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Introduction

The quest to teach computers how to make decisions in complex and chaotic
environments has been a central point of research since their invention. Among
the frameworks that have been proposed regarding this topic, Reinforcement
Learning (RL) stands out. It provides a general approach to sequential decision
problems, based on Markov decision processes and stochastic control theory. Re-
inforcement Learning algorithms are often characterized by the need to balance
exploration (trying new actions to gather more information) and exploitation
(using known information to gain reward); this is a crucial and recurrent topic
in decision-making algorithms.

A simplified but fundamental instance of this dilemma is the multi-armed
bandit (MAB) problem. It captures the core of the exploration-exploitation
trade-off in a minimal form and serves both as a theoretical tool and a building
block for more complex models. Over the years, a rich theory has been devel-
oped around the multi-armed bandit problem, including performance bounds
and optimal strategies under various assumptions. Classical algorithms such as
the e-greedy strategy and Upper Confidence Bounds (UCB) have been widely
studied and applied.

However, in many realistic settings, some form of prior knowledge or initial
preference is available regarding possible actions. This leads to extensions of
the classical bandit model that incorporate Bayesian priors, like the Thompson
sampling algorithm, or externally provided preferences, such as those employed
in PUCT:" a key component of the Monte Carlo Tree Search (MCTS) algorithm
used in AlphaZero.

The aim of this thesis is to investigate the relations between bandit strate-
gies and tree search methods for decision-making, especially in the presence of
stochasticity. We begin by reviewing the foundations of Reinforcement Learning
(Chapter 1) and formalizing the standard multi-armed bandit problem and its
classical solutions (Chapter 2). We then extend the discussion to bandit models
that incorporate prior information and analyze the behavior of algorithms like
Thompson sampling and PUCT.

Chapter 3 introduces the Monte Carlo Tree Search framework and its in-
tegration with bandit methods via UCT and PUCT. In Chapter 4, we shift
focus to decision problems with stochastic transitions, which introduce addi-
tional complexity through the presence of Chance Nodes. We explore different
strategies for dealing with such uncertainty, including random sampling, fixed
number sampling and progressive widening.

Finally, Chapter 5 presents a series of numerical experiments designed to
compare the performance of the various strategies presented throughout the
dissertation, thought to study the suitability of the methods under different
types of environments.



1 Reinforcement Learning

Reinforcement Learning is a branch of Machine Learning, which in turn is a
branch of Artificial Intelligence. Artificial Intelligence (AI) is a discipline that
aims to equip non-human systems with capabilities typically associated with hu-
man intelligence, such as reasoning, learning, and planning. These capabilities,
once considered uniquely human, are now increasingly being replicated in artifi-
cial systems through a variety of computational methods. AI encompasses both
symbolic approaches (based on formal logic and knowledge representation) and
data-driven techniques, which rely on extracting patterns from large datasets
to support autonomous decision-making.

The skill Machine Learning (ML) wants to master is pattern recognition:
extrapolate information from known data to better understand new data. This
generalization ability is crucial in a wide range of applications, including com-
puter vision, speech recognition, and medical diagnosis. ML models are trained
on historical data and are expected to adapt their behavior when encounter-
ing new, previously unseen inputs. As such, ML serves as a core mechanism
through which Al systems are able to operate effectively in real-world, data-rich
environments.

Among all types of ML methods, the one that takes inspiration the most
from human learning is Reinforcement Learning (RL): its main idea is to give
feedback to an agent in the form of rewards or penalties depending on the
choices it makes. This learning paradigm mirrors the trial-and-error process
by which humans and animals learn to interact with their environment. An
RL agent is not explicitly told which actions to take, but rather must discover
optimal behavior through repeated experimentation, guided by the outcomes it
experiences.

This idea was born in the middle of the 20th century, inspired by the behav-
ioristic studies of psychologist B.F. Skinner (1904-1990), who introduced the
concept of reinforcement as the principal mechanism shaping and regulating
behavior. Skinner’s experiments demonstrated how organisms could be condi-
tioned to perform specific actions based on the administration of rewards or
punishments. These findings laid the conceptual groundwork for computational
models of learning based on interaction and feedback.

The Dynamic Programming algorithm [5] is the first instance of a reward
associated to a state in order to infer an optimal choice. Bellman’s formulation
introduced the notion of recursively solving subproblems to construct an optimal
solution, a principle that remains foundational in RL. In the following years,
the Markov Decision Process (MDP) became the standard formalism to model
RL problems. MDP provide a rigorous mathematical framework to represent
environments in which outcomes depend both on the agent’s decisions and on
probabilistic dynamics, making them well-suited to capture the structure of
sequential decision-making tasks.

The first concrete achievement came with TD-Gammon [16]: a Backgammon
program able to play and beat the strongest human players, thanks to the use of
a neural network to approximate rewards. This was one of the earliest examples



of combining RL with function approximation via neural networks, enabling
learning in high-dimensional spaces where tabular methods were no longer fea-
sible. TD-Gammon demonstrated that reinforcement learning could surpass
human expertise in complex strategic domains, thus attracting widespread at-
tention from both academia and industry.

From 2006, the introduction of Monte Carlo Tree Search (MCTS) [11] further
improved RL algorithms, which have since surpassed human-level performance
in a range of applications, including games [15], recommendation systems [1],
financial trading [8], and autonomous control [10]. MCTS enables more efficient
exploration of decision spaces by simulating multiple future action trajectories,
balancing exploitation of known good strategies with the exploration of less
certain alternatives. Its effectiveness was famously demonstrated by AlphaGo
and its successors, which achieved superhuman performance in the ancient board
game Go. Today, reinforcement learning continues to evolve rapidly, playing a
central role in areas such as robotics, healthcare, industrial automation, and
adaptive resource management.

1.1 Formalization

Let us take a closer look at Reinforcement Learning, in particular at how we
can formally describe its strategy.

The interactions of an agent with the environment occur in discrete time
steps and are modeled as a Markov decision process (MDP). The MDP is defined
by:

e The set of states S: it contains every possible configuration that the envi-
ronment can assume at a given time step. Every element of S is called a
state and contains only information available to the agent (e.g. in a poker
game, a state does not include opponents’ hands). Depending on the ap-
plication, a state can encode the position of a robot, the configuration of
a game board, or the current user behavior in a suggestions system.

e The set of actions A possible in each state s. The actions represent the
different ways the agent can act in the environment. Each action leads the
agent to interact with the environment and cause changes in its state. The
action space can also be discrete or continuous and may vary depending
on the current state (e.g., some actions may only be available in certain
contexts). Choosing the right action is central to the decision-making
process.

e P(s'| s,a): probability of transition from state s to state s’ given action a,
that is: P gives the probability of ending in state s’ in the following time
step, after picking action a in state s and it follows the Markov property,
implying that (the probability of) future states of the process depend only
upon the present state, not on the sequence of events that preceded it. This
assumption greatly simplifies modeling and computation. In practical ap-
plications, however, real environments may not strictly satisfy the Markov



property, and additional techniques may be required to approximate this
setting, such as using history-based features or memory-augmented mod-
els.

e R(s'|s,a): reward function on transition from s to s’ given a. When the
agent in state s picks an action a and moves to state s’ in the following
time step, it receives an immediate reward from the environment. This
reward serves as a signal to guide learning, helping the agent distinguish
between good and bad actions based on their outcomes.

In this framework, the aim of an agent is to discover a policy w. A policy
is a mapping from states to actions (deterministic) or to action probabilities
(stochastic). The optimal policy maximizes the expected cumulative reward
over time. Learning an optimal policy is the central goal in Reinforcement
Learning.

In Reinforcement Learning, P and R define the world model and represent,
respectively, the environment’s dynamics and the long-term reward for each pol-
icy. If the world model is known (i.e. for every suitable input we know the values
of P and R) there is no need to learn to estimate the transition probability and
reward function; thus, we can directly calculate the optimal strategy (policy)
using model-based approaches such as dynamic programming. These methods,
including value iteration and policy iteration, are mathematically elegant and
computationally efficient when applicable, but they rely on full knowledge of
the environment.

If, instead, the world model is unknown, we may want to approximate the
transition and the reward functions by learning estimates of future rewards given
by picking action a in state s. Another option could be a model-free approach,
where the agent interacts with the environment to gather experience and learn
a policy directly from observations, without building an explicit model of P and
R. Popular model-free methods include Q-learning, SARSA, and policy gradient
algorithms. These approaches are particularly useful when dealing with complex
environments where the dynamics are either too difficult to model or entirely
unknown.

We then calculate our policy based on these estimates. The process involves
balancing exploration—trying new actions to gather more information—and ex-
ploitation—using the current knowledge to maximize reward. This exploration-
exploitation trade-off is one of the fundamental challenges in RL and is typically
handled through strategies such as e-greedy policies or entropy regularization.
As the agent continues to interact with the environment, it updates its estimates
and refines its policy, aiming to converge to an optimal or near-optimal behavior
over time.

To make this formulation clear, let us see the very simple example of an
agent that plays tic-tac-toe.

First of all, we consider S to be the set of all the possible positions that can
be reached on the board (if we assume the X player goes first we don’t even
have to specify which player’s turn it is).



We define A as the set of possible moves. For the position s we can further-
more define A, a subset of A, containing all moves that the current player can
make, like in the following example:

X | X
st = 0 = A.={3,4,5718}
0

where a move is represented by the number of the cell where the symbol is put
(in left-to-right reading order). In a game like tic-tac-toe, where the rules are
known and there isn’t a random component, the P function can output only
two values:

1 if ' is the only position action a yields to

P(s|s',a)= {

0 otherwise

As we just saw, in tic-tac-toe there is a unique position reachable given the
current state and the action, hence the reward function depends only on s and
a. In position s* we will get the highest reward for a = 3, since it wins the
game. This reward is immediately assigned since we reach a terminal state.
Every other move lets the match continue and hence does not give immediate
reward. If in the following time step the agent will win the game, a positive
reward will be assigned to this state-action pair and a negative reward will be
back-propagated to the previous one. This makes tic-tac-toe an example of a
deterministic environment with a very limited state and action space, where it is
often easy to assign clear and unambiguous values to the reward function. The
rules are simple, the number of possible states is finite and relatively small, and
the consequences of each action can often be computed or predicted exactly.

In this position it was very simple to understand which values R should have
returned, but it isn’t always the case. Let us think about the first move of a
game: which values must the reward function output for the 9 different legal
moves? How can we determine it? Tic-tac-toe is one of the simplest game to
solve, so what about a chess match, or more complicated games, where even the
strongest human players cannot judge with precision the goodness of a position?

In the early stages of a game, the effect of a move may only become evident
many steps later, after a long sequence of actions and reactions. This delay in the
outcome is what makes the definition of the reward function especially difficult.
In complex games like chess or Go, the number of possible configurations is
astronomical, and the relationship between an action and its eventual payoff is
often obscured by a long horizon of intermediate moves. As a result, the reward
signal is sparse and delayed, which complicates the learning process significantly.

It appears clear how one of the main challenges in RL is to find an optimal
way to compute or approximate the reward function.

In real-world applications, this challenge becomes even more pressing. Con-
sider autonomous driving, where rewards must be designed to reflect safety,
efficiency, and comfort; or healthcare, where actions may have delayed effects
on patient outcomes. In these domains, the reward function is not only hard



to define, but also difficult to observe directly, requiring domain knowledge or
expert data to be inferred. In many cases, RL systems rely on proxy rewards
or learned approximations through experience, such as using neural networks to
predict expected returns. Therefore, developing robust techniques to estimate
and shape reward functions remains a central research focus in reinforcement
learning.

1.2 RL algorithms characterization

Various RL approaches have been characterized depending on the following
factors:

e Episodic versus incremental: the episodic class comprehends all types of
algorithms that work offline and within a finite horizon of multiple train-
ing instances. The finite sequence of states, actions and reward signals
received within that horizon is called an episode. In the incremental class,
learning occurs online and it is not bounded by a horizon. Episodic learn-
ing is suitable when the task has a clear beginning and end, such as a game
or a simulation with defined boundaries. It allows the agent to reset and
learn from bounded trajectories. Incremental learning, instead, is more
appropriate in continuous control tasks or real-time systems where inter-
action with the environment never ends, and updates must be performed
at each step without waiting for episode completion.

e Off-policy versus on-policy: an off-policy algorithm approximates the op-
timal policy independently of the agent’s actions. Instead, an on-policy
RL algorithm approximates the policy as a process tied to the agent’s
actions, including the exploration steps.

e Bootstrapping: it estimates how good a state is based on how good we
think the next states are. Methods that do not use bootstrapping have to
learn each state value separately.

e Backup: with backup we go backwards from a state in the future to the
current state we want to evaluate, and consider the in-between state values
in our estimates. The backup operation has two main properties: its
depth, which varies from one step backward to a full backup, and its
breadth, which varies from a randomly selected number of sample states
within each time step to a full-breadth backup.

Thanks, but not only, to these features it is possible to classify the most popular
RL algorithms:

e Dynamic programming: for this class of methods the complete knowledge
of the world model (P and R) is required. These are off-policies algorithms
where the optimal policy is calculated via bootstrapping. Dynamic pro-
gramming was the first RL approach, developed by R. Bellman in the



1950s [5]. Value iteration and policy iteration are two foundational algo-
rithms in this category. They rely on a full sweep of the state space at each
iteration, which is computationally feasible only in problems with a lim-
ited number of states. Despite these limitations, dynamic programming
laid the theoretical groundwork for all subsequent RL algorithms.

e Monte Carlo methods: knowledge of the world model is not required for
these kinds of methods. Algorithms of this class are ideal for episodic
training and they learn via sample-breadth and full-depth backup. Monte
Carlo methods do not use bootstrapping.

e Time Difference (TD) learning: as with Monte Carlo methods, knowledge
of the world model is not required and it is thus estimated. TD algorithms
are used to solve incremental problems. Algorithms of this type (like Q-
learning) are off-policy and learn from experience via bootstrapping and
variants of backup.

e Policy gradient methods: algorithms in this class (like TRPO and PPO)
are on-policy. They do not necessarily learn a value function to derive a
policy, but directly a policy.

These four families of algorithms represent the foundational spectrum of re-
inforcement learning strategies. While each has its strengths and limitations,
modern research often combines elements from different classes to overcome
individual problems and improve performance across diverse environments.



2 Multi-armed bandit

The multi-armed bandit (MAB) problem focuses on the optimization of choices
in unknown environments; for this reason, it has been deeply studied in litera-
ture.

In this problem we have to choose time after time between a finite number K
of actions (or arms); in this case we talk about a K-armed bandit. Every time
an action is selected, we get a reward based on a certain probability distribution,
depending on the action, and the episode concludes. The goal is to maximize
the total reward after a fixed amount of episodes. A classical example to better
understand the multi-armed bandit problem is the slot-machine; in particular, if
we are working with a K-armed bandit we can imagine having K slot-machines
in front of us, for which we do not know the distribution of rewards. The only
way to gain information is to pull the arm of those slot-machines and in this
case the goal is to maximize the win after a fixed amount of plays.

Figure 1: Every slot-machine has a hidden distribution. Every time we select
one of them we receive a sampling from that distribution.

Thanks to its huge flexibility and the possibility to infer good decisions
in uncertain environments, the multi-armed bandit problem has been used in a
great variety of applications. It is utilized in the pharmaceutical industry to test
new medicines: every kind of medicine designed to solve a certain problem can
be considered a different arm and the goal is to select the best performing one
while administering all of them, just like we saw during the vaccination phase of
COVID-19. Another field of application is adaptive marketing: if an agency has
different options for ads or homepages to choose from, it can present all of them
and then start to select those leading to a larger income. As already discussed,
the Monte Carlo Tree Search is an application itself of the multi-armed bandit
problem; in particular, in the case of AlphaZero the MAB is extended with a
neural network that gives an a priori estimate to the expected reward of every
arm. We will discuss its implications further in this section. In general, every
type of choice that can be evaluated only a posteriori is a multi-armed bandit
problem.
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2.1 Formal definition of MAB

A K-armed bandit can be defined as a set of actions A = {ay,...,ax} asso-
ciated with their random variables X7, ..., Xk independent and with unknown
expected values pi1, ..., pg. This is a simple formalization of a multi-armed ban-
dit having static distributions, that is, every action keeps its random variable
fixed throughout the whole simulation. There is the possibility to study multi-
armed bandits with distributions changing over time, but due to the nature of
Monte Carlo Tree Search we may focus only on the static case.

An algorithm used to select the arm to pull is called a policy, or allocation
strategy. A good policy can balance exploration and exploitation: exploration
sacrifices potential reward for a hypothetical future improvement. To quantify
this loss and therefore the efficiency of a policy we introduce the concept of
regret.

The regret of a policy P after n plays is defined as:

K
R(P,n) = p'n =Y u;E[Tj(n)].
j=1

Here, p* denotes the maximum between pi,...,ux and Tj(n) represents the
number of times that the policy P has selected arm j in the first n actions.
It is important to observe that P is an algorithm that chooses every time the
next arm according to the previous rewards obtained, hence T(n) can vary
according to the realizations returned by the past actions: T;(n) is a random
variable. Another fact is that, a priori, we do not know almost anything about
the regret formula, except n.

Regret is therefore the expected loss in reward caused by not always selecting
the best action and the goal of a policy to maximize the reward is equivalent to
one of minimizing the regret. If we denote A; = p* — p;, then the regret can

also be expressed as:
K

R(P,n) =)  AGE[T;(n)).

j=1
In 1985, Lai and Robbins [12] found a lower bound for policies when the distri-
butions of rewards are univariate. They proved that:
E[T; 1
lim inf [ J(n)] > .
n—oo  Inn D1 (pj,p*)

Here, p; is the density function of X; and p* is the density of the distribution
with the highest expected reward. Lastly Dy (p;,p*) is the Kullback—Leibler
divergence, defined as:

Dgr(pj,p*) =/

oo

i\xr npj(x) X

This lower bound implies that every policy has an asymptotic regret that grows
at least logarithmically.

11



2.2 Classical algorithms

Over the years, many algorithms have been proposed for the multi-armed prob-
lem. These algorithms differ in how they balance the need to gather new in-
formation (exploration) with the goal of maximizing rewards based on current
knowledge (exploitation). In what follows, we will present some of the most pop-
ular strategies. These include simple heuristics like e-greedy, as well as more
established approaches such as Upper Confidence Bound (UCB) and Thompson
sampling.

2.2.1 e-greedy

The e-greedy algorithm is the simplest in both intuition and computation. Fixed
e € [0,1], every time an arm must be selected, we take the action as follows:

Algorithm 1 - e-greedy

function GREEDYPOLICY (g, arms)
sample 7 uniformly random in [0, 1]
ifr<e
a < uniformly random selected arm
else
a < arm with highest empiric mean reward
return a

Hence, the e-greedy policy explores with probability € and exploits with
probability 1 — € independently of previous selections or rewards.

Despite its simplicity, this algorithm can perform reasonably well in practice.
This is especially true when the parameter is finely tuned according to the
problem nature. A larger choice of £ can be motivated by a large variance in
the distributions; of course, some knowledge of the problem is necessary to infer
the best value.

Often, the e-greedy algorithm is performed with a decaying parameter: ¢ is
slowly decreased action after action. In this way, we can encourage the explo-
ration in the first phase of the simulation and then favor the exploitation of the
best mean reward when our approximations are more robust.

This algorithm ignores the relative magnitudes of mean rewards: it focuses
on the highest and treats all the others in the same way. This causes the search
to regularly explore arms that could be easily discarded.

Even if the policy immediately finds the best possible arm, the regret grows

12



linearly:

K
R(e-greedy,n) = Z AE[T;(n)] =

j=1

In the second row of the equality, the first addend represents the exploitation
phase and the second the exploration.

2.2.2 Upper Confidence Bound

To solve this limitation of the e-greedy policy we must take into account the
empirical mean reward of every single arm. A strategy of this kind has been pro-
posed by Auer et al. [4], called Upper Confidence Bound (UCB). The simplest
UCB is UCBI, defined for every arm j as:

2Inn

UCB:[] :Y]‘ +C n
J

where Yj is the empirical mean reward value of arm j, n is the number of
episodes so far and n; is the number of times arm j has been selected. The
UCBI policy just computes these values for every arm and then selects the one
with the highest result.

The first addend of the sum clearly advantages the best performing arm,
while the second addend increases every time the arm isn’t selected and hence
it advantages exploration, making sure that no arm is unvisited for too long or
for a good reason. The balance between these two components can be tuned by
the positive parameter c.

The name for Upper Confidence Bound is justified by the fact that this algo-
rithm selects an optimal arm based on an optimistic prediction (upper bound)
on the true distribution mean.

It has been proved [3] that, for ¢ = 1, this algorithm achieves the best
possible regret growth: a logarithmic one. This is the policy that we will use in
the numerical experiment section, hence it may be convenient to show a proof
of the associated theorem.

Fact 2.1 (Chernoff-Hoeffding bound). Let X7, ..., X;, be random variables with
common range [0,1] and such that E[X;| X1, ..., X;—1] = . Let S, = X1 + ... +
X,. Then for all a > 0,

P{S, > nu+a} < e=2a%/n and P{S, <nu—a} < e=2a%/n,

13



Theorem 2.1. For all K > 1, if policy UCBI is run on K machines having
arbitrary reward distributions with support in [0, 1], then its expected regret after
any number n of plays is at most:

2 b 1
revestm < (1475 S8 s 3 (4

§:A;>0 J

Proof. Let I; be the random variable that outputs the arm used at time ¢ and
let ¢; s = v/(2Int)/s. For any arm ¢, we upper bound T;(n) on any sequence of
plays. More precisely, for each ¢ > 1 we bound the indicator function of I; = i
(denoted as {I; = i}) as follows. Let [ be an arbitrary positive integer. Keeping
in mind that the first K time steps are spent exploring once every arm we get
forn > K:

T =1+ Y (=i} (1)
t=K+1

<l+ Y {L=i Ti(t—-1) =1} (2)

t=K+1

<l+ Z {Y*T*(tq) + o1, e-1) < Yi,Tj(t_l) +e—1m-1),  (3)

t=K+1
Ti(t-1)>1} @
<1 i [7* 7s:|< isi T Ct—1,s,
<t+ 3 fn [X o] < o Kt el } - 6)
t=K+1
oo t—1 t—1
SI+ZZZ{XS+CLS§XLS7~, +Ct7$i}' (6)
t—1 s—1 ;=1

Now we observe that Y: +eps < st + ¢t,s,;, implies that at least one of the
following must hold:

*

X,
Xis, > Hi+ crs;
W< i+ 2c ;-
We bound (7) and (8) using Fact 1 (Chernoff-Hoeffding bound):

—~
EN|
~—

<pF—cps

—~
O 0o
=

P{X, < p*—cp ) <ett—¢4
P(Ta, > s+ 00} < e~ 1100 = 4

We also observe that for s; > (81nn)/A%, condition (9) is false. In fact in this
case:

p— i =20, = pt = i — 24/ (2Int) /s > pt =y — A =0

14



In the regret formula E(T;(n)) is multiplied by A;. Therefore, we need to
bound the expected value only for the arms with A; > 0. Fixing for these arms
I = [(81Inn)/A?] we finally get:

Bir] < | 5| +

t—1
2.0 Z (P{Y: Spt = s} +P{Xis > i+ Ct,si}>
t=1s=15;=[(81nn)/A?]

[smﬂ +ii 3 ot

t=1 s=1s;=1

81
nn +1+2Zt—

81nn 2
+1+f

A2 3
The bound for the regret follows from its definition.
O

Another Upper Confidence Bound policy is UCB2. Even if it can appear
very different from UCB1 the core concept is the same: it computes a value
UCB2; for every arm j and then selects the one with the highest return.

The formula to compute this value is slightly different from the previous
one and furthermore the arm selected is not pulled just once, but an amount
depending on the number of times the arm was previously selected:

(14 a)(1 +1In(n/7(n;))
27(n;) ’

UCBQ? = Yj + \/

where « € [0, 1] and
r(n) = [(1+)"].

Once again, Yj is the empirical mean reward value of arm 7, n is the number
of plays so far and n; is the number of times arm j has been selected.

The selected arm is then pulled 7(n; +1) —7(n;) times; in UCB2 it is crucial
to distinguish the difference between ‘selected’ and ‘pulled’: an arm j is selected
(or chosen) when, while computing UCB1 or UCB2, it is found to be the one
with highest value. When this happens in UCB1 the arm is then pulled once,
hence the number of times it has been selected and the number of times it has
been pulled is the same. In UCB2, however, when an arm is selected it is pulled
a variable number of times, hence the two numbers can differ.

Just like UCB1, UCB2 also reaches a logarithmic growth. When the distri-
butions have support in [0, 1], the upper bound reads as follows:

15



R(UCB2§,n) < >
7:A;>0

(14 )1+ 4) In(2eA3n) L Ca
24 AV

and this is guaranteed when

1
n= j%?go <2A?> '

2.3 Multi-armed bandits with prior

Until now, we talked about the multi-armed bandit problem in environments
where we are not informed about the possible distributions of the arms’ rewards.
However, in many kinds of applications the nature of the random variables to
predict is known. This a priori information can be used to facilitate the search
for the best arm.

In such cases, the agent can start with a belief about the expected reward
of each arm, instead of learning everything from scratch. These beliefs, often
referred to as prior knowledge, may come from previous experience, domain
expertise, or external predictive models. When this prior information is used
properly, it can significantly speed up the learning process and reduce the num-
ber of suboptimal choices made during exploration.

This idea is at the core of Bayesian approaches to the bandit problem, where
reward distributions are treated as random variables with probability distribu-
tions that evolve over time. A well-known method following this principle is
Thompson sampling, which uses prior distributions to guide exploration in a
natural way.

Similarly, more complex systems, like AlphaZero, integrate prior knowledge
into tree search algorithms using predictions from neural networks. In these
contexts, the multi-armed bandit problem appears locally at each decision node,
and prior-based strategies, such as PUCT, are used to guide the search more
efficiently. This will be discussed after in this work, in the Monte Carlo Tree
Search chapter.

2.3.1 Thompson sampling

As just said, a popular example of this class of policies is the Thompson sampling
(TS)[17]. This algorithm was born to solve the Bernoulli bandit problem: a
multi-armed bandit problem where the rewards of every arm are either 0 or 1;
therefore, the probability of success (obtaining 1) from pulling arm j is equal
to the expected value of the arm, that is p;. The Thompson sampling policy
associates a Beta distribution to each arm; let us recall that Beta distributions
depend on two parameters (« > 0 and 8 > 0) and have density:

F(O[ + 6) ma—l

_xﬁ—q.
Mag@)” 79
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This probability density function has [0,1] as support and a—iﬁ as expected
value. This is very convenient when we have to update the distributional ap-
proximations of a Bernoulli distribution: if we obtained the reward we increase
«a by one, otherwise we increase 8 by one. Furthermore, these two parameters
can be set in advance to exploit the prior information of the model.

The only thing left to understand is how we select the arm to pull. In
Thompson sampling there is no need to balance exploration and exploitation
since this is automatically managed by the selection strategy: we sample a
realization from every distribution and we select the highest one. This gives the
majority of the choice in favor of the most promising arms without renouncing
to sporadic explorations. It also clarifies why we approximate the unknown
random variables with continuous guesses instead of Bernoulli distributions:
this allows us to add variability (and hence exploration) in the sampling phase
of the algorithm.

In the following algorithm we use S and F' instead of a and /: they stand
for Success and Failure.

Algorithm 3.1 - Thompson sampling for Bernoulli bandits

for each arm j =1,..., K set §; =0 and F; = 0.
create root node vy with state sq
while within computational budget do

foriinl,.., K:
sample 6; from Beta(S; + 1, F; + 1)
end for

play i* = arg max; 6;

observe reward r

Six — S + 71

Fi* < Fi* +1—r
end while

This policy can be adapted to the general case [2]. To extend it we only
need to have an interval bounding the support of the distributions, let us say
[0, 1]; this can be easily transposed to a more general interval [a, b].

The only change necessary to allow Thompson sampling to work in the more
general scenario is the following: after the sampling is made and a reward 7 is
obtained, a Bernoulli trial with success probability 7 is performed and the new
result r € {0, 1} is treated just like in the previous case. Equivalently, one could
consider skipping the Bernoulli trial step and simply add 7 to o and 1 — 7 to
B; in fact, 7 is precisely the expected increment to a when performing the trial
and 1 — 7 is the one for 3
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The algorithm becomes:

Algorithm 3.2 - Thompson sampling for bounded bandits

for each arm j =1,..., K set §; = 0 and F; = 0.
create root node vy with state sg
while within computational budget do

foriinl,..., K:
sample 6; from Beta(S; + 1, F; + 1)
end for

play +* = arg max; 6;

observe reward 7

r < Bern(7)

Si* — SZ* +r

Ry« < Ry« +1—r
end while

It is worth noticing that the probability of a success in the Bernoulli trial
when the arm j (with unknown density f) is selected is indeed p;, in fact:

1
P(r=1)= /0 Ff(F)dF = p;.

Finally, regarding the convergence rate of Thompson sampling, it has been
proved that it reaches the optimal logarithmic growth. Furthermore, when
the prior information fits the problem, it can perform better than the UCB
policies[6]. The upper bound for Thompson sampling is:

2

1
R(TS,n) <O > ~z | lon
J:A;>0 J

2.3.2 Arms with preferences: PUCT

Another way to obtain prior information in the arm selection is to add weights
to every possible choice. These coefficients can be considered as preferences
associated with the arms. The process utilized to compute the weights can
vary from problem to problem. They can be derived from the knowledge of the
environment or alternatively can be estimated by an external estimator, just
like a neural network.

If the weights are taken positive and with a total sum of one, they can be
considered as the approximate probability that the relative arm is the optimal
choice, resulting in an estimation for the policy function.
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In this setting, a new metric can be defined to select the most promising
arm. The new criterion, called PUCT, is to select the action a maximizing:

PUCT(a) =Q(a) +c- P(a)H_%
where:

e (Q(a) is the empirical reward mean obtained when pulling arm «;

e P(a) is the prior policy approximation: the probability that the optimal
arm is a;

e N(a) is the number of times that arm a has been selected;
e N is the total number of episodes.

Just like UCB algorithms, the first addend encourages the exploitation while
the second increases the urgency of unvisited nodes.
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3 Monte Carlo Tree Search for deterministic prob-
lems

It is now time to dive into the particular method we are interested in this
work. The first piece of our puzzle is called Monte Carlo Tree Search (MCTS).
Thanks to MCTS we can evaluate state values more easily, exploring a tree that
expands iteration after iteration. Deterministic problems are those for which,
given a state s and a valid action a, the next state obtained from s through a
is uniquely determined and non-depending on a probability distribution.

This technique stands out for its ability to balance exploration and exploita-
tion while making decisions in complex environments, particularly those with
large or infinite state spaces. MCTS iteratively builds a search tree by simulating
many possible future trajectories and uses the outcomes of those simulations to
estimate the potential value of actions. As the number of simulations increases,
the tree grows and becomes more representative of the underlying decisional
space.

A fundamental advantage of MCTS is that it does not require a complete
model of the environment’s dynamics in advance, making it suitable even when
the transition and reward functions are partially or entirely unknown. In prac-
tice, MCTS has shown great success in applications such as game-playing Al,
where the huge number of possible configurations makes exhaustive search im-
practical.

In deterministic domains, where transitions are predictable and outcomes
are fully determined by the current state-action pair, MCTS can more effec-
tively focus its search on the most promising branches. This reduces the need
to average over random outcomes and allows the agent to learn a reliable value
estimate for each explored state based on direct experience, without the uncer-
tainty introduced by stochastic effects.

Furthermore, the structure of the tree provides a natural way to store and
reuse information about previously visited states, increasing efficiency over time.
MCTS, as we will see, forms the backbone of several modern reinforcement
learning algorithms by enabling intelligent exploration strategies and informed
decision-making in large-scale environments.

3.1 How to build a tree

In 1974 Sergio Endrigo stated that “to make a tree, a seed is required”; in the
case of MCTS the seed we need is the current state, called root node. From the
root node we start expanding: at the beginning of the very first iteration the
tree is composed uniquely by its root node and every trajectory helps us enlarge
the net more and more. Every iteration starts from the root node, ends in a
terminal state and can be subdivided into four steps:

e Selection: starting from the root node we look at all the possible child
positions of the state. We select the most urgent child according to our
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priorities and we reach the next state, then the process is repeated until
we find an unexplored child or a terminal node.

e Expansion: the new child is added to the tree.

e Simulation (or play-out): from this new child we simulate the rest of the
iteration, until we end up in a terminal state.

e Backpropagation (or back up): we update the values of nodes visited in
this iteration with their outcome reward. For every node in the tree we
store the mean value of the rewards obtained from trajectories compre-
hending that node; the backpropagation updates this value as well as other
node features that can be useful, such as the number of times it has been
visited or how many children it has.

It is important to observe as there are two different policies in this algorithm:
the first is utilized in order to select a child node in the selection phase; this is
used until the algorithm selects already explored children; this policy is called
Tree Policy. The second is utilized in the simulation phase when we compute
an outcome; this policy is called Default Policy.

The first choice that comes to mind for both policies is to pick a random
action every time a child is to be selected. This idea can work as a good
Default Policy, since in the simulation phase we are dealing with unknown nodes,
without an associated value. When thinking about Tree Policy a random choice
is not optimal; we may want to exploit already explored nodes with high reward
values. To do this, we treat the choice as a multi-armed bandit.

3.2 UCB+MCTS=UCT

As previously discussed, the trade-off between exploration and exploitation is
fundamental not only in MCTS, but across the entire Reinforcement Learning
framework. Focusing just on exploitation may lead the agent to suboptimal
long-term behavior, as it might miss out on discovering better strategies. On
the other hand, excessive exploration can delay convergence and waste compu-
tational resources on bad actions. The UCB algorithms address this challenge
offering theoretical guarantees that ensure an optimal balance over time.

The use of UBC formulas within tree search allows MCTS to prioritize
promising paths while still maintaining a controlled level of uncertainty sam-
pling. This approach is fundamental in domains with a large or even infinite
state space, where a complete search is computationally unfeasible, as it allows
us to prune the branches that were discovered to be unpromising iteration after
iteration.

A Monte Carlo Tree Search algorithm using an Upper Confidence Bound as
Tree Policy is called an Upper Confidence Tree (UCT).

A constant is added to balance the importance given to exploration and ex-
ploitation. Given a node w with children vy, ..., v,,,, the policy value is computed
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for every child as:
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where Yj is the current reward value of child v;, n is the number of times w
was explored and n; is the number of times child j has been chosen. If n; =0
the policy value is set to infinity; this is not required since in MCTS we do not
make use of the Tree Policy until every child node has been visited at least once.

Another remark to point out is the abuse of notation of MCTS: in most of
the problems MCTS aims to solve, the graph it generates is not a tree. In fact
in games like chess, Go or even the simple tic-tac-toe, the same exact position
can be reached with different sequences of moves. This creates closed loops in
the graph, which therefore cannot be a tree. The consequences of this flaw are
not concerning, but we must deal with them; for example during the simulation
phase we could find ourselves in an already explored node. In this case, we can
continue using the Default Policy, ignoring previous visits, or switch back to Tree
Policy. Once the simulation is concluded and the algorithm enters the backup
phase, it goes back parent after parent back-propagating the reward. Since
there can be multiple parents for a given child we need to store the sequence of
visited nodes to remember the one we came from (theoretically there would not
be any problem back-propagating to every parent, but practically the branching
could increase the computational cost exponentially). This latter problem can
be solved very easily thanks to a recursive implementation of the algorithm,
even without storing any state sequence explicitly.

Finally pseudo-code can be stated. Hopefully this will help with the com-
prehension of the MCTS algorithm.
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Algorithm 2 - UCT

function TREESEARCH(s)
create root node vy with state sq
while within computational budget do
v < TREEPOLICY (vg)
A «DEerauLTPOLICY (s(v))
BACKUP(v, A)
return a(BESTCHILD(vg))

As discussed before, the TreeSearch function uses the Tree Policy until an un-
visited node v; is met; the function s associates node v; to the state it represents
and from there the Default Policy executes a play-out and returns the obtained
reward A. This reward is back-propagated to the previously visited nodes.
When the computational budget is reached, the search stops and the action
with the best reward is returned.

function TREEPOLICY (v)
while while v is non-terminal do
if v not fully expanded then
return EXPAND(v)
else
v < BESTCHILD(v)
return v

The TreePolicy function takes a node as input and looks for unexpanded chil-
dren. If node v does not have them, it calls the BestChild function to select the
most promising follow-up.

function ExpPAND(v)
choose a between untried actions from A(s(v))
add a new child v’ to v
with s(v') = f(s(v),a)
return v’

The Expand function creates a new child of the node v. Here, A(s(v)) is the
set of legal actions in the state represented by the tree node. The function f
takes as inputs a state and an action and outputs the new state reached when
acting in the state; since this algorithm is designed for deterministic settings,
the function guarantees a unique result.

23



function BESTCHILD(v)
return  arg max {gg:g +C, /2E(JZ/()1)) }
v’ € children of v

The BestChild function evaluates the UCB value of every child and returns the
one with the highest value. Here, Q(v’) is the cumulative reward of v’ and N(v”)
is the number of times that it has been visited; their ratio is the empirical mean
reward.

function DEFAULTPOLICY(s)
while s is non-terminal do
choose a € A(s) uniformly at random
s+ f(s,a)
return reward for state s

The DefaultPolicy function takes as input a state s and performs random ac-
tions until a terminal state is reached, then returns the reward associated to
that state.

function BACKUP(v, A)
while v is not null do

N@w) « N(v)+1

Q) < Q(v) + A

v < parent of v

Finally, the Backup function ascends the tree back-propagating the reward ob-
tained thanks to the roll-out. It also increases by one the total amount of times
the nodes have been visited.

It is important to observe that, if the algorithm is used to study a two-player
turn-based game, the sign of A must be changed at every step of the Backup
function. In this way, a move that allowed a player to receive a higher reward
will be penalized.
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3.3 Neural Networks for Reward Prediction

Neural Networks (NN) are approximating functions. Their architecture is com-
posed of layers: one for the inputs, one for the outputs and between them a
variable number of so-called hidden layers. When we go from the input layer
to the following one, we apply a linear transformation to the entries, we add a
bias, then apply a non-linear function, called “activation function”. This pro-
cedure is repeated for every other layer until the output layer is reached. The
coeflicients of the linear transformation and biases are what define the Neural
Network hence there is a need to find those guarantee the best approximation.

Computing fitting coefficients is called training: we feed the input to the
model with random initial coefficients and use its outcome to back-propagate
the error, correcting the weights. This process is repeated until a threshold, for
example iteration number or residual, is met.

input layer hidden layer 1 hidden layer 2 output layer
Figure 2: Mandatory image when introducing neural networks.

In MCTS, every time we find an unexplored node, the Simulation Phase
starts and it assigns a reward to the position via the Default Policy. The Default
policy is often simply a random choice, as in this phase the algorithm just
selects random moves until a terminal position is met. This method works in a
large number of cases. Despite this, it can be a poor strategy to get a reward
estimation.

To improve this approximation we can use Neural Networks. The natural
question is the following: how do we train the model?

In 2016, Silver et al.[14] answered this question while working on a model,
AlphaGo, to play Go, a two-player deterministic game known for the very large
number of possible moves in every position and the difficulty of evaluating them.

In games like Go it is unthinkable to rely on a random sequence of moves to
obtain a reward; a match is too long and the importance of a single move can
be lost due to the rampant ramification that is generated while waiting for a
terminal position.

To solve this problem they made use of a neural network capable, when
fed with a state, to approximate the probability of every child node to be the
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optimal one. The same network could also give an estimation of the value of the
position, according to an appropriate metric. Having a policy approximation is
crucial: it allows to have an a priori evaluation of the children without having to
visit every one of them; in games like Go, where the number of possible moves is
in the order of the hundreds, it is crucial to have the possibility to ignore some
(or moreover a large portion) of them. This information can be used with the
previously discussed PUCT algorithm as Selection Phase criterion of the model.

AlphaZero was trained entirely through self-play using Reinforcement Learn-
ing. Starting with no prior knowledge except for the game rules, it played mil-
lions of games against itself. At each step, it used a neural network to evaluate
positions and suggest moves, which were then refined through Monte Carlo Tree
Search. The data from these games was used to continually update the network,
allowing AlphaZero to rapidly improve without relying on human matches or
game theory.

This model reached levels of strength that at the time were unexpected,
being the first Artificial Intelligence Go program able to compete and defeat
the best human players consistently on a regular 19 x 19 board.
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4 Stochastic problem

Until this point, every method or result was obtained for deterministic environ-
ments; this is a huge limitation since probability can be found in a very large
number of problems. For the latter class of problems, there is a need to extend
the algorithms we saw for the deterministic scenario.

In the example of AlphaZero, when we train the neural network the stochas-
tic nature of the problem does not affect the procedure. It is in the self-play
part where we need to adapt those methods to the probabilistic environment,
specifically in the Monte Carlo Tree Search.

In the deterministic case, choosing an action a in state s is equivalent to
choosing the state s’ that a yields; in the stochastic case, when we choose an
action, we are not sure of its outcome state; in fact, it will depend on a random
distribution.

In this scenario, we define two types of nodes within the tree: Chance Nodes
and Decision Nodes [9]. Chance Nodes are those nodes where the agent has
no power to influence the outcome of the next position, which depends only
on a random realization of a distribution. On the other hand, Decision Nodes
are those nodes where the agent has to choose an action and directly affect the
environment.

To make this definition clear, here are two examples:

e Risk: Risk is a multiplayer war simulation board game. At every turn, the
current player places some tanks on the board and then decides whether or
not to attack a neighboring enemy territory. If the decision is to attack,
both players roll dice and remove tanks according to the result; after
this, the current player can then judge whether continue his attack, and
therefore repeat the dice roll, attack some other territories, or terminate
the offensive action (how this precisely works is not fundamental in order
to understand the example).

At the beginning of its turn, the agent is on a Decision Node: we must
choose where to place the tanks and whether it wants to attack. If the
action selected by the agent is peaceful its turn ends, otherwise some dice
must be rolled and therefore the trajectory on the tree meets a Chance
Node. The action that acts on the environment depends only on the dice
realization. Once tanks are removed, the agent returns to a Decision Node
and the process repeats.

e 2048: 2048 is a single-player video game, played on a 4 x 4 board. A cell
may contain a number, in particular an integer power of two; if a cell does
not contain any number it is empty. At every turn, the player must swipe
the board in a chosen cardinal direction; every number is shifted in that
direction until it hits the end of the grid or a different number. The main
mechanic of the game is the following: if two equal numbers hit themselves,
they merge and form a single number, that is their sum or equivalently
their double, and the total is added to the player’s score. After the board
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is swiped, a new number (a two or a four) is placed randomly on an empty
cell; if this is impossible because every cell contains a number the game
ends. The goal of 2048 is to score the most amount of points possible
before the game ends.

When the agent must choose a direction it is on a Decision Node; in 2048
a Decision Node always has four possible children. After an action is
selected (and if the game is not over), we are on a Chance Node: a new
number is placed on a random empty cell. Then the process repeats until
a terminal state is reached.

Let us visualize the first steps of a trajectory in the Monte Carlo Tree
Search taking as root node Position A:

Position A Position B Position C
2 2 2
16 16 2 32 2 32 2
4
8 8 8

Decision Node A: in this position the agent selects an action (west direction
in this example) following the Tree Policy. The board then transforms
according to the rules.

Chance Node B: once the new position is reached, the stochastic com-
ponent of the game arises; if we were playing a match, the RNG would
choose a random cell and insert there a new number. In this case we have
12 empty cells; since either a two or a four can be inserted we have exactly
24 possible children. While building a tree, we can decide in which way
this action is performed: we could simply take a realization from a uniform
distribution among all children, or study an ad hoc strategy to improve
the efficiency of the search, i.e. some kind of “Chance Node Policy”.

Decision Node C: a new position is reached and the agent has to choose
an action again.

The following figure represents the decision process that we just described.
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Figure 3: Here Decision Nodes are represented by circles and Chance Nodes by
squares.

4.1 Chance Nodes exploration methods

The difference between Decision Nodes and Chance Nodes has consequences in-
side the Monte Carlo Tree Search: first of all, Chance Nodes can never be root
nodes. In Reinforcement Learning algorithms, Monte Carlo Tree Search is called
when the agent must perform an action, therefore in a Decision Node; in states
corresponding to a Chance Node there is no choice to make. Moreover, this sep-
aration between node types enforces a natural alternation in the tree structure,
helping to clarify the distinction between agent-driven and environment-driven
choices.

Another difference is the following: when we explore a Chance Node we
cannot use policies such as UCBI, or in any case policies that aim to find the
most promising child node. If we decide to proceed this way, we are just trying
to locate the best possible realization of the distribution, and the search will
focus mostly on the exploration of this node. This behavior leads to a biased
search tree that overestimates the expected value of the Chance Node, since
it implicitly assumes the most favorable outcomes occur more frequently than
they actually do. This could result in a distorted value propagation and could
compromise the overall performance of the Monte Carlo Tree Search algorithm,
particularly in domains where variance in outcomes plays a critical role. In the
Risk example, this would be equivalent to prioritizing the exploration of the
positions yielded by perfect dice rolls, thus ignoring the evaluation of positions
coming from unlucky or average rolls: an overly optimistic approach.

The first idea that could come to mind, just like in the Tree Policy discussion,
is to randomly select a node, maybe according to the distribution intrinsic in
the state. This is a realistic way to sample stochastic realizations, and can be a
good policy if the possible outcomes are not a large number. In contrast, if this
number grows too much, sticking to the real distribution could lead to a sparse
and shallow exploration, hence another idea can be to extract a not-too-big
number of realizations and then to explore those nodes with more depth.
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In practice, this translates to approximating the full support of the distribu-
tion with a manageable subset of representative samples, on which the search
can then concentrate. This strategy aims to achieve a balance between represen-
tativeness and computational feasibility. Instead of spreading the search effort
thinly across a vast number of low-probability branches, the algorithm narrows
its focus only to a small set of sampled outcomes, each of which can be explored
with greater depth.

This allows the MCTS to gain more informative estimates from each rollout,
leading to better value propagation throughout the tree. However, the trade-off
is clear: by reducing the number of outcomes considered, we risk missing rare
but critical transitions, and so the sampling strategy must be chosen carefully
to preserve the statistical integrity of the underlying process.

Plenty of methods to explore Chance Nodes have been proposed over the
years. In the next segment of this dissertation we look closer to the most
popular choices.

4.1.1 Random sampling

Random sampling is the most environment-coherent method: every time a
Chance Node is visited a realization from the real stochastic distribution is
generated and explored. This is the main strength of the method, since its tra-
jectories follow the exact dynamics of the domain. The behavior of the search
is naturally aligned with how the environment works, ensuring a faithful repre-
sentation of the underlying stochastic process. This makes random sampling an
appealing strategy, especially when one is interested in preserving the statistical
properties of the domain.

The performance of this technique depends heavily on the ramification of
the nodes: when the number of potential children increases, the power of ran-
dom sampling decreases. In such cases, the probability of encountering low-
probability but relevant outcomes becomes negligible, which might introduce a
bias in the value estimation. Having a large number of possible realizations can
lead to a very shallow exploration of visited nodes. This drawback can seriously
affect the quality of the search, especially in early stages, where the estimates
rely on few simulations and the variance is still high.

In the 2048 example with a 4 x 4 grid, random sampling can work without
problems. The number of available cells and possible values that can appear
is limited, so the stochastic space remains relatively compact. In this setting,
sampling from the true distribution produces realistic sequences of moves and
outcomes, allowing the tree to capture meaningful game dynamics without being
overwhelmed by excessive branching. In the experimental part of this thesis we
will study how the performance changes with the enlargement of the grid. The
idea is to observe how the increasing number of chance events and possible out-
comes affects the effectiveness of random sampling and whether its limitations
become more evident as the state space grows. This will help us understand
the scalability of the method and its practical applicability in more complex
variants of the game.
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4.1.2 Fixed number sampling

Fixed number sampling is a self-explanatory name: in this method, when Chance
Nodes are visited during the tree search, the maximum number of child nodes
taken into consideration is fixed in advance. Instead of expanding all possible
outcomes, which can be extremely costly in terms of computation, only a limited
number of child nodes are sampled. The number of children sampled depends
not only trivially on the problem domain but also more subtly on the specific
Chance Node that is being visited. In fact, different Chance Nodes might rep-
resent different kinds of stochastic events and therefore benefit from different
sampling strategies. This approach can significantly increase performance in
those cases where there is a huge number of possible random realizations and
the resulting differences among the following states are small or even negligible.
By focusing only on a representative subset, the method avoids unnecessary
expansion and computational overhead, especially when exhaustive exploration
would yield diminishing returns.

Another strong point of Fixed Number Sampling is its ability to discretize
a continuous environment into a limited, manageable subset of events. While
Random Sampling can also take realizations from a continuous context, it usu-
ally does so by drawing a new random outcome every time a node is expanded.
This means that each new sample likely corresponds to a child node that has
never been seen before, making the search very shallow and highly variable.
In contrast, Fixed Number Sampling selects a closed number of child nodes.
This behavior promotes a more focused and deeper search in the most relevant
regions of the search space.

However, this technique is not without limitations. While using Fixed Num-
ber Sampling, there is a non-negligible risk of missing some important but rare
realizations simply due to chance. If the fixed set of children does not in-
clude these rare but important events, the resulting policy may be biased or
incomplete. Environments characterized by such rare but significant stochas-
tic outcomes are therefore not very suitable for this method, unless additional
mechanisms are used to ensure adequate coverage. Another flaw of fixed number
sampling lies in the determination of the optimal threshold number of children
to be sampled. This threshold is highly problem-dependent, and more precisely,
it depends on the stochastic distribution of the outcomes associated with each
specific Chance Node. As a result, it can be difficult to choose a fixed number
that works well across the entire domain. If the number is too small, important
outcomes might be left out; if it is too large, the method loses its computational
advantage.

4.1.3 Progressive widening

Progressive widening can be seen as an improved and more flexible version of
fixed number sampling. Like the previous method, it aims to keep the total
number of children explored at each node low, which helps to reduce the com-
putational cost and manage the complexity of the tree. However, instead of
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selecting an a priori fixed number of possible different child nodes, progres-
sive widening regulates the creation of new children dynamically. This is done
according to a specific rule, defined by the following formula [7]:

C(n) <EkEN(n)>.

In this equation, C'(n) represents the number of distinct children that have
been visited at node n, while N (n) indicates the number of times that node n has
been visited during the search. The parameters £ and « are tunable constants,
where k¥ > 0 and 0 < o < 1. These parameters control how aggressively the
method expands the node as more information becomes available. Notably,
fixed number sampling with a threshold M can be interpreted as a special case
of progressive widening, in which £k = M and a = 0. In that case, the number
of children is fixed and does not grow with visits.

Maximum number of explored children

0 10 20 30 40 50
Number of visits
Figure 4: Here is an example of the progressive widening sampling function with

k =1 and o = 0.4; every time the function surpass an integer value, a new child
can be explored.

When the Chance Node can still have new children, we select one randomly
among all the possible choices; otherwise, we take one from the pool of already
visited.

As in fixed number sampling, the exploration here is initially focused on a
small batch of children. This allows the search to stay computationally efficient
in the early stages, when not much is known about a node. On the other hand,
if a Chance Node n is explored many times, the value of N(n) will gradually
increase, and so will the allowed number of children C(n). This behavior al-
lows the tree to grow progressively and adaptively: nodes that seem important,
because they are visited often, get more children over time. In this way, the
search becomes deeper and more refined where it is more useful, without wasting
resources on unpromising areas of the tree.
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As previously observed with the fixed number sampling method, the perfor-
mance of progressive widening is also influenced by the choice of its parameters.
In this case, both k£ and « need to be chosen carefully, depending on the nature
of the stochastic distribution associated with the specific node. If the distri-
bution is highly variable or contains rare but important events, setting these
parameters incorrectly could result in poor exploration. Despite this challenge,
progressive widening tends to adapt better than fixed number sampling when
dealing with promising nodes, because it allocates more attention to frequently
visited areas of the tree.
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5 Numerical Experiments

In this section, we will explain and discuss the results induced by previously
introduced methods. In particular, we will test the efficiency of pure Monte
Carlo Tree Search in stochastic environments, such as the 2048 game.

Let us briefly recall the rules of the game:

e 2048 is a single-player game played on a 4 x 4 square grid.

e The grid starts empty and at every turn a random number is placed. The
number can be either a 2 (90% chance) or a 4 (10% chance), and it is
placed in one of the empty cells of the board. If the grid is full and there
is no valid position for a new number the match finishes.

e At every turn the player must choose a cardinal direction; the board is
then swiped in that direction.

e If two equal numbers swipe one next to the other in the chosen direction,
they merge and form a single number with the value of their sum. This
value is added to the match score.

e The goal of the game is to score the highest amount of points possible
before the grid is completely full and the match is over.

To study how the efficiency of the method changes with the enlargement of the
possible children the experiments are conducted on a regular 4 x 4 board, as
well as a smaller 3 x 3 board and a larger 5 x 5 board; for every board size the
time limit for a move is at most one second. For every one of these cases the
Decision Nodes are selected with the UCB1 policy.

Every histogram is associated with the results obtained with one of the three
methods introduced in Section 4.1. These are random sampling, fixed number
sampling and progressive widening. The first method is compared with the
results obtained while playing random moves. The last two methods depend
on some parameters; in their histograms there is also a comparison between
different choices. If not specified otherwise, the k parameter for the progressive
widening method is set to one. In every histogram, we also show the confidence
intervals computed by the Clopper-Pearson method with nominal coverage of
95%. This means that every time the experiments we proposed are repeated, in
at least 95% of cases the results obtained will fall in the confidence interval.

Lastly, since 2048 tiles can only contain powers of two, we indicate the
magnitude of a cell by its base two logarithm to help the comprehension of the
match advancement.

5.1 3 x 3 grid

For the 3 x 3 grid, every different policy has more than 200 games played. The
speed of the random move method allowed to simulate 10 000 matches. Here
are the results.
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Figure 5: The best game with random moves is almost always worse than the
worst game with the random sampling method: encouraging.
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Figure 6: Fixed number sampling and Progressive widening.

In this small grid, there are no particular differences between the various
Monte Carlo Tree Search methods arising from the histograms. This is due to
the limited number of children that a node can have: on a 3 x 3 grid there is a
total of 9 cells and during our simulation there was a mean of 2.57 empty cells
per Chance Node. We can have both 2 and 4 in every cell and therefore around
5 child per node; despite that, the probability of a 2 is 90% while for 4 is 10%,
hence when we sample according to the real distribution we are more likely to
get child nodes corresponding to the insertion of a 2. This means that in the
fixed number sampling, in the majority of cases, N = 4 and N = 6 led to the
same exact behavior, while NV = 2 was just a little different.

5.2 4 x4 grid

For the 4 x 4 grid, every different policy has 100 games played. Just like in the
previous case, the speed of the random move method allowed to simulate 10 000
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matches. Here are the results.
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Figure 7: In this case, there is no intersections between the two histograms.
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Figure 8: Fixed number sampling and Progressive widening.

This time, some differences arise: in particular, it appears how the fixed
number sampling, unlike in the previous case, gives us results much more de-
pendent on the parameter variation; for the 4 x 4 grid, the mean number of
empty cells grew to 4.46: this justifies both the similarity of the N = 4 and
N = 6 results and the N = 2 difference. It seems that having a smaller number
of children allowed the agent to reach the goal of 2048 tiles more often.

The same difference is not visible for the progressive widening algorithm.
The cause of this behavior can be found within the number of children per
Chance Node: in progressive widening, the mean number of children grows
slower (with respect to its parameter) than in fixed number sampling. On
the other hand, the fixed number sampling method averaged 1.39 children per
Chance Node for the N = 2 case and 1.91 for N = 6, while progressive widening
registered 1.43 children per Chance Node for a = 0.2 and 1.68 for a = 0.2.
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In any way, all policies reach at least the 2048 tile (corresponding to 11 on
the graphs) in more than half of the matches. In a 2014 study by P. Rodgers and
J. Levine [13], the authors reached similar results when investing one second for
search; unfortunately, they did not mention any information about the hardware
they used, this denies us a rigorous comparison.

5.3 5x5 grid

Also for the 5 x 5 grid, every different policy has 100 games played. Just like
in the previous case, the speed of the random move method allowed to simulate
10 000 matches. Here are the results.
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Figure 9: Also in this case, there is no intersections between the two histograms.
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Figure 10: Fixed number sampling and Progressive widening,.

In this latter case, the enlargement of the grid allowed the fixed number
sampling and progressive widening methods to outperform random sampling;
confirming the superiority of these two methods when the number of children
is large. The latter two methods reached the 16384 tile (corresponding to 14
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in the histograms) with a frequency between one in three and one in two, with
a spike in performance for the fixed number sampling with N = 2, reaching
this advancement two times every three; random sampling only achieved this
result less then one time every four. This time, the mean number of children per
Chance Node is 5.80; this causes the visible difference in performance between
the fixed number sampling. Even this time, the average number of children per
Chance Nodes increased more slowly for the progressive widening.
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Conclusions

This thesis has examined the connection between Reinforcement Learning, multi-
armed bandit algorithms, and Monte Carlo Tree Search (MCTS), with a focus
on the role of prior information and stochastic elements in decision-making.

We started by introducing the fundamentals of Reinforcement Learning and
the exploration—exploitation trade-off, formalized through the multi-armed ban-
dit (MAB) problem. After reviewing classical MAB algorithms, we explored
variants incorporating prior knowledge, such as Thompson sampling and PUCT.
We then discussed how bandit strategies are integrated into MCTS, both in de-
terministic and stochastic settings. For the latter class, we addressed the added
complexity of Chance Nodes, comparing different exploration strategies like ran-
dom sampling, fixed number sampling, and progressive widening.

There are plenty of future developments. These may include extending algo-
rithms to continuous domains and applying them to real-world decision problems
with complex dynamics. It could be interesting to test Chance Nodes explo-
ration techniques for games with two or more players or fuse them with policy
estimators like in AlphaZero. Another theme is to understand how the methods
discussed in this work improve when more time is given to the Monte Carlo Tree
Search and most importantly how to recognize random distributions that favor
a specific algorithm.
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