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Introduction

A quiver is an oriented graph. A representation of a quiver assigns a vector space V; to
each vertex i of the quiver and a linear map from V; to V; to each edge oriented from i to j.
Representations of quivers are powerful mathematical objects. After the work of [Gab72| it
has become clear that many problems in linear algebra can be interpreted within the theory
of representations of quivers. A simple example of this fact is given by a quiver with one
vertex and one loop. The representations of this quiver encode the problem of classifying the

endomorphisms of a given vector space.

In [GabT72|, Gabriel characterized quivers with a finite number of isomorphism classes of
indecomposable representations. He showed that these correspond to the quivers whose un-
derlying graph is an ADE Dynkin diagram. Moreover, he discovered a remarkable connection
between their representations and the positive roots associated with the Dynkin diagram. No-
tably, this correspondence is independent of the orientation of the quiver. Subsequently, in
[BGP73|, Bernstein, Gelfand and Ponomarev introduced the reflection functors. These allow to
constructively find the indecomposable representations associated with positive roots, starting
from the irreducible representations, which are associated with simple roots. In addition they
act on the dimension vector of a representation via an element of the Weyl group associated

with the Dynkin diagram.

In view of Gabriel’s Theorem 2.2.1 it is natural to wonder what happens to quivers which
are not of ADE type. The first case to investigate is the so-called tame case, corresponding to
affine Dynkin diagrams: various techniques have been developed to study the tame case, but
two main problems appeared in the theory. First, to apply the reflection functors, there must
exist an admissible vertex, which is a condition on the orientation. The second problem is that
not all the roots of the Dynkin diagram can be obtained from simple roots through the action

of the Weyl group.

In [Kac80], and later in [Kac82] Kac addressed these problems, as well as the more gen-
eral (wild) one to loop-free arbitrary quivers, giving a far-reaching generalization of Gabriel’s
theorem. In this work we investigate the techniques used by Kac in the proof of Kac’s Theo-
rem 4.3.2.
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In the first chapter we study the structure of the root system associated to a Dynkin diagram.
The root system is a combinatorial object that has a great impact on the representations of a
quiver, as shown in Gabriel’s Theorem 2.2.1. For the proof of Kac’s theorem we are interested
in the so-called simply-laced Dynkin diagrams, but in the first chapter we consider the general

theory of Dynkin diagrams, because they are intrinsically interesting mathematical objects.

First, we study the structure of Dynkin diagrams using the correspondence with the gener-
alized Cartan matrices. Following [Kac90| we give the classification of the Dynkin diagrams of

positive and zero type in Theorem 1.1.19.

Then, we define the root system of a Dynkin diagram. To do so, we associate Lie algebras,
the so-called Kac-Moody Lie algebras, to Dynkin diagrams. These Lie algebras come together
with their root space decomposition and then we will define the root space of the Dynkin diagram
as the root space of the associated Kac-Moody Lie algebra. Using techniques of Lie theory, we
study some properties that characterize the root systems. We decompose the root system into
real roots, obtained by the simple roots acting with the Weyl group, and imaginary roots. We
prove that these are generated, by acting with the Weyl group by vectors in the fundamental
chamber M. We observe that the Dynkin diagrams of positive type admit only real roots, unlike
Dynkin diagrams of zero and negative type, which admit both real and imaginary roots. Then

one can define a bilinear form (-, -) associated with the Dynkin diagram.

In the second chapter we introduce the fundamental concepts of the theory of quiver repre-
sentations. We define the space of representations with fixed dimension vector and we charac-
terize the indecomposable representations in terms of their endomorphism algebra. We recall
Gabriel’s Theorem 2.2.1 and we presented the example of the 2-Kronecker quiver, a motivating

example to generalize Gabriel’s Theorem 2.2.1.

In the third chapter we recall the definition of the reflection functors along with their main
properties. We then focus on solving the problem of the orientation described above. This is
done over finite fields, where it is possible to count the orbits for the action of a group. In fact,
we go further. In Lemma 3.2.7 we show that the orbits of an algebraic group G on a vector
space Vi @ V5, where the maximal F-split torus of the stabilizer is conjugate to a given F-split
torus 7', can be related to the orbits satisfying the same property under the action of G on
Vi @ Vs . In the latter case, G acts on Vy' via the dual (or contragradient) representation.

This observation, combined with the characterization of indecomposable representations
Lemma 2.1.19, and the structure of the space M*(Q,F) of the representations of Q with fixed
dimension vector «, allows us, assuming we are working over a finite field, to change the ori-
entation of the quiver without changing the number of indecomposable representations. This

result is stated in Lemma 3.2.9.

In the fourth and last chapter, relying on some classical results in algebraic geometry, we
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prove that the dimension of the space of isomorphism classes of indecomposable representations

with fixed dimension vector o € M is 1 — («, o), where (-, -) is the bilinear form associated to

the Dynkin diagram introduced in the first chapter (|Cra92|, [Naz73|, [Kac80], [Kac82]).
Finally, at the end of the chapter, we prove Kac’s theorem in the case of finite fields. Then

we apply an argument of reduction modulo p to obtain the statement of the theorem in the case

of algebraically closed fields.
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Chapter 1

Dynkin Diagrams, Kac-Moody
Algebras and Root Systems

In this chapter, we study Dynkin diagrams and their associated root systems. We begin
by dividing Dynkin diagrams into three categories: positive, zero, and negative type. We then
classify those of positive and zero type. Subsequently, we associate a root system to each
Dynkin diagram. This association is constructed via the Lie algebras corresponding to the
diagrams, namely, the Kac—Moody Lie algebras. Using techniques from Lie theory, we analyze

the structure of the root systems associated with Dynkin diagrams.

1.1 Cartan matrices and Dynkin diagrams

Definition 1.1.1. Let A and B be matrices in M, (R). We say that A is equivalent to B if
there exists a permutation matrix 7 € M, (R) such that rAr ' = B.

We say that A is decomposable if A is equivalent to a matrix of the form

A 0
0 Ay)
We say that A is equivalent to the direct sum A; and Ay. We say A is indecomposable if it is

not decomposable.

Example 1.1.2. Consider the matrix

o O = O
S W O N

—_



2 1. Dynkin Diagrams, Kac-Moody Algebras and Root Systems

We observe that A is decomposable, indeed

10 0 0\(3 0 2 0}(1 00O 3 20
0010010 O0f0O0T1TO0O 030
0100003 olflo10o0| 001 o0
0 00 1)\0 5 0 -1/\0 0 0 1 00 5 -1

It follows that A is equivalent to a block diagonal matrix.

Remark 1.1.3. We observe that the notion of equivalence is strictly stronger than that of simi-

larity: indeed, equivalence implies similarity, but the converse does not hold. A counterexample

<o)

We have that A and B are similar, since

[

However, A and B are not equivalent, since their sets of entries are different.

is provided by the matrices

Definition 1.1.4. Let A = (a;;) € M,(R). Consider the following properties:

a;; <0 for ¢ # j and a;; = 0 implies aj; = 0 (C1)

Qo Qi 15 Qigiy = Qi Qi gy " Qigig s for any set of indices 11y ,125. (Sl)

We say that A is symmetrizable if Equation (S1) holds and a;; = 0 implies a;; = 0 for every
ij=1,...,n

We say that A is a generalized Cartan matrix if
® a;; € Z;

e Equation (C1) holds;

® ;i = 2.
In the following, for a vector = = (z1,...,z,) € R", we will write z = 0 if 2; = 0 for every
i =1,...,n. Similarly, we will write x >0, x < 0 and x < 0.

Lemma 1.1.5. Let A = (a;;) be an arbitrary real matriz of size m X s such that there does not

exist a vector u = 0, u # 0, such that ATy > 0, then there exists v > 0 such that Av < 0.
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Lemma 1.1.6. Let A = (a;;) be an indecomposable real matriz that satisfies Equation (C1).

Then if t € R", £ 20, x # 0 and Az = 0 it follows that x > 0.

Proof. We can suppose, up to permutation, that x; = 0 for i < k£ and x; # 0 for j > k. From
Az 2 0 and Equation (C1) it follows that a;; = a;; = 0 for every ¢ < k and j > k, but this

contradicts the indecomposability. O

Theorem 1.1.7. Suppose that A is an indecomposable matriz that satisfies Equation (C1); then
exactly one of the following holds:

P) A is non-singular and the following holds:

Az =20 = z>00rxz=0

Z) A has rank = n — 1 and there ezists a vector x > 0 such that Ax = 0, moreover, we have:

Ar 20 = Az =0

N) There ezists a vector x = 0 such that Ax < 0, moreover we have:

z=20and Ar =20 = =0

Proof. Let us show that the three options are mutually exclusive:

e P) and Z) are mutually exclusive because the matrices that satisfy P) have full rank,

whereas matrices of type Z have rankn — 1.
e Replacing = with —z in the cases P) and Z) we obtain the following
A x = 0 such that Az <0 and Az # 0.
This condition is incompatible with N).
Let us now suppose that the following holds:
3z # 0 such that Az > 0. (1.1.1)

We aim to show that only P) and Z) can hold.
Let K4 = {zr € R| Az = 0}. We observe that Lemma 1.1.6 implies that

Kyn{zeR|z=20}c{zeR|z>0}u{0} (1.1.2)

By Equation (1.1.1) it follows that K4 # 0.
We want to show that exactly one of the following holds:
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1. Kpqc{zx eR|xz >0} u{0}
2. K4 = Span Z, in particular, that K 4 = ker A.

If 1. holds, then obviously Equation (1.1.2) holds. Otherwise, if 1. does not hold, then it means
that J := K4 \ ({z € R|z > 0} u {0}) # {0}. By Equation (1.1.1) and Equation (1.1.2) it
follows that > 0.

Let us suppose, by contradiction, that there exists y € J such that y # aZ for every o € R.
Let t € [0,1], we define w = (1 — t)Z + ty. We observe that Aw > 0 and moreover, there exists
t € [0,1] such that w = 0 and w ¢ {x € R|z > 0} U {0}, i.e., w contradicts Equation (1.1.2).

Y we can define t = —32—.
Zy’ L |
z

In

Such a t exists because, if j is an index such that g_g = miny
J

this way we observe that

e y; < 0 and we may assume, without loss of generality (by replacing y with a multiple if

necessary), that g—ﬂ > 1;
J
® w; = (1—t)53j+tyj =0;
o w; = 0 if and only if

(1—t)+t&20 =
L5

1+ L Lis0 e
Yi Yj T:
L -1 ZL-1%
Zj Zj
Yi Y
T Iy

The last inequality is satisfied by definition of j;
e Aw = 0 because w is a convex combination of elements of K 4.

We have shown that J S SpanZ. This also implies that AZ = 0. Now we have two

possibilities:
o if K4 € SpanZ then 2 holds;

o if there exists z € K4 \ SpanZ, i.e. z # ax, then z = 0 because J € K,. We observe
that there exists a sufficiently large A = 0 such that 2z — A% ¢ {x € R|z = 0}, moreover
z— At € K4 because AT = 0. From J € SpanZ it follows that z — AZ € Span Z, then

2z — A\f = a, so z = (A + a)z, that leads to a contradiction.

So, the consequence is that one between 1 and 2 holds. It is obvious that 1 corresponds
to P), because kerA € K, € {x € R|z > 0} U {0} which does not contain vector subspaces.
Moreover, if 2 holds, then Z holds, because ker A = K 4.
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If Equation (1.1.1) holds, either P) or Z) holds, in particular there is no vector z = 0 such
that Az < 0 and Az # 0. We observe that we stated the contradiction of Lemma 1.1.5, so its
hypothesis cannot hold. It follows that there exists a vector w = 0, u # 0, such that Alu = 0.
This implies that Equation (1.1.1) holds for AT, then also A" verifies P) or Z). On the other
hand, if Equation (1.1.1) does not hold for both A and AT, then it follows immediately from
Lemma 1.1.5 that N holds for both A and A”. O

Definition 1.1.8. Let A € M, (R) be a real indecomposable matrix and suppose that Equa-
tion (C1) holds. Then we define the matrix to be of positive, zero or negative type if it satisfies
condition P), Z), or N) in Theorem 1.1.7 respectively.

Generalized Cartan matrices of positive type are also known as finite type, whereas those

of zero and negative type are known as affine and indefinite type, respectively.

Corollary 1.1.9. Let A be a real indecomposable matriz and let Equation (C1) hold, then A
s of positive, zero or negative type if and only if there exists v > 0 such that Av >0, Av =0 or

Av < 0 respectively.

Lemma 1.1.10. Let A be a matriz of positive or zero type. Then every principal submatriz of

A decomposes as a direct sum of matrices of type P.

Proof. Let Ag be the submatrix associated to the set of indices S € {1,...,n}. Since A is of
positive or zero type, then there exists a vector v > 0 such that Av = 0. Let vg be the vector
associated with S, then Agvg = 0, moreover if Agvg = 0, then a;; = 0 for every i € S, j ¢ S,

indeed for every i € .S we have:

n
Zaijvj >0=0= ASUS = z Q;ijV; = — z Q;ijV; > 0.
i jes i#S

This means that A is decomposable, against our hypothesis, therefore Agvg > 0. ]

Lemma 1.1.11. Let A be a real symmetric matriz and let Equation (C1) hold, then A is of

positive or zero type if and only if A is positive definite or semipositive definite respectively.

Proof. By contradiction, if A is of type N, then there exists a vector v > 0 such that Av < 0,
then v’ Av < 0, against the hypothesis of A being positive or semipositive definite.

Let A be of positive or zero type, then for every A > 0 and for every vector v > 0 such that
Av = 0, then (A + A )v > 0. This implies that det(A + AI) # 0 and that A has only non-
negative eigenvalues. It follows that A is positive definite if det A # 0 and positive semidefinite

if det A = 0. O

Definition 1.1.12. For a matrix A € M, (R) of size n that satisfies Equation (C1), the graph
G(A) is defined as the datum of n vertices {1,...,n} linked by an edge if and only if a;; # 0.
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Lemma 1.1.13. Let A = (a;j), then

1. A is symmetrizable if and only if there exist a non-degenerate diagonal matriz D and a

symmetric matrix B such that A = DB.

2. if A is an indecomposable symmetrizable matriz, then there exists a unique decomposition
A = DB such that D = diag(dy,...,d,) and B = (b;;), where b;; = bj; € Z[%] fori # 7,

and b;; = Qdi_l are relatively prime integers.

Proof. If A = DB with D a non-degenerate diagonal matrix and B a symmetric matrix, then

. . ;4 Qi . .
a;; = 0 if and only if 0 = % =bj; = bj; = f if and only if a;; = 0. Moreover, for every set of
7 J
indices i1, ..., %,, we have:
iyig** @iy_yi, Qigiy = iy bigiy+di_ bi i, di biiy

= diybiyi di bigi, g digbigiy = Gy Qi Qg -

Let us suppose that A is symmetrizable and suppose, without loss of generality, that A is
indecomposable. First, we consider the graph G(A). It is connected because A is indecompos-
able, so we can consider T' € G(A) a spanning tree of G(A), i.e. a simply connected subgraph

with the same vertices as G(A). Let us choose an ordering (i1, ...,1,) of the vertices such that
e i is a leaf for T
e for every j > 1, there exists a unique edge between 4; and {iy,...,3;-1}.

Let M be a matrix, in the following we will denote M;) the i-th line of the matrix M. Let us

now construct the matrices B and D:
e we choose d;; =1 and B;,) = Ay,);

s s
# 0, so we can choose d;, = —=2+ = =2+ We

e we observe that a;,;, # 0, and then b P b
1112 1112

define By;,) = di_QlA(iQ);

1192

e we proceed inductively: let us suppose to have previously defined lines By, ..., B(,)
and d;,,...d; . We want to define By, ) and d
index such that {j, 5.1} is an edge of 7. It holds that a;;, ., # 0 and then b,
define d;, | = 2214 apd B, = di—l:;—lA(ilﬁ—l)'

%
k+1 bﬁik+1

Let j € {i1,...,1;} be the unique
#0. We

Tht1”

7ik+1

It is clear that D is non-degenerate and it is also clear that A = DB. We also observe that
a;; = 0if and only if b;; = 0, or equivalently G(A) = G(B). We must show that B is symmetric.
Let {h, k} be an edge of G(B), i.e. by, # 0. If {h, k} is an edge of T', then by, = by, by definition.
Otherwise we observe that T together with the edge {h, k} is a graph with a cycle; indeed, there
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exist ji,...,J, such that j; = h and j, = k and {j1, jo},...,{jr-1,4-}. Then by Equation (S1)

we have:

d; b;

J Jljz"’d

jr—l

b; d; b;

]r—ljr jr ]rjl = ajle”‘ajr—ljrajrjl
= Qg Qs Uingy = A3 0515 45, 0, , 1Ay bjjy
It follows by, = by, because we have already shown that the other parts of the equation are

pairwise equal. This concludes the proof of 1) and 2) immediately follows from the construction

above. =

Lemma 1.1.14. Let A = (a;;) be a matriz of positive or zero type, such that a;; = 2 for every
i =1,...n, and a;;a;; = 0 or azja;; = 1, then A is symmetrizable. Moreover if there ewist

i1,...1g such that a;;, ...a; 4 # 0, s 23, then A is of the form

2 —Uy 0 —U,
-1
_ul 2 —u2 cee 0
A= 0 .
-1
0 vt TUp—2 2 —Up-1
-1
—u, 0 T 2
where uy, ..., u, are positive integers such that uy+--u, = 1.

Proof. By hypothesis we have that a;; = 0 implies aj; = 0 for every ¢, = 1,...n, so A is
symmetrizable if and only if Equation (S1) holds. It is clear that is sufficient to show the

statement when there exist s > 3 and iy, ...4, such that a;;,...a;;, # 0. Let B the principal
submatrix of A associated to the set of indices {iy,...,is}, then B is of the form:
2 —by 0 -
I 0
B=|0 . :
0 = =byy 2 by
b, 0 —b’s = 9

We observe that B is irreducible and that from Lemma 1.1.10 it follows that B is of positive or
zero type, in particular, it is of zero type if and only if B = A and A of zero type. Therefore, there
exists a vector v > 0 such that Bv = 0, in particular, we can replace B with (diag v) ' B diag v.
We can now suppose v = (1,...,1). Since Bv = 0, also the sum of its coefficients is greater than
zero, i.e., 2s — Y i (b; + b;) = 0, moreover by hypothesis b;b; = 1, hence b; + b; = 2 and then
25—y 1 (b; +b5) =0and b; = by = 1. Moreover det B = 0 implies A = (diagv)B(diagv)™". O

Corollary 1.1.15. Let A be an indecomposable generalized Cartan matriz of positive or zero

type, then A is symmetrizable.
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Definition 1.1.16. Let A = (a;;) be a generalized Cartan matrix. We define the graph S(A)
associated to A, called the Dynkin diagram of A, in the following way:

e S(A) has n vertices enumerated from 1 to n;

o if aj;a;, < 4 and |a;;| 2 |aj|, then the vertex i is connected to vertex j by |a;;| lines,

equipped with an arrow pointing towards ¢ if |aj;| > 1;

e if a;ja; > 4, vertices i and j are connected by a bold-faced line equipped with an ordered

couple of indices (|ag;l, |aj;|).

We observe that A is completely determined by its Dynkin diagram S(A) and by a num-
bering of its vertices. We say that a connected Dynkin diagram S(A) is of positive, zero or

negative type if A is of that type.

Proposition 1.1.17. Let A be an indecomposable generalized Cartan matriz, then the following
holds:

1. A is of positive type if and only if all its principal minors are positive;
2. A is of zero type if and only if all its principal minors are positive and det A = 0;

3. if A is of positive or zero type, then every proper subdiagram of S(A) is a disjoint union

of connected Dynkin diagrams of type P;
4. if A is of positive type, then S(A) has no cycles;
5. if A is of zero type and has a cycle, then S(A) = AS);

6. A is of zero type if and only if there exists a vector § > 0 such that Ad = 0, and such a §

is unique up to scalar multiplication.

Proof. First of all, we observe that if A is an indecomposable Cartan matrix of positive or
zero type, then it satisfies the hypothesis of Lemma 1.1.14 hence it is symmetrizable. By
Lemma 1.1.13 it also follows that A = DB where D = diag(dy,...,d,) is a diagonal non-
degenerate matrix and B is a symmetric matrix. Moreover, Equation (C1) still holds for B and
the d;’s are all positive.

By the above observation and Lemma 1.1.11 1) and 2) follow.

By the above observation and Lemma 1.1.10 3) follows.

By the above observation and Lemma 1.1.14 4) and 5) follow.

Statement 6) follows by Theorem 1.1.7. O

Proposition 1.1.18. Let G be a connected graph without loops, then either it has a subdiagram
of type AS), DS), Eél), ES) or Eél), or G is a diagram of type A,,, D,,, Eg, E7 or Eg.
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Proof. Suppose G does not contain a subdiagram of type AS), DS), Eél), Eél) or Eél). Then
G has no oriented cycles, because it does not contain Ag). Every vertex is in the boundary
of at most three edges because G does not contain Dil) = ><: . There is at most one vertex
which is boundary of three distinct edges because G does not contain DSLI). If this point does
not exist, then G = A,, for some n. Otherwise, G must have a point with three connected edges

and three "harms" of length [ = k = h = 1, i.e. G has the following shape:

J

— —
k l
Since G does not contain Eél), it must be h = 1. Moreover, k < 2 because G does not
contain Eél). If Kk =1 then G = D,, for some n. If £ = 2, then [ < 4 because G does not contain
E". Then G = Eg, By or By if | = 2,3 or 4 respectively. 0

Theorem 1.1.19. The Dynkin diagrams of positive and zero type are listed in Table 1.1 and
Table 1.2. Moreover, the labels in Table 1.2 are the coordinates of the unique vector § € Z" with

coprime coordinates and such that Ad = 0.

Proof. We already know that Afll) is a Dynkin diagram of zero type, indeed it can be readily
verified that 6 = (1,...,1). We observe that Dgl),Eél),Eél),Eél) are of zero type, indeed,
it is immediate to check that the the vector of labels in Table 1.2 lies in the kernel of the

corresponding generalized Cartan matrices:

2 0 -1 2 -1.0 0 0 0 0
0 2 -1 12 -1 0
11 2 - 0 -1 2 -1 0 -1 0

PV = V=0 o0 -1 2 -1 0

2 1 -1 0 0 0 -1 2 0 0
1 2 0 0 0 -1 0 1
1 0 2 0 0 0 0 0 -1 2
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2 -1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
E§1)= o 0 -1 2 -1 -1 0 O
0 0 0 -1 2 0 0
0 0 0 -1 0 1 0
0 0 0 0 -1 2 -1
0 0 0 0 0 -1 2
2 -1 0 0 0 0 0 0 0
1 2 -1 0 0 0 0 0 0
0 -1 2 -1 -1 0 0 0 0
0 0 -1 2 0 0 0 0 0
EV=l0o 0 -1 0 2 -1 0 0 0
0 0 0 0 -1 2 -1 0 0
0 0 0 0 0 -1 2 -1 0
0o 0 0 0 0 0 -1 2 -1
0 0 0 0 0 0 0 -1 2

Similarly, a straightforward calculation shows that the Dynkin diagrams in Table 1.2 are of
affine type because that the vector § = (d1,...,d,) lies in the kernel of the generalized Cartan
matrix. Recall that A§ = 0 if and only if 2; = Z;’L:I a;;0; for every i = 1,...,n. Moreover, note
that that a;; # 0 if and only if there exists an edge between vertices i and j, and a;; = 1 unless
the edge is multiple and with an arrow pointing towards .

We observe that every Dynkin diagram in Table 1.1 is a subdiagram of a Dynkin diagram in
Table 1.2. Therefore, by Proposition 1.1.17 it follows that every Dynkin diagram in Table 1.1
is a Dynkin diagram of positive type.

It remains to show that every connected Dynkin diagram of positive type is listed in Table 1.1
and that every connected Dynkin diagram of zero type is listed in Table 1.2. We proceed by
induction on the number n of vertices.

If n = 2, the classification of Dynkin diagrams of zero and positive type correspond to

classify the pairs of positive integers aq9, as; such that det A = 0, where

2 —ai12
A= .
—ag 2
Up to equivalence, we can assume as; = a1o. The condition is ajpa9; < 4. The only cases are:

® a15 = a9 = 1, corresponding to As;
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® a1 =1 and a9y = 2, corresponding to Cy;
® a5 = 1 and ag; = 3, corresponding to Gy;

1 and a9; = 4, corresponding to Aé2);

® 412
o . : (1)

® aj9 = ag = 2, corresponding to A; .

Now suppose n = 3. Consider the matrix:

2 —ajp —ag3
A= —ag1 2 —asgs

—az —aszp 2

the classification of Dynkin diagrams of zero and positive type corresponds to classify the
sextuples positive integers ais, as1,a13,asy, as3, azs such that det A = 0, and every principal
submatrix of A is the generalized Cartan matrix of a Dynkin diagram of positive type of rank
2, listed above.

It follows from Proposition 1.1.17 that the only case where a;; # 0 for every 4,5 = 1,2,3
is when a;; = 1 for every ¢,j = 1,2,3, that corresponds to Aél). Therefore may assume, up to
equivalence, that a13 = az; = 0, and that aqg,as1,as3,a3z # 0, otherwise the Dynkin diagram
would be disconnected. Moreover, we can suppose up to equivalence, that ajsa9; < aszass. The
condition is the following:

a12a91 + ag3azp < 4
ajaao; < 3 (1.1.3)

assazs < 3
The only solutions different from Agl) are:
® 419 = ag = Aoz = agy = 1 that corresponds to Ags;
® 419 = ag = asz = 1 and agy = 2 corresponding to Bg;
® a15 = as = asy = 1 and asg = 2 corresponding to Cl;

as3 = 2 corresponding to Cél);

® (19 = a3y = 1 and asy

azs = 2 corresponding to D:~(32)5

® (491 = Q23 = 1 and a2

as3 = 2 corresponding to Af);

® (91 = Q39 = 1 and a2

® 419 = a9 = azg = 1 and agg = 3 corresponding to Df’);

® 419 = as = asz = 1 and agy = 3 corresponding to Ggl).
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Let n > 3 and assume the inductive hypothesis, i.e., that every subdiagram of S(A) appears
in T'able 1.1. Now, suppose that S(A) is a positive Dynkin diagram. If S(A) is simply-laced,
i.e., it does not have any multiple edge, then it follows from Proposition 1.1.18 that the only
cases are the A,, D, Fg, Bz and Eg. Suppose that S(A) is not simply laced. The possible

configurations are as follows:

e S(A) cannot have a quadruple edge, otherwise it would contain AgQ).

e If S(A) has one double edge, then every vertex is adjacent with at most two vertices,

otherwise S(A) would contain Aéi)ﬂ. The double edge can have a single arrow, because

S(A) does not contain Agl). Since S(A) cannot contain Ff) and Eéz), if both the vertices
of the double edge are adjacent to two vertices, then S(A) = F;. Therefore we can suppose
that at least one of the two vertices of the double edge is adjacent to only one vertex. As

a result, we obtain the Dynkin diagrams B,, and C,.

e Suppose that S(A) has a triple edge. Since S(A) does not contain G;l) and Df), then

the unique case is Gs.

This proves that the Dynkin diagrams of positive type are listed in Table 1.1.

We want to prove that the Dynkin diagrams of zero type are listed in Table 1.2. It is
immediate to verify that the Dynkin diagrams obtained by adding a vertex to a Dynkin diagram
of positive type in such a way that the new Dynkin diagram is not listed in Table 1.1 and admits
only subdiagrams of positive type, are exactly those listed in Table 1.2. This concludes the proof,
as it follows from Proposition 1.1.17 that Dynkin diagram of zero type admit only subdiagrams
of positive type, therefore they can all be obtained by adding a vertex to a Dynkin diagram of
positive type. [l

Table 1.1: Positive Dynkin diagrams

Type Diagram

A, oo 0o
B, oo o o0
C, o ==
D, *—eo— 4—<
E6 .—O—I—O—Q

P T S
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Type Diagram
E8 O—Q—I—H—Q—Q
Fy [ == S )
Gy —

Table 1.2: Zero Dynkin diagrams

Type Diagram
1
(1) .4; :>,
An 1 1 1 1
1
B(l) —o—o—9
n 14 22 2 2 2
C(l) oCre—e—  —0—e<®
n 1 2 2 2 2 1
1 1
(1) > o o <
Dy, 2 2 2 2
1 1
1
Q—O—EO—Q
(1)
Eg 1 2 3 2 1
2
E(l) NP I e o o
7 1 2 3 4 3 2 1
3
E(l) o o I o o o o O
8 2 4 6 5 4 3 2 1
(1)
O—o——90—0
Fy 1 2 3 4 2
G(l) o—e»
2 1 2 3
A(2) o=0—0—0— —0—0=9
2n 2 22 2 2 2 1
(2) ' - oo
2
Azns1 : 2 2 2 2 1
1
(2) S
Az 1 2
D(2) o=0—0— —0—06——0
n 1 1 1 1 1 1
(2)
oO—o—=10—0
Eg 1 2 3 2 1
D(3) o = =
4 1 2 1
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1.2 Kac-Moody algebras and roots system

Definition 1.2.1. Given a matrix A = (a;;) € M,(C), we say that the triple (b, II, ") is a
realization of A if the following holds:

1. b is a C-vector space, IT" = {a),...,a,} S hand I = {ay,...,a,} € h™;

2. both IT and IT" are linearly independent sets;

@

(alyaaj> = Qg
4. n—1=dimb —n, where [ = rank A.

We say that two realizations of a matrix are isomorphic if there exists an isomorphism

¢ : by — by such that ¢(II)) = II3 and ¢*(II;) = Il,.

Proposition 1.2.2. Given a matriz A = (a;;) € M,(C), there exists a unique realization of A
up to isomorphism.
Given two matrices A, B € M, (C), two realizations of A and B are isomorphic if and only

if A and B are equivalent.

Proof. We can assume, up to reordering the indices, that there exists a [ X n matrix A; of rank

[ and a matrix A, such that:

We define the matrix

2n—-1 . .
"y, ..., a, € h¥ the first n coordinate functions

The realization (b, II, II") is given by h = C
and oy ,...,c, € b the rows of the matrix C.

Viceversa, given a realization (h, IT, II") of the matrix A, we complete II* to a basis of

with vectors ay,41, ..., a9,—; and we consider the matrix
A, B
C = ((a’b 7a]>)221’ T =
=1,...,.2n—1 AQ D
. . . . . \" \% \% \%
By adding suitable linear combinations of oy ,...,a, to ay41,-- ., Q9,_;, We can assume that B
. . . . \% \
is the zero matrix. Moreover, properly combining o, 41, ..., Qy,_;, we may assume D = Iy, ;.
. \% \

It follows that, for a proper choice of ay, 41, .., ag,—;, We can suppose
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This proves the uniqueness.

The second part of the statement follows immediately by the above observation. Indeed, if

A and B admit isomorphic realizations, they are both equal to the matrix given by the first n

A0 B, 0
C= = .
A2 In—l B2 In—l

Conversely, if the two matrices are equivalent, then the matrices

Al 0 Bl 0
Ca= ; Cp=
A2 In—l BQ In—l

used to define the realizations of A and B coincide. Therefore, the realizations are isomorphic.
O

columns of the matrix:

Definition 1.2.3. Let A be a matrix and (b, II, IT") its realization, we call the elements of II
simple roots. We define the root lattice as I' = Z?:l Zay and let T, = Z?zl Z,q.

Definition 1.2.4. Let A = (a;;) € M,,(C) and let (b, II, ") be its realization. We define the
Lie algebra g(A) associated to A in the following way. Let us consider the auxiliary algebra

g(A) with generators {e;, fi|i=1,...,n} Ub and the relations:

ei, i1 = dijai Vi,j=1,...,n
h,h]=0 VYh,heh
h,e;]1=(h,a;)e; Yi=1,...,n,VheEHh
hfi]1=—(h,e;)f;i Yi=1,....n, Yhebh

As we will show in Theorem 1.2.7, g(A) has a unique maximal ideal 7 such that 7 nh = 0.
We define g(A) = g(A)/7. We say that g(A) is the Lie algebra of the matrix A. If A is
a generalized Cartan matrix, then g(A) is called the Kac-Moody algebra associated with the

matrix A.

Definition 1.2.5. Let §h be a commutative Lie algebra and V' an h-module. We say that V is
h-diagonalizable if V' = @Aeh* Vy, where V\ = {v € V| h.v = A(h)v, Vh € h}. We say that V)
is the weight space and A € §* a weight if V) # 0.

Lemma 1.2.6. Let h be a commutative Lie algebra and let V' be a diagonalizable h-module.
Then the decomposition is induced on every h-submodule U €V, i.e., U = @/\eh* Uy where
Uy =VynU for every X € h*.
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Proof. Let u = Z?:l v; € U with v; € V.. We want to prove that v; € U for every i = 1,...,m.
We proceed by induction on m. If m =1 thenu=v; € U. If m > 1, A\, # A\,,,_1 implies that
there exists € §* such that A\, (z) # Ap—1(z). Let y = z.u — A\, (2)u = Zje[ Ajv; € U, where

o+ I={je{l,... m} \(z)#0}&{l,... m}

We can apply the inductive hypothesis to y, then we have that v; € U for every j € I. Moreover,
we can apply the inductive hypothesis also to 2 = @ =3 ;c;v; = Y ey s vi € U, and this

concludes the proof. O

Theorem 1.2.7. Let A = (a;;) € M,(C) and (b, II, 1Y) its realization, then the following
holds:

1. g(A) =n_ @ bh @ ny, where n_ and 0y are the subalgebras generated respectively by { f;}
and {e;};

2. 0y and n_ are freely generated respectively by {f;} and {e;};

3. the map @ : g(A) — g(A) defined by e; » —f;, fi = e;, h = h for everyi =1,...,n
and h € b, is an involution of g(A);

4. we have the following decomposition in oot spaces with respect to b:

§A)=( P s-)@be( P b

O+a€l'y O+a€l'y

Here g, = {z € g(A) | [h,z] = a(h)x}. Moreover, dimg, < 00 and g1, S 0y for every
aely;

5. there exists a unique maximal ideal T among the ones which intersect trivially . Moreover,

T=(rnn)® (rNnny).

Proof. Let V be a complex vector space of dimension n. Fix A € V* and a basis {v1,...,v,}
of V. We define an action of g(A) on T'(V') as follows:

o fi(a)=v;®aforeveryaeT(V),i=1,...,n;
e h(1) = (A, h)1 and inductively on s:
h(v; ® a) = (o, h)v; ® a + v; ® h(a)

for every a € Ts_l(V),j =1,...,n,h €b;
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e ¢;(1) = 0 and inductively on s:
ei(v; ®a) = 5ija;/(a) +v; ® e;(a)
for every a € T(V),i,7=1,...n.

We now need to prove that these maps define a structure of g(A)-module on T'(V). We will
prove the relations inductively on s, the base of the induction is trivial, so we will compute only

the inductive step.
e We prove that (h1hy — haohy)(a) = [hy, he](a) = 0 for every hy,hy € h,a € T(V):

(hihg = hahy)(v; ® a)
= —h1(<01j,h2>’0j ® a) + hl(vj ® CL) + hQ((Oéj, hl)Uj ® CL) - hg(’Uj ® hl(a))
= v ® hth(a) - Uy ® hghl(a) =Yy ® [hla hg](a) =0= [hla hg](vj ® CL);

e We prove that (e;f; — fjei)(a) = [e;, f;1(a) = & (a) for every i,5 = 1,...,n and
a€eT(V):

(eif; — fiei)(a) = e;(vj ® a) —v; ® e;(a) = 6ij0‘z\'/(a) = [e;, f;1(a);

e We prove that (hf; — f;h)(a) = [h, f;](a) = =(h,a;) f;(a) for every h € h,i =1,...,n and
a€T(V):

(hfi = fih)(a) = h(v; ® a) —v; ® h(a) = —(h,a;)v; ® a = [h, f;](a);

e We prove that (he; — e;h)(a) = [h,e;](a) = (h,a;)e;(a) for every h € h,i = 1,...,n and
aeT(V):

(he; — eih)(vj ® a) = 5ijh(o¢;/(a)) + h(v; ® e;(a)) + (h,a;j)e;(v; ® a) — e;(v; ® h(a))
=v; ® h(e(a)) + dij(h, aj)oz;/(a) - v; ® e(h(a)) = dij(h, aj)a;/(a) +v; ® [h,e;](a)

(5ij(h,aj)a,y(a) + (h,aj)v; ® e;(a) = (h,a;j)e;(v; ® a) = [h,e;](v; ® €;).

We will prove by induction that the product of s elements in {e;, f; |1 = 1,...,n}Ub belongs

ton_ + b+ n,. In particular, we have to show that:
1. [fi,z]en_+bh+n, foreveryren_uhun,andi=1,...,n;
2. [ej,z]en_+h+n, foreveryz €n_Ubhun, andi=1,...,n;

3. [h,z]en_+bh+n, foreveryz €n_UbuUn, and h € b.
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Property 3. is trivial and the only non-trivial things to prove in properties 1. and 2. are
[fi,x] € n_+ b +ny for every x € 0, and [e;,z] € n_ + h + 0, for every x € n_. Let us
prove the first one, the second is analogous. We proceed by induction on the length s of the
expression x = [e; [--+[e;, ,[ei. . e, ]]]]:

[filej,21] = [[fie; ], 2]+ [eLfi 211 = 6i;Lh, ] + [e;[ fi, 7]]
and we conclude using 3 and the inductive hypothesis.

Suppose now that u =z +h +y =0, with h € h,x € n, and y € n_. Then u acts on T'(V')
by: 0 =u(1) = y(1) + (\, h), hence (X, h) = 0 for every A € V*, then h = 0.

We observe that the map n_. — V| f; = v; uniquely defines a map n_ — T'(V'). Since
T(V) is freely generated by the images of the generators of n_, then T'(V') is the universal
enveloping algebra U(n_) of n_, and the map y — y(1) is the canonical embedding n_ — U(n_).
So y must be zero. This proves 1.

Now, by the Poincaré-Birkhoff-Witt theorem, n_ is freely generated by fi,..., f,. Applying
w, we see that n, is generated by eq,...,e,. This proves 2.

To prove 4. we prove by induction on s that [e;,,[-=*[e;,_,.[ei, , € ]1]-**]] € g4 for some

a €Ty Let x = [e;,[--[ei,_,,[€i, 5. €., ]]*]] € o, @ €Ty, then

[h,[ej,z]] = [[h,e;],z] + [ej[h, x]] = aj(h)[ej, ] + a(h)[ej, x] = (a + a;)(h)[ej, z].

We can prove analogously that [fi,,[-[fi._,.[fi._,, fi.]]=*]] € g-4 for some o € T';. This
prove that

We observe that dim g, < nhta, where, if a = Z?:l ko, ht o = Z?:l k;. This concludes the
proof of 4.

Let Q = {n € g(A) | n is an ideal and nnh = 0}. By Lemma 1.2.6 follows that = @ (1N
go) for every n € Q. Then for every ny,1m5 € Q, also n; + 79 € Q. It follows that there is a

_

neQ

unique maximal element of 2:

In particular, 7 = (t N n_) & (7 N1, ) as vector spaces. We observe that [ f;, 7 nn,] € n, and

[ei,7Nnn_] € n_, and this concludes the proof of 5. O

By now on we will consider only generalized Cartan matrices, so that g(A) is the Kac-Moody

algebra with generalized Cartan matrix A.

Remark 1.2.8. 1t is clear from Theorem 1.2.7 that the decomposition with respect to the action
of hcg(A)=g(A)/7is
54)=be P (g ®9-a)-

O+a€l'y
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Moreover, it is also clear that, if n_ and n, denote the images of n_ and n, respectively, there
is the diagonal decomposition g(A) =n_®& h @ n,.

This remark justifies the following definition.

Definition 1.2.9. Let g(A) = h & @1 9o, then we say that « € I'\ 0 is a root if multa :=
dimg, = 1.
A root « is called positive if « € 'y and negative if —a € T',. We call A, A, and A_ the

set of roots, positive roots and negative roots respectively.

Remark 1.2.10. From the proof of Theorem 1.2.7 it follows that A = A, u A_. More-
over, if @« € A, (respectively in A_), then g, is generated by the elements of the form

Lei,, [**[ei y: L€, 5 €, 1]-++]1] with iy + ... +i5 = ht . Analogously, if « € A_.

Remark 1.2.11. The involution @ over §(A) described in Theorem 1.2.7 is well defined on the
quotient by 7, so it induces an involution w on g(A), called the Chevalley involution.

We observe that w(g,) = g_a, hence A_ = —A,.

It is also easy to observe that, since every root is either positive or negative, for 8 € A, \{a;},
(B+Za; )N ACA,L.

Lemma 1.2.12. Let a € ny be such that [a, f;] = 0 for every i, then a = 0. Similarly if a € n_

and [a,e;] =0 for every i, then a = 0.

Proof. We define a Z-grading on g(A) setting dege; = —deg f; = 1 for every i = 1,...,n and

degh = 0. We write:
8(4) =P
JEL
where go = b, g; = ®;-1Ce; and g_; = &;-,C ;.
Let a € n, such that [g_q,a] = 0. We define

7= (ad'gi)(ad’ h)(a) S n,.
4,720
We observe that 7 is both h-invariant and n,-invariant. Moreover, by the hypothesis [g_1,a] =0
it follows that 7 is also n_-invariant. Then 7 is an ideal of g(A) such that 7 N h = 0, therefore

by Theorem 1.2.7 7 = 0, and then a = 0. The proof is analogous when a € n_. O

Definition 1.2.13. Let g be a Lie algebra and V a g-module, we say that x € g is a locally
nilpotent element for V if for every v € V, there exists N € N such that N v=0.

Lemma 1.2.14. Let yq,y2,... be a system of generators for a Lie algebra g and let x € g be
such that for every i, there exists N; such that (ad :z:)N’(yZ) = 0, then adx is locally nilpotent

on g.
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Proof. Let z = [y;,[. .- [¥i, ¥, _1-¥i, 1]1]1] € g, we show by induction on m that there exists
N, € N such that (ad x)N" = 0. If m = 1, the statement follows by hypothesis. If m > 1, we use
the fact that ad « is a derivation. Say z = [y, , Z], by inductive hypothesis there exists Nz € N
such that (ad x)NE = 0. Then N, = N; + N; is the desired number, indeed:

Nz . .
(ad )™ ([y;,. 2]) = ) (Jj) [(ad ) (y;,), (adz)™* 7/ (2)] = 0
j=0

O

Definition 1.2.15. We say that a h-diagonalizable g(A)-module V is integrable if e; and f;

are locally nilpotent for every 1.
Lemma 1.2.16. ade; and ad f; are both locally nilpotent over g(A).
Proof. By Lemma 1.2.14, it is sufficient to prove that:

1. (ad fi)l_a”fj = 0 for every i # 7j;

2. (ad ei)l_a“ej = 0 for every i # j.

We will prove relation 1. Relation 2. can be proved similarly.
We let v = f;,0;; = (ad fl-)l_a”fj and g = Cf; & Ca; ® Ce; = sly. Consider g(A) as a

g(;)-module with the restriction of the adjoint representation. We observe that
\% \%
o a; (v) = {ay, a5)v = —ay;
o ¢;(v) =0 because i # j.

Then it follows that v generates an irreducible g(;)-module of dimension 1 — a;;.

From i # 7 and the relations of g(A) it follows:
[ei,0i5] = (=ag; + 1= (1 = a;;))(1 = a;)(ad £;) 7 (f;) = 0.

Moreover, if k # i, it follows directly that [ej,0;;] = 0. By these observations and by
Lemma 1.2.12 we conclude that ¢;; = 0. O

Definition 1.2.17. An h-diagonalizable g(A)-module V is called integrable if e; and f; are

locally nilpotent on V for every ¢ = 1,...,n.
Theorem 1.2.18. g(A) is an integrable g(A)-module.

Proof. The proof follows by Lemma 1.2.14 and Lemma 1.2.16. O

In the following lemma we will recall some remarkable property of the representations of

5[2(@)
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Lemma 1.2.19. Let V be an sly(C)-module and let v € V' be such that h(v) = v for some
A € C. If we set vj := %fj(v), then h(v;) = (A= 2j)v,;. If , in addition, e(v) = 0, then
e(v;) = (A =j+1)v_;.

Moreover, for each integer k = 0, there exists a unique, up to isomorphism, irreducible
(k +1)-dimensional sl5(C)-module V (k). There exists a basis {vg,vy,...,v,} of V(k) such that
the action of sly(C) is given by:

o h(v;) = (k—2j)v;;
o f(vj)=(+1)vje;
o e(v;) = (k+1-j)v1;
for every 5 =0,1,...,n, with the convention v_1 = vy = 0.
Proposition 1.2.20. Let V' be an integrable g( A)-module, then the following holds:
1. as g(;)-module, V' decomposes in direct sum of h-invariant irreducible modules;

2. let X\ € b* a weight for V and o; a simple root of g(A). Let M = {t € Z|X +
tay is a weight for V'} and let my = multy (X + tay), then

(a) M is a closed interval of integers [—p,q] with p and q non negative integers such
that p— q = (\, &) when p,q < 0o. If multy A < 00, then p,q < 00;

(b) the map e; : Vasta, — Vai(t+41)a, 18 injective and the function t = my is increasing
fort € [=p,—5{X\ ai)];

(¢) the map t — my is symmetric with respect to t = —%()\, o );

(d) if X and X\ + «; are both weights of V', then e;(Vy) # 0.

Proof. By the proof of Lemma 1.2.16 follows that
eiffv=k(l—k+ Ny v+ flew

for every v € V). Let us fix v € V), we define the g(;)-submodule U = thzO ffe?l.v. This
space is clearly h-invariant. Moreover, e; and f; are both locally nilpotent, then it follows that
dimU < +00. By Weyl’s completely reducibility theorem, it follows that U decomposes as a
direct sum of finite dimensional irreducible g¢;y modules. These modules are also h-invariant,
because the eigenvalues of ) are the same as «; . It follows that we can decompose V as a direct
sum of finite dimensional irreducible h-invariant g(;)-modules, that implies 1.

Let now define U = ) ;. Vitka,- We observe that U is (g(;) +b)-invariant, so it decomposes

as a direct sum of finite dimensional irreducible (g(;y + h)-modules. Set p = —inf M and
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q = sup M. Both p and ¢ are non-negative because 0 € M. By definition, M = [—-p,q] N Z.
We observe that (A + tay, ;' ) = 0 if and only if ¢ = —%()\, ;). There follow by the symmetry
of sly-representations properties 2b and 2c. Moreover, we have p — %()\, o) =q+ —%()\, o)),

which implies p — ¢ = (\, @} ). Property 2d follows by the structure of sly-representations. [
Corollary 1.2.21. Let A be a weight for an integrable g(A)-module V.. Then we have:

1. if A+ oy is not a weight, then (X, ;) = 0;

2. A= (\ o Yy is a weight of the same multiplicity as ).

Proof. If X\ + «; is not a weight, then 1 ¢ [—p, ¢q], as defined in Proposition 1.2.20. It implies
that ¢ = 0, and then (\, ;') = p = 0.

We observe that —(\, e ) = ¢ —pand —p < ¢ — p < ¢, then —(\, ;') € [-p, q]. Statement
2 follows by Lemma 1.2.23. O
Definition 1.2.22. For i = 1,...,n we define the fundamental reflections r; € GL(H*): for
Aehn®,

ri(A) = A= (Ao )as.

We define W € GL(h™) as the group generated by the fundamental reflections defined above.
We say W is the Weyl group of g(A).

Lemma 1.2.23. Let g(A) be a Kac-Moody Lie algebra, let A be its root system and W the
associated Weyl group. The following hold:

1. A is a W-invariant set and mult o = mult w(«) for every a € A and w € W. Moreover

AL \ Ay} is an ri-invariant set;
2. the set A, is uniquely defined by the following properties:
(a) € AL €Ty and 2a ¢ AL for every o € 11;
(b) if « € Ay N {wy}, then a+ ka; € Ay if and only if —p < k < q for p,q € Z= 0 such
that p — ¢ = {a, &) ).

3. if A is an indecomposable generalized Cartan matriz of zero or negative type, then for

every B € Ay, there exists o € I such that 5+ a € Ay.

Proof. We have shown in Theorem 1.2.18 that g(A) is an integrable g(A)-module, so we can
apply Corollary 1.2.21. Tt follows that, for every a € A, 7;(a) = o — {a, oy Yoy is a root of the
same multiplicity as a. It follows that w(a) € A and mult w(a) = mult a for every o € A and

every w € W. By Remark 1.2.11 follows that for every a € A, \ {a;}, holds

ri(@) = o= (a, 07 Yoy € Ay N\ {oy).
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Let us prove that a) and b) hold for a root system. We have that IT € A, € T", by definition.
By the construction of g(A), follows that 2a; ¢ A for every a; € II, indeed g,, is generated by
[e;,e;] = 0. Moreover, b) holds because of Proposition 1.2.20.

On the other hand, if there exists II € A, ¢ I',, then one can show by induction on ht «
that o € A, if and only if & € A,

To prove 3, we observe that if A is of negative type, then for every S € A,, then AB3 # 0,
in particular, there exists ¢ € S(A) such that (A3); = 7;(8) < 0. It follows that 8 + a; € A,.

If A is of zero type, then we have two cases:
e if AB # 0, then, as in the negative case, there exists a; € II such that a; + 5 € Ay;

o if AS =0, then 8 ¢ II. By 2 follows that there exist a; € II, k € Ny and B € A, such
that 8 = 8 + koy, then 8 = 8 — koy € Ay. Then g = 1, since 0 = (8,a;) = p — ¢, with
p = 1. It follows that 8 + «; € A,

1.3 Real and imaginary roots

Definition 1.3.1. Let a € A, we call a a real root if there exists a w € W such that w(a) € II,
otherwise we say that o is an imaginary root. We denote by A", A, Aim, Aim the sets of

real, positive real, imaginary and positive imaginary roots respectively.

Remark 1.3.2. We observe that, since our aim is to study the root system associated with
a Cartan matrix A, we may assume that A is an indecomposable Cartan matrix. Indeed, if
A=A @ @ Ay, then also g(A) = g(A4;) & --- ® g(Ay) and consequently A(A) = ]_[le A(A;)
and W(A) = [T5, W(4,).

Definition 1.3.3. Let a = ) |, k;a; € ', we define the support of  as the subgraph of
Suppa € S(A) consisting of the vertices ¢ such that k; # 0 together with every edge between

these vertices.

Definition 1.3.4. We define the fundamental chamber K € I"' ® R the set of vectors a =
>, kia; € T such that:

1. there exists at least one i such that k; = 0, and this is required especially when S(A)\ {p;}

contains a connected component of negative type;
2. pi(a) = Z?:l kja;; < 0 for every i = 1,...,n.

We denote by M the set of @ € K N I" such that Supp « is connected.
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Lemma 1.3.5. Let A be an indecomposable Cartan matriz, then the following hold:
1. ifa = Z?:l kio; € K, then k; 20 for everyi=1,...,n;
2. the set Aim is W-invariant and if o € Aim, then w(a) € M for some w € W ;
3. if A is of positive type, then K = 0;

4. if A is of zero type, then K = R.§, where § is the vector found in Theorem 1.1.19 and
reported in Table 1.2;

5. if A is of negative type, then K is a solid cone;

6. if o € ALY, then there exists a sequence Tiys- .-y Ti, Of minimal length such that

k

7, i (o) € I

Proof. Let us prove the first statement by contradiction: suppose that o = Z?:l kioy =B —~ €
K. Let B = Z?esl cioy; and 7y = Z?ESQ cioy, with S; U Sy = S(A) such that ¢; = k; = 0 for every
© € Sy and ¢; = —k; > 0 for every j € Sp. From the definition of K it follows that S; contains
only subdiagrams of positive or zero type, otherwise Sy = @, and moreover ¢(3) < 0 for every
i € S7. This together with Theorem 1.1.7 proves that S; has all the connected components of
zero type, which implies o(3) = 0 for every 7 € S;. Because S(A) is connected, there exist
i € 51, j € Sy such that a;; # 0. We conclude the proof of 1 because the following leads to a
contradiction together with o € K:

eia) = @i(B) —9i(7) = —pi(v) = = ) ayc; > 0.
JES2

To prove 2, let o € Aim, then o € A, \1I, then follows by Lemma 1.2.23 and the definition
of A" that r;(a) € Ay N1 It follows that W(AY™) ¢ A”™. Let @ € W such that htw(a) =
min,ew w(a), then w(a) — a; ¢ Ay for every ¢ = 1,...,n. By Lemma 1.2.23 follows that
pi(w(a)) = —q <0 for every i = 1,...,n, which proves 2.

Statements 3,4 and 5 follow by 1 and Theorem 1.1.7. Statement 6 follows immediately by

definition of real root. O
Lemma 1.3.6. Let « € M, then o € Aim.

Proof. Let o = Y " kja; € M and Q = {y € Ay |a—~v € I',}. At least one element of II
belongs to €2, so it is not empty. Let 8 = Z?:l m;a; be an element of maximal height of Q.

Suppose by contradiction that o ¢ A, then the following holds:

1. P={i€S(A) |k =m} % @:
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2. B+az¢A+ 1f’L¢P, ie. if k; > m;.

Indeed, by Lemma 1.3.5 and the hypothesis M # {0} follows that S(A) is of negative or zero
type, then by Lemma 1.2.23 we can add simple roots to S until at least m; = k; for some
i € S(A). This proves 1. To prove 2 it suffices to observe that if 8 + «; € A, for i ¢ P, then
B+ a; € Q with ht(5 + «;) > ht 8, against the assumption that 3 is of maximal height.

Let R be a connected component of the subdiagram Supp(8 — «) = S(A) N\ P = {i €
S(A) | k; > m;}. Define 8 = Y ier Miq; and B" = B - B'. We observe that

a) i(B) = 0 for every i € R;
b) ¢;(8") < 0 for every i € R;
¢) there exists i € R such that ;(8") > 0.

In fact, Lemma 1.2.23 says that 8 + ka; € Ay if and only if —p < k < ¢ with ¢;(8) = p — g,
p,q € N, and 1 says 8+ a; ¢ Ay, so it implies ¢ = 0 and then ;(3) = p = 0, which proves a).
For every ¢ € R holds

vi(B) = Z mjag; < 0

jeES(ANR

that implies b). Moreover, if ¢;(8) = 0 for every i € R, then a;; = 0 for every i € R, j €
S(A) N R, i.e. R is a connected component of S(A) that is connected. It follows from a), b),
and ¢) that ¢;(8") = 0 for every i € R and there exists j € R such that ¢;(8') > 0. This implies
that R is a Dynkin diagram of positive type. Consider now the element o = Y ier(ki —m;)a;
and we observe that Suppa’ = R and that ¢;(a') = ¢;(av — B) for every i € R. Resuming,
we know that « € M € K, then ;(a) < 0 and ¢;(3) = 0 for every i € R. It follows that
gpi(oz') = p;(a) — p;(8) < 0 for every ¢ € R. This leads to a contradiction because we have
already shown that R is a Dynkin diagram of positive type. It follows that o € A, .

We observe that for the element 2 we have what we have shown for «, particularly 2o € A,.
By Lemma 1.2.23 follows that a ¢ A°, then a € A" O

By Lemma 1.1.13 we can give the following definition.

Definition 1.3.7. Let A be a symmetrizable Cartan matrix, then A = DB, with B = (b; ;) a

symmetric matrix and b;; € Z[%] Then we define a bilinear form (-, -) on I' by (a;, o) = by;.

Remark 1.3.8. If A is a symmetrizable Cartan matrix and a = y i, c;o € T, then (o, ) € Z.

Indeed:
n
Z Czcjbw + Z C”bZ’L
=1

i<j

n

(a, ) = (Z cio, chozj) =2
i=1 i=1

J

Both summands belong to Z.
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Lemma 1.3.9. Let A be a symmetrizable Cartan matriz and (-, ) the associated bilinear form,

then the following hold:

1. the bilinear form (-,-) is W-invariant, i.e. (w(a),w(B)) = (a, B) for every o, 8 € T and
w € W;

2. a €T is a real root if and only if (o, ) > 0;
3. a € T is an imaginary root if and only if (o, ) < 0;

4. o €T is isotropic if and only if there exist a connected subdiagram S of S(A) of type Z

and w € W such that w(a) is an imaginary root of S.

Proof. First of all, we observe that (o, o;) = 0 for every a € U; = {a € T'| (o, @} ) = 0}. Indeed,
if o = Z;.L:l cjoy, then:

n

(o, ) = ch(ajvai) =d;' chdibij = d; {0, 07) = 0.
=1 =1

In particular we have that (r;(«), ;) = 0 for every a € I" and every «; € II.
We will prove 1) on the generators {ry,...,r,} € W. Let 8,7 € T, then:

(ri(B), (7)) = (ri(B), v = {7y 08 V) = (1:(B),7) = (v, ' Wi B), awi).

In particular it follows that, for every 3,7 € I, holds (r;(3),r;(7)) = (r;(B),7) = (B,r:(7)).
Then using this identity and the fact that r? = 1d, we have

(ri(8),r (1) = (r(8),7) = (ra(B), i (1)) = (B, (7)) = (B.7)-
Let a € A™, then there exists w € W such that w(a) = a; € II. By 1) it follows that
(a,a) = (w(a),w(a)) = (a;, ;) = by 2 0.

Let a = Z?:l ca; € AT By 1) it follows that, without loss of generality, we can assume

a € K. By the definition of K we have:

n n
(a, ) = Zci(ai,a) = Zd;lci(ai,oe) <0.

i=1 i=1
Since A = A" LA™, 2) and 3) are proved.

Let « be an isotropic root. Then, from 3), it follows that it is an imaginary root. As above,
we can assume « = y . c;a; € M. Then 0 = (o, ) = Y i, ¢;(v, ). Tt follows that (o, a) =0
for every ¢ € Supp a. Then it follows that « is a root for a subdiagram of S(A) of type Z and
that o = md with m € N* and ¢ as defined in Theorem 1.1.19. O
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Definition 1.3.10. Let A be a Cartan matrix, we say that A is of hyperbolic type if it is of
negative type and every proper connected subdiagram of S(A) is of type P or Z.

From now on, we will focus on symmetrizable indecomposable Cartan matrices of positive,

zero, or hyperbolic type. For simplicity, we will refer to them as Cartan matrices.

Lemma 1.3.11. Suppose that, for any two disjoint subdiagrams of S(A), one of them is of
positive type. Then any o € K NI has a connected support. Equivalently, M = K N T.

Proof. Suppose that o = 8 + v and that P = Supp 8 and P = Supp~y are disjoint. Without
loss of generality, we may assume that P is a diagram of positive type, then ¢;(38) > 0 for
some i such that p; € P. It follows that ¢;(a) = ¢;(8) > 0, which contradicts the hypothesis
a€ K. O

Remark 1.3.12. By Lemma 1.1.10 follows that Cartan matrices of positive and zero type verify
the hypotheses of Lemma 1.3.11. If A is a Cartan matrix of hyperbolic type, it also verifies the
hypotheses of Lemma 1.3.11. Indeed, if S7 and Sy are disjoint subdiagrams of S(A) of zero type,
then there must be a connected subdiagram S € S(A) such that S; € S and @ # SN Sy & So.
This is possible because S5 is of zero type and then it has more than one vertex. Then S is a
proper subdiagram of S(A) and is of negative type, because it contains Si: a proper subdiagram
of zero type. This leads to a contradiction because A is of hyperbolic type.

In conclusion, if S(A) is of positive, zero or negative type, for every two proper disjoint

subdiagrams of S(A), at most one of them is of zero type.

Lemma 1.3.13. Let A be a Cartan matriz of positive, zero or hyperbolic type and o € I, then
the following hold:

1. if (a, ) < 1, then either a €Ty, —a €'y or a =0;
2. if (a, ) = 1, then o € A",

Proof. Suppose by contradiction that +a ¢ I'y and « # 0. Then we can write a = § — 7
with 8,7 € I'y. Let P = Suppf and P = Supp~y. We observe that P and P' are disjoint
subdiagrams of S(A). Moreover, both P and P are disjoint unions of connected subdiagrams,

at most one of which is of zero type, as follows by Remark 1.3.12. We conclude by computing

(Oé,Oé) = (6 _775 _7) = (67/3) + (777) + 2(_577)' (131)

Both (3,8) and (7,7) are non-negative and at least one of them is positive. Moreover, we

observe that:

2(_Ba’7) = _2(2 Z Cicjbij) >1

1€P jep'
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because B has coefficients in Z[%] and b;; < 0 for every i € P, j € P' and at least one of them is
strictly positive, because S(A) is connected. Then in Equation (1.3.1) there is a summand that
is at least one, and two non-negative summands, at least one of which is positive. It follows
that («, ) = 1, that is a contradiction.

By 1) it follows that we can suppose « € I'y. Now consider the orbit of a under the action
of W. By Lemma 1.3.9 we have that (w(a),w(«)) = (o, «) =1, and then by 1) it follows that
w.a € Ty UT_U{0}. Let 8 be an element of minimal height of W.aNnT',, then 8 € II, otherwise
there exists p; € Supp 8 such that r;(8) € W.anT; and ht 8 > htr;(3). O

Lemma 1.3.14. Let A be a Cartan matriz and o € 'y, then the following hold:
1. « is an imaginary root if and only if (a, ) < 0;
2. if A is a symmetric matriz, « is a real root if and only if (a, ) = 1.

Proof. By Lemma 1.3.13, we may assume without loss of generality that « € I',. Let § €
I', UW.a be an element of minimal hight. It follows that (8,;) < 0 for every 4, otherwise
htr;(8) = ht(8 — (B, ey Yov;) < ht 8. Tt follows that 2 € K UT,. By Lemma 1.3.11 it follows
that Supp 8 is connected and then § € M. By Lemma 1.3.5 it follows that « € Aim, which
proves 1).

By Lemma 1.3.13 it follows that if (o, a) = 1, then « is a real root. Vice versa, we observe
that if A is symmetric, then B = %A and then (o , ;) = 1 for every i. The thesis follows by
the definition of real root and Lemma 1.3.9. O

Let us make some useful example. We will consider only symmetric Dynkin diagrams, indeed

in the second part of the work we will work with these diagrams.

Example 1.3.15. Let us consider the Dynkin diagram of finite type As : ®—®_ and the
2 -1
-1 2
the elements aq, ay € II, and we need to apply the simple reflections to find the real roots:

corresponding Cartan matrix A = ( ) We want to compute its root system: we have

o () = ag = (a1, )y = g + ag;

e ry(ay) =y —(ag,a1)ag = ag + ay;
o ri(ar +az) =ri(ar) +ri(ag) = —a; + a1 + g = ay;

o ol + ) = ra(oy) +ra(ae) = a; +ag — g = 0.

It follows that the set of positive real roots is AL = aj, a9, a1 + ay. Since As is a Dynkin
diagram of finite type, it does not admit imaginary roots, hence A, = A'°. Generalizing to the

case of A, : e—e——e—e we observe that for every i = 1,...,n, the following properties hold:
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o ri(a;) = —ay;

e if 1 # n, then r;41(y) = o + qy1;

e if i # 1, then r;_1(oy) = a; + a_1;

o rj(o;) = a; for every j ¢ {1 —1,i,i+1}.

It is straightforward to deduce that the positive root system of A,, is:

Ar={) allsisjsn}

i<k<j

Example 1.3.16. Let us consider the Dynkin diagram of affine type Agl) : O—® and the
2
-2
it follows that A”™(A) = N&, where § is the vector (1,1) found in Theorem 1.1.7. Let us

-2
corresponding Cartan matrix A = ( 5 ) By Lemma 1.3.5 together with Lemma 1.3.6,

compute the real roots of Agl) using two different methods. First, we apply the criterion found

in Lemma 1.3.14, namely we impose:

1=(a b)(_ll _11)(2>=a2—2ab+b2=(a—b)2

This implies that the real roots are the vectors (a,a+1) and (a,a—1), with a € N. Alternatively,

we can proceed more directly by observing that:
e r1(az) =201 + ay;
o ro(ay) = a + 2.
Using these reflections, we can inductively construct the real roots:
o ri(kag + (k+1)ag) = —kaqg + (k+1)(2a1 + ag) = (k +2)a; + (k + 1)as;
o ro((k+1)ag + kag) = (k+1)(aq + 2a3) — kag = (k+ 1)ag + (k + 2)as.

It follows that A" = {(k,k+1) eT',,|,k e Nyu{(k+1,k) eT,,|, k € N}.






Chapter 2

Representations of Quivers

In this chapter we recall the fundamental definitions and standard results from the theory
of quiver representations. We present Gabriel’s Theorem 2.2.1 and then analyze the case of the

2-Kronecker quiver, which motivates the search for a generalization of Gabriel’s Theorem 2.2.1.

2.1 Quivers and Indecomposable Representations

Definition 2.1.1. A quiver Q = (S,2) is an oriented graph, i.e. it is defined by its underlying
graph S:

e a set of vertices Sp;
e a set of edges Sy;

and by an orientation €2 of the graph, given by two functions s,t : S — 5y, called the source
function and the target function, respectively.

We will consider only quivers without loops, that is, quivers for which for every I € S5y,
s(1) # t(l).

Example 2.1.2. Some examples of quivers are:

Notice that the quivers

> >

are two different quivers, with same underlying graph S but different orientations €2 and Q.

31
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Definition 2.1.3. A representation of a quiver () is defined by
e a collection of vector spaces (V;);es,, one for every vertex of the quiver Q;

e a collection of linear maps (¢; : Vi) — Vi))ies,, one for every oriented edge of the

quiver Q.
We will denote the representation (V;, ¢;)ies, 1es, simply by V.

Definition 2.1.4. To every representation V' of a quiver (), we can associate a vector, called

the dimension vector, defined as o = (dim V;)es, -

Example 2.1.5. Let ) be the quiver
1 : 2

also known as the 2-Kronecker quiver.

The following are three different representations of the quiver Q:

1 0 2
The dimension vectors of the above representations are a; = (0>, Qg = (1) and a3 = <1>

respectively.

Definition 2.1.6. Let U = (U;, ¢1)ies,.1es, and V = (V;, ¢1)ies,.ies, be two representations of
the quiver (). We say that U is a subrepresentation of V' if

e U, C V; is a vector subspace;
e 1)y is the restriction of ¢; to Uy().

Definition 2.1.7. Given two representations U and W of the quiver @, we define the repre-
sentation V. =U @ W as

o V. =U, ® W, for every i € Sy;
o 0= @Y : Ugyy ® Wiy — Usyy ® Wy for every | € Sy.

A representation of a quiver () is called irreducible if it does not admit any non-trivial
subrepresentation and is called indecomposable if it cannot be written as the direct sum of two

representations of Q).
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Example 2.1.8. The simplest examples of indecomposable objects are the irreducible repre-

sentations U (i), defined, for every i € Sy, as follows:
o (U(i))j =0 for every i # j and (U(i))i = T;
o ¢; =0 for every | € 5.
More precisely, the U5 are the only irreducible representations of a quiver Q.

Definition 2.1.9. A morphism of representations of the quiver () between V and W is defined
by a collection of linear maps (f; : V; — W;);es,, one for every vertex of the quiver @, such
that for every I € Si, ¥y o foy = fiqy © w1 ¢ Vsq)y — Vi)- In particular, we require that the

following diagram commutes for every | € S;:

2
Vsay — Vi

fsq) fuw

Wy — Wi
(0

Remark 2.1.10. To every quiver @ = (5, 2), we can associate a Dynkin diagram by considering
the underlying graph S. It is associated with its Cartan matrix, which is a symmetric Cartan

matrix.

Definition 2.1.11. Let Q be a quiver with numbered vertices Sy = {1,...,n} and consider
a = Z?:l kia; € T,. We define M*(Q,F) as the space of all representations of @ with fixed

dimension vector a.

We observe that a representation V' with dimension vector o can be described by a tuple of

linear maps (¢;)es,, where ¢; € Homy (F"®, F*®). Equivalently

M*(Q,F) = D) Homy (F*0 7)) = (RH(F"" @ (F*1)").
leSy leS;
We will set GL(a) = GLy, X -+ X GLj, and End(a) = @ZESO Endm(]Fki). We also set
g = dim GL(«). Moreover, we will denote ¢(3) = (8, 3) for g € ;.
An isomorphism between two representations V;, Vo € M*(Q,F) is given by a tuple (f;):es,

of invertible endomorphisms, i.e., (f;)ies, € GL(). This means that the isomorphism class of
V € M*(Q,F) is the orbit of V in M*(Q,F) for the action of GL(«). The action is given by:

(fieso-(Piies, = (fany © @10 funy)
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We observe that the normal subgroup C' generated by (Ij, )ies, acts trivially on M*(Q,F),
thus we consider the quotient action of G := GLy, x...xGLy |C. G“ is a linear algebraic
group and M“(Q,F) has a natural structure of algebraic variety. We have also the following

equalities:
o dim M*(Q,F) = ¥ e, kskiqr) = =5 Linj Giskik;
o dimG*+1=Y" k.

It follows that
dim M*(Q,F) —dimG” =1 - (o, a) = 1 — q(a). (2.1.1)

Definition 2.1.12. Let Q be a quiver and let o € I',. We define M}, ,(Q,F) € M“(Q,F) as

the set of indecomposable representations of @) of dimension vector «.

Definition 2.1.13. Let G be a linear algebraic group over F. A subgroup 7" € G is called a
torus if T@F =T x - xF.. We say that T is an F-split torus if 7' = F* x -+ x F*.

Definition 2.1.14. Let GG be a linear algebraic group acting on an algebraic variety X. For

x € X, we denote by G, the stabilizer of z, i.e.,
G, ={9g€G|gx=ux}.

We denote by g, the Lie algebra of G,.
We say that x € X is:

e a free point if G, = 0;
e an infinitesimally free point if g, = 0;
e a quasi-free point if G, does not contain any non-trivial F-split torus.

Definition 2.1.15. Let A be an associative unital algebra over F, and let V' be an A-module.
We say that V is a brick if End4 (V) = F. Similarly, a representation U of a quiver @ is a brick
if Endg(U) = F.

Definition 2.1.16. Let A be an associative unital algebra. We define the radical of A as
rad A = {a € A|aM =0 for every irreducible module M of A}.

The following is a classical result of representation theory known as the Fitting Lemma. We

formulate it within the framework of quiver representation theory.

Theorem 2.1.17. Let Q be a quiver and let V' be a representation of Q. Then V is indecom-

posable if and only if every element of Endg(V') is either an isomorphism or nilpotent.
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Remark 2.1.18. If V is an indecomposable representation of ), then it follows from Theo-
rem 2.1.17 that, for every ¢ € Endg(V'), we can write ¢ = AId +N, where N € Endg(V) is a

nilpotent endomorphism.
Lemma 2.1.19. Let U € M“(Q,F). Then the following are equivalent:

1. U is an indecomposable representation;
2. Endg U does not contain non-scalar F-split semisimple elements;
3. U is a quasi-free point of M“(Q,F) with respect to the action of G*;
4. gy does not contain non-zero F-split tori.
The following properties are equivalent:
a. Endg(U) = F;
b. U is a free point;
c. U is an infinitesimally free point.

Proof. First, we observe that for U € M“(Q,F), Gy = Autg(U)/(Idy) and gy = Endg(U)/(I1dy).

The equivalence between 2), 3) and 4) follows directly from the previous observation, and
similarly the equivalence between a),b) and c).

We will prove the equivalence between 1) and 2).

If U is decomposable, then there exist 7 : U — U; projection and ¢ : Uy — U such that
7o =1Idy,, moreover 1 o € Endg(U) and it is a scalar split semisimple element.

Now, we suppose that U is indecomposable. Let f be a split semisimple element and suppose
that A € F is one of its eigenvalues. It follows from Theorem 2.1.17 that f — AIdy is a nilpotent
endomorphism of U. Moreover, f — X - Idy is also split semisimple, since both f and AIdy
are split semisimple and they commute. Hence, their difference is split semisimple as well. A

nilpotent split semisimple endomorphism is the zero map, therefore f = Ald. O

2.2 Gabriel’s Theorem

The following theorem due to Gabriel gives us a fundamental result on the representations

of quivers. We omit the proof here, since we will later present a more general result. The proof
can be found in [Gab72].

Gabriel’s Theorem 2.2.1. A quiver Q admits a finite number of isomorphism classes of
indecomposable representations if and only if its underlying graph is a Dynkin diagram of finite
type. Moreover, in this case, the indecomposable representations of the graph are in bijection

with the positive roots of the Dynkin diagram.
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We now illustrate some applications of Gabriel’s theorem with explicit examples.

Example 2.2.2. Consider the Dynkin diagram A,: @ ——@—®_ We have seen in Ex-
ample 1.3.15 that the positive root system of A, is A, = {Ziﬁksj ap|1 <i<j<n} We
enumerate the indecomposable representations of A,, inductively on n. If n = 1, then there
exists a unique indecomposable representation, which is the irreducible one.

For n > 1, we restrict our attention to indecomposable representations whose dimension
vector has support on all vertices of A,,, since otherwise the representation would correspond
to a proper subquiver isomorphic to A,, with m < n. Thus, we consider the indecomposable
representation corresponding to the positive root o = Z:-L:l Q;.

It is straightforward to verify that the representation given by V; = F for every ¢ = 1,...,n
and ¢(; jy = Id : F — T for every (i,7) € S; is an indecomposable representation of A,, with
dimension vector a. Moreover, we need not explicitly consider the orientation since we can
choose a numeration of the vertices such that (7, j) is an oriented edge from i to j. By Gabriel’s
Theorem 2.2.1, this is the unique indecomposable representation with dimension vector equal
to a. This representation, in the case of the equioriented quiver with underlying graph A,,, is
the following:

F 1q F F q F

Example 2.2.3. Consider the Dynkin diagram Agl): O<—®. We have seen in Example 1.3.16
that the real positive root system of A§1) is AV = {(k,k+1) e, |ke Nyu{(k+1,k) €
T, | k € N}, and that the imaginary positive roots are A”" = {(n,n) |n € N\ {0}}. We now

examine the indecomposable representations of the Kronecker quiver

el

whose underlying graph corresponds to the diagram Agl). We expect to find a relation between
the dimensions of the indecomposable representations of the Kronecker quiver and the roots of

Agl). In particular, we will exhibit an indecomposable representation for every root.

o IV, is the representation

t1
<
%]
where v1(x1,...,2,) = (21,...,7,,0) and va(x1,...,2,) = (0,21,...,2,). This represen-

tation is indecomposable, indeed if n = 1 it is an irreducible representation. Otherwise, if



2.2 Gabriel’s Theorem 37

n > 1, we will show that Endg(W,,) has only invertible and nilpotent element, and then
we will conclude that W,, is indecomposable by Theorem 2.1.17. Consider an endomor-
phism (A, B) € Endp(F") ® EndF(F"H). We will denote ay,...,a, € F" the rows of A,
b1,...,b, € F"*! the rows of B. For every i =1,...,n+ 1, we set b; = (bi1,-..,byp) €EF"
and b; = (bya, . . ., bin+1) € F". Then we have that (A, B) is an endomorphism of W, if
and only if the following conditions hold:

1. 11A = Buo, i.e., if and only if

a by
an| | by
Q I~7n+l
It follows that l~)n+1 =0 and a; = lN)Z foreveryi=1,...,n.
2. 11A = Bug, i.e., if and only if
0 by
ar | |
: by
Qn, I;n+1
It follows that b; = 0 and a; = I;i+1 for every i = 1,...,n.

It follows that A = A\I,, and B = A\, for X\ € F.

e 7, is the representation

T
]F’I’L-l-l Fn
<>
T2
where m(z1,...,2p41) = (21,...,2,) and mo(21,...,2pe1) = (T2,...,Zpe1). The proof

that Z,, is indecomposable is similar to the proof that W,, is indecomposable.

e V), is the representation



38 2. Representations of Quivers

where Jy is the matrix of the Jordan block of size n with eigenvalue A. Also in this
case, every endomorphism in Endg(Vy,) is either an isomorphism or nilpotent. Indeed,
if n = 1, we can observe that Endg(V),) = nldy,,, therefore it is a brick. Otherwise, for
n > 1, with calculation similar to the case of W,,, we can prove that Endg(V),,) is the set

of matrices A € M,,(F) such that

a;  as Gp-1 Gnp
0 a1 a9 Ap—1
A=
0 0 a as
0 0 aq
for some ay, ..., a, € F. We observe that V), has only indecomposable or nilpotent endo-

morphism, therefore from Theorem 2.1.17 follows that V), is indecomposable. However,

in this case, V), is not a brick.

The following theorem, that we will not prove, is the general result concerning the indecom-

posable representations of the 2-Kronecker quiver.

Theorem 2.2.4. Let V be an indecomposable representation of the 2-Kronecker quiver over the

algebraically closed field F, then it is isomorphic to exactly one of the following:
o W, forneN;
o 7, forneN;
o Vi, for [X:pu] € P(F);

where W, Z,, and Vy, are the indecomposable representations defined in Example 2.2.5.



Chapter 3

Orientation and Representations

In this chapter, we analyze the problem of orientation. Gabriel’s theorem is independent
of the orientation, and thus we expect that any generalization of Gabriel’s theorem will also
exhibit this invariance. We then introduce reflection functors, which allow us to act on the
dimension vector of a representation using elements of the Weyl group, while preserving inde-
composability. In addition, we present a method for changing the orientation of a quiver in
order to apply reflection functors. This method has the desirable property of preserving the

number of indecomposable representations, but unfortunately, it only works over finite fields.

3.1 Reflection Functors

Definition 3.1.1. Let Q be a quiver with vertex set Sy and arrow set S;. A vertex ¢ € 5 is
called a sink if no arrow has ¢ as its starting point, i.e., if s(I) # ¢ for all [ € Sy. Similarly, i is
a source if no arrow ends at 4, i.e., if £(I) # 4 for all [ € S;. We say that i is admissible if it is a

source or a sink.

Definition 3.1.2. Let @ be a quiver, and let i € Sy be an admissible vertex. We define the
quiver 7;(Q) to be the quiver with the same underlying graph as @), but with the orientation
modified by reversing all arrows with ¢ as an endpoint. That is, the new orientation 7;(Q2) is

defined by the following rules:

e For every arrow [ € S; such that ¢ # s(I) and i # t(1), set 7;(s)(1) = s(I) and 7;(¢)(I) =
t(1);
e For every arrow [ € S such that either i = s(I) or i = t(l), set 7;(s)(l) = t(l) and
ri(t)(1) = s(0).
Definition 3.1.3. Let @) be a quiver, and let ¢ € Sy be a sink. We define the functor

F : Rep(Q) — Rep(7:(Q)).

39
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Given a representation V = (V. ¢;)kes, ies, the image F;(V) is given by:
b (Fz+(v))k =V}, for every k # i;
o (F (V)i =1t Viw)y — Viqy, for every | € Sy such that #(1) # i;

o (F'(V)); = ker ", where
P @ Vsay — Vi

1eS1,t(1)=i

is the unique map such that ‘lerv.(,) = gy for every | € Sy such that t(1) = i;

e for every | € Sy such that t(1) = 4, we define (F," (V)); : kerp" — (Fi+(V))t(l) as the
composition:

kergt o (P Vi = V-

€Sy ,t(l)=i

Now, we have to define the image F; (f) of a morphism f = (f&)kes, € Homg(V, W):

o for every k # 4, we define (F, (f)i := fi : Vi — Wi;

e let S(;) be the set of vertices near 4, i.e. the vertices k € Sy such that there exists | € Sy,
t(1) = i and s(1) = k. We define (F; (f)); as the restriction of the map fo) := @kesm fi:
@kes(i) Vi — @kesm Wy to ker ", Then (F; (f)); : ker o — ker¢)" is well defined
by the commutativity of the following diagram

+

2
@kGS(i) Vk - V;

fa) fi
@kGS(“ Wk‘ n > m
(0

Similarly, we define the functor F; : Rep(Q) — Rep(7;(Q)) when i € Sy is a source. On
the objects we define:

o (F; (V) =V, for every k # i;
o (Fi (V)= Viqy — Vi, for every | € Sy such that s(1) # 1;

e (F; (V)); = coker ¢, where

v Vi— P v

leSq,s(l)=1

is the unique map such that 74y 0 ¢ = @4y for every I € Sy such that s(1) = i;
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e for every [ € Sy such that s(I) =4, we define (F; (V)); : (F; (V))yq) — coker ¢ as the
composition:

Viay = @ Viy = coker ¢ .

leSy,t(l)=i

On the morphisms, we define:
o for every k # i, we define (F; (f))g := fr: Vi — Wy;

e let S(;) be the set of vertices near i, i.e. the vertices k € Sy such that there exists | € Sy
such that s(I) = ¢ and t(I) = k. We define (F; (f)); as the projection on coker ¢ of
the map f(;) := @kesm f: @kesu) Vi, — @kesm Wy,. Then (F; (f)); : cokerp” —
coker1p  is well defined because of the commutativity of the following diagram:

¥
V; ——— Dhres, Vi
Ji fa)

W; EE— @RES@) Wi

The functors F; and F; are called reflection functors.

Remark 3.1.4. In the definition of the reflection functors we should check that the image of a
morphism of Q-representations is a morphism of 7;(Q)-representations. We will check it in the
case of F;', for F, the proof is analogous.

If f € Homg(V, W), we have to prove that E+(f)t(l) oF () = Fi (1) OFi+(f)S(l) for every
1 € Sy, where Fi' (¢;) = (F;'(V)); and F;" (¢) = (F;"(W)),. It follows by the definition that
the condition holds for every [ € Sy such that ¢(I) # 7. Consider I € S; such that ¢(l) = ¢ and
v = (Uk)kes(i) € ker go+ c @lesl,t(l):z‘ V). The thesis follows by the following computations:

o (F (fey o Fi (0))() = Fy (Fey(wsy) = Fsy(wsy)s

o (E" () o F (Ns)(0) = F (W) ((fe(or)resy) = fswy) (0smy)-

The following theorem lists the properties of reflection functors which we will use in the

proof of the main result. A proof of this theorem can be found in [BGP73|.

Theorem 3.1.5. Let @ be a quiver and let i € Sy be an admissible vertex. The following
properties hold for the reflection functors F,' and F; (the statements are given for F:ifiis

a source, replace + with — accordingly):
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1. F'(Ue W) =F (U)ea F, (W) for every U, W € Rep(Q);

2. let U € Rep(Q) be an indecomposable representation. Then exactly one of the following
holds:

(a) U = U and F}+(U(i)) = 0. Here, U s the indecomposable object defined in
Example 2.1.8;

(b) U # U In this case, F; (U) is an indecomposable object and F; F; (U) = U.
Moreover, dim F; (U) = r;(dim U).

3.2 Independence from the Orientation

In this section we will consider only finite fields, i.e., F = F,, where ¢ = pt, p prime.

Lemma 3.2.1. Let G be a linear algebraic group acting on an F-vector space V of dimension
n, and let V* be the dual representation of V. Then the number of G-orbits in V and V*

coincide.

Proof. Let x : F, — C* be a nontrivial character. Set A = Homg.(V,C) and A* =
Homg.(V*,C). Both A and A* are finite-dimensional C-vector spaces. We define the dis-
crete Fourier transform F : A —s A™ defined by

FUNO =T =q"7 Y Fu)(E))

veV

for every £ € V™.

First, we want to show that f(v) = f(—v). For every v € V, we have:

v

) =2 Y (7Y fw)x(ew)x(u(e))

peV* weVvV
=q" ) Y flwxle(w+v))
weV peV*

where in the above, we identified V with (V*)* via v = (¢ = ¢(v)). We now aim to study the
Y=

value of the innermost summation as w € W varies:

e if w = —v, then we obtain

> Fw)x(e(v+w)) = f(=v) Y x(0) = ¢"f(~v);

peV* peV*

o if w # —wv, then let {¢1,¢@a,...,0n} be a basis of V* such that ¢(v + w) = 1 and
@;(v+w) =0 for every j > 1. For every p € V" we can write ¢ = Z?zl Ajp;. Then we
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obtain

> xplwrw)= ) ) xupilvrw))=¢"" ) x(N)=0.

n
PEV* Aty hn €F i=1 A€eF,

The last equality follows by the fact that the image of x lies in a set of root of unity.

We can therefore conclude that ]:‘;(v) = f(-v). It follows that f € A is a G-invariant function
if and only if fe A" is a G-invariant function. Moreover, dim A% s equal to the number of
orbits of G in V, because every G-invariant function is uniquely identified by its values on the
orbits of G in V. Similarly, dim(A*)G is the number of orbits of G in V*. The thesis follows
directly by dim AC = dim(A*)G. O

Remark 3.2.2. Let G be a linear algebraic group acting on an F,-vector space V' and let O be an
orbit of this action. For every point z € O, we can consider T}, € GG, maximal [F -split torus of
the stabilizer. These tori are all in the same conjugacy class. Indeed, if z,y € O, then y = g.x
for some g € G. It follows that G, = gGmg_l, and so we conclude that T}, = ngg_l.

In particular, we can define the conjugacy class of the maximal IF -split torus of the stabilizer

of the orbit O as the conjugacy class of T}, for any « € O.

Definition 3.2.3. Let G be a linear algebraic group acting on an F -vector space V' and let v*
be its dual representation. Let T' € G be an F-split torus, we set d(7', V') the number of orbits
O of G over V such that the conjugacy class of T' in G is the same of the maximal [F-split torus

of the stabilizer of the orbit O.

Lemma 3.2.4. Let G be a linear algebraic group acting on an F,-vector space V and let V™ be
its dual representation. Let T € G be an Fy-split torus, then d(T,V') = d(T, V).

Proof. First, we observe that, if it does not exists T' € G non-trivial [F,-split torus, then the
result follows by Lemma 3.2.1, because every orbit is quasi-free.

Suppose that there exists at least one T' € G non-trivial IF,-split torus and let us fix it. We
will proceed by induction on dim V.

Let C € V and let CY € V™ be the set of points fixed by the action of T. We will prove
several properties on C, and all these proofs can be repeated also for C".

Set W = Ng(T)/T, where Ng(T') is the normalizer of T in G. The action of T on C' is
trivial, then we can define the action of W on C and C". In fact, if ¢ € Ng(T), t € T and
x € C, then g_ltg.x =t.x = x, therefore tg.x = g.x that implies g.z € C.

We now want to show that = € C' is quasi-free with respect to the action of W if and only
if T'is a maximal F -split torus of G,. Suppose that 7 € W, is a non-trivial F;-split torus and
let T € Ng(T) be its preimage. Then T < T and T is an [F-split torus. It follows that T=T,

and therefore 7 = e. Conversely, if there exists an F -split torus T such that G, 2 T 2 T, then
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T/ T < W, is an F-split torus, which must be trivial since z is a quasi-free point. It follows
that T = T.

Let z,y be quasi-free points of C' for the action of W, and suppose that they belong to the
same orbits with respect to the action of G, i.e., y = g.z. We aim to show that they belong to the
same orbit with respect to the action of W. We know that both T" and T = ng_1 are maximal
Fg-split tori of G, then they are conjugate via g; € Gy, i.e., T = nglgl_l = glng_lgl_l. It
follows that g1g € Ny(T'), then its image in W is the element we were searching.

From the above results, it follows that d(7, V') is the number of quasi-free orbits of W in
C, and analogously d(T, V™) is the number of quasi-free orbits of W in C".

We want now to apply inductive hypothesis to the action of W on C' and C'", but previously
we have to verify that C" is isomorphic to the dual representation C* of C'. We have that C™ is
naturally isomorphic to V*/ann(C). Since T is semisimple, this quotient admits a retraction
and so it is canonically a subrepresentation of V*. Our aim is to show that it coincides with
the subrepresentation of V* on which T acts trivially. Consider ¢ € V* and g € T. We observe
that ¢ — g.¢ € ann(C), indeed (¢ — g.0)(v) = p(v) — (g W) = p(v) — p(v) = 0 for every
v € C. Since g.¢ = ¢ — (p — ¢.¢), then we can conclude that T acts trivially on V*/ ann(C).

By applying the inductive hypothesis on W and its action on C and C", we obtain:

d(T,V) = dw({e},C) = dw({e},C") = d(T, V")

where we set dy ({e},C) and dy ({€},C") the number of quasi-free orbits of W in C and C".
We showed that d(T,V) = d(T, V™) for every T € G non-trivial F -split torus. If T = {e},
then

d{e},V)=#{0OcV|GO=0}- > d(T,V)

[T]e®
=#{0cV'GO=0}- ) AT, V") =d({e},V")
[T]e®
where O is the set of conjugacy classes of tori in G. O

Corollary 3.2.5. Let G be a linear algebraic group acting on an F,-vector space V' and let v*
be its dual representation. Then the number of quasi-free orbits of G in' V and in V* is the

same.

Proof. The result follows by Lemma 3.2.4 and by the fact that the number of quasi-free orbits of
G in V is d({e}, V) and similarly the number of quasi-free orbits of G in V" is d({e},V*). O

Lemma 3.2.6. Let G be a linear algebraic group acting on two Fy-vector spaces Vi and V.

Then, the number of orbits of Vi @ Vs equals the number of orbits of V, & Vs .
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Proof. Consider z,y € V; and suppose that they are in the same orbit O € Vi, ie., y =
g.x. Let O, € V, be an orbit with respect to the action of G, on V5, then ¢.O, S V; is
an orbit with respect to the action of G,. In fact, consider vi,vy € O, vy = h.vy with
h € G, since G, = g_leg, it follows that h = ¢ 'hg with h € Gy, then g.vy = hg.vy, and
so g.v; and g.vy belong to the same orbit O, = ¢.0,. Therefore, for every orbit O ¢ V;
with respect to the action of G, the numbers o(O) = #{0, < V5 |G,.0, = O,, x € O}
and 0" (0) = #{0, € V5 |G,.0, = O,, x € O} are well defined. We want to show that
#{O c V1@ Vo|G.O = O} = ) ey, 0(0). This follows from the fact that the orbits of G
in V] & V5 are UgeG(g.x,g.Ox), for some z € V; and some O, S V5 orbit with respect to the
action of GG, and by the observation that, chosen = # y in the same orbit of G in Vj, they
produce the same set of orbits of V; & V5. The fact that these are the orbits follows by the
following construction: consider (z,v) € Vi @ V,, then the orbit generated by this element is
012 = {(g9.z,9.v) | g € G}. In particular, G,.(z,v) = (z,0,) € O15. Moreover, g.(z,0,) € O
for every g € GG, and the union of these set clearly cover the orbit.

By Lemma 3.2.1 follows that o(Q) = 0™ (©). We conclude because, using the above identity

for V4 and Vy' , we obtain:

HOSVI@|GO=0}=) o0)= ) 0"(0)=#{0cVi8V,|G.0=0}
ocvy ocvy

O]

Lemma 3.2.7. Let G be a linear algebraic group acting on two IFy-vector spaces Vi and V,. Let
T ¢ G be an F-split torus, then d(Vy & Vo, T) = d(V; @ Vo', T).

Proof. The proof is the same as the one of Lemma 3.2.4, using Lemma 3.2.6 in place of
Lemma 3.2.1. L]

Definition 3.2.8. Let @ be a quiver, a € I'y, provided that F = [, with ¢ = pt for some
prime number p, we define n,(Q, q) as the number of isomorphism classes of isomorphism of

indecomposable representations of () with dimension vector o defined over FF,,.

Lemma 3.2.9. Let Q be a quiver, o € I'y and a; € TI. Assume that a # «; and that n,(Q, q) #
0, then ri(a) € 'y and ny,(0)(Q,q) # 0. Moreover, no(Q,q) = ny,(a)(Q, q)-

Proof. Recall that M(Q,F,) = @leSl V;EZ) ® Vi) In this sum, if we substitute a subset of
the summands indexed by Sy € S with their dual, we obtain the space M a(Q,IF q), where Q
is the quiver with the same underlying graph as (), and with the reverse orientation on the
edges belonging to S;. Moreover, it follows by Lemma 2.1.19 and Lemma 3.2.7 that na(Q, q) =
na(Q,q). Consider S; € Sy such that 4 is an admissible vertex in Q. By Theorem 3.1.5 it
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follows that n.(Q,q) = nri(a)(ri(Q),q). Using again the result above for §; € Sy such that

r(Q) = Q, we obtain:
na(Q7Q) = na(Q7Q) = nm(a)(”(@)y‘]) = nm(a)(QvQ)



Chapter 4

The Space of Representations and

Kac’s Theorem

In this chapter, we use algebraic geometry to develop the tools necessary for the proof of
the main result, namely Kac’s theorem. In particular, we consider the space of representations
of a quiver with a fixed dimension vector. Within this algebraic variety, we observe that the
set of indecomposable representations forms a constructible subset. This observation allows us
to define the dimension of the space of isomorphism classes of indecomposable representations
with a fixed dimension vector.

We note that this space corresponds to the space of orbits under the action of an algebraic
group. This correspondence enables us to compute the dimensions of the orbits, ultimately
leading to a formula for the dimension of the orbit space, which depends only on the Dynkin
diagram of the quiver and the dimension vector.

At the end of the chapter, we prove the theorem, first over finite fields, and then, using a
standard reduction modulo p argument, we extend the proof to the case of algebraically closed
fields.

In this chapter, unless otherwise specified, we work over algebraically closed fields.

4.1 Preliminaries of Algebraic Geometry

In this section all the topological notions are relative to the Zariski topology.

Definition 4.1.1. Let X be an algebraic variety, a subset ¥ € X is called locally closed if
Y =UNV® where U,V € X open subsets. We say that Y is constructible if it is a finite union

of locally closed set.

Remark 4.1.2. The collection of constructible sets is closed under finite union, finite intersection

and taking complements.

47
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We will use two classical results. The references give statements in the more general setup
of morphism of schemes of finite type.

The following is a useful result due to Chevalley concerning constructible sets. For more
details, see [DG67, pp. IV, 1.8.4].

Theorem 4.1.3. Let ® : X — Y be a morphism of varieties, then ®(X) is constructible, and

more generally, ® sends constructible sets to constructible sets.

Definition 4.1.4. If X is an algebraic variety and f : X — Z. We say that f is upper

semicontinuous if the set {x € X | f(z) = n} is closed for all n € N.
The following result can be found in [DG67, pp. IV, 13.1.3].

Theorem 4.1.5. If X and Y are algebraic varieties and f : X — Y is a morphism of

varieties, then the function X — 7. defined by dimy £~ (f(x)) is upper semicontinuous.

The following lemma is a classical result of algebraic geometry. The proof can be found in

[Mum04, corollary to theorem 2, section 8, chapter 7].

Lemma 4.1.6. Let 7 : X — Y be a dominant morphism of irreducible algebraic varieties.
Then every irreducible component of a fiber W_l(y), provided it 1s non empty, has dimension at
least dim X —dim Y. Moreover, there is a non-empty open subset U C'Y such that dim 7r_1(u) =
dim X —dimY, for every u € U.

Lemma 4.1.7. Let X be an algebraic variety endowed with the action of a connected algebraic
group G. Then the following hold:

1. each orbit Gz is locally closed and irreducible;
2. dim Gz = dim G — dim Stabg(x).

Proof. We observe that Gz is the image of the map G — X defined by ¢ + g¢.z, then Gz is
irreducible and Gz is a constructible set. There exists @ #+ U € Gx with U open in Gx. The
set G.U = UgeGg.U is contained in Gz and is G-invariant, then it is equal to Gx. Each ¢.U is
open in Gz, then Gz is open in Gz, therefore Gz is locally closed.

Every fiber of G — Gz is a subgroup conjugate to Stabg(z). Therefore they have the
same dimension. By Lemma 4.1.6, we get that dim Gz = dim G — dim Stabg(x). O

Definition 4.1.8. Let X be an algebraic variety endowed with the action of an algebraic group
G. Forevery s € N, we define X(5) = {z € X | dim Gz = s} and X(<,) = {z € X | dim Gz =< s}.

If Y € X is a constructible set, we can define the numbers

o (YY) = max,(dimY N X(,)) = max,(dimY N X(<));
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o ((Y)=) #{Z <Y nX(|Zis an irreducible component of dimension s + pe(Y)}.

Remark 4.1.9. If the set Y is G-invariant and if the set of orbits Y /G were an algebraic variety,

then the number u(Y") would represent its dimension.

4.2 Representation With Fixed Dimension Vector

We recall the definition of some important object defined in Section 2.1. In particular,
we have seen in Definition 2.1.11 that M“(Q,F) is the space of representation of the quiver
Q over the field F with fixed dimension vector o € T',. Similarly we defined M}, ;(Q,F) in
Definition 2.1.12 as the subspace of M“(Q,F) of indecomposable representations.

In section Section 2.1 we also defined, for a vector o = Z?zl k;c;, the following objects:

L] GL(O[) = GLk1 X oo X GLkn,

G” = GL(a)/C where C is the normal subgroup generated by Id;

g =dim GL(«);

q(a) = (a,a);
e End(a) = @7, Endg(F™).
Lemma 4.2.1. The set M;,,;(Q,F) € M*(Q,F) is a constructible set.

Proof. We will show that the complement of M, ;(Q,F) is constructible. If U € M;, ;(Q,F),
e., U is decomposable, then there exist U; € M (Q,F) and Uy € M“*(Q,F) such that
U =U; ® Uy, with o = a7 + as. In particular, U € Im(@ilm), where we define the map

631,042 : Mal(Q7F) X MaQ(QvF) I MQ(Q,F), (UlaUZ) = Ul ® UQ'

It follows that
Mpa(QF) = | Im(6f,4,)

a1tag=a
Since, by Theorem 4.1.3, the image of a regular map between algebraic varieties is constructible,

then M;,;(Q,F) is constructible because it is a finite union of constructible sets. O

Lemma 4.2.2. Consider o = Z?ﬂ kia; € T'y and B = Z?:l m;a; such that 0 < B < a and
B8 +0,a. If m; = k; —m; for every i, then the following identity holds:

n

(a-B.8) = Z ](Zawkz )+ 5 Z ag (2 - mj)kik;j. (4.2.1)

Jj=1 ,j=1

Proof. The following identities hold:
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e the left hand side is (a — 3,8) = ) 1, aijmim;;

e the first summand of the right hand side is:

n

1 k;
awk ) = Z Qg M5 ]k_j

Jj=1 i,7=1
I n n
11 1 I
= Zaw(ml : ke MG ) + Zaiimimi = Za”m mJ( 4 —) + Zaiimimi,
%] J i=1 1#] i=1

e the second summand of the right hand side is:

2 2
1 « m; j mik;  mjk;
§ aij -/ - )klkj = E CLZ]( 2mzmj)
2,j=1 1<i<j=n
1My 1My m; j
= E aw(mzmjk—+m]mlk—+mlm](k—+k——2))
1=<i<y< g J % j
j<n
1,Mm; m;
= E aw(ml +mlm]( —1)) = E aigmim;(4= = 5=).
i+] ] i+] v J

By adding the last two, we find that the right hand side is:

n I n

] emg My My my !
Z Qi mM;m; + Z Qi3 M;1M5 - - + - + —) = z Qi1
i=1 i#j ki k; k; ki i=1
that is equal to the left hand side. O

Lemma 4.2.3. Let QQ be a quiver and let o be a vector in the fundamental chamber M. Then

exactly one of the following holds:
1. Supp a belongs to Table 1.2 and q(a) = (a, ) =0

2. for every Bi,...,[B3, non-zero vectors 3; = 0 such that o = By + ...+ 3,, then q(a) <

Z:=1 Q(ﬂz)

Proof. Suppose without loss of generality that = Supp « and suppose that 2 does not holds.
There exist (1, . .., 3, non-zero vectors 3; = 0 such that o = By +...+ 8, and q(a) = Y\ _; ¢(;).
It follows that

> (a=BiB;) = (a,0) = ) (B, B) 2 0
=1 i=1

and in particular there exists 8 = 8; = Y .-, m;a; such that (o — 3, 8) = 0. By Equation (4.2.1)
follows that:

(a ) + 5 Z %( : j )kikj

1,5=1

0<(a—B,8)= Z
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where m; = k; —m,, for every ¢ = 1,...,n. Both summands are less than or equal to 0, so both
must be 0. It follows that ZL—: = 7;—;, for every ¢,5 = 1,...,n such that a;; # 0. Because Supp o
is connected, then o = k3. Moreover, for every i = 1,...,n, we have (o, «;) = 0, then g(a) =0
and Supp « appears in Table 1.2. ]

Lemma 4.2.4. Consider a quiver Q and a vector « in the fundamental chamber M, and
suppose that Item 2 of Lemma 4.2.3 holds for a, then M;,,(Q,F) ¢ M*(Q,F) is a dense set,

i.e., My (Q,F) contains a non-empty open set.
Proof. If a = 8 + =, then we define the map:

05, : GL(a) x M*(Q,F) x M"(Q,F) — M*(Q,F), (g,U,W) - g.(U @ W).
We observe that this map is constant on the orbits of H = GL(3) X GL(v) € GL(«), so

dimTm(65 ,) < dim GL(a) + dim M’ + dim M” - dim H
= ¢(a) + dim M™ + dim M” + dim M” — dim H.
Since there is only a finite number of maps @gn, and
dim M“ — dimm(@gﬁ) > q(B) +q(v) —q(a) >0

the statement follows. O

We now proceed to stratify the algebra End(«) according to the Jordan type of each com-

ponent.

Definition 4.2.5. Consider a = ) kjo; € Iy, Let for i = 1,...,n, \; = ()\Z-l, ooy i) be
a partition of k;. We say that A = (\1,...,\,) is a partition of o and we denote A" € I', the
vector (A],...,\,), for every r € N.

For 6 € End(«), we say 6 is of type A when the maps 6; € End(Fki) are nilpotent maps of
type A;, i.e., A; is the number of Jordan blocks of size = 0. We denote the space of endomorphism
of type XA with N = {6 € End(«) | 0 is of type A}.

Let § € End(a) be a fixed endomorphism, we define the space Mody = {U € M“ |0 €
Endg(U)}.

Remark 4.2.6. We denote by z the partition associated to the zero map, i.e., z; = (k;,0,...),

for every i = 1,...,n.
Lemma 4.2.7. The following dimension formulas hold:

1. if 0 € End(a), then dim Modg = ) g, . Ny Miqr)s
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2. dim Ny = dimGL(a) - Y i, Zr()\z)2.

Proof. Consider vector spaces Vi, Vo of dimensions ny and ng respectively, and let A; be a
partition of n; and Ay be a partition of ny. Let f; € End(V7) and fy € End(V3) be nilpotent
endomorphisms of type A\; and Ay respectively. We will show that the dimension of the space
C={h:Vi — Va| foh = hfi}is ), AAs.

We observe that a map h € C is uniquely determined by the choice of images of the vectors
generating the Jordan blocks for f;. In particular, let vq,..., v, be these vectors. If we choose
h(v;), we only need to determine what h(f; (v;)) is for every s, but we have h(f1(v;)) = foh(v;).
Moreover, we observe that h(v;) must be a vector with order of nilpotency less than or equal
to that of v;.

Since the number of vectors generating the Jordan blocks for f; with order of nilpotency r

is \] — A7{+1, it follows that:

dim{h: Vi — Vo, |, foh = hfi} =y (A = A1") (Z AS) =YY (A=A =) A
) ) (4.2.2)

In order to compute dim Mody, we need to compute

dim{e; : Vi) — Viay | 0y er = @i}

for every [ € S;. It follows from equation Equation (4.2.2) that dim Mody = Zlesl > )\;(l))\;(l).
We observe that N is an orbit for the conjugation action of GL(«) on End(«). Fixed
f € Ny, by Lemma 4.1.7 follows

dim Ny = dim GL(a) — dim Stab(#) = dim GL(«) — dim{f € GL(«) | f0 = 61}
=dimGL(a) — dim{f € End(«) | f0 = 0f} = dimGL(«a) — i Z(/\:)2

=1 r

where the last equality follows by Equation (4.2.2) in the same way as 1). O]

Definition 4.2.8. Consider a quiver @ and a = ) ;- k;a; € T'y. We denote I = M;,,;,(Q,F)
and B = {U € M“(Q,F)|U is a brick}. We set N = {# € End(«a) |6 # 0, 6 is nilpotent}.
Moreover, we will call MN = {(U,0) € M“ x N |6 € Endg(U)} and [(yN = {(U,0) €
Iy X N |6 € Endg(U)}.

Remark 4.2.9. We observe that:
o I= Us<g I(S);
o N= U)\?’:Z N/\;

o MN =U,,, MNy;
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e [(ky)N S MN.

From Lemma 2.1.19, it follows that B = I,_1). Moreover, I(y) is locally closed in M “ . indeed,
by Theorem 4.1.5 it follows that the map I — N defined by U + dimEndg(U) is an upper
semicontinuous map, and I(5) = {U € I | dimEndg(U) =g—s—1} ={U € I | dimEndg(U) <
g—s=1}n{U €| dimEndg(U) = g — s — 1} and both sets are locally closed.

Lemma 4.2.10. Let Q be a quiver satisfying Item 2 of Lemma 4.2.3, a € I'y and A a partition
of a.. The following hold:

1. if X # z, then dim M Ny < g — q(), and as a consequence dim M N < g — q(«);
2. for every s < g — 1, we have dim I(5) < s + 1 —q(a);
3. B is a non-empty open subset of M®. Moreover, i(B) =1 — g(a) and t(B) = 1.

Proof. Consider the projection m : M Ny, — N,. We observe that 77_1(0) = Mody, it follows
by Lemma 4.2.7 that the dimension of the fibers is constant, then:

dim M Ny < dim Ny + dim Mody = g — Zq()\r) <g-qla)

where the last inequality follows by the assumption that @) verifies [tem 2 and by the observation
that o = ) \'. It follows immediately that dim M N < g — g(a) since MN = | J, M Nj.

If s < g —1, then U is indecomposable and is not a brick, therefore there exist non-zero
nilpotent endomorphisms of U. It follows that the projection 7 : I yIN — I(4) is surjective,

and then:
dim7 ' (U) = dim(Endo(U) N N) = dim(rad(Endg(U))) = g — s — 1

where the last equality follows by the fact that Endg(U) is a local algebra, and then, using
Remark 2.1.18 we conclude that the codimension of the radical in Endg(U) is 1. It follows that

dim [(5) = dimI(S)N—dimﬂ_l(U) =dim ()N -(g—s—1) <dimMN -g+s+1 < s+1-q(a)

and this conclude the proof of 2.

If s < g — 1, we have dim [(5) < dim M“ — (g — s — 1) < dim M, where the first inequality
follows by Equation (2.1.1). It follows that T(s) is a proper closed subset of M®. Moreover,
it follows from Lemma 4.2.4 that the decomposable representation are contained in a proper
closed subset of M, then B is a non-empty open subset of M%, and B is irreducible. It follows
that u(B) =dimB —g+1=1-¢q(«a) and t(B) = 1 O

Theorem 4.2.11. Let Q be a quiver and o € M such that Item 2 of Lemma 4.2.3 holds. Then,
fo = p(Ming(Q,F)) = 1 = q(a) and to := t(M;pq(Q,F)) = 1.
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Proof. By Lemma 4.2.10 and because I = B U Us<g_1 I(4), it follows that
#(Mina) = wax (1)) = p(B) = 1 = q(o).
O

Theorem 4.2.12. Let Q be a quiver with underlying graph S listed in Table 1.2. Ifa=kd € M,
then jio = W(Ming) = 1 - q(@) =1 and t(Mpqa(Q.F)) = 1.

The isomorphism classes of indecomposable representations of a quiver whose underlying
graph is an affine Dynkin diagram are well-known. In particular, we can find a complete
description of such representations in [Naz73].

The classification relies on the fact that it is possible to prove that every indecomposable
representation of AS) can be constructed from a representation of Agl), or can be seen as an
indecomposable representation of a subgraph of Asll). The indecomposable representations of
A§1) are described in Theorem 2.2.4.

A similar argument applies to indecomposable representation with associated Dynkin di-
agram Dfll). The idea is to study the indecomposable representation of Dil),Dél) and Dél)
and then to show that every indecomposable representation of DS) can be constructed from a
representation of one of these three Dynkin diagrams or it can be seen as an indecomposable
representation of a subgraph of D,(Ll).

Finally, one has to study the indecomposable representations of the exceptional cases Eél), Egl)

and Eél).

4.3 Kac’s Theorem

Theorem 4.3.1. Let Q be a quiver and F = F, where q = pt for some prime p. For a € T'y,
the following hold:

1. if a ¢ Ay, then every representation of Q with dimension vector a is decomposable, i.e.,
na(Qqu) =0;

2. ifa € A'Y, then there exists a unique isomorphism class of indecomposable representations

of dimension vector «, i.e., no(Q,Fy) = 1;

na(Qvlet )

3. ZfOé e AL”, then lim;_, 4o m

=1, in particular
. - too:
Jim 06 (Q, Fyr) = +00;

4. no(Q,F,) does not depend on the orientation of Q.
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Proof. Consider o € 'y \ A, and suppose m”(Q, [F,) contains an indecomposable object. By
Lemma 3.2.9 it follows that, for every w € W, w(a) € T'y and mw(a)(Q,IFq) contains an
indecomposable object. Let § = Z?zl k;a; be the element of W.a of minimal height. The
minimality of the height of 8 and the definition of r;(3) = 5 — (Z?zl a;jk;)o; imply that
Z?Zl a;jk;j < 0 for every ¢ = 1,...,n. Moreover, Supp 3 is connected, otherwise it could not
have any indecomposable representation. It follows that 8 € M ¢ A", and so o € AY".
Consider a € A, by definition there exists sequence of minimal length iy, ..., such that
i, -+ 7y () = a; € II. There exists a unique representation of dimension vector «;, that is
U, By Lemma 3.2.9 it follows that n,(Q,F,) = 1, which proves 2.
Consider the F -rational points of Mﬁld(Q,Fp), where Fp is the algebraic closure of IF,. If
a € M, it follows by Theorem 4.2.11 and Theorem 4.2.12 that the dimension is py = 1= (a, a).
Using elementary arguments from algebraic geometry and and the results mentioned above, one
can conclude that, for « € M, we have:
AL DB
t—+oo p(1=(aa))t
An argument that partially prove this fact can be found Section 4.3.1. Since Aim = Jpew w(M),
it follows from Lemma 3.2.9 that 3 holds for every oo € A,.
Statement 4 follows immediately by Lemma 3.2.9 and by its proof. O

Kac’s Theorem 4.3.2. Let Q be a quiver with F = F. For a € T, the following hold:
1. if a ¢ AL, then any representation of Q with dimension vector a is decomposable;

2. ifa € Ay, if a is non-divisible in 'y, then there exists an indecomposable representation
of Q with dimension vector a. Moreover, ju, = 1 — (o, ), which does not depend on the

orientation of Q;

3. if a € ALY, there exists a unique isomorphism class of indecomposable representations of

dimension vector o.

Proof. Consider an object U € M®(Q,F), let K be the smallest subfield of F, and let K be its
algebraic closure. We observe that U is defined over a subfield Fy = K(&,...,&)(m,...,n) €
F, where &1,...,&, are transcendental elements over K, and 7,...,7; generate the ring of
integers of K[&q,...,&].

The object U is decomposable if and only if there exists at least one projection in Endg U,
meaning there exists a non-trivial solution (X;)i € Sy € @i € Sy Endp(U;) to the system of
equations:

Xsypr = o Xpy VIES

) (4.3.1)
Xi = Xz Yie SO
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where (¢;)1es, are the maps defining U and are defined over Fy.

We analyze this system as follows: first, consider the case where charF = p > 0. Take an arbi-
trary specialization § = 8; fori=1,...,s,m; = y;for j =1,...,t, with By,...,8¢,71,..., % €
K. By Theorem 4.3.1, if o ¢ A,, then Equation (4.3.1) admits a solution over the finite field
K(Bi,...,8s,71s---,7), and consequently, it has a solution over F.

Now, suppose charF = 0. Let R = Z[&1,...,&][n,---,7:]. Consider the reduction modulo
p of R. As previously demonstrated, for a ¢ A,, there exists a solution of Equation (4.3.1)
over the field of fractions of R,/ for every prime number p and every prime ideal I € R,,. This
implies that Equation (4.3.1) has a solution over F, which completes the proof of part 1

To prove parts 2 and 3, we apply a similar argument. In particular, if U is an indecomposable
representation of () over a field K with a non-divisible dimension vector a € I'y, then U remains
indecomposable over any finite Galois extension K 2 K. Indeed, let U = U; & ... ® U}, be the
decomposition of U into indecomposable representations over K. The Galois group Gal(K/K)
permutes these indecomposable components, so dimU; = ... =dim U, = 8. Thus, a = kS, and
since « is non-divisible, we conclude that £ = 1, meaning U is indecomposable over K.

From this observation and Theorem 4.3.1, it follows that if « is a non-divisible root or a real
root, there exists a representation admitting no solution to Equation (4.3.1) for any subfield of
FF, and hence no solution exists in [F. Moreover, if & € A, there is a unique representation as
described above for every subfield, ensuring its uniqueness.

To conclude, note that over a finite subfield of cardinality pt (or under reduction modulo p

(1-(a,a))

when char K = 0), the number of indecomposable representations is of order pt , yielding

o = 1= (a,a). O

4.3.1 Counting F -rational points

In order to make this thesis more self-contained we will sketch an elementary argument

proving the inequality

This is a slighter weaker result than Theorem 4.3.1, but still significant.
The following lemma ensures that the notion of isomorphism between two quiver represen-

tations is independent by the field.

Lemma 4.3.3 (Derksen and Weyman [DW17|, §5, p. 45). Let Uy,Us be two indecomposable
representations defined over Fy. If Uy ®r, Fgr = Uy ®p, Fyr, then Uy = Us.

In particular, Uy, Uy € M*(Q, Fqt) are isomorphic representations if and only if they belong
to the same GL(«,Fgt)-orbit, where GL(o, Fyt) is the group GL(«) defined over the field Fyt.

The following estimate is of elementary nature:
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Lemma 4.3.4 (Borevich and Shafarevich [BS86], §5, p. 45). If f € Fy[x1,...,zn] is a non-zero
polynomial and
N
Xf(th) = {(alu"'va]\/) € ]th |f(a1,...,CLN) = O}

Then there exists a positive constant C' such that

Nt-1
#X(Fy) = Cq :

Let @ be a quiver that satisfies Item 2 of Lemma 4.2.3 and let a = .-, kja; € M. We
proved in Lemma 4.2.10 that the complement of bricks in M*(Q,F) is contained in a Zariski
closed set Z, which is defined over some finite field F,. It follows from Lemma 4.3.4 that

#{U € M*(Q,F,)| U is a brick} = Q)

where f(t) = g(t) indicates that lim % =1

Since U is a brick, its stabilizer for the action of GL(«,F,t) is of dimension one. Hence, the

GL(o,Fyt)-orbit of U has cardinality
#GL(a,Fp)/(¢ —1) = qt(z;llk?_l)-
It follows that
#{isomorphism classes of bricks U € M“(Q,F )} = q(l_(a’a))t.

Since every brick is indecomposable, we conclude that

nal@Fy) (4.3.2)

o lf e
Moreover, if @ has a Dynkin diagram of zero type as underlying graph, then Equation (4.3.2)

still holds, as proven in [Pagl6].
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