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Introduction

When studying convergence of probability measures, an important issue is the choice

of a probability metric; it might be useful to quantify that convergence in terms of some

probability distance such that one may study convergence in metric terms. Under certain

conditions one may choose a metric over another one.

It will be shown that if X is a separable metric space, then the choice of the Levy-

Prokhorov metric seems to be theoretically the more appropriate, despite being difficult

to compute. This metric, metrizes weak convergence if P(X ) is equipped with the

topology of weak convergence. Moreover, if X is Polish, then P(X ) is Polish. It follows

that any measure µ might be approximated by a discrete measure with finite support;

another important property is that any Cauchy sequence in the Levy-Prokhorov distance

converges weakly to some measure.

In the main chapter, Wasserstein metrics of order p are introduced and they are de-

noted by Wp, where p ∈ [1,∞ ) . They are defined over a complete and separable metric

space, or a Polish space, (X , d) and their construction comes from the theory of optimal

transportation, when one introduces a cost function. In our case, the cost function is

defined in terms of the distance of the space. We denote by Pp(X ) the Wasserstein space

of order p, in which any measure has finite p-th moment. Since X is Polish, then Pp(X )

is Polish and the Wasserstein distance metrizes weak convergence. Moreover there is

a rich duality that comes with it, that may be useful in many occasions, for instance

when p = 1. Many techniques are used in order to prove those powerful results, like

coupling techniques and few theorems or lemmas correlated, from which follow funda-

mental properties, like the existence of an optimal coupling, lower semicontinuity of the

cost functional with respect to weak topology and tightness of transference plans.
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ii INTRODUCTION

Quando si studia la convergenza di misure di probabilità, risulta essere utile quan-

tificare questa convergenza in termini di una distanza probabilistica, cos̀ı da poterne

studiare la convergenza in termini metrici. La scelta di una di queste metriche può rive-

larsi fondamentale in quanto, sotto certe condizioni, potrebbe risultarne più conveniente

una rispetto a un’altra.

Verrà affrontata la distanza di Levy-Prokhorov, che teoricamente risulta essere fon-

damentale su uno spazio metrico separabile X , nonostante la difficoltà nel calcolarla.

Questo perché tale metrica, metrizza la convergenza debole su P(X ) se dotata della

topologia indotta dalla convergenza debole, in gergo weak topology. Inoltre, se X è spazio

Polacco, allora anche P(X ) lo è; segue che ogni misura di probabilità è approssimabile

a una misura discreta con supporto finito e che ogni successione di Cauchy rispetto alla

distanza di Levy-Prokhorov è convergente in P(X ).

Infine, nel capitolo principale, affronteremo le metriche di Wasserstein di ordine p,

Wp, definite su uno spazio Polacco (X , d). Si parte dalla teoria del trasporto ottimale, in

cui viene introdotta una funzione costo; se tale funzione è scritta in termini di d, si può

costruire una classe di metriche al variare di p ≥ 1. Considereremo il sottospazio di P(X )

in cui le misure hanno momento p-esimo finito e lo chiameremo Pp(X ). Si mostrerà essere

anch’esso uno spazio Polacco e che Wp ne metrizza la convergenza debole. Wp possiede

una definizione duale, detta Kantorovich duality, che risulterà essere utile soprattutto

nel caso in cui p = 1. Per dimostrare questi risultati, si utilizzeranno tecniche di coupling

e teoremi o lemmi da cui ne conseguono proprietà fondamentali, tra cui l’esistenza di un

”trasporto” (o coupling) ottimale, semicontinuità dal basso del funzionale rispetto alla

weak topology e la tightness dei ”piani di trasporto”.
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Chapter 1

Preliminaries and notations

1.1 Conventions

Sets, structures and function spaces

Id is the identity mapping, regardless of the space.

if A is a set, then the function 1A is the indicator function of A: 1A(x) = 1 if x ∈ A and

0 otherwise. If f and g are two functions, then (f, g) is the function x 7−→ (f(x), g(x));

the map f × g is the function (x, y) 7−→ (f(x), g(y)).

The Euclidian scalar product between two vectors a, b ∈ Rn, where n is a positive integer,

is denoted by a · b or ⟨a, b⟩; for instance, the first notation will be seen in the second step

of the proof of Proposition 3.5.

A Polish space is, by definition, a separable and completely metrizable space, in other

words, it can be equipped with a metric that makes this space a complete and separable

metric space. For this reason we are going to use ”Polish space” and ”complete and

separable metric space” as synonyms; the notation used will be X , (X , d) or (E, d).
If (E, d) is a metric space, the open ball of radius r centered in x is denoted by Br(x);

the closed ball will be denoted by Br(x). In general, if A ∈ E is a set, its closure will

be A, which is also the set of all limits of sequences with value in A. Its intern part will

be denoted by Å and is the the biggest open set in A. With Aε we indicate the open

ε-neighborhood of A.

A map f between two metric spaces (E, d) and (E ′, d′) is said to be C-Lipschitz if

d′(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ E; the lowest admissible constant C is denoted

by ∥f∥L.
C(E) is the space of continuous function E −→ R and bC(E) ⊂ C(E) is the space of all

bounded continuous function.

The notation a ∧ b stands for min{a, b}. This notion can be extended in the usual way

1



2 1. Preliminaries and notations

to functions and also signed measures.

Probability measures

δx is the Dirac mass at point x.

If E is a Polish space, or more in general a metric space, it will be equipped with its

natural Borel σ-algebra B, so any probability measure on E is a Borel measure. Only

when introducing Total Variation distance in Chapter 2 we have a generic measurable

space.

The space of all probability measures on E is denoted by P(E) and the weak topology on

it is induced by convergence against bC(E), i.e. bounded continuous test functions. If E

is Polish, even P(E) is Polish (see Theorem 2.5) and becomes a complete and separable

metric space once being equipped with Levy-Prokhorov distance.

The integral of a function f with respect to a probability measure µ is denoted by∫
E
f(x) dµ(x) or in a more simple way

∫
f dµ.

If µ is a Borel measure on a topological space X , a set S is said to be µ-negligible if

it is included in a Borel set of zero µ-measure. Then µ is said to be concentrated on a

set C if µ(X \ C) = 0, and its support (Sptµ) is the smallest closed set in which µ is

concentrated.

If µ is a Borel measure and T : X −→ Y a Borel map, then the push-formard measure

of µ, denoted by T#µ, is a Borel measure on Y and is defined as T#µ(A) = µ(T−1(A))

for any Borel set A ∈ Y .

The law of a random variable X defined on a probability space (Ω,G,P) is denoted by

L(X). The expected value is denoted by E.
Let (X ,G) be a measurable space. A measure ν is absolutely continuous with respect to µ,

and is written ν << µ, if µ(A) = 0 implies ν(A) = 0. By Radon-Nikodym theorem, there

is a measurable function f : X −→ [0,∞] such that ν(A) =
∫
A
f(x) dµ(x) for any A ∈ G

and f = dν/dµ is called Radon-Nikodym derivative. Notice that if
∫
X f(x)dµ(x) < 1,

then ν is a sub-probability measure.

A sequence of probability measures {µn}n is said to converge weakly to a measure µ,

and is written µn
w−→ µ, if

∫
f dµn →

∫
f dµ for all bounded continuous function f .

Notations specific to optimal transport

If µ ∈ P(X ) and ν ∈ P(Y), then Π(µ, ν) is the set of all joint distributions on X × Y
whose marginals are µ and ν. Given a cost function c(x, y), the optimal total cost

between µ and ν is C(µ, ν) = inf E [c(X, Y )], where L(X) = µ and L(Y ) = ν. Let
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introduce the projection to the first and second factor:

p1 : X × Y −→ X p2 : X × Y −→ Y

(x, y) 7−→ x (x, y) 7−→ y .

Then if π ∈ Π(µ, ν), we have (p1)#(π) = µ and (p2)#(π) = ν.

1.2 Couplings and its Properties

Coupling techniques and properties will turn out to be essential in order to demon-

strate those important results of the main chapter, so it is necessary to introduce them.

We start by giving a definition.

Definition 1.1 (Coupling). Let (X , µ) and (Y , ν) be two probability spaces. Coupling

µ and ν means constructing two random variables X and Y on some probability space

(Ω,P) such that L(X) = µ and L(Y ) = ν. The couple (X, Y ) is called a coupling of

(µ, ν), by abuse of language, the law of (X, Y ) is also called a coupling.

If µ and ν are the only laws in the problem, without loss of generality, one may assume

Ω to be X × Y . In other terms, coupling µ and ν means constructing a measure π on

X × Y such that admits µ and ν as marginals on X and Y respectively. The following

three statements are equivalent to each other and they are all ways to rephrase what

have just been explained:

• (p1)#(π) = µ and (p2)#(π) = ν, where pi are the projection to the first or second

factor;

• For all measurable sets A ∈ X , B ∈ Y , one has π(A×Y) = µ(A) and π(X ×B) =

ν(B);

• For all integrable (or nonnegative) measurable function ϕ, ψ on X ,Y∫
X×Y

(ϕ(x) + ψ(y)) dπ(x, y) =

∫
X
ϕ(x) dµ(x) +

∫
Y
ψ(y) dν(y).

Remark 1.2. A coupling always exists, because we have always the trivial case in which

the random variables X, Y are independent, thus the joint distribution is the product

measure between µ, ν. However, since the value of X does not give any information

about Y , this can hardly be called a coupling.

Another extreme case is when all the information about the value of Y is contained in

the value of X, in other words, Y is a deterministic function of X. Notice that this is

not a symmetric property in general.
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Definition 1.3 (Deterministic Couplings). With the same notation of Definition 1.1, a

coupling (X, Y ) is said to be a deterministic one if there exists a measurable function

T : X −→ Y such that Y = T (X).

Saying that (X, Y ) is a deterministic coupling of µ and ν, is strictly equivalent to one

of the four statements below:

• (X, Y ) is a coupling of µ and ν whose law π is concentrated on the graph of a

measurable function T : X −→ Y ;

• X has law µ and Y = T (X), where T#µ = ν;

• X has law µ and Y = T (X), where T is a change of variables form µ to ν: for

all ν-integrable (or nonnegative) function ϕ,∫
Y
ϕ(y) dν(y) =

∫
X
ϕ(T (x)) dµ(x);

• π = (Id, T )#µ.

The map T is the same in all these statements and is uniquely defined µ-almost surely,

once the law of (X, Y ) has been fixed. The converse is also true: if T and T̃ coincide

µ-almost surely, then T#µ = T̃#µ. However deterministic couplings do not always exist

such as common couplings; if µ is a Dirac mass and ν is not, we cannot find a measurable

function T . In other cases one may find infinitely many deterministic couplings between

two given probability measures.

We give an example of an important coupling, that we will se to be coherent with

the main chapter.

Example 1.4 (Optimal coupling or Optimal transport). Here one introduces a cost func-

tion c(x, y) on X×Y that can be interpreted as the work needed to move one unit of mass

from location x to location y. Then one considers the Monge-Kantorovich minimization

problem

inf {E[c(X, Y )] : L(X) = µ, L(Y ) = ν} ;

In terms of measures, it is equivalent to find

C(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y).

Those joint measures are called transference plan and those achieving the infimum are

called optimal transference plan.

Once we let c to be lower semicontinuous and X ,Y to be Polish spaces, nontrivial

results can be obtained.
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Definition 1.5 (Lower semicontinuity). Let X be a topological space and f : X −→ R.
f is said to be lower semicontinuous in x0 ∈ X if f(x0) ∈ R and for all ε > 0, there

is a neighborhood U of x0 such that f(x) > f(x0)− ε, for all x ∈ U . Another way to say

that is lim infx→x0 f(x) ≥ f(x0).

Remark 1.6. With the same hypothesis, except for f(x) < f(x0)+ε, we get the definition

of upper semicontinuous function. Like in previous definition, this is equivalent to

say lim supx→x0 f(x) ≤ f(x0).

The following lemma will be used to prove that the Wasserstein Metrics, defined in

Chapter 3 Section 3.1, satisfy the triangle inequality.

Lemma 1.7 (Gluing lemma). Let (Xi, µi), i = 1, 2, 3, be Polish spaces. If (X1, X2) is

a coupling of (µ1, µ2) and (Y2, Y3) is a coupling of (µ2, µ3), then one can construct a

triple of random variables (Z1, Z2, Z3) such that (Z1, Z2) has the same law of (X1, X2)

and (Z2, Z3) has the same law of (Y2, Y3).

The idea behind it is that if π12 is the law of (X1, X2) on X1 ×X2 and π23 is the law

of (Y2, Y3) on X2×X3, then to construct the law π123 of (Z1, Z2, Z3), one just has to glue

π12 and π23 along their common marginal. In other terms disintegrate π12 and π23 as

follows:

π12(dx1 dx2) = π12(dx1|x2)µ2(dx2),

π23(dx2 dx3) = π23(dx3|x2)µ2(dx2);

then reconstruct π123 as

π123(dx1 dx2 dx3) = π12(dx1|x2)µ2(dx2)π23(dx3|x2).

Correlated to Example 1.4 there is a theorem and two lemmas that are really impor-

tant in sight of Chapter 3, but first let introduce Prokhorov’s Theorem.

Theorem 1.8 (Prokhorov’s theorem). If X is a Polish space, then a set K ⊂ P(X ) is

precompact for the weak topology if and only if it is tight.

Let clarify first some of those terms.

Definition 1.9 (Precompact with respect to weak topology). K ∈ P(X ) is said to

be precompact if any sequence in K has a subsequence that converges weakly to some

probability meausure on X . Then its closure with respect to weak topology is said to be

weakly compact.
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Definition 1.10 (Tightness). Let X be a Polish space, a subset K of P(X ) is tight if

for all ε > 0 there exists a compact set Kε ∈ X such that µ(X \Kε) ≤ ε for all µ ∈ K.

Corollary 1.11. Let (X , d) be a Polish space and let K ⊂ P(X ) be a finite subset, then

K is tight.

Proof. Let ε > 0 and µ ∈ P(X ). Using the separability of X , for any 1 ≤ p ∈ N, there
exists an m(p) ∈ N such that

µ

m(p)⋃
i=1

B2−pε(xi)

 > 1− 2−pε,

with each xi is in the dense of X . Let consider

K =
⋂
p≥1

m(p)⋃
i=1

B2−pε(xi).

It is closed as an intersection of finite unions of closed sets, thus it is complete since X
is complete. For any δ > 0, by simply choosing a p large enough so that 2−pε < δ,

K ⊂
m(p)⋃
i=1

B2−pε(xi) ⊂
m(p)⋃
i=1

Bδ(xi),

and K is totally bounded, proving that K is compact.

Last thing to check is the following:

µ(X \K) = µ

X \
⋂
p≥1

m(p)⋃
i=1

B2−pε(xi)

 = µ

⋃
p≥1

X \
m(p)⋃
i=1

B2−pε(xi)


≤
∑
p≥1

µ

E \
m(p)⋃
i=1

B2−pε(xi)

 ≤ ε
∑
p≥1

2−p = ε.

Therefore if K = {µ1, · · · , µl} we find l compact sets
{
K1, · · · , K l

}
; then by taking

K :=
l⋃

j=1

Kj,

µ(K) > 1− ε, for all µ ∈ K, concluding the proof.

The first good thing about optimal couplings is that they exist.
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Theorem 1.12 (Existence of an optimal coupling). Let (X , µ) and (Y , ν) be two Polish

probability spaces; let a : X −→ R ∪ {−∞} and b : Y −→ R ∪ {−∞} be two upper

semicontinuous functions such that a ∈ L1(X , µ), b ∈ L1(Y , ν).
Let c : X ×Y −→ R∪{+∞} be a lower semicontinuous cost function such that c(x, y) ≥
a(x) + b(y) for all x, y. Then there is a coupling of (µ, ν) that minimize the total cost

E [c(X, Y )] among all possible couplings (X, Y ).

Remark 1.13. The lower bound assumption on c guarantees that the expected cost

E [c(X, Y )] is well-defined on R ∪ {+∞}. For instance, if c is a distance, one may

choose a and b to be zero.

The proof relies on two properties: lower semicontinuity and compactness.

Lemma 1.14 (Lower semicontinuity of the cost functional). Let X and Y be two Polish

spaces and c : X × Y −→ R ∪ {+∞} be a lower semicontinuous cost function. Let

h : X × Y −→ R ∪ {−∞} be an upper semicontinuous cost function such that c ≥ h.

Let {πk}k∈N be a sequence of probability measures on X × Y, converging weakly to some

π ∈ P(X × Y) in such a way that h ∈ L1(X × Y , πk), h ∈ L1(X × Y , π) and∫
X×Y

h dπk −→
k→∞

∫
X×Y

h dπ.

Then ∫
X×Y

c dπ ≤ lim inf
k→∞

∫
X×Y

c dπk.

In particular, if c is nonnegative, then F : π →
∫
c dπ is a lower semicontinuous function

on P(X × Y), equipped with the topology of weak convergence.

Remark 1.15. In case c = d is a distance, it is always nonnegative, therefore, the Wasser-

stein distances introduced in Chapter 3 are lower semicontinuous functions.

Proof of Lemma 1.14. Replacing c with c − h, one may assume that c is a nonnegative

lower semicontinuous function. Then c can be written as the pointwise limit of a non-

decrescending bounded continuous real-valued function (cl)l∈N: cl ≤ cl+1 ↗ c and by

monotone convergence,∫
c dπ = lim

l→∞

∫
cl dπ = lim

l→∞
lim
k→∞

∫
cl dπk ≤ lim inf

k→∞

∫
c dπk.

Lemma 1.16 (Tightness of transference plan). Let X and Y be two Polish spaces. Let

K ⊂ P(X ) and H ⊂ P(Y) be two tight subsets. Then the set Π(K,H) of all transference

plans whose marginals lie in K and H respectively, is itself tight in P(X × Y).
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Proof of Lemma 1.16. Let µ ∈ K, ν ∈ H and π ∈ Π(µ, ν). By assumption, for any

ε > 0 there exists a compact set Kε ⊂ X , independent of the choice of µ in K, such that

µ(X \Kε) ≤ ε. Similarly there is a compact set Hε ⊂ Y , independent of the choice of ν

in H, such that ν(Y \Hε) ≤ ε. Then for any coupling (X, Y ) of (µ, ν),

P((X, Y ) /∈ Kε ×Hε) ≤ P(X /∈ Kε) + P(Y /∈ Hε) ≤ 2ε.

The result follows since this bound is independent of the choice of the coupling and

Kε ×Hε is compact in X × Y .

Proof of Theorem 1.12. Since X and Y are Polish spaces, {µ} is tight in P(X ), similarly

{ν} is tight in P(Y). By Lemma 1.16, Π(µ, ν) is tight in P(X ×Y) and by Prokhorov’s

Theorem, this set has a compact closure. Let {πn}n∈N be a sequence in Π(µ, ν); extracting

a subsequence if necessary, always denoted by {πn}, we know it converges weakly to some

π ∈ P(X × Y). Therefore even (p1)#(πn) converges weakly, to some measure on X , but

the marginals are fixed; we can apply the same reasoning with (p2)#. That proves that

even the marginals of π are µ and ν, so the limit measure lies in Π(µ, ν). Thus Π(µ, ν)

is closed. Moreover it is compact by sequences, so it is in fact compact.

Now let {πk}k∈N be a sequence of probability measures on X × Y such that
∫
c dπk

converges to the infimum transport cost. Extracting a subsequence if necessary, we

may assume that {πk} converges weakly to some π ∈ Π(µ, ν). Consider the function

h : (x, y) 7→ a(x)+b(y); we notice that h lies in L1(πk) and in L1(π), moreover
∫
h dπk =∫

h dπ =
∫
a dµ+

∫
b dν. By assumption c ≥ h, so Lemma 1.14 implies∫

X×Y
c(x, y) dπ ≤ lim inf

k→∞

∫
X×Y

c(x, y) dπk.

Thus π is minimizing, concluding the proof.

Another important result is the following:

Theorem 1.17. Let X and Y be two Polish spaces and let c ∈ C(X ×Y) be a real-valued

continuous cost function such that inf c > −∞. Let (ck)k∈N be a sequence of continuous

cost function converging uniformly to c on X × Y. Let {µk}k∈N and {νk}k∈N be two

sequences of probability measures on X and Y respectively. Assume that µk converges

weakly to µ and νk converges weakly to ν, then for each k, let πk be an optimal transference

plan between µk and νk. If for each k ∈ N,∫
X×Y

ck(x, y) dπk(x, y) < +∞,



1.2 Couplings and its Properties 9

then, up to an extraction of a subsequence of πk, still denoted the same for simplicity,

it converges weakly to some c-cyclically monotone transference plan π ∈ Π(µ, ν). If

moreover

lim inf
k→∞

∫
X×Y

ck(x, y) dπk(x, y) < +∞,

then the optimal transport cost C(µ, ν) is finite and π is optimal.

Definition 1.18 (Cyclical monotonicity). Let X , Y be to arbitrary sets and c : X×Y −→
(−∞,∞] be a function. A subset Γ ⊂ X × Y is said to be c-cyclically monotone if, for

any N ∈ N and any family (x1, y1), · · · , (xN , yN) of points in Γ, holds the inequality

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1), yN+1 = y1. (1.1)

A transference plan is said to be c-cyclically monotone if it is concentrated on a c-

cyclically monotone set.

Informally, a c-cyclically monotone plan is a plan that cannot be improved, it is

impossible to perturb it and get something more ”economical”.

Remark 1.19 (Kantorovich duality theorem; Villani - Optimal Transport, pag. 58). Let

X and Y be Polish spaces and c : X ×Y −→ R∪ {+∞} a continuous cost function such

that c(x, y) ≥ a(x) + b(y) for some continuous function a ∈ L1(X , µ) and b ∈ L1(Y , ν).
Then if C(µ, ν) =

∫
c dπ < +∞, there is a measurable c-cyclically monotone closed set

Γ ∈ X × Y such that for any π ∈ Π(µ, ν), the following two statements are equivalent:

a) π ∈ Π(µ, ν) is optimal;

b) π is c-cyclically monotone.

Define then

C(N) = {(x1, y1), · · · , (xN , yN) : holds (1.1)}.

Proof of Theorem 1.17. Since µk and νk are convergent sequences, by Prokhorov’s the-

orem, they constitute tight subsets, and by Lemma 1.16, Π({µk}k, {νk}k) is a tight set

of P(X × Y). Therefore, let πk be an optimal transference plan between µk and νk. Up

to extracting a subsequence, still denoted by πk, we know that πk converges weakly to

some π ∈ Π(µ, ν). The idea now is to prove that π is c-cyclically monotone. Since each

πk is optimal, it is concentrated on a ck-cyclically monotone set, so π⊗N
k is concentrated

on the set

Ck(N) = {(x1, y1), · · · , (xN , yN) : holds (1.1) for ck}.
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So if ε > 0 and N are given, for k large enough π⊗N
k is concentrated on the set Cε(N)

defined by
N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1) + ε.

Since this is a closed set, the same is true for π⊗N , and then by letting ε↘ 0, we see that

π⊗N is concentrated on C(N), so the support of π is c-cyclically monotone, as desired.

By the same argument of Theorem 1.12∫
c dπ ≤ lim inf

k→∞

∫
ck dπk < +∞.

In particular C(µ, ν) < +∞, then Remark 1.19 guarantees the optimality of π.

1.3 Other important results

In this section we see few more results that are quite interesting by themselves but

have useful applications as well. We first see Urysohn’s Lemma; it is necessary that

the space X is a T4 topological space: for all A,B ∈ X disjoint closed sets, there exist

U, V ∈ X disjoint open sets such that A ⊂ U and B ⊂ V . Since our focus is on Polish

spaces or metric spaces in general, they are indeed T4.

Lemma 1.20 (Urysohn’s Lemma). Let X be a T4 topological space and let A,B ∈ X
disjoint closed sets. Then there is a continuous function f : X −→ [0, 1] such that

• f(x) = 0 for all x ∈ A;

• f(x) = 1 for all x ∈ B;

• f(x) ∈ (0, 1) for all x ∈ X \ (A ∪B).

Proof. Let start by having in mind that D := Q ∩ [0, 1] is dense in [0, 1]. Thus we can

write D = {qj}j∈N, q0 = 0 and taken in ascending order. For all q ∈ D, we can construct

an open set Uq ⊂ X so that:

• A ⊂ U0;

• Uq ⊂ Ur for all q < r;

• B ∩
⋃
q<1 Uq = ∅.
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For all r > q we use the property T4 of X by separating the closed set Uq with B. We

now achieved an increasing sequence of open sets {Uq : q ∈ D} such that

A ⊂ U0 ⊂
⋃

0≤q≤1

Uq ⊆ X \B.

We are ready to define f : Let f(x) = inf{q ∈ D : x ∈ Uq} and let f(x) = 1 if x /∈ Uq for

any q ∈ D, which is equivalent to define f(x) = 1 for all x ∈ B. Last thing to check is

that f is continuous. It is enough to prove that the pre-image of an open set in [0, 1] is

open. Notice that if 0 ≤ a < b ≤ 1, (a, b) = [0, b) ∩ (a, 1].

f−1([0, b)) = {x ∈ X : f(x) < b} =
⋃

q∈D, q<b

Uq;

f−1((a, 1]) = {x ∈ X : f(x) > a}

= X \ {x ∈ D : f(x) ≤ a} = X \
⋃

q∈D, q≤a

Uq.

They are both open sets in X , therefore f is continuous.

Using this Lemma, it is possible to show a very important theorem, which gives us a

much way easier method to prove if a sequence of probability measures converges weakly

to some µ ∈ P(X ):

Theorem 1.21 (Portmanteau Theorem). Let (X , d) be a separable metric space, then

the following statements are equivalent:

1) µk
w−→ µ ;

2) lim supk→∞ µk(F ) ≤ µ(F ), for all F ∈ X closed;

3) lim infk→∞ µk(U) ≥ µ(U), for all U ∈ X open.

Proof.

1

3 2

First step: 1) ⇒ 2). Let F ∈ X closed, B1/n = {y ∈ X : ∃x ∈ F s.t. d(x, y) < 1/n} and

G = X \ B1/n. Notice that F and G are disjoint closed sets, so, by Urysohn’s Lemma

1.20, there is a continuous function f : X −→ [0, 1] such that f(F ) = 1 and f(G) = 0.

Of course we have

1F (x) ≤ f(x) ≤ 1B1/n(x) for all x ∈ X .
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Then

µk(F ) =

∫
X
1F (x) dµk(x) ≤

∫
X
f(x) dµk(x).

Applying the supremum limit and knowing that f ∈ bC(X ) we get

lim sup
k→∞

µk(F ) ≤
∫
X
f(x) dµ(x)

≤
∫
X
1B1/n dµ(x)

= µ(B1/n),

On the other hand, B1/n ↘ F , in fact⋂
n>0

B1/n = F,

therefore

lim
n→∞

µ(B1/n) = µ(F ).

At this point we proved that for all n ∈ N, lim supk→∞ µk(F ) ≤ µ(B1/n), then

lim sup
k→∞

µk(F ) ≤ lim
n→∞

µ(B1/n) = µ(F ).

Second step: 2) ⇒ 3). Passing to the complementary, we get

lim sup
k→∞

[1− µk(X \ F )] = 1− lim inf
k→∞

µk(X \ F ) ≤ 1− µ(X \ F ).

Notice that X \ F is an open set. Therefore for any open set U ∈ X holds

µ(U) ≤ lim inf
k→∞

µk(U).

Third step: 3) ⇒ 1). Let f ∈ bC(X ) and D = ∥f∥∞ < +∞. Without loss of generality

one may suppose 0 ≤ f ≤ 1, otherwise let f̃ = D+f
2D

. Let ε > 0; we can approximate f

from below to a function g =
∑m

i=1 ai1Ai
, in which each Ai is an open set, 0 ≤ ai ≤ 1

and 0 ≤ g ≤ f , such that ∫
X
f dµ−

∫
X
g dµ ≤ ε.

Then ∫
X
f dµ ≤

∫
X
g dµ+ ε =

m∑
i=1

aiµ(Ai) + ε

≤ lim inf
k→∞

m∑
i=1

aiµk(Ai) + ε = lim inf
k→∞

∫
X
g dµk + ε

≤ lim inf
k→∞

∫
X
f dµk + ε.
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Then letting ε ↘ 0 we have
∫
X f dµ ≤ lim infk→∞

∫
X f dµk. Now, reasoning with −f ,

we will get

−
∫
X
f dµ =

∫
X
−f dµ

≤ lim inf
k→∞

∫
X
−f dµk = lim inf

k→∞

(
−
∫
X
f dµk

)
= − lim sup

k→∞

∫
X
f dµk.

Therefore ∫
X
f dµ ≤ lim inf

k→∞

∫
X
f dµk ≤ lim sup

k→∞

∫
X
f dµk ≤

∫
X
f dµ.

Thus it is actually an equality and∫
X
f dµk −→

∫
X
f dµ.

Remark 1.22. We used the previous theorem in the proof after Definition 3.8, to prove

that i implies iii, but why is it legit? If Xk is a random variable on a probability space

(Ω,G,P) with law µk converging weakly to a random variable X with law µ, then

lim sup
k→∞

∫
X
1d(x0,x)≥R dµk(x) = lim sup

k→∞
P(d(x0, Xk) ≥ R)

= lim sup
k→∞

P(Xk ∈ H) ≤ P(X ∈ H)

=

∫
X
1d(x0,x)≥R dµ(x).

Where H := {x ∈ X : d(x0, x) ≥ R} ⊂ X is a closed set.

To prove that the Wasserstein metric, in Chapter 3, satisfies the triangle inequality

we used the Minkovsky inequality, in addition to the Gluing Lemma 1.7.

Let (X ,G, λ) be a measurable space and let f, g : X −→ R two measurable functions

such that

f, g ∈ Lp(X ) :=

{
h : X −→ R measurable :

∫
X
|h|p dλ < +∞

}
/ ∼, p ≥ 1.

where the equivalence relationship is given by:

f ∼ g if and only if the set A = {x ∈ X : f(x) ̸= g(x)} is λ-negligible.

Define the Lp-norm as follows

∥h∥Lp :=

(∫
X
|h|p dλ

)1/p

.
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Thanks to Holder’s inequality it is easy to show that ∥·∥Lp satisfies the triangle inequality:

∥f + g∥pLp =

∫
E

|f + g|p dλ

≤
∫
E

|f + g|p−1|f | dλ+

∫
E

|f + g|p−1|g| dλ

≤
(∫

E

|f + g|p dλ
) p−1

p

∥f∥Lp +

(∫
E

|f + g|p dλ
) p−1

p

∥g∥Lp

= ∥f + g∥p−1
Lp ∥f∥Lp + ∥f + g∥p−1

Lp ∥g∥Lp ,

Concluding once we divide both sides by ∥f + g∥p−1
Lp , supposing it is not zero, otherwise

it would be obvious.

Another important thing that deserves some attention is Corollary 3.10; it will be

proved thatWp is continuous even though it will be demonstrated by using the definition

of sequentially continuity. Those two definitions are not necessarily equivalent in general,

however, if (X , d) is a metric space, they are.

Proposition 1.23. Let f : (X , d) −→ R and x0 ∈ (X , d), then f is continuous in x0 if

and only if it is sequentially continuous: for any sequence (xn)n such that xn → x0, then

f(xn) → f(x0).

Proof. First step. Suppose f is continuous in x0. Then for any ε > 0, there is a δ > 0

such that f(Bδ(x0)) ⊂ Bε(f(x0)). Since xn → x0, there exists an N ∈ N such that

xn ∈ Bδ(x0) for all n ≥ N . Therefore f(xn) ∈ Bε(f(x0)) and letting ε↘ 0, we conlude.

Second step. Suppose that f is not continuous in x0, then there exists an open

neighborhood V ∋ f(x0) such that for all U ∋ x0, f(U) ̸⊂ V . In particular for any δ > 0

there in an N ∈ N such that xn ∈ Bδ(x0) for all n ≥ N . Therefore f(xn) /∈ V and

f(xn) ̸→ f(x0), which is a contradiction.



Chapter 2

Distances between measures

In this chapter we are going to introduce three probability metrics. Total Varia-

tion distance has an interesting coupling characterization and is important because it is

strictly correlated to the L1-norm of measures. Levy-Prokhorov distance is theoretically

important because it gives a strong topological structure to P(X ) if X is a complete and

separable metric space. The Kantorovich-Rubenstein distance has a rich duality, that

will be be proved in the next chapter.

2.1 Total Variation distance

Let (X ,F) be any measurable space. Total Variation distance between two proba-

bility measures µ and ν is defined as follows:

dTV (µ, ν) := sup
A⊂X

|µ(A)− ν(A)| (2.1)

where A is a measurable subset of X .

Proposition 2.1. Total variation distance is half the L1-norm.

Proof. By definition, ∥µ − ν∥TV = |µ− ν| (X ). Let σ = µ − ν, then by Hahn-Jordan

decomposition, since σ is finite, there exist two positive finite measure such that σ =

σ+ − σ−. Notice that σ(X ) = 0, that implies that σ+(X ) = σ−(X ), therefore

|σ| (X ) = σ+(X ) + σ−(X ) = 2σ+(X ).

Then by definition

sup
A∈X

|σ(A)| ♢
= σ+(X ).

15
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That concludes the proof, in fact

dTV (µ, ν) = sup
A∈X

|µ(A)− ν(A)| = sup
A∈X

|σ(A)|

= σ+(X ) =
1

2
[2σ+(X )] =

1

2
|σ| (X )

=
1

2
|µ− ν| (X ) =

1

2
∥µ− ν∥TV .

For a countable state space X , the definition above becomes

dTV (µ, ν) =
1

2

∑
x∈X

|µ(x)− ν(x)| ,

which is of course half the L1-norm between the two measures, as we just proved. In

that case we can explicitly find the one subset of X that verifies ♢.

Proof. We see X as a set of indices, therefore we are going to write µ(i) := µ({xi}). Our

target is the biggest set I ⊂ X such that µ(i) > ν(i) for all i ∈ I. It is quite simple to

understand why: if we remove one of those indices or add one in Ic, in the first case we

left behind a positive number to add, in the second case we are adding a non-positive

number. We then notice that∑
i∈I

µ(i)− ν(i) =
∑
i∈X

µ(i)− ν(i)−
∑
i∈Ic

µ(i)− ν(i)

=
∑
i∈Ic

ν(i)− µ(i)

Therefore

dTV (µ, ν) =
∑
i∈I

µ(i)− ν(i)

=
1

2

(∑
i∈I

µ(i)− ν(i) +
∑
i∈Ic

ν(i)− µ(i)

)

=
1

2

∑
i∈X

|µ(i)− ν(i)| .

That means that (µ− ν)+( · ) = (µ− ν)( · ∩ I) and (µ− ν)−( · ) = −(µ− ν)( · ∩ Ic).

In all cases it assumes values in [0, 1] .

We now give its coupling characterization:

dTV (µ, ν) = inf
π∈Π(µ,ν)

∫
X×X

1{x ̸=y} dπ(x, y) (2.2)

= inf {P(X ̸= Y ) : L(X) = µ, L(Y ) = ν} .
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It is now important to understand why (2.2) is equivalent to (2.1). In general, let

(X, Y ) be a coupling of µ, ν on a probability space (Ω,G,P). For all A ∈ X measurable,

|µ(A)− ν(A)| = |P(X ∈ A)− P(Y ∈ A)|

= |P(X ∈ A ∩X ̸= Y ) + P(X ∈ A ∩X = Y )+

− P(Y ∈ A ∩X ̸= Y )− P(Y ∈ A ∩X = Y )|

= |P(X ∈ A ∩X ̸= Y )− P(Y ∈ A ∩X ̸= Y )|

≤ max {P(X ∈ A ∩X ̸= Y ),P(Y ∈ A ∩X ̸= Y )}

≤ P(X ̸= Y ).

Since the result does not depend on A or the coupling chosen, applying the supremum

over all measurable subset of X and taking the infimum over all couplings of µ and ν,

the inequality remains true. The idea now is to find a coupling that gives the equality.

Let ∆ = {(x, x) : x ∈ X} be the diagonal of X×X . Let ψ : (X ,F) −→ (X×X ,F×F)

defined as x 7−→ (x, x). We observe it is a measurable function, in fact, given A,B ∈ F ,

ψ−1(A×B) = ψ−1(A×B ∩∆)

= ψ−1({(x, y) ∈ A×B : x = y})

= A ∩B ∈ F .

Define λ := µ + ν; since µ, ν ≤ λ, both µ and ν are absolutely continuous with respect

to λ, so we can define

g =
dµ

dλ
g′ =

dν

dλ
.

Now define η on (X ,F) as
dη

dλ
= g ∧ g′

and the push-forward measure ψ#η = η ◦ ψ−1. Notice they are both sub-probability

measures, otherwise we would conclude that g = g′ λ-almost surely and µ = ν; thus

it would be obvious that both the definitions of the Total Variation distance are zero.

Then ψ#η gives all its mass on ∆, let call γ = ψ#η(∆) = η(X ). Let

ζ = µ− η, ζ ′ = ν − η, P =
ζ ⊗ ζ ′

1− γ
+ ψ#η.

Then

P(A×X ) =
ζ(A)⊗ ζ ′(X )

1− γ
+ ψ#η(A×X )

=
(µ(A)− η(A)) (1− γ)

1− γ
+ η(A)

= µ(A).
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With the same reasoning, we get P(X ×A) = ν(A), therefore P is a coupling. We remind

that dTV (µ, ν) =
1
2
∥µ − ν∥L1 and if µ and ν are absolutely continuous with respect to

a common measure λ, then ∥µ − ν∥L1 =
∫
X |g − g′| dλ, where g and g′ are the density

functions. Then, notice that |g − g′| = g + g′ − 2(g ∧ g′); so we get

dTV (µ, ν) =
1

2
∥µ− ν∥L1 =

1

2

∫
X
|g − g′| dλ

= 1−
∫
X
(g ∧ g′)dλ ♠

= 1− η(X )

= 1− γ
♢
= P(∆c) = P(X ̸= Y ),

where X, Y are random variables with respective laws µ, ν. The equality signed by ♠ is

by definition of η and the one signed by ♢ is because of ψ#η(∆
c) = 0, and (ζ⊗ζ ′)(∆c) =

ζ(X ) ζ ′(X ) = (1− γ)2.

2.2 Levy-Prokhorov metric

Let (X , d) be any metric space;

dLP (µ, ν) := inf {ε > 0 : µ(B) ≤ ν(Bε) + ε, for all Borel sets B} (2.3)

where Bε = {x ∈ X : ∃ y ∈ B such that d(x, y) < ε} . It assumes value in [0, 1].

It is easy to show that this metric is symmetric in µ and ν, in fact

µ(B)− ν(Bε) ≤ ε =⇒ ν((Bε)c)− µ(Bc) ≤ ε.

Therefore, letting C := (Bε)c, it is quite simple to understand that Bc = Cε.

It also satisfies the triangle inequality. Let ϵ1 = dLP (µ, η) and ϵ2 = dLP (η, ν). Then

µ(A)− ν(Aϵ1+ϵ2) = µ(A)− η(Aϵ1)

+ η(Aϵ1)− ν((Aϵ1)ϵ2)

≤ ϵ1 + ϵ2.

Since ϵ1 + ϵ2 verifies the condition of Levy-Prokhorov between µ and ν, it follows that

dLP (µ, ν) ≤ ϵ1 + ϵ2 = dLP (µ, η) + dLP (η, ν).

While not easy to compute, this metric is theoretically important because it metrizes

weak convergence on any separable metric space; in other terms, dLP (µn, µ) → 0 as n

approaches infinity, implies that the sequence of the {µn}n converges weakly to µ, and

viceversa. Moreover, it is precisely the minimum distance in probability between two

random variables with respect distribution fixed.
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Proposition 2.2 (Levy-Prokhorov distance is bounded by Total variation distance).

For any metric space we have the following bound:

dLP ≤ dTV . (2.4)

Proof. Let ϵ := dTV (µ, ν), then for any Borel set B, we have µ(B)− ν(B) ≤ ϵ. Since we

know, by definition, that Bϵ contains B, ν(B) ≤ ν(Bϵ), therefore µ(B)− ν(Bϵ) ≤ ϵ. In

other words, the chosen ϵ verify the condition of Levy-Prokhorov’s metric, so it’s obvious

that dLP (µ, ν) ≤ ϵ.

Theorem 2.3. If (X , d) is a separable metric space, then Levy-Prokhorov distance

metrize weak convergence. In particular, convergence under the Levy-Prokhorov dis-

tance generates the same topology induced by convergence against bounded continuous

test functions, i.e. the weak topology.

Proof. First step. dLP (µn, µ) −→ 0 =⇒ µn
w−→ µ.

By definition, since X is separable, for all k ∈ N, there is an N ∈ N such that for all

n ≥ N , µn(A) − µ(A1/k) ≤ 1/k and µ(A) − µn(A
1/k) ≤ 1/k, for all A ∈ B. The idea

is to prove that the condition for closed sets of Portmanteau Theorem 1.21 holds. Let

F be a closed set. Then F 1/k ↘ F as k → ∞, in fact, F =
⋂
k≥1 F

1/k. Consider

µn(F ) ≤ µ(F 1/k) + 1/k; since the right-hand side does not depend on n, the inequality

remains true even after applying the supremum limit on the left-hand side. Therefore,

for any k, holds

lim sup
n→∞

µn(F ) ≤ µ(F 1/k) + 1/k,

concluding the first step once we let k → ∞.

Second step. µn
w−→ µ =⇒ dLP (µn, µ) −→ 0.

We want to prove that for any ε > 0 there is an N ∈ N such that d(µ, µn) ≤ ε for all

n ≥ N . For any measurable set B ∈ X , let F = B and U = Bε. Notice that F is closed,

U is open and F ⊂ U , regardless the choice of B. By Portmanteau Theorem 1.21, we

know that for any closed set H and open set V

lim sup
n→∞

µn(H) ≤ µ(H) and lim inf
n→∞

µn(V ) ≥ µ(V ).

That means that for any ε > 0, there is an N ∈ N such that for any n ≥ N,

µn(H) ≤ µ(H) + ε and µn(V ) ≥ µ(V )− ε.

In particular, this holds for F and U chosen earlier, therefore

µn(B) ≤ µn(F ) ≤ µ(F ) + ε ≤ µ(Bε) + ε

µ(B) ≤ µ(Bε) ≤ µn(B
ε) + ε,
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which is exactly dLP (µ, µn) ≤ ε, for all n ≥ N .

Lemma 2.4. Let X be a Polish space. Then Cauchy sequences in the Levy-Prokhorov

distance are tight.

Proof. Let {µn}n∈N be a Cauchy sequence, then dLP (µj, µk) −→
j,k→∞

0. Now, let ε > 0;

by definition there is an N ∈ N such that dLP (µk, µN) < ε for any k > N . Notice that

since {µ1, · · · , µN} is finite, it is tight, so there exists a compact set K ∈ X such that

µj(K) > 1− ε, j ∈ {1, · · · , N}. Then

K ⊂
m⋃
i=1

Bε(xi) ⊂ Kε ⊂
m⋃
i=1

B2ε(xi) ⊂
m⋃
i=1

B2ε(xi).

Next, for all k > N , we get the following:

µk(K
ε) = µN(K) + [µk(K

ε)− µN(K)]

♠
> 1− ε− ε = 1− 2ε.

where the inequality signed by ♠ follows from the choice of N and by definition, in fact

µN(K)− µk(K
ε) ≤ ε. Therefore

µk

(
m⋃
i=1

B2ε(xi)

)
> 1− 2ε, for all k ∈ N.

With the same reasoning, replacing ε with 2−(p+1)ε, we get

µk

m(p)⋃
i=1

B2−pε(xi)

 > 1− 2−pε, for all k ∈ N.

Thus, the set

S =
⋂
p≥1

m(p)⋃
i=1

B2−pε(xi),

satisfies µk(X \ S) ≤ ε for all k. S is closed as an intersection of finite unions of closed

balls. Since it is closed, it is complete. Then for any δ > 0 one could choose p large

enough such that 2−pε < δ, so

S ⊂
m(p)⋃
i=1

B2−pε(xi) ⊂
m(p)⋃
i=1

Bδ(xi),

and S is totally bounded. Therefore S is compact.
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At this point, if X is separable, we are able to say that P(X ), equipped with the

topology of weak convergence, is in fact metrizable with respect to Levy-Prokhorov

metric. In other words, (P(X ), dLP ) is a metric space, in fact dLP is symmetric, satisfies

the triangle inequality and dLP (µ, ν) = 0 implies that µ = ν.

Theorem 2.5. Let X be a Polish space, then P(X ) is itself Polish. In an equivalent way,

one could say that P(X ) equipped with dLP is a complete and separable metric space.

Proof. The fact that (P(X ), dLP ) is a metric space was already explained.

Let prove the separability first. Let denote D the dense in X and let µ ∈ P(X ). Since

{µ} is tight, for any ε > 0 there exists a compact set K such that µ(X \K) ≤ ε. The

goal is to find a discrete measure µ̃ that approximate µ with an error at most of ε. By

compactness of K and separability of X , there are {x1, · · · , xm} ∈ D such that

K ⊆
m⋃
i=1

Bε/2(xi).

Then, by taking D1 = Bε/2(x1) ∩K and Di = (Bε/2(xi) ∩K) \
⋃
j<iBε/2(xj), we notice

that this is a finite partition and each Di has diameter smaller then ε. Therefore

K =
m⊎
i=1

Di.

Let x0 ∈ (X \K) ∩ D. Consider now the following measurable function

f : X −→ X

x 7−→ xi if x ∈ Di

x 7−→ x0 if x ∈ X \K,

and define µ′ = f#µ; of course µ
′ can be written as

∑m
i=0 qiδxi . Notice that µ′({x0}) =

µ(X \K) ≤ ε. For any A ∈ B, if we take Aε = {x ∈ X : ∃ y ∈ A such that d(x, y) < ε},
we notice that

µ′(A ∩K) = µ
(
f−1(A ∩K)

)
= µ

(
f−1

( ⋃
xi∈A∩K

{xi}

))

= µ

( ⋃
xi∈A∩K

Di

)
≤ µ(Aε);

µ(A ∩K) ≤ µ

( ⋃
xi∈Aε∩K

Di

)
= µ′

( ⋃
xi∈Aε∩K

{xi}

)

≤ µ′

( ⋃
xi∈Aε

{xi}

)
= µ′(Aε).
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Therefore

µ(A) = µ(A ∩K) + µ(A \K) ≤ µ(A ∩K) + µ(E \K) ≤ µ′(Aε) + ε;

µ′(A) = µ′(A ∩K) + µ′(A \K) ≤ µ′(A ∩K) + µ′({x0}) ≤ µ(Aε) + ε.

Denote now µ̃ =
∑m

i=0 piδxi , with pi ∈ Q ∩ [0, 1]; then by Proposition 2.2,

dLP (µ̃, µ
′) ≤ dTV (µ̃, µ

′) =
1

2

m∑
i=0

|qi − pi| < ε,

for some well chosen rational coefficients. Then

dLP (µ, µ̃) ≤ dLP (µ, µ
′) + dLP (µ

′, µ̃) ≤ 2ε.

Therefore the set of all discrete measures with finite support and rational coefficients is

dense in P(X ) because D is countable, as well as Q ∩ [0, 1].

Let prove the completeness. Let {µn}n∈N be a Cauchy sequence. Thanks to the previous

Lemma, we know it is tight, therefore, Prokhorov’s Theorem guarantees the existence of

a sub-sequence {µj′} converging weakly to some measure µ. Let ε > 0, then there exists

an N ∈ N such that for all j′, n > N , we get

dLP (µn, µ) ≤ dLP (µn, µj′) + dLP (µj′ , µ) ≤ ε+ ε = 2ε.

So µn
w−→ µ and that ends the argument.

2.3 Kantorovich-Rubenstein metric

For any complete and separable metric space (X , d), the Kantorovich-Rubenstein

distance is defined as follows:

W1(µ, ν) := sup

{∫
X
h dµ−

∫
X
h dν : ∥h∥L ≤ 1

}
, (2.5)

where d is the metric of X and the supremum is taken over all h satisfying the Lipschitz

condition |h(x)− h(y)| ≤ d(x, y).

It assumes value in [0, diam(X )], where diam(X ) = sup{d(x, y) : x, y ∈ X}. If X
is compact, W1 metrizes weak convergence; it will be rather easy to prove (see above

Theorem 3.9). If diam(X ) is not bounded, then it is not guaranteed that W1 is always

bounded, therefore it might not be a metric in the strict sense. However, this problem

can be overcome by reasoning on a sub-space of P(X ), in which will take finite value.
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Remark 2.6. The notation chosen for this metric is due to Kantorovich-Rubenstein theo-

rem (Proposition 3.5), that affirms that the Kantorovich metric is equal to the Wasser-

stein metric of order one, i.e.

W1(µ, ν) := inf
π∈Π(µ,ν)

∫
X×X

d(x, y) dπ(x, y), (2.6)

where the infimum is taken over all joint distributions with fixed marginals µ, ν.

The proof to that is seen in Corollary 3.6.
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Chapter 3

Wasserstein Metric

In this chapter, we are going to define several properties of the Wasserstein metric,

for instance, his relationship with weak convergence in the Wasserstein space. Last but

not list we are going to describe the topological properties that the Wasserstein space

inherits from the state space.

We denote by (E, d) a complete and separable metric space, but for abuse of notation

we refer to it as a Polish space; we implicitly assume that d is the one distance on E

making E a complete and separable metric space. The σ-algebra E equipping E is always

assumed to be the Borel σ-algebra B(E), which does not depend on the choice of the

particular compatible distance.

Before we actually define the Wasserstein metric, it comes natural to consider first the

optimal transport cost between two measure

C(µ, ν) = inf
π∈Π(µ,ν)

∫
E×E

c(x, y) dπ(x, y), (3.1)

with respect to a cost function c(x, y). We can think of c as the function representing the

cost to transport one unit of mass from point x to y. It is natural to see (3.1) as a kind

of distance between µ and ν, but in general it does not satisfy the axioms of distance.

However, when the cost function is defined in terms of a distance, we can easily construct

a class of metrics.

25
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3.1 Wasserstein Metrics and Wasserstein Spaces

Definition 3.1 (Wasserstein metric). Let (E, d) be a Polish space, and let p ∈ [1,∞).

The Wasserstein metric of order p between two measures µ and ν is defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
E×E

d(x, y)p dπ(x, y)

) 1
p

(3.2)

= inf
{
E [d(X, Y )p]

1
p : L(X) = µ,L(Y ) = ν

}
.

Remark 3.2. By putting p = 1, we have (2.6).

At the moment, Wp is still defined on the space of all probability measures over E,

denoted by P(E), thus it might take the value +∞. That means it is still not a distance

in the strict sense, however it satisfies the axioms of distance.

Proof that Wp satisfies the axioms of a distance. Since d(x, y)p is non negative, Wasser-

stein metric is non negative as well, and by Fubini’s theorem, you can change the order

of integration, that means it’s also symmetric in µ and ν. We now prove that satisfies

triangle inequality: thanks to Lemma 1.16 we know that Π(µ, ν) is a nonempty compact

set, which means that the infimum in the Definition 3.1 is always attained by at least

one coupling. To be more clear, the subset of Π(µ, ν) satisfying the infimum is denoted

by

Πopt
p (µ, ν) =

{
π ∈ Π(µ, ν) : Wp(µ, ν)

p =

∫
E×E

d(x, y)p dπ(x, y)

}
.

Next, let µ1, µ2 and µ3 be three probability measures on E, and let (X1, X2) be an

optimal coupling of (µ1, µ2) and (Z2, Z3) be an optimal coupling of (µ2, µ3). By the

Gluing Lemma 1.7, there exist random variables (Y1, Y2, Y3) with L(Y1, Y2) = L(X1, X2)

and L(Y2, Y3) = L(Z2, Z3). In particular (Y1, Y3) is a coupling of (µ1, µ3), so

Wp(µ1, µ3) ≤ E [d(Y1, Y3)
p]

1
p ≤ E [(d(Y1, Y2) + d(Y2, Y3))

p]
1
p

♠
≤ E [d(Y1, Y2)

p]
1
p + E [d(Y2, Y3)

p]
1
p

= Wp(µ1, µ2) +Wp(µ2, µ3)

where the last equality follows from (Y1, Y2) and (Y2, Y3) being optimal couplings and the

inequality signed by ♠ follows from Minkovsky inequality. So Wp satisfies the triangle

inequality. Finally we assume that Wp(µ, ν) = 0; then there exist a transference plan

which is entirely concentrated on the diagonal (y = x) in E × E, so ν = Id#(µ) = µ.

To complete the construction, it is natural to restrict Wp to a subset of P(E)×P(E)

on which it takes finite value.
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Definition 3.3 (Wasserstein space). With the same hypothesis of Definition 3.1, the

Wasserstein space of order p is defined as

Pp(E) :=
{
µ ∈ P(E) :

∫
E

d(x0, x)
p dµ(x) <∞

}
,

where x0 ∈ E is arbitrary. This space does not depend on the chosen point x0. Then Wp

defines a finite measure on Pp(E).

Proof that the definition above does not depend on x0. Let x0, y0 ∈ E. The following in-

equalities

d(x0, x)
p ≤ 2p−1(d(x0, y0)

p + d(y0, x)
p)

d(y0, x)
p ≤ 2p−1(d(x0, y0)

p + d(x0, x)
p),

tell us that d(x0, · )p is µ-integrable if and only if d(y0, · )p is µ-integrable.

Proof that Wp is finite on Pp(E). Let π ∈ Π(µ, ν), with µ, ν ∈ Pp(E). The inequality

d(x, y)p ≤ 2p−1(d(x, x0)
p+d(x0, y)

p) shows that if d( · , x0)p is µ-integrable and d(x0, · )p

is ν-integrable, then d(x, y)p is π(dx dy)-integrable, which means that Wp(µ, ν) <∞.

Since Wp is finite on Pp(E) and satisfies the axioms of a distance, it is actually a

distance on the Wasserstein space of order p, therefore (Pp(E),Wp) is a metric space.

Remark 3.4. if p ≤ q, then Wp ≤ Wq.

Proof. We recall the Jensen inequality first: if f : E → R is a continuous concave

function, and Z is a random variable on (Ω,G,P) which takes values in E, then

E [f(Z)] ≤ f(E [Z]). (3.3)

Let us get into the proof. The function f(x) = xp/q is concave if restricted to the non-

negative values of x, since p ≤ q. Let (X, Y ) be an optimal coupling for the Wasserstein

distance of order q; the existence is guaranteed by Theorem 1.12. Then

Wp(µ, ν)
p ≤ E[d(X, Y )p]

= E[(d(X, Y )q)p/q]

(3.3)

≤ E[(d(X, Y )q)]p/q

= Wq(µ, ν)
p.

Last equality is due to the choice of the coupling, concluding the proof.
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The next result is known as the Kantorovich duality theorem, which is central to the

theory of optimal transportation.

Proposition 3.5. Let (E, d) a Polish space, p ≥ 1 and µ, ν ∈ Pp(E), then

Wp(µ, ν)
p = sup

ϕ,ψ: ϕ(x)+ψ(y)≤d(x,y)p

[∫
E

ϕ(x) dµ(x) +

∫
E

ψ(y) dν(y)

]
, (3.4)

where the supremum is taken over all real valued bounded continuous functions ϕ and ψ

on E. Moreover, if π ∈ Πopt
p (µ, ν) is an optimal transport plan between µ and ν, then

there exists ϕ ∈ L1(E, µ) and ψ ∈ L1(E, ν) such that for π-almost every (x, y) ∈ E ×E,

ϕ(x) + ψ(y) = d(x, y)p.

Proof. First step. Let us denote by W̃p(µ, ν)
p the right-end side of (3.4). We want

to prove that satisfies the triangle inequality in the sense that given µ, ν and η three

probability measures on Pp(E), we have:

W̃p(µ, ν) ≤ W̃p(µ, η) + W̃p(η, ν).

The idea is borrowed from classical analysis proof that the norm of Lp spaces satisfies the

triangle inequality. Let (0,∞)2 ∋ (x, y) 7−→ ci(x, y) ∈ (0,∞), i = 1, 2, be deterministic

function such that

(a+ b)p = inf
s,t>0

[c1(s, t)a
p + c2(s, t)b

p] . (3.5)

Now let ϕ and ψ be two real valued bounded continuous functions on E satisfying

ϕ(x) + ψ(y) ≤ d(x, y)p for all x, y ∈ E. Notice that (3.5) implies that for any s, t > 0

and x, y, z ∈ E we have:

ϕ(x) + ψ(y) ≤ d(x, y)p ≤ (d(x, z) + d(z, y))p ≤ c1(s, t)d(x, z)
p + c2(s, t)d(z, y)

p. (3.6)

Now, having s and t fixed, we define for all z ∈ E,

ξ(z) = inf
x∈E

[c1(s, t)d(x, z)
p − ϕ(x)] .

By construction for all x, z ∈ E,

ϕ(x) + ξ(z) ≤ c1(s, t)d(x, z)
p. (3.7)

Moreover, using (3.6), we get

ψ(y)− ξ(z) = ϕ(x) + ψ(y)− ξ(z)− ϕ(x)

≤ c1(s, t)d(x, z)
p + c2(s, t)d(z, y)

p − ξ(z)− ϕ(x)

= [c1(s, t)d(x, z)
p − ϕ(x)] + c2(s, t)d(z, y)

p − ξ(z).
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Since the left-hand side does not depend upon x ∈ E, the inequality remains true after

taking the infimum on the right-hand side. Thus,

ψ(y)− ξ(z) ≤ inf
x∈E

[c1(s, t)d(x, z)
p − ϕ(x)] + c2(s, t)d(z, y)

p − ξ(z) (3.8)

= c2(s, t)d(z, y)
p.

Putting together (3.7) and (3.8) we get:∫
E

ϕ(x) dµ(x) +

∫
E

ψ(y) dν(y) ≤
[∫

E

ϕ(x) dµ(x) +

∫
E

ξ(z) dη(z)

]
+

[∫
E

ψ(y) dν(y)−
∫
E

ξ(z) dη(z)

]
≤ c1(s, t)W̃p(µ, η)

p + c2(s, t)W̃p(η, ν)
p,

where we used the definition of W̃p. Taking the supremum on the left-hand side over all

function ϕ and ψ satisfying ϕ(x) + ψ(y) ≤ d(x, y)p, we proved

W̃p(µ, ν)
p ≤ c1(s, t)W̃p(µ, η)

p + c2(s, t)W̃p(η, ν)
p.

Therefore, applying the infimum on the right-hand side over s, t > 0 we get

W̃p(µ, ν)
p ≤ inf

s,t>0

[
c1(s, t)W̃p(µ, η)

p + c2(s, t)W̃p(η, ν)
p
]

=
[
W̃p(µ, η) + W̃p(η, ν)

]p
concluding the first step.

Second step. We now prove that (3.4) holds when E is finite. If E = {e1, · · · , en}, we
use the notation µ(i) = µ({ei}) and ν(i) = ν({ei}) for i = 1, · · · , n. By definition

Wp(µ, ν)
p = inf

{ ∑
1≤i,j≤n

d(ei, ej)
pπ(i, j) : π(i, j) ≥ 0,

n∑
j=1

π(i, j) = µ(i),
n∑
i=1

π(i, j) = ν(j)

}
.

If we treat the n × n matrix (d(ei, ej)
p)1≤i,j≤n as an n2 vector b, then the Wasserstein

metric of order p between µ and ν is given by the value of a plain linear program. We con-

sider b = (b1, · · · , bn), in which each bk is an n vector and bk = (d(ek, e1)
p, · · · , d(ek, en)p);

with the same strategy we define the n2 vector π = (π(i, j))1≤i,j≤n. Then we take

A = (Al,(i,j))1≤l≤2n,1≤i,j≤n to be a 2n × n2 matrix with Al,(i,j) = 1i=l, if l ≤ n and

Al,(i,j) = 1j=l−n if l > n. Let c be a 2n vector in which c(l) = µ(l) if l ≤ n and

c(l) = ν(l − n) if l > n. Therefore we can think of this problem as a primal problem:

inf
π(i,j)≥0, Aπ=c

b · π,
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and then write that its value is given by the value of the corresponding dual problem.

For finite dimensional linear programming, we recall the classical duality theory that

gives the following equality:

sup
AT x≤b

c · x = inf
y≥0, Ay=c

b · y.

If we denote x = (ϕ(1), · · · , ϕ(n), ψ(1), · · · , ψ(n)), then

Wp(µ, ν)
p = inf

y≥0, Ay=c
b · y = sup

AT x≤b
c · x

♡
= sup

ϕ,ψ, ϕ(i)−ψ(j)≤d(ei,ej)p

[
n∑
i=1

ϕ(i)µ(i) +
n∑
j=1

ψ(j)µ(j)

]
= W̃p(µ, ν)

p,

where the equality signed by ♡ is because given the vector ATx, if k = h+(t−1)n where

t = 1, · · · , n and h = 1, · · · , n, then ATx(k) = ϕ(t) + ψ(h) ≤ d(et, eh)
p.

Third step. Let now prove the inequality Wp(µ, ν)
p ≥ W̃p(µ, ν)

p in full generality. If ϕ

and ψ are real valued bounded continuous function on E satisfying ϕ(x)+ψ(y) ≤ d(x, y)p,

then for any coupling π ∈ Π(µ, ν) we have:∫
E

ϕ(x) dµ(x) +

∫
E

ψ(y) dν(y) =

∫
E×E

ϕ(x) dπ(x, y) +

∫
E×E

ψ(y) dπ(x, y)

=

∫
E×E

ϕ(x) + ψ(y) dπ(x, y)

≤
∫
E×E

d(x, y)p dπ(x, y).

Since the right-hand side does not depend on the coupling chosen, the inequality holds

even after applying the infimum over all couplings and we get Wp(µ, ν)
p, therefore the

right-hand side is still an upper bound for the left-hand side. We can now take the

supremum on the left-hand side over all the couples (ϕ, ψ), to obtain

W̃p(µ, ν)
p ≤ Wp(µ, ν)

p.

Fourth step. Finally, we prove the remaining equality by an approximation procedure.

Let x0 ∈ E be fixed. Since {µ, ν} is a tight subset of Pp(E), for all ε > 0 there exists a

compact set Kε such that ∫
Kc

ε

d(x0, x)
p [dµ(x) + dν(x)] < εp.

Since Kε is compact, we can construct a finite partition (Dk)1≤k≤n and each Dk has

diameter at most ε. For each k ∈ {1, · · · , n}, we can pick an element xk ∈ Dk, and
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construct a Borel map

ψ : E −→ E

x 7−→ xk if x ∈ Dk

x 7−→ x0 if x ∈ Kc
ε .

Clearly ψ is a coupling map between µ and µ̃ := ψ#µ and ν and ν̃ := ψ#ν. Then we

notice that

Wp(µ, µ̃)
p =

n∑
k=1

∫
Dk

d(xk, x)
p dµ(x)

+

∫
Kc

ε

d(x0, x)
p dµ(x)

≤ εp
n∑
k=1

µ(Dk) + εp

= εp µ(Kε) + εp

≤ 2εp.

With the same reasoning, Wp(ν, ν̃)
p ≤ 2εp. Using the triangle inequality for Wp, we get:

Wp(µ, ν) ≤ Wp(µ, µ̃) +Wp(µ̃, ν̃) +Wp(ν, ν̃) ≤ Wp(µ̃, ν̃) + 21+1/pε. (3.9)

Using the result proven for probability measures on finite spaces in the second step, we

know that W̃p(µ̃, ν̃) = Wp(µ̃, ν̃). Then, thanks to the triangle inequality proved in the

first step, we obtain:

W̃p(µ̃, ν̃) ≤ W̃p(µ, µ̃) + W̃p(µ, ν) + W̃p(ν, ν̃) (3.10)

≤ Wp(µ, µ̃) + W̃p(µ, ν) +Wp(ν, ν̃)

≤ W̃p(µ, ν) + 21+1/pε,

where in the second inequality we used what we proved in the third step. Combining

(3.9) with (3.10) we get:

Wp(µ, ν) ≤ W̃p(µ, ν) + 22+1/pε,

concluding the proof once we let ε↘ 0.

Corollary 3.6. If (E, d) is a Polish space and µ, ν ∈ P1(E), then

W1(µ, ν) = sup
ϕ:|ϕ(x)−ϕ(y)|≤d(x,y)

∫
E

ϕ(x) d(µ− ν)(x).
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Remark 3.7. That proves that the Wasserstein distance of order one and the Kantorovich-

Rubenstein distance introduced in Chapter 2 Section 2.3, are equivalent.

Proof. Let ϕ and ψ be two bounded continuous function such that ϕ(x)+ψ(y) ≤ d(x, y).

The previous inequality can be replaced by:

ϕ(x) = inf
y∈E

[d(x, y)− ψ(y)] , x ∈ E. (3.11)

We immediately observe that ϕ is 1-Lipschitz, in fact

ϕ(x)− ϕ(z) = inf
y∈E

[d(x, y)− ψ(y)]− inf
y∈E

[d(z, y)− ψ(y)]

≤ d(x, ỹ)− ψ(ỹ)− d(z, ỹ) + ψ(ỹ)

= d(x, ỹ)− d(z, ỹ)

≤ d(x, z).

where ỹ is the one y ∈ E that satisfies the infimum for ϕ(z). With the same reasoning

we get ϕ(z)− ϕ(x) ≤ d(x, z), therefore

|ϕ(x)− ϕ(z)| ≤ d(x, z).

So, limiting ourself to functions ϕ that are 1-Lipschitz, the inequality ϕ(x) + ψ(y) ≤
d(x, y) can be replaced by:

ψ(y) = inf
x∈E

[d(x, y)− ϕ(x)] = −ϕ(y), y ∈ E.

Therefore, in the Kantorovich duality, it is enough to maximize over pairs of 1-Lipschitz

functions (ϕ,−ϕ), which completes the proof.

3.2 Weak Convergence in the Wasserstein Spaces

We first define a characterization of convergence in the Wasserstein space.

Definition 3.8 (Weak convergence in Pp). Let (E, d) be a Polish space and p ∈ [1,∞).

Let {µk}k∈N be a sequence of probability measures in Pp(E) and µ be another element of

Pp(E). Then {µk} is said to converge weakly in Pp(E) if any of the following equivalent

properties is satisfied for some (and then any) x0 ∈ E:

i) µk
w−→ µ and

∫
E
d(x0, x)

p dµk(x) −→
∫
E
d(x0, x)

p dµ(x);

ii) µk
w−→ µ and lim supk→∞

∫
E
d(x0, x)

p dµk(x) ≤
∫
E
d(x0, x)

p dµ(x);
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iii) µk
w−→ µ and limR→∞ lim supk→∞

∫
d(x0,x)≥R d(x0, x)

p dµk(x) = 0;

iv) For all continuous function ϕ such that |ϕ(x)| ≤ C(1 + d(x0, x)
p), C > 0,∫

E
ϕ(x) dµk(x) →

∫
E
ϕ(x) dµ(x).

Proof that the four statements in Definition 3.8 are equivalent.

i ii

iv iii

ii ⇒ i) Lemma 1.14 guarantees that∫
E

d(x0, x)
p dµ(x) ≤ lim inf

k→∞

∫
E

d(x0, x)
p dµ(x).

Therefore we have

lim sup
k→∞

∫
E

d(x0, x)
p dµk(x) ≤

∫
E

d(x0, x)
p dµ(x) ≤ lim inf

k→∞

∫
E

d(x0, x)
p dµ(x),

meaning it is instead an equality, therefore the limit exists and∫
E

d(x0, x)
p dµk(x) −→

∫
E

d(x0, x)
p dµ(x).

i ⇒ iii) We can write d(x0, x)
p1d(x0,x)≥R as following:

d(x0, x)
p1d(x0,x)≥R = d(x0, x)

p − [d(x0, x) ∧R]p +Rp1d(x0,x)≥R.

Integrating both side of this equality with respect to µk, and applying the supremum

limit, we get

lim sup
k→∞

∫
E

d(x0, x)
p1d(x0,x)≥R dµk(x) = lim sup

k→∞

∫
E

d(x0, x)
p dµk(x)

− lim sup
k→∞

∫
E

[d(x0, x) ∧R]p dµk(x)

+Rp lim sup
k→∞

∫
E

1d(x0,x)≥R dµk(x).

The first term of the right-hand side converges by hypothesis to
∫
E
d(x0, x)

p dµ(x). The

second one is converging to
∫
E
[d(x0, x) ∧R]p dµ(x) because the integrand is bounded

continuous and µk converges weakly to µ. The last term is bounded from above by

Rp
∫
E
1d(x0,x)≥R dµ(x) thanks to Portmanteau Theorem 1.21. Therefore

lim sup
k→∞

∫
E

d(x0, x)
p1d(x0,x)≥R dµk(x) ≤

∫
E

d(x0, x)
p1d(x0,x)≥R dµ(x)
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Since 0 ≤ d(x0, x)
p1d(x0,x)≥R ≤ d(x0, x)

p ∈ L1(E, µ) and limR→∞ d(x0, x)
p1d(x0,x)≥R = 0

pointwise, thanks to Dominant Convergence Theorem,

lim
R→∞

lim sup
k→∞

∫
E

d(x0, x)
p1d(x0,x)≥R dµk(x) ≤ lim

R→∞

∫
E

d(x0, x)
p1d(x0,x)≥R dµ(x)

=

∫
E

lim
R→∞

d(x0, x)
p1d(x0,x)≥R dµ(x)

= 0.

iii ⇒ ii) Let start by writing d(x0, x)
p as following:

d(x0, x)
p = [d(x0, x) ∧R]p + [d(x0, x)

p −Rp]+ .

integrating both sides and applying the supremum limit, we get

lim sup
k→∞

∫
E

d(x0, x)
p dµk(x) = lim sup

k→∞

∫
E

[d(x0, x) ∧R]p dµk(x)

+ lim sup
k→∞

∫
E

[d(x0, x)
p −Rp]+ dµk(x)

≤
∫
E

[d(x0, x) ∧R]p dµ(x) + lim sup
k→∞

∫
E

d(x0, x)
p1d(x0,x)≥R dµk(x).

Applying the limit as R approaches infinity, the second term on the right-hand side goes

to 0 by hypothesis. In the first term the limit can go inside the integral sign thanks to

Monotone Convergence Theorem, therefore

lim sup
k→∞

∫
E

d(x0, x)
p dµk(x) ≤

∫
E

d(x0, x)
p dµ(x).

At this point we proved that i, ii and iii are equivalent.

iv ⇒ i) Just take ϕ(x) = d(x0, x)
p to prove the second part. Then we notice that any

bounded continuous function φ satisfies |φ(x)| ≤ C(1 + d(x0, x)
p), therefore∫

E

φ(x) dµk(x) −→
∫
E

φ(x) dµ(x)

and by definition, that is equivalent to µk converging weakly to µ.

iii ⇒ iv) For any continuous function ϕ satisfying |ϕ(x)| ≤ C(1 + d(x0, x)
p), one

may suppose ϕ to be nonnegative. That is because ϕ(x) = ϕ+(x) − ϕ−(x), where

ϕ+(x) = max{0, ϕ(x)} and ϕ−(x) = max{0,−ϕ(x)} are by construction nonnegative

continuous function. Therefore if we prove that, for any nonnegative function satisfying

the hypothesis, we get∫
E

ϕ dµk =

∫
E

ϕ+ dµk −
∫
E

ϕ− dµk −→
∫
E

ϕ+ dµ−
∫
E

ϕ− dµ =

∫
E

ϕ dµ,
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for any ϕ, concluding the proof because it is obvious that ϕ satisfies the hypothesis as

well.

if 0 ≤ ϕ(x) ≤ C(1 + d(x0, x)
p), then

ϕ(x) = [ϕ(x) ∧ C(1 +Rp)] + [ϕ(x)− C(1 +Rp)] 1ϕ(x)≥C(1+Rp),

and we observe that

[ϕ(x)− C(1 +Rp)] 1ϕ(x)≥C(1+Rp) ≤ [C(1 + d(x0, x)
p)− C(1 +Rp)] 1C(1+d(x0,x)p)≥C(1+Rp)

= [C(d(x0, x)
p −Rp)] 1d(x0,x)≥R ≤ Cd(x0, x)

p1d(x0,x)≥R.

Therefore,∫
E

ϕ(x) dµk(x) ≤
∫
E

[ϕ(x) ∧ C(1 +Rp)] dµk(x) +

∫
E

Cd(x0, x)
p1d(x0,x)≥R dµk(x).

Let ϕR(x) = [ϕ(x) ∧ C(1 +Rp)]. Notice it is a bounded continuous function, thus

lim sup
k→∞

∫
E

ϕ(x) dµk(x) ≤ lim sup
k→∞

∫
E

[ϕ(x) ∧ C(1 +Rp)] dµk(x)

+ C lim sup
k→∞

∫
E

d(x0, x)
p1d(x0,x)≥R dµk(x)

=

∫
E

[ϕ(x) ∧ C(1 +Rp)] dµ(x) + C lim sup
k→∞

∫
E

d(x0, x)
p1d(x0,x)≥R dµk(x).

ϕR(x) satisfies the hypothesis of Monotone Convergence Theorem, thus

lim sup
k→∞

∫
E

ϕ(x) dµk(x) ≤ lim
R→∞

∫
E

[ϕ(x) ∧ C(1 +Rp)] dµ(x)

+ C lim
R→∞

lim sup
k→∞

∫
E

d(x0, x)
p1d(x0,x)≥R dµk(x)

=

∫
E

lim
R→∞

[ϕ(x) ∧ C(1 +Rp)] dµ(x) =

∫
E

ϕ(x) dµ(x).

By Lemma 1.14, ∫
E

ϕ(x) dµ(x) ≤ lim inf
k→∞

∫
E

ϕ(x) dµk(x),

therefore it is in fact an equality and∫
E

ϕ(x) dµk(x) −→
∫
E

ϕ(x) dµ(x).

It comes natural to wonder how convergence of measures in Pp(E) is related to weak

convergence of measures. When E is compact, it is quite simple to prove.
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Proof when E is compact. First, we remember that a metric space is compact if and only

if is complete and totally bounded, in particular it is bounded, which means that for all

x, y ∈ E, there exists a constant D <∞, such that d(x, y) ≤ D. Therefore d(x0, x)
p is a

bounded continuous function on E and, by definition of weak convergence,∫
E

d(x0, x)
p dµk(x) −→

∫
E

d(x0, x)
p dµ(x),

proving the Property (i) of Definition 3.8.

Theorem 3.9 (Wp metrizes Pp). Let (E, d) be a Polish space and p ∈ [1,∞). Then the

Wasserstein distance metrize the weak convergence in Pp(E). In other words, if {µk}k∈N
is a sequence of measures in Pp(E) and µ another measure in Pp(E), then the following

statements are equivalent:

1. µk converges weakly to µ in Pp(E);

2. limk→∞Wp(µk, µ) = 0.

From Theorem 3.9 follows this corollary:

Corollary 3.10 (Continuity of Wp). If (E, d) is a Polish space and p ∈ [1,∞), then

Wp is continuous in Pp(E). Which means that, if µk converges weakly to µ in Pp(E),
respectively νk with ν, then

Wp(µk, νk) −→ Wp(µ, ν).

Proof of Corollary 3.10. Thanks to the triangle inequality, we get two bounds:

Wp(µk, νk) ≤ Wp(µk, µ) +Wp(µ, ν) +Wp(ν, νk),

Wp(µ, ν) ≤ Wp(µ, µk) +Wp(µk, νk) +Wp(νk, ν).

Remembering thatWp(µk, µ) → 0 andWp(ν, νk) → 0 as k → ∞, applying the supremum

limit on the first inequality, and the infimum limit on the second one, we get

lim sup
k→∞

Wp(µk, νk) ≤ Wp(µ, ν) ≤ lim inf
k→∞

Wp(µk, νk).

That proves what we claimed, which is limk→∞Wp(µk, νk) = Wp(µ, ν).

The definition of continuity is well defined: since (Pp(E),Wp) is a metric space,

Pp(E) × Pp(E) is metrizable as well, for instance just take the maximum distance
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DM((µ, ν), (µ′, ν ′)) = max{Wp(µ, µ
′),Wp(ν, ν

′)} that generates the product topology.

Therefore Wp : Pp(E)×Pp(E) −→ [0,∞) is sequentially continuous on a metric space if

and only if it is topologically continuous, see Proposition 1.23.

Before getting to the proof of Theorem 3.9 it will be good making some more com-

ments. The short version of the theorem is that Wasserstein metric metrize weak con-

vergence, however there are many ways to metrize weak convergence; for instance, we

already know that the Levy-Prokhorov distance does it. So why bother with Wasserstein

distances?

• The definitions of Wasserstein distances make them convenient in problems where

optimal transport is naturally involved, such as many problems coming from partial

differential equation;

• The Wasserstein distances have a rich duality. This is especially useful for p=1,

which is that for any µ, ν ∈ P1(E),

W1(µ, ν) = sup
∥ψ∥Lip≤1

{∫
E

ψ dµ−
∫
E

ψ dν

}
,

see Corollary 3.6. Going back and forth from the original definition to the dual

one might be convenient.

• Being defined by an infimum Wasserstein distances are often relatively easy to

bound form above, since any coupling of µ and ν yields a bound between their

distance.

Example 3.11. Any C-Lipschitz mapping f : (E, d) → (E ′, d′) induces a C-Lipschitz

mapping f# : (Pp(E),Wp) → (Pp(E ′),W ′
p) defined by µ 7−→ f#µ.

Proof. First we remember that since f is C-Lipschitz, d′(f(x), f(y)) ≤ Cd(x, y).

Let

T : E × E −→ E ′ × E ′ defined as (x, y) 7−→ (f(x), f(y)),

which induces the function

T# : Pp(E × E) −→ Pp(E
′ × E ′) defined as π 7−→ T#π.

Notice that if π is a coupling of µ and ν, then T#π is a coupling of f#µ and f#ν:

let introduce first the two projection p1, p2 : E ×E −→ E defined as (x1, x2) 7→ xi

for i = 1, 2. If π is a coupling of µ, ν then (p1)#(π) = µ and (p2)#(π) = ν.

Pp(E × E) Pp(E ′ × E ′)

Pp(E) Pp(E ′)

T#

(p1)# (p1)#

f#



38 3. Wasserstein Metric

The previous diagram commutes, that means that

(p1)#(T#π) = (p1)#(T#)(π)

= (f#)(p1)#(π)

= f#(µ) = f#µ.

We get the same result if we used (p2)#, therefore T#π is a coupling. We are now

ready to prove that f# is C-Lipschitz. Let π be an optimal coupling of µ and ν.

W ′
p(f#µ, f#ν)

p ≤
∫
E′×E′

d′(u, v)p dT#π(u, v)

=

∫
E×E

d′(f(x), f(y))p dπ(x, y)

≤
∫
E×E

Cpd(x, y)p dπ(x, y)

= CpWp(µ, ν)
p.

That proves the wanted result: W ′
p(f#µ, f#ν) ≤ CWp(µ, ν).

• Wasserstein distance incorporate a lot of geometry of the space. For instance, the

map E → Pp(E) defined as x 7−→ δx is an isometric embedding, i.e. it preserves

distances: for all x, y ∈ E, d(x, y) = Wp(δx, δy).

We are almost ready to prove Theorem 3.9. First, it is necessary to introduce a

lemma, which is quite interesting by itself.

Lemma 3.12 (Cauchy sequences inWp are tight). Let (E, d) be a Polish space, p ∈ [1,∞)

and {µk}k∈N be a Cauchy sequence in (Pp(E),Wp). Then {µk}k is tight.

Proof of Lemma 3.12. Let {µk}k∈N be a Cauchy sequence in (Pp(E),Wp), this means

that for all ε > 0 there exists an N ∈ N such that Wp(µk, µh) < ε for all k, h ≥ N . In

particular, ∫
E

d(x0, x)
p dµk(x) = Wp(δx0 , µk)

p ≤ [Wp(δx0 , µ1) +Wp(µ1, µk)]
p

remains bounded as k → ∞.

Thanks to Remark 3.4 we know that the sequence {µk} is also Cauchy in the W1 sense.

Let ε > 0 be given and let N ∈ N be such that

k ≥ N =⇒ W1(µN , µk) < ε2 (3.12)



3.2 Weak Convergence in the Wasserstein Spaces 39

Then for any k ∈ N there is j ∈ {1, ..., N} such that W1(µj, µk) < ε2 (if k < N, choose

j = k, if k ≥ N it is just (3.12) by choosing j = N).

Since the finite set {µ1, ..., µN} is tight (see Corollary 1.11), there exists a compact set

K ⊂ E such that µj(E \K) < ε for all j ∈ {1, ..., N}. By compactness, K can be covered

by a finite number of small open ball:

K ⊂ U := Bε(x1) ∪ ... ∪Bε(xm);

We define

Uε := {x ∈ E : d(x, U) < ε} ⊂ B2ε(x1) ∪ ... ∪B2ε(xm);

ϕ(x) :=

(
1− d(x, U)

ε

)
+

.

We note that 1U ≤ ϕ ≤ 1Uε and ϕ is 1/ε-Lipschitz. By using these bounds and the

Kantorovic-Rubenstein duality (2.5), we find that for j ≤ N and k arbitrary,

µk(Uε) ≥
∫
E

ϕ dµk

=

∫
E

ϕ dµj +

(∫
E

ϕ dµj −
∫
E

ϕ dµk

)
≥
∫
E

ϕ dµj −
W1(µk, µj)

ε

≥ µj(U)−
W1(µk, µj)

ε
.

On the other end, µj(U) ≥ µj(K) ≥ 1− ε if j ≤ N ; for each k we can find j = j(k) such

that W1(µk, µj) ≤ ε2. So we get

µk(Uε) ≥ 1− ε− ε2

ε
= 1− 2ε.

At this point we have shown the following: for each ε > 0 there is a finite family (xi)1≤i≤m

such that all measures µk give mass at least 1− 2ε to the set Z :=
⋃
B2ε(xi). The point

is that Z might not be compact. To avoid that we repeat the same reasoning with ε

replaced by 2−(p+1)ε, p ∈ N; so there will be (xi)1≤i≤m(p) such that

µk

E \
⋃

1≤i≤m(p)

B2−pε(xi)

 ≤ 2−pε.

Thus, if

S :=
⋂

1≤p≤∞

⋃
1≤i≤m(p)

B2−pε(xi),
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then

µk(E \ S) = µk

E \
⋂

1≤p≤∞

⋃
1≤i≤m(p)

B2−pε(xi)


= µk

 ⋃
1≤p≤∞

E \
⋃

1≤i≤m(p)

B2−pε(xi)


≤
∑
p≥1

µk

E \
⋃

1≤i≤m(p)

B2−pε(xi)


≤ ε

∑
p≥1

2−p

= ε.

By construction, S can be covered by finitely many balls of radius δ where it could be

arbitrarily small: for instance just take p large enough so that 2−pε < δ, then

S ⊂
⋃

1≤i≤m(p)

B2−pε(xi) ⊂
⋃

1≤i≤m(p)

Bδ(xi).

That proves that S is totally bounded and it is closed, as an intersection of finite unions of

closed balls. Since E is a complete metric space, we know that a subset of E is complete

if and only if is closed. Then S is complete and totally bounded, which is equivalent to

S being compact.

We are now ready to prove Theorem 3.9.

Proof of Theorem 3.9. Let {µk}k∈N be such that µk → µ in distance Wp, so that is

obvious that {µk} is a Cauchy sequence in (Pp(E),Wp). The goal is to show that µk

converges to µ in Pp(E). First, by Lemma 3.12 the sequence {µk}k∈N is tight, so there

is a subsequence {µk′} such that µk′ converges weakly to some probability measure µ̃.

Then by Lemma 1.14

Wp(µ̃, µ) ≤ lim inf
k′→∞

Wp(µk′ , µ) = 0.

So µ̃ = µ and the whole sequence {µk} has to converge to µ. This only shows the weak

convergence in the usual sense, not yet in Pp(E).
For any ε > 0 there exists a constant Cε such that for all nonnegative real numbers a, b,

we have

(a+ b)p ≤ (1 + ε) ap + Cε b
p.
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Combining the latter inequality and the usual triangle inequality, we see that whenever

x0, x and y are points in E, one has

d(x, x0)
p ≤ (1 + ε) d(x0, y)

p + Cε d(x, y)
p. (3.13)

Now let {µk} be a sequence in Pp(E) such that Wp(µk, µ) → 0, and for each k, let πk

be an optimal transport plan between µk and µ. Integrating the inequality (3.13) in dπk

and using the marginal property, we get∫
E

d(x, x0)
p dµk(x) ≤ (1 + ε)

∫
E

d(x0, y)
p dµ(y) + Cε

∫
E×E

d(x, y)p dπk(x, y).

But of course we observe that∫
E×E

d(x, y)p dπk(x, y) = Wp(µk, µ)
p −→ 0, as k → ∞;

Therefore, applying the lim sup on both sides,

lim sup
k→∞

∫
E

d(x0, x)
p dµk(x) ≤ (1 + ε)

∫
E

d(x0, y)
p dµ(y).

Letting ε↘ 0, we see that Property (ii) of Definition 3.8 holds true, so µk does converge

weakly to µ in Pp(E).
Conversely, assume µk converges weakly to µ in Pp(E), and for each k let πk be an

optimal transport plan between µk and µ.

By Prokhorov’s Theorem, {µk} forms a tight sequence and also µ is tight. By Lemma

1.16 the sequence {πk} is also tight in P(E ×E). So, up to extraction of a subsequence,

still denoted by {πk}, one may assume

πk −→ π weakly in P(E × E).

Since each πk is optimal, Theorem 1.17 guarantees that π is an optimal coupling of µ and

µ, so this is the trivial coupling, where π = (Id, Id)#µ and in terms of random variables

Y = X. Since this is independent of the extracted subsequence, actually π is the limit

to the whole sequence {πk}.
Now let x0 in E and R > 0. If d(x, y) > R, then we have that one of the numbers

d(x, x0) and d(x0, y) has to be larger than R/2 and both of them would be larger than

d(x, y)/2. We denote

U1 := {d(x, x0) ≥ R/2 and d(x, x0) ≥ d(x, y)/2} ;

U2 := {d(x0, y) ≥ R/2 and d(x0, y) ≥ d(x, y)/2} .

Then we definitely have that {d(x, y) ≥ R} ⊂ U1 ∪ U2, therefore

1d(x,y)≥R ≤ 1U1 + 1U2 .
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So, obviously

[d(x, y)p −Rp] 1d(x,y)≥R ≤ d(x, y)p1U1 + d(x, y)p1U2

≤ 2pd(x, x0)
p1d(x,x0)≥R/2 + 2pd(x0, y)

p1d(x,x0)≥R/2.

It follows that

Wp(µk, µ)
p =

∫
E×E

d(x, y)p dπk(x, y)

=

∫
E×E

[d(x, y) ∧R]p dπk(x, y) +

∫
E×E

[d(x, y)p −Rp] 1d(x,y)≥R dπk(x, y)

≤
∫
E×E

[d(x, y) ∧R]p dπk(x, y) + 2p
∫
d(x,x0)≥R/2

d(x, x0)
p dπk(x, y)

+ 2p
∫
d(x0,y)>R/2

d(x0, y)
p dπk(x, y)

=

∫
E×E

[d(x, y) ∧R]p dπk(x, y) + 2p
∫
d(x,x0)≥R/2

d(x, x0)
p dµk(x)

+ 2p
∫
d(x0,y)≥R/2

d(x0, y)
p dµ(y).

Since πk converges weakly to π,∫
E×E

[d(x, y) ∧R]p dπk(x, y) −→
∫
E×E

[d(x, y) ∧R]p dπ(x, y) = 0,

because we are integrating over the diagonal of E × E, in which [d(x, y) ∧R]p is equal

to zero. So

lim sup
k→∞

Wp(µk, µ)
p ≤ lim

R→∞
2p
[
lim sup
k→∞

∫
d(x,x0)≥R/2

d(x, x0)
p dµk(x)

]
+ lim

R→∞
2p
[∫

d(x0,y)≥R/2
d(x0, y)

p dµ(y)

]
= 0.

This concludes the argument.

Remark 3.13. The notion of weak convergence in Pp(E) is stronger than the usual one.

Simply saying that µk
w→ µ does not necessarily imply that we have convergence of the

moments of order p, for instance, it is not guaranteed if a sequence of measure is not

tight and Wp(µk, µ) might not converge to zero. Only the converse would be true, in fact

if µk converges to µ in Wp, then it is tight, therefore µk converges weakly to µ and we
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have convergence of the moments of order p. Thus the hypothesis of convergence of the

p-th moment cannot be removed.

Having said that, we notice that topology induced by convergence in Wp is finer that

the usual weak topology, because the first one implies the second one but the only weak

convergence is not enough to have convergence in Wp.

3.3 Topological properties of the Wasserstein Spaces

Theorem 3.14 (Wasserstein distances are controlled by weighted Total Variation). Let

µ and ν be two probability measures on a Polish space (E, d). Let p ∈ [1,∞) and x0 ∈ E.

Then

Wp(µ, ν) ≤ 21/p
′
(∫

E

d(x0, x)
p d |µ− ν| (x)

)1/p

,
1

p
+

1

p′
= 1, (3.14)

where |µ− ν| = (µ− ν)+ + (µ− ν)−.

Proof. Let π be the transference plan obtained by keeping fixed all the mass shared by

µ and ν and distributing the rest uniformly:

π = (Id, Id)#(µ ∧ ν) + 1

a
(µ− ν)+ ⊗ (µ− ν)−,

where (µ∧ ν) = µ− (µ− ν)+ and a = (µ− ν)+(E) = (µ− ν)−(E). Notice that a is well

define because µ− ν = (µ− ν)+ − (µ− ν)− and

0 = µ(E)− ν(E) = (µ− ν)+(E)− (µ− ν)−(E).

π is a coupling of µ and ν, in fact π(E × E) = 1 and:

1. if µ(A) < ν(A), we have π(A× E) = µ(A) + 1
a
(0 · a) = µ(A)

π(E × A) = µ(A) + 1
a
[a · (ν(A)− µ(A)) ]= ν(A) ;

2. if µ(A) > ν(A), we have π(E × A) = ν(A) + 1
a
(a · 0) = ν(A)

π(A× E) = ν(A) + 1
a
[(µ(A)− ν(A)) · a] = µ(A).

Now, using the definition of Wp, the definition of π, the triangle inequality for d, the
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elementary inequality (C +D)p ≤ 2p−1(Cp +Dp) and the definition of a, we get:

Wp(µ, ν)
p ≤

∫
E×E

d(x, y)p dπ(x, y)

=
1

a

∫
E×E

d(x, y)p d(µ− ν)+(x)d(µ− ν)−(y)

≤ 2p−1

a

∫
E×E

[d(x, x0)
p + d(x0, y)

p] d(µ− ν)+(x)d(µ− ν)−(y)

≤ 2p−1

[∫
E

d(x, x0)
p d(µ− ν)+(x) +

∫
E

d(x0, y)
p d(µ− ν)−(y)

]
= 2p−1

∫
E

d(x0, x)
p d [(µ− ν)+ + (µ− ν)−] (x)

= 2p−1

∫
E

d(x0, x)
p d |µ− ν| (x).

With the next theorem we are going to show that Pp(E) inherits several properties
of the space E.

Theorem 3.15. Let E be a complete and separable metric space and p ∈ [1,∞). Then

the Wasserstein space Pp(E), metrized by the Wasserstein distanceWp, is also a complete

and separable metric space. Therefore, if E is Polish, Pp(E) is itself Polish. Moreover,

any probability measure on Pp(E) can be approximated by a sequence of probability mea-

sures with finite support.

Proof. The fact that Pp(E) equipped with Wp is a metric space was already explained.

It remains to check the separability and completeness.

Let us prove the separability. Let D be a dense set in E and let R be the space of all

probability measures that can be written as
∑
bjδxj where bj ∈ Q and xj are finitely

many elements in D. It will turn out that R is dense in Pp(E). To prove this, let ε > 0

be given and let x0 be an arbitrary element of D. If µ ∈ Pp(E), since {µ} is tight, there

exists a compact set K ⊂ E such that∫
E\K

d(x0, x)
p dµ(x) ≤ εp.

K is totally bounded then we can cover it by a finite family of balls of radius ε/2 centred

in xj ∈ D, in other words

K ⊆
⋃

1≤j≤N

Bε/2(xj).
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We define

D1 = Bε/2(x1) and Dk = Bε/2(xk) \
⋃
j<k

Bε/2(xj),

then all Dk are disjoints and still cover K. Define f on E by

f(Dk ∩K) = {xk} , f(E \K) = {x0} .

Then, for any x ∈ K, d(x, f(x)) ≤ ε. So∫
E

d(x, f(x))p dµ(x) =

∫
K

d(x, f(x))p dµ(x) +

∫
E\K

d(x, f(x))p dµ(x)

≤ εp
∫
K

dµ(x) +

∫
E\K

d(x, x0)
p dµ(x)

≤ εp µ(K) + εp

≤ 2εp.

Since (Id, f) is a coupling of µ and f#µ, Wp(µ, f#µ) ≤ 21/pε ≤ 2ε, and of course f#µ

can be written as
∑
ajδxj , 0 ≤ j ≤ N. This shows that µ might be approximated, with

arbitrary precision, by a finite combination of Dirac masses. To conclude, it is sufficient

to show that the coefficients aj might be replaced by rational coefficients.

By Theorem 3.14

Wp

(∑
j≤N

ajδxj ,
∑
j≤N

bjδxj

)
≤ 21/p

′
[
max
k,h

d(xk, xh)

](∑
j≤N

|aj − bj|

)1/p

♢
≤ 21/p

′
[
max
k,h

d(xk, xh)

]∑
j≤N

|aj − bj|1/p

≤ ε,

as long as we choose some rational coefficient bj close enough to aj. The inequality signed

by ♢, follows from (
∑

j≤N aj)
α ≤

∑
j≤N a

α
j , if α ∈ (0, 1] and aj ≥ 0. Therefore we have

Wp

(
µ,
∑
j≤N

bjδxj

)
≤ Wp

(∑
j≤N

ajδxj ,
∑
j≤N

bjδxj

)
+Wp

(
µ,
∑
j≤N

ajδxj

)
< ε+ 2ε

= 3ε.

Finally, let us prove the completeness. Let {µk}k∈N be a Cauchy sequence in Pp(E). By
Lemma 3.12, it admits a subsequence {µk′} which converges weakly (in the usual sense)

to a measure µ. Then,∫
E

d(x0, x)
p dµ(x) ≤ lim inf

k′→∞

∫
E

d(x0, x)
p dµk′(x) <∞,
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so µ belongs to Pp(E). Moreover, by lower semicontinuity of Wp,

Wp(µ, µj′) ≤ lim inf
k′→∞

Wp(µk′ , µj′).

In particular

lim
j′→∞

Wp(µ, µj′) ≤ lim sup
k′,j′→∞

Wp(µk′ , µj′) = 0,

because a subsequence of a Cauchy sequence is still a Cauchy sequence. Which means

that µj′ converges weakly to µ in the Wp sense, see Theorem 3.9. Since {µk} is a Cauchy

sequence with a converging subsequence, it follows that the whole sequence is converging:

for all ε > 0 there exists an N ∈ N such that for all k, j′ ≥ N , one has Wp(µ, µj′) < ε

and Wp(µj′ , µk) < ε, therefore

Wp(µ, µk) ≤ Wp(µ, µj′) +Wp(µj′ , µk) ≤ 2ε.

That proves that µk
w−→ µ in Pp(E), concluding the proof.

Corollary 3.16. If E is compact, then Pp(E) is also compact.

Proof. We use the same notation of the proof of Theorem 3.15. Since E is compact, it is

totally bounded, which means that for all ε > 0 there exists {x1, ..., xN} ∈ E such that

E =
N⋃
i=1

Bε(xi).

Let now denote

Vi :=

{
µ ∈ Pp(E) :

∫
E

d(x, xi)
p dµ(x) < εp

}
.

Claim: for all i, Vi is an open set of Pp(E) and the union of all Vi, that we remind

to be a finite union, covers Pp(E). That would conclude the argument, in fact we would

be able to say that the Wasserstein Space over a complete and totally bounded metric

space, is complete (we already know it from Theorem 3.15) and totally bounded itself,

therefore compact.

First step. Vi is open in Pp(E). Of course it is a non-empty set because there exists a

y ∈ D such that d(xi, y) < ε, therefore δy is in Vi. For any ϵ1 > 0 and for all µ ∈ Vi

there exist a probability measure ν ∈ Pp(E) such that Wp(µ, ν) < ϵ1. If we take ϵ1 to be

smaller than the quantity ε−Wp(µ, δxi), then ν is a probability measure on Vi. In fact

Wp(ν, δxi) ≤ Wp(µ, δxi) +Wp(µ, ν) ≤

≤ Wp(µ, δxi) + ϵ1

< ε,
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To prove the first step.

Second step. For all µ ∈ Pp(E) there exists a collection of probability measures on Vi

such that

µ =
N∑
i=1

pi µi,

where µi ∈ Vi for all i. Let

D1 := Bε(x1) Dk := Bε(xk) \
k−1⋃
j=1

Bε(xj).

Of course

E =
N⋃
i=1

Bε(xi) =
N⊎
i=1

Di.

where the last one is a disjoint union, so it comes natural to use the Total Probability

formula:

µ( · ) =
N∑
i=1

µ(Di) µ( · |Di)

=:
N∑
i=1

pi µi( · ).

Last thing to check is proving that µi ∈ Vi.

Wp(µi, δxi)
p =

∫
E

d(x, xi)
p dµi(x)

=
1

µ(Di)

∫
Di

d(x, xi)
p dµ(x)

(⋆)
<

1

µ(Di)

∫
Di

εp dµ(x)

=
1

µ(Di)
εpµ(Di)

= εp.

The inequality signed by⋆ follows fromDi being contained in Bε(xi), where d(x, xi) < ε,

by definition. Therefore we proved that

Pp(E) =
N⋃
i=1

Vi.
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