφ = uρ

ρ
+ 1

r

∂uφ

∂φ
, (2.27)

and its expression is:

ϵφφ(ρ, z) = 1
3ϵ1a

3


1
a3 + (3−4ν)

R∗3 − 6z(z+z0)
R∗5 if R < a

1
R3 + (3−4ν)

R∗3 − 6z(z+z0)
R∗5 if R ≥ a

. (2.28)

The last diagonal component ϵzz can be determined as follows:

ϵzz = ∂uz

∂z
, (2.29)

and its expression is:

ϵzz(ρ, z)

= 1
3ϵ1a

3


1
a3 − (1−4ν)

R∗3 + 3(3−4ν)(z+z0)2

R∗5 − 6(z+z0)(4z+z0)
R∗5 + 30z(z+z0)3

R∗7 if R < a
1

R3 − (1−4ν)
R∗3 − 3(z−z0)2

R5 + 3(3−4ν)(z+z0)2

R∗5 − 6(z+z0)(4z+z0)
R∗5 + 30z(z+z0)3

R∗7 if R ≥ a
.

(2.30)
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The only non-vanishing non-diagonal component is ϵρz, and it can be determined as
follows:

ϵρz = 1
2

(
∂uρ

∂z
+ ∂uz

∂ρ

)
, (2.31)

and its expression is:

ϵρz(ρ, z) = 1
3ϵ1a

3

−3ρ(3z+z0)
R∗5 + 30ρz(z+z0)2

R∗7 if R < a

−3ρ(z−z0)
R5 − 3ρ(3z+z0)

R∗5 + 30ρz(z+z0)2

R∗7 if R ≥ a
. (2.32)

2.2.3 Stress components
The stress field within the source region Vs (i.e., R < a) and in the embedding matrix
(i.e., R ≥ a), due to the constitutive relation, are given by eq. (1.42).
In particular, from eq. (1.42), one can compute τzz as follows:

τzz = 2µ

1 − 2ν

(1 − ν)ϵzz + ν(ϵρρ + ϵφφ) − (1 + ν)ϵ0 if R < a

(1 − ν)ϵzz + ν(ϵρρ + ϵφφ) if R ≥ a
. (2.33)

The result for R < a is the following:

τzz(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3
(

1 + ν

a3 + −12ν2 + 11ν − 1
R∗3 + 3(3 − 4ν) [(z + z0)2(1 − ν) − νρ2]

R∗5

− 6(z + z0)[2z(2 − ν) + z0(1 − ν)]
R∗5 + 30z(z + z0)[(1 − ν)(z + z0)2 + νρ2)]

R∗7

− 3(1 + ν)
a3

ϵ0

ϵ1

)
= τ I

zz(ρ, z)

+ 2µ

3(1 − 2ν)ϵ1a
3
(

−12ν2 + 11ν − 1
R∗3 + 3(3 − 4ν) [(z + z0)2(1 − ν) − νρ2]

R∗5

− 6(z + z0)[2z(2 − ν) + z0(1 − ν)]
R∗5 + 30z(z + z0)[(1 − ν)(z + z0)2 + νρ2)]

R∗7

)
,

(2.34)

and for R ≥ a is:

τzz(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3
(

(1 + ν)
R3 − 3 [νρ2 + (1 − ν)(z − z0)2]

R5 + (−12ν2 + 11ν − 1)
R∗3

+ 3(3 − 4ν) [(z + z0)2(1 − ν) − νρ2]
R∗5 − 6(1 − ν)(z + z0)(2z + z0)

R∗5

+ 30z(z + z0) [(1 − ν)(z + z0)2 + νρ2]
R∗7

)
= τ I

zz(ρ, z)

+ 2µ

3(1 − 2ν)ϵ1a
3
(

−12ν2 + 11ν − 1
R∗3 + 3(3 − 4ν) [(z + z0)2(1 − ν) − νρ2]

R∗5

− 6(z + z0)[2z(2 − ν) + z0(1 − ν)](1 − ν)
R∗5

+ 30z(z + z0)[(1 − ν)(z + z0)2 + νρ2)]
R∗7

)
.

(2.35)
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The non-diagonal component τρz can be computed, from eq. (1.42), by:

τρz = 2µ

ϵρz if R < a

ϵρz if R ≥ a
. (2.36)

The result for R < a is the following:

(2.37)τρz(ρ, z) = 2µϵ1a
3
(

−ρ(3z + z0)
R∗5 + 10ρz(z + z0)2

R∗7

)
,

and for R ≥ a is:

(2.38)τρz(ρ, z) = 2µϵ1a
3
(

−ρ(z − z0)
R5 − (3z + z0)ρ

R∗5 + 10ρz(z + z0)2

R∗7

)
.

The diagonal component τρρ can be calculated, from eq. (1.42), by:

τρρ = 2µ

1 − 2ν

(1 − ν)ϵρρ + ν(ϵφφ + ϵzz) − (1 + ν)ϵ0 if R < a

(1 − ν)ϵρρ + ν(ϵφφ + ϵzz) if R ≥ a
. (2.39)

The result for R < a is the following:

τρρ(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3
(

1 + ν

a3 + 3 − 5ν + 4ν2

R∗3 + 3(3 − 4ν) [−(1 − ν)ρ2 + ν(z + z0)2]
R∗5

− 6(z + z0) [z + ν(4z + z0)]
R∗5 + 30z(z + z0) [(1 − ν)ρ2 + ν(z + z0)2]

R∗7

− 3(1 + ν)
a3

ϵ0

ϵ1

)

= τ I
ρρ(ρ, z) + 2µ

3(1 − 2ν)ϵ1a
3
(

3 − 5ν + 4ν2

R∗3

+ 3(3 − 4ν) [−(1 − ν)ρ2 + ν(z + z0)2]
R∗5 − 6(z + z0) [z + ν(4z + z0)]

R∗5

+ 30z(z + z0) [(1 − ν)ρ2 + ν(z + z0)2]
R∗7 − 3(1 + ν)

a3
ϵ0

ϵ1

)
,

(2.40)

and for R ≥ a is:

(2.41)

τρρ(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3
(

1 + ν

R3 − 3 [ν(z − z0)2 + (1 − ν)ρ2]
R5 + 3 − 5ν + 4ν2

R∗3

+ 3(3 − 4ν) [−(1 − ν)ρ2 + ν(z + z0)2]
R∗5 − 6(z + z0) [z + ν(4z + z0)]

R∗5

+ 30z(z + z0) [(1 − ν)ρ2 + ν(z + z0)2]
R∗7

)

= τ I
ρρ(ρ, z) + 2µ

3(1 − 2ν)ϵ1a
3
(

3 − 5ν + 4ν2

R∗3

+ 3(3 − 4ν) [−(1 − ν)ρ2 + ν(z + z0)2]
R∗5 − 6(z + z0) [z + ν(4z + z0)]

R∗5

+ 30z(z + z0) [(1 − ν)ρ2 + ν(z + z0)2]
R∗7 − 3(1 + ν)

a3
ϵ0

ϵ1

)
.
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From eq. (1.42), one can compute τφφ as follows:

τφφ = 2µ

1 − 2ν

(1 − ν)ϵφφ + ν(ϵρρ + ϵzz) − (1 + ν)ϵ0 if R < a

(1 − ν)ϵφφ + ν(ϵρρ + ϵzz) if R ≥ a
. (2.42)

The result for R < a is the following:

(2.43)

τφφ(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3
(

1 + ν

a3 + 3 − 5ν + 4ν2

R∗3 − 6(z + z0) [(1 − ν)z + νz0]
R∗5

+ 3ν(3 − 4ν) [(z + z0)2 − ρ2]
R∗5 − 3(1 + ν)

a3
ϵ0

ϵ1

)

= τ I
φφ(ρ, z) + 2µ

3(1 − 2ν)ϵ1a
3
(

3 − 5ν + 4ν2

R∗3 − 6(z + z0) [(1 − ν)z + νz0]
R∗5

+ 3ν(3 − 4ν) [(z + z0)2 − ρ2]
R∗5 − 3(1 + ν)

a3
ϵ0

ϵ1

)
,

and for R ≥ a is:

(2.44)

τφφ(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3
(

1 − 2ν

R3 + 3 − 5ν + 4ν2

R∗3 − 6(z + z0) [(1 − ν)z + νz0]
R∗5

+ 3ν(3 − 4ν) [(z + z0)2 − ρ2]
R∗5

)

= τ I
φφ(ρ, z) + 2µ

3(1 − 2ν)ϵ1a
3
(

3 − 5ν + 4ν2

R∗3 − 6(z + z0) [(1 − ν)z + νz0]
R∗5

+ 3(3 − 4ν) [(z + z0)2 − ρ2]
R∗5 − 3ν(1 + ν)

a3
ϵ0

ϵ1

)
.

2.3 Expressions of displacement, stress and strain
components for a spherical shell shaped source

We can apply the procedure described in section (2.1) and in the Appendix B to a
spherical TPE shell enclosing a fluid-like spherical reservoir of radius a and internal
pressure P0 (i.e., a Mogi source that can represent a magmatic chamber), bounded by
a spherical surface of radius b > a. As done in section (2.1), the results expressed in
section (1.3) can be written in cylindrical coordinates (ρ, φ, z). The adopted reference
system is that centered on the free surface z = 0 and with the z axis oriented in the
direction of increasing depth. Hence, the TPE source center is placed at z = +z0 and,
in cylindrical coordinates, by defining with R(ρ, z) .= (ρ2 + (z − z0)2)1/2, the expression
of the non-vanishing components of the displacement field, expressed in eq. (1.64), are
the following:

uI
z(ρ, z) =


P0a3

4µ
z−z0
R3 + 1

3ϵ1(z − z0)
(
1 − a3

R3

)
if a ≤ R ≤ b

P0a3

4µ
z−z0
R3 + 1

3ϵ1(z − z0) b3−a3

R3 if R > b
; (2.45)

uI
ρ(ρ, z) =


P0a3

4µ
ρ

R3 + 1
3ϵ1ρ

(
1 − a3

R3

)
if a ≤ R ≤ b

P0a3

4µ
ρ

R3 + 1
3ϵ1ρ

b3−a3

R3 if R > b
. (2.46)

In Fig. (2.2) I introduce the source parameters and cartesian coordinates.
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Figure 2.2: Spherical shell TPE region (yellow) of inner radius a and outer radius b surrounded
by an embedding matrix (gray) in drained isothermal conditions. The reference
system, in cartesian (black) coordinates (x, y, z) and cylindrical (blue) coordinates
(ρ, φ, z), is also represented. The origin of the reference system lies on the free
surface (z = 0) and the z−axis is taken positive in the downward direction. The
center of the median plane of the TPE shell is located at (0; 0; z0).

In Appendix A.2 we computed the expressions of the non-vanishing stress components
generated by the spherical shell TPE inclusion in an unbounded medium.
In order to remove the shear components of stress in z = 0 it is necessary to introduce an
image source located in z = −z0. By defining R∗(ρ, z) = (ρ2 +(z +z0)2)3/2, in cylindrical
coordinates, the displacement’s components in eqq. (2.45) and (2.46) assume the form
as follows:

uII
z (ρ, z) =


P0a3

4µ

(
z−z0
R3 + z+z0

R∗3

)
+ 1

3ϵ1
[(

1 − a3

R3

)
(z − z0) + b3−a3

R∗3 (z + z0)
]

if a ≤ R ≤ b
P0a3

4µ

(
z−z0
R3 + z+z0

R∗3

)
+ 1

3ϵ1(b3 − a3)
(

z−z0
R3 + z+z0

R∗3

)
if R > b

;

(2.47)

uII
ρ (ρ, z) =


P0a3

4µ
ρ
(

1
R3 + 1

R∗3

)
+ 1

3ϵ1ρ
(
1 − a3

R3 + b3−a3

R∗3

)
if a ≤ R ≤ b

P0a3

4µ
ρ
(

1
R3 + 1

R∗3

)
+ 1

3ϵ1ρ(b3 − a3)
(

1
R3 + 1

R∗3

)
if R > b

. (2.48)

In order to remove the stress component τ II
zz in z = 0 it is necessary to add the solution,

denoted with the apex “Z”, of the elastic problem in a half-space with the imposed
boundary condition τρz = τφz, τzz = −τ II

zz in z = 0 to the same solution with apex “II”,
similarly to what I showed in section (2.1).
To this aim, we have to compute τ II

zz outside the source. From eq. (1.42) and eq. (2.47)
we get:

(2.49)
τ II

zz = −P0a
3

2

(
− 1

R3 + 3(z − z0)2

R5 − 1
R∗3 + 3(z + z0)2

R∗5

)

− 2
3µϵ1(b3 − a3)

(
− 1

R3 + 3(z − z0)2

R5 − 1
R∗3 + 3(z + z0)2

R∗5

)
.

31



By applying the same procedure as carried out in section (2.1) it is possible to obtain
the expressions of uZ

ρ and uZ
z :

uZ
z (ρ, z) = −

(
P0a

3

2µ
+ 2

3ϵ1(b3 − a3)
)(

2(1 − ν)z + z0

R∗3 − z

R∗3 + 3z(z + z0)2

R∗5

)
; (2.50)

uZ
ρ (ρ, z) =

(
P0a

3

2µ
+ 2

3ϵ1(b3 − a3)
)(

(1 − 2ν)ρ
R∗3 − 3ρz(z + z0)

R∗5

)
. (2.51)

2.3.1 Displacement components
Now we are able to compute the expressions of the total displacement uz = uII

z + uZ
z and

uρ = uII
ρ + uZ

ρ .
Starting with uz, for a ≤ R ≤ b we get:

(2.52)
uz(ρ, z) = P0a

3

4µ

(
z − z0

R3 + z + z0

R∗3

)
+ 1

3ϵ1

[(
1 − a3

R3

)
(z − z0) + b3 − a3

R∗3 (z + z0)
]

−

−
(

P0a
3

2µ
+ 2

3ϵ1(b3 − a3)
)(

2(1 − ν)(z + z0)
R∗3 − z

R∗3 + 3z(z + z0)2

R∗5

)
,

and for R > b we get:

(2.53)uz(ρ, z) =
(

P0a
3

4µ
+ 1

3ϵ1(b3 −a3)
)(

z − z0

R3 − (3−4ν)z + z0

R∗3 + 2z

R∗3 − 6z(z + z0)2

R∗5

)
.

The other component, uρ, for a ≤ R ≤ b is:

(2.54)
uρ(ρ, z) = P0a

3

4µ
ρ
( 1

R3 + 1
R∗3

)
+ 1

3ϵ1ρ

[
1 − a3

R3 + b3 − a3

R∗3

]
+

+
(

P0a
3

2µ
+ 2

3ϵ1(b3 − a3)
)

ρ

(
1 − 2ν

R∗3 − 3z(z + z0)
R∗5

)
,

and for R > b we get:

(2.55)uρ(ρ, z) =
(

P0a
3

4µ
+ 1

3ϵ1(b3 − a3)
)

ρ

(
1

R3 + 3 − 4ν

R∗3 − 6z(z + z0)
R∗5

)
.

As in the case of the sphere, the displacement field is not irrotational and therefore
cannot be expressed by a scalar potential.

2.3.2 Strain components
From the displacement expression it is possible to determine the strain components ϵij.
As in section (2.2.2) the components ϵφρ and ϵφz are identically null.
The diagonal component ϵρρ, calculable by eq. (2.25), for a ≤ R ≤ b is given by:

(2.56)

ϵρρ(ρ, z) = P0a
3

4µ

( 1
R3 + 1

R∗3 − 3ρ2
( 1

R5 + 1
R∗5

))
+ 1

3ϵ1

(
1 − a3

R3 + b3 − a3

R∗3 + 3ρ2
(

a3

R5 − b3 − a3

R∗5

))
+

+
(

P0a
3

2µ
+ 2

3ϵ1(b3 − a3)
)(

1 − 2ν

R∗3 − 3z(z + z0)
R∗5 − 3(1 − 2ν)ρ2

R∗5

+ 15z(z + z0)ρ2

R∗7

)
,
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and for R > b we get:

(2.57)
ϵρρ(ρ, z) =

(
P0a

3

4µ
+ 1

3ϵ1(b3 − a3)
)(

1
R3 + 3 − 4ν

R∗3 − 3 ρ2

R5 − 3(3 − 4ν) ρ2

R∗5

− 6z(z + z0)
R∗5 + 30ρ2z(z + z0)

R∗7

)

The diagonal component ϵφφ, calculable by eq. (2.27), for a ≤ R ≤ b is given by:

(2.58)
ϵφφ(ρ, z) = P0a

3

4µ

( 1
R3 + 1

R∗3

)
+ 1

3ϵ1

(
1 − a3

R3 + b3 − a3

R∗3

)

+
(

P0a
3

2µ
+ 2

3ϵ1(b3 − a3)
)(

1 − 2ν

R∗3 − 3z(z + z0)
R∗5

)
,

and for R > b we get:

(2.59)ϵφφ(ρ, z) =
(

P0a
3

4µ
+ 1

3ϵ1(b3 − a3)
)(

1
R3 + 3 − 4ν

R∗3 − 6z(z + z0)
R∗5

)
.

The other diagonal component ϵzz, calculable by eq. (2.29), for a ≤ R ≤ b is given by:

ϵzz(ρ, z) = P0a
3

4µ

(
1

R3 + 1
R∗3 − 3(z − z0)2

R5 − 3(z + z0)2

R∗5

)

+ 1
3ϵ1

(
1 − a3

R3 + b3 − a3

R∗3 + 3a3 (z − z0)2

R5 − 3(b3 − a3)(z + z0)2

R∗5

)
−
(

P0a
3

2µ

+ 2
3ϵ1(b3 − a3)

)(
1 − 2ν

R∗3 − 3(1 − 2ν)(z + z0)2

R∗5 + 9z(z + z0)
R∗5 − 15z(z + z0)3

R∗7

)
,

(2.60)

and for R > b we get:

(2.61)
ϵzz(ρ, z) =

(
P0a

3

4µ
+ 1

3ϵ1(b3 − a3)
)(

1
R3 − 1 − 4ν

R∗3 − 3(z − z0)2

R5

+ 3(1 − 4ν)(z + z0)2

R∗5 − 18z(z + z0)
R∗5 + 30z(z + z0)3

R∗7

)
.

The only non-vanishing non-diagonal component is ϵρz, and it can be determined through
eq. (2.31):

(2.62)
ϵρz(ρ, z) = −3P0a

3

4µ
ρ
(

z − z0

R5 + z + z0

R∗5

)
ϵ1ρ

(
a3(z − z0)

R5 − (b3 − a3)(z + z0)
R∗5

)

+
(

P0a
3

4µ
+ 1

3ϵ1(b3 − a3)
)

ρ

(
− 6z

R∗5 + 30z(z + z0)2

R∗7

)
,

and for R > b we get:

(2.63)ϵρz(ρ, z) = −3
(

P0a
3

4µ
+ 1

3ϵ1(b3 − a3)
)

ρ

(
z − z0

R5 + z + z0

R∗5 + 2z

R∗5 − 10z(z + z0)2

R∗7

)
.
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2.3.3 Stress components
The stress field in the source region Vs and in the embedding matrix is still given by eq.
(1.42).
In particular, from eq. (1.42), one can compute τzz for the spherical shell TPE as follows:

τzz = 2µ

1 − 2ν

(1 − ν)ϵzz + ν(ϵρρ + ϵφφ) − (1 + ν)ϵ0 if a ≤ R ≤ b

(1 − ν)ϵzz + ν(ϵρρ + ϵφφ) if R > b
. (2.64)

The result for a ≤ R ≤ b is the following:

τzz(ρ, z) = 2µ

1 − 2ν

{
P0a

3

4µ

[
(1 + ν)

( 1
R3 + 1

R∗3

)

− 3
(

νρ2 + (1 − ν)(z − z0)2

R5 + νρ2 + (1 − ν)(z + z0)2

R∗5

)]

+ 1
3ϵ1

[
(1 + ν)

(
1 − a3

R3

)
+ (1 + ν)b3 − a3

R∗3 + 3a3 νρ2 + (1 − ν)(z − z0)2

R5

− 3(b3 − a3)νρ2 + (1 − ν)(z + z0)2

R∗5

]

+
(

P0a
3

2µ
+ 2

3ϵ1(b3 −a3)
)(

(3ν − 1)(1 − 2ν)
R∗3 +3(1−2ν)(1 − ν)(z + z0)2 − νρ2

R∗5

− 3(3 − ν)z(z + z0)
R∗5 + 15z(z + z0)

νρ2 + (1 − ν)(z + z0)2

R∗7

)
− (1 + ν)ϵ0

}
,

(2.65)

and for R > b:

(2.66)

τzz(ρ, z) = 2µ

1 − 2ν

(
P0a

3

4µ
+ 1

3ϵ1(b3 − a3)
)(

1 + ν

R3 + 1 + ν

R∗3 + 2(3 − ν)(1 − 2ν)
R∗3

− 3νρ2 + (1 − ν)(z − z0)2

R5 − 3νρ2 + (1 − ν)(z + z0)2

R∗5

+ 6(1 − 2ν)(1 + ν)(z + z0)2 − νρ2

R∗5 + 6(ν − 3)z(z + z0)
R∗5

+ 30z(z + z0)
νρ2 + (1 − ν)(z + z0)2

R∗7

)
.

The non-diagonal component τρz can be computed, from eq. (1.42), by:

τρz = 2µ

ϵρz if a ≤ R ≤ b

ϵρz if R > b
. (2.67)

The result for a ≤ R ≤ b is the following:

(2.68)
τρz(ρ, z) = −3P0a

3

2 ρ
(

z − z0

R5 + z + z0

R∗5

)
+ 2µϵ1ρ

(
a3(z − z0)

R5 − (b3 − a3)z + z0

R∗5

)

+ 6
(

P0a
3

2 + 2
3µϵ1(b3 − a3)

)
ρ

(
− z

R∗5 + 5z(z + z0)2

R∗7

)
,
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and for R > b is:

(2.69)τρz(ρ, z) = −
(

3P0a
3

2 +2µϵ1(b3 −a3)
)

ρ

(
z − z0

R5 + z + z0

R∗5 + 2z

R∗5 − 10z(z + z0)2

R∗7

)
.

The diagonal component τρρ can be calculated, from eq. (1.42), by:

τρρ = 2µ

1 − 2ν

(1 − ν)ϵρρ + ν(ϵφφ + ϵzz) − (1 + ν)ϵ0 if a ≤ R ≤ b

(1 − ν)ϵρρ + ν(ϵφφ + ϵzz) if R > b
. (2.70)

The result for a ≤ R ≤ b is the following:

τρρ(ρ, z) = 2µ

1 − 2ν

{
P0a

3

4µ

[
(1 + ν)

( 1
R3 + 1

R∗3

)

− 3
(

(1 − ν)ρ2 + ν(z − z0)2

R5 + (1 − ν)ρ2 + ν(z + z0)2

R∗5

)]

+ 1
3ϵ1

[
(1 + ν)

(
1 − a3

R3

)
+ (1 + ν)b3 − a3

R∗3

+ 3a3
(

(1 − ν)ρ2 + ν(z − z0)2

R5 − (b3 − a3)(1 − ν)ρ2 + ν(z + z0)2

R∗5

)]

+
(

P0a
3

2µ
+ 2

3ϵ1(b3 − a3)
)(

(1 − ν)(1 − 2ν)
R∗3 − 3(1 + 3ν)z(z + z0)

R∗5

+ 3(1 − 2ν)−(1 − ν)ρ2 + ν(z + z0)2

R∗5 + 15z(z + z0)
(1 − ν)ρ2 + ν(z + z0)2

R∗7

)

− (1 + ν)ϵ0

}
,

(2.71)

and for R > b is:

(2.72)

τρρ(ρ, z) = 2µ

1 − 2ν

(
P0a

3

4µ
+ 1

3ϵ1(b3 − a3)
)(

1 + ν

R3 + 1 + ν

R∗3 + 2(1 − ν)(1 − 2ν)
R∗3

− 3(1 − ν)ρ2 + ν(z − z0)2

R5 − 3(1 − 2ν)(1 − ν)ρ2 + ν(z + z0)2

R∗5

− 6(1 + 3ν)z(z + z0)
R∗5 + 3(1 − 2ν)−(1 − ν)ρ2 + ν(z + z0)2

R∗5

+ 30z(z + z0)
(1 − ν)ρ2 + ν(z + z0)2

R∗7

)
.

From eq. (1.42), one can compute τφφ as follows:

τφφ = 2µ

1 − 2ν

(1 − ν)ϵφφ + ν(ϵρρ + ϵzz) − (1 + ν)ϵ0 if a ≤ R ≤ b

(1 − ν)ϵφφ + ν(ϵρρ + ϵzz) if R > b
. (2.73)
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The result for a ≤ R ≤ b is the following:

τφφ(ρ, z) = 2µ

[
P0a

3

4µ

( 1
R3 + 1

R∗3

)
+ 1

3ϵ1

(
1 + ν

1 − 2ν
− a3

R3 + b3 − a3

R∗3

)

+
(

P0a
3

2µ
+ 2

3ϵ1(b3 − a3)
)(

1 − ν

R∗3 − 3
1 − 2ν

z(z + z0)
R∗5 + 3ν

(z + z0)2 − ρ2

R∗5

+ 6ν

1 − 2ν

z(z + z0)
R∗5

)
− 1 + ν

1 − 2ν
ϵ0

]
,

(2.74)

and for R > b is:

(2.75)
τφφ(ρ, z) = 2µ

(
P0a

3

4µ
+ 1

3ϵ1(b3 − a3)
)(

1
R3 − 4ν2 − 5ν + 3

1 − 2ν

1
R∗3 − 6z(z + z0)

R∗5

+ 3ν

1 − 2ν

(1 − 4ν)(z + z0)2 − (3 − 4ν)ρ2

R∗5

)
.

2.3.4 Spherical shell TPE inclusions vs. Mogi sources
As previously mentioned, the solutions for displacement, strain and stress for a Mogi
source centered at z = z0, with radius b and overpressure ∆P , can be obtained by
replacing, in the equations derived in sections (2.3.1); (2.3.2); (2.3.3), P0 with ∆P , a
with b, and setting ϵ1 = 0.
By defining R1 =

√
ρ2 + z2

0 , the surface displacement components of the Mogi source
(denoted with superscript “m”) are given by:

um
z (ρ, 0) = ∆Pb3

4µ

[
−4(1 − ν) z0

R3
1

]
; (2.76)

um
ρ (ρ, 0) = ∆Pb3

4µ

[
4(1 − ν) ρ

R3
1

]
. (2.77)

From eqq. (2.53) and (2.55), by substituting P0 with P0−Pm (to consider the incremental
field, as discussed in section 1.3.4), the surface displacement components generated by
the spherical shell with inner radius a and outer radius b are:

uz(ρ, 0) =
[

(P0 − Pm)b3

4µ
+ 1

3ϵ1(b3 − a3)
] [

−4(1 − ν) z0

R3
1

]
; (2.78)

uρ(ρ, 0) =
[

(P0 − Pm)b3

4µ
+ 1

3ϵ1(b3 − a3)
] [

4(1 − ν) ρ

R3
1

]
. (2.79)

It can be observed that the terms inside the second brackets are identical for both the
shell and the Mogi source. Therefore, the surface displacement expressions of the shell
match those of the Mogi source when the overpressure satisfies:

∆P = (P0 − Pm) + 4
3µϵ1

b3 − a3

b3 . (2.80)

Similarly, since the dependence on ϵ1 of all the stress and strain components appears
only in the first factor, the second factor remains identical for both the Mogi source and
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the shell. Hence, the relationship in eq. (2.80) applies to all components of displacement,
strain, and stress.
In the special case where the pressure inside the magma chamber does not change during
degassing (i.e., P0 = Pm), we obtain the simplified relation:

∆P = 4
3µϵ1

b3 − a3

b3 . (2.81)

Similarly, all these considerations also hold for a spherical TPE source, which is obtained
by setting the inner radius of the shell to a = 0.
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Chapter 3

Results

This chapter presents the results obtained from the analysis carried out in the previous
sections. In particular, maps have been produced to illustrate the distribution of
displacement, stress, and strain components on the plane y = 0 (Fig. 2.1) so that
ρ = |x|. The distribution of the maximum shear stress and the Coulomb Failure Function
is also shown. Two source configurations have been analyzed: a spherical source centered
at a depth of 1000 m, and another at 5000 m. For both cases, the difference between
the results obtained in a half-space and those in a full-space configuration have been
evaluated. The presentation of results begins with the displacement field, which
represents the primary quantity obtained from the solution of the thermo-poro-elastic
model. From the computed displacements, both the strain and stress fields are derived
through standard and constitutive relations. Among these derived fields, the stress is
presented first. The strain field is then analyzed to provide a complementary view of
the deformation pattern, quantifying local changes in shape and volume.
In addition, graphs have been produced to show the percentage variation in maximum
shear stress between the full-space and half-space models at a point just outside the
source, as functions of depth. This allows identification of the depth beyond which the
difference between the two models becomes negligible (within 15%). This is because, for
a sufficiently deep source, the solutions in a full space and in a half-space are expected
to be equivalent, as the effects of the free surface become negligible.
Finally, the distribution of the above quantities has been analyzed along the x-axis
on the median plane z = z0 and on the free surface (z = 0). The evaluation of
stress, displacement, and strain fields at the surface resulting from a TPE source
is of critical importance in the geophysical modeling of volcanic and hydrothermal
systems. Several reasons justify this focus, for example the direct comparison with
geophysical observations and also for hazard assessment and risk mitigation. In this
context, theoretical surface fields serve as the primary link between physical models
and observations. Accurate computation of these quantities enables the validation and
calibration of source models against empirical data.
All of these analyses have also been replicated for the case of a shell-shaped spherical
TPE source. The parameter values used in this chapter are given in Tab. (3.1) for the
spherical source and in Tab. (3.2) for the spherical shell shaped source.
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ν µ [Pa] H [Pa] α [K−1] p [Pa] T [K] a [m] z0 [m]
0.25 6 · 109 1 · 1010 3 · 10−5 106 100 500 1000, 5000

Table 3.1: Physical parameters used in this chapter to represent the displacement, stress and
strain components derived in the previous paragraph in the case of spherical TPE
source.

ν µ [Pa] H [Pa] α [K−1] p [Pa] T [K] P0 [Pa] a [m] b [m] z0 [m]
0.25 6 · 109 1 · 1010 3 · 10−5 106 100 −107 200 500 1000, 5000

Table 3.2: Physical parameters used in this chapter to represent the displacement, stress and
strain components derived in the previous paragraph in the case of spherical shell
TPE source.

3.1 Results for a spherical TPE inclusion

3.1.1 Displacement Field
Fig. (3.1a) shows the distribution of uρ generated by a spherical TPE inclusion of
radius 500 m (this value is kept constant throughout the entire section), located in
z = z0 = 1000 m, the expression of which is reported in eq. (2.21). The same component
of the displacement field is plotted in Fig. (3.1b) when z0 = 5000 m. It is possible to
observe that this component is everywhere positive. As for all components of all fields
discussed below, it can be observed that increasing the source depth leads to a greater
degree of symmetry with respect to the horizontal axis, which tends toward the behavior
of a TPE source in a full space. This highlights the role of the free surface in breaking
the symmetry observed near the surface. However, it is important to clarify that the
symmetry is always preserved with respect to the vertical axis (i.e., the z-axis). This
is a consequence of the cylindrical symmetry of the model, where all fields depend on
ρ = |x|, and thus are invariant under reflection across the vertical axis. In the figures,
also negative values of the horizontal coordinate x are shown. This graphical choice
is made solely to enhance the readability of the mechanical field patterns by visually
representing the symmetry of the solution with respect to the z−axis.
Fig. (3.1c) and Fig. (3.1d) represent the difference ∆uρ between the radial components
evaluated using the half-space solution (eq. 2.21) and the unbounded medium solution
(eq. 2.3) for the same source location. The first figure shows that the main difference is
positive, with a maximum value of 0.07 m, while the minimum is one order of magnitude
smaller. This indicates that the presence of the free surface leads to an increase in the
radial displacement component, which is most prominent at the surface. In contrast, the
second figure shows that, as the source moves farther from the free surface, the differences
become smaller and are not visible within the current color scale. This reduction in
difference, which will be similar for all components of all considered fields, is expected:
as the source is placed deeper, the influence of the free surface progressively weakens, and
the solution tends to that of the full-space case (e.g., Belardinelli et al., 2019). Indeed,
the differences here are one order of magnitude smaller than in the case with z0 = 1000
m.

39



u  with z0 = 1000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

u
 (

m
)

(a)

u  with z0 = 5000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

u
 (

m
)

(b)

Difference of u  with z0 = 1000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
u

 (
m

)

(c)

Difference of u  with z0 = 5000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

u
 (

m
)

(d)

Figure 3.1: Distribution of uρ generated by a spherical TPE inclusion of radius 500 m, with
the center located in z = z0 = 1000 m in panel (a) and in z0 = 5000 m in panel
(b), in the plane y = 0. Panels (c) and (d) show the difference ∆uρ between
the displacement component, uρ, respectively generated by the previous considered
inclusions, placed in a bounded space (i.e., calculated with the free surface condition)
and the same component calculated without that condition. The surface of the sphere
is highlighted with a green line. The color bar on the right of the picture represents
the magnitude of the physical quantity under consideration. Note the different color
scale in panels (a)-(b) and (c)-(d).

Fig. (3.2a) represents the distribution of uz generated by a spherical TPE inclusion
located in z = z0 = 1000 m, the expression of which is reported in eq. (2.20). Fig. (3.2b)
shows the same component of the displacement field is plotted when z0 = 5000 m. It is
possible to observe that in the part of the plane corresponding to the upper hemisphere
this component is negative (while it is positive in the lower part). Since the positive semi-
axis of the z-axis is pointing downward, this indicates an uplift in the upper part, which,
in the case depicted in the left panel of the figure, also reaches the free surface. Fig. (3.2c)
and Fig. (3.2d) represent the difference ∆uz between the vertical components evaluated
using the half-space solution (eq. 2.20) and the unbounded medium solution (eq. 2.2)
for the same source location. When the source is located at z0 = 1000 m, the ∆uz is
negative or vanishing. Its minimum value, −0.19 m, is one order of magnitude larger
than the maximum of ∆uρ. This leads to the conclusion that the presence of the free
surface causes a decrease of uz compared to the full-space case, with a maximum relative

40



variation of approximately 37%, reached at the portion of the free surface corresponding
to the vertical projection of the source onto this plane (x ≃ 0). As stated for ∆uρ, when
z0 = 5000 m the difference is less pronounced, although it still reaches significant values
near the free surface, where the minimum of the difference is −0.074 m.
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Figure 3.2: Distribution of uz generated by a spherical TPE inclusion of radius 500 m, with
the center located in z = z0 = 1000 m in panel (a) and in z0 = 5000 m in panel
(b), in the plane y = 0. Panels (c) and (d) show the difference ∆uz between
the displacement component, uz, respectively generated by the previous considered
inclusions, placed in a bounded space (i.e., calculated with the free surface condition)
and the same component calculated without that condition. The surface of the sphere
is highlighted with a green line. The color bar on the right of the picture represents
the magnitude of the physical quantity under consideration. Note the different color
scale in panels (a)-(b) and (c)-(d).

3.1.2 Stress field
Fig. (3.3a) shows the distribution of τzz and of the displacement generated by a spherical
TPE inclusion located in z = z0 = 1000 m, according to eqq. (2.34); (2.35). τzz satisfies
the continuity condition across the TPE surface along the z direction; while it manifests
a discontinuity of the first kind along the x−axis, moving from a strongly negative value
inside the sphere to a positive value in the embedding matrix. The continuity of the
normal traction component is expected across the sphere, which is τzz only when the
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surface intersect the z−axis. Accordingly, at the intersection with the x−axis continuity
of τρρ component is expected in place of continuity τzz. It is possible to notice that the
effect of the free surface is severe, as the symmetry with respect to z − z0 = 0 is broken.
In z = 0, due to the free surface condition, the value of τzz is identically null. Fig. (3.3b)
shows that, for a spherical TPE inclusion located at z = 5000 m, the effect of the free
surface is greatly mitigated, and the symmetry is much more present.
In order to show the difference between the value of τzz with and without the free surface
condition, we can consider Fig. (3.3c). This picture shows the difference, ∆τzz, between
τzz in the case of a sphere placed in a half-space and the same component in an unbounded
space (eq. A.11). It is possible to notice that there is a prevalent positive difference inside
and outside the source, especially in the part of the half-space closer to the free surface.
In particular, the maximum value of ∆τzz is 2.58 · 106 Pa, and the minimum value is
−6.05·104 Pa (one order of magnitude lower in absolute value). The former is not reached
at the free surface, but at the point (0; 100) m. However, the relative difference on the
free surface is 100%, while in (0; 100) m is 75%. This is consistent with the fact that
the effects of the free surface decrease with increasing depth. We can conclude that the
presence of the free surface allows a release of vertical stress above the source, making
τzz less compressive.
Fig. (3.3d) represents the same difference when the center of the sphere is located in
z0 = 5000 m. Here, being far from the free surface, the maximum absolute value of
the difference is more than two orders of magnitude lower than the result with the free
surface condition.

zz with z0 = 1000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

zz
 (

P
a)

107

(a)

zz with z0 = 5000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

zz
 (

P
a)

107

(b)

Difference of zz with z0 = 1000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

zz
 (

P
a)

106

(c)

Difference of zz with z0 = 5000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

zz
 (

P
a)

106

(d)

42



Figure 3.3: Distribution of the stress component τzz generated by a spherical TPE inclusion
with a radius of 500 m, which center is located at z = z0 = 1000 m in panel (a) and
at z = z0 = 5000 m in panel (b), in the plane y = 0. Panels (c) and (d) display the
difference ∆τzz between the stress field computed in a bounded domain (i.e., with the
free surface condition) and the same component computed in an unbounded domain
(i.e., without the free surface). The surface of the spherical inclusion is highlighted
by a green line. The color bar to the right indicates the magnitude of the physical
quantity shown. The arrows represent the displacement field produced from the TPE
inclusion. Note the different color scale in panels (a)-(b) and (c)-(d).

Fig. (3.4a) represents the distribution of τρz generated by a spherical TPE inclusion
located in z = z0 = 1000 m, the expression of which is reported in eqq. (2.37); (2.38).
The value of τρz inside the sphere is much lower than outside; indeed, using this color
bar range it is impossible to appreciate it.
In z = 0, due to the free surface condition, the value of τρz is identically null.
Fig. (3.4b) shows the same component of the stress field, now generated by a sphere
located in z = 5000 m, so further away from the free surface. In this case it is impossible
to evaluate the stress magnitude inside the TPE source because the effect of the free
surface is reduced. Furthermore, the symmetry of τρz is much more present.
To show the difference, ∆τρz, between the value of τρz with and without the free surface
condition (eq. A.12), we can consider the left panel of Fig. (3.4). It is possible to notice
that there is a prevalent positive difference apart from the region near the free surface.
The maximum of ∆τρz in this configuration is 3.39 · 105 Pa and is reached in (±560; 600)
m; while the minimum is −9.50 · 105 Pa and it is reached in (±500; 0) m at x = ±a. In
general, due to image source method, the relative difference on the free surface is 100%.
Those values decrease in modulus moving away from the source. There is also a slight
negative difference, invisible in the plot for the choice of the color bar, inside the source,
because in the case of the solution in the unbounded space, the value of τρz inside the
TPE inclusion is identically null.
Fig. (3.4) shows the same difference when the center of the sphere is located in z0 = 5000
m. As for τzz (Fig. 3.3d), being the source farther from the free surface, the difference
between the two solutions decreased. By using the same color bar, it is impossible to
appreciate the non-null values. In this case, the minimum is also reached on the free
surface, at the point (−2500; 0) m; while the maximum is reached at (−2705; 2800) m.
Both minimum and maximum are two orders of magnitude lower than the corresponding
values when z0 = 1000 m.
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Difference of z with z0 = 1000 m
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Figure 3.4: Distribution of the stress component τρz generated by a spherical TPE inclusion
with a radius of 500 m, which center is located at z = z0 = 1000 m in panel (a) and
at z = z0 = 5000 m in panel (b), in the plane y = 0. Panels (c) and (d) display the
difference ∆τρz between the stress field computed in a bounded domain (i.e., with the
free surface condition) and the same component computed in an unbounded domain
(i.e., without the free surface). The surface of the spherical inclusion is highlighted
by a green line. The color bar to the right indicates the magnitude of the physical
quantity shown. The arrows represent the displacement field produced from the TPE
inclusion. Note the different color scale in panels (a)-(b) and (c)-(d).

Fig. (3.5a) represents the distribution of τρρ generated by a spherical TPE inclusion
located in z = z0 = 1000 m, the expression of which is reported in eqq. (2.40); (2.41).
τρρ, in contrast to τzz, satisfies the continuity condition on the TPE surface along the
x direction; while it manifests a discontinuity of the first kind along the z axis, moving
from a strongly negative value inside the sphere to a positive value in the embedding
matrix.
In z = 0 this component is different from zero; indeed, we can observe positive values in
the projection of the TPE. Fig. (3.5b) shows that, for a spherical TPE inclusion located
in z = 5000 m, analogously to τzz, the effect of the free surface is greatly mitigated, and
the symmetry is much more present.
In order to show the difference between the value of τρρ with and without the free surface
condition, we can consider Fig. (3.5c). This plot shows the difference, ∆τρρ, between τρρ

in the case of a sphere placed in a half-space and the same component in an unbounded
space (eq. A.9). It is possible to notice that there is a prevalent positive difference inside
and outside the source, larger in modulus in the part of the half-space closer to the free
surface. In particular, on the free surface there is a very low negative difference. The
maximum of ∆τρρ in this configuration is 4.44 · 106 Pa and is reached in the origin of
the reference system. The value of the relative difference ∆τρρ/τu

ρρ is 80% (τ b
ρρ is the

stress component in a bounded medium). The minimum of ∆τρρ is −4.28 · 105 Pa and is
reached in (−1415; 0) m; the relative difference in this point is 67%.
Fig. (3.5d) shows the same difference when the center of the sphere is located in z0 = 5000
m. Here, being far from the free surface, the maximum absolute value of the difference is
more than two orders of magnitude lower than the result with the free surface condition.
In fact, from this figure it is impossible to appreciate the small values of difference, except
for a small region very close to the projection of the source in the free surface. As in the
previous case, the maximum of ∆τρρ in this configuration is 3.55 · 104 Pa and is reached
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in the origin of the reference system. In this point, the relative difference is also the
same as what we have if z0 = 1000 m. The minimum of this quantity is two orders of
magnitude lower than the maximum, and is reached in (0; 8000) m.
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Figure 3.5: Distribution of the stress component τρρ generated by a spherical TPE inclusion
with a radius of 500 m, which center is located at z = z0 = 1000 m in panel (a) and
at z = z0 = 5000 m in panel (b), in the plane y = 0. Panels (c) and (d) display the
difference ∆τρρ between the stress field computed in a bounded domain (i.e., with the
free surface condition) and the same component computed in an unbounded domain
(i.e., without the free surface). The surface of the spherical inclusion is highlighted
by a green line. The color bar to the right indicates the magnitude of the physical
quantity shown. The arrows represent the displacement field produced from the TPE
inclusion. Note the different color scale in panels (a)-(b) and (c)-(d).

Fig. (3.6a) represents the distribution of τφφ generated by a spherical TPE inclusion
located in z = z0 = 1000 m, the expression of which is reported in eqq. (2.43); (2.44).
τφφ manifests a discontinuity moving from a strongly negative value within the sphere
to a positive value in the embedding matrix.
In z = 0 this component is different from zero; in fact, we can observe positive values,
tending toward zero, further away from the projection of the source. However, τφφ is not
a component of the traction on the plane z = 0, so it is not necessary that it vanishes
in the half-space solution. It is possible to notice the effect of the free surface, as the
symmetry of the intensity is broken. Fig. (3.6b) shows that for a spherical TPE inclusion
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located in z = 5000 m, analogously to τzz and τρρ, the effect of the free surface is greatly
mitigated, and the symmetry is much more present.
In order to show the difference, ∆τφφ, between the value of τφφ with and without the
free surface condition (eq. A.10), we can consider Fig. (3.6c). It is possible to notice
that there is a prevalent positive difference outside the source, larger in modulus in the
part of the half-space closer to the free surface. In particular, on the free surface there
is a higher positive difference. This distribution is similar to that of τρρ, indeed, the
maximum value of ∆τφφ is reached at the same point and has the same value of the one
computed for ∆τρρ. Differently, the minimum is −8.68 · 103 Pa, and is reached at the
point (0; 3000) m. However, the absolute value of the relative difference between the two
cases is 6.7%. This confirms that the presence of the free surface causes an increase in
τφφ in most of the domain, and a decrease, much smaller in magnitude, further away
from the source, with its maximum located at the surface.
Fig. (3.6d) represents the same difference when the center of the sphere is located in
z0 = 5000 m. Here, being far from the free surface, the maximum absolute value of
∆τφφ is more than two orders of magnitude lower than the result with the free surface
condition. We can notice a positive difference outside the sphere, with maximum in a
region closer to the projection of the sphere on the free surface. In this case, this value,
as well as the minimum, coincides with the one we found for ∆τρρ.
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Figure 3.6: Distribution of the stress component τφφ generated by a spherical TPE inclusion
with a radius of 500 m, which center is located at z = z0 = 1000 m in panel (a) and
at z = z0 = 5000 m in panel (b), in the plane y = 0. Panels (c) and (d) display the
difference ∆τφφ between the stress field computed in a bounded domain (i.e., with
the free surface condition) and the same component computed in an unbounded
domain (i.e., without the free surface). The surface of the spherical inclusion is
highlighted by a green line. The color bar to the right indicates the magnitude of
the physical quantity shown. The arrows represent the displacement field produced
from the TPE inclusion. Note the different color scale in panels (a)-(b) and (c)-(d).

3.1.3 Maximum shear stress
Fig. (3.7a) shows the maximum shear stress Smax generated by a spherical TPE inclusion
located in z = z0 = 1000 m, the definition of which is reported in eq. (1.18). We can
observe that on the free surface Smax does not vanish. Fig. (3.7b) shows the same
quantity generated by the same source centered in z = 5000 m. In the same way as for
the stress components, there is a greater symmetry compared to the previous case, since
the effects of the free surface are smaller. Inside the sphere the magnitude of Smax is few
orders of magnitude lower than outside, and with this choice of the color bar those values
are inappreciable. In order to demonstrate this fact, Fig. (3.8) shows the same plot as
Fig. (3.7a) with a narrower range in the color bar. Unlike the full-space scenario (where
inside the sphere the stress state is isotropic and outside it is deviatoric), in this case
the stress field inside the sphere is not isotropic, although the deviatoric component is
less significant. Similarly, outside the sphere the stress field is not completely deviatoric,
unlike the full-space case, even though is dominant. Indeed, the maximum shear stress
inside the sphere is non-zero, which can explain the presence of seismicity within the
TPE inclusion. This is important because it represents a significant difference from the
pressurized magmatic cavities (e.g., Mogi source), which exhibit an isotropic stress state
inside itself.

Smax with z0 = 1000 m
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Smax with z0 = 5000 m
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Figure 3.7: Distribution of the maximum shear stress Smax generated by a spherical TPE
inclusion with a radius of 500 m, which center is located at z = z0 = 1000 m
in panel (a) and at z = z0 = 5000 m in panel (b), in the plane y = 0. The surface
of the spherical inclusion is highlighted by a green line. The color bar to the right
indicates the magnitude of Smax.
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Smax with z0 = 1000 m
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Figure 3.8: Distribution of the maximum shear stress Smax generated by a spherical TPE
inclusion with a radius of 500 m, which center is located at z = z0 = 1000 m,
in the plane y = 0. With respect to Fig. (3.7a), the color bar is narrowed. The
surface of the spherical inclusion is highlighted by a green line. The color bar to the
right indicates the magnitude of Smax.

In order to understand when solutions given in this work are needed (at least for Smax),
it is possible to plot the relative difference between the absolute value of the maximum
shear stress in the case where the source is in a half-space and in the case where it is in a
full space, as functions of depth z. The maximum shear stress is evaluated as a function
of z in x = 0. In Fig. (3.9) there are four cases as the ratio z0/a changes, and we chose
to plot the graphs for 0 ≤ z ≤ z0 − a. In this case a = 500 m is fixed and z0 changes. At
a depth such that the relative difference becomes sufficiently low, in this case 15% was
considered, the solution for a full-space is also sufficiently accurate. It can be seen that
the distribution of the relative difference is qualitatively the same for different z0/a: it
decreases until its value is null, then it reaches a local minimum, and then it tends to
zero as z increases. For z = 0 we have that the relative difference is always equal to 0.4.
The null value is reached in z∗ ≃ 125 m when z0/a = 2, when z0/a = 4 we have z∗ ≃ 255
m, when z0/a = 6 we have z∗ ≃ 375 m and when z0/a = 8 we have z∗ ≃ 490 m. We can
observe that the decrease is rapid for 0 ≤ z ≤ z∗; therefore, the solution for a full-space
is sufficiently precise for depth larger than about z∗/2, where z∗ scales with z0/a. Below
z = z∗, the maximum shear stress obtained in the full-space configuration is, in absolute
value, greater than that obtained in the half-space configuration. As expected, although
not shown in the graph, the variation between the maximum shear stress in the two cases
tends to zero for z −→ +∞. Nevertheless, for z > z∗, this difference remains below 15%
in absolute terms (see dashed blue lines in Fig. 3.9).
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Figure 3.9: Absolute value of the relative difference between the maximum shear stress in the
case where the source is in a half-space and in the case where it is in a full space, as
functions of depth z. There are four cases, shown in the legend, as the ratio z0/a
changes. In this graph we kept a = 500 m constant. The dashed blue lines indicate
a relative difference of ±15%.

3.1.4 Results in the median plane and on the free surface
In this subsection I evaluate with more detail, on the median plane of the TPE sphere
(z = z0), displacement and stress components as functions of the x/a ratio. For these
plots, the center of the spherical source was placed at z0 = 1000 m.
The distribution of the displacement components can be seen in Fig. (3.10). We note
that both components are continuous across the surface of the sphere and that uρ is
always positive, while uz is always negative, as an uplift occurs. Moving away from the
source, both tend to zero.
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Figure 3.10: Distribution of displacement components in the median plane (z = z0) as functions
of the ratio x/a. The interior of the TPE, i.e., the x/a < 1 half-plane, is shown in
pink, while the embedding matrix, i.e., the x/a > 1 half-plane, is colored purple.
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The distribution of the stress components is shown in Fig. (3.11). It can be seen that
the only continuous component across the surface of the sphere is τρρ, while τφφ and
τzz show a discontinuity of the first kind from the TPE domain to the matrix domain.
The component τρz is identically zero. The maximum shear stress Smax is two orders
of magnitude higher in the embedding matrix than within the TPE source; whereas,
in the full-space case (Belardinelli et al., 2019), it was identically zero within the TPE
inclusion.
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Figure 3.11: Distribution of stress components and maximum shear stress in the median plane
(z = z0) as functions of the ratio x/a. The interior of the TPE, i.e., the x/a < 1
half-plane, is shown in pink, while the embedding matrix, i.e., the x/a > 1 half-
plane, is colored purple.

As stated in section (1.2.2), it is important to analyze the diagonal deviatoric stress field
to determine the stress regime. We can compute these components on the median plane
as shown in Fig. (3.12). It is possible to observe that we have a tensile deviatoric stress
τ ′

zz = σ′
3 > 0 along the vertical axis for x/a < 3, suggesting the presence of a compressive

environment within the source and in the first km outside the source. For x > 3a the
order of magnitude of each component is more than one lower than the corresponding
value in the other half plane; hence, the seismicity they could account for would be
negligible.
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Figure 3.12: Distribution of the diagonal deviatoric stress components in the median plane (z =
z0) as functions of the ratio x/a. The interior of the TPE, i.e., the x/a < 1 half-
plane, is shown in pink, while the embedding matrix, i.e., the x/a > 1 half-plane,
is colored purple.

It is possible to obtain the same plots in z = 0, hence, at the free surface. Fig.
(3.13) shows the distribution of displacement components on the free surface (z = 0)
as functions of the ratio x/a. Differently from uρ, the maximum of the uplift is located
in x = 0, and moving significantly away from the surface projection of the source, both
components tend to zero. The distribution of uz provides an initial consistency with
the expected distribution of a deformation source model describing surface displacement
in a hydrothermal area such as Campi Flegrei. A qualitatively similar vertical ground
displacement pattern was observed during the 1982–1984 unrest episode (Trasatti et al.,
2011) or during the episode of unrest at Vulcano Island summarized in section (1.1.2)
and described by (Stissi et al., 2023), since such a pattern is typical of axisymmetric
deformation sources.
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Figure 3.13: Distribution of displacement components on the free surface (z = 0) as functions
of the ratio x/a. The part of space corresponding to the projection of the TPE
source on the surface, i.e., the x/a < 1 half-plane, is shown in pink, while the part
corresponding to the embedding matrix, i.e., the x/a > 1 half-plane, is colored
purple.

We can also visualize the distribution of the components of the stress field and maximum
shear stress, as shown in Fig. (3.14). It is possible to observe that, as expected from
the theoretical point of view, τzz and τρz are identically zero, while τφφ is always positive
and τρρ goes from positive to negative value for x/a ≃ 1.7. All stress components tend
to zero for x → +∞ and the maximum order of magnitude is one less than that in the
median plane. Unlike what happens on the median plane, where x/a = 1 indicates the
transition point from the TPE source to the embedding matrix, here each component is
continuous in the domain.
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Figure 3.14: Distribution of stress components on the free surface (z = 0) as functions of the
ratio x/a. The part of space corresponding to the projection of the TPE source
on the surface, i.e., the x/a < 1 half-plane, is shown in pink, while the part
corresponding to the embedding matrix, i.e., the x/a > 1 half-plane, is colored
purple.

We can analyze the diagonal deviatoric stress components on the free surface, shown
in Fig. (3.15). Here, it is possible to notice that, for x/a < 1.7, τ ′

zz = σ′
1 < 0; while,

for x/a > 1.7 we have that τ ′
zz = σ′

2. This suggests an extensive tectonic environment
within the TPE inclusion and just outside it; while, in the other part of the domain, as
τ ′

zz becomes the intermediate eigenvalue of the deviatoric stress tensor, we should have
a strike-slip regime.
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Figure 3.15: Distribution of the diagonal deviatoric stress components on the free surface (z =
0) as functions of the ratio x/a. The interior of the TPE, i.e., the x/a < 1 half-
plane, is shown in pink, while the embedding matrix, i.e., the x/a > 1 half-plane,
is colored purple.

3.1.5 Change of the Coulomb failure function
As shown by Belardinelli et al. (2019), in order to assess the cumulative effect of the
stress changes on fault stability, it is possible to compute the change of the Coulomb
failure function ∆CFF due to TPE deformation:

∆CFF = |∆τ |+f (∆σn + ∆p) , (3.1)

where ∆τ is the change of the shear traction acting on the fault plane, f is the coefficient
of friction, ∆σn (negative if compressive) is the change of the normal traction and ∆p = p
for R < a and ∆p = 0 otherwise (undrained condition), is the pore pressure change. ∆τ
and ∆σn depend on the fault dip δ (where δ ∈ [0; π/2]). We calculated for each point
in the domain the value of the dip angle that made ∆CFF the maximum, and hence
the ∆CFF . The dip angle was varied from 0 to 90°, and, for each of these values, the
normal vector n of the corresponding plane was calculated. From Cauchy’s formula in
eq. (1.13), it was possible to calculate the traction Ti and, from it, ∆σn = Tini and
∆τ =

√
|Ti|2−∆σ2

n.
∆CFF generated by a spherical TPE inclusion located at z = z0 = 1000 m, is shown in
Fig. (3.16a). The distribution of ∆CFF shown in Fig. (3.16b)represents the case where
the same sphere is placed in an unlimited medium. For each plot the friction coefficient
is f = 0.6.
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CFF with z0 = 1000 m
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CFF in an unbounded medium with z0 = 1000 m
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Figure 3.16: Panel (a) shows the distribution of the Coulomb failure fracture ∆CFF generated
by a spherical TPE inclusion of radius 500 m, located in z = z0 = 1000 m in the
plane y = 0. The surface of the sphere is highlighted with a green line. The color
bar on the right of the picture represents the magnitude of ∆CFF . The same plot
for a sphere placed in an unbounded medium is in panel (b).

3.1.6 Strain Field
From the following figures, representing the non-vanishing strain components, it will
be possible to notice that their distribution is similar to that of the corresponding
stress component. Fig. (3.17a) represents the distribution of the strain component
ϵzz generated by a spherical TPE inclusion located in z = z0 = 1000 m, the expression of
which is reported in eq. (2.30). Fig. (3.17b) shows the same component of the strain field
when z0 = 5000 m. As said before, the similarity to τzz, shown in Fig. (3.3), is evident.
The main difference is the sign of the quantities inside the TPE source, as the strain is
positive and the stress is negative. This is due to the fact that the constitutive relation
reported in eq. (1.42) includes, within the source region, the term −(1 + ν)ϵ0 (related
to the stress-free strain tensor), which arises from the traction continuity condition
across the spherical surface and, consequently, from the scalar displacement potential
discontinuity condition in eq. (1.59).
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zz with z0 = 5000 m
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Figure 3.17: Distribution of ϵzz generated by a spherical TPE inclusion of radius 500 m, with
the center located in z = z0 = 1000 m in panel (a) and in z0 = 5000 m in panel
(b), in the plane y = 0. The surface of the sphere is highlighted with a green line.
The color bar on the right of the picture represents the magnitude of ϵzz and the
arrows represent the displacement field produced from the TPE inclusion.

Fig. (3.18a) represents the distribution of the strain component ϵρz generated by a
spherical TPE inclusion located in z = z0 = 1000 m, the expression of which is reported
in eq. (2.32). Fig. (3.18b) shows the same component of the strain field when z0 = 5000
m. As said before, the similarity to τρz, shown in Fig. (3.3), is evident. In this case,
there is no sign difference with respect to the stress because the relation that links them
is given by τρz = 2µϵρz, and µ is a parameter defined to be positive.
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z with z0 = 5000 m
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Figure 3.18: Distribution of ϵρz generated by a spherical TPE inclusion of radius 500 m, with
the center located in z = z0 = 1000 m in panel (a) and in z0 = 5000 m in panel
(b), in the plane y = 0. The surface of the sphere is highlighted with a green line.
The color bar on the right of the picture represents the magnitude of ϵρz and the
arrows represent the displacement field produced from the TPE inclusion.

Fig. (3.19a) represents the distribution of the strain component ϵρρ generated by a
spherical TPE inclusion located in z = z0 = 1000 m, the expression of which is reported
in eq. (2.26). Fig. (3.19b) shows the same component of the strain field when z0 = 5000
m.
As said before, the similarity to τρρ, shown in Fig. (3.5), is evident. The main difference
is the sign of the quantities inside the TPE source, as the strain is positive and the stress
is negative.
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 with z0 = 1000 m
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 with z0 = 5000 m
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Figure 3.19: Distribution of ϵρρ generated by a spherical TPE inclusion of radius 500 m, with
the center located in z = z0 = 1000 m in panel (a) and in z0 = 5000 m in panel
(b), in the plane y = 0. The surface of the sphere is highlighted with a green line.
The color bar on the right of the picture represents the magnitude of ϵρρ and the
arrows represent the displacement field produced from the TPE inclusion.

Fig. (3.20a) represents the distribution of the strain component ϵφφ generated by a
spherical TPE inclusion located in z = z0 = 1000 m, the expression of which is reported
in eq. (2.28). Fig. (3.20b) shows the same component of the strain field when z0 = 5000
m.
As said before, the similarity to τφφ, shown in Fig. (3.6), is evident. The main difference
is the sign of the quantities inside the TPE source, as the strain is positive and the stress
is negative.
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Figure 3.20: Distribution of ϵφφ generated by a spherical TPE inclusion of radius 500 m, with
the center located in z = z0 = 1000 m in panel (a) and in z0 = 5000 m in panel
(b), in the plane y = 0. The surface of the sphere is highlighted with a green line.
The color bar on the right of the picture represents the magnitude of ϵφφ and the
arrows represent the displacement field produced from the TPE inclusion.

Fig. (3.21a) represents the distribution of the cubic dilation ϵkk generated by
a spherical TPE inclusion located in z = z0 = 1000 m. Fig. (3.21b) shows the
cubic dilation when z0 = 5000 m. It can be observed that the volumetric strain is
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predominantly positive both at z = 0 and at z = 5000 m. Moreover, at greater depths
the contribution of the free surface becomes less significant; in fact, the behavior of ϵkk

shows a positive volume change inside the sphere and an almost negligible one outside.
This highlights the clear expansion occurring within the source, which does not take
place outside. This is consistent with the full-space case, where the stress is completely
isotropic inside the inclusion and deviatoric outside. In contrast, the presence of the
free surface induces an additional expansion in the region surrounding the source, which
gradually decreases with distance from it.
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kk with z0 = 5000 m
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Figure 3.21: Distribution of the cubic dilation ϵkk generated by a spherical TPE inclusion of
radius 500 m, with the center located in z = z0 = 1000 m in panel (a) and in
z0 = 5000 m in panel (b), in the plane y = 0. The surface of the sphere is
highlighted with a green line. The color bar on the right of the picture represents
the magnitude of ϵkk and the arrows represent the displacement field produced from
the TPE inclusion.

3.2 Results for a spherical TPE shell inclusion
In this section, we analyze the case of a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m. As in the case of the spherical source (discussed
in section 3.1), two configurations are considered: in the first, the center of the source is
located at z0 = 1000 m; in the second, the source is deeper, with its center at z0 = 5000
m. In the former case, it is observed that, for all components of the analyzed fields, the
effect of the free surface is severe, as the symmetry along the z −z0 plane is broken; while
in the latter case, the effect of the free surface is greatly mitigated and the symmetry is
much more preserved. Moreover, for the non-zero components of the displacement and
stress fields, the differences between the solutions for a source embedded in a half-space
(computed in sections 2.3.1; 2.3.2; 2.3.3) and the corresponding solutions for a source
in an infinite medium (derived in section 2.1 and Appendix A.2) will be shown. These
differences are indicated using the symbol of the component preceded by ∆ (e.g., for the
radial displacement component, such difference is labeled with ∆uρ).
In addition, since the distribution of ∆CFF does not differ significantly from that
obtained for the sphere (Fig. 3.1), the corresponding color map has not been shown
in this section.
It is important to state that the figures presented in the following sections do not
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show what occurs inside the magma chamber embedded within the TPE source (i.e.,
for R < a), as they only represent the expressions reported in section (2.3).

3.2.1 Displacement field
Fig. (3.22) represents the distribution of uρ generated by a spherical shell TPE inclusion,
the expression of which is reported in eqq. (2.54); (2.55). Similarly to the sphere, the uρ

component is everywhere non-negative. We can notice that, in both configurations, the
maximum of uρ is in the vicinity of z/z0 ∈ [0.5; 1.5] and |x|/b ∈ [a/b; 1].
Fig. (3.22c) shows that the difference ∆uρ of the radial displacement uρ between the
configurations with the shell placed in a bounded space and in an unbounded space at
z = z0 = 1000 m is qualitatively similar to the one obtained for the spherical source,
shown in Fig. (3.1c). However, the maximum value of the difference, although occurring
at the same location, is lower, reaching 0.064 m. This indicates that using a thin shell
(compared to a full sphere) leads to a smaller incremental displacement. To confirm this,
the maximum and minimum values of ∆uρ were evaluated for different configurations of
the shell’s inner radius, showing that as the inner radius decreases, the values tend to
approach those of the full sphere. The minimum value is also approximately one order of
magnitude lower. When z = z0 = 5000 m, the results for the half-space are very similar
to the results for an unbounded medium, and the difference between such components
is one or two orders of magnitude lower than the case of z0 = 1000 m; therefore, the
corresponding plots are not shown.

u  for shell with z0 = 1000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

u
 (

m
)

(a)

u  for shell with z0 = 5000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

u
 (

m
)

(b)

Difference of u  for shell with z0 = 1000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

u
 (

m
)

(c)

58



Figure 3.22: Distribution of uρ generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in panel (a) and in z0 = 5000 m in panel (b), in the plane y = 0. Panel
(c) shows the difference ∆uρ between the displacement component, uρ generated
by the previous considered inclusions, placed in a bounded space (i.e., calculated
with the free surface condition) and the same component calculated without that
condition. The surface of the sphere is highlighted with a green line. The color bar
on the right of the picture represents the magnitude of the physical quantity under
consideration.

Fig. (3.23) represents the distribution of uz generated by a spherical shell TPE
inclusion, the expression of which is reported in eqq. (2.52); (2.53). The uz component
is positive only in the z > z0 half-plane and in the region strictly close to the shell. In
the case where the shell is at depth, the sign discontinuity occurs at z = z0, while in the
case where the shell is located more at the surface, for |x|/a ∈ [2; 6] there is a negative
value of uz, corresponding to an uplift.
Fig. (3.23c) shows that the difference ∆uz at z = z0 = 1000 m is qualitatively similar to
the one obtained for the spherical source, shown in Fig. (3.2c). Here, the minimum of
∆uz is −0.17 m, slightly lower than the result obtained for the sphere.
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Figure 3.23: Distribution of uz generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in panel (a) and in z0 = 5000 m in panel (b), in the plane y = 0. Panel (c)
shows the difference ∆uz between the displacement component, uz generated by the
previous inclusion, placed in a bounded space (i.e., calculated with the free surface
condition) and the same component calculated without that condition. The surface
of the sphere is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of the physical quantity under consideration.

3.2.2 Stress Field
Fig. (3.24) represents the distribution of τzz generated by a spherical shell TPE
inclusion, the expression of which is reported in eqq. (2.65); (2.66). Similarly to
spherical TPE, τzz satisfies the continuity condition on the surface of TPE along the z
direction; while it manifests a discontinuity of the first kind along the x axis, moving
from a strongly negative value inside the TPE to a positive value in the embedding
matrix. In z = 0, due to the free surface condition, the value of τzz is identically null.
In order to show the difference ∆τzz between the value of τzz with and without the
free surface condition, we can consider Fig. (3.24c). This picture plots the difference
between τzz in the case of a shell placed in a half-space and the same component, shown
in Fig. (3.24a), in an unbounded space (eq. A.15). It is possible to notice that there
is a prevalent positive difference inside and outside the source, especially in the part of
the half-space closer to the free surface.
Differently from the sphere, the maximum value is 2.32 · 106 Pa and the minimum value
is −5.44 · 104 Pa; both reached at the same point in the case of the sphere.
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Difference of zz for shell with z0 = 1000 m
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Figure 3.24: Distribution of τzz generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in panel (a) and in z0 = 5000 m in panel (b), in the plane y = 0. Panel
(c) shows the difference ∆τzz between the stress component, τzz generated by the
previous inclusion, placed in a bounded space (i.e., calculated with the free surface
condition) and the same component calculated without that condition. The surface
of the sphere is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of the physical quantity under consideration and
the arrows represent the displacement field produced from the TPE inclusion.

Fig. (3.25) represents the distribution of τρz generated by a spherical shell TPE
inclusion, the expression of which is reported in eqq. (2.68); (2.69). Unlike the results
obtained for the sphere (Fig. 3.4), we observe comparable values of τρz inside the
inclusion than outside it. This is consistent with what we get in the case of the
unbounded medium.
In order to show the difference between the value of τρz with and without the free
surface condition, we can consider Fig. (3.25c). This graph plots the difference between
τρz in the case of a shell placed in a half-space and the same component, shown in
Fig. (3.25a), in an unbounded space (eq. A.16). It is possible to notice that there is a
prevalent positive difference outside the source in the half-space containing the higher
hemisphere and a negative difference in proximity of the free surface. In this case the
maximum value of ∆τρz is 3.05 · 105 Pa and the minimum is −8.58 · 105 Pa, reached at
the same points of the sphere’s case.
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z for shell with z0 = 1000 m
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z for shell with z0 = 5000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

z (
P

a)

107

(b)

Difference of z for shell with z0 = 1000 m
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Figure 3.25: Distribution of τρz generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in panel (a) and in z0 = 5000 m in panel (b), in the plane y = 0. Panel
(c) shows the difference ∆τρz between the stress component, τρz generated by the
previous inclusion, placed in a bounded space (i.e., calculated with the free surface
condition) and the same component calculated without that condition. The surface
of the sphere is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of the physical quantity under consideration and
the arrows represent the displacement field produced from the TPE inclusion.

Fig. (3.26) represents the distribution of τρρ generated by a spherical shell TPE
inclusion, the expression of which is reported in eqq. (2.71); (2.72). τρρ, in contrast to
τzz, satisfies the continuity condition on the TPE surface along the x direction; while
it manifests a discontinuity of the first kind along the z axis, moving from a strongly
negative value inside the sphere to a positive value in the embedding matrix.
In z = 0 we can observe positive values at the projection of the TPE.
Fig. (3.26c) plots the difference ∆τρρ (the full-space solutions are reported in eq. A.13),
which maximum and minimum values are respectively 4.00 · 106 Pa and −3.85 · 105 Pa,
reached at the same points of the sphere’s case.
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 for shell with z0 = 1000 m
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 for shell with z0 = 5000 m

-4000 -2000 0 2000 4000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

z 
(m

)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 (
P

a)

107

(b)

Difference of  for shell with z0 = 1000 m
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Figure 3.26: Distribution of τρρ generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in panel (a) and in z0 = 5000 m in panel (b), in the plane y = 0. Panel
(c) shows the difference ∆τρρ between the stress component, τρρ generated by the
previous inclusion, placed in a bounded space (i.e., calculated with the free surface
condition) and the same component calculated without that condition. The surface
of the sphere is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of the physical quantity under consideration and
the arrows represent the displacement field produced from the TPE inclusion.

Fig. (3.27) represents the distribution of τφφ generated by a spherical TPE inclusion,
the expression of which is reported in eqq. (2.74); (2.75). τφφ, in contrast to τzz, manifests
a discontinuity moving from a strongly negative value within the sphere to a positive
value in the embedding matrix.
Similarly to the sphere case, in z = 0 this component is different from zero.
In order to observe the difference between the value of τφφ with and without the free
surface condition, we can consider Fig. (3.27c). This graph plots the difference between
τφφ in the case of a shell placed in a half-space and the same component, shown in
Fig. (3.27), in an unbounded space (eq. A.14). It is possible to notice that there is a
predominant positive difference outside and inside the source. In particular, on the free
surface there is a higher positive difference. In this case the maximum value of ∆τφφ is
4 · 106 Pa and the minimum is −7.81 · 103 Pa, reached at the same points of the sphere’s
case.
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Figure 3.27: Distribution of τφφ generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in panel (a) and in z0 = 5000 m in panel (b), in the plane y = 0. Panel
(c) shows the difference ∆τφφ between the stress component, τφφ generated by the
previous inclusion, placed in a bounded space (i.e., calculated with the free surface
condition) and the same component calculated without that condition. The surface
of the sphere is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of the physical quantity under consideration and
the arrows represent the displacement field produced from the TPE inclusion.

3.2.3 Maximum shear stress
Fig. (3.28) shows the maximum shear stress Smax generated by a spherical shell TPE
inclusion, the definition of which is reported in eq. (1.18). As observed in the sphere
case, the maximum shear stress does not vanish at the free surface. However, unlike the
TPE sphere, where Smax remains low within the inclusion, the TPE shell (with the same
external radius) exhibits non-vanishing and significantly higher values within its interior
(see Fig. 3.28). This feature will be examined in greater detail in chapter 4, and it further
confirms the advantage of TPE inclusions in modeling magmatic sources of deformation,
particularly in explaining internal seismicity through the presence of significant internal
shear stress.
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Smax for shell with z0 = 1000 m
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Smax for shell with z0 = 5000 m
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Figure 3.28: Distribution of maximum shear stress Smax generated by a spherical shell TPE
inclusion with inner radius a = 200 m and outer radius b = 500 m, with the
center located in z = z0 = 1000 m in panel (a) and in z0 = 5000 m in panel (b),
in the plane y = 0. The surface of the shell is highlighted with a green line. The
color bar on the right of the picture represents the magnitude of Smax.

We can show the same graph of Fig. (3.9) in the case of a shell where the ratio z0/b
varies keeping b = 500 m and a = 200 m fixed. We can observe that the results are equal
to those shown for the sphere.
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Figure 3.29: Relative difference of the absolute values of the maximum shear stress in the case
where the source is in a half-space and in the case where it is in a full space, as
functions of depth z. There are four cases, shown in the legend, as the ratio z0/b
changes. In this graph, we kept b = 500 m and a = 200 m constants.

3.2.4 Results in the median plane and on the free surface
In this subsection I evaluate with more detail, on the median plane of the TPE shell
(z = z0), displacement and stress components as functions of the x/b ratio. For these
graphs, the center of the source was placed at z0 = 1000 m.
The distribution of the displacement components can be seen in Fig. (3.30). We note
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that both components are continuous across the outer surface of the shell and uz is
always negative. The radial component uρ is positive everywhere in the domain except
very close to the inner radius of the shell. Moving away from the source, both tend to
zero.
The stress components as functions of x can be observed in Fig. (3.31). The component
τρz is identically zero. The maximum shear stress Smax is one order of magnitude lower
in the embedding matrix than within the TPE source. We note that, unlike the sphere
(see Fig. 3.11), Smax is higher within TPE domain.

0 1 2 3 4 5 6
x/b

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
is

pl
ac

em
en

t (
m

)

Displacement components on the median plane for shell

u

u
z

Figure 3.30: Distribution of displacement components in the median plane (z = z0) as functions
of the ratio x/b. The interior of the TPE, i.e., the a/b < x/b < 1 half-plane, is
shown in pink, while the embedding matrix, i.e., the x/b > 1 half-plane, is colored
purple.
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Figure 3.31: Distribution of stress components and maximum shear stress in the median plane
(z = z0) as functions of the ratio x/b. The interior of the TPE, i.e., the a/b <
x/b < 1 half-plane, is shown in pink, while the embedding matrix, i.e., the x/b > 1
half-plane, is colored purple.
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We can compute the diagonal components of the deviatoric stress field on the median
plane as shown in Fig. (3.32). It is possible to observe that inside the TPE inclusion
the deviatoric stress τ ′

zz = σ′
2 is the intermediate eigenvalue, suggesting the presence

of a strike-slip environment. Differently, τ ′
zz = σ′

3 is the most tensile eigenvalue in the
embedding matrix, suggesting a compressive stress regime outside the source.
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Figure 3.32: Distribution of the diagonal deviatoric stress components in the median plane (z =
z0) as functions of the ratio x/a. The interior of the TPE, i.e., the a/b < x/b < 1
half-plane, is shown in pink, while the embedding matrix, i.e., the x/b > 1 half-
plane, is colored purple.

The results at the surface, thus at a greater distance from the center of the source,
are similar to those obtained for the sphere, since, for a suitable choice of parameters,
the solutions for the shell or the sphere match those of the Mogi source at the surface
(section 2.3.4). This is shown, respectively, in Fig. (3.33) and (3.34). The results for the
spherical source were shown in Fig. (3.13) and (3.14).
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Figure 3.33: Distribution of displacement components on the free surface (z = 0) as functions
of the ratio x/b. The part of space corresponding to the projection of the TPE
source on the surface, i.e., the 0 < x/b < 1 half-plane, is shown in pink, while the
part corresponding to the embedding matrix, i.e., the x/b > 1 half-plane, is colored
purple.
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Figure 3.34: Distribution of stress components on the free surface (z = 0) as functions of the
ratio x/a. The part of space corresponding to the projection of the TPE source
on the surface, i.e., the 0 < x/b < 1 half-plane, is shown in pink, while the part
corresponding to the embedding matrix, i.e., the x/b > 1 half-plane, is colored
purple.

We can analyze the diagonal deviatoric stress components on the free surface, shown
in Fig. (3.35). Here, it is possible to notice that, for x/a < 1.7, τ ′

zz = σ′
1 < 0; while,

for x/a > 1.7 we have that τ ′
zz = σ′

2. This suggests an extensive tectonic environment
within the TPE inclusion and just outside it; while, in the other part of the domain, as
τ ′

zz becomes the intermediate eigenvalue of the deviatoric stress tensor, we should have
a strike-slip regime. These results are similar to those obtained for the spherical TPE
inclusion (Fig. 3.35).
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Figure 3.35: Distribution of the diagonal deviatoric stress components on the free surface (z =
0) as functions of the ratio x/a. The interior of the TPE, i.e., the x/b < 1 half-
plane, is shown in pink, while the embedding matrix, i.e., the x/b > 1 half-plane,
is colored purple.

3.2.5 Strain Field
In the following figures (Figg. 3.36; 3.37; 3.38; 3.39), the distributions of the non-zero
components of the strain field are shown (respectively, ϵzz, ϵρz, ϵρρ, and ϵφφ). These trends
are similar to those obtained for the stress field, with the difference that the diagonal
components have opposite sign within the TPE source. This behavior is analogous to
what is observed in the case of the sphere and is explained in section (3.1.6).
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zz for shell with z0 = 5000 m
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Figure 3.36: Distribution of ϵzz generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in the panel (a) and in z0 = 5000 m in the panel (b), in the plane y = 0. The
surface of the shell is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of ϵzz and the arrows represent the displacement
field produced from the TPE inclusion.
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z for shell with z0 = 1000 m
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z for shell with z0 = 5000 m
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Figure 3.37: Distribution of ϵρz generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in the panel (a) and in z0 = 5000 m in the panel (b), in the plane y = 0. The
surface of the shell is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of ϵρz and the arrows represent the displacement
field produced from the TPE inclusion.
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 for shell with z0 = 5000 m
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Figure 3.38: Distribution of ϵρρ generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in the panel (a) and in z0 = 5000 m in the panel (b), in the plane y = 0. The
surface of the shell is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of ϵρρ and the arrows represent the displacement
field produced from the TPE inclusion.
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Figure 3.39: Distribution of ϵφφ generated by a spherical shell TPE inclusion with inner radius
a = 200 m and outer radius b = 500 m, with the center located in z = z0 = 1000
m in the panel (a) and in z0 = 5000 m in the panel (b), in the plane y = 0. The
surface of the shell is highlighted with a green line. The color bar on the right of the
picture represents the magnitude of ϵφφ and the arrows represent the displacement
field produced from the TPE inclusion.

Fig. (3.40) represents the distribution of the cubic dilation ϵkk generated by a
spherical shell TPE inclusion. It can be observed that the cubic dilation is predominantly
positive both at z = 0 and at z = 5000 m. As shown in the case of the spherical TPE
inclusion (Fig. 3.21), the distribution of ϵkk shows a positive volume change inside the
sphere and an almost negligible one outside. To understand the variation in cubic dilation
outside and inside the sphere, we can consider that on the surface the maximum value
of ϵkk is 3.7 · 10−4, while the maximum value on the equatorial plane is 0.023.
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Figure 3.40: Distribution of the cubic dilation ϵkk generated by a spherical shell TPE inclusion
with inner radius a = 200 m and outer radius b = 500 m, with the center located in
z = z0 = 1000 m in the panel (a) and in z0 = 5000 m in the panel (b), in the plane
y = 0. The surface of the shell is highlighted with a green line. The color bar on
the right of the picture represents the magnitude of ϵkk and the arrows represent
the displacement field produced from the TPE inclusion.
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Chapter 4

Discussion

The analytical model presented in this thesis provides explicit expressions for
displacement, stress, and strain fields generated by a TPE source with spherical or
spherical shell geometry, throughout the half-space z ≥ 0, including the interior of the
source. The surface z = 0 is stress-free and serves as a proxy for the Earth’s surface.
Unlike Belardinelli et al. (2019), which derived such solutions for a TPE inclusion
with spherical or spherical shell geometry in an unbounded medium (full-space), the
present solutions include the fundamental effect of the free surface. This addition is
crucial, as the Earth’s surface is stress-free by nature (τzz = τρz = 0), making a model
that includes it more accurate, albeit more complex. Furthermore, accounting for the
free surface is essential when evaluating the deformation fields at the ground level,
where most geophysical and geodetic measurements are collected. In particular, surface
displacements allow us to compare with uplift (or subsidence) phenomena observed in
volcanic and hydrothermal regions, stress and maximum shear stress provide insight
into seismicity, while strain fields are necessary to study gravity changes, which are
linked to variations in density and thus volume.

The use of simple geometries allows for a direct analytical description of the
deformation fields induced by variations in pore pressure and temperature. Analytical
models are therefore particularly useful for providing first-order estimates of deformation
parameters and for understanding the fundamental physics governing a phenomenon.
A spherical source may serve as the simplest geometric representation of a reservoir
where hot and pressurized fluids accumulate due to local increases in permeability, the
latter of which may be enhanced by stress perturbations associated with the inflation of
a nearby magma chamber.
In addition to the spherical TPE source, I considered the case in which a spherical Mogi
source is embedded within a spherical shell characterized by TPE properties. This shell
represents a physically distinct region, such as a damaged or fractured rock volume
surrounding the magma chamber, which is capable of responding in a coupled way to
variations in temperature, pore pressure, and deformation. During phases of pressure
increase within the magma chamber, the stress field generated by the Mogi source,
along with the temperature of the fluids within it, is transmitted to the TPE shell,
according to thermo-poro-elastic behavior. The interaction between these effects may
lead to localized fracturing, permeability changes, and fluid migration from the magma
chamber to the outer TPE shell.
This type of modeling, which couples a Mogi source with a surrounding spherical TPE
volume, allows for a realistic representation of the interactions between a pressurized
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magma chamber and its immediate surroundings, especially in cases where geophysical
signals related to fluid migration and induced seismicity are observed.

The results presented in chapter 3 clearly show that, as the source is located closer to
the free surface, there is a progressive breakdown of symmetry with respect to the plane
z − z0 = 0. In general, representing the free surface becomes increasingly important as
the inclusion gets shallower. Results indicate that when the source is at z0 = 5000
m, differences in displacement and stress between the half-space (with free surface)
and infinite medium models are much smaller than those when z0 = 1000 m. For the
displacement field, the largest relative variations are observed at the surface. Similarly,
for the stress components τzz and τρz, relative variations ∆τzz/τu

zz and ∆τρz/τu
ρz (where

the stress components labeled with the superscript "u" refer to the corresponding values
in the full-space case) reach 100% at the surface, since these components are zero in an
infinite medium but become non-zero in the presence of a free surface.
In the shallower case (z0 = 1000 m), the maximum values of ∆τρρ/τu

ρρ and ∆τφφ/∆τu
φφ

are also observed at the surface, reaching values of approximately 80%.
Moreover, the figures showing the stress components generated by both inclusions (sphere
and spherical shell) highlight that the normal component of the traction is continuous
across the boundary of the inclusion. In particular, τρρ is continuous along the x-axis
(Fig. 3.5 and Fig. 3.26), τzz is continuous along the z-axis (Fig. 3.3 and Fig. 3.24), and
τφφ does not contribute to the normal traction, and therefore does not need to satisfy
any continuity condition (Fig. 3.6 and Fig. 3.27).
Although this is not clearly visible in Fig. (3.4a), within the spherical source embedded
in a half-space, the τρz component is not zero, even though it remains more than one
order of magnitude smaller than the values outside the source. Indeed, as shown in
Fig. (3.11), unlike the case without the free surface, the stress state within the source
on the median plane is not completely isotropic, while outside the source it is not fully
deviatoric.
In the case of the TPE shell, as shown in Fig. (3.30), the stress tensor within the
inclusion is strongly (though not purely) deviatoric, and outside the source it is also not
fully deviatoric, in contrast with the solutions obtained by Belardinelli et al. (2019).
As illustrated in Fig. (3.15), an extensional tectonic regime is observed at the surface,
directly above and slightly beyond the vertical projection of the source at z = 0, while
the rest of the domain is characterized by a strike-slip regime. This behavior is similar to
with the results obtained for a thin-disk-shaped TPE source, as reported by Mantiloni
et al. (2020). On the median plane, the stress regime is predominantly compressive. This
result is also in good agreement with the case of the thin disk, with the difference that
in the latter configuration a strike-slip regime is observed near the disk edges within the
source.
It is important to note that a drawback of using a spherical TPE source is that, as shown
in Fig. (3.7), the maximum shear stress inside the inclusion remains very low (compared
to the case of a spherical TPE shell with same external radius cfr Fig. 3.28), which
does not favor the occurrence of seismicity. Shear stress appears to be significantly
higher in inclusions with anisotropic geometries, particularly when one dimension is
much smaller than the others (e.g., disk-like shapes rather than spherical ones). This
suggests that shear stress within TPE inclusions increases as the geometry becomes more
flattened or elongated, i.e., as the width, thickness, and height differ more markedly. It
is very important to take these results into account when comparing with real seismicity
distributions (e.g. Nespoli et al., 2021). We will investigate more deeply the case of a
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spherical TPE shell in the next subsection.
As shown in section (2.3.4), at the surface, the Mogi source, the TPE sphere

and the TPE shell-shaped inclusion produce identical displacement, stress, and
strain components for a suitable choice of parameters. This equivalence can make
it particularly challenging to detect or confirm the presence of a TPE source based
solely on surface measurements. The implications are significant: even when the
internal physics of the system differs substantially, the surface response may remain
indistinguishable, highlighting the importance of integrating other data that also depend
on what happens at depth (e.g., seismicity or gravimetric measurements) in order to
discriminate magmatic effects from hydrothermal ones.

4.1 Analysis of the maximum shear stress
Since the magnitude and spatial distribution of the maximum shear stress depend
strongly on the geometry of the spherical TPE shell, I will focus on how Smax varies with
the inner radius a of the shell. Numerical results (Figg. C.1 and C.2) show that for a
spherical TPE inclusion (a = 0), the shear stress is one order of magnitude lower within
its interior (around 106 Pa) than outside the inclusion (around 107 Pa). As the inner
cavity increases in size, Smax rises significantly near the cavity wall, while still decaying
steeply with distance (Fig. C.1a). Despite this, the internal stress profiles retain a
similar shape when plotted against the normalized radial coordinate x/a, suggesting a
form of self-similarity (Fig. C.1b).
Outside the shell (Fig. C.2), the trend reverses: increasing a leads to lower values
of Smax in the surrounding medium. In this sense, the full-sphere case represents the
configuration that maximizes the external shear stress, while hollowing the inclusion
shifts the stress concentration inward. Notably, the external profiles do not collapse
when normalized, indicating a lack of self-similarity in the surrounding domain.
These results highlight a redistribution of shear stress as the shell geometry changes:
larger cavities (i.e., thinner shells) enhance stress localization within the shell and
reduce the stress transmitted to the external medium.

4.2 Issues with the boundary condition on the inner
spherical surface

As highlighted in section (1.3.4), the boundary condition on the internal spherical
boundary must be satisfied at the inner surface of the TPE shell source, defined by the
radius a. In spherical coordinates (r, θ, ϕ) (see Fig. 2.1 and Fig. 2.2), this condition
requires that the normal stress τrr exerted by the deforming source on the surface r = a
equals the negative of the magma chamber pressure, i.e., τrr(r = a) = −P0. Such
condition is fulfilled by the solution proposed by Belardinelli et al. (2019).

It is important to note that the procedure presented by Bonafede (1990), and followed
in section (2.1) of this thesis, represents a first step toward determining the displacement,
strain, and stress fields generated by a Mogi source in a semi-infinite medium. As shown
by McTigue (1986) and further quantified by Battaglia et al. (2013), the introduction
of the free surface inherently yields deviations from the ideal boundary condition for
the case of the Mogi source. Indeed, the resulting surface displacement differs from the
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correct one by approximately 12% for a source depth z0/a = 2, and about 3% when
z0/a = 3 (Battaglia et al., 2013).

Hence, when applying the method described in section (2.1), which introduces the
free surface to model of a spherical shell shaped TPE source embedded in an unbounded
medium, we no longer have confirmation that the boundary condition on the internal
spherical boundary is satisfied.
For the aforementioned considerations, when introducing the free surface, we could
suppose that in the present model there is an error associated with the violation of
the boundary condition τrr(r = a) = −P0, due to three contributions:

• the TPE shell itself;

• the Mogi source embedded within the shell;

• the interaction between the two sources.

In this section I describe the individual contributions of the TPE shell inclusion,
neglecting the magma chamber located within it, and of a Mogi source with a radius
equal to that of the shell’s inner boundary (in absence of the surrounding TPE shell).
The centers of both sources is the same and it is z = z0.

Given the analytical expressions for the stress fields of both the shell and the Mogi
source (the latter is obtained from the general expressions derived in section 2.3.3 by
setting the stress-free strain ϵ0 = 0 and keeping P0 ̸= 0), it is possible to compute τrr

and evaluate its deviation from the theoretical value −P0 = 107 Pa at the inner boundary
of the shell. Since the solutions presented in section (2.3.3) are expressed in cylindrical
coordinates (ρ, φ, z), the evaluation of τrr is carried out at two specific locations where
its computation becomes straightforward:

i) on the median plane (z = z0, ρ = a), where τrr = τρρ;

ii) along the vertical axis of the source (z = z0 − a, ρ = 0), where τrr = τzz.

Initially, I performed these computations for a source centered at z0 = 1000 m, with inner
radius a = 200 m and outer radius b = 500 m (i.e., the reference configuration analyzed
in chapter 3). On the median plane, the stress is τrr ≃ 1.013 · 107 Pa, corresponding
to a relative error of 1.3%. On the vertical axis, we obtain τrr ≃ 1.126 · 107 Pa, which
corresponds to a relative error of 12.6%. In both cases, the discrepancy remains below
15%, which is considered acceptable for the purposes of this study. The larger value
occurring on the axis, is likely due to its 20% closer proximity to the free surface.

For the "internal" Mogi source, we consider a pressurized sphere located at the same
depth z0 = 1000 m, with radius a = 200 m and pressure P0 = −107 Pa. In this
configuration, the deviation from the theoretical value is only 0.05% on the mid-plane
and 0.51% on the axis.

As further investigated in Appendix C, since both contributions are related to the
influence of the free surface, the corresponding error increases as the center of the source
is located closer to the plane z = 0. In general, we can observe that the error associated
with the Mogi source represents an underestimation of the correct value and for both
the shell and the internal Mogi source the error is greater when computed on the axis,
likely due to its closer proximity to the free surface.
The evaluation of the stress along the axis (Fig. C.6; i.e., the most unfavorable case)
reveals that, when the source center lies below a certain depth, the relative error falls
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below a fixed threshold regardless all values of a. To further explore this behavior,
Fig. (4.1) was generated. It shows that for z0 ≥ 950 m, the relative error remains
consistently below 15% (as indicated by the red dashed line), for each value of a. This
result implies that, for z0/b ≳ 2, the solutions proposed in this work yield sufficiently
accurate results.
Notably, the minimum depth satisfying this condition (z0 = 950 m) closely corresponds
to the configuration analyzed in chapter 3 (z0 = 1000 m). In such a case, the full-
space solution proposed by Belardinelli et al. (2019) proves inadequate for accurately
reproducing surface displacements, even in the spherical case (i.e., when boundary
conditions are not an issue; see, e.g., Fig. 3.1c and Fig. 3.2c). In particular, the absence
of the free surface causes an underestimation of the uplift by 37% in both the sphere and
shell cases when z0 = 1000 m. Therefore, employing the half-space solution becomes
essential for a reliable interpretation of surface deformation data.
We can conclude that, at least for z0/b ≳ 2, the model developed in this thesis can
be used to estimate the mechanical fields generated by a spherical shell-shaped TPE
source.
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Figure 4.1: Normal stress τrr generated by a spherical shell TPE inclusion as a function of the
inner radius of the shell a for different values of z0. The blue dashed line indicates
the absence of error (i.e., τrr = −P0), while the red dashed line represents an error
of 15%.

As previously mentioned, to obtain a more accurate result, it would be necessary to apply
a procedure analogous to the one proposed by McTigue (1986), suitably adapted to the
specific problem addressed in this thesis. This represents one of the possible directions
for future developments of the present work.

4.3 Applications and future developments of the
model

A possible application of this thesis work, as already mentioned in section (1.1.2),
concerns the study of unrest episodes at Vulcano Island. In fact, based on GNSS
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and InSAR data collected during the 2018 and 2021 unrest episodes, one can perform
inversions of deformation in unrest intervals to infer the features of the underlying
deformation sources. Several models can be employed in this analysis, including the
classical Mogi source (e.g., Bonafede 1990), the Compound Dislocation Model (CDM)
(Nikkhoo and Rivalta, 2022), the thin-disk-shaped TPE inclusion model (Mantiloni et al.
2020), the spherical TPE source and the spherical shell TPE source, and allowing for
comparison of the results obtained. It should be noted that in the case of the spherical
shell TPE inclusion, particular care must be taken if the inversion of geodetic data
suggests a shallow source (z0/b < 2).

In addition to the application in the inversion of geophysical data, a promising future
development of the model presented in this work involves extending McTigue (1986)’s
corrections to a spherical shell and to the Mogi source within it. This refinement aims
to reduce errors at all depths, ensuring a more accurate representation of subsurface
processes.

The models considered in this thesis assume that pore pressure and temperature
remain constant throughout the TPE region. A more realistic approach would allow
these parameters to vary gradually towards the boundaries, simulating fluid propagation
within the inclusion, either through analytical methods (e.g., Nespoli et al., 2023b) or
by coupling with numerical simulators for modeling fluid flow in permeable media

Moreover, an important step forward in the TPE frameworks, especially relevant in
volcanic and geothermal environments, would be to incorporate viscoelastic rheology
into the solid matrix by using the correspondence principle (Fung and Drucker, 1966).
This would enable the model to capture time-dependent deformation processes that
can be triggered by high temperatures and pore pressures, such as thermally activated
creep (Wang and Manga, 2021) and pressure solution creep (Gratier et al., 2012). By
considering these effects, the model could more effectively simulate the mechanical
behavior of geological materials under realistic conditions.

Finally, another potential improvement would be to apply Eshelby’s method
to different TPE inclusion geometries as an ellipsoidal one, in order to extend the
analytical solutions to the description of reservoirs that do not necessarily have a
spherical symmetry.
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Chapter 5

Conclusive remarks

This thesis builds upon the work of Belardinelli et al. (2019), who applied Eshelby’s
method to derive analytical solutions for TPE sources with spherical symmetry
embedded in an unbounded poro-elastic medium. Starting from those full-space
solutions, I extended the analysis to the case of a semi-infinite poro-elastic medium
bounded by a free surface. In particular, I derived analytical expressions for the
displacement, strain, and stress components associated with a spherical TPE source
placed within such a medium (section 2.2). Furthermore, I presented a first step toward
obtaining analytical solutions for a spherical shell source (section 2.3). To incorporate
the effects of the free surface, I employed both the image-source technique and the
method described in section (2.1), as detailed in section (2.1) and Appendix B.

In chapter 3, I analyzed the spatial behavior of the displacement, strain and stress
fields, as well as the maximum shear stress and the Coulomb failure function. Our
results show that when the source is deeper, the field components closely approach those
derived for a full-space configuration. Conversely, as the source approaches the surface,
a clear loss of symmetry with respect to the horizontal plane (z = z0) emerges due to the
influence of the free boundary. At the surface, the stress components τρz and τzz vanish
identically, as a consequence of the boundary conditions imposed by the image-source
and Galerkin methods. This leads to a 100% relative variation when compared to the
full-space solutions.

For both sources, the analysis of the deviatoric stress components reveals an
extensional tectonic regime at the surface, near the vertical projection of the source,
transitioning to strike-slip conditions farther away. On the equatorial plane within the
source, the regime is predominantly compressive for the sphere and strike-slip for the
shell; while, outside both inclusions, the stress state is compressive.

Regarding the spherical shell, I demonstrated that the solutions obtained here
represent only an approximation. This is because the image-source technique, while
satisfying boundary conditions at the free surface, does not fully enforce the boundary
condition on the internal spherical boundary. I quantified the error in several
configurations, all with an outer radius of 500 m but varying in inner radius and depth.
Results show that the error, decreasing with increasing source depth, is consistently
lower on the equatorial plane than along the polar axis. These observations will
be revisited and extended in future work, incorporating the corrections proposed by
McTigue (1986). However, as expressed in chapter 4, the solutions of Belardinelli
et al. (2019) underestimate the uplift by 37% when the source center lies at a depth
of z0 = 1 km, due to the absence of the free surface. For the shell source, if the depth
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is comparable to its outer radius (i.e., z0,min ≃ 2b), the error on the internal boundary
condition is below 15% and decreases with increasing depth. Therefore, for z0 > z0,min,
the model developed in this thesis is more suitable than the unbounded model, as it
more accurately estimates surface displacements while satisfying the internal boundary
conditions within acceptable limits. Conversely, for z0 < z0,min, neither model is
appropriate: the shell model fails to satisfy the internal boundary condition, whereas
the unbounded model neglects the free surface, leading to significant errors in the
estimation of vertical displacement.

A key finding of this study (section 4.1) is that as the shell becomes thinner, the
maximum shear stress inside the inclusion increases, showing self-similar behavior with
respect to the normalized horizontal distance x/a. This is particularly important, as it
may provide an explanation for seismicity occurring within the source, something not
captured by a classical Mogi source.
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Appendix A

Converting vectors and tensors from
spherical to cylindrical coordinates

In order to convert a vector u = urêr +uθ ϵ̂θ +uϕûϕ from spherical coordinates (r, θ, ϕ) to
cylindrical coordinates (ρ, φ, z) it is necessary to apply the two rotation matrix Q and
P :

u(ρ, φ, z) = QPu(r, θ, ϕ), (A.1)
where P is:

P =

sin θ cos ϕ cos θ cos ϕ − sin θ
sin θ sin ϕ cos θ sin ϕ cos ϕ

cos θ − sin θ 0

 (A.2)

and Q is:

Q =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 . (A.3)

If one wants to orient the reference system with the z axis pointing downwards, one must
apply the matrix R, defined as follows:

R =

1 0 0
0 1 0
0 0 −1

 . (A.4)

The final conversion for the displacement is:

u(ρ, φ, z) = RQPu(r, θ, ϕ). (A.5)

The strain and the stress tensor, respectively e and τ , can be obtained with the following
expressions:

e(ρ, φ, z) = RQPe(r, θ, ϕ)PTQTRT. (A.6)
τ (ρ, φ, z) = RQPτ (r, θ, ϕ)PTQTRT. (A.7)

In our treatment we made a translation of the origin of the reference system, from z = z0
to z = 0. The expression of the displacement, strain and stress fields are the following:

u′(ρ, φ, z) = u(ρ, φ, z − z0); e′(ρ, φ, z) = e(ρ, φ, z − z0); τ ′(ρ, φ, z) = τ (ρ, φ, z − z0).
(A.8)

By applying previous procedure we can obtain the conversion of the stress components,
obtained from Belardinelli et al. (2019).
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A.1 Stress components in cylindrical coordinates
for a spherical TPE inclusion in an unbounded
space

The expressions of the stress in eqq. (1.62) and (1.63) in cylindrical coordinates can be
derived. By defining R

.= (ρ2 + (z − z0)2)1/2:

τ I
ρρ(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3


1+ν
a3 − 3(1+ν)

a3
ϵ0
ϵ1

if R < a

1+ν
(ρ2+(z−z0)2)3/2 − 3[(1−ν)ρ2+ν(z−z0)2]

(ρ2+(z−z0)2)5/2 if R ≥ a
; (A.9)

τ I
φφ(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3


1+ν
a3 − 3(1+ν)

a3
ϵ0
ϵ1

if R < a
1−2ν

(ρ2+(z−z0)2)3/2 if R ≥ a
; (A.10)

τ I
zz(ρ, z) = 2µ

3(1 − 2ν)ϵ1a
3


1+ν
a3 − 3(1+ν)

a3
ϵ0
ϵ1

if R < a

1+ν
(ρ2+(z−z0)2)3/2 − 3[νρ2+(1−ν)(z−z0)2]

(ρ2+(z−z0)2)5/2 if R ≥ a
; (A.11)

τ I
ρz(ρ, z) = 2µϵ1a

3

0 if R < a

− ρ(z−z0)
(ρ2+(z−z0)2)5/2 if R ≥ a

. (A.12)

A.2 Stress components in cylindrical coordinates for
a spherical shell TPE inclusion in an unbounded
space

The expressions of the stress components in eqq. (1.65) and (1.66) in cylindrical
coordinates can be derived:

(A.13)τ I
ρρ(ρ, z)

= 2µ

1 − 2ν


P0a3

4µ

(
1+ν
R3 − 3 (1−ν)ρ2+ν(z−z0)2

R5

)
+

+1
3ϵ1

[
(1 + ν)

(
1 − a3

R3

)
+ 3a3 (1−ν)ρ2+ν(z−z0)2

R5

]
− (1 + ν)ϵ0 if a2 ≤ R2 ≤ b2(

P0a3

4µ
+ 1

3ϵ1(b3 − a3)
) (

1+ν
R3 − 3 (1−ν)ρ2+ν(z−z0)2

R5

)
if R2 > b2

;

(A.14)τ I
φφ(ρ, z) = 2µ


P0a3

4µ
1

R3 + 1
3ϵ1

(
1+ν
1−2ν

− a3

R3

)
− 1+ν

1−2ν
ϵ0 if a2 ≤ R2 ≤ b2(

P0a3

4µ
+ 1

3ϵ1(b3 − a3)
)

1
R3 if R2 ≥ b2 ;

(A.15)τ I
zz(ρ, z)

= 2µ

1 − 2ν


P0a3

4µ

(
1+ν
R3 − 3νρ2+(1−ν)(z−z0)2

R5

)
+

+1
3ϵ1

[
(1 + ν)

(
1 − a3

R3

)
+ 3a3 νρ2+(1−ν)(z−z0)2

R5 − (1 + ν)ϵ0
]

if a2 ≤ R2 ≤ b2(
P0a3

4µ
+ 1

3ϵ1(b3 − a3)
) (

1+ν
R3 − 3νρ2+(1−ν)(z−z0)2

R5

)
if R2 > b2

;

τ I
ρz(ρ, z) = −


(

3
2P0a

3 − 2µϵ1a
3
)

ρ(z−z0)
R5 if a2 ≤ R2 ≤ b2(

3
2P0a

3 + 2µϵ1(b3 − a3)
)

ρ(z−z0)
R5 if R2 > b2 . (A.16)
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Appendix B

Complete solution for Z and uZ
i

In the same way of S0(ρ), Z can be expanded through Hankel transform:

Z(ρ, z) =
∫ ∞

0
dc J0(ρc)Z̃(c, z), (B.1)

where:
Z̃(c, z) =

∫ ∞

0
dρ cρJ0(ρc)Z(ρ, z). (B.2)

An important property of Bessel’s functions is required to solve the problem:

J ′′
0 (x) + 1

x
J ′

0(x) + J0(x) = 0. (B.3)

Due to linearity of previous equations and superposition principle, it is possible to
consider one harmonic component at time, and, applying eq. (2.14) in eq. (B.1) it
is possible to obtain:∫ ∞

0
dc J0(ρc)

[
Z̃(IV )(c, z) − 2c2Z̃(II)(c, z) + c4Z̃(c, z)

]
= 0, (B.4)

where roman numerals in superscript represents the order of the derivative of the function
with respect to z.
In order to obtain an expression for Z̃(c, z) we can exploit the completeness property of
Bessel functions J0(ρc), requiring that:∫ ∞

0
dρ ρcJ0(ρc)J0(ρc′) = δ(c′ − c), (B.5)

where δ(x) is the Dirac’s delta function. In eq. (B.4) it is possible to multiply by ρJ0(c′ρ)
and, after an integration in dρ, we obtain the term in the square bracket evaluated in
c = c′ must vanish. This last part results in a fourth-order homogeneous differential
equation, in which the characteristic polynomial has two solutions (±c) with multiplicity
equal to two; hence, the general solution can be written in the form:

Z̃(c, z) =
[
(A + Bcz)e−cz + (C + Dcz)e+cz

]
, (B.6)

where A, B, C, D are coefficients to be determined and the factor c which multiplies z is
placed in order to make dimensionally homogeneous previous coefficients. It is possible
to observe that C and D must vanish because when z → +∞ the solution must be
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bounded.
If one considers each single component Zc(ρ, z) of Z(ρ, z):

Zc(ρ, z) = J0(cρ)Z̃(c, z), (B.7)

one can observe that it satisfies ∇4Zc(ρ, z) = 0 and stress components τ c
zi obtained from

Zc according to eqq. (2.17) and (2.19); (2.18), obey boundary conditions derived from
eq. (2.11). τC

ρz = 0 in z = 0
τC

zz = −S̃0(c)J0(cρ) in z = 0
. (B.8)

We can rewrite those conditions for the single component Zc:
∂
∂ρ

[
(1 − ν)∇2 − ∂2

∂z2

]
Zc = 0 in z = 0

∂
∂z

[
(2 − ν)∇2 − ∂2

∂z2

]
Zc = −S̃0(c)J0(cρ) in z = 0

. (B.9)

By using eq. (B.6) and the fact that C = D = 0, eq. (B.7) becomes:

Zc(ρ, z) = J0(cρ)(A + Bz)e−cz. (B.10)

Now, we can impose the first condition of eq. (B.9):

∂

∂ρ

[
(1 − ν)∇2 − ∂2

∂z2

] (
J0(cρ)(A + Bz)e−cz

)
= 0. (B.11)

The partial derivative ∂
∂z

of the argument of eq. (B.11) is:

(B.12)∂

∂z

(
J0(cρ)(A + Bz)e−cz

)
= J0(cρ)

(
Be−cz − c(A + Bz)e−cz

)
,

and the corresponding second derivative is:

(B.13)
∂2

∂z2

(
J0(cρ)(A + Bz)e−cz

)
= ∂

∂z
J0(cρ)

(
Be−cz − c(A + Bz)e−cz

)
= J0(cρ)

(
−2cB + c2(A + Bz)

)
e−cz,

but in z = 0, this equation becomes:

(B.14)∂2

∂z2

(
J0(cρ)(A + Bz)e−cz

)∣∣∣∣∣
z=0

= J0(cρ)(−2cB + c2A).

The expression of the Laplacian of an axi-symmetric function in cylindrical coordinate
is the following:

(B.15)∇ .= ∂2

∂ρ2 + 1
ρ

∂

∂ρ
+ ∂2

∂z2 .

By using eq. (B.15) we get the Laplacian of the argument of eq. (B.11):

(B.16)∇2
(
J0(cρ)(A + Bz)e−cz

)
=
(

c2J ′′
0 (cρ) + c

ρ
J ′

0(cρ)
)

(A + Bz)e−cz

+ J0(cρ)
(
−2cB + c2(A + Bz)

)
e−cz,
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which in z = 0, equals to:

(B.17)∇2
(
J0(cρ)(A + Bz)e−cz

)∣∣∣
z=0

= A

(
c2J ′′

0 (cρ) + c

ρ
J ′

0(cρ)
)

+ J0(cρ)
(
−2cB + c2A

)
.

By multiplying eq. (B.17) for (1 − ν) and by adding the opposite of eq. (B.14) we
obtain an expression that has to be differentiating with respect to ρ to reproduce the
first equation in eq. (B.9):

(B.18)

∂

∂ρ

{[
(1 − ν)c2

(
J ′′

0 (cρ) + 1
ρc

J ′
0(cρ) + J0(cρ)

)
A − 2(1 − ν)cBJ0(cρ)

]

− J0(cρ)(−2cB + c2A)
}

= 0;

by using eq. (B.3) and by doing some algebra we get:

(B.19)∂

∂ρ

[
J0(cρ)(2cνB − c2A)

]
= 0.

Hence, we get:
A = 2νB

c
. (B.20)

We can impose the second condition of eq. (B.9):

∂

∂z

[
(2 − ν)∇2 − ∂2

∂z2

] (
J0(cρ)(A + Bz)e−cz

)
= −S̃0(c)J0(cρ). (B.21)

We have already computed the second derivative with respect to z and the Laplacian
of the argument in the first term of equation (B.21), which are respectively given in
equations (B.13) and (B.16). By differentiating with respect to z the second derivative,
we obtain:

(B.22)∂

∂z

∂2

∂z2

[
J0(cρ) (A + Bz) e−cz

]
= J0(cρ)

(
3c2Be−cz − c3(A + Bz)e−cz

)
,

and, in z = 0, we get:

(B.23)∂

∂z

∂2

∂z2

[
J0(cρ)

(
−2cBe−cz + c2(A + Bz)e−cz

)]∣∣∣∣∣
z=0

= J0(cρ)c2 (3B − cA) .

The partial derivative with respect to z of eq. (B.16) is:

∂

∂z

[(
c2J ′′

0 (cρ) + c

ρ
J ′

0(cρ)
)

(A + Bz)e−cz + J0(cρ)
(
−2cB + c2(A + Bz)

)
e−cz

]

= c2
(

J ′′
0 (cρ)+ 1

cρ
J ′

0(cρ)
)

(B −c(A+Bz)) e−cz +J0(cρ)
(
Bc2 +2c2B −c3(A+Bz)

)
e−cz.

(B.24)

The previous expression, in z = 0, takes the form as follows:

∂

∂z
∇2

(
J0(cρ)(A+Bz)e−cz

)∣∣∣∣∣
z=0

=
(

J ′′
0 (cρ)+ 1

cρ
J ′

0(cρ)
)

(B −cA) c2 +J0(cρ)c2 (3B −cA) .

(B.25)
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To solve eq. (B.21), we multiply eq. (B.25) by (2−ν) and add the opposite of eq. (B.23).
Applying these operations, we obtain:

(B.26)(2 − ν)
(

J ′′
0 (cρ) + 1

cρ
J ′

0(cρ)
)

c2(B − cA) + (1 − ν)J0(cρ)c2(3B − cA),

and, by using eq. (B.3), we obtain:

(B.27)(2 − ν)c2 (−J0(cρ)) (B − cA) + (1 − ν)J0(cρ)c2(3B − cA).

Now, by imposing the conditions given in eq. (B.21) and in eq. (B.20), we obtain the
value of the coefficient B:

B = − S̃0

c3 . (B.28)

Once the coefficient B has been determined, equation (B.20) can be used to obtain the
coefficient A:

A = 2νB = −2ν
S̃0

c3 . (B.29)

The expression of S0(ρ), needed to continue the treatment, can be determined from the
condition:

S0(ρ) = τ II
zz (z = 0). (B.30)

From eq. (2.9), we have that eq. (B.30) assumes the following form:

S0(ρ) = τ II
zz (z = 0) = −4

3µϵ1a
3
(

3z2
0

(ρ2 + z2
0)5/2 − 1

(ρ2 + z2
0)3/2

)
. (B.31)

By substituting eq. (B.31) into eq. (2.13) we have:

S̃0(c) =
∫ ∞

0
dρ cρJ0(ρc)

[
−4

3µϵ1a
3
(

3z2
0

(ρ2 + z2
0)5/2 − 1

(ρ2 + z2
0)3/2

)]
. (B.32)

The second part of the integral is:∫ ∞

0
dρ

ρJ0(cρ)
(ρ2 + z2

0)3/2 . (B.33)

This integral is tabulated in Gradshteyn and Ryzhik (2014). The general solution of the
integral is: ∫ ∞

0
dt

tζ+1Jζ(ct)
(t2 + z2

0)χ+1 = cχzζ−χ
0

2χΓ(χ + 1)Kζ−χ(cz0), (B.34)

where Kα is the modified Bessel function of the second kind:

Kα(x) =
∫ ∞

0
dm e−x cosh m cosh αm, (B.35)

and Γ(l) is the Gamma function, defined as follows:

Γ(l) =
∫ ∞

0
dn nl−1e−n; R(l) > 0. (B.36)
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The modified Bessel function of the second kind can be developed by asymptotic
expansion (Abramowitz and Stegun, 1972):

(B.37)
Kα(x) ≃

√
π

2x
e−x

(
1 + (4α2 − 1)

8x
+ (4α2 − 1)(4α2 − 9)

2! (8x)2

− (4α2 − 1)(4α2 − 9)(4α2 − 25)
3! (8x)3 + ...

)
.

By comparing eq. (B.33) and eq. (B.34) we can set t = ρ, ζ = 0, χ = 1/2 and we have:
∫ ∞

0
dρ

ρJ0(cρ)
(ρ2 + z2

0)3/2 =
√

c

2z0

1
Γ(3/2)K−1/2(cz0). (B.38)

By using eq. (B.37) for α = −1/2 we can notice that the only non-vanishing term is the
first one:

K−1/2(cz0) =
√

π

2cz0
e−cz0 , (B.39)

hence, by using eq. (B.36) for l = 3/2 (we get Γ(3/2) =
√

π/2), the result of eq. (B.38)
is: ∫ ∞

0
dρ

ρJ0(cρ)
(ρ2 + z2

0)3/2 = e−cz0

z0
. (B.40)

The second part of the integral is:∫ ∞

0
dρ

ρJ0(cρ)
(ρ2 + z2

0)5/2 . (B.41)

By comparing eq. (B.41) and eq. (B.34) we can set t = ρ, ζ = 0, χ = 3/2 and we have:

∫ ∞

0
dρ

ρJ0(cρ)
(ρ2 + z2

0)5/2 =

√√√√ c3

(2z0)3
1

Γ(5/2)K−3/2(cz0). (B.42)

By using eq. (B.37) for α = −3/2 we can notice that, for K−3/2(cz0), the only non-
vanishing terms are the first two:

K−3/2(cz0) =
√

π

2cz0
e−cz0

(
1 + 1

cz0

)
(B.43)

hence, by using eq. (B.36) for l = 5/2 (we get Γ(5/2) = 3
√

π/4), the result of eq. (B.38)
is: ∫ ∞

0
dρ

ρJ0(cρ)
(ρ2 + z2

0)5/2 = c

3z2
0

(
1 + 1

cz0

)
e−cz0 . (B.44)

Now, we can introduce the results expressed in eqq. (B.40) and (B.44) into eq. (B.32),
obtaining:

S̃0(c) = −4
3µϵ1a

3c2e−cz0 . (B.45)

In order to obtain the expression of Z(ρ, z) it is necessary to determine the single
component Zc(ρ, z) from eq. (B.7):

Zc(ρ, z) = +4
3µϵ1

a3

c
(2ν + cz)e−c(z+z0)J0(cρ), (B.46)
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where we substituted the values of S̃0(c) into the expressions of A and B in eqq. (B.29)
and (B.28), and then, those values in eq. (B.6).
From eq. (2.15) and eq. (2.16) it is possible to determine the expression of the
components of the displacement associated to Zc:

2µuc
ρ = +4

3µϵ1a
3J1(ρc)(1 − 2ν − cz)ce−c(z+z0); (B.47)

2µuc
z = −4

3µϵ1a
3J0(ρc) [2(1 − ν) + cz] ce−c(z+z0). (B.48)

It is important to notice that in eq. (B.47) it was used that J1(x) = − d
dx

J0(x), while in
eq. (B.48) it was used the property expressed in eq. (B.3).
The final step in determining uZ

z and uZ
ρ is to integrate uc

z and uc
ρ in dc, according with

the superposition principle. By starting with uZ
z we obtain:

2µuZ
z = −4

3µϵ1a
3
∫ ∞

0
dc J0(ρc) [2(1 − ν) + cz] ce−c(z+z0). (B.49)

Except for multiplicative constants, the first part of the integral is:∫ ∞

0
dc J0(ρc)ce−c(z+z0). (B.50)

This integral is tabulated in Gradshteyn and Ryzhik (2014). The general solution of the
integral is: ∫ ∞

0
dt e−γtJζ(βt)tζ+1 = 2γ(2β)ζΓ(ζ + 3/2)√

π(γ2 + β2)ζ+3/2 . (B.51)

By comparing eq. (B.50) and eq. (B.51) we can set t = c, ζ = 0, γ = (z + z0), β = ρ
and, by using eq. (B.36) for l = 3/2 (we get Γ(3/2) =

√
π/2), we have:∫ ∞

0
dc J0(ρc)ce−c(z+z0) = (z + z0)

((z + z0)2 + ρ2)3/2 . (B.52)

The first part of the integral in eq. (B.32) is proportional to:∫ ∞

0
dc J0(ρc)c2e−c(z+z0). (B.53)

This integral is also tabulated in Gradshteyn and Ryzhik (2014). The general solution
of the integral is:∫ ∞

0
dt e−γtJζ(βt)tχ−1 = (γ + β)−1/2χΓ(ζ + χ)P −ζ

χ−1

[
γ(γ2 + β2)−1/2

]
, (B.54)

where P m
l (x) is the associated Legendre polynomial of degree l and order m. By

comparing eq. (B.53) and eq. (B.54) we can set t = c, ζ = 0, χ = 3, γ = (z + z0),
β = ρ, so that the integral in eq. (B.53) is proportional to the second order Legendre
polynomial:

P 0
2

[
(z + z0)

((z + z0)2 + ρ2)1/2

]
= 1

2

[
2(z + z0)2 − ρ2

(z + z0)2 + ρ2

]
, (B.55)

where I used the relation P 0
2 (x) = 1

2(3x2 − 1), and since Γ(3) = 2, we get:
∫ ∞

0
dc J0(ρc)c2e−c(z+z0) = 2(z + z0)2 − ρ2

((z + z0)2 + ρ2)5/2 . (B.56)
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By combining eqq. (B.49) and (B.52); (B.56) we get the expression of uZ
z (ρ, z):

(B.57)
uZ

z (ρ, z) = −2
3ϵ1a

3
[
2(1 − ν) z + z0

((z + z0)2 + ρ2))3/2 − z

((z + z0)2 + ρ2))3/2

+ 3z(z + z0)2

((z + z0)2 + ρ2))5/2

]
.

By proceeding with uZ
ρ we obtain:

2µuZ
ρ = +4

3µϵ1a
3
∫ ∞

0
dc J1(ρc)[1 − 2ν − cz]ce−c(z+z0). (B.58)

Except for multiplicative constants the first part of the integral is:∫ ∞

0
dc J1(ρc)ce−c(z+z0), (B.59)

and, by comparing eq. (B.59) and eq. (B.54) we can set t = c, ζ = 1, χ = 2, γ = (z +z0),
β = ρ. Here it shows up the associated Legendre polynomial of degree 1 and order −1:

P −1
1

[
(z + z0)

(ρ2 + (z + z0)2)1/2

]
= −

[
ρ2

ρ2 + (z + z0)2

]1/2

, (B.60)

where we used the relation P −1
1 (x) = −(1 − x2)1/2, and since Γ(3) = 2, we get:∫ ∞

0
dc J1(ρc)ce−c(z+z0) = ρ

((z + z0)2 + ρ2)3/2 . (B.61)

The second part of the integral is proportional to:∫ ∞

0
dc J1(ρc)c2e−c(z+z0), (B.62)

and, by comparing eq. (B.59) and eq. (B.51) we can set t = c, ζ = 1, γ = (z + z0),
β = ρ. The result of eq. (B.62) is

∫ ∞

0
dc J1(ρc)c2e−c(z+z0) = 3ρ(z + z0)

(ρ2 + (z + z0)2)5/2 . (B.63)

By combining eqq. (B.58) and (B.61); (B.63) we get the expression of uZ
ρ (z, ρ):

uZ
ρ = 2

3ϵ1a
3
[
(1 − 2ν) ρ

((z + z0)2 + ρ2)3/2 − 3z(z + z0)ρ
((z + z0)2 + ρ2)5/2

]
. (B.64)
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Appendix C

Auxiliary figures supporting the
discussion

Fig. (C.1) and Fig. (C.2) show the maximum shear stress Smax generated by spherical
shells of difference geometries, respectively, within and outside the source. In particular,
the center of the shell is fixed at a depth of z0 = 1000 m, and the outer radius is kept
constant at b = 500 m. On the other hand, the inner radius a varies from 0 m (i.e.,
spherical source) up to 400 m, in increments of 100 m.
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Figure C.1: Maximum shear stress Smax generated by spherical shells of different geometries
(i.e., varying inner radius a), evaluated on the median plane z = z0 = 1000 m and
within the shell. Panel (a) shows the variation of Smax as a function of x, while
panel (b) displays the same quantity as a function of the normalized coordinate
x/a.
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Figure C.2: Maximum shear stress Smax generated by spherical shells of different geometries
(i.e., varying inner radius a), evaluated on the median plane z = z0 = 1000 m and
outside the shell. Panel (a) shows the variation of Smax as a function of x, while
panel (b) displays the same quantity as a function of the normalized coordinate
x/a.

To further investigate the behavior discussed in section (4.2), a set of plots (Fig. C.3
and Fig. C.4) was produced showing the variation of τrr as a function of the source depth
z0, for different values of the radius a, keeping b = 500 m constant. This last reference
value is relevant only for the contribution of the shell, since in the case of the Mogi source
the terms involving b vanish when ϵ1 = 0 is imposed; indeed, in this configuration, for
r > a, the medium corresponds solely to the embedding matrix.
Both errors decrease with increasing z0 for a fixed a.
In the median plane (Fig C.3), for any value of a, the shell error falls below 10% already
at z0 ≃ 700 m, while on the axis this occurs only at significantly greater depth (z0 ≃
1100 m). However, in the axis (Fig. C.4), for z0 ≥ 700 m, the error remains below
25%. In general, the error is greater when computed on the axis, likely due to its closer
proximity to the free surface.
At the minimum depth analyzed (z0 = 500 m), the maximum error on the median plane
for the shell remains below 14%, while for the Mogi error is below 5%.
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Figure C.3: Panel (a) shows τrr generated by a spherical shell TPE inclusion as a function
of the vertical coordinate of the center of the source z0 for different values of the
inner radius a. Panel (b) shows the same plot for the Mogi source. The dashed
line indicates the absence of error, i.e., τrr = −P0.
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Figure C.4: Panel (a) shows τrr generated by a spherical shell TPE inclusion as a function
of the vertical coordinate of the center of the source z0 for different values of the
inner radius a. Panel (b) shows the same plot for the Mogi source. The dashed
line indicates the absence of error, i.e., τrr = −P0.

We have also analyzed the trend of τrr as a function of the radius a for fixed depth z0
(Fig. C.5a and Fig. C.6a). Also in this case, the behavior differs between the shell and
the Mogi source; in particular, for the shell, the stress variation is non-monotonic. A
zero error is obtained at a ≃ 435 m for each z0. For a < 435 m, the shell overestimates
the correct value (positive error), whereas for a > 435 m, it underestimates it (negative
error). In the range a < 435 m, for deeper sources (e.g., z0 = 700 − 800 m), the curve is
nearly monotonic: as the inner radius a increases, the calculated stress converges toward
the target value. By contrast, for shallower sources (e.g., z0 = 500 m) the error grows to
a peak and then declines. These positive and negative errors should be added to that of
the Mogi source to provide a complete picture of the total stress deviation.
For the Mogi source (Fig. C.5b and Fig. C.6b), the behavior is nearly monotonic with
increasing a, and the stress consistently underestimates the correct value.
Finally, as expected, for a = 500 m, the stress value of the Mogi source matches that of
the shell.
In the median plane (Fig. C.5a), for the shallowest depth considered z0 = 500 m, the
shell error remains below 5% within the interval a ∈ [390; 460] m. Within the same
range, the Mogi source error (Fig. C.5b) lies between 5% and 8%, leading to a combined
maximum error below 13%.

92



0 100 200 300 400 500
a (m)

0.9

0.95

1

1.05

1.1

1.15
St

re
ss

 (
Pa

)

107  in z = z0 and  = a

z
0
 = 500 m

z
0
 = 600 m

z
0
 = 700 m

z
0
 = 800 m

(a)

0 100 200 300 400 500
a (m)

9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

St
re

ss
 (

Pa
)

106  in z = z0 and  = a

z
0
 = 500 m

z
0
 = 600 m

z
0
 = 700 m

z
0
 = 800 m

(b)

Figure C.5: Panel (a) shows τrr generated by a spherical shell TPE inclusion as a function
of the inner radius of the shell a for different values of z0. Panel (b) shows the
same plot for the Mogi source. The dashed line indicates the absence of error, i.e.,
τrr = −P0.

0 100 200 300 400 500
a (m)

0

0.5

1

1.5

2

2.5

St
re

ss
 (

Pa
)

107 zz in z = z0 - a and  = 0

z
0
 = 500 m

z
0
 = 600 m

z
0
 = 700 m

z
0
 = 800 m

(a)

0 100 200 300 400 500
a (m)

0

1

2

3

4

5

6

7

8

9

10

St
re

ss
 (

Pa
)

106 zz in z = z0 - a and  = 0

z
0
 = 500 m

z
0
 = 600 m

z
0
 = 700 m

z
0
 = 800 m

(b)

Figure C.6: Panel (a) shows τrr generated by a spherical shell TPE inclusion as a function
of the inner radius of the shell a for different values of z0. Panel (b) shows the
same plot for the Mogi source. The dashed line indicates the absence of error, i.e.,
τrr = −P0.
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