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Introduction

A quiver is an oriented graph. A representation of a quiver assigns a vector space Vi to

each vertex i of the quiver and a linear map from Vi to Vj to each edge oriented from i to j.

Representations of quivers are powerful mathematical objects. After the work of [Gab72] it

has become clear that many problems in linear algebra can be interpreted within the theory

of representations of quivers. A simple example of this fact is given by a quiver with one

vertex and one loop. The representations of this quiver encode the problem of classifying the

endomorphisms of a given vector space.

In [Gab72], Gabriel characterized quivers with a finite number of isomorphism classes of

indecomposable representations. He showed that these correspond to the quivers whose un-

derlying graph is an ADE Dynkin diagram. Moreover, he discovered a remarkable connection

between their representations and the positive roots associated with the Dynkin diagram. No-

tably, this correspondence is independent of the orientation of the quiver. Subsequently, in

[BGP73], Bernstein, Gelfand and Ponomarev introduced the reflection functors. These allow to

constructively find the indecomposable representations associated with positive roots, starting

from the irreducible representations, which are associated with simple roots. In addition they

act on the dimension vector of a representation via an element of the Weyl group associated

with the Dynkin diagram.

In view of Gabriel’s Theorem 2.2.1 it is natural to wonder what happens to quivers which

are not of ADE type. The first case to investigate is the so-called tame case, corresponding to

affine Dynkin diagrams: various techniques have been developed to study the tame case, but

two main problems appeared in the theory. First, to apply the reflection functors, there must

exist an admissible vertex, which is a condition on the orientation. The second problem is that

not all the roots of the Dynkin diagram can be obtained from simple roots through the action

of the Weyl group.

In [Kac80], and later in [Kac82] Kac addressed these problems, as well as the more gen-

eral (wild) one to loop-free arbitrary quivers, giving a far-reaching generalization of Gabriel’s

theorem. In this work we investigate the techniques used by Kac in the proof of Kac’s Theo-

rem 4.3.2.
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ii INTRODUCTION

In the first chapter we study the structure of the root system associated to a Dynkin diagram.

The root system is a combinatorial object that has a great impact on the representations of a

quiver, as shown in Gabriel’s Theorem 2.2.1. For the proof of Kac’s theorem we are interested

in the so-called simply-laced Dynkin diagrams, but in the first chapter we consider the general

theory of Dynkin diagrams, because they are intrinsically interesting mathematical objects.

First, we study the structure of Dynkin diagrams using the correspondence with the gener-

alized Cartan matrices. Following [Kac90] we give the classification of the Dynkin diagrams of

positive and zero type in Theorem 1.1.19.

Then, we define the root system of a Dynkin diagram. To do so, we associate Lie algebras,

the so-called Kac-Moody Lie algebras, to Dynkin diagrams. These Lie algebras come together

with their root space decomposition and then we will define the root space of the Dynkin diagram

as the root space of the associated Kac-Moody Lie algebra. Using techniques of Lie theory, we

study some properties that characterize the root systems. We decompose the root system into

real roots, obtained by the simple roots acting with the Weyl group, and imaginary roots. We

prove that these are generated, by acting with the Weyl group by vectors in the fundamental

chamber M. We observe that the Dynkin diagrams of positive type admit only real roots, unlike

Dynkin diagrams of zero and negative type, which admit both real and imaginary roots. Then

one can define a bilinear form (⋅, ⋅) associated with the Dynkin diagram.

In the second chapter we introduce the fundamental concepts of the theory of quiver repre-

sentations. We define the space of representations with fixed dimension vector and we charac-

terize the indecomposable representations in terms of their endomorphism algebra. We recall

Gabriel’s Theorem 2.2.1 and we presented the example of the 2-Kronecker quiver, a motivating

example to generalize Gabriel’s Theorem 2.2.1.

In the third chapter we recall the definition of the reflection functors along with their main

properties. We then focus on solving the problem of the orientation described above. This is

done over finite fields, where it is possible to count the orbits for the action of a group. In fact,

we go further. In Lemma 3.2.7 we show that the orbits of an algebraic group G on a vector

space V1 ⊕ V2, where the maximal F-split torus of the stabilizer is conjugate to a given F-split

torus T , can be related to the orbits satisfying the same property under the action of G on

V1 ⊕ V
∗
2 . In the latter case, G acts on V ∗

2 via the dual (or contragradient) representation.

This observation, combined with the characterization of indecomposable representations

Lemma 2.1.19, and the structure of the space Mα(Q,F) of the representations of Q with fixed

dimension vector α, allows us, assuming we are working over a finite field, to change the ori-

entation of the quiver without changing the number of indecomposable representations. This

result is stated in Lemma 3.2.9.

In the fourth and last chapter, relying on some classical results in algebraic geometry, we
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prove that the dimension of the space of isomorphism classes of indecomposable representations

with fixed dimension vector α ∈ M is 1 − (α, α), where (⋅, ⋅) is the bilinear form associated to

the Dynkin diagram introduced in the first chapter ([Cra92], [Naz73], [Kac80], [Kac82]).

Finally, at the end of the chapter, we prove Kac’s theorem in the case of finite fields. Then

we apply an argument of reduction modulo p to obtain the statement of the theorem in the case

of algebraically closed fields.
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Chapter 1

Dynkin Diagrams, Kac-Moody

Algebras and Root Systems

In this chapter, we study Dynkin diagrams and their associated root systems. We begin

by dividing Dynkin diagrams into three categories: positive, zero, and negative type. We then

classify those of positive and zero type. Subsequently, we associate a root system to each

Dynkin diagram. This association is constructed via the Lie algebras corresponding to the

diagrams, namely, the Kac–Moody Lie algebras. Using techniques from Lie theory, we analyze

the structure of the root systems associated with Dynkin diagrams.

1.1 Cartan matrices and Dynkin diagrams

Definition 1.1.1. Let A and B be matrices in Mn(R). We say that A is equivalent to B if

there exists a permutation matrix τ ∈Mn(R) such that τAτ−1 = B.

We say that A is decomposable if A is equivalent to a matrix of the form

(A1 0

0 A2

) .

We say that A is equivalent to the direct sum A1 and A2. We say A is indecomposable if it is

not decomposable.

Example 1.1.2. Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 0 2 0

0 1 0 0

0 0 3 0

0 5 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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2 1. Dynkin Diagrams, Kac-Moody Algebras and Root Systems

We observe that A is decomposable, indeed

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 0 2 0

0 1 0 0

0 0 3 0

0 5 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 2 0 0

0 3 0 0

0 0 1 0

0 0 5 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

It follows that A is equivalent to a block diagonal matrix.

Remark 1.1.3. We observe that the notion of equivalence is strictly stronger than that of simi-

larity: indeed, equivalence implies similarity, but the converse does not hold. A counterexample

is provided by the matrices

A = (0 2

0 0
) ; B = (0 1

0 0
) .

We have that A and B are similar, since

(1/2 0

0 1
)(0 2

0 0
)(2 0

0 1
) = (0 1

0 0
) .

However, A and B are not equivalent, since their sets of entries are different.

Definition 1.1.4. Let A = (aij) ∈Mn(R). Consider the following properties:

aij ≤ 0 for i ≠ j and aij = 0 implies aji = 0 (C1)

ai1i2⋯ais−1isaisi1 = ai1isaisis−1⋯ai2i1 , for any set of indices i1, . . . , is. (S1)

We say that A is symmetrizable if Equation (S1) holds and aij = 0 implies aji = 0 for every

i, j = 1, . . . , n.

We say that A is a generalized Cartan matrix if

• aij ∈ Z;

• Equation (C1) holds;

• aii = 2.

In the following, for a vector x = (x1, . . . , xn) ∈ Rn, we will write x ≥ 0 if xi ≥ 0 for every

i = 1, . . . , n. Similarly, we will write x > 0, x < 0 and x ≤ 0.

Lemma 1.1.5. Let A = (aij) be an arbitrary real matrix of size m× s such that there does not

exist a vector u ≥ 0, u ≠ 0, such that AT
u ≥ 0, then there exists v > 0 such that Av < 0.
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Lemma 1.1.6. Let A = (aij) be an indecomposable real matrix that satisfies Equation (C1).

Then if x ∈ Rn, x ≥ 0, x ≠ 0 and Ax ≥ 0 it follows that x > 0.

Proof. We can suppose, up to permutation, that xi = 0 for i ≤ k and xj ≠ 0 for j > k. From

Ax ≥ 0 and Equation (C1) it follows that aij = aji = 0 for every i ≤ k and j > k, but this

contradicts the indecomposability.

Theorem 1.1.7. Suppose that A is an indecomposable matrix that satisfies Equation (C1); then

exactly one of the following holds:

P) A is non-singular and the following holds:

Ax ≥ 0 ⟹ x > 0 or x = 0

Z) A has rank = n − 1 and there exists a vector x > 0 such that Ax = 0, moreover, we have:

Ax ≥ 0 ⟹ Ax = 0

N) There exists a vector x ≥ 0 such that Ax < 0, moreover we have:

x ≥ 0 and Ax ≥ 0 ⟹ x = 0

Proof. Let us show that the three options are mutually exclusive:

• P) and Z) are mutually exclusive because the matrices that satisfy P) have full rank,

whereas matrices of type Z have rankn − 1.

• Replacing x with −x in the cases P) and Z) we obtain the following

/∃ x ≥ 0 such that Ax ≤ 0 and Ax ≠ 0.

This condition is incompatible with N).

Let us now suppose that the following holds:

∃x̃ ≠ 0 such that Ax̃ ≥ 0. (1.1.1)

We aim to show that only P) and Z) can hold.

Let KA = {x ∈ R ∣Ax ≥ 0}. We observe that Lemma 1.1.6 implies that

KA ∩ {x ∈ R ∣x ≥ 0} ⊆ {x ∈ R ∣x > 0} ∪ {0} (1.1.2)

By Equation (1.1.1) it follows that KA ≠ 0.

We want to show that exactly one of the following holds:
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1. KA ⊆ {x ∈ R ∣x > 0} ∪ {0}

2. KA = Span x̃, in particular, that KA = kerA.

If 1. holds, then obviously Equation (1.1.2) holds. Otherwise, if 1. does not hold, then it means

that J ∶= KA ∖ ({x ∈ R ∣x > 0} ∪ {0}) ≠ {0}. By Equation (1.1.1) and Equation (1.1.2) it

follows that x̃ > 0.

Let us suppose, by contradiction, that there exists y ∈ J such that y ≠ αx̃ for every α ∈ R.

Let t ∈ [0, 1], we define w = (1− t)x̃+ ty. We observe that Aw ≥ 0 and moreover, there exists

t ∈ [0, 1] such that w ≥ 0 and w /∈ {x ∈ R ∣x > 0} ∪ {0}, i.e., w contradicts Equation (1.1.2).

Such a t exists because, if j is an index such that yj
x̃j

= mink
yk
x̃k

, we can define t = − 1
yj
x̃j

−1
. In

this way we observe that

• yj < 0 and we may assume, without loss of generality (by replacing y with a multiple if

necessary), that yj
x̃j

> 1;

• wj = (1 − t)x̃j + tyj = 0;

• wi ≥ 0 if and only if

(1 − t) + t
yi
x̃i

≥ 0 ⟺

1 +
1

yj
x̃j

− 1
−

1
yj
x̃j

− 1

yi
x̃i

≥ 0 ⟺

yi
x̃i

≤
yj
x̃j
.

The last inequality is satisfied by definition of j;

• Aw ≥ 0 because w is a convex combination of elements of KA.

We have shown that J ⊆ Span x̃. This also implies that Ax̃ = 0. Now we have two

possibilities:

• if KA ⊆ Span x̃ then 2 holds;

• if there exists z ∈ KA ∖ Span x̃, i.e. z ≠ αx̃, then z ≥ 0 because J ⊆ KA. We observe

that there exists a sufficiently large λ ≥ 0 such that z − λx̃ /∈ {x ∈ R ∣x ≥ 0}, moreover

z − λx̃ ∈ KA because Ax̃ = 0. From J ⊆ Span x̃ it follows that z − λx̃ ∈ Span x̃, then

z − λx̃ = αx̃, so z = (λ + α)x̃, that leads to a contradiction.

So, the consequence is that one between 1 and 2 holds. It is obvious that 1 corresponds

to P), because kerA ⊆ KA ⊆ {x ∈ R ∣x > 0} ∪ {0} which does not contain vector subspaces.

Moreover, if 2 holds, then Z holds, because kerA = KA.
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If Equation (1.1.1) holds, either P) or Z) holds, in particular there is no vector x ≥ 0 such

that Ax ≤ 0 and Ax ≠ 0. We observe that we stated the contradiction of Lemma 1.1.5, so its

hypothesis cannot hold. It follows that there exists a vector u ≥ 0, u ≠ 0, such that AT
u ≥ 0.

This implies that Equation (1.1.1) holds for AT , then also AT verifies P) or Z). On the other

hand, if Equation (1.1.1) does not hold for both A and A
T , then it follows immediately from

Lemma 1.1.5 that N holds for both A and AT .

Definition 1.1.8. Let A ∈ Mn(R) be a real indecomposable matrix and suppose that Equa-

tion (C1) holds. Then we define the matrix to be of positive, zero or negative type if it satisfies

condition P), Z), or N) in Theorem 1.1.7 respectively.

Generalized Cartan matrices of positive type are also known as finite type, whereas those

of zero and negative type are known as affine and indefinite type, respectively.

Corollary 1.1.9. Let A be a real indecomposable matrix and let Equation (C1) hold, then A

is of positive, zero or negative type if and only if there exists v > 0 such that Av > 0, Av = 0 or

Av < 0 respectively.

Lemma 1.1.10. Let A be a matrix of positive or zero type. Then every principal submatrix of

A decomposes as a direct sum of matrices of type P.

Proof. Let AS be the submatrix associated to the set of indices S ⊆ {1, . . . , n}. Since A is of

positive or zero type, then there exists a vector v > 0 such that Av ≥ 0. Let vS be the vector

associated with S, then ASvS ≥ 0, moreover if ASvS = 0, then aij = 0 for every i ∈ S, j /∈ S,

indeed for every i ∈ S we have:
n

∑
j=1

aijvj ≥ 0 ⇒ 0 = ASvS = ∑
j∈S

aijvj ≥ −∑
j/∈S

aijvj ≥ 0.

This means that A is decomposable, against our hypothesis, therefore ASvS > 0.

Lemma 1.1.11. Let A be a real symmetric matrix and let Equation (C1) hold, then A is of

positive or zero type if and only if A is positive definite or semipositive definite respectively.

Proof. By contradiction, if A is of type N, then there exists a vector v > 0 such that Av < 0,

then vTAv < 0, against the hypothesis of A being positive or semipositive definite.

Let A be of positive or zero type, then for every λ > 0 and for every vector v > 0 such that

Av ≥ 0, then (A + λI)v > 0. This implies that det(A + λI) ≠ 0 and that A has only non-

negative eigenvalues. It follows that A is positive definite if detA ≠ 0 and positive semidefinite

if detA = 0.

Definition 1.1.12. For a matrix A ∈Mn(R) of size n that satisfies Equation (C1), the graph

G(A) is defined as the datum of n vertices {1, . . . , n} linked by an edge if and only if aij ≠ 0.
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Lemma 1.1.13. Let A = (aij), then

1. A is symmetrizable if and only if there exist a non-degenerate diagonal matrix D and a

symmetric matrix B such that A = DB.

2. if A is an indecomposable symmetrizable matrix, then there exists a unique decomposition

A = DB such that D = diag(d1, . . . , dn) and B = (bij), where bij = bji ∈ Z[1
2
] for i ≠ j,

and bii = 2d
−1
i are relatively prime integers.

Proof. If A = DB with D a non-degenerate diagonal matrix and B a symmetric matrix, then

aij = 0 if and only if 0 =
aij
di

= bij = bji =
aji
dj

if and only if aji = 0. Moreover, for every set of

indices i1, . . . , in, we have:

ai1i2⋯ais−1isaisi1 = di1bi1i2⋯dis−1bis−1isdisbisi1

= di1bi1isdisbisis−1⋯di2bi2i1 = ai1isaisis−1⋯ai2i1 .

Let us suppose that A is symmetrizable and suppose, without loss of generality, that A is

indecomposable. First, we consider the graph G(A). It is connected because A is indecompos-

able, so we can consider T ⊆ G(A) a spanning tree of G(A), i.e. a simply connected subgraph

with the same vertices as G(A). Let us choose an ordering (i1, . . . , in) of the vertices such that

• i1 is a leaf for T ;

• for every j > 1, there exists a unique edge between ij and {i1, . . . , ij−1}.

Let M be a matrix, in the following we will denote M(i) the i-th line of the matrix M . Let us

now construct the matrices B and D:

• we choose di1 = 1 and B(i1) = A(i1);

• we observe that ai1i2 ≠ 0, and then bi1i2 ≠ 0, so we can choose di2 =
ai2i1
ai1i2

=
ai2i1
bi1i2

. We

define B(i2) = d
−1
i2 A(i2);

• we proceed inductively: let us suppose to have previously defined lines B(i1), . . . , B(ik)

and di1 , . . . dik . We want to define B(ik+1) and dik+1 . Let j ∈ {i1, . . . , ik} be the unique

index such that {j, ik+1} is an edge of T . It holds that aj,ik+1 ≠ 0 and then bj,ik+1 ≠ 0. We

define dik+1 =
aik+1ij
bij ik+1

and B(ik+1) = d
−1
ik+1A(ik+1).

It is clear that D is non-degenerate and it is also clear that A = DB. We also observe that

aij = 0 if and only if bij = 0, or equivalently G(A) = G(B). We must show that B is symmetric.

Let {h, k} be an edge of G(B), i.e. bhk ≠ 0. If {h, k} is an edge of T , then bhk = bkh by definition.

Otherwise we observe that T together with the edge {h, k} is a graph with a cycle; indeed, there
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exist j1, . . . , jr such that j1 = h and jr = k and {j1, j2}, . . . , {jr−1, jr}. Then by Equation (S1)

we have:

dj1bj1j2⋯djr−1bjr−1jrdjrbjrj1 = aj1j2⋯ajr−1jrajrj1

= aj1jrajrjr−1⋯aj2j1 = dj1bj1jrdjrbjrjr−1⋯dj2bj2j1

It follows bhk = bkh, because we have already shown that the other parts of the equation are

pairwise equal. This concludes the proof of 1) and 2) immediately follows from the construction

above.

Lemma 1.1.14. Let A = (aij) be a matrix of positive or zero type, such that aii = 2 for every

i = 1, . . . n, and aijaji = 0 or aijaji ≥ 1, then A is symmetrizable. Moreover if there exist

i1, . . . is such that ai1i2 . . . aisi1 ≠ 0, s ≥ 3, then A is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −u1 0 ⋯ −u−1n

−u−11 2 −u2 ⋯ 0

0 ⋱ ⋱ ⋱ ⋮

0 ⋯ −u−1n−2 2 −un−1

−un 0 ⋯ −u−1n−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where u1, . . . , un are positive integers such that u1⋯un = 1.

Proof. By hypothesis we have that aij = 0 implies aji = 0 for every i, j = 1, . . . n, so A is

symmetrizable if and only if Equation (S1) holds. It is clear that is sufficient to show the

statement when there exist s ≥ 3 and i1, . . . is such that ai1i2 . . . aisi1 ≠ 0. Let B the principal

submatrix of A associated to the set of indices {i1, . . . , is}, then B is of the form:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −b1 0 ⋯ −b′s

−b′1 2 −b2 ⋱ 0

0 ⋱ ⋱ ⋱ ⋮

0 ⋯ −b′s−2 2 −bs−1

−bs 0 ⋯ −b′s−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We observe that B is irreducible and that from Lemma 1.1.10 it follows that B is of positive or

zero type, in particular, it is of zero type if and only if B = A and A of zero type. Therefore, there

exists a vector v > 0 such that Bv ≥ 0, in particular, we can replace B with (diag v)−1B diag v.

We can now suppose v = (1, . . . , 1). Since Bv ≥ 0, also the sum of its coefficients is greater than

zero, i.e., 2s − ∑s
i=1(bi + b

′
i) ≥ 0, moreover by hypothesis bib

′
i ≥ 1, hence bi + b

′
i ≥ 2 and then

2s−∑s
i=1(bi+ b

′
i) = 0 and bi = b

′
i = 1. Moreover detB = 0 implies A = (diag v)B(diag v)−1.

Corollary 1.1.15. Let A be an indecomposable generalized Cartan matrix of positive or zero

type, then A is symmetrizable.
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Definition 1.1.16. Let A = (aij) be a generalized Cartan matrix. We define the graph S(A)
associated to A, called the Dynkin diagram of A, in the following way:

• S(A) has n vertices enumerated from 1 to n;

• if aijaji ≤ 4 and ∣aij∣ ≥ ∣aji∣, then the vertex i is connected to vertex j by ∣aij∣ lines,

equipped with an arrow pointing towards i if ∣aji∣ > 1;

• if aijaji > 4, vertices i and j are connected by a bold-faced line equipped with an ordered

couple of indices (∣aij∣, ∣aji∣).

We observe that A is completely determined by its Dynkin diagram S(A) and by a num-

bering of its vertices. We say that a connected Dynkin diagram S(A) is of positive, zero or

negative type if A is of that type.

Proposition 1.1.17. Let A be an indecomposable generalized Cartan matrix, then the following

holds:

1. A is of positive type if and only if all its principal minors are positive;

2. A is of zero type if and only if all its principal minors are positive and detA = 0;

3. if A is of positive or zero type, then every proper subdiagram of S(A) is a disjoint union

of connected Dynkin diagrams of type P;

4. if A is of positive type, then S(A) has no cycles;

5. if A is of zero type and has a cycle, then S(A) = A(1)
n ;

6. A is of zero type if and only if there exists a vector δ > 0 such that Aδ = 0, and such a δ

is unique up to scalar multiplication.

Proof. First of all, we observe that if A is an indecomposable Cartan matrix of positive or

zero type, then it satisfies the hypothesis of Lemma 1.1.14 hence it is symmetrizable. By

Lemma 1.1.13 it also follows that A = DB where D = diag(d1, . . . , dn) is a diagonal non-

degenerate matrix and B is a symmetric matrix. Moreover, Equation (C1) still holds for B and

the di’s are all positive.

By the above observation and Lemma 1.1.11 1) and 2) follow.

By the above observation and Lemma 1.1.10 3) follows.

By the above observation and Lemma 1.1.14 4) and 5) follow.

Statement 6) follows by Theorem 1.1.7.

Proposition 1.1.18. Let G be a connected graph without loops, then either it has a subdiagram

of type A(1)
n , D

(1)
n , E

(1)
6 , E

(1)
7 or E(1)

8 , or G is a diagram of type An, Dn, E6, E7 or E8.
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Proof. Suppose G does not contain a subdiagram of type A(1)
n , D

(1)
n , E

(1)
6 , E

(1)
7 or E(1)

8 . Then

G has no oriented cycles, because it does not contain A
(1)
n . Every vertex is in the boundary

of at most three edges because G does not contain D
(1)
4 = . There is at most one vertex

which is boundary of three distinct edges because G does not contain D
(1)
n . If this point does

not exist, then G = An for some n. Otherwise, G must have a point with three connected edges

and three "harms" of length l ≥ k ≥ h ≥ 1, i.e. G has the following shape:

h

k l

Since G does not contain E
(1)
6 , it must be h = 1. Moreover, k ≤ 2 because G does not

contain E(1)
7 . If k = 1 then G = Dn for some n. If k = 2, then l ≤ 4 because G does not contain

E
(1)
8 . Then G = E6, E7 or E8 if l = 2, 3 or 4 respectively.

Theorem 1.1.19. The Dynkin diagrams of positive and zero type are listed in Table 1.1 and

Table 1.2. Moreover, the labels in Table 1.2 are the coordinates of the unique vector δ ∈ Zn with

coprime coordinates and such that Aδ = 0.

Proof. We already know that A(1)
n is a Dynkin diagram of zero type, indeed it can be readily

verified that δ = (1, . . . , 1). We observe that D(1)
n , E

(1)
6 , E

(1)
7 , E

(1)
8 are of zero type, indeed,

it is immediate to check that the the vector of labels in Table 1.2 lies in the kernel of the

corresponding generalized Cartan matrices:

D
(1)
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 −1

0 2 −1

−1 −1 2 ⋱

⋱ ⋱ ⋱

⋱ 2 −1 −1

−1 2 0

−1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

E
(1)
6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 −1 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 0 0

0 0 −1 0 0 2 −1

0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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E
(1)
7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 −1 0 0

0 0 0 −1 2 0 0 0

0 0 0 −1 0 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

E
(1)
8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0

0 −1 2 −1 −1 0 0 0 0

0 0 −1 2 0 0 0 0 0

0 0 −1 0 2 −1 0 0 0

0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Similarly, a straightforward calculation shows that the Dynkin diagrams in Table 1.2 are of

affine type because that the vector δ = (δ1, . . . , δn) lies in the kernel of the generalized Cartan

matrix. Recall that Aδ = 0 if and only if 2δi = ∑n
j=1 aijδj for every i = 1, . . . , n. Moreover, note

that that aij ≠ 0 if and only if there exists an edge between vertices i and j, and aij = 1 unless

the edge is multiple and with an arrow pointing towards i.

We observe that every Dynkin diagram in Table 1.1 is a subdiagram of a Dynkin diagram in

Table 1.2. Therefore, by Proposition 1.1.17 it follows that every Dynkin diagram in Table 1.1

is a Dynkin diagram of positive type.

It remains to show that every connected Dynkin diagram of positive type is listed in Table 1.1

and that every connected Dynkin diagram of zero type is listed in Table 1.2. We proceed by

induction on the number n of vertices.

If n = 2, the classification of Dynkin diagrams of zero and positive type correspond to

classify the pairs of positive integers a12, a21 such that detA ≥ 0, where

A = ( 2 −a12

−a21 2
) .

Up to equivalence, we can assume a21 ≥ a12. The condition is a12a21 ≤ 4. The only cases are:

• a12 = a21 = 1, corresponding to A2;
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• a12 = 1 and a21 = 2, corresponding to C2;

• a12 = 1 and a21 = 3, corresponding to G2;

• a12 = 1 and a21 = 4, corresponding to A(2)
2 ;

• a12 = a21 = 2, corresponding to A(1)
1 .

Now suppose n = 3. Consider the matrix:

A =

⎛
⎜⎜⎜⎜⎜
⎝

2 −a12 −a13

−a21 2 −a23

−a31 −a32 2

⎞
⎟⎟⎟⎟⎟
⎠
.

the classification of Dynkin diagrams of zero and positive type corresponds to classify the

sextuples positive integers a12, a21, a13, a31, a23, a32 such that detA ≥ 0, and every principal

submatrix of A is the generalized Cartan matrix of a Dynkin diagram of positive type of rank

2, listed above.

It follows from Proposition 1.1.17 that the only case where aij ≠ 0 for every i, j = 1, 2, 3

is when aij = 1 for every i, j = 1, 2, 3, that corresponds to A(1)
2 . Therefore may assume, up to

equivalence, that a13 = a31 = 0, and that a12, a21, a23, a32 ≠ 0, otherwise the Dynkin diagram

would be disconnected. Moreover, we can suppose up to equivalence, that a12a21 ≤ a23a32. The

condition is the following:
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a12a21 + a23a32 ≤ 4

a12a21 ≤ 3

a23a32 ≤ 3

(1.1.3)

The only solutions different from A
(1)
2 are:

• a12 = a21 = a23 = a32 = 1 that corresponds to A3;

• a12 = a21 = a23 = 1 and a32 = 2 corresponding to B3;

• a12 = a21 = a32 = 1 and a23 = 2 corresponding to C3;

• a12 = a32 = 1 and a21 = a23 = 2 corresponding to C(1)
2 ;

• a21 = a23 = 1 and a12 = a32 = 2 corresponding to D(2)
3 ;

• a21 = a32 = 1 and a12 = a23 = 2 corresponding to A(2)
4 ;

• a12 = a21 = a32 = 1 and a23 = 3 corresponding to D(3)
4 ;

• a12 = a21 = a23 = 1 and a32 = 3 corresponding to G(1)
2 .
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Let n > 3 and assume the inductive hypothesis, i.e., that every subdiagram of S(A) appears

in Table 1.1. Now, suppose that S(A) is a positive Dynkin diagram. If S(A) is simply-laced,

i.e., it does not have any multiple edge, then it follows from Proposition 1.1.18 that the only

cases are the An, Dn, E6, E7 and E8. Suppose that S(A) is not simply laced. The possible

configurations are as follows:

• S(A) cannot have a quadruple edge, otherwise it would contain A(2)
2 .

• If S(A) has one double edge, then every vertex is adjacent with at most two vertices,

otherwise S(A) would contain A
(2)
2n+1. The double edge can have a single arrow, because

S(A) does not contain A(1)
1 . Since S(A) cannot contain F (1)

4 and E(2)
6 , if both the vertices

of the double edge are adjacent to two vertices, then S(A) = F4. Therefore we can suppose

that at least one of the two vertices of the double edge is adjacent to only one vertex. As

a result, we obtain the Dynkin diagrams Bn and Cn.

• Suppose that S(A) has a triple edge. Since S(A) does not contain G
(1)
2 and D

(3)
4 , then

the unique case is G2.

This proves that the Dynkin diagrams of positive type are listed in Table 1.1.

We want to prove that the Dynkin diagrams of zero type are listed in Table 1.2. It is

immediate to verify that the Dynkin diagrams obtained by adding a vertex to a Dynkin diagram

of positive type in such a way that the new Dynkin diagram is not listed in Table 1.1 and admits

only subdiagrams of positive type, are exactly those listed in Table 1.2. This concludes the proof,

as it follows from Proposition 1.1.17 that Dynkin diagram of zero type admit only subdiagrams

of positive type, therefore they can all be obtained by adding a vertex to a Dynkin diagram of

positive type.

Table 1.1: Positive Dynkin diagrams

Type Diagram

An

Bn

Cn

Dn

E6

E7
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Type Diagram

E8

F4

G2

Table 1.2: Zero Dynkin diagrams

Type Diagram

A
(1)
n

1

1 1 1 1

B
(1)
n

1

1
2 2 2 2 2

C
(1)
n

1 2 2 2 2 1

D
(1)
n

1

1
2 2 2 2

1

1

E
(1)
6

1

1

2

2 3 2 1

E
(1)
7 1 2

2

3 4 3 2 1

E
(1)
8 12

3

4 6 5 4 3 2

F
(1)
4 1 2 3 4 2

G
(1)
2 1 2 3

A
(2)
2n 2 2 2 2 2 2 1

A
(2)
2n+1

1

1

2
2 2 2 2 1

A
(2)
2 1 2

D
(2)
n

1 1 1 1 1 1

E
(2)
6 1 2 3 2 1

D
(3)
4 1 2 1
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1.2 Kac-Moody algebras and roots system

Definition 1.2.1. Given a matrix A = (aij) ∈ Mn(C), we say that the triple (h, Π, Π∨) is a

realization of A if the following holds:

1. h is a C-vector space, Π∨
= {α∨

1 , . . . , α
∨
n} ⊆ h and Π = {α1, . . . , αn} ⊆ h

∗;

2. both Π and Π
∨ are linearly independent sets;

3. ⟨α∨
i , αj⟩ = aij ;

4. n − l = dim h − n, where l = rankA.

We say that two realizations of a matrix are isomorphic if there exists an isomorphism

ϕ ∶ h1 ⟶ h2 such that ϕ(Π∨
1 ) = Π

∨
2 and ϕ∗(Π1) = Π2.

Proposition 1.2.2. Given a matrix A = (aij) ∈Mn(C), there exists a unique realization of A

up to isomorphism.

Given two matrices A,B ∈Mn(C), two realizations of A and B are isomorphic if and only

if A and B are equivalent.

Proof. We can assume, up to reordering the indices, that there exists a l×n matrix A1 of rank

l and a matrix A2, such that:

A = (A1

A2

) .

We define the matrix

C = (A1 0

A2 In−l
) .

The realization (h, Π, Π∨) is given by h = C2n−l, α1, . . . , αn ∈ h
∗ the first n coordinate functions

and α∨
1 , . . . , α

∨
n ∈ h the rows of the matrix C.

Viceversa, given a realization (h, Π, Π∨) of the matrix A, we complete Π
∗ to a basis of h

with vectors αn+1, . . . , α2n−l and we consider the matrix

C = (⟨α∨
i , αj⟩)i=1,...,n

j=1,...,2n−l
= (A1 B

A2 D
) .

By adding suitable linear combinations of α∨
1 , . . . , α

∨
n to α∨

n+1, . . . , α
∨
2n−l, we can assume that B

is the zero matrix. Moreover, properly combining α∨
n+1, . . . , α

∨
2n−l, we may assume D = I2n−l.

It follows that, for a proper choice of α∨
n+1, . . . , α

∨
2n−l, we can suppose

C = (A1 0

A2 In−l
) .
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This proves the uniqueness.

The second part of the statement follows immediately by the above observation. Indeed, if

A and B admit isomorphic realizations, they are both equal to the matrix given by the first n

columns of the matrix:

C = (A1 0

A2 In−l
) = (B1 0

B2 In−l
) .

Conversely, if the two matrices are equivalent, then the matrices

CA = (A1 0

A2 In−l
) ; CB = (B1 0

B2 In−l
)

used to define the realizations of A and B coincide. Therefore, the realizations are isomorphic.

Definition 1.2.3. Let A be a matrix and (h, Π, Π∨) its realization, we call the elements of Π

simple roots. We define the root lattice as Γ = ∑n
i=1 Zαi and let Γ+ = ∑n

i=1 Z+αi.

Definition 1.2.4. Let A = (aij) ∈Mn(C) and let (h, Π, Π∨) be its realization. We define the

Lie algebra g(A) associated to A in the following way. Let us consider the auxiliary algebra

g̃(A) with generators {ei, fi ∣ i = 1, . . . , n} ∪ h and the relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, fj] = δijα∨
i ∀i, j = 1, . . . , n

[h, h̃] = 0 ∀h, h̃ ∈ h

[h, ei] = ⟨h, αi⟩ei ∀i = 1, . . . , n, ∀h ∈ h

[h, fi] = −⟨h, αi⟩fi ∀i = 1, . . . , n, ∀h ∈ h

As we will show in Theorem 1.2.7, g̃(A) has a unique maximal ideal τ such that τ ∩ h = 0.

We define g(A) = g̃(A)/τ . We say that g(A) is the Lie algebra of the matrix A. If A is

a generalized Cartan matrix, then g(A) is called the Kac-Moody algebra associated with the

matrix A.

Definition 1.2.5. Let h be a commutative Lie algebra and V an h-module. We say that V is

h-diagonalizable if V = ⨁λ∈h∗ Vλ, where Vλ = {v ∈ V ∣h.v = λ(h)v,∀h ∈ h}. We say that Vλ
is the weight space and λ ∈ h

∗ a weight if Vλ ≠ 0.

Lemma 1.2.6. Let h be a commutative Lie algebra and let V be a diagonalizable h-module.

Then the decomposition is induced on every h-submodule U ⊆ V , i.e., U = ⨁λ∈h∗ Uλ where

Uλ = Vλ ∩ U for every λ ∈ h
∗.
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Proof. Let u = ∑n
i=1 vi ∈ U with vi ∈ Vλi

. We want to prove that vi ∈ U for every i = 1, . . . ,m.

We proceed by induction on m. If m = 1 then u = v1 ∈ U . If m > 1, λm ≠ λm−1 implies that

there exists x ∈ h
∗ such that λm(x) ≠ λm−1(x). Let y = x.u− λm(x)u = ∑j∈I λjvj ∈ U , where

∅ ≠ I = {j ∈ {1, . . . ,m} ∣λj(x) ≠ 0} ⊊ {1, . . . ,m}.

We can apply the inductive hypothesis to y, then we have that vj ∈ U for every j ∈ I. Moreover,

we can apply the inductive hypothesis also to z = x −∑j∈I vj = ∑i∈{1,...,m}∖I vi ∈ U , and this

concludes the proof.

Theorem 1.2.7. Let A = (aij) ∈ Mn(C) and (h, Π, Π∨) its realization, then the following

holds:

1. g̃(A) = ñ− ⊕ h ⊕ ñ+, where ñ− and ñ+ are the subalgebras generated respectively by {fi}
and {ei};

2. ñ+ and ñ− are freely generated respectively by {fi} and {ei};

3. the map ω̃ ∶ g̃(A) ⟶ g̃(A) defined by ei ↦ −fi, fi ↦ ei, h ↦ h for every i = 1, . . . , n

and h ∈ h, is an involution of g̃(A);

4. we have the following decomposition in root spaces with respect to h:

g̃(A) = ( ⨁
0≠α∈Γ+

g̃−α)⊕ h⊕ ( ⨁
0≠α∈Γ+

g̃α).

Here g̃α = {x ∈ g̃(A) ∣ [h, x] = α(h)x}. Moreover, dim g̃α < ∞ and g̃±α ⊆ ñ± for every

α ∈ Γ+;

5. there exists a unique maximal ideal τ among the ones which intersect trivially h. Moreover,

τ = (τ ∩ ñ−)⊕ (τ ∩ ñ+).

Proof. Let V be a complex vector space of dimension n. Fix λ ∈ V
∗ and a basis {v1, . . . , vn}

of V . We define an action of g̃(A) on T (V ) as follows:

• fi(a) = vi ⊗ a for every a ∈ T (V ), i = 1, . . . , n;

• h(1) = ⟨λ, h⟩1 and inductively on s:

h(vj ⊗ a) = −⟨αj , h⟩vj ⊗ a + vj ⊗ h(a)

for every a ∈ T
s−1(V ), j = 1, . . . , n, h ∈ h;
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• ei(1) = 0 and inductively on s:

ei(vj ⊗ a) = δijα∨
i (a) + vj ⊗ ei(a)

for every a ∈ T (V ), i, j = 1, . . . n.

We now need to prove that these maps define a structure of g̃(A)-module on T (V ). We will

prove the relations inductively on s, the base of the induction is trivial, so we will compute only

the inductive step.

• We prove that (h1h2 − h2h1)(a) = [h1, h2](a) = 0 for every h1, h2 ∈ h, a ∈ T (V ):

(h1h2 − h2h1)(vj ⊗ a)
= −h1(⟨αj , h2⟩vj ⊗ a) + h1(vj ⊗ a) + h2(⟨αj , h1⟩vj ⊗ a) − h2(vj ⊗ h1(a))
= vj ⊗ h1h2(a) − vj ⊗ h2h1(a) = vj ⊗ [h1, h2](a) = 0 = [h1, h2](vj ⊗ a);

• We prove that (eifj − fjei)(a) = [ei, fj](a) = δijα
∨
i (a) for every i, j = 1, . . . , n and

a ∈ T (V ):

(eifj − fjei)(a) = ei(vj ⊗ a) − vj ⊗ ei(a) = δijα∨
i (a) = [ei, fj](a);

• We prove that (hfi−fih)(a) = [h, fi](a) = −⟨h, αi⟩fi(a) for every h ∈ h, i = 1, . . . , n and

a ∈ T (V ):

(hfi − fih)(a) = h(vi ⊗ a) − vi ⊗ h(a) = −⟨h, αi⟩vi ⊗ a = [h, fi](a);

• We prove that (hei − eih)(a) = [h, ei](a) = ⟨h, αi⟩ei(a) for every h ∈ h, i = 1, . . . , n and

a ∈ T (V ):

(hei − eih)(vj ⊗ a) = δijh(α∨
i (a)) + h(vj ⊗ ei(a)) + ⟨h, αj⟩ei(vj ⊗ a) − ei(vj ⊗ h(a))

= vj ⊗ h(e(a)) + δij⟨h, αj⟩α∨
i (a) − vj ⊗ e(h(a)) = δij⟨h, αj⟩α∨

i (a) + vj ⊗ [h, ei](a)
δij⟨h, αj⟩α∨

i (a) + ⟨h, αj⟩vj ⊗ ei(a) = ⟨h, αj⟩ei(vj ⊗ a) = [h, ei](vj ⊗ ei).

We will prove by induction that the product of s elements in {ei, fi ∣ i = 1, . . . , n}∪h belongs

to ñ− + h + ñ+. In particular, we have to show that:

1. [fi, x] ∈ ñ− + h + ñ+ for every x ∈ ñ− ∪ h ∪ ñ+ and i = 1, . . . , n;

2. [ei, x] ∈ ñ− + h + ñ+ for every x ∈ ñ− ∪ h ∪ ñ+ and i = 1, . . . , n;

3. [h, x] ∈ ñ− + h + ñ+ for every x ∈ ñ− ∪ h ∪ ñ+ and h ∈ h.
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Property 3. is trivial and the only non-trivial things to prove in properties 1. and 2. are

[fi, x] ∈ ñ− + h + ñ+ for every x ∈ ñ+ and [ei, x] ∈ ñ− + h + ñ+ for every x ∈ ñ−. Let us

prove the first one, the second is analogous. We proceed by induction on the length s of the

expression x = [ei1[⋯[eis−2[eis−1 , eis]]]]:

[fi[ej , x̃]] = [[fi, ej], x̃] + [ej[fi, x̃]] = δij[h, x̃] + [ej[fi, x̃]]

and we conclude using 3 and the inductive hypothesis.

Suppose now that u = x + h + y = 0, with h ∈ h, x ∈ ñ+ and y ∈ ñ−. Then u acts on T (V )
by: 0 = u(1) = y(1) + ⟨λ, h⟩, hence ⟨λ, h⟩ = 0 for every λ ∈ V

∗, then h = 0.

We observe that the map ñ− ⟶ V , fi ↦ vi uniquely defines a map ñ− ⟶ T (V ). Since

T (V ) is freely generated by the images of the generators of ñ−, then T (V ) is the universal

enveloping algebra U(ñ−) of ñ−, and the map y ↦ y(1) is the canonical embedding ñ− ↪ U(ñ−).
So y must be zero. This proves 1.

Now, by the Poincaré-Birkhoff-Witt theorem, ñ− is freely generated by f1, . . . , fn. Applying

ω̃, we see that ñ+ is generated by e1, . . . , en. This proves 2.

To prove 4. we prove by induction on s that [ei1 , [⋯[eis−2 , [eis−1 , eis]]⋯]] ∈ g̃α for some

α ∈ Γ+. Let x = [ei1 , [⋯[eis−2 , [eis−2 , eis−1]]⋯]] ∈ g̃α, α ∈ Γ+, then

[h, [ej , x]] = [[h, ej], x] + [ej[h, x]] = αj(h)[ej , x] + α(h)[ej , x] = (α + αj)(h)[ej , x].

We can prove analogously that [fi1 , [⋯[fis−2 , [fis−1 , fis]]⋯]] ∈ g̃−α for some α ∈ Γ+. This

prove that

ñ± = ⨁
0≠α∈Γ+

g̃±α.

We observe that dim g̃α ≤ n
htα, where, if α = ∑n

i=1 kiαi, htα = ∑n
i=1 ki. This concludes the

proof of 4.

Let Ω = {η ⊆ g̃(A) ∣ η is an ideal and η∩h = 0}. By Lemma 1.2.6 follows that η = ⨁α∈Γ(η∩
g̃α) for every η ∈ Ω. Then for every η1, η2 ∈ Ω, also η1 + η2 ∈ Ω. It follows that there is a

unique maximal element of Ω:

τ = ∑
η∈Ω

η.

In particular, τ = (τ ∩ ñ−)⊕ (τ ∩ ñ+) as vector spaces. We observe that [fi, τ ∩ ñ+] ⊆ ñ+ and

[ei, τ ∩ ñ−] ⊆ ñ−, and this concludes the proof of 5.

By now on we will consider only generalized Cartan matrices, so that g(A) is the Kac-Moody

algebra with generalized Cartan matrix A.

Remark 1.2.8. It is clear from Theorem 1.2.7 that the decomposition with respect to the action

of h ⊆ g(A) = g̃(A)/τ is

g(A) = h⊕ ⨁
0≠α∈Γ+

(gα ⊕ g−α).
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Moreover, it is also clear that, if n− and n+ denote the images of ñ− and ñ+ respectively, there

is the diagonal decomposition g(A) = n− ⊕ h⊕ n+.

This remark justifies the following definition.

Definition 1.2.9. Let g(A) = h⊕⨁α∈Γ gα, then we say that α ∈ Γ ∖ 0 is a root if multα ∶=

dim gα ≥ 1.

A root α is called positive if α ∈ Γ+ and negative if −α ∈ Γ+. We call ∆, ∆+ and ∆− the

set of roots, positive roots and negative roots respectively.

Remark 1.2.10. From the proof of Theorem 1.2.7 it follows that ∆ = ∆+ ⊔ ∆−. More-

over, if α ∈ ∆+ (respectively in ∆−), then gα is generated by the elements of the form

[ei1 , [⋯[eis−2 , [eis−2 , eis−1]]⋯]] with i1 + . . . + is = htα. Analogously, if α ∈ ∆−.

Remark 1.2.11. The involution ω̃ over g̃(A) described in Theorem 1.2.7 is well defined on the

quotient by τ , so it induces an involution ω on g(A), called the Chevalley involution.

We observe that ω(gα) = g−α, hence ∆− = −∆+.

It is also easy to observe that, since every root is either positive or negative, for β ∈ ∆+∖{αi},
(β + Zαi) ∩∆ ⊆ ∆+.

Lemma 1.2.12. Let a ∈ n+ be such that [a, fi] = 0 for every i, then a = 0. Similarly if a ∈ n−

and [a, ei] = 0 for every i, then a = 0.

Proof. We define a Z-grading on g(A) setting deg ei = − deg fi = 1 for every i = 1, . . . , n and

deg h = 0. We write:

g(A) = ⨁
j∈Z

gj

where g0 = h, g1 = ⊕n
i=1Cei and g−1 = ⊕n

i=1Cfi.
Let a ∈ n+ such that [g−1, a] = 0. We define

τ = ∑
i,j≥0

(adi g1)(adj h)(a) ⊆ n+.

We observe that τ is both h-invariant and n+-invariant. Moreover, by the hypothesis [g−1, a] = 0

it follows that τ is also n−-invariant. Then τ is an ideal of g(A) such that τ ∩ h = 0, therefore

by Theorem 1.2.7 τ = 0, and then a = 0. The proof is analogous when a ∈ n−.

Definition 1.2.13. Let g be a Lie algebra and V a g-module, we say that x ∈ g is a locally

nilpotent element for V if for every v ∈ V , there exists N ∈ N such that xN .v = 0.

Lemma 1.2.14. Let y1, y2, . . . be a system of generators for a Lie algebra g and let x ∈ g be

such that for every i, there exists Ni such that (adx)Ni(yi) = 0, then adx is locally nilpotent

on g.
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Proof. Let z = [yi1[. . . [yim−2
[yim−1

, yim]]]] ∈ g, we show by induction on m that there exists

Nz ∈ N such that (adx)Nz
= 0. If m = 1, the statement follows by hypothesis. If m > 1, we use

the fact that adx is a derivation. Say z = [yi1 , z̃], by inductive hypothesis there exists Nz̃ ∈ N
such that (adx)Nz̃

= 0. Then Nz = Nz̃ +Ni is the desired number, indeed:

(adx)Nz([yi1 , z̃]) =
Nz

∑
j=0

(Nz

j
) [(adx)j(yi1), (adx)

Nz−j(z̃)] = 0

Definition 1.2.15. We say that a h-diagonalizable g(A)-module V is integrable if ei and fi

are locally nilpotent for every i.

Lemma 1.2.16. ad ei and ad fi are both locally nilpotent over g(A).

Proof. By Lemma 1.2.14, it is sufficient to prove that:

1. (ad fi)1−aijfj = 0 for every i ≠ j;

2. (ad ei)1−aijej = 0 for every i ≠ j.

We will prove relation 1. Relation 2. can be proved similarly.

We let v = fj , θij = (ad fi)1−aijfj and g(i) = Cfi ⊕ Cα∨
i ⊕ Cei ≅ sl2. Consider g(A) as a

g(i)-module with the restriction of the adjoint representation. We observe that

• α
∨
i (v) = ⟨α∨

i , αj⟩v = −aij ;

• ei(v) = 0 because i ≠ j.

Then it follows that v generates an irreducible g(i)-module of dimension 1 − aij .

From i ≠ j and the relations of g(A) it follows:

[ei, θij] = (−aij + 1 − (1 − aij))(1 − aij)(ad fi)−aij(fj) = 0.

Moreover, if k ≠ i, it follows directly that [ek, θij] = 0. By these observations and by

Lemma 1.2.12 we conclude that θij = 0.

Definition 1.2.17. An h-diagonalizable g(A)-module V is called integrable if ei and fi are

locally nilpotent on V for every i = 1, . . . , n.

Theorem 1.2.18. g(A) is an integrable g(A)-module.

Proof. The proof follows by Lemma 1.2.14 and Lemma 1.2.16.

In the following lemma we will recall some remarkable property of the representations of

sl2(C).
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Lemma 1.2.19. Let V be an sl2(C)-module and let v ∈ V be such that h(v) = λv for some

λ ∈ C. If we set vj ∶= 1
j!
f
j(v), then h(vj) = (λ − 2j)vj. If , in addition, e(v) = 0, then

e(vj) = (λ − j + 1)vj−1.
Moreover, for each integer k ≥ 0, there exists a unique, up to isomorphism, irreducible

(k+1)-dimensional sl2(C)-module V (k). There exists a basis {v0, v1, . . . , vn} of V (k) such that

the action of sl2(C) is given by:

• h(vj) = (k − 2j)vj;

• f(vj) = (j + 1)vj+1;

• e(vj) = (k + 1 − j)vj−1;

for every j = 0, 1, . . . , n, with the convention v−1 = vn+1 = 0.

Proposition 1.2.20. Let V be an integrable g(A)-module, then the following holds:

1. as g(i)-module, V decomposes in direct sum of h-invariant irreducible modules;

2. let λ ∈ h
∗ a weight for V and αi a simple root of g(A). Let M = {t ∈ Z ∣λ +

tαi is a weight for V } and let mt = multV (λ + tαi), then

(a) M is a closed interval of integers [−p, q] with p and q non negative integers such

that p − q = ⟨λ, α∨
i ⟩ when p, q < ∞. If multV λ < ∞, then p, q < ∞;

(b) the map ei ∶ Vλ+tαi
⟶ Vλ+(t+1)αi

is injective and the function t ↦ mt is increasing

for t ∈ [−p,−1
2
⟨λ, α∨

i ⟩];

(c) the map t↦ mt is symmetric with respect to t = −1
2
⟨λ, α∨

i ⟩;

(d) if λ and λ + αi are both weights of V , then ei(Vλ) ≠ 0.

Proof. By the proof of Lemma 1.2.16 follows that

eif
k
i .v = k(1 − k + ⟨λ, α∨

i ⟩)fk−1i .v + f
k
i ei.v

for every v ∈ Vλ. Let us fix v ∈ Vλ, we define the g(i)-submodule U = ∑k,m≥0 f
k
i e

m
i .v. This

space is clearly h-invariant. Moreover, ei and fi are both locally nilpotent, then it follows that

dimU < +∞. By Weyl’s completely reducibility theorem, it follows that U decomposes as a

direct sum of finite dimensional irreducible g(i) modules. These modules are also h-invariant,

because the eigenvalues of h are the same as α∨
i . It follows that we can decompose V as a direct

sum of finite dimensional irreducible h-invariant g(i)-modules, that implies 1.

Let now define U = ∑k∈Z Vλ+kαi
. We observe that U is (g(i)+h)-invariant, so it decomposes

as a direct sum of finite dimensional irreducible (g(i) + h)-modules. Set p = − infM and
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q = supM . Both p and q are non-negative because 0 ∈ M . By definition, M = [−p, q] ∩ Z.

We observe that ⟨λ + tαi, α
∨
i ⟩ = 0 if and only if t = −1

2
⟨λ, α∨

i ⟩. There follow by the symmetry

of sl2-representations properties 2b and 2c. Moreover, we have p − 1
2
⟨λ, α∨

i ⟩ = q + −1
2
⟨λ, α∨

i ⟩,
which implies p − q = ⟨λ, α∨

i ⟩. Property 2d follows by the structure of sl2-representations.

Corollary 1.2.21. Let λ be a weight for an integrable g(A)-module V . Then we have:

1. if λ + αi is not a weight, then ⟨λ, α∨
i ⟩ ≥ 0;

2. λ − ⟨λ, α∨
i ⟩αi is a weight of the same multiplicity as λ.

Proof. If λ + αi is not a weight, then 1 /∈ [−p, q], as defined in Proposition 1.2.20. It implies

that q = 0, and then ⟨λ, α∨
i ⟩ = p ≥ 0.

We observe that −⟨λ, α∨
i ⟩ = q − p and −p ≤ q − p ≤ q, then −⟨λ, α∨

i ⟩ ∈ [−p, q]. Statement

2 follows by Lemma 1.2.23.

Definition 1.2.22. For i = 1, . . . , n we define the fundamental reflections ri ∈ GL(h∗): for

λ ∈ h
∗,

ri(λ) = λ − ⟨λ, α∨
i ⟩αi.

We define W ⊆ GL(h∗) as the group generated by the fundamental reflections defined above.

We say W is the Weyl group of g(A).

Lemma 1.2.23. Let g(A) be a Kac-Moody Lie algebra, let ∆ be its root system and W the

associated Weyl group. The following hold:

1. ∆ is a W -invariant set and multα = multw(α) for every α ∈ ∆ and w ∈ W . Moreover

∆+ ∖ {αi} is an ri-invariant set;

2. the set ∆+ is uniquely defined by the following properties:

(a) Π ⊆ ∆+ ⊆ Γ+ and 2α ∉ ∆+ for every α ∈ Π;

(b) if α ∈ ∆+ ∖ {αi}, then α + kαi ∈ ∆+ if and only if −p ≤ k ≤ q for p, q ∈ Z≥ 0 such

that p − q = ⟨α, α∨
i ⟩.

3. if A is an indecomposable generalized Cartan matrix of zero or negative type, then for

every β ∈ ∆+, there exists α ∈ Π such that β + α ∈ ∆+.

Proof. We have shown in Theorem 1.2.18 that g(A) is an integrable g(A)-module, so we can

apply Corollary 1.2.21. It follows that, for every α ∈ ∆, ri(α) = α − ⟨α, α∨
i ⟩αi is a root of the

same multiplicity as α. It follows that w(α) ∈ ∆ and multw(α) = multα for every α ∈ ∆ and

every w ∈W . By Remark 1.2.11 follows that for every α ∈ ∆+ ∖ {αi}, holds

ri(α) = α − ⟨α, α∨
i ⟩αi ∈ ∆+ ∖ {αi}.
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Let us prove that a) and b) hold for a root system. We have that Π ⊆ ∆+ ⊆ Γ+ by definition.

By the construction of g(A), follows that 2αi /∈ ∆ for every αi ∈ Π, indeed gαi
is generated by

[ei, ei] = 0. Moreover, b) holds because of Proposition 1.2.20.

On the other hand, if there exists Π ⊆ ∆̃+ ⊆ Γ+, then one can show by induction on htα

that α ∈ ∆+ if and only if α ∈ ∆̃+.

To prove 3, we observe that if A is of negative type, then for every β ∈ ∆+, then Aβ /≥ 0,

in particular, there exists i ∈ S(A) such that (Aβ)i = ri(β) < 0. It follows that β + αi ∈ ∆+.

If A is of zero type, then we have two cases:

• if Aβ /≥ 0, then, as in the negative case, there exists αi ∈ Π such that αi + β ∈ ∆+;

• if Aβ = 0, then β /∈ Π. By 2 follows that there exist αi ∈ Π, k ∈ N>0 and β̃ ∈ ∆+ such

that β = β̃ + kαi, then β̃ = β − kαi ∈ ∆+. Then q ≥ 1, since 0 = ⟨β, α∨
i ⟩ = p − q, with

p ≥ 1. It follows that β + αi ∈ ∆+.

1.3 Real and imaginary roots

Definition 1.3.1. Let α ∈ ∆, we call α a real root if there exists a w ∈W such that w(α) ∈ Π,

otherwise we say that α is an imaginary root. We denote by ∆
re
, ∆

re
+ , ∆

im
, ∆

im
+ the sets of

real, positive real, imaginary and positive imaginary roots respectively.

Remark 1.3.2. We observe that, since our aim is to study the root system associated with

a Cartan matrix A, we may assume that A is an indecomposable Cartan matrix. Indeed, if

A = A1⊕⋯⊕Ak, then also g(A) ≅ g(A1)⊕⋯⊕ g(Ak) and consequently ∆(A) = ∐k
i=1∆(Ai)

and W (A) = ∏k
i=1W (Ai).

Definition 1.3.3. Let α = ∑n
i=1 kiαi ∈ Γ, we define the support of α as the subgraph of

Suppα ⊆ S(A) consisting of the vertices i such that ki ≠ 0 together with every edge between

these vertices.

Definition 1.3.4. We define the fundamental chamber K ⊆ Γ ⊗ R the set of vectors α =

∑n
i=1 kiαi ∈ Γ such that:

1. there exists at least one i such that ki ≥ 0, and this is required especially when S(A)∖{pi}
contains a connected component of negative type;

2. φi(α) = ∑n
j=1 kjaij ≤ 0 for every i = 1, . . . , n.

We denote by M the set of α ∈ K ∩ Γ such that Suppα is connected.
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Lemma 1.3.5. Let A be an indecomposable Cartan matrix, then the following hold:

1. if α = ∑n
i=1 kiαi ∈ K, then ki ≥ 0 for every i = 1, . . . , n;

2. the set ∆im
+ is W -invariant and if α ∈ ∆

im
+ , then w(α) ∈M for some w ∈W ;

3. if A is of positive type, then K = 0;

4. if A is of zero type, then K = R+δ, where δ is the vector found in Theorem 1.1.19 and

reported in Table 1.2;

5. if A is of negative type, then K is a solid cone;

6. if α ∈ ∆
re
+ , then there exists a sequence ri1 , . . . , rik of minimal length such that

rik⋯ri1(α) ∈ Π.

Proof. Let us prove the first statement by contradiction: suppose that α = ∑n
i=1 kiαi = β − γ ∈

K. Let β = ∑n
i∈S1

ciαi and γ = ∑n
i∈S2

ciαi, with S1 ⊔ S2 = S(A) such that ci = ki ≥ 0 for every

i ∈ S1 and cj = −kj > 0 for every j ∈ S2. From the definition of K it follows that S1 contains

only subdiagrams of positive or zero type, otherwise S2 = ∅, and moreover φ(β) ≤ 0 for every

i ∈ S1. This together with Theorem 1.1.7 proves that S1 has all the connected components of

zero type, which implies φ(β) = 0 for every i ∈ S1. Because S(A) is connected, there exist

i ∈ S1, j ∈ S2 such that aij ≠ 0. We conclude the proof of 1 because the following leads to a

contradiction together with α ∈ K:

φi(α) = φi(β) − φi(γ) = −φi(γ) = − ∑
j∈S2

aijcj > 0.

To prove 2, let α ∈ ∆
im
+ , then α ∈ ∆+∖Π, then follows by Lemma 1.2.23 and the definition

of ∆im
+ that ri(α) ∈ ∆+ ∖ Π. It follows that W (∆im

+ ) ⊂ ∆
im
+ . Let w̃ ∈ W such that ht w̃(α) =

minw∈W w(α), then w̃(α) − αi /∈ ∆+ for every i = 1, . . . , n. By Lemma 1.2.23 follows that

φi(w̃(α)) = −q ≤ 0 for every i = 1, . . . , n, which proves 2.

Statements 3,4 and 5 follow by 1 and Theorem 1.1.7. Statement 6 follows immediately by

definition of real root.

Lemma 1.3.6. Let α ∈M , then α ∈ ∆
im
+ .

Proof. Let α = ∑n
i=1 kiαi ∈ M and Ω = {γ ∈ ∆+ ∣α − γ ∈ Γ+}. At least one element of Π

belongs to Ω, so it is not empty. Let β = ∑n
i=1miαi be an element of maximal height of Ω.

Suppose by contradiction that α /∈ ∆+, then the following holds:

1. P = {i ∈ S(A) ∣ ki = mi} ≠ ∅;



1.3 Real and imaginary roots 25

2. β + αi /∈ ∆+ if i /∈ P , i.e. if ki > mi.

Indeed, by Lemma 1.3.5 and the hypothesis M ≠ {0} follows that S(A) is of negative or zero

type, then by Lemma 1.2.23 we can add simple roots to β until at least mi = ki for some

i ∈ S(A). This proves 1. To prove 2 it suffices to observe that if β + αi ∈ ∆+ for i /∈ P , then

β + αi ∈ Ω with ht(β + αi) > htβ, against the assumption that β is of maximal height.

Let R be a connected component of the subdiagram Supp(β − α) = S(A) ∖ P = {i ∈

S(A) ∣ ki > mi}. Define β′ = ∑i∈Rmiαi and β′′ = β − β
′. We observe that

a) φi(β) ≥ 0 for every i ∈ R;

b) φi(β′′) ≤ 0 for every i ∈ R;

c) there exists i ∈ R such that φi(β′′) > 0.

In fact, Lemma 1.2.23 says that β + kαi ∈ ∆+ if and only if −p ≤ k ≤ q with φi(β) = p − q,

p, q ∈ N, and 1 says β + αi /∈ ∆+, so it implies q = 0 and then φi(β) = p ≥ 0, which proves a).

For every i ∈ R holds

φi(β) = ∑
j∈S(A)∖R

mjaji < 0

that implies b). Moreover, if φi(β) = 0 for every i ∈ R, then aij = 0 for every i ∈ R, j ∈

S(A) ∖ R, i.e. R is a connected component of S(A) that is connected. It follows from a), b),

and c) that φi(β′) ≥ 0 for every i ∈ R and there exists j ∈ R such that φi(β′) > 0. This implies

that R is a Dynkin diagram of positive type. Consider now the element α′
= ∑i∈R(ki −mi)αi

and we observe that Suppα
′
= R and that φi(α′) = φi(α − β) for every i ∈ R. Resuming,

we know that α ∈ M ⊆ K, then φi(α) ≤ 0 and φi(β) ≥ 0 for every i ∈ R. It follows that

φi(α′) = φi(α) − φi(β) ≤ 0 for every i ∈ R. This leads to a contradiction because we have

already shown that R is a Dynkin diagram of positive type. It follows that α ∈ ∆+.

We observe that for the element 2α we have what we have shown for α, particularly 2α ∈ ∆+.

By Lemma 1.2.23 follows that α /∈ ∆
re
+ , then α ∈ ∆

im
+ .

By Lemma 1.1.13 we can give the following definition.

Definition 1.3.7. Let A be a symmetrizable Cartan matrix, then A = DB, with B = (bi,j) a

symmetric matrix and bij ∈ Z[1
2
]. Then we define a bilinear form (⋅, ⋅) on Γ by (αi, αj) = bij .

Remark 1.3.8. If A is a symmetrizable Cartan matrix and α = ∑n
i=1 ciαi ∈ Γ, then (α, α) ∈ Z.

Indeed:

(α, α) = (
n

∑
i=1

ciαi,
n

∑
j=1

cjαj) = 2∑
i<j

cicjbij +
n

∑
i=1

ciibii.

Both summands belong to Z.
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Lemma 1.3.9. Let A be a symmetrizable Cartan matrix and (⋅, ⋅) the associated bilinear form,

then the following hold:

1. the bilinear form (⋅, ⋅) is W -invariant, i.e. (w(α), w(β)) = (α, β) for every α, β ∈ Γ and

w ∈W ;

2. α ∈ Γ is a real root if and only if (α, α) > 0;

3. α ∈ Γ is an imaginary root if and only if (α, α) ≤ 0;

4. α ∈ Γ is isotropic if and only if there exist a connected subdiagram S̃ of S(A) of type Z

and w ∈W such that w(α) is an imaginary root of S̃.

Proof. First of all, we observe that (α, αi) = 0 for every α ∈ Ui = {α ∈ Γ ∣ ⟨α, α∨
i ⟩ = 0}. Indeed,

if α = ∑n
j=1 cjαj , then:

(α, αi) =
n

∑
j=1

cj(αj , αi) = d−1i
n

∑
j=1

cjdibij = d
−1
i ⟨α, α∨

i ⟩ = 0.

In particular we have that (ri(α), αi) = 0 for every α ∈ Γ and every αi ∈ Π.

We will prove 1) on the generators {r1, . . . , rn} ⊆W . Let β, γ ∈ Γ, then:

(ri(β), ri(γ)) = (ri(β), γ − ⟨γ, α∨
i ⟩αi) = (ri(β), γ) − ⟨γ, α∨

i ⟩(ri(β), αi).

In particular it follows that, for every β, γ ∈ Γ, holds (ri(β), ri(γ)) = (ri(β), γ) = (β, ri(γ)).
Then using this identity and the fact that r2i = id, we have

(ri(β), ri(γ)) = (ri(β), γ) = (ri(β), r2i (γ)) = (β, r2i (γ)) = (β, γ).

Let α ∈ ∆
re, then there exists w ∈W such that w(α) = αi ∈ Π. By 1) it follows that

(α, α) = (w(α), w(α)) = (αi, αi) = bii ≥ 0.

Let α = ∑n
i=1 ciαi ∈ ∆

im. By 1) it follows that, without loss of generality, we can assume

α ∈ K. By the definition of K we have:

(α, α) =
n

∑
i=1

ci(αi, α) =
n

∑
i=1

d
−1
i ci⟨αi, α⟩ ≤ 0.

Since ∆ = ∆
re ⊔∆

im, 2) and 3) are proved.

Let α be an isotropic root. Then, from 3), it follows that it is an imaginary root. As above,

we can assume α = ∑n
i=1 ciαi ∈M . Then 0 = (α, α) = ∑n

i=1 ci(αi, α). It follows that ⟨αi, α⟩ = 0

for every i ∈ Suppα. Then it follows that α is a root for a subdiagram of S(A) of type Z and

that α = mδ with m ∈ N+ and δ as defined in Theorem 1.1.19.
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Definition 1.3.10. Let A be a Cartan matrix, we say that A is of hyperbolic type if it is of

negative type and every proper connected subdiagram of S(A) is of type P or Z.

From now on, we will focus on symmetrizable indecomposable Cartan matrices of positive,

zero, or hyperbolic type. For simplicity, we will refer to them as Cartan matrices.

Lemma 1.3.11. Suppose that, for any two disjoint subdiagrams of S(A), one of them is of

positive type. Then any α ∈ K ∩ Γ has a connected support. Equivalently, M = K ∩ Γ.

Proof. Suppose that α = β + γ and that P = Suppβ and P
′
= Supp γ are disjoint. Without

loss of generality, we may assume that P is a diagram of positive type, then φi(β) > 0 for

some i such that pi ∈ P . It follows that φi(α) = φi(β) > 0, which contradicts the hypothesis

α ∈ K.

Remark 1.3.12. By Lemma 1.1.10 follows that Cartan matrices of positive and zero type verify

the hypotheses of Lemma 1.3.11. If A is a Cartan matrix of hyperbolic type, it also verifies the

hypotheses of Lemma 1.3.11. Indeed, if S1 and S2 are disjoint subdiagrams of S(A) of zero type,

then there must be a connected subdiagram S̃ ⊆ S(A) such that S1 ⊆ S̃ and ∅ ≠ S̃ ∩ S2 ⊊ S2.

This is possible because S2 is of zero type and then it has more than one vertex. Then S̃ is a

proper subdiagram of S(A) and is of negative type, because it contains S1: a proper subdiagram

of zero type. This leads to a contradiction because A is of hyperbolic type.

In conclusion, if S(A) is of positive, zero or negative type, for every two proper disjoint

subdiagrams of S(A), at most one of them is of zero type.

Lemma 1.3.13. Let A be a Cartan matrix of positive, zero or hyperbolic type and α ∈ Γ, then

the following hold:

1. if (α, α) ≤ 1, then either α ∈ Γ+, −α ∈ Γ+ or α = 0;

2. if (α, α) = 1, then α ∈ ∆
re.

Proof. Suppose by contradiction that ±α ∉ Γ+ and α ≠ 0. Then we can write α = β − γ

with β, γ ∈ Γ+. Let P = Suppβ and P
′
= Supp γ. We observe that P and P

′ are disjoint

subdiagrams of S(A). Moreover, both P and P ′ are disjoint unions of connected subdiagrams,

at most one of which is of zero type, as follows by Remark 1.3.12. We conclude by computing

(α, α) = (β − γ, β − γ) = (β, β) + (γ, γ) + 2(−β, γ). (1.3.1)

Both (β, β) and (γ, γ) are non-negative and at least one of them is positive. Moreover, we

observe that:

2(−β, γ) = −2(∑
i∈P

∑
j∈P ′

cicjbij) ≥ 1
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because B has coefficients in Z[1
2
] and bij ≤ 0 for every i ∈ P, j ∈ P ′ and at least one of them is

strictly positive, because S(A) is connected. Then in Equation (1.3.1) there is a summand that

is at least one, and two non-negative summands, at least one of which is positive. It follows

that (α, α) ≥ 1, that is a contradiction.

By 1) it follows that we can suppose α ∈ Γ+. Now consider the orbit of α under the action

of W . By Lemma 1.3.9 we have that (w(α), w(α)) = (α, α) = 1, and then by 1) it follows that

w.α ⊆ Γ+∪Γ−∪{0}. Let β be an element of minimal height of W.α∩Γ+, then β ∈ Π, otherwise

there exists pi ∈ Suppβ such that ri(β) ∈W.α ∩ Γ+ and htβ > ht ri(β).

Lemma 1.3.14. Let A be a Cartan matrix and α ∈ Γ+, then the following hold:

1. α is an imaginary root if and only if (α, α) ≤ 0;

2. if A is a symmetric matrix, α is a real root if and only if (α, α) = 1.

Proof. By Lemma 1.3.13, we may assume without loss of generality that α ∈ Γ+. Let β ∈

Γ+ ∪W.α be an element of minimal hight. It follows that ⟨β, α∨
i ⟩ ≤ 0 for every i, otherwise

ht ri(β) = ht(β − ⟨β, α∨
i ⟩αi) < htβ. It follows that β ∈ K ∪ Γ+. By Lemma 1.3.11 it follows

that Suppβ is connected and then β ∈ M . By Lemma 1.3.5 it follows that α ∈ ∆
im, which

proves 1).

By Lemma 1.3.13 it follows that if (α, α) = 1, then α is a real root. Vice versa, we observe

that if A is symmetric, then B =
1
2
A and then (αi, αi) = 1 for every i. The thesis follows by

the definition of real root and Lemma 1.3.9.

Let us make some useful example. We will consider only symmetric Dynkin diagrams, indeed

in the second part of the work we will work with these diagrams.

Example 1.3.15. Let us consider the Dynkin diagram of finite type A2 ∶ , and the

corresponding Cartan matrix A = ( 2 −1

−1 2
). We want to compute its root system: we have

the elements α1, α2 ∈ Π, and we need to apply the simple reflections to find the real roots:

• r1(α2) = α2 − ⟨α1, α2⟩α1 = α2 + α1;

• r2(α1) = α1 − ⟨α2, α1⟩α2 = α1 + α2;

• r1(α1 + α2) = r1(α1) + r1(α2) = −α1 + α1 + α2 = α2;

• r2(α1 + α2) = r2(α1) + r2(α2) = α1 + α2 − α2 = α1.

It follows that the set of positive real roots is ∆
re
+ = α1, α2, α1 + α2. Since A2 is a Dynkin

diagram of finite type, it does not admit imaginary roots, hence ∆+ = ∆
re
+ . Generalizing to the

case of An ∶ , we observe that for every i = 1, . . . , n, the following properties hold:
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• ri(αi) = −αi;

• if i ≠ n, then ri+1(αi) = αi + αi+1;

• if i ≠ 1, then ri−1(αi) = αi + αi−1;

• rj(αi) = αi for every j /∈ {i − 1, i, i + 1}.

It is straightforward to deduce that the positive root system of An is:

∆+ = { ∑
i≤k≤j

αk ∣ 1 ≤ i ≤ j ≤ n}.

Example 1.3.16. Let us consider the Dynkin diagram of affine type A(1)
1 ∶ , and the

corresponding Cartan matrix A = ( 2 −2

−2 2
). By Lemma 1.3.5 together with Lemma 1.3.6,

it follows that ∆
im
+ (A) = Nδ, where δ is the vector (1, 1) found in Theorem 1.1.7. Let us

compute the real roots of A(1)
1 using two different methods. First, we apply the criterion found

in Lemma 1.3.14, namely we impose:

1 = (a b) (
1 −1

−1 1
)(a

b
) = a

2
− 2ab + b

2
= (a − b)2

This implies that the real roots are the vectors (a, a+1) and (a, a−1), with a ∈ N. Alternatively,

we can proceed more directly by observing that:

• r1(α2) = 2α1 + α2;

• r2(α1) = α1 + 2α2.

Using these reflections, we can inductively construct the real roots:

• r1(kα1 + (k + 1)α2) = −kα1 + (k + 1)(2α1 + α2) = (k + 2)α1 + (k + 1)α2;

• r2((k + 1)α1 + kα2) = (k + 1)(α1 + 2α2) − kα2 = (k + 1)α1 + (k + 2)α2.

It follows that ∆
re
+ = {(k, k + 1) ∈ Γ+, ∣, k ∈ N} ∪ {(k + 1, k) ∈ Γ+, ∣, k ∈ N}.





Chapter 2

Representations of Quivers

In this chapter we recall the fundamental definitions and standard results from the theory

of quiver representations. We present Gabriel’s Theorem 2.2.1 and then analyze the case of the

2-Kronecker quiver, which motivates the search for a generalization of Gabriel’s Theorem 2.2.1.

2.1 Quivers and Indecomposable Representations

Definition 2.1.1. A quiver Q = (S,Ω) is an oriented graph, i.e. it is defined by its underlying

graph S:

• a set of vertices S0;

• a set of edges S1;

and by an orientation Ω of the graph, given by two functions s, t ∶ S1 ⟶ S0, called the source

function and the target function, respectively.

We will consider only quivers without loops, that is, quivers for which for every l ∈ S1,

s(l) ≠ t(l).

Example 2.1.2. Some examples of quivers are:

Notice that the quivers

are two different quivers, with same underlying graph S but different orientations Ω and Ω
′.

31
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Definition 2.1.3. A representation of a quiver Q is defined by

• a collection of vector spaces (Vi)i∈S0
, one for every vertex of the quiver Q;

• a collection of linear maps (φl ∶ Vs(l) ⟶ Vt(l))l∈S1
, one for every oriented edge of the

quiver Q.

We will denote the representation (Vi, φl)i∈S0,l∈S1
simply by V .

Definition 2.1.4. To every representation V of a quiver Q, we can associate a vector, called

the dimension vector, defined as α = (dimVi)i∈S0
.

Example 2.1.5. Let Q be the quiver

1 2

also known as the 2-Kronecker quiver.

The following are three different representations of the quiver Q:

F 0 0 F F2 F
(1 0)

(0 1)

The dimension vectors of the above representations are α1 = (1
0
), α2 = (0

1
) and α3 = (2

1
)

respectively.

Definition 2.1.6. Let U = (Ui, ψl)i∈S0,l∈S1
and V = (Vi, φl)i∈S0,l∈S1

be two representations of

the quiver Q. We say that U is a subrepresentation of V if

• Ui ⊆ Vi is a vector subspace;

• ψl is the restriction of φl to Us(l).

Definition 2.1.7. Given two representations U and W of the quiver Q, we define the repre-

sentation V = U ⊕W as

• Vi = Ui ⊕Wi for every i ∈ S0;

• θl = φl ⊕ ψl ∶ Us(l) ⊕Ws(l) ⟶ Ut(l) ⊕Wt(l) for every l ∈ S1.

A representation of a quiver Q is called irreducible if it does not admit any non-trivial

subrepresentation and is called indecomposable if it cannot be written as the direct sum of two

representations of Q.
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Example 2.1.8. The simplest examples of indecomposable objects are the irreducible repre-

sentations U (i), defined, for every i ∈ S0, as follows:

• (U (i))j = 0 for every i ≠ j and (U (i))i = F;

• φl = 0 for every l ∈ S1.

More precisely, the U (i)’s are the only irreducible representations of a quiver Q.

Definition 2.1.9. A morphism of representations of the quiver Q between V and W is defined

by a collection of linear maps (fi ∶ Vi ⟶ Wi)i∈S0
, one for every vertex of the quiver Q, such

that for every l ∈ S1, ψl ◦ fs(l) = ft(l) ◦ φl ∶ Vs(l) ⟶ Vt(l). In particular, we require that the

following diagram commutes for every l ∈ S1:

Vs(l) Vt(l)

Ws(l) Wt(l)

φl

fs(l) ft(l)

ψl

Remark 2.1.10. To every quiver Q = (S,Ω), we can associate a Dynkin diagram by considering

the underlying graph S. It is associated with its Cartan matrix, which is a symmetric Cartan

matrix.

Definition 2.1.11. Let Q be a quiver with numbered vertices S0 = {1, . . . , n} and consider

α = ∑n
i=1 kiαi ∈ Γ+. We define Mα(Q,F) as the space of all representations of Q with fixed

dimension vector α.

We observe that a representation V with dimension vector α can be described by a tuple of

linear maps (φl)l∈S1
, where φl ∈ HomF(Fks(l) ,Fkt(l)). Equivalently

M
α(Q,F) = ⨁

l∈S1

HomF(Fks(l) ,Fkt(l)) ≃ ⨁
l∈S1

(Fkt(l) ⊗ (Fks(l))∗).

We will set GL(α) = GLk1 × ⋯ × GLkn and End(α) = ⨁i∈S0
EndF(Fki). We also set

g = dimGL(α). Moreover, we will denote q(β) = (β, β) for β ∈ Γ+.

An isomorphism between two representations V1, V2 ∈M
α(Q,F) is given by a tuple (fi)i∈S0

of invertible endomorphisms, i.e., (fi)i∈S0
∈ GL(α). This means that the isomorphism class of

V ∈M
α(Q,F) is the orbit of V in Mα(Q,F) for the action of GL(α). The action is given by:

(fi)i∈S0
.(φl)l∈S1

= (f−1s(l) ◦ φl ◦ ft(l))
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We observe that the normal subgroup C generated by (Iki)i∈S0
acts trivially on Mα(Q,F),

thus we consider the quotient action of Gα ∶= GLk1 × . . . × GLkn/C. Gα is a linear algebraic

group and M
α(Q,F) has a natural structure of algebraic variety. We have also the following

equalities:

• dimM
α(Q,F) = ∑l∈S1

ks(l)kt(l) = −1
2
∑i≠j aijkikj ;

• dimG
α + 1 = ∑n

i=1 k
2
i .

It follows that

dimM
α(Q,F) − dimG

α
= 1 − (α, α) = 1 − q(α). (2.1.1)

Definition 2.1.12. Let Q be a quiver and let α ∈ Γ+. We define Mα
ind(Q,F) ⊆ M

α(Q,F) as

the set of indecomposable representations of Q of dimension vector α.

Definition 2.1.13. Let G be a linear algebraic group over F. A subgroup T ⊆ G is called a

torus if T ⊗ F ≃ F
×
×⋯× F

×
. We say that T is an F-split torus if T ≃ F× ×⋯× F×.

Definition 2.1.14. Let G be a linear algebraic group acting on an algebraic variety X. For

x ∈ X, we denote by Gx the stabilizer of x, i.e.,

Gx = {g ∈ G ∣ g.x = x}.

We denote by gx the Lie algebra of Gx.

We say that x ∈ X is:

• a free point if Gx = 0;

• an infinitesimally free point if gx = 0;

• a quasi-free point if Gx does not contain any non-trivial F-split torus.

Definition 2.1.15. Let A be an associative unital algebra over F, and let V be an A-module.

We say that V is a brick if EndA(V ) ≃ F. Similarly, a representation U of a quiver Q is a brick

if EndQ(U) ≃ F.

Definition 2.1.16. Let A be an associative unital algebra. We define the radical of A as

radA = {a ∈ A ∣ aM = 0 for every irreducible module M of A}.

The following is a classical result of representation theory known as the Fitting Lemma. We

formulate it within the framework of quiver representation theory.

Theorem 2.1.17. Let Q be a quiver and let V be a representation of Q. Then V is indecom-

posable if and only if every element of EndQ(V ) is either an isomorphism or nilpotent.
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Remark 2.1.18. If V is an indecomposable representation of Q, then it follows from Theo-

rem 2.1.17 that, for every φ ∈ EndQ(V ), we can write φ = λ Id+N , where N ∈ EndQ(V ) is a

nilpotent endomorphism.

Lemma 2.1.19. Let U ∈M
α(Q,F). Then the following are equivalent:

1. U is an indecomposable representation;

2. EndQ U does not contain non-scalar F-split semisimple elements;

3. U is a quasi-free point of Mα(Q,F) with respect to the action of Gα;

4. gU does not contain non-zero F-split tori.

The following properties are equivalent:

a. EndQ(U) = F;

b. U is a free point;

c. U is an infinitesimally free point.

Proof. First, we observe that for U ∈M
α(Q,F), GU = AutQ(U)/⟨IdU⟩ and gU = EndQ(U)/⟨IdU⟩.

The equivalence between 2), 3) and 4) follows directly from the previous observation, and

similarly the equivalence between a),b) and c).

We will prove the equivalence between 1) and 2).

If U is decomposable, then there exist π ∶ U ⟶ U1 projection and ι ∶ U1 ⟶ U such that

π ◦ ι = IdU1
, moreover ι ◦ π ∈ EndQ(U) and it is a scalar split semisimple element.

Now, we suppose that U is indecomposable. Let f be a split semisimple element and suppose

that λ ∈ F is one of its eigenvalues. It follows from Theorem 2.1.17 that f −λ IdU is a nilpotent

endomorphism of U . Moreover, f − λ ⋅ IdU is also split semisimple, since both f and λ IdU

are split semisimple and they commute. Hence, their difference is split semisimple as well. A

nilpotent split semisimple endomorphism is the zero map, therefore f = λ IdU .

2.2 Gabriel’s Theorem

The following theorem due to Gabriel gives us a fundamental result on the representations

of quivers. We omit the proof here, since we will later present a more general result. The proof

can be found in [Gab72].

Gabriel’s Theorem 2.2.1. A quiver Q admits a finite number of isomorphism classes of

indecomposable representations if and only if its underlying graph is a Dynkin diagram of finite

type. Moreover, in this case, the indecomposable representations of the graph are in bijection

with the positive roots of the Dynkin diagram.
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We now illustrate some applications of Gabriel’s theorem with explicit examples.

Example 2.2.2. Consider the Dynkin diagram An: . We have seen in Ex-

ample 1.3.15 that the positive root system of An is ∆+ = {∑i≤k≤j αk ∣ 1 ≤ i ≤ j ≤ n}. We

enumerate the indecomposable representations of An inductively on n. If n = 1, then there

exists a unique indecomposable representation, which is the irreducible one.

For n > 1, we restrict our attention to indecomposable representations whose dimension

vector has support on all vertices of An, since otherwise the representation would correspond

to a proper subquiver isomorphic to Am with m < n. Thus, we consider the indecomposable

representation corresponding to the positive root α = ∑n
i=1 αi.

It is straightforward to verify that the representation given by Vi = F for every i = 1, . . . , n

and φ(i,j) = Id ∶ F ⟶ F for every (i, j) ∈ S1 is an indecomposable representation of An with

dimension vector α. Moreover, we need not explicitly consider the orientation since we can

choose a numeration of the vertices such that (i, j) is an oriented edge from i to j. By Gabriel’s

Theorem 2.2.1, this is the unique indecomposable representation with dimension vector equal

to α. This representation, in the case of the equioriented quiver with underlying graph An, is

the following:

F F F FId Id

Example 2.2.3. Consider the Dynkin diagram A
(1)
1 : . We have seen in Example 1.3.16

that the real positive root system of A(1)
1 is ∆

re
+ = {(k, k + 1) ∈ Γ+ ∣ k ∈ N} ∪ {(k + 1, k) ∈

Γ+ ∣ k ∈ N}, and that the imaginary positive roots are ∆
im
+ = {(n, n) ∣n ∈ N ∖ {0}}. We now

examine the indecomposable representations of the Kronecker quiver

whose underlying graph corresponds to the diagram A
(1)
1 . We expect to find a relation between

the dimensions of the indecomposable representations of the Kronecker quiver and the roots of

A
(1)
1 . In particular, we will exhibit an indecomposable representation for every root.

• Wn is the representation

Fn Fn+1
ι1

ι2

where ι1(x1, . . . , xn) = (x1, . . . , xn, 0) and ι2(x1, . . . , xn) = (0, x1, . . . , xn). This represen-

tation is indecomposable, indeed if n = 1 it is an irreducible representation. Otherwise, if
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n > 1, we will show that EndQ(Wn) has only invertible and nilpotent element, and then

we will conclude that Wn is indecomposable by Theorem 2.1.17. Consider an endomor-

phism (A,B) ∈ EndF(Fn)⊕ EndF(Fn+1). We will denote a1, . . . , an ∈ Fn the rows of A,

b1, . . . , bn ∈ Fn+1 the rows of B. For every i = 1, . . . , n + 1, we set b̃i = (bi1, . . . , bin) ∈ Fn

and b̂i = (bi2, . . . , bi,n+1) ∈ Fn. Then we have that (A,B) is an endomorphism of Wn if

and only if the following conditions hold:

1. ι1A = Bι2, i.e., if and only if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1

⋮

an

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b̃1

⋮

b̃n

b̃n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

It follows that b̃n+1 = 0 and ai = b̃i for every i = 1, . . . , n.

2. ι1A = Bι2, i.e., if and only if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

a1

⋮

an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b̂1

⋮

b̂n

b̂n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

It follows that b̂1 = 0 and ai = b̂i+1 for every i = 1, . . . , n.

It follows that A = λIn and B = λIn+1 for λ ∈ F.

• Zn is the representation

Fn+1 Fn
π1

π2

where π1(x1, . . . , xn+1) = (x1, . . . , xn) and π2(x1, . . . , xn+1) = (x2, . . . , xn+1). The proof

that Zn is indecomposable is similar to the proof that Wn is indecomposable.

• Vλµ is the representation

Fn Fn
Jλ

Jµ
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where Jλ is the matrix of the Jordan block of size n with eigenvalue λ. Also in this

case, every endomorphism in EndQ(Vλµ) is either an isomorphism or nilpotent. Indeed,

if n = 1, we can observe that EndQ(Vλµ) = η IdVλµ
, therefore it is a brick. Otherwise, for

n > 1, with calculation similar to the case of Wn, we can prove that EndQ(Vλµ) is the set

of matrices A ∈Mn(F) such that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 a2 ⋯ an−1 an

0 a1 a2 ⋯ an−1

⋮ ⋱ ⋱ ⋱ ⋱

0 ⋯ 0 a1 a2

0 ⋯ ⋯ 0 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

for some a1, . . . , an ∈ F. We observe that Vλµ has only indecomposable or nilpotent endo-

morphism, therefore from Theorem 2.1.17 follows that Vλµ is indecomposable. However,

in this case, Vλµ is not a brick.

The following theorem, that we will not prove, is the general result concerning the indecom-

posable representations of the 2-Kronecker quiver.

Theorem 2.2.4. Let V be an indecomposable representation of the 2-Kronecker quiver over the

algebraically closed field F, then it is isomorphic to exactly one of the following:

• Wn for n ∈ N;

• Zn for n ∈ N;

• Vλµ for [λ ∶ µ] ∈ P1(F);

where Wn, Zn and Vλµ are the indecomposable representations defined in Example 2.2.3.



Chapter 3

Orientation and Representations

In this chapter, we analyze the problem of orientation. Gabriel’s theorem is independent

of the orientation, and thus we expect that any generalization of Gabriel’s theorem will also

exhibit this invariance. We then introduce reflection functors, which allow us to act on the

dimension vector of a representation using elements of the Weyl group, while preserving inde-

composability. In addition, we present a method for changing the orientation of a quiver in

order to apply reflection functors. This method has the desirable property of preserving the

number of indecomposable representations, but unfortunately, it only works over finite fields.

3.1 Reflection Functors

Definition 3.1.1. Let Q be a quiver with vertex set S0 and arrow set S1. A vertex i ∈ S0 is

called a sink if no arrow has i as its starting point, i.e., if s(l) ≠ i for all l ∈ S1. Similarly, i is

a source if no arrow ends at i, i.e., if t(l) ≠ i for all l ∈ S1. We say that i is admissible if it is a

source or a sink.

Definition 3.1.2. Let Q be a quiver, and let i ∈ S0 be an admissible vertex. We define the

quiver r̃i(Q) to be the quiver with the same underlying graph as Q, but with the orientation

modified by reversing all arrows with i as an endpoint. That is, the new orientation r̃i(Ω) is

defined by the following rules:

• For every arrow l ∈ S1 such that i ≠ s(l) and i ≠ t(l), set r̃i(s)(l) = s(l) and r̃i(t)(l) =

t(l);

• For every arrow l ∈ S1 such that either i = s(l) or i = t(l), set r̃i(s)(l) = t(l) and

r̃i(t)(l) = s(l).

Definition 3.1.3. Let Q be a quiver, and let i ∈ S0 be a sink. We define the functor

F
+
i ∶ Rep(Q) ⟶ Rep(r̃i(Q)).

39
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Given a representation V = (Vk, φl)k∈S0,l∈S1
the image F+

i (V ) is given by:

• (F+
i (V ))k = Vk, for every k ≠ i;

• (F+
i (V ))l = φl ∶ Vs(l) ⟶ Vt(l), for every l ∈ S1 such that t(l) ≠ i;

• (F+
i (V ))i = kerφ

+, where

φ
+
∶ ⨁

l∈S1,t(l)=i

Vs(l) ⟶ Vi

is the unique map such that φ+
∣Vs(l)

= φs(l) for every l ∈ S1 such that t(l) = i;

• for every l ∈ S1 such that t(l) = i, we define (F+
i (V ))l ∶ kerφ+

⟶ (F+
i (V ))t(l) as the

composition:

kerφ
+
↪ ⨁

l∈S1,t(l)=i

Vs(l) ↠ Vs(l).

Now, we have to define the image F+
i (f) of a morphism f = (fk)k∈S0

∈ HomQ(V,W ):

• for every k ≠ i, we define (F+
i (f))k ∶= fk ∶ Vk ⟶Wk;

• let S(i) be the set of vertices near i, i.e. the vertices k ∈ S0 such that there exists l ∈ S1,

t(l) = i and s(l) = k. We define (F+
i (f))i as the restriction of the map f(i) ∶= ⨁k∈S(i)

fk ∶

⨁k∈S(i)
Vk ⟶ ⨁k∈S(i)

Wk to kerφ
+. Then (F+

i (f))i ∶ kerφ+
⟶ kerψ

+ is well defined

by the commutativity of the following diagram

⨁k∈S(i)
Vk Vi

⨁k∈S(i)
Wk Wi

φ
+

f(i) fi

ψ
+

Similarly, we define the functor F−
i ∶ Rep(Q) ⟶ Rep(r̃i(Q)) when i ∈ S0 is a source. On

the objects we define:

• (F−
i (V ))k = Vk, for every k ≠ i;

• (F−
i (V ))l ∶= φl ∶ Vs(l) ⟶ Vt(l), for every l ∈ S1 such that s(l) ≠ i;

• (F−
i (V ))i = cokerφ

−, where

φ
−
∶ Vi ⟶ ⨁

l∈S1,s(l)=i

Vt(l)

is the unique map such that πs(l) ◦ φ
−
= φt(l) for every l ∈ S1 such that s(l) = i;
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• for every l ∈ S1 such that s(l) = i, we define (F−
i (V ))l ∶ (F−

i (V ))t(l) ⟶ cokerφ
− as the

composition:

Vt(l) ↪ ⨁
l∈S1,t(l)=i

Vt(l) ↠ cokerφ
−
.

On the morphisms, we define:

• for every k ≠ i, we define (F−
i (f))k ∶= fk ∶ Vk ⟶Wk;

• let S(i) be the set of vertices near i, i.e. the vertices k ∈ S0 such that there exists l ∈ S1

such that s(l) = i and t(l) = k. We define (F−
i (f))i as the projection on cokerφ

− of

the map f(i) ∶= ⨁k∈S(i)
fk ∶ ⨁k∈S(i)

Vk ⟶ ⨁k∈S(i)
Wk. Then (F−

i (f))i ∶ cokerφ−
⟶

cokerψ
− is well defined because of the commutativity of the following diagram:

Vi ⨁k∈S(i)
Vk

Wi ⨁k∈S(i)
Wk

φ
−

fi f(i)

ψ
−

The functors F+
i and F−

i are called reflection functors.

Remark 3.1.4. In the definition of the reflection functors we should check that the image of a

morphism of Q-representations is a morphism of r̃i(Q)-representations. We will check it in the

case of F+
i , for F−

i the proof is analogous.

If f ∈ HomQ(V,W ), we have to prove that F+
i (f)t(l)◦F+

i (φl) = F+
i (ψl)◦F+

i (f)s(l) for every

l ∈ S1, where F+
i (φl) = (F+

i (V ))l and F
+
i (ψl) = (F+

i (W ))l. It follows by the definition that

the condition holds for every l ∈ S1 such that t(l) ≠ i. Consider l ∈ S1 such that t(l) = i and

v = (vk)k∈S(i) ∈ kerφ
+
⊆ ⨁l∈S1,t(l)=i Vs(l). The thesis follows by the following computations:

• (F+
i (f)t(l) ◦ F+

i (φl))(v) = F+
i (f)t(l)(vs(l)) = fs(l)(vs(l));

• (F+
i (ψl) ◦ F+

i (f)s(l))(v) = F+
i (ψl)((fk(vk))k∈S(i)) = fs(l)(vs(l)).

The following theorem lists the properties of reflection functors which we will use in the

proof of the main result. A proof of this theorem can be found in [BGP73].

Theorem 3.1.5. Let Q be a quiver and let i ∈ S0 be an admissible vertex. The following

properties hold for the reflection functors F+
i and F−

i (the statements are given for F+
i ; if i is

a source, replace + with − accordingly):
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1. F+
i (U ⊕W ) = F+

i (U)⊕ F
+
i (W ) for every U,W ∈ Rep(Q);

2. let U ∈ Rep(Q) be an indecomposable representation. Then exactly one of the following

holds:

(a) U ≃ U
(i) and F

+
i (U (i)) = 0. Here, U (i) is the indecomposable object defined in

Example 2.1.8;

(b) U /≃ U
(i). In this case, F+

i (U) is an indecomposable object and F
−
i F

+
i (U) = U .

Moreover, dimF
+
i (U) = ri(dimU).

3.2 Independence from the Orientation

In this section we will consider only finite fields, i.e., F = Fq, where q = pt, p prime.

Lemma 3.2.1. Let G be a linear algebraic group acting on an Fq-vector space V of dimension

n, and let V ∗ be the dual representation of V . Then the number of G-orbits in V and V
∗

coincide.

Proof. Let χ ∶ Fq ⟶ C∗ be a nontrivial character. Set A = HomSet(V,C) and A
∗

=

HomSet(V ∗
,C). Both A and A

∗ are finite-dimensional C-vector spaces. We define the dis-

crete Fourier transform F ∶ A⟶ A
∗ defined by

F(f)(ξ) = f̂(ξ) = q−
n
2 ∑
v∈V

f(v)χ(ξ(v))

for every ξ ∈ V ∗.

First, we want to show that ̂̂f(v) = f(−v). For every v ∈ V , we have:

̂̂f(v) = q−n
2 ∑
φ∈V ∗

(q−
n
2 ∑
w∈V

f(w)χ(φ(w)))χ(v(φ))

= q
−n ∑

w∈V

∑
φ∈V ∗

f(w)χ(φ(w + v))

where in the above, we identified V with (V ∗)∗ via v ↦ (φ↦ φ(v)). We now aim to study the

value of the innermost summation as w ∈W varies:

• if w = −v, then we obtain

∑
φ∈V ∗

f(w)χ(φ(v + w)) = f(−v) ∑
φ∈V ∗

χ(0) = qnf(−v);

• if w ≠ −v, then let {φ1, φ2, . . . , φn} be a basis of V ∗ such that φ1(v + w) = 1 and

φj(v + w) = 0 for every j > 1. For every φ ∈ V
∗ we can write φ = ∑n

j=1 λjφj . Then we
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obtain

∑
φ∈V ∗

χ(φ(v + w)) = ∑
λ1,...,λn∈Fq

n

∑
i=1

χ(λiφi(v + w)) = qn−1 ∑
λ∈Fq

χ(λ) = 0.

The last equality follows by the fact that the image of χ lies in a set of root of unity.

We can therefore conclude that ̂̂f(v) = f(−v). It follows that f ∈ A is a G-invariant function

if and only if f̂ ∈ A
∗ is a G-invariant function. Moreover, dimA

G is equal to the number of

orbits of G in V , because every G-invariant function is uniquely identified by its values on the

orbits of G in V . Similarly, dim(A∗)G is the number of orbits of G in V
∗. The thesis follows

directly by dimA
G
= dim(A∗)G.

Remark 3.2.2. Let G be a linear algebraic group acting on an Fq-vector space V and let O be an

orbit of this action. For every point x ∈ O, we can consider Tx ⊆ Gx maximal Fq-split torus of

the stabilizer. These tori are all in the same conjugacy class. Indeed, if x, y ∈ O, then y = g.x

for some g ∈ G. It follows that Gy = gGxg
−1, and so we conclude that Ty = gTxg

−1.

In particular, we can define the conjugacy class of the maximal Fq-split torus of the stabilizer

of the orbit O as the conjugacy class of Tx for any x ∈ O.

Definition 3.2.3. Let G be a linear algebraic group acting on an Fq-vector space V and let V ∗

be its dual representation. Let T ⊆ G be an Fq-split torus, we set d(T, V ) the number of orbits

O of G over V such that the conjugacy class of T in G is the same of the maximal Fq-split torus

of the stabilizer of the orbit O.

Lemma 3.2.4. Let G be a linear algebraic group acting on an Fq-vector space V and let V ∗ be

its dual representation. Let T ⊆ G be an Fq-split torus, then d(T, V ) = d(T, V ∗).

Proof. First, we observe that, if it does not exists T ⊆ G non-trivial Fq-split torus, then the

result follows by Lemma 3.2.1, because every orbit is quasi-free.

Suppose that there exists at least one T ⊆ G non-trivial Fq-split torus and let us fix it. We

will proceed by induction on dimV .

Let C ⊆ V and let C∨
⊆ V

∗ be the set of points fixed by the action of T . We will prove

several properties on C, and all these proofs can be repeated also for C∨.

Set W = NG(T )/T , where NG(T ) is the normalizer of T in G. The action of T on C is

trivial, then we can define the action of W on C and C
∨. In fact, if g ∈ NG(T ), t ∈ T and

x ∈ C, then g−1tg.x = t̃.x = x, therefore tg.x = g.x that implies g.x ∈ C.

We now want to show that x ∈ C is quasi-free with respect to the action of W if and only

if T is a maximal Fq-split torus of Gx. Suppose that τ ⊆Wx is a non-trivial Fq-split torus and

let T̃ ⊆ NG(T ) be its preimage. Then T ⊆ T̃ and T̃ is an Fq-split torus. It follows that T̃ = T ,

and therefore τ = e. Conversely, if there exists an Fq-split torus T̃ such that Gx ⊇ T̃ ⊇ T , then
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T̃/T ⊆ Wx is an Fq-split torus, which must be trivial since x is a quasi-free point. It follows

that T̃ = T .

Let x, y be quasi-free points of C for the action of W , and suppose that they belong to the

same orbits with respect to the action of G, i.e., y = g.x. We aim to show that they belong to the

same orbit with respect to the action of W . We know that both T and T1 = gTg
−1 are maximal

Fq-split tori of Gy, then they are conjugate via g1 ∈ Gy, i.e., T = g1T1g
−1
1 = g1gTg

−1
g
−1
1 . It

follows that g1g ∈ Ng(T ), then its image in W is the element we were searching.

From the above results, it follows that d(T, V ) is the number of quasi-free orbits of W in

C, and analogously d(T, V ∗) is the number of quasi-free orbits of W in C∨.

We want now to apply inductive hypothesis to the action of W on C and C∨, but previously

we have to verify that C∨ is isomorphic to the dual representation C∗ of C. We have that C∗ is

naturally isomorphic to V ∗/ ann(C). Since T is semisimple, this quotient admits a retraction

and so it is canonically a subrepresentation of V ∗. Our aim is to show that it coincides with

the subrepresentation of V ∗ on which T acts trivially. Consider φ ∈ V
∗ and g ∈ T . We observe

that φ − g.φ ∈ ann(C), indeed (φ − g.φ)(v) = φ(v) − φ(g−1.v) = φ(v) − φ(v) = 0 for every

v ∈ C. Since g.φ = φ − (φ − g.φ), then we can conclude that T acts trivially on V ∗/ ann(C).
By applying the inductive hypothesis on W and its action on C and C∨, we obtain:

d(T, V ) = dW ({e}, C) = dW ({e}, C∨) = d(T, V ∗)

where we set dW ({e}, C) and dW ({e}, C∨) the number of quasi-free orbits of W in C and C∨.

We showed that d(T, V ) = d(T, V ∗) for every T ⊆ G non-trivial Fq-split torus. If T = {e},
then

d({e}, V ) = #{O ⊆ V ∣G.O = O} − ∑
[T ]∈Θ

d(T, V )

= #{O ⊆ V
∗ ∣G.O = O} − ∑

[T ]∈Θ
d(T, V ∗) = d({e}, V ∗)

where Θ is the set of conjugacy classes of tori in G.

Corollary 3.2.5. Let G be a linear algebraic group acting on an Fq-vector space V and let V ∗

be its dual representation. Then the number of quasi-free orbits of G in V and in V
∗ is the

same.

Proof. The result follows by Lemma 3.2.4 and by the fact that the number of quasi-free orbits of

G in V is d({e}, V ) and similarly the number of quasi-free orbits of G in V ∗ is d({e}, V ∗).

Lemma 3.2.6. Let G be a linear algebraic group acting on two Fq-vector spaces V1 and V2.

Then, the number of orbits of V1 ⊕ V2 equals the number of orbits of V1 ⊕ V
∗
2 .
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Proof. Consider x, y ∈ V1 and suppose that they are in the same orbit O ⊆ V1, i.e., y =

g.x. Let Ox ⊆ V2 be an orbit with respect to the action of Gx on V2, then g.Ox ⊆ V2 is

an orbit with respect to the action of Gy. In fact, consider v1, v2 ∈ Ox, v2 = h.v1 with

h ∈ Gx, since Gx = g
−1
Gyg, it follows that h = g

−1
h̃g with h̃ ∈ Gy, then g.v2 = h̃g.v1, and

so g.v1 and g.v2 belong to the same orbit Oy = g.Ox. Therefore, for every orbit O ⊆ V1

with respect to the action of G, the numbers o(O) = #{Ox ⊆ V2 ∣Gx.Ox = Ox, x ∈ O}
and o

∗(O) = #{Ox ⊆ V
∗
2 ∣Gx.Ox = Ox, x ∈ O} are well defined. We want to show that

#{O ⊆ V1 ⊕ V2 ∣G.O = O} = ∑O⊆V1
o(O). This follows from the fact that the orbits of G

in V1 ⊕ V2 are ⋃g∈G(g.x, g.Ox), for some x ∈ V1 and some Ox ⊆ V2 orbit with respect to the

action of Gx, and by the observation that, chosen x ≠ y in the same orbit of G in V1, they

produce the same set of orbits of V1 ⊕ V2. The fact that these are the orbits follows by the

following construction: consider (x, v) ∈ V1 ⊕ V2, then the orbit generated by this element is

O12 = {(g.x, g.v) ∣ g ∈ G}. In particular, Gx.(x, v) = (x,Ox) ⊆ O12. Moreover, g.(x,Ox) ⊆ O12

for every g ∈ G, and the union of these set clearly cover the orbit.

By Lemma 3.2.1 follows that o(O) = o∗(O). We conclude because, using the above identity

for V2 and V ∗
2 , we obtain:

#{O ⊆ V1 ⊕ V2 ∣G.O = O} = ∑
O⊆V1

o(O) = ∑
O⊆V1

o
∗(O) = #{O ⊆ V1 ⊕ V

∗
2 ∣G.O = O}.

Lemma 3.2.7. Let G be a linear algebraic group acting on two Fq-vector spaces V1 and V2. Let

T ⊆ G be an Fq-split torus, then d(V1 ⊕ V2, T ) = d(V1 ⊕ V
∗
2 , T ).

Proof. The proof is the same as the one of Lemma 3.2.4, using Lemma 3.2.6 in place of

Lemma 3.2.1.

Definition 3.2.8. Let Q be a quiver, α ∈ Γ+, provided that F = Fq with q = p
t for some

prime number p, we define nα(Q, q) as the number of isomorphism classes of isomorphism of

indecomposable representations of Q with dimension vector α defined over Fq.

Lemma 3.2.9. Let Q be a quiver, α ∈ Γ+ and αi ∈ Π. Assume that α ≠ αi and that nα(Q, q) ≠
0, then ri(α) ∈ Γ+ and nri(α)(Q, q) ≠ 0. Moreover, nα(Q, q) = nri(α)(Q, q).

Proof. Recall that Mα(Q,Fq) = ⨁l∈S1
V

∗
s(l) ⊗ Vt(l). In this sum, if we substitute a subset of

the summands indexed by S̃1 ⊆ S1 with their dual, we obtain the space Mα(Q̃,Fq), where Q̃

is the quiver with the same underlying graph as Q, and with the reverse orientation on the

edges belonging to S̃1. Moreover, it follows by Lemma 2.1.19 and Lemma 3.2.7 that nα(Q̃, q) =
nα(Q, q). Consider S̃1 ⊆ S1 such that i is an admissible vertex in Q̃. By Theorem 3.1.5 it
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follows that nα(Q̃, q) = nri(α)(ri(Q̃), q). Using again the result above for Ŝ1 ⊆ S1 such that

r̂i(Q̃) = Q, we obtain:

nα(Q, q) = nα(Q̃, q) = nri(α)(ri(Q̃), q) = nri(α)(Q, q).



Chapter 4

The Space of Representations and

Kac’s Theorem

In this chapter, we use algebraic geometry to develop the tools necessary for the proof of

the main result, namely Kac’s theorem. In particular, we consider the space of representations

of a quiver with a fixed dimension vector. Within this algebraic variety, we observe that the

set of indecomposable representations forms a constructible subset. This observation allows us

to define the dimension of the space of isomorphism classes of indecomposable representations

with a fixed dimension vector.

We note that this space corresponds to the space of orbits under the action of an algebraic

group. This correspondence enables us to compute the dimensions of the orbits, ultimately

leading to a formula for the dimension of the orbit space, which depends only on the Dynkin

diagram of the quiver and the dimension vector.

At the end of the chapter, we prove the theorem, first over finite fields, and then, using a

standard reduction modulo p argument, we extend the proof to the case of algebraically closed

fields.

In this chapter, unless otherwise specified, we work over algebraically closed fields.

4.1 Preliminaries of Algebraic Geometry

In this section all the topological notions are relative to the Zariski topology.

Definition 4.1.1. Let X be an algebraic variety, a subset Y ⊆ X is called locally closed if

Y = U ∩V c, where U, V ⊆ X open subsets. We say that Y is constructible if it is a finite union

of locally closed set.

Remark 4.1.2. The collection of constructible sets is closed under finite union, finite intersection

and taking complements.

47
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We will use two classical results. The references give statements in the more general setup

of morphism of schemes of finite type.

The following is a useful result due to Chevalley concerning constructible sets. For more

details, see [DG67, pp. IV, 1.8.4].

Theorem 4.1.3. Let Φ ∶ X ⟶ Y be a morphism of varieties, then Φ(X) is constructible, and

more generally, Φ sends constructible sets to constructible sets.

Definition 4.1.4. If X is an algebraic variety and f ∶ X ⟶ Z. We say that f is upper

semicontinuous if the set {x ∈ X ∣ f(x) ≥ n} is closed for all n ∈ N.

The following result can be found in [DG67, pp. IV, 13.1.3].

Theorem 4.1.5. If X and Y are algebraic varieties and f ∶ X ⟶ Y is a morphism of

varieties, then the function X ⟶ Z defined by dimX f
−1(f(x)) is upper semicontinuous.

The following lemma is a classical result of algebraic geometry. The proof can be found in

[Mum04, corollary to theorem 2, section 8, chapter 7].

Lemma 4.1.6. Let π ∶ X ⟶ Y be a dominant morphism of irreducible algebraic varieties.

Then every irreducible component of a fiber π−1(y), provided it is non empty, has dimension at

least dimX−dimY . Moreover, there is a non-empty open subset U ⊂ Y such that dimπ
−1(u) =

dimX − dimY , for every u ∈ U .

Lemma 4.1.7. Let X be an algebraic variety endowed with the action of a connected algebraic

group G. Then the following hold:

1. each orbit Gx is locally closed and irreducible;

2. dimGx = dimG − dimStabG(x).

Proof. We observe that Gx is the image of the map G ⟶ X defined by g ↦ g.x, then Gx is

irreducible and Gx is a constructible set. There exists ∅ ≠ U ⊆ Gx with U open in Gx. The

set G.U = ⋃g∈G g.U is contained in Gx and is G-invariant, then it is equal to Gx. Each g.U is

open in Gx, then Gx is open in Gx, therefore Gx is locally closed.

Every fiber of G ⟶ Gx is a subgroup conjugate to StabG(x). Therefore they have the

same dimension. By Lemma 4.1.6, we get that dimGx = dimG − dimStabG(x).

Definition 4.1.8. Let X be an algebraic variety endowed with the action of an algebraic group

G. For every s ∈ N, we defineX(s) = {x ∈ X ∣ dimGx = s} andX(≤s) = {x ∈ X ∣ dimGx =≤ s}.
If Y ⊆ X is a constructible set, we can define the numbers

• µ(Y ) = maxs(dimY ∩X(s)) = maxs(dimY ∩X(≤s));



4.2 Representation With Fixed Dimension Vector 49

• t(Y ) = ∑s#{Z ⊆ Y ∩X(s) ∣Z is an irreducible component of dimension s + µG(Y )}.

Remark 4.1.9. If the set Y is G-invariant and if the set of orbits Y /G were an algebraic variety,

then the number µ(Y ) would represent its dimension.

4.2 Representation With Fixed Dimension Vector

We recall the definition of some important object defined in Section 2.1. In particular,

we have seen in Definition 2.1.11 that Mα(Q,F) is the space of representation of the quiver

Q over the field F with fixed dimension vector α ∈ Γ+. Similarly we defined M
α
ind(Q,F) in

Definition 2.1.12 as the subspace of Mα(Q,F) of indecomposable representations.

In section Section 2.1 we also defined, for a vector α = ∑n
i=1 kiαi, the following objects:

• GL(α) = GLk1 ×⋯×GLkn ;

• G
α
= GL(α)/C where C is the normal subgroup generated by IdU ;

• g = dimGL(α);

• q(α) = (α, α);

• End(α) = ⨁n
i=1 EndF(F

ki).

Lemma 4.2.1. The set Mα
ind(Q,F) ⊆Mα(Q,F) is a constructible set.

Proof. We will show that the complement of Mα
ind(Q,F) is constructible. If U ∈ M

α
ind(Q,F)c,

i.e., U is decomposable, then there exist U1 ∈ M
α1(Q,F) and U2 ∈ M

α2(Q,F) such that

U = U1 ⊕ U2, with α = α1 + α2. In particular, U ∈ Im(Θα
α1,α2

), where we define the map

Θ
α
α1,α2

∶M
α1(Q,F) ×M

α2(Q,F) ⟶M
α(Q,F), (U1, U2) ↦ U1 ⊕ U2.

It follows that

M
α
ind(Q,F)c = ⋃

α1+α2=α

Im(Θα
α1,α2

).

Since, by Theorem 4.1.3, the image of a regular map between algebraic varieties is constructible,

then Mα
ind(Q,F)c is constructible because it is a finite union of constructible sets.

Lemma 4.2.2. Consider α = ∑n
i=1 kiαi ∈ Γ+ and β = ∑n

i=1miαi such that 0 ≤ β ≤ α and

β ≠ 0, α. If m′
i = ki −mi for every i, then the following identity holds:

(α − β, β) =
n

∑
j=1

mjm
′
j

kj
(

n

∑
i=1

aijki) +
1

2

n

∑
i,j=1

aij(
mi

ki
−
mj

kj
)kikj . (4.2.1)

Proof. The following identities hold:
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• the left hand side is (α − β, β) = ∑n
i=1 aijmim

′
j ;

• the first summand of the right hand side is:

n

∑
j=1

mjm
′
j

kj
(

n

∑
i=1

aijki) =
n

∑
i,j=1

aijmjm
′
j
ki
kj

= ∑
i≠j

aij(mim
′
j

mj

kj
+mjm

′
i

m
′
j

kj
) +

n

∑
i=1

aiimim
′
i = ∑

i≠j

aijmim
′
j(
mj

kj
+
m

′
i

ki
) +

n

∑
i=1

aiimim
′
i;

• the second summand of the right hand side is:

1

2

n

∑
i,j=1

aij(
mi

ki
−
mj

kj
)kikj = ∑

1≤i<j≤n

aij(
m

2
i kj
ki

+
m

2
jki
kj

− 2mimj)

= ∑
1≤i<j≤n

aij(mim
′
j
mi

ki
+m

′
jm

′
i

mj

kj
+mimj(

mi

ki
+
mj

kj
− 2))

= ∑
i≠j

aij(mim
′
j
mi

ki
+mimj(

mj

kj
− 1)) = ∑

i≠j

aijmim
′
j(
mi

ki
−
mj

kj
).

By adding the last two, we find that the right hand side is:

n

∑
i=1

aiimim
′
i +∑

i≠j

aijmim
′
j(
mi

ki
−
mj

kj
+
mj

kj
+
m

′
i

ki
) =

n

∑
i=1

aijmim
′
j

that is equal to the left hand side.

Lemma 4.2.3. Let Q be a quiver and let α be a vector in the fundamental chamber M . Then

exactly one of the following holds:

1. Suppα belongs to Table 1.2 and q(α) = (α, α) = 0;

2. for every β1, . . . , βr non-zero vectors βi ≥ 0 such that α = β1 + . . . + βr, then q(α) <

∑r
i=1 q(βi).

Proof. Suppose without loss of generality that Q = Suppα and suppose that 2 does not holds.

There exist β1, . . . , βr non-zero vectors βi ≥ 0 such that α = β1+ . . .+βr and q(α) ≥ ∑r
i=1 q(βi).

It follows that
r

∑
i=1

(α − βi, βi) = (α, α) −
r

∑
i=1

(βi, βi) ≥ 0

and in particular there exists β = βi = ∑n
i=1miαi such that (α−β, β) ≥ 0. By Equation (4.2.1)

follows that:

0 ≤ (α − β, β) =
n

∑
j=1

mjm
′
j

kj
(α, αj) +

1

2

n

∑
i,j=1

aij(
mi

ki
−
mj

kj
)kikj
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where m′
i = ki −mi, for every i = 1, . . . , n. Both summands are less than or equal to 0, so both

must be 0. It follows that mi

ki
=

mj

kj
, for every i, j = 1, . . . , n such that aij ≠ 0. Because Suppα

is connected, then α = kβ. Moreover, for every i = 1, . . . , n, we have (α, αi) = 0, then q(α) = 0

and Suppα appears in Table 1.2.

Lemma 4.2.4. Consider a quiver Q and a vector α in the fundamental chamber M , and

suppose that Item 2 of Lemma 4.2.3 holds for α, then M
α
ind(Q,F) ⊆ M

α(Q,F) is a dense set,

i.e., Mα
ind(Q,F) contains a non-empty open set.

Proof. If α = β + γ, then we define the map:

Θ
α
β,γ ∶ GL(α) ×M

β(Q,F) ×M
γ(Q,F) ⟶M

α(Q,F), (g, U,W ) ↦ g.(U ⊕W ).

We observe that this map is constant on the orbits of H = GL(β) ×GL(γ) ⊆ GL(α), so

dim Im(Θα
β,γ) ≤ dimGL(α) + dimM

β
+ dimM

γ
− dimH

= q(α) + dimM
α
+ dimM

β
+ dimM

γ
− dimH.

Since there is only a finite number of maps Θ
α
β,γ , and

dimM
α
− dim Im(Θα

β,γ) ≥ q(β) + q(γ) − q(α) > 0

the statement follows.

We now proceed to stratify the algebra End(α) according to the Jordan type of each com-

ponent.

Definition 4.2.5. Consider α = ∑n
i=1 kiαi ∈ Γ+. Let for i = 1, . . . , n, λi = (λ1i , . . . , λri , . . .) be

a partition of ki. We say that λ = (λ1, . . . , λn) is a partition of α and we denote λr. ∈ Γ+ the

vector (λr1, . . . , λrn), for every r ∈ N.

For θ ∈ End(α), we say θ is of type λ when the maps θi ∈ End(Fki) are nilpotent maps of

type λi, i.e., λri is the number of Jordan blocks of size ≥ 0. We denote the space of endomorphism

of type λ with Nλ = {θ ∈ End(α) ∣ θ is of type λ}.
Let θ ∈ End(α) be a fixed endomorphism, we define the space Modθ = {U ∈ M

α ∣ θ ∈

EndQ(U)}.

Remark 4.2.6. We denote by z the partition associated to the zero map, i.e., zi = (ki, 0, . . .),
for every i = 1, . . . , n.

Lemma 4.2.7. The following dimension formulas hold:

1. if θ ∈ End(α), then dimModθ = ∑l∈S1
∑r λ

r
s(l)λ

r
t(l);
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2. dimNλ = dimGL(α) −∑n
i=1∑r(λ

r
i )2.

Proof. Consider vector spaces V1, V2 of dimensions n1 and n2 respectively, and let λ1 be a

partition of n1 and λ2 be a partition of n2. Let f1 ∈ End(V1) and f2 ∈ End(V2) be nilpotent

endomorphisms of type λ1 and λ2 respectively. We will show that the dimension of the space

C = {h ∶ V1 ⟶ V2 ∣ f2h = hf1} is ∑r λ
r
1λ

r
2.

We observe that a map h ∈ C is uniquely determined by the choice of images of the vectors

generating the Jordan blocks for f1. In particular, let v1, . . . , vk be these vectors. If we choose

h(vi), we only need to determine what h(f s1(vi)) is for every s, but we have h(fs1(vi)) = fs2h(vi).
Moreover, we observe that h(vi) must be a vector with order of nilpotency less than or equal

to that of vi.

Since the number of vectors generating the Jordan blocks for f1 with order of nilpotency r

is λr1 − λ
r+1
1 , it follows that:

dim{h ∶ V1 ⟶ V2, ∣, f2h = hf1} = ∑
r

(λr1 − λ
r+1
1 ) (∑

s≤r

λ
s
2) = ∑

s

λ
s
2 ∑
r≥s

(λr1 − λ
r+1
1 ) = ∑

s

λ
s
1λ

s
2.

(4.2.2)

In order to compute dimModθ, we need to compute

dim{φl ∶ Vs(l) ⟶ Vt(l) ∣ θt(l)φl = φlθs(l)}

for every l ∈ S1. It follows from equation Equation (4.2.2) that dimModθ = ∑l∈S1
∑r λ

r
s(l)λ

r
t(l).

We observe that Nλ is an orbit for the conjugation action of GL(α) on End(α). Fixed

θ ∈ Nλ, by Lemma 4.1.7 follows

dimNλ = dimGL(α) − dimStab(θ) = dimGL(α) − dim{f ∈ GL(α) ∣ fθ = θf}

= dimGL(α) − dim{f ∈ End(α) ∣ fθ = θf} = dimGL(α) −
n

∑
i=1

∑
r

(λri )2

where the last equality follows by Equation (4.2.2) in the same way as 1).

Definition 4.2.8. Consider a quiver Q and α = ∑n
i=1 kiαi ∈ Γ+. We denote I = M

α
ind(Q,F)

and B = {U ∈ M
α(Q,F) ∣U is a brick}. We set N = {θ ∈ End(α) ∣ θ ≠ 0, θ is nilpotent}.

Moreover, we will call MN = {(U, θ) ∈ M
α × N ∣ θ ∈ EndQ(U)} and I(s)N = {(U, θ) ∈

I(s) ×N ∣ θ ∈ EndQ(U)}.

Remark 4.2.9. We observe that:

• I = ⋃s<g I(s);

• N = ⋃λ≠z Nλ;

• MN = ⋃λ≠zMNλ;
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• I(s)N ⊆MN .

From Lemma 2.1.19, it follows that B = I(g−1). Moreover, I(s) is locally closed in Mα, indeed,

by Theorem 4.1.5 it follows that the map I ⟶ N defined by U ↦ dimEndQ(U) is an upper

semicontinuous map, and I(s) = {U ∈ I ∣ dimEndQ(U) = g − s− 1} = {U ∈ I ∣ dimEndQ(U) ≤
g − s − 1} ∩ {U ∈ I ∣ dimEndQ(U) ≥ g − s − 1} and both sets are locally closed.

Lemma 4.2.10. Let Q be a quiver satisfying Item 2 of Lemma 4.2.3, α ∈ Γ+ and λ a partition

of α. The following hold:

1. if λ ≠ z, then dimMNλ < g − q(α), and as a consequence dimMN < g − q(α);

2. for every s < g − 1, we have dim I(s) < s + 1 − q(α);

3. B is a non-empty open subset of Mα. Moreover, µ(B) = 1 − q(α) and t(B) = 1.

Proof. Consider the projection π ∶ MNλ ⟶ Nλ. We observe that π−1(θ) = Modθ, it follows

by Lemma 4.2.7 that the dimension of the fibers is constant, then:

dimMNλ ≤ dimNλ + dimModθ = g −∑
r

q(λr. ) < g − q(α)

where the last inequality follows by the assumption that Q verifies Item 2 and by the observation

that α = ∑r λ
r
. . It follows immediately that dimMN < g − q(α) since MN = ⋃λMNλ.

If s < g − 1, then U is indecomposable and is not a brick, therefore there exist non-zero

nilpotent endomorphisms of U . It follows that the projection π ∶ I(s)N ⟶ I(s) is surjective,

and then:

dimπ
−1(U) = dim(EndQ(U) ∩N) = dim(rad(EndQ(U))) = g − s − 1

where the last equality follows by the fact that EndQ(U) is a local algebra, and then, using

Remark 2.1.18 we conclude that the codimension of the radical in EndQ(U) is 1. It follows that

dim I(s) = dim I(s)N −dimπ
−1(U) = dim I(s)N −(g−s−1) ≤ dimMN −g+s+1 < s+1−q(α)

and this conclude the proof of 2.

If s < g − 1, we have dim I(s) < dimM
α − (g − s − 1) < dimM

α, where the first inequality

follows by Equation (2.1.1). It follows that I(s) is a proper closed subset of Mα. Moreover,

it follows from Lemma 4.2.4 that the decomposable representation are contained in a proper

closed subset of Mα, then B is a non-empty open subset of Mα, and B is irreducible. It follows

that µ(B) = dimB − g + 1 = 1 − q(α) and t(B) = 1

Theorem 4.2.11. Let Q be a quiver and α ∈M such that Item 2 of Lemma 4.2.3 holds. Then,

µα ∶= µ(Mα
ind(Q,F)) = 1 − q(α) and tα ∶= t(Mα

ind(Q,F)) = 1.
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Proof. By Lemma 4.2.10 and because I = B ∪⋃s<g−1 I(s), it follows that

µ(Mα
ind) = max

(s)
µ(I(s)) = µ(B) = 1 − q(α).

Theorem 4.2.12. Let Q be a quiver with underlying graph S listed in Table 1.2. If α = kδ ∈M ,

then µα = µ(Mα
ind) = 1 − q(α) = 1 and t(Mα

ind(Q,F)) = 1.

The isomorphism classes of indecomposable representations of a quiver whose underlying

graph is an affine Dynkin diagram are well-known. In particular, we can find a complete

description of such representations in [Naz73].

The classification relies on the fact that it is possible to prove that every indecomposable

representation of A(1)
n can be constructed from a representation of A(1)

1 , or can be seen as an

indecomposable representation of a subgraph of A(1)
n . The indecomposable representations of

A
(1)
1 are described in Theorem 2.2.4.

A similar argument applies to indecomposable representation with associated Dynkin di-

agram D
(1)
n . The idea is to study the indecomposable representation of D(1)

4 , D
(1)
5 and D

(1)
6

and then to show that every indecomposable representation of D(1)
n can be constructed from a

representation of one of these three Dynkin diagrams or it can be seen as an indecomposable

representation of a subgraph of D(1)
n .

Finally, one has to study the indecomposable representations of the exceptional casesE(1)
6 , E

(1)
7

and E(1)
8 .

4.3 Kac’s Theorem

Theorem 4.3.1. Let Q be a quiver and F = Fq where q = p
t for some prime p. For α ∈ Γ+,

the following hold:

1. if α /∈ ∆+, then every representation of Q with dimension vector α is decomposable, i.e.,

nα(Q,Fq) = 0;

2. if α ∈ ∆
re
+ , then there exists a unique isomorphism class of indecomposable representations

of dimension vector α, i.e., nα(Q,Fq) = 1;

3. if α ∈ ∆
im
+ , then limt→+∞

nα(Q,Fpt)
p(1−(α,α))t = 1, in particular

lim
t→+∞

nα(Q,Fpt) = +∞;

4. nα(Q,Fq) does not depend on the orientation of Q.
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Proof. Consider α ∈ Γ+ ∖∆+ and suppose mα(Q,Fq) contains an indecomposable object. By

Lemma 3.2.9 it follows that, for every w ∈ W , w(α) ∈ Γ+ and m
w(α)(Q,Fq) contains an

indecomposable object. Let β = ∑n
i=1 kiαi be the element of W.α of minimal height. The

minimality of the height of β and the definition of ri(β) = β − (∑n
j=1 aijkj)αi imply that

∑n
j=1 aijkj ≤ 0 for every i = 1, . . . , n. Moreover, Suppβ is connected, otherwise it could not

have any indecomposable representation. It follows that β ∈M ⊆ ∆
im
+ , and so α ∈ ∆

im
+ .

Consider α ∈ ∆
re
+ , by definition there exists sequence of minimal length i1, . . . , ik such that

rik ⋅ . . . ⋅ ri1(α) = αi ∈ Π. There exists a unique representation of dimension vector αi, that is

U
(i). By Lemma 3.2.9 it follows that nα(Q,Fq) = 1, which proves 2.

Consider the Fq-rational points of Mα
ind(Q,Fp), where Fp is the algebraic closure of Fp. If

α ∈M , it follows by Theorem 4.2.11 and Theorem 4.2.12 that the dimension is µα = 1− (α, α).
Using elementary arguments from algebraic geometry and and the results mentioned above, one

can conclude that, for α ∈M , we have:

lim
t→+∞

nα(Q,Fpt)
p(1−(α,α))t

= 1.

An argument that partially prove this fact can be found Section 4.3.1. Since ∆im
+ = ⋃w∈W w(M),

it follows from Lemma 3.2.9 that 3 holds for every α ∈ ∆+.

Statement 4 follows immediately by Lemma 3.2.9 and by its proof.

Kac’s Theorem 4.3.2. Let Q be a quiver with F = F. For α ∈ Γ+, the following hold:

1. if α /∈ ∆+, then any representation of Q with dimension vector α is decomposable;

2. if α ∈ ∆+, if α is non-divisible in Γ+, then there exists an indecomposable representation

of Q with dimension vector α. Moreover, µα = 1 − (α, α), which does not depend on the

orientation of Q;

3. if α ∈ ∆
re
+ , there exists a unique isomorphism class of indecomposable representations of

dimension vector α.

Proof. Consider an object U ∈ M
α(Q,F), let K be the smallest subfield of F, and let K̄ be its

algebraic closure. We observe that U is defined over a subfield F0 = K(ξ1, . . . , ξs)(η1, . . . , ηt) ⊆
F, where ξ1, . . . , ξs are transcendental elements over K, and η1, . . . , ηt generate the ring of

integers of K[ξ1, . . . , ξs].
The object U is decomposable if and only if there exists at least one projection in EndQ U ,

meaning there exists a non-trivial solution (Xi)i ∈ S0 ∈ ⨁ i ∈ S0 EndF(Ui) to the system of

equations:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xs(l)φl = φlXt(l) ∀l ∈ S1

X
2
i = Xi ∀i ∈ S0

(4.3.1)
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where (φl)l∈S1
are the maps defining U and are defined over F0.

We analyze this system as follows: first, consider the case where charF = p > 0. Take an arbi-

trary specialization ξi ↦ βi for i = 1, . . . , s, ηj ↦ γj for j = 1, . . . , t, with β1, . . . , βs, γ1, . . . , γt ∈

K̄. By Theorem 4.3.1, if α ∉ ∆+, then Equation (4.3.1) admits a solution over the finite field

K(β1, . . . , βs, γ1, . . . , γt), and consequently, it has a solution over F.

Now, suppose charF = 0. Let R = Z[ξ1, . . . , ξs][η1, . . . , ηt]. Consider the reduction modulo

p of R. As previously demonstrated, for α ∉ ∆+, there exists a solution of Equation (4.3.1)

over the field of fractions of Rp/I for every prime number p and every prime ideal I ⊆ Rp. This

implies that Equation (4.3.1) has a solution over F, which completes the proof of part 1

To prove parts 2 and 3, we apply a similar argument. In particular, if U is an indecomposable

representation of Q over a field K with a non-divisible dimension vector α ∈ Γ+, then U remains

indecomposable over any finite Galois extension K̃ ⊇ K. Indeed, let U = U1 ⊕ . . . ⊕ Uk be the

decomposition of U into indecomposable representations over K̃. The Galois group Gal(K̃/K)
permutes these indecomposable components, so dimU1 = . . . = dimUk = β. Thus, α = kβ, and

since α is non-divisible, we conclude that k = 1, meaning U is indecomposable over K̃.

From this observation and Theorem 4.3.1, it follows that if α is a non-divisible root or a real

root, there exists a representation admitting no solution to Equation (4.3.1) for any subfield of

F, and hence no solution exists in F. Moreover, if α ∈ ∆+, there is a unique representation as

described above for every subfield, ensuring its uniqueness.

To conclude, note that over a finite subfield of cardinality pt (or under reduction modulo p

when charK = 0), the number of indecomposable representations is of order pt(1−(α,α)), yielding

µα = 1 − (α, α).

4.3.1 Counting Fq-rational points

In order to make this thesis more self-contained we will sketch an elementary argument

proving the inequality

lim inf
t→∞

nα(Q,Fpt)
pt(1−(α,α))

≥ 1.

This is a slighter weaker result than Theorem 4.3.1, but still significant.

The following lemma ensures that the notion of isomorphism between two quiver represen-

tations is independent by the field.

Lemma 4.3.3 (Derksen and Weyman [DW17], §5, p. 45). Let U1, U2 be two indecomposable

representations defined over Fq. If U1 ⊗Fq
Fqr ≃ U2 ⊗Fq

Fqr , then U1 ≃ U2.

In particular, U1, U2 ∈M
α(Q,Fqt) are isomorphic representations if and only if they belong

to the same GL(α,Fqt)-orbit, where GL(α,Fqt) is the group GL(α) defined over the field Fqt.

The following estimate is of elementary nature:
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Lemma 4.3.4 (Borevich and Shafarevich [BS86], §5, p. 45). If f ∈ Fq[x1, . . . , xN] is a non-zero

polynomial and

Xf(Fqt) = {(a1, . . . , aN) ∈ FN
qt ∣ f(a1, . . . , aN) = 0}.

Then there exists a positive constant C such that

#Xf(Fqt) ≤ CqNt−1
.

Let Q be a quiver that satisfies Item 2 of Lemma 4.2.3 and let α = ∑n
i=1 kiαi ∈ M . We

proved in Lemma 4.2.10 that the complement of bricks in M
α(Q,F) is contained in a Zariski

closed set Z, which is defined over some finite field Fq. It follows from Lemma 4.3.4 that

#{U ∈M
α(Q,Fqt) ∣U is a brick} ≈ qt(dimM

α(Q,Fqt))

where f(t) ≈ g(t) indicates that lim
f(t)
g(t) = 1.

Since U is a brick, its stabilizer for the action of GL(α,Fqt) is of dimension one. Hence, the

GL(α,Fqt)-orbit of U has cardinality

#GL(α,Fqt)/(qt − 1) ≈ qt(∑
n
i=1 k

2
i−1).

It follows that

#{isomorphism classes of bricks U ∈M
α(Q,Fqt)} ≈ q(1−(α,α))t.

Since every brick is indecomposable, we conclude that

lim inf
t→∞

nα(Q,Fqt)
q(1−(α,α))t

≥ 1. (4.3.2)

Moreover, if Q has a Dynkin diagram of zero type as underlying graph, then Equation (4.3.2)

still holds, as proven in [Pag16].
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