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L’algèbre n’est qu’une géométrie écrite,
la géométrie n’est qu’une algèbre figurée.

— Sophie Germain



Abstract

A closed point x on a normal scheme X is a quotient singularity if the correspond-
ing local ring R = OX,x arises as the ring of invariants by the action of a finite group
G on a regular local ring A. If the characteristic of the residue field of R does not
divide the order of G, it is called a tame quotient singularity; it is wild otherwise.
The aim of this thesis is to discuss the resolution of quotient singularities in three
distinct settings: complex toric surfaces, tame cyclic quotient singularities on a nor-
mal curve over a Dedekind scheme, wild quotient singularities on a 2-dimensional
scheme. While the former two settings can be solved algorithmically and the data
of the resolution can be encoded in a so-called Hirzebruch-Jung continued frac-
tion, the latter can be much more unpredictable and difficult to compute explicitly.
We will study the dual graph attached to the minimal regular resolution in each
case, and see that in the first two cases it is a Dynkin graph of type An, while in the
wild case it always contains a vertex of valency at least 3.
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Introduction

The topic of this thesis revolves around the resolution of quotient singularities.
The setting is the following: consider a normal scheme X of finite type over a base
scheme S and a finite group G acting on X via S-automorphisms. For an element
g ∈ G, we will denote the corresponding automorphism of schemes σg. Then, a
quotient of X by G is a morphism of schemes π : X → Y satisfying:

1. π is G-invariant: for all g ∈ G, π ◦ σg = π;

2. π has the following universal property: for all S-schemes Z with a trivial
action of G and all G-invariant morphisms f : X → Z, there is a unique
arrow h : Y → Z making the following diagram commutative:

X Y

Z

π

f
∃!h

In the affine case, if X = Spec A, then Y is the spectrum of the ring of invariants AG,
with π being the morphism induced by the inclusion AG ↪→ A. In the non-affine
case, a quotient exists if and only if X can be covered by affine open sets {Ui}i that
are G-invariant (see [SGA 1], Exposé V, Proposition 1.8). Then, the scheme Y can be
obtained by taking the quotient for each Ui and glueing the resulting morphisms.
In general, the following holds:

Proposition 1. In the previous notations:

1. Y is an S-scheme of finite type, and π is finite and surjective.

2. The fibers of π coincide with the orbits of the G-action on X.

3. The topology on Y is the quotient topology.

4. There is a natural isomorphism OY = π∗(OY)G, where (OY)G is the sheaf obtained
by taking the ring of invariants of the ring of sections for each open sets.

Proof. [Mus11], A.1.
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2 Introduction

In this thesis, we will focus on the 2-dimensional case; then, if Y is non regular,
its singular locus is a collection of isolated closed points, each of which is called a
quotient singularity; a quotient singularity is called tame if the characteristic of the
residue field does not divide the order of G; it is called wild otherwise. We are
interested in resolving these singularities, i.e. find a birational proper morphism
ρ : Ỹ → Y where Ỹ is regular. We refer to such a morphism as a resolution of sin-
gularities, or desingularization. We will also require that ρ is an isomorphism above
any regular points of Y; this case is also referred to, in literature, as desingularization
in the strong sense, but we will never work with resolutions of singularities that do
not induce an isomorphism on the regular locus. We say that the resolution of sin-
gularities is minimal if, whenever ρ′ : Y′ → Y is a birational proper morphism and
Y′ is a regular scheme, there is a unique morphism Y′ → Y making the following
diagram commutative:

Y′ Ỹ

Y
ρ′

∃!

ρ

We will see that in dimension 2, under the correct hypotheses (for example if S is
excellent) a minimal resolution exists, and we will study its exceptional divisor E.
More specifically, we are interested in understanding the irreducible components
of E and how they intersect; we can then associate to the singularity a graph, called
the dual graph of the singularity, whose vertices correspond to the irreducible com-
ponents of E, and an edge between two vertices indicates an intersection between
the corresponding components.

Some of the major breakthroughs of the 20th century regarding the subject of the
resolution of singularities include Hironaka’s proof that in characteristic zero a
minimal resolution always exists ([Hir64]), and Lipman’s proof of the existence of
a desingularization for 2-dimensional schemes under mild hypotheses (for exam-
ple if the scheme is excellent), regardless of characteristic ([Lip78]). In his classical
1977 paper, Artin ([Art77]) then studied rational double points in positive char-
acteristic, focusing on the cases where p = 2, 3, 5: it is indeed in these cases that
the algebraic fundamental group (see Section 3.1 for a definition) is not necessar-
ily tame. The topic of wild quotient singularities on surfaces was then revived by
Lorenzini, who showed that when a desingularization exists, the corresponding
dual graph is a tree ([Lor13]), that for any fixed odd prime p there are infinitely
many dual graphs that can arise from the resolution of wild Z/pZ-quotient singu-
larities ([Lor14]), and presented examples of wild quotient singularities on prod-
ucts of curves ([Lor18]). In his papers, Lorenzini raised some open questions on the
subject matter, prompting further research. For example, Ito and Schröer showed
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in 2014 that dual graphs of wild quotient singularities always contain at least one
node, i.e. a vertex of valency at least 3 ([IS15]), while Obus and Wewers showed in
2019 that a specific type of singularities, called weakly wild, can be resolved explic-
itly ([OW19]). To this day, we still do not know whether a resolution for the wild
case exists in higher dimensions; we do know, by Lipman, that it exists for sur-
faces, but even in the simplest cases it might be very difficult to determine explic-
itly. Other open problems on wild quotient singularities concern their relation to
the so-called McKay correspondence, which, in characteristic zero, defines a bijection
between conjugacy classes of subgroups of SL2, du Val singularities, finite Dynkin
graphs of type ADE, and Dynkin graphs of affine type. In 2023, Yasuda surveyed
a collection of open problems regarding a wild generalization of the McKay corre-
spondence ([Yas23]); following Yasuda’s work, Liedtke offered a generalization of
the McKay correspondence in positive characteristic ([Lie24]).

The outline of this thesis is the following: the first two chapters revolve around
tame quotient singularities, while the third and last chapter will focus on the wild
case. More specifically, the work is organized as follows:

Chapter 1. In the first chapter of this thesis, the focus will shift to algebraic va-
rieties in the classical sense, over the ground field C. In particular, the goal of
Chapter 1 will be to study normal toric surfaces that arise as a quotient of Cn by
the action of a finite cyclic group. We will see that an affine toric variety can be rep-
resented by a rational convex polyhedral cone, and that all the data for glueing affine
toric varieties into abstract toric varieties can be encoded in a fan of cones. Then,
if we are working on a non-smooth toric surface, the quotient singularity can be
solved by dividing out the corresponding fan into a finer one; this operation geo-
metrically translates to taking a series of blow-ups. This type of resolution is also
known as the Hirzebruch-Jung algorithm for cyclic quotient singularities, as all the
data for the resolution can be encoded in a so-called Hirzebruch-Jung continued frac-
tion. The main source for this chapter is the book Toric varieties by David Cox, John
Little, and Hal Schenck, denoted by the bibliography entry [CLS11]; other valuable
sources for this topics are the book Introduction to toric varieties by William Fulton
([Ful93]) and the notes Introduction to toric geometry by Simon Telen ([Tel22]).

Chapter 2. In the second chapter, we will study the existence and the charac-
teristics of the minimal regular resolution of a normal curve X over a connected
Dedekind scheme S, following section 2 of [CES03]. We will see that if either S is
excellent or X has smooth generic fiber over S, a minimal regular resolution indeed
exists, generalizing a theorem of Lipman on the existence of a desingularization in
the strong sense (not necessarily minimal!) on an excellent curve. We will give
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a formal definition of what we mean by tame cyclic quotient singularity and con-
nect back to the case of toric varieties in Theorem 2.22, where we will see how the
Hirzebruch-Jung algorithm comes into play to study these singularities.

Chapter 3. In the final chapter of the thesis, we will study the dual graphs of wild
quotient singularities. While the first two chapters deal with singularities that are
toric in nature, and can thus be simple to resolve algorithmically using tools from
logarithmic geometry, wild quotient singularities can be much “stranger”, even
though we do not know how much stranger. We will see that the dual graph of a
wild quotient singularity always contains a node. This will be proven by showing
that a Hirzebruch-Jung singularity, whose dual graph is a tree without nodes, can
only occur in the tame case; we will use Grothendieck’s theory of algebraic fun-
damental groups to prove this result. We will then construct an example of wild
quotient singularity whose dual graph has two nodes.

Throughout this thesis, the reader is assumed to be familiar with the basic no-
tions presented in a first course in algebraic geometry: classical algebraic varieties,
sheaves, schemes, morphisms of schemes and their properties, as well as some
very basic definitions of category theory and homological algebra.



Chapter 1

Resolution of singularities on toric
surfaces

In this chapter, we will work with varieties in the sense of classical algebraic ge-
ometry, over the base field C. We will cover some basic notions on toric varieties,
a subclass of algebraic varieties that can be studied through the lens of combina-
torics. In particular, toric surfaces offer a good first example of a simple resolution
of quotient singularities, the Hirzebruch-Jung algorithm, which will be general-
ized to normal curves over a Dedekind scheme in the next chapter.

In presenting the topic of toric varieties, we will follow fairly closely the presenta-
tion in [CLS11]. While it may seem disconnected from the other topics presented in
the thesis, this chapter constitutes a necessary build-up for the theory in the follow-
ing chapters. This will require introducing the basic theory of toric varieties; we
have tried keeping the presentation at minimum, while still fairly self-contained.

1.1 Affine toric varieties

We will first introduce the notion of an affine toric variety. We will see various
equivalent ways of constructing affine toric varieties and how these constructions
play an important role in studying toric geometry.

1.1.1 Affine toric varieties, lattice points, toric ideals, affine semigroups

In the following, we will use the word lattice to mean a free abelian group of finite
rank.

Definition 1.1 (Torus). A torus is an affine variety isomorphic to (C×)n, from which
it inherits the multiplicative group structure.

5



6 1. Resolution of singularities on toric surfaces

We will associate to each torus a pair of mutually dual lattices: the lattice of char-
acters and the lattice of one-parameter subgroups.

Definition 1.2 (Character of a torus). Let T be a torus. A character of T is a mor-
phism χ : T → C× which is a group homomorphism.

It can be proven that all characters of (C×)n are of the following form: for m =

(a1, . . . , an) ∈ Zn, define

χm(t1, . . . , tn) = ta1
1 · · · tan

n .

Thus, in general, the set of all characters of a torus T is a free abelian group MT

of rank equal to the dimension of T; for m ∈ MT, we denote the corresponding
character by χm : T → C×. The association T 7−→ MT is a contravariant functor
from the category of tori (where a morphism of tori is a morphism of varieties
between tori which is also a group homomorphism) to the category of lattices, seen
as a full subcategory of Ab. This functor maps a morphism of tori Φ : T1 → T2 to a
group homomorphism “Φ : MT2 → MT1 given by composition with Φ on the right.
The dual lattice to M, N := HomZ(M, Z), can be identified with the group of all
one-parameter subgroups of T:

Definition 1.3 (One-parameter subgroup of a torus). A one-parameter subgroup of
T, or co-character, is a morphism λ : C× → T which is a group homomorphism.

Similarly to the case of characters, it can be shown that all one-parameter sub-
groups of (C×)n are of the form

λu(t) = (tb1 , . . . , tbn ),

for u = (b1, . . . , bn) ∈ Zn.

Definition 1.4 (Affine toric variety). An affine toric variety is an irreducible affine
variety V which contains a torus TV ' (C×)n as a Zariski open set, such that the
action of TV on itself extends to an algebraic action of TV on V.

For example, the curve C = V(x4 + y7) ⊆ C2 is an affine toric variety with torus

C r {(0, 0)} = {(t7,−t4) | t ∈ C×} ' C×,

where the toric action is given by s · (t7,−t4) =
(
(st)7,−(st)4) for s ∈ C×. This

action extends to C by defining s · (0, 0) = (0, 0).

We will now see three equivalent ways of constructing toric varieties, highlight-
ing their combinatorial nature: through lattice points, through toric ideals, and
through affine semigroups. These three ways are not only equivalent to each other,
but they also suffice to describe all affine toric varieties.
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Toric varieties and lattice points. For a fixed torus T with character lattice M, fi-
nite sets of lattice points within M yield toric varieties of rank at most dim T =

rk M. Indeed, fix a torus T ' (C×)n with character lattice M and consider a
finite subset of lattice points A = {m1, . . . , ms} ⊆ M. Define the morphism
ΦA : T → Cs by ΦA (t) = (χm1(t), . . . , χms (t)): this induces a morphism of tori
Φ : T → (C×)s whose image TA is a torus and a closed subset of (C×)s ([CLS11],
1.1.1). Now consider the Zariski closure YA of the image of ΦA within Cs: it is
an affine variety which contains TA as a Zariski open subset, and it can be shown
pretty straightforwardly that YA is indeed an affine toric variety with torus TA .
Furthermore, consider the following two commutative diagrams, where the dia-
gram on the right is obtained from the diagram on the left by applying the con-
travariant functor described earlier:

T (C×)s M Zs

TA MTA

Φ

Φ′

“Φ
Φ̂′

It is immediate to see that MTA
' Im Φ̂′ = Im“Φ = ZA . In conclusion, given

a finite subset A ⊆ M, we have constructed an affine toric variety YA , whose
dimension is equal to the rank of the sublattice ZA ⊆ M. Let us see an example:

Example 1.5. The variety V = V(xyz − w2) ⊆ C4 is an affine toric variety with
torus

T = V ∩ (C×)4 = {(t1, t2, t−1
1 t−1

2 t2
3, t3) | ti ∈ C×} ' (C×)3,

where the isomorphism (C×)3 ' T ⊆ C4 is given by Ψ(t1, t2, t3) = (t1, t2, t−1
1 t−1

2 t2
3, t3),

or, using the previous notation for characters,

Ψ =
Ä

χe1 , χe2 , χ−e1−e2+2e3 , χe3
ä

.

This prompts us to look at the lattice points A = {e1, e2,−e1 − e2 + 2e3, e3}. In-
deed, Ψ coincides with the map ΦA as defined previously, and indeed T = Im ΦA

and V is its Zariski closure in C4.

Toric varieties and toric ideals. Consider an affine toric variety V with torus T
and let I(V) be its vanishing ideal. We will see that there is a very special class of
ideals whose zero loci are toric varieties:

Definition 1.6 (Toric ideal). A prime ideal I ⊆ C[x1, . . . , xn] is a toric ideal if it is of
the form I = 〈xu − xv | u, v ∈Ns, u− v ∈ L〉 for some lattice L ⊆ Zs.

Let us look at the toric variety YA defined earlier, for A = {m1, . . . , ms}. We have
an induced morphism of lattices “Φ : Zs → M whose matrix has the elements of
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A as columns. Let L = ker“Φ: for any ` = (`1, . . . , `s) ∈ L, define `+ = ∑`i>0 `iei,
`− = −∑`i<0 `iei: then clearly ` = `+− `−. Observe that any binomial of the form
x = x`+ − x`− vanishes on YA , since for any ΦA (t) = (χm1(t), . . . , χms (t)) we have

(ΦA (t))`+ − (ΦA (t))`− = ∏
`i>0

χ`imi (t)− ∏
`i<0

χ`imi (t) = χ
∑

`i>0
`imi

(t)− χ
∑

`i<0
`imi

(t) = 0,

since ` satisfies ∑s
i=1 `imi = 0 ⇐⇒ ∑`i>0 `imi = ∑`i<0 `imi. Thus, the ideal

I =
〈
x`+ − x`− , ` ∈ L

〉
satisfies I ⊆ I(YA ). It can be shown ([CLS11], 1.1.9) that this

inclusion is actually an equality:

I(YA ) =
¨

x`+ − x`− , ` ∈ ker“Φ∂ = ¨xu − xv | u, v ∈Ns, u− v ∈ ker“Φ∂ .

On the other hand, given a toric ideal I = 〈xu − xv | u, v ∈Ns, u− v ∈ L〉 for some
lattice L ⊆ Zs, we can recover a toric variety of the form YA as follows: as earlier,
fix a torus T with character lattice M, and consider a homomorphism Φ : Zs → M
whose kernel is L. Set set m1 = “Φ(e1), . . . , ms = “Φ(es): the set A = {m1, . . . , ms}
yields the toric variety YA as per the previous paragraph, with I(YA ) = I. Thus,
the zero locus of a toric ideal is a toric variety.

Example 1.7. Consider the toric variety V = V(xyz − w2) from the previous ex-
ample. The ideal I = (xyz − w2) is a toric ideal corresponding (by the previous
description) to the lattice L = Z{(1, 1, 1,−2)}, which arises as the kernel of the
matrix Ä

e1 e2 −e1 − e2 + 2e3 e3

ä
=

Ö
1 0 −1 0
0 1 −1 0
0 0 2 1

è
.

Toric varieties and affine semigroups. Let us again consider the affine toric va-
riety YA described in the previous two paragraphs. We will see that its coordinate
ring arises from an affine semigroup:

Definition 1.8 (Affine semigroup). An affine semigroup is a set S endowed with a
binary operation + which satisfies:

(i) (S,+) is a commutative monoid;

(ii) there is a finite subset S ⊆ S such that any element of S can be written as an
N-linear combination of elements of S ;

(iii) S can be embedded into a lattice M.

Given an affine semigroup S, the semigroup algebra C[S] is the set of all finite formal
sums ∑m∈S amξm, with am ∈ C and multiplication defined by ξm · ξn = ξm+n.



1.1 Affine toric varieties 9

Example 1.9. Let us see a few examples of affine semigroups and their correspond-
ing semigroup algebras:

1. Nn is an affine semigroup with C[Nn] = C[x1, . . . , xn];

2. any lattice is an affine semigroup; in particular, C[Zn] = C[x1
±, . . . , xn

±];

3. the lattice points A = {e1, e2,−e1 − e2 + 2e3, e3} from the previous exam-
ple generate the affine semigroup NA , which yields the semigroup algebra
C[NA ] = C[s, t, u2s−1t−1, u] ' C[x, y, z, w]/(xyz− w2): by no coincidence,
this is exactly the coordinate ring of the affine toric variety YA = V(xyz−w2).

We have the following result:

Proposition 1.10. Let S be an affine semigroup.

1. The semigroup algebra C[S] is an integral domain;

2. The affine variety Specm C[S] is a toric variety whose torus has character lattice
ZS.

Proof. Let S ↪→ M be an embedding of S into a lattice M; then we have an embed-
ding of C[S] into C[M] = C[x1

±, . . . , xn
±]; since the latter is an integral domain,

so is C[S]. This proves (1). Now let A ⊆ M such that S ' NA . We have a map
ΦA : T → Cs, where T is a torus with character lattice M; this induces a morphism
Φ∗A : C[x1, . . . , xs] → C[M] between their coordinate rings, whose image is C[S].
Thus we have a short exact sequence

0 −→ I(YA ) −→ C[x1, . . . , xs] −→ C[S] −→ 0,

yielding C[S] ' C[x1, . . . , xs]/ I(YA ). This proves Specm C[S] ' YA , thus it is a
toric variety whose torus has character lattice ZA = ZS.

Thus, we have seen that toric varieties can arise from lattice points, toric ideals,
and affine semigroups, and that these constructions are all connected with each
other. More is actually true: all toric varieties arise in these equivalent ways.

Theorem 1.11. Let V be an affine variety. The following are equivalent:

1. V is an affine toric variety;

2. V ' YA for some finite subset A of a lattice M;

3. V is the zero locus of a toric ideal;

4. the coordinate ring of V is the semigroup algebra C[S] for some affine semigroup S.

Proof. See [CLS11], 1.1.17.
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1.1.2 Affine toric varieties arising from polyhedral cones

In the previous subsection, we have looked at the toric variety V = V(xyz− w2)
from multiple angles. In particular, we have seen that it arises from the lattice
points A = {e1, e2,−e1 − e2 + 2e3, e3} ⊆ Z3 which yield the affine semigroup
NA . If we embed NA into MT ' Z3 and consider its image through the functor
−⊗Z R, we obtain a polyhedral cone within R3, as pictured in Figure 1.1. We will
see that all the lattice points lying in the polyhedral cone are elements of S, and
that the cone determines V uniquely.

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(−1,−1, 2)

(0, 0, 0)

Figure 1.1: The cone generated by the lattice points corresponding to the affine
toric variety V(xyz− w2).

Notice that V is a normal variety: we will see that the corresponding polyhedral
cone is strongly convex. This is not a coincidence: normal toric varieties arise from
strongly convex polyhedral cones. To make sense of this statement, let us introduce
some basic notions on cones.

Let M, N be a pair of dual lattices, and let MR, NR be the corresponding dual real
vector spaces, obtained by applying the functor −⊗Z R. For m ∈ MR, n ∈ NR,
denote the usual pairing by 〈m, n〉.

Definition 1.12 (Rational convex polyhedral cone). A rational convex polyhedral cone
in NR is a subset of the form

σ = Cone(S) =

®
∑
u∈S

λuu | λu ≥ 0

´
⊆NR,

where S ⊆ N is finite. The dimension dim σ of σ is the dimension of Span(σ).

Let σ be a (rational convex polyhedral) cone (we will often omit subsets of {ra-
tional, convex, polyhedral} for the sake of simplicity), and consider its dual cone
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within MR:

σ∨ = {m ∈ MR | 〈m, u〉 ≥ 0 ∀u ∈ σ}.

Then σ∨ is a rational convex polyhedral cone in MR and (σ∨)∨ = σ. Now, for
m ∈ σ∨, consider the hyperplane

Hm = {u ∈ NR | 〈m, u〉 = 0} ⊆ NR.

Given a cone σ, we call each τ = σ ∩ Hm a face of σ. In this case, we write τ � σ.
Note that σ = σ ∩ H0, thus σ is a face of itself; if τ � σ and τ 6= σ, we say that τ is
a proper face and we write τ ≺ σ. Clearly, a face of a cone is still a cone.

The following results on cones and their faces hold:

Proposition 1.13. Let σ, τ, τ′ be cones. Then:

1. if τ � σ and τ′ � σ, then τ ∩ τ′ � σ;

2. if τ′ � τ and τ � σ, then τ′ � σ;

3. if τ � σ and v, w ∈ σ, then v + w ∈ τ implies v, w ∈ τ;

4. there is an inclusion reversing bijection between faces of σ and faces of σ∨.

τ
(0, 0)

σ

(0, 0)

m

σ∨

Figure 1.2: A rational cone σ and its dual: highlighted in purple are a point m ∈ σ∨

and the corresponding face τ � σ, while the bold black points correspond to the
generators of the cone.

Definition 1.14 (Strongly convex cone). A cone σ ⊆ NR is strongly convex if any of
the following equivalent conditions hold:

1. σ ∩ (−σ) = {0};

2. {0} � σ;

3. dim σ∨ = n.
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In other words, a strongly convex polyhedral cone does not contain any line through
the origin.

If σ is a cone, the one-dimensional faces of σ are called rays of σ. If σ is strongly
convex and ρ � σ is a ray, then there is a unique element rρ ∈ ρ such that ρ = N · rρ:
the set of all such elements for all the rays of σ is the set of minimal generators of σ.

Definition 1.15 (Smooth cone). A strongly convex cone σ ⊆ NR is smooth if its ray
generators form part of a Z-basis of N.

Let us now see how to obtain an affine toric variety from a rational polyhedral
cone σ ⊆ NR: the set Sσ = σ∨ ∩ M is an affine semigroup by a result known as
Gordan’s lemma ([CLS11] 1.2.17), which states that σ∨ ∩M = NA for some finite
set A ⊆ M. Then we have the following immediate corollary:

Proposition 1.16. Let σ ⊆ NR be a rational polyhedral cone, Sσ the corresponding affine
semigroup. Then Uσ = Specm C[Sσ] is an affine toric variety. Moreover, dim Uσ = n if
and only if σ is strongly convex.

Example 1.17. Consider the strongly convex polyhedral cone σ = Cone(e1, . . . , er) ⊆
Rn, with r < n. Then σ∨ = Cone(e1, . . . , er,±er+1, . . . ,±en). Thus

Sσ ' C
[
x1, . . . , xr, x±r+1, . . . , x±n

]
=⇒ Uσ ' Cr × (C×)n−r.

To conclude this subsection, we will now briefly look at how faces of a cone σ

correspond to affine open subsets of Uσ.

Theorem 1.18. Let σ be a strongly convex polyhedral cone, τ � σ with τ = Hm ∩ σ for
m ∈ σ∨ ∩M. Then:

1. The semigroup algebra C[Sτ] is the localization C[Sσ]ξm ;

2. We have an inclusion Uτ ↪→ Uσ with Uτ being isomorphic to the open subset
(Uσ)ξm ;

3. If σ, σ′ are cones which intersect at a common face τ, we have inclusions Uσ ⊇
Uτ ⊆ Uσ′ given by (Uσ)ξm ' Uτ ' (Uσ′)ξ−m , where m ∈ σ∨ ∩ (−σ′)∨ is such that
τ = σ ∩ Hm = σ′ ∩ Hm.

Proof. [CLS11], 1.2.13, 1.3.16.

Example 1.19. Consider the strongly convex cone σ = Cone (e2, 2e1 − e2) ⊆ Z2;
its dual cone, as computed with Macaulay2, is σ∨ = Cone (e1, e1 + 2e2, e1 + e2)
(pictured in Figure 1.2), which yields the affine toric variety

Uσ = Specm C[u, ut2, ut] = Specm
C[x, y, z]
(xy− z2)

.
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τ
(0, 0)

σ

(0, 0)

m

−m

σ∨

τ∨

Figure 1.3: The strongly convex cone σ = Cone (e2, 2e1 − e2), its face τ =

Cone(2e1 − e2), and their duals. The semigroup algebra C[Sτ] is the localization
C[Sσ]ξm .

The element m = e1 + 2e2 ∈ σ∨ yields the face τ = Cone(2e1 − e2) � σ; the
corresponding toric variety is

Uτ = Specm
Å

C[x, y, z]
(xy− z2)

ã
y

,

which is isomorphic to the affine open set Uσ r {y = 0}.

1.1.3 Description of the torus action

Let V = Specm C[S] be an affine toric variety with torus T: in this subsection,
we will give an intrinsic description of the torus action T × V → V. A funda-
mental tool in achieving this task will be characterizing the points of V via (affine)
semigroup homomorphisms S → C, where by semigroup homomorphism we mean
a map between commutative monoids that preserves the binary operation and the
N-action.

Proposition 1.20. Let V = Specm C[S] be a toric variety. The following data are equiv-
alent:

1. points p ∈ V;

2. maximal ideals mp of Specm C[S];

3. semigroup homomorphisms S→ C.
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The correspondence between points and maximal ideals is standard, while the
correspondence with semigroup homomorphisms works as follows: to a point p ∈
V, associate the semigroup homomorphism m 7−→ ξm(p); on the other hand, given
a semigroup homomorphism γ : S → C, consider the kernel mp of the induced
C-algebras homomorphism γ∗ : C[S] → C: mp is a maximal ideal corresponding
to a point p ∈ V. The reader may refer to [CLS11], 1.3.1 for a detailed proof.

This description of points allows us to look at the torus action intrinsically, without
needing to embed the variety into an affine space. First observe that the coordinate
ring of T×V is the tensor product C[M]⊗C C[S]; then, since the action T×V → V
is the extension of the action T × T → T, we have the commutative diagrams

T × T T

T ×V V

Specm(·)−−−−→
C[M]⊗C C[M] C[M]

C[M]⊗C C[S] C[S]

.

It follows that the action of T on V is given by the algebraic map ξm 7−→ ξm ⊗ ξm,
just like the action of T on itself. Thus, we have the following result:

Proposition 1.21. In the previous notation, an element t ∈ T acts on V by(
m 7−→ γ(m)

)︸ ︷︷ ︸
point on V,

seen as a semigroup homomorphism

7−→ (
m 7−→ ξm(t)γ(m)

)
.

Let us now conclude this subsection by giving a series of results regarding the
existence of fixed points for the torus action. Given an affine semigroup S, we say
that S is pointed if its only invertible element is 0, i.e. S∩ (−S) = {0}.

Proposition 1.22. Consider an affine toric variety V with dense torus T.

1. If we write V = Specm C[S] for some affine semigroup S, then the torus action on
V has a fixed point if and only if S is pointed, in which case the unique fixed point
corresponds to the semigroup homomorphism

γ : m 7−→

1 if m = 0

0 otherwise.

2. If we write V = YA ⊆ Cs for a set of generators A ⊆ S, then the torus action on V
has a fixed point if and only if 0 ∈ YA , in which case the unique fixed point is 0.

3. If we write V = Uσ for some strongly convex rational cone σ ⊆ NR ' Rn, then the
torus action on V has a fixed point if and only if σ has dimension n, in which case
the unique fixed point corresponds to the maximal ideal 〈ξm |m ∈ Sσ r {0}〉.
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Proof. [CLS11], 1.3.2, 1.3.3.

In each case, the unique fixed point is called the distinguished point of the variety,
and we denote it by γσ if V = Uσ for a strongly convex rational cone σ of dimen-
sion n.

1.1.4 Normality and smoothness

It follows from Example 1.17 that any affine toric variety arising from a smooth
cone is isomorphic to the product of an affine space with a torus, and is thus
smooth. We will see in this subsection that the converse also holds and that, in
general, properties of polyhedral cones are linked to geometric properties of the
toric varieties they yield.

Definition 1.23. An affine semigroup S ⊆ M = ZS is saturated if km ∈ S for
m ∈ M, k ∈N>0 implies m ∈ S.

Theorem 1.24. Let V be an affine toric variety with torus T ' (C×)n, character lattice
M and co-character lattice N. The following are equivalent:

1. V is a normal toric variety.

2. V = Specm(C[S]) for some saturated affine semigroup S.

3. V ' Uσ = Specm(C[Sσ]) for some strongly convex rational cone σ ⊆ NR.

Proof. Recall that V = Specm(C[S]) for some affine semigroup S, and that the
character lattice of V is ZS = M.
(1)⇒ (2) Since V is normal, its coordinate ring C[S] is integrally closed in its field

of fractions. Let km ∈ S for some m ∈ M, k ∈ N>0: then ξkm ∈ C[S]. The monic
equation xk− ξkm = 0 is satisfied by ξm ∈ C[M] = Frac C[S], whence by normality
ξm ∈ C[S] and m ∈ S. Thus S is saturated.
(2)⇒ (3) Let S be saturated: we need to find a strongly convex rational cone

σ ⊆ N such that S = Sσ. Let A = {m1, . . . , ms} ⊆ M be a finite generating set for
S and let σ∨ = Cone(A ) ⊆ MR. Clearly S ⊆ σ∨ ∩ M; on the other hand, the Q-
vector space σ∨ ∩ (M⊗Z Q) is generated over Q by A , thus any m ∈ σ∨ ∩M can
be written as m = ∑s

i=1 λimi with λi ∈ Q>0. Clearing the denominators we can
find a natural number k ∈ N>0 such that km ∈ S: since S is saturated, it follows
m ∈ S thus S = σ∨ ∩M = Sσ.
(3)⇒ (1) See [CLS11] 1.3.5.

Example 1.25. A standard example of non-normal variety is the cusp V = V(x3 −
y2). This is the toric variety corresponding to the lattice points A = {2, 3} ⊆ Z,
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with affine semigroup NA = {2, 3, 4, 5, . . .}, which is not saturated as it does not
contain 1 (but it contains all of its other nonzero natural multiples).

Example 1.26. Consider the toric variety V = V(xyz− w2) from the first subsec-
tion; we have V = Uσ for σ = Cone(e3, 2e1 + e3, 2e2 + e3) (pictured in Figure 1.4),
with σ∨ being the polyhedral cone in Figure 1.1. Since σ is strongly convex, as it
contains no line through the origin (i.e. σ ∩ (−σ) = {0}), V is normal.

(0, 0, 0)

(0, 0, 1)

(0, 2, 1)

(2, 0, 1)

Figure 1.4: The cone σ = Cone(e3, 2e1 + e3, 2e2 + e3), which yields the toric variety
Uσ = V(xyz− w2).

Similarly to normality, smoothness can also be characterized in terms of polyhe-
dral cones. Since smooth implies normal, it is clear that a smooth variety will be
one that arises from a strongly convex cone. More specifically, we have the follow-
ing result, whose proof is omitted (the reader can refer to [CLS11], 1.3.12).

Proposition 1.27. Let V be an affine toric variety. Then V is smooth if and only if V = Uσ

for some smooth strongly convex rational cone σ.

Proof. [CLS11], 1.3.12.

1.2 Abstract toric varieties

Just like in the case of classical algebraic geometry, we can extend our class of
objects by introducing the notion of an abstract toric variety, which will amount to
a glueing of affine toric varieties. In this way, we can use the tools of toric geometry
on more complicated objects, like projective spaces, or non-affine subsets of affine
toric varieties. This will prove valuable in the study of quotient singularities on
affine toric varieties, since the regular locus of an affine variety need not be affine.

1.2.1 Glueing affine toric varieties

Consider the following definition:



1.2 Abstract toric varieties 17

Definition 1.28 (Toric variety). A toric variety is an irreducible abstract algebraic
variety X containing a torus T ' (C×)n as an open subset, such that the action of
T on itself extends to an algebraic action of T on X.

Similarly to the case of classical algebraic varieties, we can construct (abstract) toric
varieties by glueing affine toric varieties. We will restrict to the case of normal
affine varieties: we know by the previous section that normal affine toric varieties
arise from strongly convex polyhedral cones. It turns out that the glueing data for
a collection of normal affine toric varieties {Uσ}σ can be encoded in a fan.

As before, let N, M be a pair of dual lattices.

Definition 1.29 (Fan). A fan in NR is a finite collection Σ of cones σ ⊆ NR, such
that:

1. each σ ∈ Σ is strongly convex;

2. ∀σ ∈ Σ, τ � σ =⇒ τ ∈ Σ;

3. ∀σ1, σ2 ∈ Σ, σ1 � σ1 ∩ σ2 � σ2.

Given a fan Σ:

• its support is |Σ| = ⋃
σ∈Σ σ ⊆ NR;

• Σ(r) is the set of all r-dimensional cones of Σ.

Given a fan Σ, consider the collection of affine toric varieties

{Uσ}σ∈Σ = {Specm C[Sσ]}σ∈Σ .

Recall that a face τ � σ is given by τ = σ ∩ Hm for some m ∈ σ∨ and that the
following hold:

1. C[Sτ] = C[Sσ]ξm ;

2. if τ = σ1 ∩ σ2, then
(
Uσ1

)
ξm ' Uτ '

(
Uσ2

)
ξ−m .

Then, if σ1, σ2 ∈ Σ, τ = σ1 ∩ σ2, we have a gluing function

gσ2,σ1 :
(
Uσ1

)
ξm '

(
Uσ2

)
ξ−m .

These isomorphisms verify the compatibility conditions for gluing the affine toric
varieties Uσ, and thus yield a toric variety XΣ associated to the fan Σ.

Theorem 1.30. In the previous notations, the variety XΣ is a normal separated toric va-
riety. Moreover, any normal separated toric variety arises in this way.

Proof. [CLS11], 3.1.5, 3.1.8.
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Example 1.31. Consider a strongly convex rational cone σ ⊆ NR and the fan Σ
consisting of σ and all of its faces. Then XΣ = Uσ.

Example 1.32. Let us see how the projective plane P2 arises as an abstract toric
variety. Consider the fan Σ ⊆ NR = R2 in Figure 1.5, consisting of the cones
σ0 = Cone(e1, e2), σ1 = Cone(−e1 − e2, e2), σ2 = Cone(e1,−e1 − e2) and their
intersections. By computing the dual cones for each cone in the fan, we obtain the
affine toric varieties

Uσ0 = Specm C[Sσ0] = C[x, y];

Uσ1 = Specm C[Sσ1] = C[x−1, x−1y];

Uσ2 = Specm C[Sσ2] = C[xy−1, y−1],

which cover XΣ. The glueing morphisms are given by

g1,0 :
(
Uσ0

)
x '

(
Uσ1

)
x−1

g2,0 :
(
Uσ0

)
y '

(
Uσ2

)
y−1

g1,2 :
(
Uσ2

)
xy−1 '

(
Uσ1

)
x−1y .

With a change of coordinates x 7−→ x1
x0

, y 7−→ x2
x0

, we see immediately that XΣ

is indeed the projective plane, with the affine open sets Uσi corresponding to the
usual affine open sets Ui covering P2.

σ0
σ1

σ2

Figure 1.5: The fan Σ corresponding to the projective plane P2.

Just like with cones, properties of fans correspond to algebraic properties of the
toric variety they yield.

Definition 1.33 (Smooth and simplicial fans). Let Σ ⊆ NR be a fan. We say that Σ
is smooth if all its cone are smooth, while it is simplicial if each σ ∈ Σ is simplicial,
i.e. its minimal generators are linearly independent over R.

Theorem 1.34. In the previous notations:

1. XΣ is smooth if and only if Σ is smooth.



1.2 Abstract toric varieties 19

2. XΣ is an orbifold (i.e. it has finite quotient singularities) if and only if Σ is simplicial.

Proof. The first statement follows immediately from the corresponding property
of affine toric varieties and cones, since smoothness is a local property. As for the
second statement, let us look at XΣ locally: suppose that σ ⊆ NR is a simplicial
cone of dimension n with minimal generators u1, . . . , un. Then N′ = ∑i Zui is a
sublattice of N of finite index: by [CLS11], 1.3.18, this implies that the group G =

N/N′ acts on the smooth variety Uσ,N′ with quotient Uσ,N′/G ' Uσ,N . This means
that any toric variety arising from a simplicial fan locally looks like a quotient of
a smooth variety by a finite group, so it has only finite quotient singularities. For
the other implication, see [CLS11], 11.4.8.

1.2.2 The orbit-cone correspondence

Let us now introduce the last ingredient we need in order to start talking about
the resolution of singularities on toric varieties: the orbit-cone correspondence. It
is a major result in toric geometry which, given a toric variety XΣ with dense torus
T, describes a bijection between orbits of the T-action on XΣ and the cones of Σ.
Before stating the theorem, let us outline how the correspondence works through
an example.

Example 1.35. Consider the projective plane P2: as seen earlier, it is a toric va-
riety arising from the fan in Figure 1.5, with dense torus T = {[1 : s : t] | s, t ∈
C×} ' (C×)2. The action of T on P2 is given by multiplication of homogeneous
coordinates:

[1 : s : t] : [x0 : x1 : x2] 7−→ [x0 : x1s : x2t].

What do the orbits of this action look like? Clearly, a point [x0 : x1 : x2] with
xi 6= 0 for some i cannot lie in the same orbit as one where xi = 0. Vice versa, two
points lying in the same hyperplanes V(xi) must lie in the same orbit. Thus, it is
immediate to see that the action of T on P2 has the following seven orbits:

O1 = {[x0 : x1 : x2] | xi 6= 0 for all i}, O2 = {[x0 : x1 : 0] | x0, x1 6= 0},
O3 = {[x0 : 0 : x2] | x0, x2 6= 0}, O4 = {[0 : x1 : x2] | x1, x2 6= 0},
O5 = {[x0 : 0 : 0] | x0 6= 0}, O6 = {[0 : x1 : 0] | x1 6= 0},
O7 = {[0 : 0 : x2] | x2 6= 0}.

Consider now for an element u = (a, b) ∈ N ' Z2 the corresponding co-character
λu(t) = [1 : ta : tb] ∈ T. Recall that P2 arises from a fan whose support is all
of NR: we observe that the limit limt→0 λu(t) is different depending on where u
lies. The limits are summarized in Figure 1.6. We immediately see that two co-
characters yield the same limit if and only if they lie in the relative interior of the
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same cone of Σ; thus, we have a bijection between cones and limits of co-characters.
Moreover, each of the possible values for limt→0 λu(t) belongs to one and only one
of the seven orbits described earlier, so we also have a correspondence between
the limits and the orbits of the T-action. Thus, we have a correspondence between
cones and orbits:

σ corresponds to O ⇐⇒ lim
t→0

λu(t) ∈ O for any u in the relative interior of σ.

b

a

limit is [1 : 0 : 0]limit is [0 : 1 : 0]

limit is [0 : 0 : 1]

limit is [1 : 1 : 0]

limit is [1 : 0 : 1]

limit is [0 : 1 : 1]

limit is [1 : 1 : 1]

Figure 1.6: The value of limt→0 λu(t) for different values of u = (a, b) ∈ N.

This correspondence extends to all toric varieties:

Theorem 1.36 (Orbit-cone correspondence). Let Σ ⊆ NR be a fan and XΣ the corre-
sponding toric variety, with torus T.

1. There is a bijection

{cones σ ∈ Σ} ←→ {T-orbits in XΣ}
σ 7−→ O(σ) ' HomZ(σ∨ ∩M, C×).

2. If dim NR = n, for any σ ∈ Σ we have dim O(σ) = n− dim σ.

3. The affine open subset Uσ is given by the union

Uσ =
⋃

τ�σ

O(τ).
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4. τ � σ if and only if O(σ) ⊆ O(τ), in which case O(τ) =
⋃

τ�σ O(σ), where the
closure O(τ) is both in the classical and Zariski topologies.

Proof. [CLS11], 3.2.6.

Observe that we already knew by 1.22 that each cone σ of maximal dimension
corresponds to a fixed point γσ (i.e., a zero-dimensional orbit), which is called the
distinguished point of σ.

1.2.3 Refinements of fans

Blowing up a toric variety XΣ at a point can be represented by dividing the cones
of Σ into smaller cones, creating a finer fan. Before we expand on this idea, let us
give some preliminary notions on toric morphisms.

Definition 1.37 (Toric morphism). Let XΣ1 , XΣ2 be normal toric varieties arising
from fans Σ1 ⊆ (N1)R and Σ2 ⊆ (N2)R. A morphism φ : XΣ1 → XΣ2 is toric if it
maps φ(T1) ⊆ T2 and φ|T1

: T1 → T2 is a group homomorphism, where Ti is the
dense torus of XΣi .

By generalizing [CLS11], 1.3.14, we have that all toric morphisms are equivariant
with respect to the toric action, meaning that the following diagram is commuta-
tive:

T1 × XΣ1 XΣ1

T2 × XΣ2 XΣ2

φ|T1
×φ φ .

Definition 1.38 (Compatible map with respect to a pair of fans). Let N1, N2 be a
pair of lattices, with Σi a fan in (Ni)R, for i = 1, 2. A Z-linear map φ̄ : N1 → N2 is
compatible with the fans Σ1, Σ2 if for any cone σ1 ∈ Σ1, there is a cone σ2 ∈ Σ2 such
that φ̄R(σ1) ⊆ σ2.

Theorem 1.39. Let N1, N2 be lattices and Σi a fan in (Ni)R for i = 1, 2.

1. If φ̄ : N1 → N2 is a Z-linear map which is compatible with Σ1 and Σ2, then
there is a toric morphism φ : XΣ1 → XΣ2 such that φ|T1

coincides with the map
φ̄⊗ 1 : N1 ⊗Z C× → N2 ⊗Z C×.

2. On the other hand, if φ : XΣ1 → XΣ2 is a toric morphism, then φ induces a Z-linear
map φ̄ : N1 → N2 which is compatible with the fans Σ1 and Σ2.

Proof. [CLS11], 3.3.4.
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We now give the following definition:

Definition 1.40 (Refinement of a fan). Given two fans Σ, Σ′ ⊆ N, we say that Σ′

refines Σ if |Σ| = |Σ′| and each cone in Σ′ is contained in a cone of Σ.

Here is an example of refinement that will come useful in a moment:

Definition 1.41. Let Σ be a fan in NR and let σ = Cone(u1, . . . , un) be a smooth
cone in Σ. For u0 := u1 + . . . + un, let Σ′(σ) be the set of all cones generated by
subsets of {u0, . . . , un} that do not contain {u1, . . . , un}. The star subdivision of Σ
along σ is the fan

Σ?(σ) = (Σ r {σ})∪ Σ′(σ).

In other words, the star subdivision of Σ along σ is obtained by “replacing” σ in Σ
with Σ′(σ).

Now observe that if Σ′ refines Σ, then the identity map φ : N → N is compatible
with the fans Σ and Σ′, yielding a toric morphism φ : XΣ′ → XΣ. In particular, the
star subdivision satisfies the following theorem:

Theorem 1.42. In the previous notations, Σ?(σ) is a refinement of Σ and the associated
toric morphism

φ : XΣ?(σ) → XΣ

is the blow-up of XΣ at the distinguished point γσ corresponding to the cone σ.

Proof. [CLS11], 3.3.15.

We can also consider a more general type of star subdivision: given a fan Σ and a
primitive element v ∈ |Σ| ∩NR (where primitive means that 1

k v 6∈ NR for all k > 1),
define Σ?(v) as the following set of cones:

• all σ ∈ Σ that do not contain v;

• Cone(v, τ) for all τ ∈ Σ that do not contain v and such that {v} ∪ τ ⊆ σ for
some σ ∈ Σ.

We call Σ?(v) the star subdivision of Σ at v; it is a refinement of Σ ([CLS11], 11.1.3.)
and, thus, it induces a morphism XΣ?(v) → XΣ.

Star subdivisions turn out to be extremely important in the process of solving a
singularity on a toric surface. Recall the following definition:

Definition 1.43 (Resolution of singularities). A proper morphism ϕ : X → Y is a
resolution of singularities if Y is a smooth surface and ϕ induces an isomorphism

Y r ϕ−1(Xsing) ' X r Xsing,
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where Xsing is the singular locus of X.

We have the following theorem:

Theorem 1.44. Let Σ ⊆ NR be a fan. Then there exists a refinement Σ′ of Σ satisfying
the following properties:

1. Σ′ is smooth;

2. Σ′ contains every smooth cone of Σ;

3. Σ′ is obtained by a sequence of star subdivisions;

4. The induced morphism φ : XΣ′ → XΣ is a projective resolution of singularities.

Proof. [CLS11], 11.1.9.

1.2.4 Resolution of quotient singularities on toric surfaces

Consider the toric surface V = V(xy− z2) from Example 1.19: it is a non-smooth
variety, corresponding to the polyhedral cone σ = Cone (e2, 2e1 − e2) ⊆ Z2, whose
singular locus is the origin. It is a known fact of classical algebraic geometry that V
arises as a quotient of C2 by the action of the cyclic group {−1, 1} ' Z/2Z, given
by the algebraic map −1 : (u, v) 7−→ (−u,−v).

More generally, for a cone σ = Cone (e2, me1 − e2) ⊆ NR, the corresponding toric
variety Uσ arises as the quotient of C2 by the action of the cyclic group µm of m-th
roots of unity. Indeed, observe that σ∨ = Cone (e1, e1 + e2, . . . , e1 + me2), so that
C[Sσ] = C[x, xy, . . . , xym] = C[um, um−1v, . . . , vm] for u = x

1
m , v = x

1
m y. Consider

the sublattice N′ generated by the ray generators e2 and me1− e2, and let σ′ be the
same cone as σ, but seen within N′: it is clear that σ′ is smooth, so it yields a smooth
toric variety Uσ′ isomorphic to C2. More specifically, N′ = 〈me1, e2〉Z, whence its
dual M′ ⊇ M is spanned over Z by

¶
1
m e1, e2

©
. Since the dual cone (σ′)∨ ⊆ M′ is

given by (σ′)∨ = Cone
Ä

1
m e1, 1

m e1 + e2

ä
, we have C[Sσ′] = C[x

1
m , x

1
m y] = C[u, v].

At this point, it is clear that C[Sσ] is the ring of invariants of C[Sσ′] under the action
of µm = 〈ζ〉 given by

ζ · p(u, v) = p(ζu, ζv).

Thus, the inclusion C[Sσ] = C[um, um−1v, . . . , vm] ↪→ C[u, v] = C[Sσ′] yields a
morphism Uσ′ → Uσ which is a quotient of Uσ′ ' C2 by the action of µm.

In general, any normal affine toric surface can be written as Uσ for a cone of the
form σ = Cone(e2, me1 − ke2). This is a consequence of the following proposition,
whose proof follows from the following modified version of the Euclidean algo-
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rithm: for any pair of integers n and m, with m > 0, there are unique integers h and k
such that n = mh− k, with 0 ≤ k < m.

Proposition 1.45. Let σ ⊆ NR ' Z2 be a strongly convex two-dimensional cone. Then
there is a basis {e1, e2} of N such that σ = Cone(e2, me1 − ke2), 0 ≤ k < m and
gcd(m, k) = 1. The integers m and k are essentially unique in the following sense: if
σ = Cone(e2, me1 − ke2) and σ̃ = Cone(e′2,‹me′1 − k̃e′2) are lattice equivalent, i.e. there
is a Z-linear bijection ϕ : N → N mapping one cone into the other, then d̃ = d and either
k̃ = k or k̃k ≡ 1 mod d.

Proof. [CLS11], 10.1.1, 10.1.3.

e2

me1 − ke2

σ

σ∨

Figure 1.7: The cone σ = Cone(me1 − ke2) and its dual.

We call the integers m and k parameters of the cone, and {e1, e2} is a normal basis for
N relative to σ.

Writing a normal affine toric surface in normal form can be very useful to study
its quotient singularities. Indeed, consider the sublattice N′ of N generated by
u1 = e2 and u2 = me1 − ke2. Similarly to the case where k = 1 seen at the
beginning of this subsection, the group G = N/N′ acts on Uσ,N′ ' C2, and Uσ

arises as a quotient of C2 by this action. More specifically, by writing σ in normal
form we find

N′ = Ze2 ⊕Z(me1 − ke2) = Z(me1)⊕Ze2 =⇒ N/N′ ' Z/mZ.

The following proposition describes the action of G = N/N′ ' µm on C2.

Proposition 1.46. Let M′ be the dual lattice of N′ and let m1, m2 ∈ M′ the dual elements
to u1 and u2. Using coordinates x = ξm1 , y = ξm2 of C2, the action of the cyclic group
µm = 〈ζ〉 on C[x, y], where ζ is a primitive m-th root of unity, is given by

ζ · p(x, y) = p(ζx, ζky).

Moreover, Uσ ' C2/µm with respect to this action.
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Proof. By [CLS11], 1.3.18, for m ∈ σ∨ ∩M′ and u ∈ N the group N/N′ ' Z/mZ

acts on the coordinate ring of C2 via

(u + N′) · ξm = e2πi〈m,u〉ξm.

Fix u = e1: we have an isomorphism µm ' N/N′ via e2πi j
m 7−→ je1 + N′. Since

〈m1, e1〉 = 1
m and 〈m2, e2〉 = k

m , we have for ζ = e
2πi
m

ζ · p(x, y) = p
(

e
2πi
m x, e

2kπi
m y
)
= p(ζx, ζky).

In general, consider a (non necessarily affine) normal toric surface X. The surface
obtained by removing the fixed points of the torus action is smooth, and since there
are only finitely many such points (by the orbit-cone correspondence), this means
that there are only finitely many singularities. Moreover, since any 2-dimensional
cone is simplicial, X is an orbifold, meaning that each of these singularities arises
as a quotient singularity. Since X locally looks like an affine normal surface, we
know by the previous discussion that it locally arises as a quotient of C2 by a finite
cyclic group G. This will help us work out an algorithm for solving these quotient
singularities.

Given a fan Σ yielding X = XΣ, we will construct a resolution of singularities by
dividing the cones of Σ into smaller cones, to obtain a new fan Σ′ whose cones are
all smooth, like we saw in the previous subsection. While the general construction
can be complicated, in the case of toric surfaces the resolution can be found with a
simple algorithm. Before stating the theorem on the resolution of singularities on
toric surfaces, let us look at how it works through an example.

Example 1.47. Consider a cone σ with parameters m = 7 and k = 3. The action of
G = N′/N ' Z/7Z on C[x, y] is given by

ζ · p(x, y) = p(ζx, ζ3y),

for a primitive 7-th root of unity ζ. The ring of invariants by this action is

C[x, y]G = C[x7, x4y, xy2, y7] ' C[s, t, u, v]
(t2 − su, u4 − tv, tu3 − sv)

,

where the relations between the generators have been computed using Macaulay2.
Thus, we can identify the toric surface Uσ with the affine variety

V(t2 − su, u4 − tv, tu3 − sv) ⊆ C4.

By applying the Jacobian criterion, we see that this variety is smooth outside the
origin, with the origin being its only singular point. Indeed, the corresponding



26 1. Resolution of singularities on toric surfaces

cone σ = Cone(e2, 7e1 − 3e2) is not smooth. Let us divide σ into a fan of smooth
cones by inserting three new rays:

• ρ1 = Cone(e1);

• ρ2 = Cone(3e1 − e2);

• ρ3 = Cone(5e1 − 2e2).

τ1

τ2

ρ1

ρ2

ρ3

σ1

σ2

σ3

σ4

Figure 1.8: The smooth fan Σ refining σ, obtained by adding the rays ρ1, ρ2, ρ3.

In this way, we have divided σ into a smooth fan Σ, pictured in Figure 1.8, which
corresponds to a smooth toric surface XΣ. Since the identity map on N is compat-
ible with the fans Σ and σ, by the previous theorem we have a toric morphism
φ : XΣ → Uσ, which is proper by [CLS11], 3.4.11. Let us now use the orbit-
cone correspondence to show that φ is indeed a resolution of singularities. Let
γσ be the distinguished point of Uσ, i.e. the unique fixed point of the torus action
on Uσ. Then Uσ r {γσ} is a smooth abstract toric variety with no fixed points,
which means (by the orbit-cone correspondence) that its fan consists of the rays
of σ, i.e. τ1 = Cone(e2) and τ2 = Cone(7e1 − 3e2), along with the origin. The
toric morphism φ is obtained by gluing the local toric morphisms φσi : Uσi → Uσ

arising from the inclusions σi ⊆ σ; for each of these maps, the preimage of the
distinguished point must be a union of orbits of Uσi . In particular, φ maps O(τ1)
and O(τ2) into themselves, while φ−1(γσ) = O(ρ1) ∪O(ρ2) ∪O(ρ3). It follows that
XΣ r φ−1(γσ) has the same fan as Uσ r {γσ}, so φ restricts to an isomorphism

XΣ r φ−1(γσ) ' Uσ r {γσ}.

Thus, it is a resolution of singularities.
Each orbit O(ρi) is isomorphic to the projective line P1, which is the toric vari-
ety arising from the one-dimensional fan Σ = {(−∞, 0], {0}, [0,+∞)} ⊆ R (see
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[CLS11], 3.1.11). We call the subset E = φ−1(γσ) the exceptional divisor on the sur-
face. By point (4) of Theorem 1.36, we know that the closed subsets O(ρ1) and
O(ρ2) intersect transversally on the distinguished point of XΣ corresponding to the
cone σ2, while O(ρ2) and O(ρ3) intersect transversally on the distinguished point
corresponding to the cone σ3. Thus, the exceptional divisor E looks like three pro-
jective lines intersecting as in Figure 1.9. We associate to the singularity a graph,
called the dual graph, whose vertices represent the irreducible components of the
exceptional divisor, and two vertices are connected by an edge if the correspond-
ing components intersect. In this case, the dual graph is the Dynkin graph A3:
we say that it is a du Val singularity of type A3. Further discussion on exceptional
divisors and dual graphs will occur in the next chapters.

A3E

Figure 1.9: The exceptional divisor E of the resolution of singularities XΣ → Uσ

and its dual graph A3.

The previous discussion can be extended to abstract toric surfaces with more than
one singular point. Recall that given two fans Σ, Σ′ ⊆ N, we say that Σ′ refines Σ if
|Σ| = |Σ′| and each cone in Σ′ is contained in a cone of Σ. In this case, the identity
map φ : N → N is compatible with the fans Σ and Σ′, so it yields a toric morphism
φ : XΣ′ → XΣ.

Theorem 1.48. Let XΣ be a normal toric surface. There is a smooth fan Σ′ that refines Σ,
such that the associated toric morphism φ : XΣ′ → XΣ is a toric resolution of singularities.

Proof. [CLS11], 10.1.10.

We have yet to explain how one can refine a non-smooth strongly convex cone σ

into a smooth fan, like we did in the previous example. By Proposition 1.45, we
may assume that σ = Cone(e2, me1 − ke2). The first step is to refine σ into a fan
containing the cones

σ′ = Cone(e1, e2), σ′′ = Cone(e1, me1 − ke2).

The first cone is clearly smooth, but second need not be. Observe that σ′′ is not
written in normal form: it will have parameters k, k1, with

m = b1k− k1, b1 ≥ 2, 0 ≤ k1 < k.

Write σ′′ in normal form as σ′′ = Cone(e′2, ke′1 − k1e′2), for e′2 = e1 and e′1 such that
ke′1− k1e′2 = me1− ke2. We can re-iterate the procedure on σ′′, by adding a new ray
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which divides σ′′ into a smooth cone and a second cone, which may not be smooth,
with parameters k1, k2 satisfying k = b2k1 − k2. Repeating this operation yields a
modified Euclidean algorithm which generates the parameters of the cones of the
smooth fan Σ:

m = b1k− k1;

k = b2k1 − k2;
... (1.49)

kr−3 = br−1kr−2 − kr−1;

kr−2 = brkr−1.

The algorithm terminates in a finite number of steps when kr = 0; in each step, we
require that bi must satisfy bi ≥ 2.

The equations in 1.49 can be rewritten as

m/k = b1 − k1/k;

k/k1 = b2 − k2/k1;
...

kr−3/kr−2 = br−1 − kr−1/kr2 ;

kr−2/kr−1 = br,

yielding the continued fraction

m/k = b1 −
1

b2 − 1
···− 1

br

.

This is called the Hirzebruch-Jung continued fraction expansion of m/k. We use the
notation

m/k = Jb1, . . . , brK.

We call the integers bi partial quotients of the continued fraction, while the truncated
fractions Jb1, . . . , biK are called convergents.

The Hirzebruch-Jung continued fraction expansion satisfies the following propo-
sition:

Proposition 1.50. Let m, k > 0 be integers with gcd(m, k) = 1 and let m/k = Jb1, . . . , brK.
We define the sequences (Pi)i and (Qi)i recursively as follows: set P0 = 1, Q0 = 0,
P1 = b1, Q1 = 1; for each 2 ≤ i ≤ r, let

Pi = biPi−1 − Pi−2; Qi = biQi−1 −Qi−2.

The following hold:



1.2 Abstract toric varieties 29

1. (Pi)i and (Qi)i are increasing sequences of integers;

2. Pi/Qi = Jb1, . . . , biK for all 1 ≤ i ≤ r;

3. Pi−1Qi − PiQi−1 = 1 for all 1 ≤ i ≤ r;

4. the convergents Pi/Qi form a strictly decreasing sequence

m
k
=

Pr

Qr
<

Pr−1

Qr−1
< · · · < P1

Q1
.

Proof. [CLS11], 10.2.2.

We use the previous proposition to finally state the following theorem on the res-
olution of a quotient singularity of a normal affine toric surface.

Theorem 1.51. Let σ = Cone(e2, me1 − ke2) ⊆ R2 be a strongly convex 2-dimensional
cone written in normal form. Set u0 = e2 and let (Pi)i, (Qi)i be the sequences of integers
satisfying the previous proposition. Define the vectors

ui = Pi−1e1 −Qi−1e2, 1 ≤ i ≤ r + 1.

The cones σi = Cone(ui−1, ui) with 1 ≤ i ≤ r + 1 satisfy the following:

1. Each σi is smooth and ui−1, ui are its ray generators.

2. For all indices i, σi+1 ∩ σi = Cone(ui).

3. The fan Σ consisting of the σi and their faces is a smooth refinement of σ; in partic-
ular, σ1 ∪ . . . ∪ σr+1 = σ.

4. The toric morphism φ : XΣ → Uσ induced by the refinement is a resolution of
singularities.

Proof. [CLS11], 10.2.3.
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Chapter 2

Hirzebruch-Jung resolution of
tame cyclic quotient singularities

In this chapter, we move from algebraic C-varieties in the classical sense to the
language of schemes. We will study so-called tame cyclic quotient singularities, i.e.
singularities on a variety over a discrete valuation ring W, arising from a quotient
by the action of a finite cyclic group G, of order coprime to the characteristic expo-
nent of the residue field at the singular point. By characteristic exponent of a field
κ, we mean its characteristic if char κ = p > 0, and 1 if char κ = 0. We will work
in the 2-dimensional case and assume that any point with nontrivial stabilizer is a
closed point having the same residue field as W. Note that we are not requiring
W to be equicharacteristic, as it may as well be of mixed characteristic. While the
setup now may not look too similar to toric surfaces, and a lot more work will be
required in this setting even in the 2-dimensional case, in the end we will find an
explicit algorithm for the minimal resolution of singularities, which is of toric na-
ture. The link with toric geometry is a first hint at how the case of tame quotient
singularities is, as the name suggests, better behaved than the wild case, which
will be examined in the next chapter, where methods from toric geometry may not
be useful to resolve the singularities.

Let us fix some notation: throughout this chapter, S will indicate a Dedekind
scheme, i.e. a normal locally Noetherian scheme of dimension 1. An S-curve is
a flat, separated, finitely presented S-scheme whose fibers over S have pure di-
mension 1 (by flatness, this can be checked only on the generic fibers). Given a
connected regular proper curve X over a discrete valuation ring W with residue
field κ, and given two distinct irreducible and reduced divisors D and D′ lying in

31
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the closed fiber of X, their intersection multiplicity is defined as

D.D′ := dimκ H0(D ∩ D′,O) = ∑
d∈D∩D′

dimκ OD∩D′,d.

2.1 An example of Hirzebruch-Jung resolution

Before studying the theory on the resolution of tame cyclic quotient singularities,
let us work on an example reminiscing of Example 1.47 in the previous chapter.
Recall that in that case, we applied the Hirzebruch-Jung algorithm to solve a cyclic
quotient singularity on an affine toric variety arising from a cone of parameters
m = 7, k = 3.

Let W be a complete discrete valuation ring with algebraically closed residue field
κ of positive characteristic p 6= 7 and fraction field K. Let t be the uniformizer of
W and consider the regular domain

A =
W[x, y]

(xy2 − t)
.

Let G = µ7(κ) = 〈ζ〉 act W-algebraically on A via ζ · x = ζx, ζ · y = ζ3y, let B := AG

be the ring of G-invariants, and let Z := Spec B: since the action of G is free away
from x = y = t = 0, Z is normal and regular away from the image point z ∈ Z of
the ideal (x, y, t). To understand what B looks like, observe that a monomial xayb

is G-invariant if and only if a + 3b = 7h for some h ∈ N. This is equivalent to
asking that b ≤ 7

3 h. Let us change variables by defining u = x7, v = y/x3: then,
xayb = uhvb and for all 0 ≤ j ≤ 7

3 i, uivj ∈W[x, y]G. Thus,

W[x, y]G =
⊕

0≤j≤ 7
3 i

Wuivj.

Since xy2 = uv2, we have the following expression of B:

B =

⊕
0≤j≤ 7

3 i Wuivj

(uv2 − t)
. (2.1)

In this notation, the singular point z corresponds to the maximal ideal (u, uv) of B.
We want to show that Z (or, rather, the morphism Z → Spec W) is a W-curve: it is
flat because B is torsion-free over a principal ideal domain; it is separated because
Z and Spec W are both affine; it is finitely presented because B is of finite type over
a Noetherian ring; all is left to show is that the fibers of Z over Spec W all have
pure dimension 1.

First note that we have a W-algebra injection⊕
0≤j≤ 7

3 i

Wuivj ↪→W[x, y],
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which is finite because x7 = y and y7 = u3v7, meaning that W[x, y] is finitely
generated over the left hand side by x, x2, . . . , x7, y, y2, . . . , y7. By the going-up the-
orem, it follows that the left hand side has dimension 3. Passing to the quotient
yields a finite surjection Spec A → Spec B. Let η be the generic point of Spec W:
the quotient by the action of G commutes with taking the generic fiber by [SGA 1],
Proposition 1.9:

(Spec B)η = (Spec A)η/G.

Since

(Spec A)η = Spec
Å

W[x, y]
(xy2 − t)

⊗W K
ã
= Spec

K[x, y]
(xy2 − t)

,

it follows that the generic fiber of Z is

(Spec B)η = Spec

(⊕
0≤j≤ 7

3 i Kuivj

(uv2 − t)

)

and has dimension 1. By flatness, we conclude that Z is a W-curve.

Let us now look at the closed fiber of Z: if ξ is the closed point of Spec W, the
closed fiber Zξ of Z is given by

Zξ = Spec
(
B⊗W W/(t)

)
= Spec

⊕
0≤j≤ 7

3 i κuivj

(uv2)
.

It is immediate to see that Zξ has two distinct irreducible components that intersect
transversally at the singular point z; we will call them the x-axis and the y-axis.

Like in the case of toric varieties, we will now compute a series of blow-ups along
the singular locus to obtain a minimal resolution of singularities. Let Z′ = Bl(u,uv) Z
be the blow-up of Z at (u, uv): then, Z′ is covered by the affine open sets D+(u) and
D+(uv), where

D+(u) = Spec B
[uv

u

]
= Spec B [v] = Spec

W[u, v]
(uv2 − t)

;

D+(uv) = Spec B
[ u

uv

]
= Spec B

ï
1
v

ò
= Spec

⊕
i≥0,j≤ 7

3 i Wuivj

(uv2 − t)
.

It is apparent that D+(u) is regular and connected, but D+(uv) need not be; recall
that this is exactly what happens in the toric case when we divide the cone σ =

Cone(e2, me1− ke2) into the smooth cone σ′ = Cone(e1, e2) and the not necessarily
smooth cone σ′′ = Cone(e1, me1 − ke2). Now, just like in Chapter 1, we will use
the modified Euler algorithm to write D+(uv) in an easier way. Let 7 = 3b1 − k1

for b1 ≥ 2 and 0 ≤ k1 < 3: then b1 = 3, k1 = 2. Thus, the condition 0 ≤ j ≤ 7
3 i

now becomes 0 ≤ i ≤ 3
2 ( 7+2

3 i− j) = 3
2 (3i− j). Let j′ = i and i′ = 3i− j: recall that
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in the toric case, we wrote σ′′ in normal form by performing substitutions e′2 = e1

and e′1 = m+k1
k e1 − e2!

With these substitutions, we get uivj = u′i
′
v′j
′

for u′ = 1/v and v′ = uv3; thus, we
can write D+(uv) as

D+(uv) = Spec

⊕
0≤j′≤ 3

2 i′ Wu′i
′
v′j
′

(u′v′ − t)
.

Notice how similar this is to 2.1. Let us compute the closed fiber Z′ξ of the blow-up
Z′ → Z: it is the union of the affine open sets

Z′ξ ∩ D+(u) = Spec
κ[u, v]
(uv2)

;

Z′ξ ∩ D+(uv) = Spec
κ[u′, v′]
(u′v′)

.

The first open set has two irreducible components intersecting transversally, corre-
sponding to the zero loci of u and v respectively; the second open set also has two
irreducible components, corresponding to the zero loci of u′ and v′ respectively.
Using the glueing data u′ = 1/v, we infer that the closed fiber of Z′ has three
irreducible components: the v′-axis D1 in D+(uv) with multiplicity 1, the u-axis
D2 in D+(u) with multiplicity 2, and the exceptional divisor E ' P1

κ obtained by
glueing the v-axis in D+(u) to the (1/v)-axis in D+(uv), with multiplicity 1. The
uniformizer t has Weil divisor

divZ′(t) = D1 + 2D2 + E.

Since divZ′(t) is principal, divZ′(t).E = 0, yielding

0 = divZ′(t).E = 1 + 2 + (E.E) ⇐⇒ (E.E) = −3 = −b1.

Now, let us go back to our series of blow-ups. We have seen that Z′ is the union of
the affine open sets D+(u) and D+(uv), the first of which is regular. Much like the
original case, let us compute the blow-up Z′′ = Bl(u′,u′v′) Z′ of Z′ along the point
corresponding to the ideal (u′, u′v′) of C := B[1/v]. If E′ is the exceptional divisor
of the blow-up, then Z′′r E′ is isomorphic to Z′r {(u′, u′v′)}. Thus, we only need
to look at Z′′ around E′, for example by considering the preimage of D+(uv), which
is given by the union of the affine open sets

D+(u′) = Spec C[v′] = Spec
W[u′, v′]
(u′v′ − t)

;

D+(u′v′) = Spec C
ï

1
v′

ò
= Spec

⊕
i′≥0,j′≤ 3

2 i′ Wu′i
′
v′j
′

(u′v′ − t)
.
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Like in the previous case, D+(u′) is regular, but D+(u′v′) may not be. To write
D+(u′v′) in “normal form”, let 3 = 2b2 − k2, for b2 ≥ 2 and 0 ≤ k2 < k1: we get
b2 = 2, k2 = 1. If u′′ = 1/v′, v′′ = u′v′2, j′′ = i′ and i′′ = 2i′ − j′, then

D+(u′v′) = Spec
⊕

0≤j′′≤2i′′ Wu′′i
′′
v′′j

′′

(u′′v′′ − t)
.

In the closed fiber of Z′′, the blow-up left D2 untouched, while the strict transform
E1 of E now plays the same role that D2 played in the closed fiber of Z′: following
the same steps as before, we see that the closed fiber has four irreducible com-
ponents: D2 (rather, its strict transform, which is isomorphic to D2), E1, the new
exceptional divisor E′, which is isomorphic to the projective line over κ, and the
v′′-axis D′1; D2 with multiplicity 2, all the others with multiplicity 1. Thus, the
uniformizer has divisor

divZ′′(t) = D′1 + E′ + E1 + 2D2.

Like before, we compute 0 = divZ′′(t).E′ = 1 + (E′.E′) + 1 + 0, yielding

(E′.E′) = −2 = −b2.

We will now blow-up Z′′ along the closed point corresponding to the ideal (u′′, u′′v′′)
of D+(u′v′); like before, we are only interested in looking at what happens around
the exceptional divisor E3. If D := C[1/v′], E has a neighborhood isomorphic to
the union of the affine open sets

D+(u′′) = Spec D[v′′] = Spec
W[u′′, v′′]
(u′′v′′ − t)

,

which is regular, and

D+(u′′v′′) = Spec D
ï

1
v′′

ò
= Spec

⊕
i′′≥0,j′′≤2i′′ Wu′′i

′′
v′′j

′′

(u′′v′′ − t)
.

Write 2 = b3 − k3 for b3 ≥ 2 and 0 ≤ k3 < 1: we have b3 = 2 and k3 = 0. By setting
u′′′ = 1/v′′, v′′′ = u′′v′′2, j′′′ = i′′ and i′′′ = 2i′′ − j′′, we get

D
ï

1
v′′

ò
=

W[u′′′, v′′′]
(u′′′v′′′ − t)

.

Thus, the blow-up Z′′′ = Bl(u′′,u′′v′′) Z′′ is regular. Its closed fiber has 5 irreducible
components: (the strict transforms of) D2 and E1, which were left untouched by the
blow-up, with multiplicities 2 and 1; the strict transform E2 of E′, with multiplicity
1; the exceptional divisor of the blow-up E3, which is isormophic to the projective
line over κ, with multiplicity 1; the v′′-axis D′′1 , with multiplicity 1. The divisor of
t is divZ′′′(t) = D′′1 + E3 + E2 + E1 + 2D2, whence (E3.E3) = −2 = −b3.
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D2

E1

E2

E3

D1

Figure 2.1: The closed fiber of the minimal regular resolution of Z.

Notice that the morphism Z′′′ → Z is a minimal resolution of singularities, because
all the intermediate blow-ups had exceptional divisor of self intersection strictly
smaller than −1: only in the last step did we finally get a regular scheme. In
particular, the self intersection coefficients satisfy

7
3
= 3− 1

2− 1
2

,

as we expected by the dissertation in the previous chapter.

The closed fiber of the minimal regular resolution is represented in Figure 2.1.

2.2 Tame cyclic quotient singularities

In this section, we will explore some of the theory on tame quotient singularities,
following the dissertation in section 2 of [CES03]. We will first study some gen-
eral theory on the resolution of curves, refining a theorem of Lipman (Theorem
2.7) to a theorem on the existence of a minimal regular resolution on an S-curve
X, where either S is excellent (as in the original hypotheses of Lipman’s theorem)
or X/S has smooth generic fiber (Theorem 2.9). At the end of the first subsection
we will finally give a formal definition of what we mean by “tame cyclic quo-
tient singularity”; we will then generalize the example in the previous section,
proving a theorem on the resolution of tame cyclic quotient singularities using the
Hirzebruch-Jung algorithm (Theorem 2.22), where we will show that the numer-
ical data for a tame cyclic quotient singularity at a point is intrinsic even in the
absence of an explicit cyclic group action.

2.2.1 Resolution of singularities on excellent schemes

To motivate why we need to work on excellent schemes when tackling questions
of desingularization, consider the following result:
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Theorem 2.2. Let X be a universally catenary locally Noetherian scheme such that all
integral schemes that are finite over X admit a desingularization. Then X is excellent.

Proof. [EGA IV], 7.9.5.

Indeed, under the hypothesis of excellence, Lipman ([Lip78]) proved a theorem
on the existence of a desingularization in the strong sense (Theorem 2.7 below).
Before we get to the theory of desingularization, let us recall some basic facts and
definitions on excellent rings and schemes.

Definition 2.3 ((Universally) catenary ring/scheme). A Noetherian ring R is cate-
nary if for any triplet of prime ideals p ⊆ q ⊆ m, the following equality is satisfied:

ht(m/q) = ht(m/p) + ht(m/q).

We say that R is universally catenary if every finitely generated algebra over R is
catenary. Similarly, we say that a locally Noetherian scheme X is catenary if its
local rings are catenary, and that it is universally catenary if An

X is catenary for all
n ≥ 0.

Definition 2.4 (Excellent ring/scheme). Let (R,m) be a local ring, R̂ its completion
for the m-adic topology. We call the fibers of the canonical morphism Spec R̂ →
Spec R the formal fibers of R. We say that R is excellent if it satisfies the following
conditions:

i) Spec R is universally catenary;

ii) For every prime p ⊆ R, the formal fibers of Ap are geometrically regular;

iii) For every finitely generated R-algebra A, the set of regular points of Spec A
is open in Spec A.

A locally Noetherian scheme X is excellent if it has an affine open covering {Ui}i

such that all OX(Ui) are excellent.

Excellent schemes satisfy the following theorem:

Theorem 2.5. The following facts are true.

1. Any complete local Noetherian ring is excellent; in particular, fields are excellent.

2. For a Noetherian local ring to be excellent, it is sufficient that it satisfies (i) and (ii)
of the previous definition.

3. Any scheme that is locally of finite type over a locally Noetherian excellent scheme
is excellent. In particular, open and closed subschemes of excellent schemes are ex-
cellent.
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4. If X is excellent and integral, the normalization morphism X′ → X is finite.

Proof. [Liu02], 8.2.39.

Corollary 2.6. 1. Any algebraic variety over a field is excellent.

2. If R is a regular local ring, for it to be excellent it is sufficient that Frac(R̂) be
separable over Frac(R).

3. Any Dedekind domain of characteristic zero is excellent.

Proof. [Liu02], 8.2.40.

Now let S be an excellent connected Dedekind scheme and X a normal S-curve.
Consider the following chain of morphisms:

. . .→ Xn+1 → Xn → . . .→ X1 → X,

where X1 → X is the normalization of X and for all indices i ≥ 1, the map Xi+1 →
Xi is the composition of the blow-up of Xi along its singular locus (endowed with
the reduced scheme structure) and its normalization. The following result is a
corollary of a theorem of Lipman ([Lip69], 2.1), which ensures that this process
produces a strong desingularization of X in a finite number of steps.

Theorem 2.7. If S is an excellent Dedekind scheme and X → S an S-curve, then the
sequence above is finite. In particular, X admits a desingularization in the strong sense.

The following result establishes the existence of a minimal resolution of singulari-
ties (in the strong sense) for an S-curve X when we assume that either S is excellent,
or that the generic fiber of X over S is smooth. First recall the following definition:

Definition 2.8. A prime divisor E on a regular fibered surface X → S is called
a (−1)-curve if there exists a regular fibered surface Y → S and an S-morphism
f : X → Y such that E reduces to a point through f and f : X r E → Y r f (E) is
an isormorphism.

By Castelnuovo’s theorem ([Liu02], 9.3.8), such a divisor is isomorphic to a projec-
tive line over the field k = H0(E,OE). When searching for a resolution of singular-
ities π : Xreg → X, we will require that there be no (−1)-curves in the fibers of π.
Since (−1)-curves can be blown down to a point, this will amount to a condition
of minimality.

Theorem 2.9 (Existence of a minimal resolution). Let S be a connected Dedekind
scheme, and let X → S be a normal S-curve. If either S is excellent or the generic fiber of X
over S is smooth, there exists a birational proper morphism π : Xreg → X such that Xreg
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is a regular S-curve and there are no (−1)-curves in the fibers of π. Such a morphism is
unique up to unique isomorphism; moreover, if π′ : X′ → X is another birational proper
morphism with X′ a regular S-curve, then π′ factors uniquely through π. Formation of
Xreg is compatible with base change to SpecOS,s and Spec‘OS,s for any closed point s ∈ S.

Before proving the theorem, let us recall some important results that we will use
in the proof.

Theorem 2.10 (Nagata’s compactification theorem). Let S be a Noetherian scheme and
X → S a separated S-scheme of finite type. Then there is a compactification of X over S,
i.e. an open immersion X ↪→ X with schematically dense image, such that X is a proper
S-scheme.

Proof. [Lüt93], 3.2.

Theorem 2.11 (Factorization theorem for birational morphisms). Let f : X′ → X be
a proper birational morphism between regular integral Noetherian schemes of dimension
2. Then f factors as a sequence of blow-ups at closed points.

Proof. [Stacks], tag 0C5R.

Theorem 2.12 (Stein factorization). Let S be a locally Noetherian scheme, X → S a
proper S-scheme. Then there exists a factorization

X S′

S

f

π

where π is finite and f proper with geometrically connected fibers.

Proof. [Stacks], tag 03H0.

We also state an elementary result in intersection theory:

Theorem 2.13. Let X be a connected regular proper curve over a discrete valuation ring
with residue field k, let x ∈ X be a closed point in the closed fiber and consider the blow-
up π : X′ = Blx(X) → X, with exceptional divisor E ' P1

κ(x). Let C1, C2 be two
(not necessarily distinct) effective divisors supported in the closed fiber of X, with each Ci

passing through x, and let C′i be their strict transforms under π. We have

π−1(Ci) = C′i + miE,

where mi is the multiplicity of Ci at x. Moreover, mi = C′i .E/[κ(x) : k] and

C1.C2 = C′1.C′2 + m1m2[κ(x) : k].
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Proof. [CES03], 2.1.2.

The proof of Theorem 2.9 will work as follows: first, we prove the theorem in the
case where S is excellent. We will use Nagata’s compactification theorem to re-
duce to the case where X is proper over S, which will simplify the proof of the
uniqueness of the minimal resolution. Then, we have the existence of the resolu-
tion by Theorem 2.7 and we will use the Factorization for birational morphisms
and Stein factorization theorems to prove uniqueness. The case where S is not
necessarily excellent but X has smooth generic fiber will be proven by reducing to
the assumption that S is the spectrum of a local ring; then, we will base-change to
its completion, which is excellent, and reduce back to the previous case. This last
step of the proof will require the following lemma:

Lemma 2.14. Let R be a discrete valuation ring with fraction field K and let X be an
R-scheme which is locally of finite type over R and has regular generic fiber. Let R → R′

be a local extension of discrete valuation rings (where local means that mRR′ = mR) such
that the residue field extension k → k′ is separable, and assume that either the fraction
field extension K → K′ is separable or that X has smooth generic fiber (in both cases, X/K′

is regular). Then for any x′ ∈ X′ := X ×R R′ lying over x ∈ X, the local ring OX′,x′ is
regular (resp. normal) if and only if OX,x is regular (resp. normal).

Proof. [CES03], 2.1.1.

Proof of Theorem 2.9. First assume that S is excellent. Since we will want to use the
Factorization theorem for birational morphisms, let us assume that X is proper.
This can be done without loss of generality by the following argument: by Na-
gata’s compactification theorem, there is a schematically dense open immersion
X ↪→ X where X is proper over S; since X is of finite type over an excellent scheme,
it is itself excellent, so its normalization is finite. Thus, by replacing X with its nor-
malization if necessary, we may assume that X is a normal S-curve (where flatness
follows from [Liu02], 4.3.9). Up to solving any singularity in X r X, we can also
assume that the singular locus of X coincides with that of X: thus, proving the
existence and uniqueness of the resolution on X will imply the same results on X.
Hence, we may assume that X is proper over S. Up to reducing to the (disjoint, by
normality) connected components of X, we may also assume that X is connected.
By Theorem 2.7, there is a birational proper (recall that blow-ups are proper and
the normalization is finite) morphism X1 → X with X1 a regular proper S-curve.
If X1 has any (−1)-curves in the fiber of X over some closed point, then it suffices
to blow them down to a point to obtain the regular X-scheme Xreg with no (−1)-
curves in its fibers that we wanted.
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Suppose now that π′ : X′ → X is a different birational proper morphism with X′ a
regular S-curve. Then we have a birational map X′ 99K Xreg, as follows:

X′ Xreg

X
π′

π

If X is regular, then obviously X = Xreg and we immediately get the existence
and uniqueness of the factorization of π′ through π = id : Xreg → X. Suppose
then that X is not regular. By [Liu02], 9.2.7, blowing-up X′ at certain closed points
yields a birational morphism from the blow-up X′′ to Xreg; thus, if we replace X′

with X′′ for the moment, we obtain a birational morphism X′′ → Xreg. We will
now show that given a tower of birational proper morphisms

X′′ → Xreg → X

with X′′ and Xreg regular and no (−1)-curves in the fibers of Xreg over X, then any
(−1)-curve in a fiber of X′′ → X must be contracted by X′′ → Xreg. From this, it
will follow that the birational map X′ 99K Xreg extends to a morphism even with-
out blowing up X′.
By the Factorization theorem, the morphism q : X′′ → Xreg factors as a composi-
tion of blow-ups of Xreg at closed points. Thus, we have the following diagram:

X′′

X′′1

X′ Xreg . . .

X

q1

q
ϕ

q2

π′
π

where the qi are the blow-ups of the factorization. By Stein’s factorization theorem,
we may assume that the S-curves X, Xreg and X′ (that share the same generic fiber
over S) have geometrically connected fibers. Now let C be a (−1)-curve in a fiber
of π′′. We may assume that C meets the exceptional divisor E of the first blow-
down map q1 : X′′ → X′′1 . If C = E, then clearly C is contracted by q. Suppose that
C 6= E. Then q1(C) is an irreducible divisor on X′1 with strict transform C. By 2.13,
we have

q1(C).q1(C) = C.C︸︷︷︸
=−1

+(C.E[κ(P).κ(s)])2,
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for suitable points P ∈ X′′1 , s ∈ S. Thus, q1(C) has non negative self-intersection
number, which must then be zero. By [Liu02], 9.1.23, this implies that the divisor
q1(C) is a multiple of the closed fiber of X′′1 over s. Since

(
X′′1
)

s is geometrically
connected by Stein factorization, we conclude that q1(C) is the entire closed fiber(
X′′1
)

s, which is thus irreducible. The morphism X′′1 → X is birational, proper and
surjective; by surjectivity, the image of

(
X′′1
)

s cannot be a single point, so it has to be
a 1-dimensional subscheme of X. By repeating this argument for the other closed
fibers, we find that X′′1 → X is quasi-finite, as its fibers are finite. By surjectivity
and Zariski’s main theorem, it follows that X′′1 → X is an isomorphism, so X is
regular. We had assumed that X is not regular, so the proof of the existence of a bi-
rational morphism X′ → Xreg is concluded. So we have shown that any birational
proper morphism π′ : X′ → X with X′ regular factors through π. Uniqueness of
this factorization follows trivially from [Liu02], 3.3.11, since two such maps will
coincide on the generic fiber, and must thus coincide on the whole scheme.
Now fix a closed point s ∈ S and let S′ be either SpecOS,s or Spec‘OS,s. By the
previous Lemma, the base change Xreg

/S′ is regular, and the induced morphism over
the normal curve X/S′ proper and birational. Since base-change did not create new
(−1)-curves in the fibers of Xreg

/S′ over X/S′ , we are done.
Now suppose S is not necessarily excellent, but X has smooth generic fiber over S.
In this case, only a finite number of fibers of X over S may be non-smooth, so we
can restrict to the local case where S is the spectrum of a discrete valuation ring R.
By the previous lemma, X/R̂ is a normal R̂-curve, and since R̂ is excellent, by the
previous dissertation we have a minimal regular resolution

π̂ :
Ä

X/R̂

äreg → X/R̂.

By [Lip78], Remark C at page 155, π̂ is obtained as a blow-up of X/R̂ along a zero-

dimensional subscheme Ẑ supported in the singular locus of X/R̂, so Ẑ is sup-

ported in the closed fiber. Since Ẑ is artinian, it lies in some infinitesimal fiber
of X/R̂. The base-change X ×R Spec R̂ → X induces isomorphisms on the n-th
infinitesimal fibers for all natural n, so there is a unique zero-dimensional closed
subscheme Z in X whose base-change in X/R̂ is Ẑ. Since R̂ is faithfully flat over
R ([Stacks], tag 00MC) and blow-ups commute with flat base-change ([Stacks], tag
085S), we have an isomorphism

(BlZ(X))/R̂ ' BlẐ

Ä
X/R̂

ä
=
Ä

X/R̂

äreg
,

so BlZ(X) is regular by the previous lemma. Since the extension R → R̂ is resid-
ually trivial, there are no (−1)-curves in the fibers of BlZ(X) over X. Thus, we
have the existence of a regular resolution π : Xreg → X. For uniqueness of π, its
universal factorization property, and compatibility of the construction with certain
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base-changes, we can carry over the results to X by base-changing with R̂, using
again the previous lemma.

We can also consider a regular resolution along a finite subset of closed points. This
allows us to compute the minimal resolution along the singular locus iteratively,
one point at a time.

Definition 2.15. Let S be a connected Dedekind scheme, and let X → S be a normal
S-curve. Assume that either S is excellent or the generic fiber of X over S is smooth.
Let Σ ⊆ X be a finite set of closed points in closed fibers over S and let U ⊆ X be
an open neighborhood containing Σ, such that U ∩ (Xsing r Σ) = ∅. The minimal
regular resolution along Σ is the morphism πΣ : X(Σ) → X obtained by glueing
X r Σ to the part of Xreg lying over U.

The minimal regular resolution along Σ is compatible with base-change to a com-
plete local ring on S, and it is uniquely characterized among normal S-curves that
are proper and birational X-schemes by the following conditions:

i) πΣ is an isomorphism over X r Σ;

ii) X(Σ) is regular at points over Σ;

iii) X(Σ) has no (−1)-curves in its fibers over Σ.

Thus, we have the following corollary, stating that construction of X(Σ) is étale-
local on X. Recall that an étale morphism is a morphism of schemes that is flat and
unramified; if X is a scheme, an open set for the étale topology on X is an étale
morphism U → X. For more details, see [Mil13] or [Stacks].

Corollary 2.16. Let X/S be a normal S-curve over a connected Dedekind scheme S, assume
that either S is excellent or X/S has smooth generic fiber over S, and let Σ ⊆ X be a finite
set of closed points in closed fibers over S. Let X′ → X be étale (implying that X′ is an
S-curve) and let Σ ⊆ X′ be the preimage of Σ in X′. Let X(Σ) → X be the minimal
regular resolution along Σ and suppose that X′ is residually trivial over X (for example if
S is local with separably closed residue field). Then the base change X(Σ)×X X′ → X′ is
the minimal regular resolution along Σ′.

Proof. By [Stacks], tag 03PC, (4), base changes of étale morphisms are étale. Thus,
X(Σ)×X X′ is étale over X(Σ), so it is an S-curve that is regular along the preimage
of Σ′. Moreover, it is proper and birational over X′ (because these properties as
well are stable under base change) and it is an isomorphism over X′ r Σ′. Lastly,
the morphism X(Σ)×X X′ → X′ has no (−1)-curves in the fibers over Σ, because
X′ → X is residually trivial over Σ.
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We now state a fundamental result in invariant theory. This is known as the
Chevalley-Shephard-Todd theorem on the complex numbers, and was generalized
by Serre to an arbitrary field. It gives a necessary and sufficient condition for the
regularity of the ring of invariants of a Noetherian regular local ring by the action
of a finite group G. The proof of the theorem can be found in [Wat76]; we give a
slightly different statement that allows more relaxed hypotheses on the order of G.
For more details, see [CES03], 2.3.9. First, we need the following definition:

Definition 2.17. Let V be a vector space of finite dimension over a field κ. An
element σ ∈ Autκ(V) is a pseudo-reflection if rk(1− σ) ≤ 1.

Theorem 2.18 (Serre-Chevalley–Shephard–Todd). Let (R,m, κ) be a Noetherian reg-
ular local ring. Let G be a finite subgroup of Autκ(R) and let RG be the ring of invariants
under the action of G. Suppose that G acts trivially on κ and that R is finite over RG. Then
RG is regular only if the image of G in Autκ(m/m2) is generated by pseudo-reflections. If,
moreover, the order of G is coprime to the characteristic exponent of κ, the previous neces-
sary condition is also sufficient.

Example 2.19. Let F be a field and consider the polynomial ring R = F[x, y, z](x),
arising as the local ring at P = (x) of the affine space A3

F, with residue field F(y, z).
Consider the action of G = Z/2Z on R via F-automorphisms, where the nontrivial
element of G maps x 7−→ −x and fixes y and z. Then RG = F[x2, y, z] and (x)/(x2)
is the F(y, z)-vector space with basis {x}. Clearly RG is regular and indeed the
image of G in AutF(y,z)

(
(x)/(x2)

)
is generated by pseudo-reflections.

We will now give a precise definition of what exactly we mean by “tame quotient
singularity”. The definition is motivated by the following setup: consider a regular
S-curve X and a finite group H acting on X/S, such that no non-identity element of
H acts trivially on a connected component of X. Consider the quotient X′ = X/H:
then, X′ has regular generic fiber over S, and the singular locus of X′ is composed
of finitely many closed points in the closed fibers. Fix a singular point x′ ∈ X′

and let s ∈ S be its image in S, with char κ(x′) = char κ(s) = p ≥ 0. Let x ∈ X
be any point over x′ and suppose that X is nil-semistable at x, as per the following
definition:

Definition 2.20. Given a fixed closed point s ∈ S and a point x ∈ X over s, we say
that X is nil-semistable at x if the following conditions are satisfied:

i) the reduced fiber Xred
s is geometrically connected and geometrically smooth

over κ(s), except for a finite number of nodes;

ii) Xred
s has genus greater or equal to 1;

iii)
(
Xred

s
)

κ(s) has no irreducible component isomorphic to P1
κ(s) meeting the rest
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of
(
Xred

s
)

κ(s) in only one point;

iv) none of the analytic branch multiplicities thorugh x are divisible by the char-
acteristic of κ(s).

The first three conditions amount to Xred
s being semistable over κ(s), as per [Stacks],

tag 0E6X.

Under these hypotheses, by [CES03], 2.3.2, x has either one or two distinct analytic
branches passing through it. If p > 0, assume also that κ(x) is separable over κ(s),
that H has order not divisible by p, and that if x is at the intersection of two distinct
analytic branches, then H does not interchange them. It follows from Theorem 2.18
that a nil-semistable point x′ ∈ X′ is non-regular if there is no line in the tangent
space of X′ at x′ on which H acts trivially.
By [CES03], 2.3.4, in the above hypotheses we have an isomorphism‘OX,x '

‘OS,s[[x, y]]
(xm1 ym2 − ts)

,

where ts is the uniformizer of the complete discrete valuation ring ‘OS,s.

Motivated by the above situation, we now give the following definition:

Definition 2.21 (Tame cyclic quotient singularity). Let X′/S be a normal curve over
a connected Dedekind scheme S, where either S is excellent or X′/S has smooth
generic fiber over S. Consider a closed point s ∈ S with algebraically closed
residue field κ(s) of characteristic exponent p ≥ 1 and a point x′ ∈ X′s such that X′s
has two analytic branches at x′. We say that x′ is a tame cyclic quotient singularity
if there exists an integer m not divisible by p, a unit k ∈ (Z/mZ)× and integers
n1 > 0 and n2 ≥ 0 satisfying

n1 ≡ −kn2 mod m,

such that we have an isomorphism’OX′,x′ '
( ‘OS,s[[x, y]]

(xn1 yn2 − ts)

)µm(κ(s))

,

where the action of µm(κ(s)) is defined by

ζ · x = ζx, ζ · y = ζky

for a primitive m-th root of unity ζ.

Recall the example studied the previous section of this chapter: it is the resolu-
tion of a tame cyclic quotient singularity as per the above definition. We will use
a general version of that example in the next subsection to prove the following
important theorem on the resolution of tame cyclic quotient singularities.



46 2. Hirzebruch-Jung resolution of tame cyclic quotient singularities

2.2.2 Hirzebruch-Jung algorithm

In the presence of a tame quotient singularity as in Definition 2.21, it is easy to
see that the numbers n1 and n2 correspond to the analytic branch multiplicities
through x′. One might additionally wonder if the data m, k in the definition de-
pend on a choice of coordinates forOX′,x′ or if it is intrinsic to x′. The next theorem
shows that this data is intrinsic and can be recovered from the regular resolution
at x′.

Theorem 2.22. Let S = Spec W with W a complete discrete valuation ring with alge-
braically closed residue field κ, fraction field K, closed point s and generic point η, and let
X′ → S be a normal S-curve. Assume that X′ has a tame cyclic quotient singularity, as
per the previous definition, at a closed point x′ ∈ X′s, which we suppose to have separably
closed residue field κ(x′), with parameters m and k, where we identify k ∈ (Z/mZ) with
its unique representative 0 ≤ k < m. Consider the Hirzebruch-Jung continued fraction
expansion

m
k
= b1 −

1
b2 − 1

···− 1
br

,

with bi ≥ 2 for all i. Then, the fiber over κ(x′) of the minimal regular resolution X′
({x′})

of X′ at x′ (using the notation of Definition 2.15), equipped with the reduced subscheme
structure, is the intersection of divisors Ei intersecting as represented in Figure 2.2, where:

i) the intersections are all transverse with Ei ' P1
κ(x′);

ii) Ei.Ei = −bi < −1 for all i;

iii) if X′1 and X′2 are the analytic branches through x′, with multiplicities, respectively,
n2 and n1 (in the case where n2 = 0, there is only one analytic branch X′2), then
E1 is transverse to the strict transform ‹X′1 of X′1 and Er is transverse to the strict
transform ‹X′2 of X′2.

X̃′1n1

E1
µ1

E2

µ2

Er−1

µr−1

Er
µr

X̃′2 n2

self-intersection = −b1

self-intersection = −b2 self-intersection = −br−1

self-intersection = −br

Figure 2.2: The fiber of the minimal regular resolution of X′ at x′ over x′.

The above theorem can be stated with more relaxed hypotheses, namely we can
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take S to be a connected Dedekind scheme (not necessarily local or affine), with
either S excellent or X/S with smooth generic fiber, as we assumed in the previous
subsection; it is also not necessary that the residue field be algebraically closed, so
long as it is separably closed. The proof can ultimately be reduced down to the
simpler situation in our statement of the theorem, as seen in [CES03], pp. 348-349.

In the proof of the theorem, we will study an even more special case, that will look
a lot like the example in the first section of this chapter. Namely, we will solve the
singularity on the affine scheme Z = Spec B at the origin z, where

A =
W[x, y]

(xn1 yn2 − t)
, B = Aµm(κ),

with t being the uniformizer of W and the action of µm(κ) = 〈ζ〉 defined by

ζ · x = ζx, ζ · y = ζky.

The reason why we can boil the proof down to this very special case is because
by definition, if X′ has a tame cyclic quotient singularity at x′, then we have an
isomorphism ’OX′,x′ '‘OZ,z. Recalling that the minimal regular resolution is étale-
local (Corollary 2.16), we can use the following theorem of Artin to find a common
residually trivial connected étale neighborhood (U, u) of (X′, x′) and (Z, z); then,
the resolution of U at {u} is the pullback of the resolutions of X′ at {x′} and Z
at {z}. Since the fibers over u, x′ and z are all the same, we conclude that we
can compute the minimal regular resolution of Z at {z} to prove the statement for
(X′, x′).

Theorem 2.23 (Artin approximation theorem). Let X′, Z be S-schemes of finite type,
and let x′ ∈ X′, z ∈ Z be points. If there is an isomorphism of complete local rings’OX′,x′ ' ‘OZ,z, then there is a common étale neighborhood (U, u) of x′ in X′ and z in Z,
i.e. a diagram

U

X′ Z

ét. ét. mapping
u

x′ z

inducing an isomorphism of residue fields κ(x′) ' κ(z) ' κ(u).

Proof. [Art69], 2.6.

Proof of theorem 2.22. By the above discussion, we may work on the affine scheme
Z = Spec B for B the ring of invariants of A = W[x, y]/(xn1 yn2 − t) by the action of
µm(κ) defined earlier; we will follow very similar steps to those in Section 2.1, with
a little more attention paid to the numerical data of the singularity. The action of G
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is free away from x = y = t = 0, so Z is normal and regular away from its image
point z. Since n1 ≡ −kn2 mod m, we have that n1 + kn2 = µm for some µ. By
arguments analogous to those in Section 2.1, we see that

B =

⊕
0≤j≤m

k i Wuivj

(uµvn2 − t)
,

for u = xm and v = y/xk; in this notatoin, the point z corresponds to the maxi-
mal ideal (u, uv). It is clear that Z is a W-curve: it is separated, flat and finitely
presented over W; moreover, its generic fiber

Zη = (Spec A)η/G = Spec

(⊕
0≤j≤m

k i Kuivj

(uµvn2 − t)

)

has dimension 1, so by flatness we see that all the fibers of Z over S have pure
dimension 1.
Let us compute the closed fiber Zξ of Z:

Zξ = Spec(B⊗W W/(t)) =

⊕
0≤j≤m

k i κuivj

(uµvn2)
.

Since the action of G does not interchange the x-axis and the y-axis in Spec A, we
see that if n2 > 0, Zξ is made up of two distinct irreducible components corre-
sponding to the images of the x-axis and the y-axis, intersecting transversally at z;
if n2 = 0, there is only one irreducible component, the image of the x-axis.
We now compute the blow-up Z′ of Z along the ideal (u, uv): it is the union of two
affine open sets D+(u) and D+(uv), where

D+(u) = Spec B
[uv

u

]
= Spec B [v] = Spec

W[u, v]
(uµvn2 − t)

;

D+(uv) = Spec B
[ u

uv

]
= Spec B

ï
1
v

ò
= Spec

⊕
i≥0,j≤m

k i Wuivj

(uµvn2 − t)
.

Clearly, D+(u) is regular; let us write a simpler expression of D+(uv) by changing
variables using the modified Euler algorithm: write m = b1k− k1, for b1 ≥ 2 and
0 ≤ k1 < k.
Suppose that k1 = 0; then k = 1, b1 = m and b1µ − n2 = n1. Set j′ = i and
i′ = b1i− j, u′ = 1/v and v′ = uvb1 : then

D+(uv) = Spec
⊕

i′,j′≥0 Wu′iv′j

(u′n1 v′µ − t)
= Spec

W[u, v]
(u′n1 v′µ − t)

,

which is regular. In the blow-up Z′ = Bl(u,uv)(Z), let D1 and D2 (if n2 ≥ 0) be the
strict transforms of the irreducible divisors corresponding respectively to the “v-
axis” and the “u-axis” in Z. Then, the closed fiber of Z′ is the union of the affine
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open sets

Z′ξ ∩ D+(u) = Spec
κ[u, v]
(uµvn2)

;

Z′ξ ∩ D+(uv) = Spec
κ[u′, v′]
(u′n1 v′µ)

.

Thus, we see that the closed fiber of Z′ has three irreducible components: D2

(if n2 6= 0), the exceptional divisor E ' P1
κ, and D1, where E meets D1 and D2

transversally. So the uniformizer t ∈W has Weil divisor

divZ′(t) = n2D2 + µE + n1D1.

Since E. divZ′(t) = 0 and n1 = b1µ− n2, we see that

0 = n2D2.E + µE.E + n1D1.E =⇒ E.E = −b1.

Assume now that k1 > 0. As in the case of toric varieties, k will now take the place
of m and k1 the place of k; observe, however, that in the new setting there is no
reason why k and k1 should not be divisible by p, so we cannot infer that D+(uv)
has a cyclic tame quotient singularity. Nevertheless, we can write an expression
of D+(uv) that resembles our original expression of B: since m

k = b1 − k1
k , the

condition 0 ≤ j ≤ m
k i can be rewritten as 0 ≤ i ≤ k

k1
(b1i− j). Thus, setting j′ = i,

i′ = b1i− j, u′ = 1/v, v′ = uvb1 , we get uivj = u′i
′
v′ j′, whence

B
ï

1
v

ò
=

⊕
0≤j′≤ k

k1
i′ Wu′i

′
v′j
′

(u′b1µ−n2 v′µ − t)
.

We see again that the closed fiber of Z′ has three (or two if n2 = 0) irreducible
components: the v′-axis D1 ⊆ D+(uv), with multiplicity b1µ − n2; if n2 6= 0, the
u-axis D2 ⊆ D+(u); the exceptional divisor E ' P1

κ with multiplicity µ. The latter
component meets D1 transversally at a κ-rational point corresponding to the origin
of D+(uv).
When we make a change of variables

(m, k, n1, n2, µ) (k, k1, n1, µ, b1µ− n2),

we see that D+(uv) is like our original situation, with a different set of parameters.
Observe that since n2 is replaced by µ > 0, we no longer have to worry about
the second axis being absent. Indeed, when we focus our attention to D+(uv), we
see that the role of the D2 axis is taken by the affine chart E ∩ D+(uv) and the
role of z is taken by the intersection of E and D1. Thus, when we blow up Z′ at the
origin of D+(uv), everything remains the same outside of D+(uv), and we get three
irreducible components in the closed fiber over D+(uv): the strict transform E1 of



50 2. Hirzebruch-Jung resolution of tame cyclic quotient singularities

E, the new exceptional divisor E′, the axis D1. When we blow up again, everything
around E1 remains the same, so we can identify it with its strict transform; the strict
transform of E′, which we will call E2, will now play the role of the D2 axis, and the
strict transform of D1 (which we will call again D1 by abuse of notation) the role
of D1. Since at every step m is replaced by a strictly smaller k, we infer that this
iterative process of blowing up at the singular point must end at a regular scheme
Zreg in a finite number of steps.
By repeating the same argument as the case k1 = 0, we see easily that E1.E1 = −b1.
Now, since

m
k
= b1 −

1
k/k1

,

we can conclude the proof inductively and see that the closed fiber in the final
resolution is indeed as stated in the theorem, with Ei.Ei = −bi. Moreover, since
bi ≥ 2 for all i, we conclude that the final regular resolution is indeed minimal, as
at no point in the process did we ever produce a (−1)-curve.

Corollary 2.24. In the hypotheses and notations of Theorem 2.22, the components Ei have
multiplicities µi in the closed fiber of the minimal regular resolution (X′)reg at {x′}, where:

i) if k = 1, then r = 1 and µ1 = (n1 + n2)/m;

ii) if k > 1, the µi are the unique solution to the linear system

b1 −1 0 0 · · · 0 0 0
−1 b2 −1 0 · · · 0 0 0
0 −1 b3 −1 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · −1 br−1 −1
0 0 0 0 · · · 0 −1 br





µ1

µ2

µ3
...

µr−1

µr


=



n2

0
0
...
0
n1


(2.25)

Proof. The case k = 1 was shown in the proof of the previous theorem. Suppose
then that k > 1. The closed fiber of (X′)reg has Weil divisor

div(t) = n1X̃′1 +
r

∑
i=1

µiEi + n2X̃′2 + [ . . . components that do not meet the Ei’s . . . ].

Recall that:

• E1 meets X̃′1 and E2 transversally;

• Er meets Er−1 and X̃′2 (if n2 > 0) transversally;

• for 1 < i < r, Ei meets Ei−1 and Ei+1 transversally;

• Ei.Ei = −bi.
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Then, the conditions Ei. div(t) = 0 yield precisely the system of equations in 2.25.

Example 2.26. In the example in Section 2.1, we had r = 3, b1 = 3, b2 = b3 = 2,
n1 = 1, n2 = 2. Indeed:Ö

3 −1 0
−1 2 −1
0 −1 2

èÖ
1
1
1

è
=

Ö
2
0
1

è
.

We conclude this chapter with the following definition:

Definition 2.27 (Dual graph). Let C be a vertical divisor contained in a closed fiber
Xs of a regular S-curve X/S. Let Γ1, . . . , Γr be its irreducible components. The dual
graph of C is the graph G whose vertices are the irreducible components of C, and
there are Γi.Γj edges between Γi and Γj if i 6= j.

For a quotient singularity X with minimal regular resolution Xreg → X, the dual
graph of the singularity is the dual graph of the exceptional divisor of the resolu-
tion. Thus, we see that in the hypotheses and notations of Theorem 2.22, the dual
graph of a tame cyclic quotient singularity is a Dynkin graph of type Ar.

Example 2.28 (D4 singularity). Let K be an algebraically closed field of character-
istic zero and consider the surface

X = Spec
K[s, t, u]

(s2 + t3 + u3)
,

which is a singular surface whose only singular point is the origin; it can be proven
([Reid]) that X arises as a quotient of A2

K by the action of the group of order 16
generated by

α : p(x, y) 7−→ p(ix,−iy); β : p(x, y) 7−→ p(y,−x).

The blow-up X1 → X of X at the origin is covered by three affine charts Us, Ut,
Uu. An immediate computation shows that Us is regular, while Ut and Uu each
have three singular points that are identified by the glueing. The minimal regular
resolution is obtained by blowing up these three points; the resulting exceptional
divisor is the union of four −2-curves Γ0, . . . , Γ4, where Γ1, . . . , Γ3 are disjoint and
intersect Γ0 transversally. The dual graph of the singularity is thus a Dynkin graph

of type D4: . This kind of singularity is called a du Val singularity of type D4.



52 2. Hirzebruch-Jung resolution of tame cyclic quotient singularities



Chapter 3

Wild quotient singularities

In this chapter we will study some properties of wild quotient singularities. Since
the nature of singularities and their resolution is local, we will work in the follow-
ing setting: let A be a regular local Noetherian ring of dimension 2 and G a finite
group acting faithfully on A; then R = AG is a normal local Noetherian ring with
residue field κ and fraction field K. Recall that if R is non-regular and the order of
G is divisible by the characteristic of κ, we say that R is a wild quotient singularity; it
is tame if R is non-regular and the order of G is prime to the characteristic exponent
of κ. We will look at dual graphs of wild quotient singularities and see that they
always contain a node, i.e. a vertex of valency ≥ 3. We will then see an example of
wild quotient singularity whose dual graph has two nodes.

Compared to tame quotient singularities, wild quotient singularities can be much
more difficult to describe, even in the cyclic case. For example, the quotient it-
self can be difficult to compute even in the simplest cases, and it is unknown if a
resolution exists in higher dimensions.

3.1 Étale fundamental group

In this section, we will briefly introduce an important geometrical tool that we will
use to prove that dual graphs arising from wild quotient singularities always have
at least two nodes: the étale fundamental group, or algebraic fundamental group. It
is an algebraic analogue to the topological fundamental group, defined by using
finite étale morphisms as a replacement for covering spaces in general topology.

53
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3.1.1 Topological fundamental group

Recall that in general topology, the fundamental group of a topological space (X, τ)
at a point x is defined as the group π1(X, x) of homotopy classes of loops at x, with
the operation of concatenation. Since a loop (and in general a path) is a continu-
ous map ([0, 1], E )→ (X, τ), with E denoting the Euclidean topology, it is apparent
that this tool is of little use when working with the Zariski topology, as it is much
coarser than the Euclidean topology. In this section, we will generalize the no-
tion of fundamental group in a way that makes sense for schemes, using the étale
topology, which in a way serves as a “refinement” of the Zariski topology.

Let us first recall some facts on fundamental groups and their relationship to cov-
ering spaces. A continuous map p : Y → X is a covering space of X if X has an open
cover {Ui}i such that for all indices i, p−1(Ui) is a disjoint union of open sets, each
of which is mapped homeomorphically onto Ui by p. Given two covering spaces
(Y, p) and (Y′, p′) of X, a morphism of covering spaces is a map f : Y → Y′ making
the following diagram commutative:

Y Y′

X
p

f

p′

Fix a base point x ∈ X. If p : Y → X is a covering space and y ∈ Y a point mapping
to x, we can consider the subgroup p∗(π1(Y, y)) of π1(X, x). If X is path connected
and locally path connected, we have that two covering spaces p : Y → X and
p′ : Y′ → X are isomorphic via an isomorphism mapping a point y ∈ p−1(x) to
a point y′ ∈ p′−1(x) if and only if they induce the same subgroup of π1(X, x) (see
[Hat02], 1.37). This yields a Galois correspondence between isomorphism classes of
covering spaces and subgroups of the fundamental group. If X is also semi-locally
simply connected, the function associating to each covering space the correspond-
ing subgroup of π1(X, x) is surjective; in particular, there is a covering space cor-
responding to the trivial subgroup, i.e. a simply connected covering space (Ỹ, p̃).
If we fix a point ỹ ∈ Ỹ mapping to x, we have the following universal property
of (Ỹ, p̃, ỹ): for all covering spaces p : Y → X and y ∈ Y mapping to x, there is
a unique morphism of covering spaces Ỹ → Y mapping ỹ to y. In particular, Ỹ
is unique up to unique isomorphism, and it is a covering space for all covering
spaces of X; we therefore call it the universal covering space of (X, x).

Consider the group AutX(‹X) of morphisms of covering spaces ‹X → ‹X. If α ∈
AutX(‹X), then αx̃ = x, so any path connecting x̃ to αx̃ will be mapped to a loop in
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X. Since ‹X is simply connected, we then have a well defined isomorphism

AutX(‹X) ' π1(X, x).

Now consider the category Cov(X) of covering spaces of X with a finite number of
connected components, with the arrows being the morphisms of covering spaces.
Define the functor Fx : Cov(X) → Set mapping a covering space p : Y → X to
p−1(x). By the universal property of the universal covering space, we see that this
functor is representable by ‹X, i.e. given a covering space p : Y → X,

Fx(Y) = HomX(‹X, Y).

Since AutX(‹X) acts on HomX(‹X, Y) via α · f = f ◦ α, we see in particular that Fx is a
functor from Cov(X) to the category of AutX(‹X) (or π1(X, x))-sets. It can be proven
that Fx induces an equivalence of categories between Cov(X) and the category of
π1(X, x)-sets with finite orbits, yielding a classification of covering spaces of X with
finitely many connected components.

3.1.2 Étale fundamental group

Let us now use the previous properties of the topological fundamental group to
define a schematic analogue.

Let X be a connected scheme and let p : Y → X be a finite étale morphism. Then p
has the following properties: it is open ([Stacks], tag 03WT) and closed (because it
is finite), thus, if Y 6= ∅, it is surjective; for all x ∈ X there is an étale neighborhood
(U, u) 7−→ (X, x) such that Y ×X U is a disjoint union of affine open subschemes,
each of which is mapped isomorphically onto U by p × id ([Stacks], tag 04HN).
This motivates the following nomenclature:

Definition 3.1 (Étale covering). An étale covering of X is a finite étale morphism
p : Y → X.

The reader should not confuse an étale covering (in French: revêtement étale) with
an étale cover, or cover(ing) for the étale topology (in French: famille couvrante
étale); the former generalizes the notion of a covering space, the latter of an open
cover.

Fix a geometric point x : Spec k → X (k being an arbitrary algebraically closed
field) lying over x ∈ X. Consider the category FÉt /X of étale coverings of X (the
morphisms being the X-morphisms) and the functor Fx̄ : FÉt /X → Set mapping
each covering (Y, p) to the set HomX(x, Y) of x-points of Y lying over x. Contrarily
to the previous subsection, in this case the functor Fx̄ is not, in general, repre-
sentable, due to the finiteness of the étale coverings; it is however pro-representable.
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This means that there is a projective family ‹X = (Xi)i∈I of étale coverings of X
indexed by a directed set I, such that for all étale coverings Y (by abuse of notation
we omit the étale map p) of X we have

Fx̄(Y) = Hom(‹X, Y) := lim
−→
i∈I

HomX(Xi, Y),

functorially in Y. We call such a family ‹X “the” universal étale covering of X.

Example 3.2. Consider the spectrum of a field X = Spec K, and a geometric point
x : Spec k → Spec K where we suppose that k is separable over K. An étale cover-
ing Y of X can be identified with a finite separable field extension E/K; we have
Fx̄(Y) ' HomK(E, k) and if k/K is finite, then Fx̄ is representable and we have

Fx̄(Y) = HomFÉt /X(k, Y) = HomX(k, Y).

In general, however, F will only be pro-representable, with

Fx̄(Y) = lim
−→

HomX(Spec Li, Y)

for an indexed family (Li)i of finite Galois extensions of K.

In the previous notations, the Xi can always be chosen to be Galois over X, i.e.
such that their degree over X is equal to the order of AutX(Xi) (see [Mil13], p. 26).
A morphism Xi → Xj yields a homomorphism AutX(Xi) → AutX(Xj), so we can
define

π1(X, x) = AutX(‹X) := lim
←−

AutX(Xi).

This is the étale fundamental group, endowed with the canonical topology as a limit
of finite discrete groups. In the previous example, the étale fundamental group of
X at x is isomorphic to the Galois group of the extension k/K ([SGA 1], Exposé V,
Proposition 8.1).
For each étale covering Y of X, we have a left action of π1(X, x) on F(Y) induced
by the action of π1(X, x) on ‹X. We have the following theorem:

Theorem 3.3. In the previous notations:

i) The functor Fx̄ defines an equivalence of categories

FÉt /X −→ (finite π1(X, x)-sets).

ii) Given a different geometric point x′ of X, there is an isomorphism η : Fx̄ → Fx̄′ ,
yielding an isomorphism π1(X, x) → π1(X, x′) compatible with the equivalence in
(i). The latter isomorphism is independent of the choice of η, up to inner conjugation.



3.2 Dual graphs of wild quotient singularities 57

iii) Given a morphism f : X → Y of connected schemes, set y = f ◦ x. Then f induces
a canonical homomorphism

f∗ : π1(X, x)→ π1(Y, y),

such that the following diagram is commutative:

FÉt /Y FÉt /X

finite π1(Y, y)-sets finite π1(X, x)-sets

base change

Fȳ Fx̄

f ∗

Proof. [Stacks], tag 0BND.

In particular, if X is irreducible we can take the étale fundamental group at a ge-
ometric point over the generic point of X; for example, if K is the stalk at the
generic point, we can take x to be the map Spec K → X. In this case, we write
π1(X) := π1(X, x) and call it the fundamental group of X. The fundamental group
of the regular locus of X is called the local fundamental group, denoted by πloc

1 (X).

3.2 Dual graphs of wild quotient singularities

Let A be a regular local Noetherian ring of dimension 2, G a finite group acting
faithfully on A, R = AG. Assume that the action of G on Spec A is free away
from its closed point x, so that its image in X = Spec R is the only singular point
of X; assume also for simplicity that R is complete and its residue field κ is alge-
braically closed of characteristic p ≥ 0. By 2.9, a minimal regular resolution exists;
moreover, its dual graph is a tree:

Theorem 3.4. In the above assumptions, let π : Xreg → X be the minimal regular
resolution of X at x and suppose that the exceptional divisor π−1(x) has normal crossings
and its irreducible components are smooth. Then the associated graph is a tree, and each
component is a rational curve.

Proof. [Lor13], 2.8.

More specifically, dual graphs of tame quotient singularities are always star-shaped,
i.e. they have at most one node, and no node if the group is abelian ([IS15], p. 5).
Recall that we saw in the previous chapter that the dual graph of a tame cyclic
quotient singularity is a Dynkin graph of type Ar. In general, we say that R is a
Hirzebruch-Jung singularity if each irreducible component of the exceptional divisor
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is isomorphic to a projective line, and the corresponding intersection matrix looks
as follows:

(Ei.Ej)i,j =



−b1 1 0 0 · · · 0 0 0
1 −b2 1 0 · · · 0 0 0
0 1 −b3 1 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1 −br−1 1
0 0 0 0 · · · 0 1 −br


,

for integers bi ≥ 2. In other words, R is a Hirzebruch-Jung singularity if and only
if its dual graph has no nodes. We can associate to the singularity the continued
fraction

m
k
= b1 −

1
b2 − 1

···− 1
br

,

and therefore talk about Hirzebruch-Jung singularity of type m/k. We will show
that such singularities can only arise in the tame case, whence the dual graph of a
wild quotient singularity always has at least one node. As we mentioned earlier,
the algebraic fundamental group will play an important role in the proof; there-
fore, we state the following proposition, generalizing [SGA 1], Exposé V, Proposi-
tion 8.1.

Proposition 3.5. Let B′ ⊆ B ⊆ B′′ be a chain of complete local Noetherian normal
domains, with respective fields of fractions K′ ⊆ K ⊆ K′′. Assume the following:

i) The extensions B′ ⊆ B and B ⊆ B′′ are finite.

ii) The local ring B′ has separably closed residue field.

iii) The local ring B′′ is regular.

iv) The extension K′ ⊆ K is Galois.

v) The ring extension B′ ⊆ B is étale in codimension 1.

vi) The ring extension B ⊆ B′′ is totally ramified at some prime q ⊆ B of height 1.

Then there is a natural isomorphism πloc
1 (Spec B′) = Gal(K/K′), where πloc

1 (Spec B′) is
taken with respect to some separable closure of K.

Proof. We will only give an idea of the proof, with omitted details; for a com-
plete version, see [IS15], 2.3. Consider the regular locus Y′ ⊆ Spec B′, an open
subscheme by [EGA IV], 6.12.7, and let Y be its preimage in Spec B through the
morphism of schemes induced by the inclusion B′ ⊆ B. We know that there is
an equivalence of categories between the category C of finite étale morphisms to
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Y′ and the category of finite π1(Y′)-sets; thus, it can be shown that π1(Y′) actually
coincides with the automorphism group of the forgetful functor C → Set that for-
gets about the π1(Y′)-action. The idea is to show that there is also an equivalence
of categories between C and the category C ′ of finite Gal(K/K′)-sets. Then, since
the Galois group Gal(K/K′) coincides with the automorphism group of the forget-
ful functor C ′ → Set forgetting about the Galois action, it will follow that the two
groups are equal. We thus consider the functor

Ψ : C → C ′

Ỹ 7−→ Ỹ(K),

where Ỹ(K) is the set of K-points of the base change ỸK′ = Ỹ ×Y′ Spec K′. This
functor is faithful because it is the composition of the faithful functors Ỹ 7−→ ỸK′

and ỸK′ 7−→ Ỹ(K). The proofs that Ψ is full and essentially surjective are omitted.

The remaning part of this section will be dedicated to sketching out a proof of the
following theorem:

Theorem 3.6. Let R be a Hirzebruch-Jung singularity of type m/k, and let p ≥ 1 be the
characteristic exponent of the residue field κ = R/mR. Then the local fundamental group
πloc

1 (R) := πloc
1 (Spec R) is isomorphic to the prime-to-p part of the cyclic group Z/mZ.

In particular, it has no element of order p.

Recall that the prime-to-p part of a group G is the quotient of G by the subgroup
generated by all its p-Sylow subgroups.

To motivate why we should want to prove the previous statement on local funda-
mental groups, consider our initial setting where A is a regular local Noetherian
ring of dimension 2 and G is finite a group acting faithfully on A, such that the
action is free away from the closed point of Spec A. Then the hypotheses of the
previous proposition are satisfied for B′ = R = AG, B = B′′ = A. The action of
G on A extends trivially to its fraction field K and fixes the fraction field K′ of R.
Thus, G acts on K as a subgroup of the Galois group Gal(K/K′); since the action is
faithful, it is clear that if Gal(K/K′) has no element of order p, then G must have no
element of order p either. It follows then by the previous theorem and the previous
proposition that the dual graph of a wild quotient must have at least one node:

Corollary 3.7. The dual graph of a wild quotient singularity in dimension 2 contains at
least one node.

Proof of Theorem 3.6 (Sketch). We will sketch out only the fundamental steps of the
proof of this theorem, which uses ideas from logarithmic algebraic geometry; for a
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complete proof, see Section 3 of [IS15]. The idea is to find suitable rings B and B′′

such that the triplet R = B′ ⊆ B ⊆ B′′ satisfies the hypotheses of Proposition 3.5.
Consider then the minimal regular resolution f : Xreg → Spec R of the Hirzebruch-
Jung singularity and let E = E1 + . . . + Er be its reduced exceptional divisor. By
loc. cit., 3.1, E coincides with the closed fiber of the resolution. Pick κ-points (recall
that κ is the separably closed residue field of the complete ring R) x ∈ E1 r E2 and
x′ ∈ Er r Er−1, and extend them to effective Cartier divisors D, D′ in Xreg such that
D∩ E1 = {x} and D′ ∩ Er = {x′}. Then, their images C = f (D) and C′ = f (D′) are
Weil divisors on Spec R. Regard R as a commutative multiplicative monoid and
consider its submonoid

M = {g ∈ R |V(g) ⊆ C ∪ C′}.

Define a homomorphism of monoids

ν : M → N⊕N

g 7−→ (
valC(g), valC′(g)

)
,

with valuations taken at the generic points of C and C′, and let P = Im ν ⊆N⊕N

be its image. Then we have an “exact” sequence

1→ R× → M→ P→ 0,

where exact in this instance means that P is isomorphic to the quotient M/∼ by
the equivalence relation g ∼ g′ ⇐⇒ g = ug′ for some u ∈ R×.
Recall that a commutative monoid P is said to be:

• fine if it is finitely generated and integral;

• saturated if any element a in its groupification Pgp that has a multiple in P is
itself an element of P (similar to a saturated semigroup);

• sharp if the subset P× of invertible elements of P is trivial.

Then, it can be proven (loc. cit., 3.4) that P is fine, saturated and sharp, and there
exists a section P→ M. Once we choose such a section, we can write M = R× ⊕ P
and identify P with a multiplicative submonoid of R. Recall that any (commuta-
tive) monoid has a unique maximal ideal consisting of its non invertible elements;
since P is sharp, this coincides with Pr {1}. By loc. cit., 3.6, for any choice of a sec-
tion M → P, the maximal ideal P r {1} of P generates the maximal ideal mR ⊆ R
of R.
Now we have two possible cases: either R contains a field, or it does not. In the
former case, let W ⊆ R be a subfield of R such that W → κ is bijective; in the latter
case, let W ⊆ R be a subring such that W is a complete discrete valuation ring
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with uniformizer p ∈ W (recall that p ≥ 1 is the characteristic exponent of κ), and
W/pW → κ is bijective. In either case, the above assertion on the maximal ideal
of P implies that there is a surjection W[[P]] � R, where, if I ⊆ W[P] is the ideal
generated by P r {1}, W[[P]] is the I-adic completion of the monoid ring W[P]:

W[[P]] = lim
←−

W[P]
InW[P]

.

An element of W[[P]] is a formal series of the form ∑g∈P wgg with wg ∈ W; in
particular, it can be shown (loc. cit., 3.7) that R is a quotient of W[[P]] by the
principal ideal generated by an element of the form

ψ =

p + ∑g∈Pr{1} wgg if R does not contain a field;

0 otherwise.

Now let Pgp denote the groupification of P and let Qgp be the unique intermediate
subgroup Pgp ⊆ Qgp ⊆ Z⊕Z such that [Z⊕Z : Qgp] is a power of p and [Qgp : P]
is prime to p; let Q be a monoid making the square on the right in the following
diagram cartesian:

P Q N⊕N

Pgp Qgp Z⊕Z

y

Like P, Q is also sharp, fine and saturated.
We have now finally found our “suitable” rings: define

B := R⊗W[[P]] W[[Q]] = W[[Q]]/(ψ);

B′′ := R⊗W[[P]] W[[N⊕N]] = W[[N⊕N]]/(ψ).

The triplet R = B′ ⊆ B ⊆ B′′ satisfies the hypotheses of Proposition 3.5 by loc.
cit., 3.8; thus, if K is the fraction field of B and K′ the fraction field of R, we have
πloc

1 (R) = Gal(K/K′).
We are now ready to complete the proof. Let Z/m′Z be the prime-to-p part of
Z/mZ; by definition of Qgp, we have an isomorphism Z/m′Z ' Qgp/Pgp =:
H. Let G be the group scheme representing the Set-valued functor on R-algebras
mapping A 7−→ HomGrp(H,A×); since m′ is invertible in W and the residue field
κW is separably closed, G actually coincides with the finite group scheme Z/m′Z.
It can be shown that the morphism Spec K → Spec K′ is a G-torsor for the étale
topology on Spec R, so we see that K is fixed by the G-action and that [K : K′] =

|G| = m′. It follows then that K′ ⊆ K is Galois with Gal(K/K′) ' Z/m′Z; by
Proposition 3.5, we conclude that πloc

1 (R) ' Z/m′Z.
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3.3 Dual graphs with two nodes

In this section, we will present an example of a wild quotient singularity whose
dual graph is not star-shaped, and in particular has (at least) two nodes, following
[IS15].

Let p ≥ 0 be a prime number, κ an algebraically closed field of characteristic p and
fix a p-power q = pm. Consider the following smooth projective curve of affine
equation C : yq − y = xq+1, so

C = Proj
κ[x0, x1, x2]Ä

xq
1x2 − x1xq

2 − xq+1
0

ä .

By [Har77], Chapter IV, 3.11.1, C has genus g = q(q−1)
2 . Curves of this type are

called Hermitian curves and are known to have extremely large automorphism
groups, thus behaving pathologically with respect to rational points; in particu-
lar, by [Sti73], Theorem 7, in this case Aut(C) has order q3(q3 + 1)(q2 − 1) if q 6= 2.
We wish to find a suitable subgroup of Aut(C) to act on C. For this purpose, let us
perform a change of variables; we can work with the affine equation yq − y = xq+1

to define automorphisms on an affine chart, which will naturally extend to auto-
morphisms on C that fix the point at infinity. Set

x = x′ + r; y = y′ + sx′ + t

for scalars r, s and t, whence our equation becomes

(y′ + sx′ + t)q − (y′ + sx′ + t) = (x′ + r)q+1

⇐⇒ y′q + sqx′q + tq − y′ − sx′ − t = x′q+1 + rq+1 +
q

∑
i=1

(q+1
i

)
x′irq+1−i.

For 2 ≤ i ≤ q− 1, the binomial coefficient
(q+1

i

)
is zero in κ, so we get the equation

y′q − y′ = (s + rq)x′ + (r− sq)x′q + x′q+1 + rq+1 − tq + t.

Since we want our new variables to satisfy the original affine equation for C, we
require that 

s + rq = 0

r− sq = 0

rq+1 − tq + t = 0

=⇒


s = −rq

rq2
+ r = 0

rq+1 − tq + t = 0.

Thus, we define the group G = {(t, r) ∈ κ2 | rq2
+ r = 0, rq+1 = tq − t} with

composition law (t, r) · (t′, r′) = (t + t′ − rqr′, r + r′), acting on C via

(t, r) : x 7−→ x + r; (t, r) : y 7−→ y− rqx + t.
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Proposition 3.8. The group G has order |G| = q3; if q 6= 2, it is a p-Sylow subgroup of
Aut(C).

Proof. Since κ is algebraically closed and the polynomials Tq2
+ T and Tq − T − λ

are separable, it follows that |G| = q2 · q = q3. Since we have observed earlier
that when q 6= 2, Aut(C) has order q3(q3 + 1)(q2 − 1), in this case G is a p-Sylow of
Aut(C).

Let Z denote the center of G and G′ its derived subgroup. Consider also the fol-
lowing subgroup of G:

Definition 3.9 (Frattini subgroup). Let G be a group. The Frattini subgroup is the
intersection Φ of all maximal proper subgroups of G.

The Frattini subgroup can be thought of as the subgroup of all “small elements” of
G, i.e. all the non-generators of the group.

Definition 3.10 (Special group). A special group is a p-group that is either elemen-
tary abelian, or it is of class 2 and its derived subgroup, Frattini subgroup and
center all coincide and are elementary abelian.

Proposition 3.11. The group G defined above is a special group with center

Z = Φ = G′ = {(t, 0) | t ∈ Fq}.

Proof. It is immediate to check that the centralizer of an element (t, r) ∈ G is the set
of all (t, λr) for λ ∈ Fq, whence Z = {(t, 0) | t ∈ Fq} and it is elementary abelian.
By [Mac68], 9.26, for finite p-groups

Φ = 〈[x, y], zp | x, y, z ∈ Φ〉 ;

so we have the inclusion G′ ⊆ Φ and Φ ⊆ Z (because G/Φ is elementary abelian).
Finally, observe that G′ is a nontrivial subspace of the Fq-vector space F2

q, whence,
since G′ ⊆ Z and Z is a one-dimensional subspace of F2

q, G′ = Z.

Let us return to our group action on C. Observe that G acts freely on the affine
part of C and fixes the point at infinity ∞. Consider the diagonal action of G on
the smooth proper surface C × C and take the quotient Y = (C × C)/G by this
action, which is a normal proper surface whose singular locus coincides with the
image y of the fixed point (∞, ∞). In this section, we shall sketch out a proof for
the following theorem:

Theorem 3.12. The dual graph for the minimal regular resolution of the quotient singu-
larity y ∈ Y contains at least two nodes.
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Since we are working with a wild quotient singularity, it can be difficult to study
the resolution of this singularity explicitly. We shall therefore consider a different,
more manageable morphism. Observe first that C/G ' P1

κ, which follows from the
Riemann-Hurwitz formula for computing the genus of a curve ([Har77], Chapter
IV, 2.4):

2g(C)− 2 = |G|
(
2g(C/G)− 2

)
+ ∑

P∈C
dP,

In this case:

2
q(q− 1)

2
− 2 = q3 (2g(C/G)− 2

)
+ ∑

P∈C
dP︸︷︷︸
=0

for all P 6=∞

⇐⇒ q2 − q− 2 = 2q3g(C/G)− 2q3 + 2q3 − 2 + ε

⇐⇒ g(C/G) =
q2 − q− ε

2q3 =
1
2

Å
1
q
− 1

q2 −
ε

q3

ã
≤ 1

2q

=⇒g(C/G) = 0.

We thus see that C/G is a smooth projective curve of genus 0, and it is therefore
isomorphic to P1

κ. Since the composition C × C
pr1−→ C → C/G is G-invariant, we

have a unique factorization through ϕ : (C× C)/G → C/G making the following
diagram commutative:

C× C C C/G

C×C/G

pr1

ϕ

Now we consider the following commutative diagram

Ỹ

Z Y = C×C/G C× C

P1
κ = G/C C

ψ ϕ
pr1

where Ỹ → Y is the minimal resolution of singularities and ψ : Z → G/C is
obtained by contracting all the (−1)-curves in the fiber of Ỹ → G/C over ∞ (where
by a slight abuse of notation we call ∞ the image of the point at infinity in G/C).

As we mentioned above, we shall work on the morphism ψ to deduce the prop-
erties of the dual graph of the minimal resolution of singularities Ỹ → Y. Indeed,
Theorem 3.12 is an immediate consequence of the following proposition:
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Proposition 3.13. The reduced singular fiber ψ−1(∞)red ⊆ Z is a divisor with strictly
normal crossing whose irreducible components are copies of P1

κ, with dual graph as in
Figure 3.1, where:

• there are q strings on the right side of the graph, each of length q− 1;

• the long string on the left has length q− 1 as well;

• the numbers indicate the multiplicities of the integral irreducible components in the
schematic fiber ψ−1(∞);

• the black vertices correspond to integral components of self-intersection −2, while
the white vertices correspond to integral components of self-intersection −q.

· · ·

· · ·

· · ·

· · ·

...

· · ·

· · ·
q q q q

q− 1 q− 2 1

1

q− 1q− 21

Figure 3.1: The dual graph of ψ−1(∞).

Proof of Theorem 3.12. The fiber over ∞ through the morphism Ỹ → P1
κ is the union

of the strict transform F ⊆ Ỹ of the fiber over ∞ of ϕ : Y → P1
κ, and the exceptional

divisor E ⊆ Ỹ of the resolution of singularities Ỹ → Y. By [IS12], 2.1, the integral
divisor F has multiplicity q3 in the schematic fiber; since by the previous propo-
sition ψ−1(∞) has no integral component of multiplicity greater than q, it means
that F has been contracted by the map Ỹ → Z. This means that the dual graph of
ψ−1(∞) is obtained by the dual graph of E by a series of vertex contractions. Since
the former graph has exactly two nodes, it follows that the dual graph of E has at
least two nodes.

We will now sketch out a proof of Proposition 3.13 to complete the proof of Theo-
rem 3.12. Some details are omitted; for a complete proof, see [IS15].

Proof of Proposition 3.13 (Sketch). By [IS15], 7.4, if η ∈ P1
κ is the generic point of P1

κ

and z a uniformizer of the local ring OP1
κ ,∞, the generic fiber ϕ−1(η) = ψ−1(η) is

the smooth projective curve over κ(z) obtained by the homogenization of the affine
equation

yq − zq2−1y− xq+1 − zq−1xq = 0. (3.14)
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An immediate computation shows that the only singular point of this curve lies
in its affine part; we will therefore compute the minimal regular resolution of the
affine scheme

X = Spec
k[z, x, y]

(yq − zq2−1y− xq+1 − zq−1xq)
,

which we will see has no (−1)-curve in its singular fiber, thus yielding our desired
description of the fiber ψ−1(∞). Let us first consider the case where q = 2: then
3.14 becomes

y2 − z3y− x3 − zx2 = 0,

which is an elliptic surface; the morphism ψ : S → P1
κ is then an elliptic fibration

whose singular fiber has Kodaira symbol I∗3 by [Lan94], page 429, case 13C, corre-
sponding to a Dynkin graph of type D7 (see [Kod63], 6.2), as desired.
Now let q 6= 2. It might be convenient to label some vertices in Figure 3.1 to make
things clearer, as in Figure 3.2.

· · ·

· · ·

· · ·

· · ·

...

· · ·

· · ·
F1 F2 F3 F4

F0

Eq−1Eq−2E1

Figure 3.2: The dual graph of ψ−1(∞), with labeled vertices.

We will start by computing the blow-up of X at the non reduced singular point
(zq−1, x, y), and then blow up again any singularities that may arise.
Consider first the zq−1-chart of the blow-up, which has variables z, Y := y/zq−1

and X := x/zq−1; we can then substitute x = X · zq−1, y = Y · zq−1 and obtain the
equation

Yq − z2q−2Y− Xq+1zq−1 − Xqzq = 0. (3.15)

The fiber over ∞ is obtained by requiring z = 0, yielding an affine line with mul-
tiplicity q, which coincides with the singular locus of this chart; we will call this
component F1.
The y-chart of the blow-up has variables z, Z := zq−1/y, ‹X := x/y, and y, and it is
defined by the equations

zq−1 = Zy, 1− Zq+1y2 − ‹Xq+1y− Zy‹Xq = 0,

so by the Jacobian criterion we see that it is smooth. The fiber z = 0 here yields
two irreducible components qF1 + F0.
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Lastly, the x-chart has variables z, Z̃ := zq−1/x, Ỹ := y/x, and y, and it is defined
by the equations

zq−1 = Z̃x, Ỹq − Z̃q+1Ỹx2 − x− Z̃x = 0.

The fiber over ∞ in this chart is given by Z̃x = 0, yielding the equation Z̃ · Ỹq = 0,
whence we have again F1 with multiplicity q and a new component that we will
call E1. It can be proven, by computing the completion of the local ring at the
origin, that there is a Hirzebruch-Jung singularity at the origin of parameters m =

q − 1, k = q − 2. We thus have the following continued fraction, with q − 1 2’s
appearing in the expansion:

q− 1
q− 2

= 2− 1
2− 1

···− 1
2

.

It follows that by computing successive blow-ups to obtain a minimal resolution,
we end up with q− 2 new irreducible components E2, . . . , Eq−1 with multiplicities
as in Figure 3.2.
Let us now get back to the zq−1-chart and compute the blow-up of 3.15 along the
ideal (z, Y). In the Y-chart, we have variables X, Y and Z := z/Y = zq/y, with the
law z = Z ·Y. The strict transform of 3.15, then, is

Y− Zq−1Yq − Xq+1Zq−1 + XqZq−1 = 0,

which is smooth. The closed fiber on this chart is obtained by requiring Z · Y = 0,
yielding Zq−1Xq(X − 1) = 0; therefore, it has three irreducible components qF1 +

qF2 + F0. When we now look at the z-chart of the blow-up, we have variables z, X
and Y/z = y/zq, and the equationÅ

Y
z

ãq
z− zq Y

z
− Xq−1 − Xq = 0, (3.16)

which has a single isolated singularity at the origin. The fiber z = 0 is given
by the ring κ[X, Y/z] modulo the equation Xq(X − 1), showing that there are no
intersections that we have not already considered.
We now blow up 3.16 along the ideal (z, X). The z-chart has variables z, X/z, and
Y/z, the strict transform of 3.16 is given byÅ

Y
z

ãq
− zq−1 Y

z
−
Å

X
z

ãq+1
zq − zq−1

Å
X
z

ãq
= 0, (3.17)

and the fiber z = 0 is an affine line with multiplicity q, corresponding to the irre-
ducible component qF3. A similar computation for the X-fiber shows that there are
no more singularities and irreducible components to list.



68 3. Wild quotient singularities

Finally, we will blow up 3.17 along the ideal (z, Y/z). First we look at the z-chart:
it has variables z, X/z, and Y/z2, equationÅ

Y
z2

ãq
z− z

Y
z
−
Å

X
z

ãq+1
z−
Å

X
z

ãq
= 0,

and fiber z = 0 isomorphic to a copy of an affine line with multiplicity q: this is
the irreducible component qF4. The Jacobian criterion shows that the singular lo-
cus here is given by the q points satisfying z = X/z = 0 and (Y/z)q+1 − Y/z = 0.
Like before, computing the formal completion of the local rings at these singular
points shows that each point is a rational double point of type Aq−1, yielding the
q strings on the right in Figure 3.2. Lastly, an immediate computation shows that
the Y/z-chart of the blow-up is smooth and no new irreducible components show
up in its fiber. This concludes our proof that the dual graph of ψ−1(∞) looks like
the one in Figure 3.1.
Now that we have established the shape of the dual graph of ψ−1(∞), we can com-
pute the self-intersection numbers of its irreducible components, using that ψ−1(∞)
has self-intersection zero. Indeed, ψ−1(∞) is equal to the sum

q−1

∑
i=1

iEi +
4

∑
i=0

Fi +
q−1

∑
i=1

q

∑
j=1

iDi,j,

where the Di,j correspond to the vertices on the right side of the graph, with Di,j

appearing with multiplicity i. From ψ−1(∞).ψ−1(∞) = 0 we get:

• E1.E1 + 2E2.E1 = 0 =⇒ E1.E1 = −2;

• for all 2 ≤ i ≤ q− 1,

(i− 1)Ei−1.Ei + iEi.Ei + (i + 1)Ei+1.Ei = 0 =⇒ Ei.Ei = −2;

• F0.F0 + qF1.F0 = 0 =⇒ F0.F0 = −q;

• (q− 1)Eq−1.F1 + qF1.F1 + F1.F0 + qF2.F1 = 0 =⇒ F1.F1 = −2;

• for i = 2, 3,

qFi−1.Fi + qFi.Fi + qFi+1.Fi = 0 =⇒ Fi.Fi = −2;

• qF3.F4 + qF4.F4 + ∑
q
j=1(q− 1)Dq−1,j.F4 = 0 =⇒ F4.F4 = −q;

• for all 1 ≤ j ≤ q,

qF4.Dq−1,j + (q− 1)Dq−1,j.Dq−1,j + (q− 2)Dq−2,j.Dq−1,j = 0

=⇒ Dq−1,j.Dq−1,j = −2;
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• for all 2 ≤ i ≤ q− 2,

(i− 1)Di−1,j.Di,j + iDi,j.Di,j + (i + 1)Di+1,j.Di,j = 0 =⇒ Di,j.Di,j = −2;

• for all 1 ≤ j ≤ q,

2D2,j.D1,j + D1,j.D1,j = 0 =⇒ D1,j.D1,j = −2.

The previous computations conclude the proof.
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(−1)-curve, 38
S-curve, 31
étale

covering, 55
fundamental group, 56
morphism, 43
universal ___ covering, 56

affine semigroup, 8
homomorphism, 13
pointed, 14
saturated, 15

algebraic fundamental group, see
étale fundamental group

catenary
___ ring, 37
___ scheme, 37
universally ___ ring, 37
universally ___ scheme, 37

characteristic exponent, 31
cone

dimension of a, 10
face of a, 11
minimal generators of a, 12
parameters of a, 24
rational convex polyhedral, 10
rays of a, 12
strongly convex, 11

smooth, 12

desingularization, see resolution of
singularities

distinguished point, 15, 21
du Val singularity, 27, 51
dual graph, 27, 51

excellent
___ ring, 37
___ scheme, 37

exceptional divisor, 27

fan, 17
simplicial, 18
smooth, 18
support of a, 17

fine monoid, 60
formal fibers, 37
Frattini subgroup, 63
fundamental group, see étale

fundamental group

Hermitian curve, 62
Hirzebruch-Jung

continued fraction expansion,
28, 46

convergents of a, 28
partial quotients of a, 28

singularity, 57

intersection multiplicity, 32

lattice points, 7
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local fundamental group, 57

minimal regular resolution along a
finite subset, 43

nil-semistable point, 44
normal basis relative to a cone, 24

orbifold, 19

pseudo-reflection, 44

quotient of a scheme by the action of
a group, 1

refinement of a fan, 22
resolution of singularities, 2, 22

saturated monoid, 60
semigroup algebra, 8

sharp monoid, 60
special group, 63
star subdivision of a fan, 22

tame cyclic quotient singularity, 45
toric ideal, 7
toric morphism, 21
toric variety

affine, 6
from affine semigroups, 8
from lattice points, 7
from toric ideals, 7

torus, 5
action, description of the, 14
character of a, 6
co-character of a, 6
one-parameter subgroup of a, 6
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