
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea Magistrale in Matematica

THE TOONOUT MODEL
AND MATHEMATICAL THEORY

BEHIND IT

Tesi di Laurea in
Probabilistic Methods for Machine Learning

Relatore:
Chiar.mo Prof.
GIOVANNI PAOLINI

Presentata da:
MATTEO MURATORI

Anno Accademico 2024-2025

Questa volta sapevo che

potevo farcela perché

l’avevo già fatto . . .

J.K.ROWLING

Introduzione

La rapida evoluzione che sta avendo l’intelligenza artificiale negli ul-

timi anni ha portato a nuovi modi di utilizzare questo strumento, che fino

a poco tempo fa sembravano inverosimili. In questa tesi ci concentriamo

sull’utilizzo del Machine Learning applicato alle immagini e nello specifico

alla generazione e alla segmentazione di queste. Nel Capitolo 1 viene trattata

una parte di teoria matematica/probabilistica riguardante i Diffusion Mod-

els, ovvero una classe specifica di modelli facenti parte dello stato dell’arte

per la generazione di immagini. Questi modelli si rivelano particolarmente

interessanti da un punto di vista teorico, poiché vengono addestrati con

l’obiettivo di imparare la distribuzione di probabilità di ottenere una certa

immagine ove è stato aggiunto rumore, a partire da un’immagine priva di

esso. Dopodiché, questa distribuzione viene invertita in modo che il mo-

dello, a partire da un’immagine totalmente rumorosa, sia capace di pro-

durre un’immagine verosimile, assomigliante a quelle su cui viene effettuato

l’addestramento. Nel Capitolo 2, ci si sposta sull’argomento della segmen-

tazione binaria di immagini, volta a individuare l’elemento principale rap-

presentato e a separarlo dallo sfondo. Questo tipo di elaborazione presenta

diverse possibili applicazioni tra cui la rimozione dello sfondo al fine di ot-

tenere la sagoma dell’oggetto principale, la realtà aumentata, la guida au-

tonoma, oppure l’individuazione di patologie nelle immagini di organi. Anche

questo argomento viene inizialmente trattato da un punto di vista teorico,

descrivendo le reti neurali che permettono di mettere in pratica questa seg-

mentazione e parlando della teoria matematica utilizzata per definire le prin-

cipali metriche che permettono di valutare la qualità dei risultati ottenuti.

Infine, ci si sposta su un progetto pratico realizzato in collaborazione con

l’azienda Kartoon, che utilizza gli strumenti introdotti in maniera teorica nei

primi due capitoli. Questo progetto consiste nell’implementazione di un mo-

dello open-source per la rimozione degli sfondi dalle immagini rappresentanti

personaggi o oggetti in stile anime. Infatti, seppure i modelli esistenti per la

rimozione degli sfondi al giorno d’oggi ottengano solitamente risultati stra-

bilianti, questo non vale quando le immagini sottoposte al modello presentano

uno stile particolare e sono, di conseguenza, differenti dalla distribuzione di

dati utilizzata per addestrare la rete neurale. Per raggiungere l’obiettivo

del progetto, abbiamo creato un dataset personalizzato e fatto fine-tuning

sul modello open-source esistente BiRefNet, al fine di assicurarci che anche

le immagini in stile anime facessero parte dei dati su cui la rete neurale

è addestrata. Inoltre, abbiamo anche contribuito presentando una metrica

implementata da noi per valutare la qualità della rimozione dello sfondo ot-

tenuta, che nei casi su cui lavoriamo fornisce valutazioni più puntuali rispetto

alle metriche esistenti. La descrizione completa di questo progetto, nonché i

risultati ottenuti, sono presentati nel Capitolo 3.

Contents

1 Diffusion Models 5

1.1 Introduction . 5

1.2 Forward Encoder . 7

1.2.1 Gaussian random variables 7

1.2.2 Forward distribution 9

1.2.3 Diffusion kernel . 10

1.2.4 Reverse distribution 10

1.3 Reverse Decoder . 12

1.3.1 Reverse distribution approximation 12

1.3.2 Objective function . 12

1.3.3 Noise prediction . 15

1.3.4 Samples generation . 17

1.4 Guided diffusion . 17

1.4.1 Classifier guidance . 17

1.4.2 Classifier-free guidance 19

1.4.3 Tasks . 20

2 Dichotomous Image Segmentation 21

2.1 Task presentation . 21

2.2 Baseline architectures . 24

2.2.1 Convolutional Neural Networks 24

2.2.2 U-Net . 25

2.2.3 U2-Net . 26

1

2 CONTENTS

2.3 State-of-the-art approaches . 27

2.3.1 Intermediate supervision 27

2.3.2 Frequency priors . 29

2.3.3 Multi-view aggregation 33

2.4 Bilateral Reference Network 36

2.4.1 Approach . 36

2.4.2 Architecture . 37

2.4.3 Losses . 38

2.4.4 Training strategies . 41

2.4.5 Results and applications 41

2.5 Metrics . 42

2.5.1 F-measure . 42

2.5.2 S-measure . 44

2.5.3 E-measure . 46

2.5.4 MAE and MSE . 47

2.5.5 Boundary Intersection over Union 47

2.5.6 Mean Boundary Accuracy 48

2.5.7 Human Correction Effort 49

3 ToonOut: Background Removal Model for Anime style 51

3.1 Motivation and goals . 51

3.2 Custom dataset . 54

3.2.1 Data sourcing . 54

3.2.2 Dataset Composition 57

3.3 Fine-tuning process . 58

3.3.1 Model choice . 58

3.3.2 Fine-tuning experiment 59

3.4 Results evaluation . 62

3.4.1 Metrics overview . 62

3.4.2 Pixel Accuracy . 64

3.4.3 Evaluating model performance 65

CONTENTS 3

Conclusions 67

Bibliography 69

Chapter 1

Diffusion Models

The first topic we address is Diffusion Models, a class of Machine Learning

models suited for image generation. These models obtain new images starting

from a total noise image and denoising it step-by-step. We are going to focus

on the mathematical theory upon which they rely.

1.1 Introduction

In recent years, the rapid expansion of Machine Learning has led to new

ways in which human users can be assisted by computers during their daily

life. On this topic, one of the new frontiers that has emerged is the auto-

matic generation of new content. Generative models learn the underlying

patterns and structures of their training data and employ them to produce

new data based on the input, which often comes in the form of natural

language prompts. In this chapter we will discuss image generation and in

particular Diffusion Models : an interesting category of these models from a

theoretical mathematical and probabilistic perspective. This class of models

often performs well for image generation task and for this reason has been

identified as the state-of-the-art for many applications in these years.

Diffusion Models (sometimes called, more completely, Denoising Diffu-

sion Probabilistic Models (DDPMs)) [41, 2] are based on the central idea to

5

6 1. Diffusion Models

Figure 1.1: Example summarizing how Diffusion Models work: during the for-

ward process the original image is progressively transformed into a Gaussian noise

image; the backward process generates a new image starting from a pure noise

image and a textual prompt (in this case cat), denoising step-by-step.

take each training image and progressively add noise to it, using a multi-

step process (forward process) to transform it into a sample from a Gaussian

distribution (an overview about Gaussian random variables is provided in

Section 1.2.1). A neural network is, subsequently, trained to invert the pro-

cess: starting from a Gaussian noise image, the quantity of noise portrayed

in the image is predicted and then removed step-by-step, until a meaningful

image is obtained (backward process). We will go in depth with the math-

ematical details of both the phases in the next sections. DDPMs present

some important advantages, compared to other image generation techniques

(as Variational Autoencoders or Generative Adversarial Networks): they are

easy to train, they work well if distributed to parallel hardware and they

avoid instability challenges that often arise using different methodologies,

while the quality is at least the same or even better. Conversely, the main

limitation of Diffusion Models is the high computational cost required, due

to the multi-step forward process.

1.2 Forward Encoder 7

1.2 Forward Encoder

1.2.1 Gaussian random variables

As the forward process deals with Gaussian random variables [27] to rep-

resent the conditional distributions of the images after adding the Gaussian

noise, some theoretical details about these random variables are included in

this section. The following formally defines a Gaussian random variable.

Definition 1. Let X be a random variable with values in Rd, µ ∈ Rd and

C ∈ Rd×d symmetric and positive definite; X is a Gaussian random variable

with mean µ and covariance matrix C, and we denote it by X ∼ N(µ,C), if

X has density function

γ(x) =
1√

(2π)d det(C)
e−

1
2
C−1(x−µ)·(x−µ).

This definition can be given in a different equivalent formulation, that

allows to extend the class to positive semi-definite matrices.

Definition 2. Let X be a random variable with values in Rd, µ ∈ Rd and

C ∈ Rd×d symmetric and semi-positively defined; X is a Gaussian random

variable with mean µ and covariance matrix C, and we denote X ∼ N(µ,C),

if X has characteristic function

φ(x) = eiµ·x−
1
2
Cx·x.

This second formulation allows to easily get a useful result related to the

affine transformation of a Gaussian random variable.

Proposition 1. Let X ∼ N(µ,C) be a Gaussian random variable, with

µ ∈ Rd and C ∈ Rd×d symmetric and semi-positively defined. Consider

A ∈ Rn×d and b ∈ Rn; then AX + b ∼ N(Aµ+ b, ACAT).

Proof. Consider φAX+b the characteristic function of AX + b and φX the

characteristic function of X. From a result on the characteristic function of

8 1. Diffusion Models

an affine transformation of random variables, we have that

φAX+b(x) = eix·bφX(A
Tx)

= eix·beiµ·A
T x− 1

2
CAT x·AT x

= ei(Aµ+b)·x− 1
2
ACAT x·x,

and the statement follows.

This proposition has as a direct consequence the distribution of the linear

combination of two independent Gaussian random vectors.

Corollary 1. Let X1 ∼ N(µ1, C1) and X2 ∼ N(µ2, C2) be two indepen-

dent Gaussian random variables in Rd, and α1, α2 ∈ R. Then, the linear

combination α1X1 + α2X2 ∼ N(α1µ1 + α2µ2, α
2
1C1 + α2

2C2).

Proof. Denote by φ1 and φ2 the characteristic functions of C1 and C2, respec-

tively. From a result about the characteristic functions of random vectors

with independent components, the vector (X1 X2) has characteristic function

φ(X1 X2)(x1, x2) = φX1(x1)φX2(x2)

= eiµ1·x1− 1
2
C1x1·x1eiµ2·x2− 1

2
C2x2·x2

= e
i(x1 x2)

(
µ1
µ2

)
− 1

2
(x1 x2)

(
C1 0
0 C2

)(
x1
x2

)
.

From Definition 2, it follows that

(X1 X2) ∼ N(
(
µ1
µ2

)
,
(
C1 0
0 C2

)
).

Let I ∈ Rd be the d-dimensional identity matrix; we can write that

α1X1 + α2X2 = (α1I α2I)
(
X1
X2

)

We now apply Proposition 1 to get the final result

α1X1 + α2X2 ∼ N((α1I α2I)
(
µ1
µ2

)
, (α1I α2I)

(
C1 0
0 C2

)
(α1I
α2I

)
)

= N(α1µ1 + α2µ2, α
2
1C1 + α2

2C2).

1.2 Forward Encoder 9

1.2.2 Forward distribution

After this brief overview to underline some properties of the Gaussian

random variables, we specifically focus on the mathematical theory behind

Diffusion Models. In the following, we will consider all the images to have

the same size, and in particular to be d-dimensional vectors with real values,

where d = h × w × c is the product between the images height (h), width

(w) and number of channels (c), namely the number of values necessary to

univocally define the images. Consider X ∈ Rd a random image from a

training set, and suppose to blend it with a Gaussian noise independent for

each pixel ϵ1 ∼ N(0, I), where 0 stands for the zero vector in Rd and I ∈ Rd×d

is the d-dimensional identity matrix. We obtain a noise-corrupted image Z1

defined in the following way:

Z1 =
√
1− β1X +

√
β1ϵ1,

where β1 ∈ (0, 1) is a coefficient to set the variance. Using the results ex-

plained in Section 1.2.1, we are able to explicitly write the conditional dis-

tribution of Z1 given X

q(Z1|X) = N(
√
1− β1X, β1I).

This process is then repeated to obtain increasingly noisy images Z2, Z3 . . . ZT .

Analogously, for each t ∈ {2, 3, . . . , T} we set

Zt =
√
1− βtZt−1 +

√
βtϵt,

where ϵt ∼ N(0, I) again and the values βt ∈ (0, 1) are empirically chosen

and typically set such that β1 < β2 < · · · < βT , to ensure that the variance

increases throughout the steps. This yields

q(Zt|Zt−1) = N(
√
1− βtZt−1, βtI), (1.1)

which we refer to as the forward distribution, and we notice that the process

{X,Z1, . . . , ZT} can be viewed as a Markov chain [47].

10 1. Diffusion Models

1.2.3 Diffusion kernel

After defining the process {X,Z1, . . . , ZT} and explicitly writing its for-

ward distribution, we can delve deeper into some probabilistic properties.

By simultaneously exploiting the combination of the Markov property and

the chain rule, for each t ∈ {1, 2, . . . , T} we obtain the conditional joint

distribution of the variables Z1, Z2, . . . , Zt:

q(Z1, Z2, . . . , Zt|X) = q(Z1|X)
t∏

τ=2

q(Zτ |Zτ−1).

Computing the marginal distribution of Zt, we get

q(Zt|X) = N(
√
αtX, (1− αt)I), (1.2)

where we denote

αt :=
t∏

τ=1

(1− βτ).

We call the conditional distribution of Zt given X the diffusion kernel. The

choice of the coefficients β1 < β2 < · · · < βT ensures that

lim
T→+∞

αT = 0

. As a direct consequence, after many steps all the information in the cor-

rupted image is lost and it becomes indistinguishable from Gaussian noise,

because in the limit T −→ +∞

q(ZT |X) = N(0, I).

Since the right term is independent of X, the conditional distribution of ZT

given X coincides with the distribution of ZT :

q(ZT) = N(0, I).

1.2.4 Reverse distribution

Given that the goal of Diffusion Models is to learn to undo the forward

process, it is natural to consider the reverse distribution, namely the reverse of

1.2 Forward Encoder 11

the forward distribution. This density can be expressed using Bayes’ formula

q(Zt−1|Zt) =
q(Zt|Zt−1)q(Zt−1)

q(Zt)
. (1.3)

The distribution q(Zt−1) can be written as

q(Zt−1) =

∫
q(Zt−1|X)q(X)dX.

The factor q(Zt−1|X) is acquainted from (1.2), but q(X) is unknown. It

could be approximated using a batch of samples from the training set, but

the result would be a complicated distribution expressed as a combination

of Gaussians. To solve the issue, it is sufficient to consider the conditional

version of the reverse distribution given X. In total analogy as before, we

write

q(Zt−1|Zt, X) =
q(Zt|Zt−1, X)q(Zt−1|X)

q(Zt|X)
, (1.4)

and the Markov property ensures that

q(Zt|Zt−1, X)q(Zt−1|X)

q(Zt|X)
=

q(Zt|Zt−1)q(Zt−1|X)

q(Zt|X)
.

As a consequence, the conditional reverse distribution q(Zt−1|Zt, X) can be

expressed as the product of the forward distribution q(Zt|Zt−1), given by

(1.1), and the diffusion kernel q(Zt−1|X), given by (1.2). The denominator

can be ignored, because it is constant in Zt−1. Since the two factors of the

product are Gaussian densities, the result is that the conditional reverse

distribution is Gaussian too, and its mean and variance are identified with

the technique of completing the square, obtaining the following:

q(Zt−1|Zt, X) = N(mt(X,Zt), σ
2
t I), (1.5)

where

mt(X,Zt) =
(1− αt−1)

√
1− βtZt +

√
αt−1βtX

1− αt

, σ2
t =

βt(1− αt−1)

1− αt

.

12 1. Diffusion Models

1.3 Reverse Decoder

1.3.1 Reverse distribution approximation

Since we have established that the reverse distribution is intractable, we

aim to train a deep neural network to approximate it. In particular we denote

by p(Zt−1|Zt, w) this approximation, where w are learnable parameters. Once

the model is trained, we can generate ZT and transform it to a sample of the

distribution q(X), through sequential denoising steps.

If we set the variance βt ≪ 1, then the distribution q(Zt−1|Zt) will be

approximately a Gaussian over Zt−1. In fact, (1.3) shows that q(Zt−1|Zt)

depends on Zt−1 through the product between q(Zt|Zt−1) and q(Zt−1). If

q(Zt|Zt−1) is a sufficiently narrow Gaussian then all the product mass will

be concentrated in one region, which means q(Zt−1|Zt) is approximately a

Gaussian. The reverse distribution can therefore be modeled as

p(Zt−1|Zt, w) = N(µ(Zt, w, t), βtI), (1.6)

where µ(Zt, w, t) is a deep neural network with learnable parameters w. A

common architecture choice for µ is the U-net, frequently used for image

processing. The main limitation of setting a low variance is that the denoising

process will require a larger number of steps to achieve the totally denoised

image. The reverse denoising process {ZT , ZT−1, . . . , X} takes the form of a

Markov chain, and applying the Markov property after the chain rule, the

joint distribution is the product of the conditional marginals:

p(X,Z1, . . . , ZT |w) = p(ZT |w)
(

T∏

t=2

p(Zt−1|Zt, w)

)
p(X|Z1, w),

where p(ZT |w) is assumed to be N(0, I) for any choice of w, and therefore it

can be more simply denoted by p(ZT).

1.3.2 Objective function

To train the neural network µ, an objective function is required. The

obvious choice would be the likelihood function which, given a training sample

1.3 Reverse Decoder 13

X, is computed by

p(X|w) =
∫
· · ·
∫

p(X,Z1, . . . , ZT |w) dZ1 . . . dZT .

These integrals are intractable because they require integrating over the com-

plex neural network function. To solve the issue, instead of maximizing the

likelihood, we aim to maximize a lower bound of the log likelihood function.

To do this we require the definition of a measure of the similarity between

two density functions: the Kullback-Leibler divergence.

Definition 3. Consider f and g two density functions. The Kullback-Leibler

divergence between f and g is defined as

KL(f(x)||g(x)) = −
∫

f(x) ln

(
g(x)

f(x)

)
dx.

Denoting Z := (Z1, . . . , ZT) and applying the chain rule to get p(X,Z|w) =
p(X|w)p(Z|X,w), the following computation shows that the log likelihood

can be written as the sum of two different integral terms:

ln p(X|w) =
∫

q(Z|X) ln p(X|w) dZ

=

∫
q(Z|X)[ln

(
p(X|w)p(Z|X,w)

q(Z|X)

)
− ln

(
p(Z|X,w)

q(Z|X)

)
] dZ

= L(w) +KL(q(Z)||p(Z|X,w)),

where

L(w) =

∫
q(Z|X) ln

(
p(X,Z|w)
q(Z|X)

)
dZ.

From the property KL(·||·) ≥ 0, we get ln p(X|w) ≥ L(w) and for this reason

L(w) is called Evidence Lower Bound (ELBO). This is the term maximized

during the neural network training process. The ELBO term can be rewritten

in a different way. Introducing the notation

EZ|X [·] =
∫

q(Z1|X)
T∏

t=2

q(Zt|Zt−1)[·] dZ,

14 1. Diffusion Models

we find that

L(w) = EZ|X

[
ln

p(ZT)
(∏T

t=2 p(Zt−1|Zt, w)
)
p(X|Z1, w)

q(Z1|X)
∏T

t=2 q(Zt|Zt−1, X)

]

= EZ|X

[
ln p(ZT) +

T∑

t=2

ln

(
p(Zt−1|Zt, w)

q(Zt|Zt−1, X)

)
− ln q(Z1|X) + ln p(X|Z1, w)

]
.

The first and the third term are independent of w and therefore they can

be ignored. The fourth term can be estimated using Monte Carlo method,

sampling Z
(l)
1 ∼ N(

√
1− β1X, β1I) a sufficiently high number L of times,

and considering that

EZ|X [p(X|Z1, w)] ≃
1

L

L∑

l=1

ln p(X|Z(l)
1 , w).

While dealing with the second term an issue arises. Theoretically, it could

be evaluated with Monte Carlo in the same way as we used for the fourth

term, but since pairs of sampled values Zt−1 and Zt would be required, the

estimation variance would be extremely large, and as a consequence a too

high number of samples would be necessary. To bypass the issue, we expand

the second term using (1.4) as it follows:

ln
p(Zt−1|Zt, w)

q(Zt|Zt−1, X)
= ln

p(Zt−1|Zt, w)

q(Zt−1|Zt, X)
+ ln

q(Zt−1|X)

q(Zt|X)
.

Ignoring, once again, the term independent of w, we obtain the following

reformulation of the ELBO :

L(w) = EZ|X

[
T∑

t=2

ln
p(Zt−1|Zt, w)

q(Zt−1|Zt, X)
+ ln p(X|Z1, w)

]
,

and integrating out all the terms independent from the integration variable,

it can be rewritten as

L(w) =

∫
q(Z1|X) ln p(X|Z1, w) dZ1−

−
∫ T∑

t=2

KL(q(Zt−1|Zt, X)||p(Zt−1|Zt, w))q(Zt|X) dZt.

1.3 Reverse Decoder 15

The two integral terms are named, respectively, reconstruction term and

consistency term. The latter term involves the Kullback-Leibler divergence

of two Gaussian distributions, therefore it can be explicitly determined in

closed form, and the result is

KL(q(Zt−1|Zt, X)||p(Zt−1|Zt, w)) =
1

2βt

||mt(X,Zt)− µ(Zt, w, t)||2 + const,

(1.7)

where in the constant term are contained all the terms independent of the

weights. At this point, to compute the integral of the Kullback-Leibler diver-

gence, it is sufficient to apply Monte Carlo once again, sampling Zt from the

distribution given by (1.2).

1.3.3 Noise prediction

A more convenient technique to employ diffusion consists of predicting

the noise added to the original image at each step, instead of the denoised

image. Exploiting the diffusion kernel (1.2), we find that X can be expressed

in the following way:

X =
1√
αt

Zt −
√
1− αt√
αt

ϵ̄t,

with ϵ̄t ∼ N(0, I) representing the total noise added step-by-step to the orig-

inal image X to find Zt. Substituting the last expression into the definition

of mt(X,Zt), we get

mt(X,Zt) =
1√

1− βt

(
Zt −

βt√
1− αt

ϵ̄t

)
.

Instead of using a neural network µ(Zt, w, t) to predict the image at the pre-

vious step, we exploit a new neural network g(Zt, w, t) that has the purpose

to predict the total noise added to the image X to generate the image Zt.

In this case, substituting in the last equality the sampled noise ϵ̄t with the

predicted noise g(Zt, w, t) and considering (1.5), the result of the right side

can be viewed as a prediction of the previous-step image Zt−1. Therefore,

16 1. Diffusion Models

the two neural networks are related by the equality

µt(Zt, w, t) =
1√

1− βt

(
Zt −

βt√
1− αt

g(Zt, w, t)

)
.

Substituting in (1.7) mt(X,Zt) and µ(Zt, w, t) with the two expressions just

mentioned, we can write the Kullback-Leibler divergence between that two

distributions in a new way:

KL(q(Zt−1|Zt, X)||p(Zt−1|Zt, w)) =

=
βt

2(1− αt)(1− βt)
||g(Zt, w, t)− ϵ̄t||2 + const

=
βt

2(1− αt)(1− βt)
||g(√αtX +

√
1− αtϵ̄t, w, t)− ϵ̄t||2 + const.

(1.8)

Considering (1.6) with t = 1 and computing the logarithm, the integrand of

the reconstruction term becomes

ln p(X|Z1, w) = − 1

2β1

||X − µ(Z1, w, 1)||2 + const.

Leveraging the relation between µ and g and the relation between Z1 and X

given by (1.1) the latter can be written

ln p(X|Z1, w) = − 1

2(1− β1)
||g(Z1, w, 1)− ϵ1||2 + const,

which exactly coincides with the expressions of the consistency term. Em-

pirical experiments showed that performance increases if the factor βt/2(1−
αt)(1 − βt) is omitted. All considered, we can write the ELBO objective

function in the following final form:

L(w) = −
T∑

t=1

||g(√αtX +
√
1− αtϵ̄t, w, t)− ϵ̄t||2. (1.9)

This function represents the difference between the actual noise ϵ̄t and the

predicted noise g. To evaluate the ELBO, for each training point X, we

sample ϵ̄t and add it to the original image to get a sample of the noisy image.

Then it becomes the input of the network g to return a prediction of that

noise. To maximize the function L with stochastic gradient descent, for each

1.4 Guided diffusion 17

dataset image X the gradient of L is computed only for a random step t,

rather than for each step. All this procedure automatically provides data

augmentation, because to each image at each training step is applied a new

sampled noise.

1.3.4 Samples generation

Once the training process is completed, we can generate new images as

we aimed. This procedure starts by sampling a pure noise image ZT from the

distribution p(ZT), that is then denoised step-by-step. For each step, the im-

age Zt is given as input to the network, to compute the prediction g(Zt, w, t).

From this prediction, it is possible to evaluate µ(Zt, w, t) because of the re-

lation between the two networks explained in the last section. Eventually, a

sample of the predicted image is generated, using the modeled distribution

in (1.6). In particular, sampling ϵ ∼ N(0, I), we get

Zt−1 = µ(Zt, w, t) +
√
βtϵ.

In the last step, after computing µ(Z1, w, 1), this value is taken directly as the

prediction of X without adding any noise, because the final output should

be noise-free.

1.4 Guided diffusion

1.4.1 Classifier guidance

So far, we have discussed Diffusion Models as a way to generate new sam-

ples from a distribution p(X|w) learned using training samplesX1, X2, . . . , XN .

In real applications, it often happens that a generic sample of X is useless,

because the user requires specific choices for the content to generate. To

address this issue, guidance is introduced into the Diffusion Models. In par-

ticular, the distribution learned in this case is p(X|C,w), where C is the

18 1. Diffusion Models

conditioning variable, namely a class label or a textual description of the

desired content of the final image.

The most natural approach to achieve guidance, would be to add the

parameter C as an additional input for the neural network, considering

g(Z,C,w, t) and training the model using pairs (Xn, Cn). This approach

has the limitation that it is impossible to control how much weight the neu-

ral network gives to the guidance. An alternative way to solve the issue is

termed classifier guidance. To explain the idea behind this approach we need

to mention a general property of the distributions.

Proposition 2. A probability density function in Rn can be univocally de-

termined by the gradient of its logarithm.

Proof. Consider two generic probability density functions f(x) and g(x) and

suppose that

∇ ln f(x) = ∇ ln g(x).

By the definition of the density functions it is know that
∫

f(x) dx =

∫
g(x) dx = 1.

Using a basic property of the gradient and, subsequently, computing the

exponential of both terms we obtain

∇ ln f(x) = ∇ ln g(x) ⇐⇒ ln f(x) = ln g(x) + c ⇐⇒ f(x) = kg(x),

where k and c are constants. At this point we conclude using the fact that
∫

kg(x) dx =

∫
f(x) dx = 1 =

∫
g(x) dx =⇒ k = 1 =⇒ f(x) = g(x).

Now, suppose a classifier p(C|X) is trained. Following the statement

of the proposition, we can work with the gradient of the logarithm of the

distributions. Consider that

∇X ln p(X|C) = ∇X ln
p(C|X)p(X)

p(C)

= ∇X ln p(X) +∇X ln p(C|X).

(1.10)

1.4 Guided diffusion 19

In the last equality we omitted the term ∇X ln p(C), because ln p(C) is inde-

pendent of X and therefore its gradient is equal to zero. The weight of the

classifier term in influencing this computation can be controlled by adding

a hyperparameter λ called the guidance scale. If the network is trained to

learn the function

s(X,C, λ) = ∇X ln p(X) + λ∇X ln p(C|X),

called score function, it learns a model of the distribution p(X|C), which

is what is needed to sample new images with the guidance. For λ ≫ 1

the model is encouraged to follow the conditioning label, but this penalizes

sample diversity because the model prefers samples where the classifier works

well.

This classifier guidance comes with several limitations. First, a classifier

must be separately trained, leading to high computational costs; moreover,

this classifier needs to work well with noisy images, and not solely with clean

images. For this reason, standard classifiers are not well-suited for this task.

1.4.2 Classifier-free guidance

There exists another guidance approach, which does not require a trained

classifier. If we substitute the term ∇X ln p(C|X) in the score function for-

mula using (1.10), we get the following expression:

s(X,C, λ) = (1− λ)∇X ln p(X) + λ∇X ln p(X|C).

If we choose λ < 1 the network actively penalizes samples that do not care

about the conditioning information. Furthermore, p(X|C) and p(X) can be

modeled using the same neural network: during the training, for a random

subset of the training points (∼ 20% of the total), the conditioning variable

C is ignored, and these samples are used to approximate the unconditional

p(X) instead of p(X|C). This classifier-free guidance approach solves the

issues of the classifier guidance, and generally performs better.

20 1. Diffusion Models

1.4.3 Tasks

The guidance with the diffusion model can be put into practice in some

different ways, depending on the task. In the simplest case, the conditioning

variable is a label chosen from a discrete finite number of possible classes.

However, this approach is not sufficient when we want to give the freedom

to the user to choose the conditioning input not only between predefined

instances. Examples of tasks where this freedom is needed are prompt-to-

image generation, where the user types a textual prompt describing what

should be represented in the image, and image-to-image generation, where

the input is an image related in any way to the image to be generated. An

example of an important application of image-to-image generation is super-

resolution, where a low-resolution image is given to the model to generate

the same image with higher resolution. Other examples are inpainting, style

transfer, colourization, video generation, etc.

Prompt-to-image guidance requires incorporating large language models

techniques to encode the input prompt and use it to influence the generation.

Its internal representation is concatenated with the input to the denoising

network, and cross-attention mechanisms are employed to attend to the rep-

resentation of the text sequence. An important example of prompt-to-image

diffusion model is Stable Diffusion XL [28], which is a classifier-free guidance

model. We used Stable Diffusion XL to generate images for our background

removal project, described in Chapter 3.

Chapter 2

Dichotomous Image

Segmentation

After studying in Chapter 1 the theory behind Diffusion Models, a com-

puter vision task that can be performed on generated images is presented.

The topic of this chapter is Dichotomous Image Segmentation: a task that

aims to accurately segment detailed objects from natural images.

2.1 Task presentation

In the past few years, Artificial Intelligence development led to improve-

ments in existing tasks and created new ones. Nowadays, one of the AI’s most

useful and studied applications is computer vision. This Machine Learning

field demands highly accurate outputs to endorse intensive human-machine

interaction and realistic virtual experiences. Image segmentation is the task

of highlighting pixels of the exact area where each element represented in

the image is located. Segmentation plays a fundamental role in enabling

computers to perceive and understand the environment and the objects rep-

resented in analyzed images. As can be observed in Figure 2.1, compared

to Image Classification [17] and Object Detection [37], it provide more ac-

curate descriptions of the displayed items. This advantage is exploited in a

21

22 2. Dichotomous Image Segmentation

Figure 2.1: Comparison among computer vision tasks: the left-half picture is the

original image, at the right we have outputs produced after applying: Image Clas-

sification (a), Multi-class Segmentation (b), Object Detection (c), Dichotomous

Image Segmentation (d).

wide range of technologies, such as autonomous driving, augmented reality,

image processing, etc. These applications can be distinguished in two dif-

ferent classes, based on how strongly they affect the real world. The “light”

applications are relatively tolerant of the segmentation inaccuracies and fail-

ures because these issues only lead to more adjustment work and time costs.

While, in the “heavy” applications, those defects are more likely to cause

serious consequences such as damage to objects requiring huge repair costs,

or injuries sometimes fatal for humans or animals. Logically, this second

class of applications requires very accurate and strong models. Currently,

most segmentation models are still less used in those “heavy” applications

because their reliability is not above the right threshold yet. This fact blocks

the segmentation techniques from playing fundamental roles in broader ap-

plications.

The goal of addressing these two mentioned classes in a general framework

is achieved through Dichotomous Image Segmentation (DIS), a task which

aims to precisely segment detailed objects from the provided images. An

2.1 Task presentation 23

RGB image is given as input to the model, and the output consists of a single

channel image having the same resolution as the input one. The output pixels

values are included between 0 and 255 and assigned by the model according

to the following criteria: each pixel is assigned the white color (value 0)

if considered part of the main foreground object(s) of the image, while it

is assigned the black color (value 255) if considered part of the rest of the

image. Intermediate values are also possible, for example to provide a pixel

gradient around the foreground item(s) edge or to characterize transparent

segmented objects (such as glasses, ice, etc.).

Dichotomous Image Segmentation can also operate as a smart strategy

for implementing Multi-class Segmentation [21]. This task aims to label

all the pixels in an image, sometimes representing a complex scenario or

containing many different objects. As a standard technique, the pre-defined

multiple categories are encoded as one-hot vectors. Nonetheless, the one-hot

representation of the classes becomes memory-prohibitive when the number

of categories is huge, and this holds especially for high-resolution images.

This is a waste of memory capacity, as some input images only contain objects

from a few categories. A hack to this issue consists of a two-step solution

using Object Detection combined with Dichotomous Image Segmentation: a

bounding box and category of a certain object can be predicted first. The

segmentation process can then be conducted in a dichotomous way within

the bounding box region by producing a single channel probability map.

In the following, some baseline architectures used for image processing

are presented. Although designed for image tasks, these models are still

insufficient to perform well with Dichotomous Image Segmentation. After

that, the state-of-the-art approaches that rely on these baselines to build deep

segmentation models are analyzed in depth. For each of them, a description

of the corresponding model architecture is provided, and their advantages

are reported.

24 2. Dichotomous Image Segmentation

2.2 Baseline architectures

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [25] is a type of neural network

used to solve difficult image-driven pattern recognition tasks that learns fea-

tures via filter (or kernel) optimization. CNNs are comprised of three types

of layers. These are convolutional layers, pooling layers and fully-connected

layers. When these layers are stacked, a CNN architecture is formed.

In the convolutional layers, the parameters are the values of some learn-

able kernels. These kernels are usually small in spatial dimensionality, but

spreads along the entirety of the depth of the input. When the data hits

a convolutional layer, each filter is convolved across the spatial dimension-

ality of the input. In this way, each kernel produce a 2D activation map

for each channel of the input. The activation maps corresponding to each

image channel are then summed together and the result is an output with a

certain spatial dimension and unitary depth. Stacking the activation maps

for all filters along the depth dimension forms the full output volume of the

convolutional layer. During the 2D convolution between a certain channel

of an image and the corresponding channel of a kernel, the latter is aligned

at the top-left of the image and the element-wise product between the ker-

nel parameters and the image channel values is computed. The results are

summed together to obtain the first pixel of the produced activation map.

After that, the kernel slides over the image to compute the other activation

map values.

Pooling layers aim to gradually reduce the dimensionality of the represen-

tation, and thus further reduce the number of parameters and the computa-

tional complexity of the model. These layers take an activation map as input

and scale its dimensionalities, often applying maximum or average functions

through 2 × 2 kernels with stride 2, which means that the kernel will skip

one pixel for every sliding over the image. In this case, the activation map

will be scaled to the 25% of the original size, while the depth will not vary.

2.2 Baseline architectures 25

After several convolutional and pooling layers, the final classification is

done via fully connected layers. Here, neurons have connections to all ac-

tivations in the previous layer. Their activations can thus be computed as

an affine transformation, with matrix multiplication followed by a bias offset

(addition of a learned or fixed bias vector).

Convolutional Neural Networks are designed to emulate the behavior of

a visual cortex. Cortical neurons respond to stimuli only in a certain area

of the visual field known as the receptive field. The receptive fields of differ-

ent neurons partially overlap such that they cover the entire visual field. In

CNNs stacking many layers leads to nonlinear filters that become increas-

ingly responsive to a larger region of pixel space so that the network first

creates representations of small parts of the input, then from them assem-

bles representations of larger areas.

2.2.2 U-Net

The typical use of Convolutional Neural Networks is on classification

tasks, where the output to an image is a single class label. However, CNNs

usage can be extended to more tasks, for example segmentation, where the

output is a label for each pixel of the input. To achieve this, we have to

consider a network with a structure different from the typical one.

U-Net [39] is an architecture where a usual convolutional structure to

contract the input is supplemented by upsampling operators to extend the

feature maps to the original image size. Hence, these layers increase the res-

olution of the output. High resolution features from the contracting path are

combined with the upsampled output. A successive convolution layer can

then learn to assemble a more precise output based on this information. In

the upsampling part we have also a large number of feature channels, which

allow the network to propagate context information to higher resolution lay-

ers. The expansive path is symmetric to the contracting path, and yields a

U-shaped architecture. The network does not have any fully connected lay-

ers. The contracting path follows the typical architecture of CNNs. At each

26 2. Dichotomous Image Segmentation

downsampling step, it consists of the application of two 3 × 3 convolutions

one after the other, each followed by a Rectified Linear Unit (ReLU) acti-

vation and a 2 × 2 max pooling operation with stride 2 for downsampling.

The number of feature channels is doubled at every step. The expansive

path consists of the repetition at each level of the feature map upsampling

followed by a 2×2 convolution that halves the number of feature channels, a

concatenation with the correspondingly cropped feature map from the con-

tracting path, and two 3 × 3 convolutions, each followed by a ReLU. The

cropping is necessary due to the loss of border pixels in every convolution.

At the final layer a 1 × 1 convolution is applied to map each 64-component

feature vector to the desired number of classes. In total the U-Net has 23

convolutional layers.

2.2.3 U2-Net

U2-Net [36] is a two-level nested U-structure. On the bottom level, it

is constituted by a ReSidual U-block (RSU), which is able to extract multi-

scale features without impacting the resolution; on the top level, there is a

U-Net like structure, where each stage is filled by an RSU block. RSU block

consists of three components:

1. a convolutional input layer, which transforms the feature map given

as input x having height H, width W and number of channels Cin,

to an intermediate map F1(x) with Cout channels. This component is

responsible for local feature extraction.

2. a U-Net like symmetric encoder-decoder structure with height L, taking

the feature map returned as output of the input layer F1(x) and ex-

tracting and encoding the multi-scale contextual information U(F1(x)).

Larger L means more pooling operations, larger receptive fields and

more detailed local and global features. The multi-scale features are

extracted from downsampled feature maps and encoded into high res-

olution feature maps by progressive upsampling, concatenating and

2.3 State-of-the-art approaches 27

convoluting. This process avoids the loss of fine details that typically

occurs while directly upsampling with large scales.

3. a residual connection which combines local and multi-scale features by

the summation: F1(x) + U(F1(x)).

This U2-Net design allows the network to extract features from multiple

scales directly from each residual block. Thanks to the U-structure, the

amount of computation is reasonable because most operations are calculated

on the downsampled feature maps.

2.3 State-of-the-art approaches

2.3.1 Intermediate supervision

In general, deep segmentation models can fit the training sets very well,

but not reaching good enough performance on the test sets. This is explained

by two main reasons. On one hand, the “distributions” of the training,

validation, and testing sets can differ substantially, leading to performance

degradation on the test sets. On the other hand, having the required strong

capabilities of feature representations to ensure sufficient performances means

more accurately fitting the training set, and as a consequence a higher prob-

ability of overfitting. For this reason, stronger representative capabilities and

lower risks of overfitting are usually in conflict with each other and models

are often struggling to find the right balance between them. To alleviate

overfitting, the dense supervision (or deep supervision) [18] is one of the

most common techniques, which imposes ground truth supervisions on the

outputs of the deep intermediate layers. On the cons, transforming the deep

intermediate features (multi-channel) into an output (single-channel) in Di-

chotomous Image Segmentation is a dimension reduction operation, and this

avoids improving significantly the performance.

An approach capable to solve this issue is intermediate supervision [35].

It follows the dense supervision idea but develops a simple yet more effective

28 2. Dichotomous Image Segmentation

supervision strategy to directly enforce the supervisions on high-dimensional

intermediate deep features in addition to the side outputs. On this topic, we

present IS-Net, an architecture developed to perform DIS using intermediate

supervision. This network consists of a ground truth encoder and an image

segmentation component. The ground truth encoder is designed to encode

the GT masks into high-dimensional spaces and then used to provide inter-

mediate supervision on the image segmentation component. Meanwhile, this

second component is expected to be capable of capturing fine structures in

large size inputs with affordable memory and time costs. This architecture

is schematized in Figure 2.2.

Let I ∈ RH×W×3 and G ∈ RH×W denote respectively the input image and

the corresponding ground truth mask, F the IS-Net model, θ the learnable

parameters and D the number of intermediate feature maps we want to

provide. The first training is done on the ground truth encoder in a self-

supervised way. This process corresponds to solve the minimum problem:

argmin
θgt

D∑

d=1

BCE(Fgt(θgt, G)d, G),

where BCE is the Binary Cross-Entropy loss (which is explained in details

in Section 2.4), Fgt stands for the GT encoder model and θgt for the GT

encoder learnable weights. After this first phase, θgt are frozen for gener-

ating the high-dimensional intermediate deep features used as intermediate

supervision, which are denoted by {fG
d }Dd=1 where fG

d := F−
gt(θgt, G)d and

F−
gt stands for Fgt without the last convolution layers used for generating

the probability maps. Analogously, let us consider Fsg as the segmentation

model, θsg its learnable weights, F−
sg the same model without the final con-

volution layers, and {f I
d}6d=1, where f I

d := F−
sg(θsg, I)d. The intermediate

supervision is performed using the following loss:

Lfs =
D∑

d=1

λfs
d ∥f I

d − fG
d ∥2,

where λfs
d are the weights of each loss component. Moreover, we have the

2.3 State-of-the-art approaches 29

Figure 2.2: Scheme representing the architecture of IS-Net model.

classical GT supervision by the loss

Lsg =
D∑

d=1

λsg
d BCE(Fsg(θsg, I)d, G),

where λsg
d denotes weight for each side output loss. The training process of

the segmentation model can be formulated as the optimization problem

argmin
θsg

(Lfs + Lsg).

The image segmentation component is implemented as a U2-Net, described

in Section 2.2.3. In fact, this architecture provides strong performance in

capturing fine structures.

2.3.2 Frequency priors

An approach sometimes used in computer vision tasks to improve per-

formance consists of using knowledge in the frequency domain during image

processing [32, 19]. In particular, as the parts of the image with sharp con-

trast changes correspond to high frequency, we can rely on the fact that fre-

quency prior provides valuable cues to precisely localize fine-grained object

edges, which is sometimes difficult in the RGB domain. As a consequence of

these considerations, performing Dichotomous Image Segmentation utilizing

frequency information seems worth exploring.

FP-DIS [54] is the state-of-the-art model that, using the frequency priors,

can capture very fine details of the input image. Qualitative and quantitative

30 2. Dichotomous Image Segmentation

Figure 2.3: Conceptual scheme explaining how FP-DIS model works.

experiments determined the high quality of the predictions made by this net-

work. The model, as shown in Figure 2.3, first catches multi-scale features

with a pyramid feature extractor. The feature harmonization module aims to

harmonize features having similar semantics and different scales. Meanwhile,

the input image is processed by the frequency prior generator to compute fre-

quency priors, which are embedded into the harmonized multi-scale features

using the frequency prior embedding module. Going more in depth with the

details, we explain how each module precisely works:

• pyramid feature extractor: Convolution neural networks are widely

adopted for common vision tasks, getting satisfactory performance.

However, in the DIS task, the size of the input is often large and the

target objects are fully detailed. Shallow networks are not sufficiently

deep to work well with this type of input, because they are in general

more focused on local information. To deepen the feature extractor, we

use the vision transformer with long-distance modeling capability, in

2.3 State-of-the-art approaches 31

addition to the convolution layers. Specifically, we have ResNet-50 [13]

as the CNN-based backbone to extract multiscale features {Xi}4i=1 ∈
R

H

2i
×W

2i
×Ci from the input image I ∈ RH×W×3, where H and W denote

respectively the height and width, and Ci ∈ {256, 512, 1024, 2048} is

the number of channels. The feature X4 is downsampled by a convo-

lution layer and fed into a transformer block [38] to get X5 and this

operation is repeated on X5 to obtain X6. The channels of X5 and X6

are 256, but to facilitate the subsequent step, we convert the channels

of all the features {Xi}6i to 96.

• frequency prior generator: to generate frequency priors, the discrete

cosine transformation (DCT) [8] is first used to transform the image I

into the frequency domain, getting the frequency distribution map M :

M = DCT (I).

DCT is a linear and invertible function. Taking as domain three-

dimensional R-tensors with fixed sizes N1, N2 and N3 (as our input

image is) its rigorous definition is the following:

DCT : RN1×N2×N3 −→ RN1×N2×N3

DCT (T)[k1, k2, k3] = αN1 [k1]·αN2 [k2]·αN3 [k3]·
N1−1∑

n1=0

N2−1∑

n2=0

N3−1∑

n3=0

T [n1, n2, n3]·

· cos
(
π(2n1 + 1)k1

2N1

)
· cos

(
π(2n2 + 1)k2

2N2

)
· cos

(
π(2n3 + 1)k3

2N3

)
,

where αNi
[ki] =

√
1

Ni

·




1 if ki = 0
√
2 otherwise,

for each ki ∈ {0, 1, . . . , Ni − 1}, i ∈ {1, 2, 3}, T ∈ RN1×N2×N3 .

After applying this function, the fixed filter and the learnable filters

extract different frequency components. In particular, the fixed filter

divides the frequency information into different bands (low frequency,

32 2. Dichotomous Image Segmentation

medium frequency, high frequency, and all frequency), while the learn-

able filters provide more information. Eventually, the frequency priors

are generated using the outputs from learnable and fixed filters, re-

spectively Fl and Ff , and the inverse function of the discrete cosine

transformation, denoted by iDCT :

Xfp = iDCT (M ⊙ (Ff + σ(Fl))),

where σ is a function to restrict the output in the interval [−1, 1], while

⊙ stands for the Hadamard Product [24].

• feature harmonization module: the features generated by the pyramid

structure are widely heterogeneous because they contain different struc-

tural and semantic information. In fact, the shallow layers capture

abundant information, while the deeper layers extract features with

more semantics. The fusion of these multi-scale features would drive

the model to focus on both the information types. Taken two outputs

from the pyramid feature extractor, denoted by Xi and Xi+1, they are

upsampled on the depth dimension, which is multiplied by N times.

Then, what obtained is split into N groups that are subsequently di-

vided into subgroups. The harmonization is performed both intra-

group and inter-group. This is reached making use of harmonization

components, namely gate units consisting of a concatenation among

specific functions necessary for filtering. The output harmonized fea-

tures are passed through a convolution layer for smoothness, and then

added to the inputs Xi and Xi+1 to get as final output of the model X ′
i

and X ′
i+1.

• frequency prior embedding module: direct fusion between frequency pri-

ors and image features leads to inferior performance due to the seman-

tic gap between the frequency and image domains. For this reason the

embedding procedure is not straightforward. There are two cascaded

components involved in frequency embedding. The first one is respon-

sible for embedding the frequency priors into the features {X ′
i}6i=1 given

2.3 State-of-the-art approaches 33

as input one at time. For each i ∈ {1, 2, . . . , 6}, X ′
i and the frequency

priors are aggregated and then passed through filtering and other func-

tions. Then, the second frequency embedding component takes as input

the output of the first component and the last output produced by the

frequency prior embedding module itself. This allows for the transfer

from deep semantics to shallow semantics. After that X ′
i have been fed

into the module for every i ∈ {1, 2, . . . , 6}, the final output is upsam-

pled to the original image size.

Denoting by G the ground truth map and P the model prediction, the su-

pervision is performed minimizing the loss function

L(P,G) = BCEw(P,G) + IoUw(P,G).

BCEw and IoUw are weighted version of, respectively Binary Cross-Entropy

and Intersection Over Union (better explained in Section 2.4) [45], where

the more a specific pixel is located in an error-prone area (borders or holes),

the more it is heavily weighted, to ensure the network focusing on difficult

details.

2.3.3 Multi-view aggregation

During the design stage of a DIS model, balancing in the best way the

semantic dispersion of high-resolution targets in the small receptive field and

the loss of fine-grained details in the large receptive field is the main challenge.

Moreover, the task is nowadays applied on images with higher and higher

resolution and this results in a relatively small receptive field, obstructing

the network’s ability to catch essential global semantics. A solution used to

address these problems consists of using multi-resolution inputs, but given

that the high-resolution image itself embeds all the information contained in

the low-resolution image, this method may lead to repetitive computation

and as a consequence to a lower model speed. Since real-time applications

require very fast image processing, we aim to avoid issues of this type.

34 2. Dichotomous Image Segmentation

Figure 2.4: Scheme representing the MVANet workflow, from the given input

image, to the prediction mask.

Finding a valuable solution, motivates the design of a new approach in-

spired by the human visual system that captures interesting details by ob-

serving them from multiple views. In particular, it consists of splitting the

high-resolution input images from the original view into the far-view images

used for global information and close-up view images containing local details.

Multi-View Aggregation Network (MVANet) [50] is a framework compat-

ible with global and local signals, implemented following the idea of the

aforementioned approach. It obtains global semantics and local features in

parallel according to the characteristics of different patches, and manages

the feature fusion of the distant view and close-up view into a single stream.

This network provides strong visual interactions across multiple views, lead-

ing features to represent highly detailed structures. As illustrated in Figure

2.4, the input I ∈ RB×3×H×W (a batch of images) is rescaled to get a low-

resolution version P0 ∈ RB×3×h×w, which represents the distant view. In

addition, I is cropped into several non-overlapping patches {Pm}Mm=1. Each

of them is a specific close-up view representing a fine-grained texture. P0 and

{Pm}Mm=1 together make up the multi-view patch sequence, which is fed into

2.3 State-of-the-art approaches 35

the Multi-level Feature Extractor where the multi-level feature maps {Ei}5i=1

are generated. Each of them embeds information about both the far and

detailed representations. The one from the highest level (E5) is partitioned

along the batch dimension into global and local features. They serve as input

for the Multi-view Complementary Localization Module (MCLM) to extract

information about objects’ positions in the global view. MCLM then filters

out wrong information from the close-up view. After this stage, the updated

feature maps are joined along the batch dimension to have a unique feature

map D5 ∈ RB×3× h
32

× w
32 , which is sent to the decoder. A Multi-view Com-

plementary Refinement Module (MCRM) is inserted in each decoding stage.

These modules dynamically add missing details to the global representation

using local information. Moreover, shallow features are added layer by layer

in the upsampling path in the decoder. After decoding, both global and local

features pass through a View Rearrangement Module, where the positional

and semantic information from the global view is merged with the detailed

information from the patches, into a unified whole. At this point, we retrieve

D′
1 whose shape is the shape of the original image divided M times. To

obtain the final output, D′
1 is not directly upsampled: shallow features are

incorporated as low-level information to further enhance the quality of the

final result.

Looking at Figure 2.4, one can notice that each layer’s output of the de-

coder and the final prediction are supervised. Specifically, the decoder output

loss consists of three components: Ll, Lg and La, respectively for the assem-

bled local representation, the global representation, and the token attention

map in the MCRM. The final output loss is denoted by Lf instead. These

components employ the combination of the Binary Cross-Entropy (BCE) loss

and the weighted Intersection over Union (IoUw):

Li = BCE + IoUw, where i ∈ {l, g, a, f}.

The total loss is computed in the following way:

L = Lf +
5∑

j=1

(Lj
l + λgL

j
g + λaL

j
a),

36 2. Dichotomous Image Segmentation

where the index j serves to indicate which decoder layer the component refers

to and λg and λa are weights to reflect the relevance of each component.

Experiments on the popular DIS-5K [35] dataset suggest that MVANet

significantly outperforms state-of-the-art methods in both accuracy and speed.

2.4 Bilateral Reference Network

2.4.1 Approach

In Section 2.3, we listed and explained the state-of-the-art approaches

for DIS, presenting the corresponding architectures. Although these models

achieved favorable results, improvements are still necessary on particular

types of image, for example images containing thin structures or camouflaged

objects.

Bilateral Reference Network (BiRefNet) [53] is an innovative model, re-

cently developed with the objective of improving DIS on cases where state-

of-the-art models perform poorly. Its realization is inspired by other segmen-

tation works [52, 15], which found that fine and non-salient features in image

objects can be well extracted by computing gradient features through deriva-

tive operations on the original image. At the same time, if any area displays

color and texture very similar to the background, the gradient features are

probably not enough. For this reason, BiRefNet introduces a bilateral ref-

erence mechanism. In particular, the original image is cropped into patches

that are fed into the decoder at different stages and merged with the origi-

nal features. This phase is known as inward reference, and has the goal of

supplementing high-resolution information. At the same time, each decoder

stage generates a gradient map, which is used to perform gradient supervi-

sion. This mechanism is named outward reference, and has the purpose to

draw attention to areas displaying dense details. We chose BiRefNet as the

baseline model in Chapter 3, for our background removal project.

2.4 Bilateral Reference Network 37

Figure 2.5: Visual explanation of BiRefNet modules and inward reference and

outward reference.

2.4.2 Architecture

The BiRefNet architecture is divided into two main components: a lo-

calization module and a reconstruction module which serve, respectively, as

encoder and decoder. A batch of images I ∈ RN×3×H×W is given as input to

the localization module, and passes through a transformer encoder [20] which

extracts features for each stage {F e
i }3i=1, with decreasing resolution H

k
× W

k

where k ∈ {4, 8, 16}. These features are transferred to the same resolution

decoder stages using lateral connections (1 × 1 convolution layers). More-

over, they are stacked and concatenated in the last encoder block, generating

F e. This feature is then passed to a classification module, to get a semantic

representation useful for object localization. Simultaneously, F e is fed into

an ASPP module [5], to both enlarge the receptive field and focus on local

features, getting F d in output to be passed to the reconstruction module.

This module has a BiRef block at each stage. The one at the lowest level

takes as input the feature map F e and returns F 3
d . The upper ones take as

input F d+
i := F d

i +F l
i , where i ∈ {1, 2, 3} is the corresponding level, F d

i is the

previous stage output and F i
l is generated by the same level encoder stage

38 2. Dichotomous Image Segmentation

and is provided through lateral connections. The output returned by each

BiRef block is F d
i−1, and the upper one F d

1 is summed to F l
1 to get F d+

1 . This

one passes through a 1×1 convolutional layer, to obtain the final output pre-

diction mask M ∈ RN×3×H×W . Meanwhile, each block generates a prediction

Mi, with stage by stage increasing resolution, that serves as ulterior super-

vision. Inside each BiRef block we have the bilateral reference mechanism.

In fact, the input image I is cropped into patches {Pk}nk=1 in an adaptive

way: each patch will have the same resolution of the block input F d+
i . These

patches are used as inward reference, to add high-resolution representation

of the details to the encoded features. The patches are then concatenated

with F d+
i and fed into the reconstruction block, where deformable convolu-

tions [9] are applied to extract features with receptive fields of various scales.

After these operations, the generated map F d′
i is used to compute a gradi-

ent map prediction Gi (outward reference). The latter is supervised by Gm
i ,

computed multiplying point-wise the gradient map of the input image, and

the predicted segmentation mask Mi. We need this multiplication to discard

the useless gradient information generated by background noise, obtaining

an attention map focusing on foreground parts reacher in details. With this

procedure we obtain features sensitive to the gradient, which are multiplied

to F d′
i to get F d

i .

2.4.3 Losses

Relying solely on a loss keeping track of the difference between prediction

and ground truth in a pixel by pixel way, is not sufficient to achieve great

results on the fine-grained structures. Following the idea of a previous work

[33], the objective function in BiRefNet is defined as a weighted combination

of different losses:

L = Lpixel + Lregion + Lboundary + Lsemantic

= λ1BCE + λ2IoU + λ3SSIM + λ4CE,
(2.1)

where λ1, λ2, λ3, and λ4 are, respectively, set to 30, 0.5, 10, and 5 to keep all

the losses in the same range when starting the training. Denoting by M the

2.4 Bilateral Reference Network 39

model prediction and G the ground truth map, the complete definitions of

the losses are reported below:

• Cross-Entropy (CE) [3]: semantic-aware loss, which is used to correctly

classify each pixel:

CE = −
∑

(i,j)

1

N

N∑

c=1

yc(i, j) log(pc(i, j)),

where N is the number of classes, yc(i, j) states whether class label

c is the correct classification for pixel (i, j) and pc(i, j) denotes the

predicted probability that pixel (i, j) is of class c.

• Binary Cross-Entropy (BCE): it is a version of CE used when the

number of classes is 2. In our case, it serves for pixel-level supervision

for the generation of binary maps:

BCE(M,G) = −
∑

(i,j)

[G(i, j) log(M(i, j)) + (1−G(i, j)) log(1−M(i, j))] ,

where G(i, j) and M(i, j) denote the value of the ground truth and

predicted maps, respectively, at pixel (i, j). Since this loss is com-

puted pixel-wise, it does not consider the labels of the neighborhood

and it weights all the pixels equally. Significantly erroneous predic-

tions produce large BCE loss, thus the models trained with this loss

suppress rapidly these errors, guaranteeing a relatively good local op-

timum. However, boundaries and fine structures often remain blurred.

• Intersection over Union (IoU) [23]: region-aware supervision for the

enhancement of binary map predictions:

IoU(M,G) = 1−

∑
(i,j)

M(i, j)G(i, j)

∑
(i,j)

[M(i, j) +G(i, j)−M(i, j)G(i, j)]
.

40 2. Dichotomous Image Segmentation

Larger areas contribute more to the IoU score. Moreover, as a con-

sequence of the formula, the large foreground regions impact more on

the score. Hence, models trained with this loss are able to produce rel-

atively homogeneous and confident probabilities for these regions. On

the contrary, it is frequent to find false positives in those predictions.

• Structural Similarity Index Measure (SSIM) [44]: boundary-aware su-

pervision. Given y = {yj : j = 1, ..., N2} and x = {xj : j = 1, ..., N2}
representing the pixel values of two corresponding N ×N patches de-

rived from G and M , respectively. SSIM(x, y) is defined as

SSIM(x, y) = 1− (2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2.2)

where µx, µy and σx, σy are the means and standard deviations of x

and y, respectively. The notation σxy stands for their covariance, and

C1 and C2 are constants used to avoid division by zero. The SSIM

final score is calculated averaging the values found using each pixel

as the center of the patch. Since this loss takes into account a local

neighborhood of each pixel, those errors on the boundary affect SSIM

computation while using patches centered in the whole pixel region

around.

To take advantage of the above losses, we combine them together to

formulate the hybrid loss L as in (2.1). CE is needed to add semantic

supervision, BCE is used to get the prediction closer to the ground truth

in an image-level smooth way, while IoU is employed to put more focus

on the foreground. SSIM serves to encourage the prediction to respect

the structure of the original image, as well as further push the backgrounds

predictions to zero.

2.4 Bilateral Reference Network 41

2.4.4 Training strategies

Training models on high-resolution data leads to high costs in terms of

time and computational resources. For this reason, it is natural to look for

training strategies that allow us to make the training as short as possible.

Experiments highlighted that a first incomplete version of BiRefNet model

converges relatively quickly in the localization of targets and the segmenta-

tion of rough structures. However, the performance in segmenting fine parts

is still increasing after 400 epochs. Though long training can easily achieve

great results in terms of both structure and edges, it consumes too much

computation; supervision using intermediate predictions in the decoder lev-

els (as described in Section 2.4.2), can dramatically accelerate the learning

process on segmenting fine details and enable the model to achieve similar

performance as before but with only 30% training epochs. We also found

that changing the loss computation at some epoch, including only region-

level losses, can easily improve the binarization of predicted results and met-

ric scores. Finally, context feature fusion and image pyramid inputs on the

backbone are implemented, and these two modifications to the backbone

achieved an ulterior improvement.

2.4.5 Results and applications

Quantitative and qualitative evaluations show that BiRefNet outperforms

DIS models introduced in Section 2.3. In fact, comparing the segmentation

of slim shapes and curve edges made by different state-of-the-art networks,

BiRefNet is the model that achieved the best performance. Moreover, it

demonstrated a great ability to identify the precise location in the picture of

the right target and to correctly segment camouflaged objects.

Due to this power in precisely segmenting very fine structures, BiRefNet

seems to be the right model to be used for some DIS applications where

previous approaches were not sufficient to reach results satisfying enough to

be implemented for real use cases. For example, anomaly detection (such as

42 2. Dichotomous Image Segmentation

cracks in the wall) and complex object background removal are two applica-

tions where this model could be employed.

2.5 Metrics

After analyzing state-of-the-art approaches to put into practice Dichoto-

mous Image Segmentation, we need some metrics to evaluate the quality of

the obtained results. In the following, we list the main metrics that are used

nowadays for this task, explaining their structure, their advantages and their

limitations.

2.5.1 F-measure

F-measure [29] is one of the most applied metrics to image segmentation

tasks, but also to completely different machine learning areas (for example

natural language processing, document classification, etc.) and in general to

every binary classification problem. In fact, suppose we have a collection of

items, and each of them can be labeled as positive or negative. At the

end of the classification, items can be distinguished into four categories:

True Positives (TP), False Positives (FP), True Negatives (TN), and False

Negatives (FN). At this point, we consider the following ratios:

recall =
TP

TP + FN
, precision =

TP

TP + FP
.

F-measure is defined as the weighted harmonic mean between precision and

recall :

Fβ = (1 + β2)
precision · recall

β2 · precision + recall
=

(1 + β2)TP

(1 + β2)TP + β2FN + FP
,

where β ∈ R+ is a parameter to weight the importance of precision with

respect to recall. The obtained score aims to be an overall measure of clas-

sification “effectiveness”, taking into account both precision and recall in

a unique score. The harmonic mean is chosen to combine these quantities

2.5 Metrics 43

because it is the operation commonly used to average ratios. To apply F-

measure to DIS both the ground truth and the predicted map are binarized,

choosing a threshold value and setting all the pixels above that value as fore-

ground (white) and the pixels below that value as background (black). White

pixels are considered positives and black pixels are considered negatives, and

the final score is computed using the aforementioned formulas.

Although the definition of F-measure appears to be representative of pre-

diction quality, some issues arise when applying it to specific cases. In partic-

ular F-measure relies on two wrong assumptions. First, each pixel is consid-

ered to be independent of each other but, in practical applications, a sparse

error is considered better than an error concentrated in a specific area, in

case of an equal amount of wrong predictions; second, errors’ location is not

taken into account while computing the score, but wrong predictions close to

the foreground boundary are in general less visible than in the other areas.

These considerations motivate to analyze a more sophisticated version of

the metric, called Weighted F-measure [22]. This version employs a strategy

to make up for the lack of attention to pixel correlation and error location. In

fact, consider g ∈ {0, 1}N2
and p ∈ [0, 1]N

2
as the column stack representation

of, respectively, the binarized ground truth and the non-binarized map to be

evaluated. Let z := |g− p| be the pixel-by-pixel error vector. We also define

a matrix A ∈ RN2×N2
that captures the dependencies between pixels:

A(i, j) =





1 if i = j

1√
2πσ2

e−
d(i,j)2

2σ2 if g(i) = g(j) = 1

0 otherwise,

where σ is a parameter to get quantities in the right range, and d(i, j) is the

Euclidean distance between pixels i and j. This matrix assigns to each couple

of pixels a correlation coefficient from the interval [0,1]. In particular, the

correlation between each pixel and itself is set to 1; two different foreground

pixels receive a gaussian coefficient in the range (0, 1), decreasing as the

distance between them increases; correlation between a foreground and a

44 2. Dichotomous Image Segmentation

background pixel, or two different background pixels, is set to 0. Moreover,

a weight vector b ∈ RN2
to keep track of each pixel location is defined in the

following way:

b(i) =




1 if g(i) = 1

2− eαδ(i) otherwise,

where δ(i) := min
g(j)=1

d(i, j), while α is a negative constant. Note that b(i) ∈
[1, 2) for each i, and the closer a pixel is to the foreground, the lower its

weight. Having A and b, a new version of the error vector can be computed,

taking into account both the pixel correlation and the pixel location: zw :=

min(z, Az) ⊙ b, where min() is intended as an element-wise function and

ensures the error for each pixel cannot increase. At this point, we define the

following quantities as a weighted non-binary generalization of TP, FP, TN

and FN :

TPw = (1− zw)⊙ g TNw = (1− zw)⊙ (1− g)

FPw = zw ⊙ (1− g) FNw = zw ⊙ g

The final Weighted F-measure is computed in total analogy with the classical

F-measure, using this just defined quantities:

Fw
β = (1 + β2)

precisionw · recallw
β2 · precisionw + recallw

=
(1 + β2)TPw

(1 + β2)TPw + β2FNw + FPw
.

2.5.2 S-measure

S-measure [11] was conceived to measure the structural similarity between

the foreground objects in the ground truth and the prediction. In fact, vi-

sion studies concluded that the human visual system is highly sensitive to

similarity in structures. As a consequence, a metric based on this type of

similarity could return scores more aligned to the human thought.

To get the correct result, S-measure computes two different terms and

then combines them together in a weighted average. The first term is called

region-aware and aims to first catch local information and then gather it

into global information. The image is split into four parts of equal size, and

2.5 Metrics 45

each of them recursively into four parts again and so on until the desired

patch number K is reached. After that for each patch k ∈ {1, 2, . . . , K} the

SSIMk score is computed, using (2.2) with both the constants set to 0. The

region-aware score is obtained with a weighted sum of the local scores:

Sr =
K∑

k=0

wk(1− SSIMk),

where wk are weights proportional to the percentage of foreground pixels

contained in patch k. Meanwhile, object-aware term considers the distribu-

tions of foreground and background regions and compares them between the

ground truth and the map to be evaluated. The idea behind object-aware

score is that the ground truth usually has uniform distributions in both the

background and foreground regions. So, we aim to assign high value to a

map with salient object uniformly detected. Let X be a random variable; in

probability theory the ratio σX/E[X] is a dispersion measure of the proba-

bility distribution of X. Relying on what just mentioned, this index applied

to the map to be evaluated can be a good dissimilarity marker with respect

to the ground truth. Accordingly, the dissimilarity coefficient is defined as

DFG =
(µxFG

)2 + (µyFG
)2

2µxFG
µyFG

+ λ
σxFG

µxFG

,

where xFG and yFG stand for the foreground part of, respectively, the map

to be evaluated and the ground truth and λ ∈ R+ balances the two addenda.

The first term of the sum is employed to compare the two foreground pixels

average. The other quantities are defined in a straightforward fashion:

DBG =
(µxBG

)2 + (µyBG
)2

2µxBG
µyBG

+ λ
σxBG

µxBG

, OFG =
1

DFG

, DFG =
1

DBG

.

The object-aware score is computed considering β the ratio of foreground

area to total area in the ground truth image, and employing the sum

So = βOFG + (1− β)OBG.

The final S-measure is a weighted average between the region-aware and

object-aware terms

S = αSo + (1− α)Sr,

46 2. Dichotomous Image Segmentation

with α ∈ [0, 1] chosen to give the right importance to the two components.

2.5.3 E-measure

Although S-measure achieves excellent performance in DIS evaluation,

it is designed for non-binary maps. Applying this measure to binary maps,

leads to poor results. E-measure [10] is a different metric tailored for binary

maps evaluation. It combines local-pixel values and image-level mean value,

matching information jointly. Consider a binary foreground map F . Denot-

ing by A the matrix having the same dimension as F and all the elements

equal to 1, we can define the bias matrix φF as the distance between each

pixel and the global average

φF = F − µF · A.

Denoting by G ∈ {0, 1}h×w the ground truth map and P ∈ {0, 1}h×w the

prediction to be evaluated, we compute the bias matrix with F ∈ {G,P}.
Therefore, an alignment matrix between φG and φP is computed in the fol-

lowing way:

ξ =
2φG ⊙ φP

φG ⊙ φG + φP ⊙ φP

,

where the fraction is intended to be element-wise. For each pixel (i, j) we get

an alignment value ξ(i, j) ∈ [−1, 1] that is positive when G(i, j) and P (i, j)

are aligned with respect to the global image mean, otherwise it is negative.

Moreover, ξ(i, j) = 1 if and only if φG(i, j) = φP (i, j), and ξ(i, j) = −1 if and

only if φG(i, j) = −φP (i, j). At this point, each element of the matrix ξ is

rescaled to the range [0,1] using the following convex function element-wise:

ϕ(i, j) = f(ξ(i, j)), where f(x) =
1

4
(1 + x)2,

for each i ∈ {1, 2, . . . , h} and j ∈ {1, 2, . . . , w}. In this way a very low score

(below ∼ 0.3) is assigned to pixels not aligned between G and P , and higher

scores are reserved to aligned pixels. The final E-measure is the pixel-by-pixel

2.5 Metrics 47

average of ϕ:

E =
1

wh

w∑

j=1

h∑

i=1

ϕ(i, j).

2.5.4 MAE and MSE

Mean Absolute Error (MAE) and Mean Squared Error (MSE) [31] are

classical metrics that are often used for the evaluation process in every re-

gression task. Both of these metrics measure the error element-by-element

(pixel-by-pixel in DIS context), and they return an average where all of them

are equally weighted. Denoting by G ∈ Rh×w the ground truth image and

P ∈ Rh×w the image to be evaluated, the mathematical definitions of the

two metrics are the following:

MAE(G,P) =
1

hw

w∑

j=1

h∑

i=1

|G(i, j)− P (i, j)|,

MSE(G,P) =
1

hw

w∑

j=1

h∑

i=1

(G(i, j)− P (i, j))2.

The main difference between the two scores consists in the way large and

strict errors are weighted. In fact, the square power returns even larger

numbers if applied to large numbers and even smaller numbers if applied to

small numbers. For this reason, MSE further accentuates extreme values,

with respect to MAE.

2.5.5 Boundary Intersection over Union

Another famous segmentation metric is Intersection over Union, which

considers the foreground region of two binarized maps and returns the ratio of

the intersection of those regions to the union, as the name suggests. Despite

this metric is one of the most common, it is not reliable enough when applied

to large objects containing fine details. In fact, a theoretical analysis of the

metric structure highlights that when scaling up the representation of an

object, the number of boundary pixels grows linearly while the number of

48 2. Dichotomous Image Segmentation

interior pixels grows quadratically. The consequence is that Intersection over

Union computed on larger objects tolerates a larger number of misclassified

pixels for each unit of contour length.

Boundary Intersection over Union (BIoU) [6] is a different version of

the metric designed to avoid this problem. Consider GFG the foreground

region of the ground truth, PFG the map to be evaluated, and d ∈ N. First,
the images region Gd and Pd distant less than d pixels from the foreground

boundary are intersected with the foreground region of the corresponding

images; then, the score is computed applying the Intersection over Union

formula with these new regions:

BIoU(G,P) =
|(Gd) ∩ (GFG)|
|(Pd) ∪ (PFG)|

.

The parameter d controls the sensitivity of the measure. With d large enough

BIoU becomes equivalent to IoU , otherwise internal pixels sufficiently dis-

tant from the boundary are ignored and the score becomes more sensitive

to the small boundary inaccuracies. The risk of a too small d is to over-

penalize small errors, which in some case are harmless and due to imperfect

annotations.

Boundary Intersection over Union can be overall considered a valuable

metric to highlight small boundary errors on large objects that some of the

other metrics are designed to ignore. On the other hand, a metric defect arises

while using it in some special cases where the prediction is labeled as perfect

although a complete area is missing (for example, BIoU returns 1 comparing

an image representing a circle of radius r and an image representing a circular

crown of internal radius r − d and external radius r).

2.5.6 Mean Boundary Accuracy

Another metric that cares only about the boundary area is Mean Bound-

ary Accuracy (MBA) [1]. This metric keeps track of the pixel accuracy in

the area within a certain pixel distance to the boundary, averaging the scores

obtained using different distance thresholds. Consider the ground truth G ∈

2.5 Metrics 49

{0, 1}h×w and a corresponding prediction P ∈ {0, 1}h×w, both subjected to a

binarization process. First, 5 radii with uniformly spaced interval in [3, w+h
300

]

are sampled; denoting them by {ri = 3 + i
4
(w+h

300
− 3) | i ∈ {0, 1, 2, 3, 4}},

for each one the region of interest is identified applying to the ground truth

foreground boundary a disk kernel of radius ri. Subsequently, the number

ari of aligned pixels between P and G in the region of interest is counted, as

well as the total number tri of pixels inside that region. The partial scores

and the final MBA are computed with the following:

sri =
ari
tri

, MBA(G,P) =
1

5

5∑

i=1

sri .

2.5.7 Human Correction Effort

Metrics we listed so far evaluate the quality of a prediction by relying on

the mathematical or perceptual differences distinguishing the image from the

ground truth. This is not always the correct conceptual idea, for example

in case of real applications where the predicted foreground mask is then

subjected to a human correction process. In these cases the fundamental

point is not whether a foreground map looks like the ground truth or not: a

good prediction is characterized by a low number of needed human correction

operations to get exactly the right segmentation.

Human Correction Effort (HCE) [35] is a metric that approximates the

number of mouse clicks required to correct the segmentation mask. Specifi-

cally, during this correction process two operation types are conducted:

1. point selection along target boundaries to formulate polygons, used

when a wrong region is surrounded (even if partially) by a correct

region labeled in the same way;

2. region selection, used when a wrong region is completely surrounded

by a differently labeled region.

Each of these operations corresponds to a human operator mouse click. The

50 2. Dichotomous Image Segmentation

final HCE score is supposed to be representative about the human effort

required to correct the segmentation mask.

Chapter 3

ToonOut: Background Removal

Model for Anime style

In this chapter we are going to study a concrete application to the Di-

chotomous Image Segmentation task, discussed in Chapter 2. In particular

we present ToonOut : a fine-tuned background removal model specialized in

anime character images. This work has been developed by us, in collabora-

tion with the company Kartoon.

3.1 Motivation and goals

In Chapter 2 Dichotomous Image Segmentation (DIS) task has been

deeply studied, going over all the state-of-the-art approaches and highlighting

how recent advancements in machine learning have led to significant progress

so that results are often fabulous. As mentioned, DIS is commonly used for

background removal, isolating the salient foreground object for downstream

applications like image editing, story creation, or logo design. While current

state-of-the-art background removal models excel at processing realistic im-

ages, they often struggle with data far from the distribution they are trained

on. For this reason, using those models on specific domains like non-realistic

style images (hand-drawn images, comics images, or anime-style images) in

51

52 3. ToonOut: Background Removal Model for Anime style

Figure 3.1: Closed source [14] and open source models ([40], [4], [53]) are in-

adequate on our anime characters test set. We fine-tune BiRefNet [53] and the

resulting model ToonOut yields better outputs for our use-case.

general leads to poor and disappointing results.

The Kartoon company developed the toongether [42] application, a mobile

application designed to allow users to create their own anime comic-style

stories, and share them with the community. In fact, toongether gives access

to a wide number of different characters, backgrounds and items. Users

can compose their story by simply dragging characters and items silhouettes

over the background and typing dialog text into speech bubbles. When a

new character or item image is loaded into the application, it undergoes a

background removal process, to get the needed silhouette. Since these are

anime-style images, state-of-the-arts DIS models’ performance [53, 4, 14] are

degraded (see Figure 3.1), particularly in handling complex features like hair

and transparent elements. Even models specifically designed for anime [16,

3.1 Motivation and goals 53

Figure 3.2: Examples of predictions made by ToonOut on images contained in

our test datasets.

Our datasets cover a variety of characters in challenging poses, their interactions

with items, and standalone objects.

40] often yield unsatisfactory results.

This challenge motivates our work to improve background removal for im-

ages of anime characters and items. We aim to select a popular DIS model

and enhance its capabilities on anime content. The goal of the project con-

sists in contributing in the following way: (1) gathering a high-quality custom

dataset of anime images depicting characters and items; (2) fine-tuning the

popular open-source BiRefNet model on this dataset, demonstrating perfor-

mance that matches the best closed-source models; and (3) introduce a new

metric, Pixel Accuracy, to evaluate fine-grained performance of DIS models.

We are open-sourcing the code, the fine-tuned model weights, as well as

the dataset at: https://github.com/MatteoKartoon/BiRefNet.

54 3. ToonOut: Background Removal Model for Anime style

Figure 3.3: Example of images contained in the dataset, covering different char-

acters, poses and items.

3.2 Custom dataset

3.2.1 Data sourcing

Our dataset consists of 1228 images broken down into train / validation

/ test with an 80% / 10% / 10% ratio (see Table 3.1). For each image,

we provide both the original RGB image and the corresponding pixel-level

ground truth mask. This consists of a grayscale image where black pixels rep-

resent the background, white pixels represent the foreground, and interme-

diate gray values indicate partially transparent pixels (useful, in particular,

to provide a transparency gradient around character edges).

3.2 Custom dataset 55

We designed our dataset to meet the following essential criteria:

• Domain coverage: The dataset should comprehensively represent the

target domain, encompassing diverse anime-style content including both

character portraits and object illustrations. To ensure broad general-

ization, we collected images featuring varied character designs, poses,

viewing angles, and activities, grouped in various sub-datasets.

• Data quality: All images maintain high resolution (minimum 1024 ×
1024 pixels) and visual realism to preserve fine-grained details essential

for accurate segmentation; the annotations are top-quality and highly-

precise as well.

• Sample diversity: To prevent overfitting and ensure robust evaluation

metrics, the dataset presents high diversity. Each image represents a

unique combination of character, pose, and context, so that we ver-

ify that the trained model doesn’t over-fit the train & validation

distribution.

To get images for the dataset we followed the same procedure used at Kar-

toon when new contents are needed for the toongether application, namely

generating images using a diffusion model (see Chapter 1 for a detailed ex-

planation about these models). In particular, we used the anime-specialized

checkpoint Yamer’s Anime [48] of Stable Diffusion XL [28, 2]. Characters are

defined by three reference pictures, and a prompt that is broken down into

segments (a different segment for each character body or outfit detail). We

then used different workflows and hyperparameters to generate the different

sub-datasets explained in Section 3.2.2. Here are the main common building

blocks:

• We applied a different IP-adapter [49] for the face and the body, a

composition ControlNet [51] for pose, and a Concept Sliders [12] for

emotions.

56 3. ToonOut: Background Removal Model for Anime style

Figure 3.4: Examples of discarded images: in correspondence of red circles gen-

eration issues can be observed, leading these images looking not realistic.

• We used an upscaler called RealESRGAN [43] to go from 1024× 1024

resolution to 2048× 2048.

• After the upscaler we do a refiner pass (image-to-image diffusion) to

increase image quality.

Gathering images operating this generation procedure using a diffusion model

is clearly convenient. First, it allows us to get a wide batch of images really

quickly. Moreover, we are obtaining images with exactly the same style of

those used in the toongether application, and this should let our final fine-

tuned model perform well in this environment, that will be the first one where

our model will be used. After the generation phase, the obtained images were

rigorously filtered to ensure high quality: to ensure our dataset matching the

essential criteria we listed, we discarded images with anatomical inconsis-

tencies, unclear foreground-background boundaries, and artifacts that would

result in visually unappealing segmentation masks. Some examples of dis-

carded images are provided in Figure 3.4.

Following the filtering phase, we evaluated the remaining images using

the baseline model BiRefNet to identify challenging cases where the baseline

model performs poorly. We prioritized these difficult examples for dataset

3.2 Custom dataset 57

inclusion, as they represent the most valuable training samples for improving

model performance. To maintain dataset balance, we also included up to 20%

of images where the baseline BiRefNet model already performs well.

The images chosen to be included in the dataset were annotated, to pro-

duce the ground truth mask. The annotation was made keeping in mind that

the main objective of this model is to be adopted in the toongether applica-

tion. This means that the background removed image should be suitable to

be used in a comic story as a character silhouette. For this reason, all the

elements shown in the image were kept as part of the foreground (desks, bicy-

cles, pets, etc.). The unique component discarded was the character shadow

that, if shown in the image, was annotated as part of the background.

3.2.2 Dataset Composition

To ensure comprehensive domain coverage and training diversity, we

structured our data collection around six distinct image categories, each tar-

geting specific visual characteristics and segmentation challenges.

Dataset
number of images

total %

train validation test total

Reference 58 7 8 73 5.9%

Emotion 201 25 26 252 20.5%

Pose 199 25 25 249 20.3%

Factory 324 41 41 406 33.1%

Action 112 14 15 141 11.4%

Items 85 11 11 107 8.7%

Total 979 123 126 1228 100%

Table 3.1: Break-down of dataset composition

A couple of examples for each category are provided in Figure 3.3. The

distribution and characteristics of each of these dataset categories are as

58 3. ToonOut: Background Removal Model for Anime style

follows (see Table 3.1):

• Reference (neutral face portraits): High-quality character portraits,

with neutral emotion;

• Emotion (close-up portraits): Character close-ups expressing various

emotions (joy, anger, sadness, etc.). These images are a challenge for

baseline models due to fine facial details and hair complexity;

• Pose (full-body characters in motion): Full-body character represen-

tations in diverse poses (standing, jumping, running, etc.). Baseline

model performance is generally better for these samples;

• Factory (full-body idle characters): Full-body character representations

in idle stance. Similarly to pose, the baseline performance is good;

• Action (characters with items): Characters engaged in activities (cook-

ing, gaming, working) that include environmental objects. These sam-

ples represent the most challenging segmentation scenarios due to com-

plex foreground-background interactions;

• Items: Standalone object illustrations (vehicles, food items, tools, etc.).

Baseline model performance varies significantly based on object com-

plexity and boundary definition.

3.3 Fine-tuning process

3.3.1 Model choice

For our fine-tuning approach, we selected the popular and high-performing

Bilateral Reference Network (BiRefNet) [53] as our base model. BiRefNet ’s

DIS architecture incorporates several design principles well-suited to our seg-

mentation objectives. To summarize what was mentioned in Section 2.4,

BiRefNet ’s bilateral reference mechanism employs dual supervision strate-

gies: auxiliary gradient supervision [52] to enhance detail preservation in

3.3 Fine-tuning process 59

fine-grained regions, complemented by ground truth supervision, particu-

larly useful in regions where foreground elements resemble the background

in terms of color and texture. In particular, BiRefNet ’s architecture com-

prises two primary components: a Localization Module and a Reconstruction

Module, counting a total of 221 millions of parameters. Localization Module

leverages global semantic information for object localization, while Recon-

struction Module performs the segmentation reconstruction process using hi-

erarchical image patches as source reference [50] and gradient maps as target

reference.

This dual supervision enables the model to maintain awareness of both

local details and global context. This aligns with our goals (motivating our

choice), that the model must handle varying scales, from fine details of char-

acter hair to full-body items and bodies.

3.3.2 Fine-tuning experiment

As a starting point for the model fine-tuning process, we cloned the

GitHub BiRefNet repository, containing the training code. The most impor-

tant structural change we made to that code was the addition of validation

loss computation after a default number of iterations. Moreover, we imple-

mented the Weights&Biases [7] logs, to allow for monitoring and keeping

a record of training runs and real-time plotting of the losses, the metrics,

or other useful information. After that, we started with the first training

experiments by resuming from a checkpoint saved after 244 training epochs,

provided by the repository’s author. We initially conducted experiments us-

ing only a small subset of the final dataset and gradually incorporated the

remaining parts as they were sourced and annotated. To achieve the best

possible training performance we had to conduct trials with numerous com-

binations of hyperparameters. We identified the best setting as the following:

• loss weights: our loss function is computed as a weighted sum among

SSIM loss, MAE loss, and IoU loss [53, 31, 34]; an explanation of the

60 3. ToonOut: Background Removal Model for Anime style

Figure 3.5: Comparison between gradient norm plots about different trainings:

the top-left one is the initial setting, using floating point 16 ; the top-right behavior

is obtained after switching to brain float 16 ; the bottom one is the final one, after

gradient clipping to 100.

formulas behind these losses is provided in Chapter 2.

L = λ1LSSIM + λ2LMAE + λ3LIoU (3.1)

After trying several combinations, we decided on the right weights to

use during the model fine-tuning, which are λ1 = 10, λ2 = 90, λ3 =

0.25;

• gradient supervision loss: we have a loss function for the gradient su-

pervision too, and we opted for BCE loss with logits [30], considered

more stable than computing the BCE loss after passing the output to

a sigmoid function.

• number of epochs: we identified the appropriate number of epochs as

3.3 Fine-tuning process 61

100. This is a very high number considering that the model was already

trained for 244 epochs, but we perform this long training while saving

a checkpoint for each epoch. After the training ended, we looked for

the best checkpoint by evaluating each of them on the validation set,

using the metrics we will explain in the next section. The checkpoint

we chose as our final model was the one related to epoch 290, so we

trained for 46 epochs.

• GPUs: we trained using in parallel two GeForce RTX 4090 GPUs.

• batch size: The largest batch size our hardware allowed to avoid out-

of-memory issues was 2, which became our chosen setting.

• learning rate: it was set to 1 × 10−5, which is the maximum value

possible to prevent the training from diverging. Moreover, to make the

training loss continue decreasing after a large number of epochs, we

implemented learning rate decay, every 20 epochs with a multiplying

factor of 0.5.

• mixed precision: it was set by default to floating point 16, but during

our first training runs we observed the gradient norm oscillating and

subsequently becoming NaN at some point. This unstable behavior

was resolved by switching to brain float 16 [46], a format more suited

for machine learning.

• gradient clipping : after the stabilization just mentioned, we obtained

a stable gradient norm plot. Despite this, sometimes individual spikes

appeared, indicating extreme values for certain iterations and a cor-

responding drop in performance appeared looking at the training loss

plot. To address this issue we decided to introduce gradient clipping,

setting the maximum accepted gradient norm value to 100. The differ-

ent gradient norm behaviors can be compared in Figure 3.5.

62 3. ToonOut: Background Removal Model for Anime style

model dataset # images Pixel Accuracy Boundary IoU Weighted F-measure

Photoroom 98.9% 90.9% 99.3%

BiRefNet reference 8 96,6% 82.7% 98.5%

ToonOut [ours] 99.8% 95.5% 99.7%

Photoroom 99.7% 95.0% 99.6%

BiRefNet emotion 26 97.7% 87.4% 98.7%

ToonOut [ours] 100.0% 96.9% 99.8%

Photoroom 99.9% 96.7% 99.5%

BiRefNet pose 25 99.1% 94.2% 99.1%

ToonOut [ours] 99.8% 96.4% 99.5%

Photoroom 99.9% 96.8% 99.5%

BiRefNet factory 41 98.7% 93.0% 98.9%

ToonOut [ours] 99.8% 96.0% 99.4%

Photoroom 96.3% 91.5% 98.6%

BiRefNet action 15 76.8% 69.4% 91.2%

ToonOut [ours] 99.0% 93.1% 99.3%

Photoroom 98.3% 94.3% 98.6%

BiRefNet items 11 92.2% 92.2% 97.2%

ToonOut [ours] 96.6% 92.5% 97.8%

Photoroom 99.2% 95.2% 99.3%

BiRefNet overall 126 95.3% 88.5% 97.8%

ToonOut [ours] 99.5% 95.6% 99.4%

Table 3.2: Performance on the sub-datasets released. Items remain challenging

as they are a small part of the overall dataset.

3.4 Results evaluation

3.4.1 Metrics overview

In Section 2.5 metrics that are currently used to evaluate the performance

of Dichotomous Image Segmentation models are studied in detail. Now we

have to measure the quality of our ToonOut model, so we are going to se-

lect appropriate metrics to assess the performance of background removal in

anime character images.

Empirically, two primary categories of model prediction errors can be

observed:

• Coarse-grained errors : Large regions may be incorrectly classified; com-

3.4 Results evaluation 63

mon examples are: between a character’s ponytail and head, between

limbs and torso, in the folds of the clothes, or the character’s shadow;

• Fine-grained errors : Small-scale inaccuracies, such as hair strands, fin-

gers, detailed object contours.

Accordingly, evaluation measures for Dichotomous Image Segmentation

fall into two categories:

• Coarse-grained metrics judge errors at the pixel level, so small bound-

ary mistakes barely change the score. We considered: S-measure [11],

E-measure [10], F-measure, Mean Absolute Error (MAE) and Mean

Squared Error (MSE);

• Fine-grained metrics focus on pixels near object edges, rewarding crisp

outlines. We looked at: Boundary Intersection over Union (BIoU) [6],

Human Correction Effort (HCE) [35], Weighted F-measure (WF) [22],

and Mean Boundary Accuracy (MBA) [1].

To select the most suitable evaluation metrics, we conducted experiments

on the validation set. Going through the predictions made by different models

on validation images and corresponding scores, we immediately individuated

relevant examples where all the coarse-grained metrics assigned a definitely

incorrect score. That is why, as a consequence of how these metrics are

structured, in the predictions where a number slightly different from the

GT value is assigned to a wide portion of the image, the returned score is

relatively high. In the cases where this difference is visible for human eyes, the

human judge the prediction as certainly incorrect, in contrast with the metric

score. This consideration let us conclude that no one of the coarse-grained

metrics was the right one to evaluate this type of images. The second phase

of this exploration consisted in analyzing the fine-grained metrics behavior.

To conduct the experiment, we compared in the following way predictions

made by Photoroom, Briaai2.0, and a first version of ToonOut trained only

on few images. We individuated a 10 images subset of the validation set

64 3. ToonOut: Background Removal Model for Anime style

including cases we considered interesting for metrics evaluation. For each of

those images, we first established a human-judged ranking of model outputs,

then observed how often each metric aligned with that preference. We got

the following results:

• BIoU: 1 error

• MBA: 5 errors

• WF: 1 error

• HCE: 4 errors

As you can see, the Boundary IoU and the Weighted F-measure demon-

strated the strongest concordance with our visual assessments of boundary

quality.

3.4.2 Pixel Accuracy

We introduce Pixel Accuracy (PA) with the goal of finding a region-

oriented metric that match with our visual rankings. This metric is designed

by us, meant to return a score depending on the fraction of correctly labeled

pixels, as specified in equation (3.2). This motivates the choice of the name

Pixel Accuracy.

A pixel is counted as correct when the absolute difference δ between pre-

diction and ground-truth alpha values is δ ≤ 10, which is visually indistin-

guishable. To find the right δ value, we conducted several trials, by iteratively

changing the α value of an image area and identifying the maximum differ-

ence that remained visually imperceptible. To avoid penalizing harmless

few-pixel-wide edge artifacts around the character and object boundaries,

we erode the error mask once using the cv2.erode() function [26], and a

full-of-ones 5× 5 matrix as the kernel. The PA score is then computed using

the formula

PA =

(
1− Number of Incorrect Pixels

Total Number of GT Foreground Pixels

)2

(3.2)

3.4 Results evaluation 65

Model
Open code

& weights
Open data

Performance over our test set (126 images)

Pixel Accuracy Boundary IoU Weig. F-measure E-measure S-measure MAE F-measure

Photoroom ✗ ✗ 99.2% 95.2% 99.3% 99.2% 98.7% 0.04 99.2%

Briaai2.0 ✓ ✗ 97.8% 92.4% 98.8% 98.8% 97.9% 0.08 98.7%

BiRefNet ✓ ✓ 95.3% 88.5% 97.8% 97.9% 96.9% 0.15 98.0%

ToonOut [ours] ✓ ✓ 99.5% 95.6% 99.4% 99.4% 98.9% 0.03 99.2%

Table 3.3: On our test sets, we manage to slightly outperform Photoroom’s state-

of-the-art remove-background model.

where “GT Foreground Pixels” denotes the pixels with α > 128 in the ground

truth mask. This computation allows for taking into account the width of

foreground area in the ground truth image. In fact, in the case of the same

number of incorrect pixels, an error is more evident if it occurs in an image

where the foreground area is less wide. This holds because the larger the

character represented in the image, the less of the body portion the error

affects. The exponentiation to the power of two is performed to prevent the

obtained scores from being clustered in a small range close to one, better

distinguishing them from each other.

Testing our new metric on the validation set following the same procedure

described in the previous section (comparing its rankings with those made

by human on the same 10 images), PA aligned with every human ranking.

We can conclude that Pixel Accuracy performs as intended, and thus it will

be one of the metrics used for results evaluation.

3.4.3 Evaluating model performance

After selecting the optimal checkpoint based on the validation set, we

evaluate the performance of our ToonOut model on the introduced test sets.

This evaluation follows three key metrics, chosen after experiments de-

scribed in Section 3.4.1: Pixel Accuracy (PA), Boundary Intersection over

Union (BIoU), and Weighted F-measure (WF). We benchmarked ToonOut

against two prominent models: the closed-source high-performing Photoroom

[14] and two open-source baselines, Briaai2.0 [4] and BiRefNet [53].

The aggregated results, presented in Table 3.3, indicate a clear trend:

66 3. ToonOut: Background Removal Model for Anime style

all the evaluation metrics scores reported agree that ToonOut bridges the

gap between the open-source models and Photoroom, overall reducing the

PA error rate from 2.2% / 4.7% to 0.5%, and the BIoU error rate from

7.6% / 11.5% to 4.4%. Looking across individual datasets (Table 3.2), the

performance is slightly worse for the items category, where the images are few

(only 107 images) and quite varied. Also for pose and factory images ToonOut

does not achieve scores as high as Photoroom, but a great improvement with

respect to baseline BiRefNet is clearly shown. Overall, we can observe the

high performance of ToonOut ’s capabilities in anime character background

removal, particularly in the challenging datasets action and emotion.

To conclude, we can establish metrics show that ToonOut effectively nar-

rows the performance disparity between the open-source baselines and the

closed-source state-of-the-art. This is what we aimed for while starting this

project. Great examples, where ToonOut model makes the best prediction

among the models selected for the comparison, are shown in Figure 3.1.

Gathering a relatively small dataset, entirely dedicated to anime-style data

distribution, was enough to “specialize” the baseline BiRefNet on this type

of images. We wish this observation to serve as inspiration for future works

similar to ours. In fact, it is desirable that the strength of fine-tuning on a

particular domain holds in general, and not only for anime style. Moreover,

our contribution on metrics should be valuable in other domains as well.

Conclusions

In this thesis we treated some theoretical topics, such as the theory behind

Diffusion Models, the state-of-the-art models to solve Dichotomous Image

Segmentation and the metrics used to evaluate DIS performance. Moreover,

we discussed the practical project in which we realized the ToonOut model,

describing both the process and the results, as well as a new metric imple-

mented by us, well-suited for DIS evaluation. A possible future development

for this work could be the enlargement of the dataset to understand whether

more data can improve ToonOut ’s performance. Moreover, by now the model

is fine-tuned only on characters and items, but new classes of images could

be required for the toongether [42] application, for example animals. In this

case, it would be great to include samples of these types in the dataset.

Eventually, we know that Machine Learning is always evolving rapidly and

things become outdated in a short time. For this reason, it is plausible that

new DIS models will be released soon, improving the state of the art. In this

case it would be interesting to repeat the project using the same dataset and

these new models as a baseline, with the purpose of further improving the

results.

67

68 CONCLUSIONS

Bibliography

[1] Ho Kei Cheng (HKUST) et al. “CascadePSP: Toward Class-Agnostic

and Very High-Resolution Segmentation via Global and Local Refine-

ment”. In: (2020). doi: https://arxiv.org/pdf/2005.02551.

[2] Chris Bishop. Deep Learning. Springer, 2024. isbn: 978-3-031-45467-7.

[3] Pieter-Tjerk de Boer et al. “A Tutorial on the Cross-Entropy Method”.

In: (2005). doi: https://people.smp.uq.edu.au/DirkKroese/ps/

aortut.pdf.

[4] briaai. RMBG-2.0. url: https://huggingface.co/briaai/RMBG-

2.0.

[5] Liang-Chieh Chen et al. “Encoder-Decoder with Atrous Separable Con-

volution for Semantic Image Segmentation”. In: (2018). doi: https:

//arxiv.org/pdf/1802.02611.

[6] Bowen Cheng et al. “Boundary IoU: Improving Object-Centric Image

Segmentation Evaluation”. In: (2021). doi: https://arxiv.org/pdf/

2103.16562.

[7] CoreWeave. Weights&Biases. url: https://wandb.ai/site/.

[8] V. A. Coutinho, R. J. Cintra, and F. M. Bayer. “Low-complexity Multi-

dimensional DCT Approximations”. In: (2023). doi: https://arxiv.

org/pdf/2306.11724.

[9] Jifeng Dai et al. “Deformable Convolutional Networks”. In: (2017).

doi: https://arxiv.org/pdf/1703.06211.

69

70 BIBLIOGRAPHY

[10] Deng-Ping Fan et al. “Enhanced-alignment Measure for Binary Fore-

ground Map Evaluation”. In: (2018). doi: https://arxiv.org/pdf/

1805.10421.

[11] Deng-Ping Fan et al. “Structure-measure: A New Way to Evaluate

Foreground Maps”. In: (2017). doi: https://arxiv.org/pdf/1708.

00786.

[12] Rohit Gandikota et al. “Concept Sliders: LoRA Adaptors for Precise

Control in Diffusion Models”. In: (2023). doi: https://arxiv.org/

pdf/2311.12092.

[13] Kaiming He et al. “Deep Residual Learning for Image Recognition”.

In: (2015). doi: https://arxiv.org/pdf/1512.03385.

[14] Photoroom Inc. Photoroom. url: https://www.photoroom.com/it.

[15] Ge-Peng Ji et al. “Deep Gradient Learning for Efficient Camouflaged

Object Detection”. In: (2022). doi: https://arxiv.org/pdf/2205.

12853.

[16] Komiko.AI Background Removal. url: https://komiko.app/background-

removal.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet

Classification with Deep Convolutional Neural Networks”. In: (2012).

doi: https://proceedings.neurips.cc/paper_files/paper/2012/

file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[18] Chen-Yu Lee et al. “Deeply-Supervised Nets”. In: (2014). doi: https:

//arxiv.org/pdf/1409.5185.

[19] Junxuan Li, Shaodi You, and Antonio Robles-Kelly. “A Frequency Do-

main Neural Network for Fast Image Super-resolution”. In: (2017). doi:

https://arxiv.org/pdf/1712.03037.

[20] Ze Liu et al. “Swin Transformer: Hierarchical Vision Transformer using

Shifted Windows”. In: (2021). doi: https://arxiv.org/pdf/2103.

14030.

BIBLIOGRAPHY 71

[21] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolu-

tional Networks for Semantic Segmentation”. In: (2015). doi: https:

//arxiv.org/pdf/1411.4038.

[22] Ran Margolin, Lihi Zelnik-Manor, and Ayellet Tal. “How to Evaluate

Foreground Maps?” In: (2014). doi: https://arxiv.org/pdf/1708.

00786.

[23] Gellert Mattyus, Wenjie Luo, and Raquel Urtasun. “DeepRoadMap-

per: Extracting Road Topology from Aerial Images”. In: (2017). doi:

https://openaccess.thecvf.com/content_ICCV_2017/papers/

Mattyus_DeepRoadMapper_Extracting_Road_ICCV_2017_paper.

pdf.

[24] Elizabeth Million. “The Hadamard Product”. In: (2007). doi: http:

//buzzard.ups.edu/courses/2007spring/projects/million-

paper.pdf.

[25] Keiron O’Shea and Ryan Nash. “U-Net: Convolutional Networks for

Biomedical Image Segmentation”. In: (2015). doi: https://arxiv.

org/pdf/1511.08458.

[26] OpenCV. erode. url: https://docs.opencv.org/3.4/db/df6/

tutorial_erosion_dilatation.html.

[27] Andrea Pascucci. Teoria della Probabilitá. Springer, 2020. isbn: 978-

88-470-3999-5.

[28] Dustin Podell et al. “SDXL: Improving Latent Diffusion Models for

High-Resolution Image Synthesis”. In: (2023). doi: https://arxiv.

org/pdf/2307.01952.

[29] David M. W. Powers. “What the F-measure doesn’t measure: Features,

Flaws, Fallacies and Fixes”. In: (2015). doi: https://arxiv.org/pdf/

1503.06410.

[30] PyTorch. BCEWithLogitsLoss. url: https://docs.pytorch.org/

docs/stable/generated/torch.nn.BCEWithLogitsLoss.html.

72 BIBLIOGRAPHY

[31] Jun Qi et al. “On Mean Absolute Error for Deep Neural Network Based

Vector-to-Vector Regression”. In: (2020). doi: https://arxiv.org/

pdf/2008.07281.

[32] Yuyang Qian et al. “Thinking in Frequency: Face Forgery Detection

by Mining Frequency-aware Clues”. In: (2020). doi: https://arxiv.

org/pdf/2007.09355.

[33] Xuebin Qin et al. “BASNet: Boundary-Aware Salient Object Detec-

tion”. In: (2019). doi: https://openaccess.thecvf.com/content_

CVPR_2019/papers/Qin_BASNet_Boundary-Aware_Salient_Object_

Detection_CVPR_2019_paper.pdf.

[34] Xuebin Qin et al. “Boundary-Aware Segmentation Network for Mobile

and Web Applications”. In: (2021), pp. 6–7. doi: https://arxiv.org/

pdf/2101.04704.

[35] Xuebin Qin et al. “Highly Accurate Dichotomous Image Segmenta-

tion”. In: (2022). doi: https://arxiv.org/pdf/2203.03041.

[36] Xuebin Qin et al. “U2-Net: Going Deeper with Nested U-Structure for

Salient Object Detection”. In: (2022). doi: https://arxiv.org/pdf/

2005.09007.

[37] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object De-

tection with Region Proposal Networks”. In: (2016). doi: https://

arxiv.org/pdf/1506.01497.

[38] Sucheng Ren et al. “Shunted Self-Attention via Multi-Scale Token Ag-

gregation”. In: (2022). doi: https://arxiv.org/pdf/2111.15193.

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Con-

volutional Networks for Biomedical Image Segmentation”. In: (2015).

doi: https://arxiv.org/pdf/1505.04597.

[40] skytnt. Anime Remove Background. url: https://huggingface.co/

spaces/skytnt/anime-remove-background.

BIBLIOGRAPHY 73

[41] Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequi-

librium Thermodynamics”. In: (2015). doi: https://arxiv.org/pdf/

1503.03585.

[42] toongether.ai. Toongether: Comic Creation. url: https://toongether.

ai.

[43] Xintao Wang et al. “Real-ESRGAN: Training Real-World Blind Super-

Resolution with Pure Synthetic Data”. In: (2021). doi: https : / /

arxiv.org/pdf/2107.10833.

[44] Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. “Multi-scale Struc-

tural Similarity for Image Quality Assessment”. In: (2017). doi: https:

//www.cns.nyu.edu/pub/eero/wang03b.pdf.

[45] Jun Wei, Shuhui Wang, and Qingming Huang. “F3Net: Fusion, Feed-

back and Focus for Salient Object Detection”. In: (2019). doi: https:

//arxiv.org/pdf/1911.11445.

[46] wikipedia. bfloat16 floating-point format. url: https://en.wikipedia.

org/wiki/Bfloat16_floating-point_format.

[47] wikipedia. Markov chain. url: https://en.wikipedia.org/wiki/

Markov_chain.

[48] Yamer. SDXL Yamer’s Anime. url: https://civitai.com/models/

76489.

[49] Hu Ye et al. “IP-Adapter: Text Compatible Image Prompt Adapter for

Text-to-Image Diffusion Models”. In: (2023). doi: https://arxiv.

org/pdf/2308.06721.

[50] Qian Yu et al. “Multi-view Aggregation Network for Dichotomous Im-

age Segmentation”. In: (2024). doi: https://arxiv.org/pdf/2404.

07445.

[51] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. “Adding Conditional

Control to Text-to-Image Diffusion Models”. In: (2023). doi: https:

//arxiv.org/pdf/2302.05543.

74 BIBLIOGRAPHY

[52] Zhao Zhang et al. “Gradient-Induced Co-Saliency Detection”. In: (2020).

doi: https://arxiv.org/pdf/2004.13364.

[53] Peng Zheng et al. “Bilateral Reference for High-Resolution Dichoto-

mous Image Segmentation”. In: (2024). doi: https://arxiv.org/

pdf/2401.03407.

[54] Yan Zhou et al. “Dichotomous Image Segmentation with Frequency

Priors”. In: (2023). doi: https://www.ijcai.org/proceedings/

2023/0202.pdf.

Ringraziamenti

Un sentito grazie al prof. Giovanni Paolini, relatore di questa tesi, per

l’attenta supervisione e tutti i preziosi consigli.

Ci tengo anche a ringraziare l’azienda Kartoon per la grande opportunità

di tirocinio, e in particolare Joël, Thomas, Cédric, Samir e Gabriel senza i

quali sarebbe stato impossibile portare a termine questo lavoro.

Per quanto riguarda i ringraziamenti personali confermo tutto quello che ho

scritto sulla tesi triennale riguardo ai miei amici, mio fratello i miei genitori

e le mie nonne.

