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Abstract

It is known that different proposals which try to study a quantum theory of
gravity suggest the presence of a minimal spacetime length, of the order of the
Planck scale LP ∼ 10−35 m. One of the possible and effective ways to introduce
such a bound is through the qmetric, a bitensor that substitutes the classical
metric, which can account for the property cited above. The introduction of
this kind of metric actually enriches the spacetime with different features; for
example, the concept of an irreducible area around a point, which turns out
to give, as a consequence, a minimal step in area increment for a black hole
horizon.
In this thesis we explore the impact of this feature on the dynamics of an astro-
physical system of great interest, namely the coalescence of a black hole binary.
After introducing the qmetric, we examine some of its properties, explaining
how the limit length leads to the existence of a quantum of area of black hole
horizon. Some effects derived by the qmetric are then explored; in particular,
as a training step, a possible modification of a well known quantum effect in
curved spacetime is shown: the emission of the Hawking radiation.
In the core of the work, the system of a coalescing binary is then presented,
starting from the approximate Newtonian point of view and going to the rela-
tivistic picture. We describe how to implement the presence of a quantum of
the horizon area and its consequences on the evolution of the system, more pre-
cisely on the phenomenon of tidal heating. As well known, this is essentially the
absorption, by the horizons of the two black holes, of a part of the gravitational
waves generated by the system in coalescence.
We show that the introduction of a step in area for a black hole horizon can
suppress, partially or even completely, tidal heating. We find under what kind
of conditions this can happen, computing the consequent phase shift in the
emitted gravitational waves.
All this is studied for the (simplistic) case of two Schwarzschild black holes, and
then we study the situation of two Kerr black holes, which is more realistic for
astrophysical scenarios.
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Notation and conventions

We often work in natural units, with G = c = 1, but in several parts, we will
restore the physical value of the constants, in order to have numerical values for
our computations. We use mostly-plus signature.
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Chapter 1

Introduction

Nowadays, different quantum theories suggest that, at a very small scale, space-
time has a non-trivial structure, due to quantum effects. One possible way to
have a description of spacetime in such case is based on the implementation of a
minimal length, called L0, of quantum origins. The order of magnitude of this
length is supposed to be the Planck scale LP ∼ 10−35 m, but the correct value
is unknown, being probably derivable from a complete quantum theory of grav-
ity. In the absence of such a quantum theory, or in other words, of a complete
quantum description of the spacetime geometry, one can try to introduce via
an effective approach this minimal length. Conceptually, there are many issues
related to the introduction of such a bound, first of all the possible breaking
of Lorentz invariance at small scales. However, a possible way of taking into
account the presence of this bound in spacetime is given by the so called qmet-
ric. As suggested by the name, this is essentially a modification of the standard
metric: its fundamental property is that it allows to have a distance constant
and different from zero between two points even if they are taken to coincide.
This paradoxical feature is possible because, instead of a standard tensor, the
qmetric is a bitensor, meaning that it depends not only on a point, but on two.
Thanks to this structure, it could be possible to study, at least from an effective
point of view, some initial effects of quantum spacetime, or possible quantum
gravity properties which emerge precisely from the presence of this minimal
length. In our work, we follow this approach, focusing on a phenomenon which
is of great interest in the recent years: the coalescence of a binary. Essentially,
we have a system made by two bodies, or companions, that physically can be
stars or black holes, which are orbiting around each other; in this work we will
study the case of two black holes. Classically, we could expect that this system
is stable; however, from General Relativity we discover that gravitational waves
are emitted during the combined motion of the two, resulting in a energy loss,
and in a reduction of the distance of the companions (inspiral phase), until they
arrive at a limit value of reciprocal distance and start to fuse together (plunge
phase); after the fusion, a new black hole is formed, which, to reach stability,
starts to emit other gravitational waves based on its characteristic modes, called
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quasi-normal modes (ringdown phase). The ringdown phase has attracted much
interest concerning the study of possible quantum features of spacetime. A very
recent example we want to highlight here is in [1], where black holes are re-
garded as coherent quantum objects whose geometries give possibly detectable
quantum features in the ringdown phase. Our interest in this thesis will be,
however, in the inspiral phase, specifically in the gravitational waves emitted
during it. After being emitted, they go out to the system and arrive at infinity,
or they are absorbed by one or both of the black holes of the binary, with the
part absorbed being actually very small compared to the one that goes out of
the system. This phenomenon of absorption is called tidal heating. With the
addition of a minimal length L0, it was proved that we have also a minimal step
for the horizon area variation in a black hole, and, due to the thermodynamical
laws of black holes, this impacts strongly on its classical absorption of energy,
included the one carried by a gravitational wave. In particular, a black hole
is not able anymore to absorb each gravitational wave frequency, but only the
ones with a frequency higher than a particular threshold. To study this kind of
quantum effect in the particular case of a coalescing binary is the main subject
of this work. In doing this, we specify that our interest, when some quantity is
computed, will be mainly in the order of magnitude of it, instead of the precise
numerical value. We follow this line:
In Chapter one, we introduce the concept of qmetric, explaining what are the
fundamental requirements and how to find its form. In particular, being its
form dependent on the distance between the two points considered, it turns out
that three different physical cases should be considered: spacelike, timelike and
lightlike distances. It is explained also one of the main results of the qmetric
description, regarding a modification of the standard Ricci scalar R. From the
presence of a minimal length, indeed, we obtain an effective Ricci biscalar R̃,
that in the limit for L0 → 0 does not tend to the classical Ricci scalar R. This
suggests important connection with different lines of research, especially the
one of the emergent gravity paradigm. It is then shown the fundamental aspect
for our work: the presence of a minimal area around a point, which has an
important consequence for black holes. Indeed, its horizon area cannot change
continuously, by infinitesimal increments, but has a finite step of variation. This
point leads to the effect cited above, regarding the limits of absorption of a quan-
tum black hole, that will be explained in the following sections.
In Chapter two, we have a collection of different aspects related to the qmet-
ric: we describe initially an approximated version of it, which holds for small
distances, and so could be useful to study dynamics which happen at very short
scales. Indeed, from the point of view of spacetime distances, qmetric has to be
considered precisely when we are at scales of the order of the Planck one, and
in this case should emerge its completely non-classical behaviour, that we tried
to capture and study. After this, we propose another possible interpretation
of the minimal length L0, namely as a limit radius of curvature; we will show
that this way of thinking allows us to classify spacetime regions using standard
tensors, and so local objects, despite we are considering a minimal distance
which is treated with the language of non-local quantities. We will then link
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this discussion to our case of study, explaining what kind of limits, in principle,
we could have. The last part of the chapter is about an important quantum
effect regarding black holes, the emission of Hawking radiation. As an example
of what we will do, and also of what kind of effects can derive from the presence
of a minimal step in horizon area, we try to explore the modification of this ef-
fect due to our quantum corrections. Remarkably, we find that the greater part
of the emitted energy, which is already small, can be suppressed, dependently
on the value of the ratio between L0 and LP , which is encoded indirectly in a
parameter called α. The order of magnitude of the emitted power, or energy, for
the standard Hawking emission process will be important for a comparison that
we will do in the last chapter, between the radiated power by a black hole via
thermal radiation and the power related to a (quantum modification of) tidal
heating. This will be important, because both are quantum effects: the first
regarding quantum fields in a classical curved spacetime, the second regarding
an effective, quantum modification of the spacetime itself. However, we will
see that the difference in order of magnitude, and also in the analytical depen-
dence, is very huge, suggesting that to observe some quantum effect combined
with a possibly curved spacetime does not mandatory mean that we have to deal
with undetectable energies scales, or that a quantum property cannot impact
on macroscopical gravitational systems.
In Chapter three, we enter the core of the thesis, and we begin by talking
about the most simple version of a coalescing binary: the Newtonian one. Here
we list some features of the system, from a very classical point of view; nev-
ertheless, it is introduced a first, approximated form of the power emitted by
gravitational wave, which signals the difference between the Newtonian and the
relativistic case. It is also explained when the first phase of a coalescence, the
inspiral one, is expected to end, due to the combined effect of gravitational
wave emission and the presence of an horizon for the companions. After this
test bench, we briefly cite how the Post-Newtonian (PN) approximation works,
which is the one we follow here. In practice, starting from the quantities that
derive from the Newtonian version of the problem, an expansion in a small pa-
rameter (v/c) is implemented, from which we obtain, at a fixed order in v/c,
the analytical forms (templates) of the various functions (like energy, emitted
power) we need to study the problem of a quantum-corrected tidal heating.
In order to simplify conceptually the discussion, we decided to deal with the
problem considering, initially, a binary made of two Schwarzschild black holes,
which is the simplest type of black hole. We explain precisely what happens for
each Schwarzschild black hole if we add the presence of a minimal step in area,
discussing the various cases for α present in the literature, and we explain what
is the consequence of that on tidal heating, giving also an explicit computation
of some important quantities.

However, in real astrophysical situations, black hole binaries are made by
Kerr black holes, which have more complicated geometry and properties. After
the Schwarzschild case, so, we proceed with the Kerr one, explaining what are
the complications due to the presence of an additional parameter for the black
holes, the spin. In doing that, we follow the same line as in the Schwarzschild
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case, in order to compare also what is, conceptually and numerically, the differ-
ence between the two types of binary. We try in any case to consider a simplified
version of the systems; for example, we will consider often equal masses and (for
Kerr) equal and aligned spins, each aligned with the orbital angular momentum.
We explain what happens in the general case just at a qualitative level, giving
numerical results just for the cases cited above. The last part of the chapter
involves the comparison, at the level of the emitted power, between Hawking
radiation and our q-version of tidal heating. We will see, as anticipated, that
the difference is really non-trivial.
In Chapter four, we recollect the main results we found, focusing on the ones
about the quantum-corrected tidal heating, briefly commenting on the signifi-
cance of them. We underline also possible continuation of this work, suggesting
what lines could be followed.
In the Appendices, we find some passages or properties that, for convenience,
are not listed of the main text: the interested reader can look at them to un-
derstand some details of the principal discussion.
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Chapter 2

The qmetric

In this section, we present the qmetric, the effective metric which, at small
scales, encodes the presence of a minimal length L0. We first show what are the
requirements for such an object and how to find the general form of the qmetric,
then we proceed with some important results which derive from it, and we list
some properties. The main result we are interested in, for our discussion, will be
the presence of an irreducible area around a point, which will be fundamental
for the implications regarding the change of area for black holes horizons.

2.1 Form of the qmetric

In order to find the form of the qmetric, we begin by mentioning two important
objects: the Synge world function Ω(p, p0) and the van V leck determinant
∆(p, p0). As explicitly indicated in the brackets, each of these two objects de-
pends on two different points: they are indeed non-local objects. Being scalar
quantities and functions of two coordinate points, we call them biscalars.

2.1.1 The Synge world function and the van Vleck deter-
minant

The definition of Ω(p, p0) is simply [2, 3]:

Ω(p, p0) =
1

2
(λ(p)− λ(p0))

∫ λ(p)

λ(p0)

gabq
aqbx(λ)dλ =

1

2
σ(p, p0)

2; (2.1)

where:

• gab is the standard metric of the spacetime;

• σ(p, p0)
2 is the square of geodesic distance between the two points;
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• qa is the tangent to the geodesic, with qaqa = ±1 = ϵ. The explicit form
is:

qa =
∇aσ

2

2
√
ϵσ2

. (2.2)

We will often consider λ = d(p, p0) =
√
ϵσ(p, p0)2. In practice, Synge world

function is simply half the geodesic distance between two points.
The definition of ∆(p, p0) is [2, 3]:

∆(p, p0) = − 1√
g(p)g(p0)

det

{
−∇(p)

a ∇(p0)
b

1

2
σ(p, p0)

2

}
. (2.3)

From the geometric point of view, this biscalar controls the properties of geodesic
congruences which are emanating from the point p0, as a function of another
arbitrary point p.
In flat spacetimes, ∆(p, p0) = 1 exactly, while in arbitrary curved spacetimes
∆(p, p0) → 1 in the coincidence limit p→ p0.

2.1.2 Requirements and complete form

Now, let us introduce the concept of qmetric [2, 4, 5, 6]. Our starting point
is the classical metric, gab, which gives the information on how to compute
the distance between two points in a general spacetime, and that in General
Relativity is the solution of the well known equation:

Rab −
1

2
Rgab =

8πG

c4
Tab; (2.4)

with Rab the Ricci tensor, R the Ricci scalar, and Tab the energy-momentum
tensor. As we know, if we compute the distance between two different points p0
and p with any classical metric, and then take the coincidence limit p→ p0, the
computation gives zero. We want to work, instead, with an object that gives, in
such a limit, a result different from zero, namely the minimal distance L0. Since
our discussion is not based on a complete theory of the spacetime geometry,
the idea is to start from the classical metric gab to construct a new object,
called here g̃ab, which satisfies the property above. However, there are other
important requirements: the modification which leads to a minimal distance
should conserve Lorentz invariance, and of course the new metric should tend
to the classical metric for big distances compared to the minimal one L0, which
is expected to be of the order of the Planck length.
It turns out that this new object, instead of a simple tensor, should be a bitensor,
depending on two points: a base point p0, and a so called field point p. The
correct ansatz for searching the qmetric turns out to be [7]:

g̃ab = Agab − ϵBqaqb; (2.5)
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or, in a contravariant form:

g̃ab = A−1gab + ϵQqaqb; (2.6)

where A, B and Q are related via:

B ≡ QA

A−1 +Q
. (2.7)

The two metrics gab and g̃ab, related by such a formula, are said to be disformally
coupled. Some properties of this kind of metrics are in the Appendix, based on
[7].
Looking at the previous relations, and remembering that we will find some quan-
tity which depends on two different points, we understand that the non-local
behaviour of g̃ab is probably encoded also in the two functions A and B. Since
we demand that, for great distances, the two metrics have to coincide (meaning
also that the bitensorial behaviour should tend to a standard tensorial one), we
can immediately guess that, for such distances:

A→ 1, B → 0. (2.8)

Having the form of the ansatz for the qmetric, now we have to decide how to
specify the unknown functions. We follow the procedure of [2], and we demand
the two properties:

• The geodesic distance is bounded from below by a Lorentz invariant length
L0. This is, of course, the starting point of our work.

• The modified d’Alembertian □̃p0,p, associated to the qmetric, is such that
the two point function G(p0, p) in all maximally symmetric spacetimes
satisfies: G[σ2] → G̃[σ2] = G[SL0

(σ2)].

In maximally symmetric spacetimes, the leading singular structure of the two
point function is just a function of σ2, and has an expansion in the Hadamard
form:

G(p0, p) ≡
√
∆

(σ2)
D−2

2

× (1 + smooth terms) = G(σ2); (2.9)

moreover, SL0
is introduced as the corrected squared distance associated to g̃ab,

which can be seen, in our effective discussion, as a function of the classical
squared distance σ2. Its specific form derives from a complete quantum theory,
and we leave it for now completely free. We require only these properties:

1. SL0(0) = L2
0;

2. S0(σ
2) = σ2 identically;

3. [|SL0
|/S′2

L0
](0) <∞.
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Prime indices denote derivation with respect to σ2.
Before proceeding, we underline an important point about our discussion. If we
look at the first requirement, the one of the minimal length, we should remember
that we work in spacetime, that means we have a Lorentzian signature of the
metric, and we know this gives three cases for the squared geodesic distance:
positive, negative, null, which correspond to spacelike, timelike and lightlike
intervals. In finding the qmetric, we implicitly suppose that the nature of the
geodesics structure is not changed: spacelike/timelike/lightlike intervals remain
spacelike/timelike/lightlike. In the study of the first two cases, the strategy
is in practice the same, and intuitively we can understand why: when we are
dealing with a spacelike geodesic distance between two points p and p0, and we
take the coincidence limit p → p0, we have σ2 → 0+; in this case we have to
require that, instead of zero, we reach a positive constant L2

0 for the modified
squared distance, in order to have still a spacelike interval but bounded from
below. For the case of a timelike geodesic distance between p and p0, we have
σ2 → 0−, so we have to demand that we reach a negative constant value, but
of the same magnitude: −L2

0. In practice, in this two cases the only difference
will be a minus sign, which is encoded in ϵ. The case of lightlike intervals is very
different: suppose that we take now p and p0 to be lightlike separated. In this
case, σ2 is exactly 0, because p is on the lightcone of p0, no matter where. It
is not easy to understand how to require that, in the coincidence limit p → p0,
we reach a constant value. The discussion relative to this case will be given in
the following; now we start from the spacelike/timelike cases.

Inspired by the Hamilton-Jacobi equation [2], which is satisfied by σ2 and
which yields:

gab∂aσ
2∂bσ

2 = 4σ2; (2.10)

we demand, to impose the first requirement on the qmetric, that the same
equation is still valid also for g̃ab and SL0

, namely:

g̃ab∂aSL0
∂bSL0

= 4SL0
. (2.11)

This fixes the combination of functions A−1 +Q:

α ≡ A−1 +Q =
1

σ2

SL0
(σ2)

S′2
L0
(σ2)

. (2.12)

Now we work on the second requirement, and to do so, we start with the form
of the d’Alembertian operator associated to g̃ab in arbitrary backgrounds, and
not necessarily maximally symmetric. We have [2]:

□̃ = A−1

{
□g +

1

2
(D − 3)gij∂i(lnA)∂j + ϵ ̸∂(lnA) ̸∂

}

+ ϵQ

{[
∇iq

i +
1

2
(D − 1) ̸∂(lnA)

]
̸∂ + ̸∂2

}
+

√
ϵσ2α′ ̸∂, (2.13)
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where ̸∂ ≡ qi∂i.
In maximally symmetric spacetimes, the functions A and Q depend just on σ2,
and the form of the d’Alembertian operator simplifies a lot, giving:

□̃ = α□ + 2ασ2[ln(αAD−1)]′
∂

∂(σ2)
. (2.14)

The standard d’Alembertian operator, instead, has the form:

□ =
∂2

∂σ2
+

(
∂

∂σ
ln∆−1 +

D − 1

σ

)
∂

∂σ
. (2.15)

In maximally symmetric spacetimes, the van Vleck determinant (VVD) has a
relative simple form:

∆−1/(D−1) =

{
sin(|σ|/a)

|σ|/a
, 1,

sinh(|σ|/a)
|σ|/a

}
. (2.16)

Here, in order, we have the case of positive, zero, negative curvature, with a
radius of curvature. For the second requirement, now, we have a differential
equation:

d

dσ2
ln

(
Aσ2

SL0

(∆S

∆

)2/(D−1)
)

= 0. (2.17)

The quantity ∆S is simply the VVD with σ2 replaced by SL0 .
Solving this equation, and fixing the constant of integration requiring that A = 1
when SL0

= σ2, gives:

A =
SL0

σ2

( ∆

∆S

)2/(D−1)

. (2.18)

Having found A, at this point we have all the unknown functions at hand, and
we write them explicitly:

A =
SL0

σ2

( ∆

∆S

)2/(D−1)

; (2.19)

B =
SL0

σ2

( ∆

∆S

)2/(D−1)

−
σ2S′2

L0

SL0

; (2.20)

Q =
1

σ2

SL0

S′2
L0

− σ2

SL0

(∆S

∆

)2/(D−1)

. (2.21)

At this point, of course, we write the form of the qmetric, both in covariant and
contravariant version:

g̃ab =
SL0

σ2

( ∆

∆S

)2/(D−1)

gab + ϵ

{
σ2S′2

L0

SL0

− SL0

σ2

( ∆

∆S

)2/(D−1)
}
qaqb; (2.22)
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g̃ab =
σ2

SL0

( ∆

∆S

)−2/(D−1)

gab + ϵ

{
SL0

σ2S′2
L0

− σ2

SL0

( ∆

∆S

)−2/(D−1)
}
qaqb. (2.23)

We can make two observations: the form of the qmetric is fixed but depends on
the specific formula of the squared distance SL0 , which derives from a complete
quantum theory. Despite this, we see that actually only SL0

itself and its first
derivative with respect to σ2 appears. However, the important point is the fol-
lowing: requiring some conditions about maximally symmetric spacetimes only,
we actually found a completely fixed form for the functions A,B,Q, which holds
also for general spacetimes. This is a remarkable result, since it means that it
is enough to require some very basic properties for the qmetric in the simplest
case to find the behaviour in the very general cases.

We can compare, also, the line elements ds2 and d̃s
2
, corresponding respec-

tively to the metric gab and g̃ab. In doing so, we assume maximally symmetric
spaces, σ2 > 0 and a constant positive curvature. We have:

ds2 = gabdx
adxb = dσ2 + σ2∆−2/(D−1)dΩ2

D−1, (2.24)

d̃s
2
= g̃abdx

adxb =
(
d
√
SL0

)2
+ SL0∆

−2/(D−1)
S dΩ2

D−1; (2.25)

another time, we obtain the corrected line element from the standard one with
the replacements: σ →

√
SL0

, σ2 → SL0
, ∆ → ∆S .

2.2 The Ricci biscalar and the emergent gravity
paradigm

In this section, we want to present one of the main and important result of the
qmetric approach, namely a highly non trivial limit of one of the objects we
can compute from this new metric, the Ricci biscalar R̃(p, p0). Classically, once
we have the metric of the spacetime gab, we can compute different quantities,
in particular the Riemann tensor Rmanb, the Ricci tensor Rab ≡ Rmamb and the
Ricci scalar, R ≡ gabRab. The last of them is of great importance for Physics,
because is the simplest scalar associated to the curvature of the spacetime and
also the one that enters in the Lagrangian of GR. Of course, having the qmetric,
there will be new quantities associated to it, and these will be, in general, biten-
sors: the Riemann bitensor, the Ricci bitensor and the Ricci biscalar. However,
given the complicated form of the qmetric, to compute such objects is not an
easy task. It turns out, by the way, that due to some useful identities, it is pos-
sible to find the form of the Ricci biscalar. Before starting, we need to introduce
some other important geometrical quantities: the extrinsic curvature Kab, the
intrinsic Ricci scalar R and the tidal tensor Eab.
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2.2.1 The tensors Kab,R, Eab
A central role in working with our kind of bitensors is played by the concept
of geodesic, and in particular by the congruence of geodesics emanating from
a fixed spacetime point. Take some point p0, and consider some fixed value of
geodesic distance, say, G. From all the geodesics emanated from p0, we take the
ones which have a value of the geodesic distance equal to G. Each of these will
then connect the point p0 to another point p, which is at a geodesic distance G
from p0. Now consider the surface made by all these point for a fixed G: this is
called the equi− geodesic surface of the point p0 of distance G, and is denoted
by ΣG,p0 .
Consider now one of the points on ΣG,p0 , which we call another time p, and con-
sider the geodesic connecting p0 with p. Recalling that the affinely parametrized
tangent vector qa to this geodesic is given by (2.2), and noting that it is normal
to ΣG,p0 , the extrinsic curvature of the surface ΣG,p0 is defined as:

Kab = ∇aqb =
∇a∇b(σ

2/2)− ϵqaqb√
ϵσ2

. (2.26)

If we introduce the acceleration vector associated to qi, defined by ai = qk∇kqi,
we can also write the extrinsic curvature in another form:

Kab = ∇aqb − ϵabqa. (2.27)

The equi-geodesic foliation of a spacetime characterizes its local geodesic struc-
ture, and has interesting properties related to the way we can expand geomet-
rical objects such that, for example, the bitensor ∇a∇b(σ

2/2) (this object is
truly a bitensor, since depends on σ2. Even if it is not explicit at a first sight,
all the quantities which depend on the squared distance are bitensor, so their
role is really fundamental in computing physical observables).
Now let us talk about the intrinsic Ricci scalar R. Given a metric gab in an
arbitrary spacetime UD, where D is the dimension, we identify with {x1, ..., xD}
some set of coordinates, which holds in a certain sufficiently extended region.
Take now some subspace uD−k, whereD−k underlines that it is a low-dimensional
subspace, with coordinates now given by {y1, ..., yD−k}. We can restrict the
metric of the complete spacetime to the subspace, meaning that if we move just
in that subspace, we feel a restricted metric which derives from the complete
metric gab. Intuitively, the line element on that subspace will depend on (D−k)
variables and will involve (D − k) differential forms, instead of D. The metric
on this subspace is called induced metric, and is indicated by hab. We have
then:

ds2 = gabdx
adxb, ds2|u = habdx

adxb. (2.28)

We can then compute the induced geometrical quantity in the subspace u, start-
ing from the induced metric hab.
Of all the subspaces we can define out of a spacetime, an important role is
played by ΣG,p0 . The induced metric on this surface is simply:

hab = gab − ϵqaqb, (2.29)
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and from it, we can compute the so called intrinsic Ricci scalar RΣ, where now
we underline the dependence from the surface ΣG,p0 with the subscript. In the
following we will usually call hab precisely the metric induced on ΣG,p0 , if not
differently specified.
We can now give the definition of the tidal tensor Eab, which is simply the con-
traction of the Riemann tensor with two affinely parametrized tangent vectors
to the geodesic, explicitly: Eab = Rambnq

mqn.

As we said, there are important properties related to the equi-geodesic foliation.
We start from the cited above expansion of the tensor ∇a∇b(σ

2/2) around the

point p0, which is taken as the base point. Recall that λ =
√
ϵσ2 represents the

distance, here infinitesimal, from the point p0, and so is the parameter of our
expansion. We have:

∇a∇b

(σ2

2

)
= gab−

λ2

3
Eab+

λ3

12
∇qEab−

λ4

60

(
∇2

qEab+
4

3
EiaE ib

)
+O(λ5), (2.30)

where ∇q ≡ qi∇i. We note an important fact: this expansion is completely
characterized by the tidal tensor. This holds also for the expansion of the
extrinsic and intrinsic curvature (the intrinsic Ricci scalar) and, so, for the one
of the trace of the extrinsic curvature, K ≡ gabKab. They read:

Kab =
1

λ
hab −

1

3
λEab +

1

12
λ2∇qEab −

1

60
λ3Fab +O(λ4), (2.31)

K =
D − 1

λ
− 1

3
λE +

1

12
λ2∇qE − 1

60
λ3F +O(λ4), (2.32)

RΣ =
ϵ(D − 1)(D − 2)

λ2
+R− 2ϵ(D + 1)

3
E +O(λ); (2.33)

with E = gabEab = Rabq
aqb, Fab = ∇2

qEab+(4/3)EaiE ib, F = Fabg
ab. Of course,

as we can see also from these expansions, being in a flat spacetime does not mean
that Kab and R are null, because they are related to a (hyper)surface embedded
in that flat spacetime. For example, for a Minkowskian D-dimensional space,
for an equi-geodesic surface ΣG,p0 we have:

Rflat
Σ = (D− 1)(D− 2)/σ2, Kflat

ab =
1√
ϵσ2

hab, K
flat = (D− 1)/

√
ϵσ2. (2.34)

Having defined the objects we need, now we go through the study of the relations
between geometrical quantities associated to, respectively, a standard metric gab
and the corresponding qmetric g̃ab.

2.2.2 Geometrical quantities for disformally coupled met-
rics

As we said above, two metric related by the formula (2.5) are said to be dis-
formally coupled, and there are different properties connected to this particular
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type of transformation, regarding also the quantities listed in the previous for-
mulas. A complete discussion on that can be found in [7], here we simply recall
the results which are fundamental for our task.
We start from the operator ∇a, which becomes ∇̃a and where we have to cor-
rect simply the part of the Christoffel symbol, since the partial derivative is the
same:

∇̃aVb = ∂aVb − Γ̃cabVc. (2.35)

We have:

Γ̃cab = Γcab +
1

2
g̃cm(−∇mg̃ab + 2∇(ag̃b)m). (2.36)

Remarkably, even if the relation between spacetime metrics gab and g̃ab is not
conformal (which is a special case of disformal transformations), as in our case,
it turns out that the induced metrics hab and h̃ab are related to a conformal
transformation via the function A only. We can se explicitly this property.
When we have defined the vector qa, it was related to the metric gab via the
condition of normalization gabq

aqb = qaqa = ϵ. We can define an analogous of
this vector also for the qmetric, which we call q̃a and that satisfies g̃abq̃

aq̃b = ϵ.
It turns out that qa and q̃a are related very simply:

q̃a =
√
A−Bqa; (2.37)

and:

q̃a = g̃abq̃b =
1√

A−B
qa. (2.38)

After this definition, we can write that the induced qmetric on ΣG,p0 is:

h̃ab = g̃ab − ϵq̃aq̃b = (Agab − ϵBqaqb)− ϵ(A−B)qaqb = Ahab. (2.39)

This is a great simplification and has a strong impact on the geometries of
equi-geodesic surfaces related by a disformal transformation: it means that the
intrinsic geometries of such surfaces are conformal to each other. From this,
and from the fact that on ΣG,p0 the function A is constant (because it depends
just on σ2 which on ΣG,p0 is fixed), we have:

R̃Σ = A−1RΣ, (2.40)

so also the intrinsic Ricci biscalar is simply rescaled by a conformal factor,
dependent just on A, and in which of course is encoded the bitensorial nature
of this object. We write now the relation between the extrinsic curvature tensor
Kab and the corresponding bitensor K̃ab, which are not so simple as in the
previous cases:

K̃ab =
1√

A−B

[
AKab +

1

2
(∇qA)hab

]
; (2.41)

and also the relation between the traces, which derives immediately:

K̃ = g̃abK̃ab =
A−1

√
A−B

[
AK +

D − 1

2
∇qA

]
. (2.42)
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At this point, we have a set of relations which connects standard objects of
the spacetime, associated to gab, to the new biscalar objects, associated to g̃ab.
The next part of the discussion is about the explicit computation of the Ricci
biscalar R̃, as a function of these quantities.

2.2.3 The Ricci biscalar R̃(p, p0)

We recall the Gauss-Codazzi equation, which allows us to compute the Ricci
scalar directly in terms of geometrical quantities like the ones we have defined
above, and we apply that equation to the case of the Ricci biscalar, getting:

R̃ = R̃Σ − ϵ(K̃2 + K̃2
ab)− 2ϵ∇̃q̃K̃ + 2ϵ∇̃iã

i; (2.43)

where ∇̃q̃ ≡ q̃i∇̃i, K̃
2
ab ≡ g̃iag̃jbK̃abK̃ij and of course ãi is the acceleration

associated to the vector q̃i (remarkably, we have ãi = ai). Substituting all the
pieces we need, we obtain that the Ricci biscalar R̃ reads [7]:

R̃ = A−1R+ ϵ(α−A−1)Jd − ϵαJc, (2.44)

where:

α =
1

A−B
, (2.45)

Jc = ϵ
[
2(D − 1)

□
√
A√
A

+ (D − 1)(D − 4)A−1(∇
√
A)2

]
+
(
K + (D − 1)∇q ln

√
A
)
∇q ln(αA), (2.46)

Jd = 2Rijq
iqj +K2

ij −K2 − 2∇ia
i = ϵ(R−RΣ − 2∇ia

i). (2.47)

Now we have simply to substitute the explicit form of all the functions involved,
and this requires a bit long computation. The result is:

R̃(p, p0) =

[
σ2

SL0

( ∆

∆S

)−2/(D−1)

RΣ − (D − 1)(D − 2)

Sl0
+ 4(D + 1)(ln∆S)

•

]

− SL0

λ2S′2
L0

{
KijK

ij − 1

D − 1
K2

}

+ 4SL0

{
− D

D − 1
[(ln∆S)

•]2 + 2(ln∆S)
••

}
= Q0 +QK +Q∆;

(2.48)

here the dot (•) means derivation with respect to SL0
, and we have called the

pieces in the complete expression with three different names, for future utility.
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This object is of extreme importance, and as we can see, is an exact expression:
no Taylor expansion has been used, so it could account also for possible non-
perturbative effects due to a zero point length. Since we are not considering
covariant Taylor expansion, we have no requirement about the smoothness of
the region of spacetime considered: this expression assumes so a strong meaning
also for studying regions/point in which the curvature goes to infinity, and so
singularities. However, in our discussion we consider just the case of smooth
regions of spacetime, so quantities can be expanded via the known methods.
Another important point to note is that this object is completely determined
by the geodesic structure of the spacetime; in fact, we see that it contains all
the functions we studied previously connected to the concept of geodesic.
Now we want to underline another important point. The object computed
depends, of course, on two different points, p and p0, and on the zero point
length L0. We will study in the next the limit of coincidence of this object,
p→ p0, which for a generic bitensorial quantity is indicated by square brackets
[.], so:

lim
p→p0

R̃(p, p0) ≡ [R̃](p0). (2.49)

It is also of central importance to study the limit L0 → 0, that means that
the zero point length is absent but that, physically, can be associated to the
condition σ2 >> L0. However, if we look at the previous expression, we see
that performing initially the limit L0 → 0, we get SL0

= σ2 because of the
condition we imposed on SL0

, and so R̃(p, p0) reduces to R(p0). If we the
perform the coincidence limit, of course the object is still the standard Ricci
scalar, because the non-local behaviour is given up by the first limit. Let us
try to think about applying this two limits in the opposite order. First we
perform the coincidence limit, getting a local quantity, the scalar [R̃](p0), which
is defined at a general point p0 in the spacetime but still depends, in principle,
on L0. For L0 approaching 0, we could expect a behaviour like:

[R̃](p0) ∼ R(p0) + C(L0), (2.50)

where the term C(L0) is supposed to go to 0 in the limit L0 → 0. Actually, this
is not case, because if we follow this order in taking the limits, the leading term
is not simply R(p0). This last computation will be the one of our interest, which
means that first we extract a scalar from the complete biscalar object, and then
we study what happens in the limit in which L0 is a negligible contribution from
the point of view of generic distances.
Consider, so, the scalar [R̃](p0) obtained from the coincidence limit of the Ricci
biscalar, and in particular each of the pieces Q0, QK and Q∆. Start from QK .
Having the condition [|SL0 |/S′2

L0
](0) <∞, it turns out that this term is conver-

gent in the coincidence limit. This derives from the particular combination:

KabK
ab − 1

D − 1
K2. (2.51)

Indeed, we can see from the covariant expansion given above that this com-
bination, precisely for the factor 1/(D − 1) in front of K2, gives a behaviour
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like λ2 in the coincidence limit, that vanishes. Any other prefactor would give
divergent contribution, because of the terms O(1/λ2) which do not cancel each
other. So this term does not give any residue.
Take the case of Q∆. This piece is even simpler, because it is smooth and yields
other O(L2

0) contributions, coupled to the background curvature. Also this piece
does not give residue. Any possible non-trivial L0 contributions, so, comes from
the term Q0: let us focus on that term.
We now use the expansions listed in (2.31), and we also write down the following
expansion for the VVD:

∆1/2(p, p0) = 1 +
1

12
λ2Rabq

aqb +O(λ3). (2.52)

Making the substitution σ2 → Sl0 , we know that we obtain ∆S , where now

λ =
√
ϵσ2 →

√
ϵSL0

, so we have, for our two limits:

lim
L0→0

lim
σ2→0

(ln∆S)
• =

1

6
ϵ[Rabq

aqb](p0). (2.53)

Then, using the expansion for RΣ and the fact that ∆(0) = 1, we have:

lim
σ2→0

{
σ2

SL0

( ∆

∆S

)−2/(D−1)

RΣ − (D − 1)(D − 2)

SL0

}
=

=
(D − 1)(D − 2)

L2
0

(
∆

2/(D−1)
L0

− 1
)
; (2.54)

with ∆
1/2
L0

= 1 + 1
12ϵL

2
0[Rabq

aqb](p0) + O(L3
0). Then, performing the limit

L0 → 0 of the RHS, with a bit of algebra we get:

lim
L0→0

(D − 1)(D − 2)

L2
0

(
∆

2/(D−1)
L0

− 1
)
=

1

3
(D − 2)ϵ[Rabq

aqb](p0). (2.55)

Collecting all pieces, we have now for Q0:

lim
L0→0

lim
σ2→0

Q0 = ϵ

[
(D − 2)

3
+

4(D + 1)

6

]
[Rabq

aqb](p0) = ϵD[Rabq
aqb](p0) =

= ϵDE(p0). (2.56)

In other words, we obtained:

lim
L0→0

[R̃](p0) = ϵD[Rabq
aqb](p0). (2.57)

This result is of great importance, and we should comment briefly its meaning.
We obtained an object which is independent on L0 and has a local behaviour, but
derives from a strongly non-local structure, which means that it is, in practice,
the signature of zero point length, still present at a macroscopic level. This

22



can be comparable to the various quantum anomalies one encounters in QFT in
curved spacetimes. We remark that we obtained this feature without studying a
precise quantum theory of gravity, and also without specific assumptions about
the form of the corrected distance SL0

: we made just very few assumptions for
our structures, apart the condition on zero point length.
In the case of qmetric for for lightlike intervals, which we are going to consider
in the next section, the expression of limL0→0[R̃](p0) is even more suggestive,
since we have [8]: limL0→0[R̃](p0) = (D − 1)Rabl

alb; with la the null tangent
vector to the connecting geodesic, i.e., the heat flow of the horizon having la as
generator.

2.3 qmetric for lightlike intervals

As we said, in the case of lightlike intervals to find the form of the qmetric
is not so trivial. Indeed, our strategy, based on [9, 10], will be different with
respect to the previous case. First, we focus on the concept of affine parameter
which parametrize a geodesic. For a timelike/spacelike geodesic, we can always
find a certain parameter λ which for that geodesic plays the role of proper
time/proper distance, respectively. This is not the case for lightlike geodesics.
What we can do is, in this case, to take a null affine parameter that has a physical
meaning. We decide to take the parameter λ such that it gives a measure of the
distance along the geodesic measured by an observer at a certain point x on the
geodesic, and parallel transported along it. Suppose we have two points x and
x′ on a null geodesic, in a classical spacetime with metric gab, parametrized by
λ. Introducing the metric g̃ab, we expect that the parameter λ is mapped into
λ̃(λ), and that, when x→ x′, is satisfied the condition:

λ(x)− λ(x′) = 0 → λ̃(x)− λ̃(x′) = L0. (2.58)

In practice, having a constant null measure of the squared distance σ2, we decide
to shift our requirements on the parameter taken to parametrize the geodesic.
We require, so, (2.58), and also that in the case of L0 = 0 we get back the
classical case:

λ̃(x)− λ̃(x′) = 0. (2.59)

Moreover, following the physical line of the previous cases, we want to require
also the same condition on the d’Alembertian operator, so that G̃(σ2) = G(SL0

)
in all maximally symmetric spaces. Here, however, we have an obstacle: the
form of the Green function G(σ2) on the lightcone is singular. We will see how
to fix this problem, but essentially, the strategy will be to take one of the two
points close but out of the null geodesic, and then to take the limit in which
it goes on the geodesic. There is another important modification in the case of
lightlike geodesic: the ansatz to construct the metric is not precisely the one we
have seen in (2.5). Now we show the new ansatz.
Consider a null geodesic, parametrized by λ, and a point x′ on it, and define
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the null tangent vector to the geodesic:

la =
dxa

dλ
. (2.60)

We consider a canonical observer in x′ with a four velocity V a normalized such
that V ala = −1. In this way, λ selects a particular frame in which λ itself plays
the role of distance on the null geodesic. We have actually the relations:

1

2
∂aσ

2 = λla, λ = −1

2
V a∂aσ

2. (2.61)

Taking la and V a, we define another null vector ma such that:

ma = V a − 1

2
la, maVa = −1

2
, mala = −1 (2.62)

on the geodesic. Our ansatz is:

g̃ab = Agab + (A− α−1)(lamb +malb), (2.63)

g̃ab = A−1gab + (A−1 − α)(lamb +malb). (2.64)

We expressed the metric already with A and α instead of A,B and Q. The
quantities we introduced depend on the observer we are taking, since they de-
pend on ma and so on V a. The precise form of the metric will be therefore
observer-dependent. Let us now show how to derive the functions A and α.

2.3.1 Finding A and α

In the case of spacelike/timelike geodesics, we found the funtion α from a dif-
ferential equation which follows from the Hamilton-Jacobi identity. In the case
of lightlike geodesic, we still find α from a differential equation, but now from
another structure, namely the modified geodesic equation.
Let us define:

l̃a ≡ dxa

dλ̃
=
dλ

dλ̃
la (2.65)

as the null tangent vector of the geodesic associated to g̃ab. Since this is the
tangent vector to the q-geodesic, it makes sense that it satisfies a geodesic
equation with the same structure of the classical one, but of course with g̃ab
instead of gab:

l̃a∇̃a l̃b = 0. (2.66)

Here l̃b = g̃ab l̃
a is obtained, like the other q-corrected quantities, acting on the

indices with g̃ab and g̃
ab, and in this case we have:

l̃b =
dλ

dλ̃
α−1lb. (2.67)

We already saw some relations between the classical quantities and the q-
corrected ones. Recalling these relations, in particular the one regarding ∇̃
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and the connection Γ̃, after some algebraic steps we arrive at the following form
for the q-geodesic equation:(dλ
dλ̃

)2
α−1la∇alc+

(dλ
dλ̃

)
la∂a

(dλ
dλ̃
α−1

)
−1

2

(dλ
dλ̃

)2
lald(∇ag̃dc+∇cg̃ad−∇dg̃ac) = 0.

(2.68)
The first term vanishes because la∇alc = 0, since the classical geodesic equation
holds for the classical tangent vector la with affine parameter λ. We can also
substitute la∂a = d/dλ because is the directional derivative. We can also note
that, by symmetry:

lald(∇ag̃dc −∇dg̃ac) = 0. (2.69)

Now if we compute explicitly the only piece which is left proportional to lald,
we get:

lald∇cg̃ad = −2(A− α−1)la∇cla. (2.70)

Inserting all: (dλ
dλ̃

) d
dλ

(dλ
dλ̃
α−1

)
+
(dλ
dλ̃

)2
(A− α−1)la∇cla = 0. (2.71)

But the term la∇cla gives 0, because la is the normalized tangent vector to the
geodesic, and we arrive at: (dλ

dλ̃

) d
dλ

(dλ
dλ̃
α−1

)
= 0. (2.72)

We can suppose that the rate dλ/dλ̃ is non vanishing, so:

α = C
(dλ̃
dλ

)−1

. (2.73)

In the limit L0 → 0, we have λ → ∞ but also λ̃ → λ, and in this situation we
should recover, as usual, the classical metric gab. This happens if A → 1 and
(A− α−1) → 0, and we see that we need α→ 1, so C = 1.
Now, we study the case of A. We remember that in the case of spacelike/timelike
geodesics we fixed the function A directly via the d’Alembertian equation, in-
troducing the modified Green function G̃(σ2) = G(SL0(σ

2)) and requiring that,
having □G(SL0) = 0, we get also □̃G̃ = 0. As we said, when σ2 = 0 we have a
singular behaviour of the Green function, which can be seen from the expansion
(2.9). We proceed as follow: having two points x′ and x on a null geodesic,
we compute □G keeping x′ but taking as the second point y, which is close to
the geodesic but not on it, so such that σ2(x′, y) ̸= 0. Then we will consider
the limit y → x. Let us start computing the form of □G(σ2) in maximally
symmetric spacetimes. We have:

□G(σ2) = ∇a(∇aG) = ∇a

(
∂aσ2 dG

dσ2

)
= ∇a(∂

aσ2)
dG

dσ2
+ ∂aσ2∂aσ

2 d2G

(dσ2)2
.

(2.74)

25



For null geodesic, the second piece gives 0. The piece ∇a∂
aσ2, for null separa-

tions, gives:
∇a∂

aσ2(x′, x) = 2(λ∇al
a + 2). (2.75)

Our form of the d’Alembertian of G for lightlike geodesics, in maximally sym-
metric spaces, is then:

□G(σ2) = (4 + 2λ∇al
a)
dG

dσ2
. (2.76)

We know the modifications of the various geometrical objects passing to the
qmetric description; in particular, we recall the fact that a null geodesic is
mapped to a null geodesic, so we can write, for g̃ab:

□̃G̃(σ2) = (4 + 2λ̃∇̃a l̃
a)

dG̃

dSL0

, (2.77)

in which, recalling the relations between Γ and Γ̃, we have:

∇̃a l̃
a = ∇a

(dλ
dλ̃
la
)
+

1

2

(dλ
dλ̃

)
g̃aclb∇bg̃ac. (2.78)

Now we can insert the ansatz (2.63),(2.64) for the qmetric, obtaining:

g̃aclb∇bg̃ac = (D − 2)
d lnA

dλ
− 2

d lnα

dλ
. (2.79)

We already fixed the form of α; substituting and rewriting the d’Alembertian
equation we have:

□̃G̃(σ2) =

[
4 + 2λ̃

dλ

dλ̃
∇al

a + λ̃(D − 2)
dλ

dλ̃

d(lnA)

dλ

](
dG(σ2)

dσ2

)
σ2=SL0

. (2.80)

Now, we explain the practical meaning we can give to the mapping λ → λ̃.
In the classical case, we have three points: the base point x′, the field point
x, both on the null geodesic, and the auxiliary point y, which is at a finite
squared distance from x′. The points x and x′ are separated by a null squared
distance, but by an affine distance λ. After the mapping λ → λ̃, we can make
the following interpretation: the point x in mapped to a new point x̃, which
is at an affine distance λ̃ from x′ and the auxiliary point y is mapped to ỹ,
which is at a finite modified squared distance S(σ2(y, x′)) from the base point
x′. We require that, when the classical Green function G(σ2) satisfies □G = 0
at the modified point x̃, the modified Green function G̃(σ2) = G(SL0

) satisfies
□̃G̃ = 0 at the point x. We have now to evaluate □G in x′. Since null geodesic
are mapped to null geodesic, we are still dealing with a null distance, and □G
is singular on x̃. We proceed as in the classical case, starting from ỹ and taking
the limit ỹ → x̃. We have:

□G(σ2)x̃ = [4 + 2(λ∇al
a)x̃]

dG(σ2)x̃
dσ2

= [4 + 2λ̃(∇al
a)x̃]

dG(σ2)x̃
dσ2

. (2.81)
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G(σ2) is solution of □G = 0 in x̃, so:

4 + 2λ̃(∇al
a)x̃ = 0. (2.82)

On the other hand, G̃ solution of □̃G̃ in the point x means:

4 + 2λ̃
dλ

dλ̃
∇al

a + λ̃(D − 2)
dλ

dλ̃

d(lnA)

dλ
= 0. (2.83)

Substituting (2.82), we get:

2λ̃
dλ

dλ̃
∇al

a − 2λ̃(∇al
a)x̃ + λ̃(D − 2)

dλ

dλ̃

d(lnA)

dλ
= 0. (2.84)

We can write ∇al
a in terms of the VVD:

∇al
a =

D − 2

λ
+
d(ln∆−1)

dλ
; (2.85)

and in the point x̃:

(∇al
a)x̃ =

D − 2

λ̃
+
d ln(∆̃−1)

dλ̃
, (2.86)

Where here we are calling ∆ = ∆(x, x′) and ∆̃ = ∆(x̃, x′). We obtain, substi-
tuting:

2

λ
+

2

D − 2

d(ln∆−1)

dλ
− dλ̃

dλ

2

λ̃
+

2

D − 2

d ln(∆̃)

dλ
+
d(lnA)

dλ
= 0; (2.87)

which can be written as:

d

dλ

[
λ2

λ̃2

(
∆̃

∆

) 2
D−2

A

]
= 0. (2.88)

The solution is:

A = C
λ̃2

λ2

(
∆̃

∆

)− 2
D−2

; (2.89)

requiring that A→ 1 when L0 → 0, we see that C has to be 1.
To summarize, we have that the qmetric for null separation is:

g̃ab =
λ̃2

λ2

(
∆

∆̃

) 2
D−2

gab −

[
dλ̃

dλ
− λ̃2

λ2

(
∆

∆̃

) 2
D−2

]
(lamb +malb). (2.90)

In order to compare the forms of the qmetric in the various cases, we recall
the form of the functions found for the spacelike/timelike geodesics. We know

that the affine parameter for classical geodesics of this type is s =
√
ϵσ2; we
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can define an analogous affine parameter for the case of modified geodesics,
s̃ =

√
ϵSL0 . With this definition, α can be written as:

α =
(ds
ds̃

)2
. (2.91)

We can also write the function A as:

A =
s̃2

s2

(
∆

∆̃

) 2
D−1

. (2.92)

So, we can write the qmetric for spacelike/timelike geodesics as:

g̃ab =
s̃2

s2

(
∆

∆̃

) 2
D−1

gab + ϵ

[(
ds̃

ds

)2

− s̃2

s2

(
∆

∆̃

) 2
D−1

]
qaqb. (2.93)

Comparing the forms (2.90) and (2.93), we can see the main differences: the
different dependence on the dimension of the spacetime (of course, in the case of
lightlike geodesics, we are dealing with a lower dimensional space), the different
power of the function α, and the presence, in the case of null separations, of
an additional arbitrary vector ma, which depends on the choice of an observer
in the base point x′. Since in the lightlike case we have a dependence on an
observer, we could ask in what sense the Lorentz invariance is preserved. The
interpretation is that, once we have specified an observer, so a local frame, the
structure of the qmetric will be the same, with a Lorentz invariant minimal
length L0 of the affine parameter, which can have the role of time or distance
for the local observer.

2.4 Minimal area

Now we introduce one of the most important concept for our work, which is the
one of a minimal area. Indeed, having a minimal length in a space or spacetime
gives some non-trivial consequences, one of these regarding the concepts of area
and volume around a point [9, 10, 11]. This is actually the effect which leads
to the presence of a quantum of area for black holes horizons, and so is a key
property for the discussion of dynamics which involves variation of area. In
order to explain the basic concept, we start from the simplest case, namely an
Euclidean space modified with the qmetric. We strictly follow the discussion of
[9].
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2.4.1 qEuclidean space

In a D-dimensional Euclidean space, RD, we know that in Cartesian coordinates
{x1, ..., xD} the metric is simply gab = δab , so the line elements is:

ds2 =

D∑
i=1

(dxi)2. (2.94)

Taking as our base point the origin, x′ ≡ {0, ..., 0}, we have that, selected a
field point x, there is one and only one geodesic connecting x′ with x, and the
geodesic distance is simply:

σ2(x, 0) =

D∑
i=1

(xi)2. (2.95)

Since we deal with radial geodesics, it is common to change coordinates from
Cartesian to polar:

{x1, ..., xD} → {ρ, y1, ..., yD−1}, (2.96)

where ρ is the radial coordinate and {y1, ..., yD−1} are angular coordinates in
the (D − 1)-dimensional space orthogonal to ρ. Taking the explicit laws of
transformation, we have that for the line element we can write:

ds2 = dρ2 + ρ2dΩ2
D−1, (2.97)

where σ2dΩ2
D−1 is the line element on the surface of an hypersphere of radius

ρ, centered in the origin of RD. We can see that in this system of coordinate
the metric is still diagonal, and for the determinant holds:

√
δ = ρD−1 × [Angular terms]; (2.98)

here [Angular terms] encodes all contributions from angular variables.
The equigeodesic surface Σ0(l

2) is simply the set of points x which have a fixed
squared distance l2 from the origin, σ2(x) = l2. On this (hyper)surface, we have
the induced metric hab which gives a line element:

ds2|Σ = l2dΩ2
D−1. (2.99)

For the square root of the determinant of hab holds:
√
h = lD−1 × [Angular terms]. (2.100)

Now we can introduce two main concepts: the area around a point and the
volume around a point. We start from the area. Take a point x on Σ0(l

2). This
point is at a fixed distance from the origin, and its position is identified by the
set of angular coordinates. Without loss of generality, we can take yi = 0 for
each i = 1, ..., D − 1. The infinitesimal area element around x is:

dA(x) =
√
hdD−1y = lD−1dΩD−1. (2.101)
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If we integrate over all the angular variables, we can compute actually the total
area around the base point associated to a given equigeodesic surface. We would
have simply:

A0(l) = lD−1ΩD−1, (2.102)

where ΩD−1 is the geometric factor arising from the integration over all the
angular range. We note that, if we take the coincidence limit x → 0, so in this
case σ2 → 0, both dA(x) and A0 goes to 0. We can define also the volume
around a point x on the equigeodesic surface, via:

dV =
√
δdDx = lD−1dldΩD−1. (2.103)

We are moving also the radial coordinate in this definition, but we still write l,
because we underline that we are referring to a point x on the surface Σ0(l

2).
To identify the notion of infinitesimal volume around x we can integrate l in a
small arbitrary range, for example [l − ϵ, l + ϵ].
Also for this case, we can define the volume around the base point, integrating
over all the angular variables and from 0 to l the radial coordinate, which for
clarity now we call ρ. We have:

V0(l) =

∫ l

0

A0(ρ)dρ =
lD

D
ΩD−1 (2.104)

Here also, both the infinitesimal volume around x and the total volume around
the base point go to zero in the coincidence limit. Indeed, for l → 0, we have
V0(l) → 0, and if x tends to the origin, the same happens to all the points on
the geodesic connecting the origin to x, and so l − ϵ and l + ϵ both tend to 0.
These considerations hold for the classical flat space RD. Now let us explore the
case of the same space with the introduction of the qmetric.
Recall that, in the case of flat spaces, we have ∆ = ∆̃ = 1, moreover since we
are considering just space coordinates, we have ϵ = 1. We have then:

δ̃ab =
SL0

σ2
δab +

(
σ2

SL0

S′2
L0

− SL0

σ2

)
qaqb, (2.105)

and the associated line element squared, after some computations, is:

ds̃2 = g̃abdx
adxb = (d

√
SL0)

2 + SL0dΩ
2
D−1. (2.106)

As we have seen before, ds̃2 has the same structure of ds2 in the classical case,
with the substitution σ →

√
SL0 . The main difference is that now we are

dealing with a strange topology: all the points at a distance less than L0 from
the origin are removed, leaving a hole of radius L0. Now we focus on the
modified area and volume around a point. The definitions we gave in the case
of a standard Euclidean space are still valid; the difference now is that, instead of

the quantities
√
h and

√
δ, we have

√
h̃ and

√
δ̃. On the hypersurface made by
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all the points at a fixed modified squared distance from the origin SL0 = SL0(l
2),

we define the infinitesimal q-area and the infinitesimal q-volume via:

dΣ̃ =
√
h̃dD−1y, dṼ =

√
δ̃dDx; (2.107)

Changing the name of the infinitesimal area to avoid confusion with the function
A. We already saw some relations between the determinant of the classical
metrics and the qmetrics, and they yield:√

δ̃ =
A

D−1
2

√
α

√
δ,

√
h̃ = A

D−1
2

√
h. (2.108)

From these, we obtain:

dΣ̃ =
(√

SL0

)D−1

dΩD−1, (2.109)

dṼ =
1

2

(√
SL0

)D−2

dSL0
dΩD−1. (2.110)

Now, we examine the coincidence limit. For the case of the volume of the entire
equigeodesic ball centered on the origin, we have:

Ṽ0(l) =
1

2

∫ SL0
(l2)

SL0
(0)

(SL0
)

D−2
2 dSL0

∫
dΩD−1 =

ΩD−1

D
[SL0

(l2)D/2 − L
D/2
0 ];

(2.111)
which goes to zero in the coincidence limit. About the volume around a point
on the equigeodesic surface, we can for example integrate the radial coordinate
SL0

between two arbitrary values SL0
(l2−) and SL0

(l2+) and the angular variables
over all the range, obtaining:

Ṽ0(l) =
ΩD−1

D
[SL0

(l2+)
D/2 − SL0

(l2−)
D/2]. (2.112)

In the coincidence limit, another time we have l2+, l
2
− → 0, so we have that

also this volume goes to zero. Now we study the case of the area. Taking the
infinitesimal q-area, in the limit l2 → 0 we see clearly that:

lim
l2→0

dΣ̃ = LD−1
0 dΩD−1, (2.113)

which is non vanishing. Integrating over all the angles, we have:

Σ̃0 = LD−1
0 ΩD−1. (2.114)

This is a remarkable result: introducing a minimal length in our space leads
to a minimal area around the base point, but still with a null volume, in the
coincidence limit. This non-trivial behaviour can be interpreted as the fact
that, having a minimal length, we have also a minimal value for defining a q-
equigeodesic surface around a point, and this gives a minimal value for the area,
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which can be interpreted as the area of a point. We studied this concept in the
case of an Euclidean space, so with zero curvature and without time coordinate,
but the same feature appears also in a Minkowskian spacetime, and, in general,
in a spacetime with non zero components of the Riemann tensor (and actually
with a curvature which is not too high).
We conclude this paragraph briefly talking about the case of a four-dimensional
spacetime of Lorentzian signature, which is the physical case we are interested
in. In particular, we want to focus on the case of area of a null surface. Suppose
we have a base point x′, and consider the lightcone of x′. The qmetric induced
on the lightcone gives a squared line element that can be written as:

ds̃2 = λ̃2dΩ2. (2.115)

Taking now a point x on the lightcone, the area element around x reads:

dΣ̃(x) = λ̃2xdΩ, (2.116)

where we specified that the parameter λ̃x is considered in the point x. Integrat-
ing over the solid angle, we get:

Σ̃(x) = 4πλ̃2x. (2.117)

Now, we know that in the coincidence limit we have λ̃x − λ̃0 → L0; setting
λ̃0 = 0 we obtain λ̃x → L0 and so:

lim
x→0

Σ̃(x) = 4πL2
0. (2.118)

We have then a two dimensional surface around a point, which makes sense, since
considering the lightcone of a point we are actually restricting the dimension of
the spacetime, and then also the dimension of the area and volume around a
point.

2.4.2 Quantization of black hole horizon’s area

Having discussed the presence of a minimal area around a point given by the
qmetric description, now we show the consequence of this property on black
holes; in particular, we show that qmetric implements a minimal step in the
increment of the horizon’s area of a black hole. The discussion we follow is
essentially from an operational point of view.
Suppose to have a Schwarzschild black hole with a classical metric in the usual
coordinates {t, r, θ, ϕ}:

ds2 = −

(
1− 2Gm

r

)
dt2 +

(
1− 2Gm

r

)−1

dr2 + r2dΩ2; (2.119)

where 2Gm ≡ Rs is the radius at which is located the horizon. First, let us
explain the approximations we are going to consider. Of course, we could from
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the very beginning go to the qmetric description, computing the squared line
element ds̃2 associated to this kind of spacetime, and study the modification
of the area and other characteristics of the black hole with the new metric g̃ab.
However, we already saw that, from the computational point of view, qmetric is
a very difficult structure to deal with, due also to its non-local behaviour. For
this reason, we decide to do not simply a modification of the metric, but instead
to focus on the effects generated by the qmetric itself.
Another fact is that, as we know, despite the high symmetry of the Schwarzschild
solution, to study the complete geometry of the spacetime around a black hole is
not a trivial task, especially near the horizon, which is the region of our interest.
For this reason, we make a reasonable approximation: considering a small piece
of the horizon, we actually work in a flat null surface of spacetime, making easier
calculations and underlining the central point of the effect. We then consider
no curvature effects, so using simply the Minkowski metric for a small region of
spacetime around the horizon.
Consider now a photon, or a quanta of radiation, which is arriving at the horizon,
ingoing to the center of the black hole at the speed of light. If we go to the rest
frame of the photon, now the photon itself is at rest, and the horizon is moving
towards it at the speed of light. We can imagine, from a practical point of view,
that the horizon is made by radially outgoing photons, which are moving on null
geodesics. To study the system corrected with effective features deriving from
the qmetric description, we need to fix a base point in the spacetime. This base
point, called x′, is taken to be the spacetime point at which the horizon reaches
the ingoing photon. Now, without loss of generality, it is possible to take this
point as the origin of our coordinate system, setting x′ = (0, 0, 0, 0). We also
rotate our frame so that the radial coordinate is completely along one of the
Cartesian axes, say x, with increasing value. It means that we arrive at the
point (0, 0, 0, 0) increasing the value of x, so we start from negative value of it.
Having motion on a null geodesic, this holds also for the time coordinate, which
starts then from a negative value and arrives at 0 when the horizon meets the
photon. Since we consider flat geometry, we have, at a generic point x before
x′, one geodesic which links x and x′. We can parametrize this geodesic via the
affine parameter λx. In our frame, the photon frame, this parameter has the
meaning of space or time distance from the point x′. The generic point x is
then:

x = (λx, λx, 0, 0), (2.120)

with λx < 0; and the tangent vector to the geodesic is:

la =
dxa

dλ
= (1, 1, 0, 0). (2.121)

Going to the point x′, the parameter λx tends to λx′ , which is 0. We have, in
the coincidence limit:

lim
x→x′

|λx − λx′ | = lim
x→x′

|λx| = 0. (2.122)

Considering the area of the surface made of all the points at an affine geodesic
distance from the base point x′, which is λx, we have a spherical surface such
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that:
A(λx) = 4πλ2x. (2.123)

Classically, approaching the base point, we have that λx approaches λx′ = 0, so
the area goes to 0. Introducing the qmetric, we know that in practice we map
the parameter λx to λ̃x and λx′ to λ̃x′ . In this case, in the coincidence limit,
we have:

lim
x→x′

|λ̃x − λ̃x′ | = lim
x→x′

|λ̃x| = L0. (2.124)

This means that, around the base point x′, we have a non-vanishing value of
the area given by: Ax′ = 4πL2

0. In the radial motion of the photon into the
center of the black hole, when the horizon and the photon meet, we have so
two kinds of area: the area of the horizon, or of a region of the horizon around
the base point, and the area arising from the coincidence limit. Both of them
are irreducible: the first from thermodynamical properties of the black hole,
the second from the properties of the qmetric. When the photon crosses the
horizon, or in other words, when the radiation is absorbed, this two areas should
be added together, leading to the concept of minimal area variation, dependent
on the minimal length in the spacetime:

∆Amin = 4πL2
0. (2.125)

After the absorption event, the black hole can be seen in a situation of perturbed
geometry, with a point on the horizon which is gaining an amount of area
∆Amin. For the no-hair theorem, the black hole should reach stability keeping
spherical geometry of the horizon, but increasing its value to A′, where:

A′ ≥ A+∆Amin. (2.126)

Now we know that, from the thermodynamics of black holes, when matter or
energy crosses an horizon and is absorbed by the black hole, the area of the
horizon increases of an amount which is proportional to the amount of energy
which is absorbed. If the amount of energy which would be absorbed is not
enough in order to satisfy (2.126), so to give an area increment at least of
∆Amin, the matter or energy can not be absorbed, according to our qmetric
description.
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Chapter 3

Effects of qmetric:
properties and examples

In this chapter, we present some examples of applications of the qmetric, prin-
cipally from an effective point of view, explaining some features and properties
of this structure. First, we want to present a form of the qmetric which is based
on an expansion in small lengths. This is motivated by the fact that, since the
qmetric differs significantly from the standard metric only when we reach scales
of the order of the Planck length, we could think that when we want to study
some physical system (dynamics of a particle, trajectories, etc.) at such scales
through the implementation of the qmetric, it can be useful to have a simplified
form which captures the essential difference from the classical case.
In the second section, we present a method to characterize a spacetime based on
its curvature invariants, and in particular the Kretschmann scalar RabcdR

abcd.
We will show what kind of role plays the minimal length in such a characteri-
zation, and how it is interpreted.
The third part is dedicated to one of the most famous phenomenon which com-
bine quantum effects with a curved spacetime, which is the emission of Hawking
radiation. After a discussion about the changing in this phenomenon due to the
presence of a quantum of horizon area for a black hole, we propose a simple
modification to the law which gives the density of emitted particles in function
of the particle frequency ω, still from an effective point of view.

3.1 qmetric for small distances

As said before, we begin the chapter proposing a form of the qmetric which holds
for small distances. Our strategy will be simple, based on suitable expansions
of quantities. For simplicity, we focus on the case of spacelike geodesics. Start
from the complete form of the qmetric, in a maximally symmetric space, which
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we recall here:

g̃ab =
SL0

σ2

( ∆

∆S

)2/(D−1)

gab + ϵ

{
σ2S′2

L0

SL0

− SL0

σ2

( ∆

∆S

)2/(D−1)
}
qaqb. (3.1)

Now, we know the qualitative behaviour of the qmetric, which is reflected also
by the qualitative behaviour of the modified distance SL0(σ

2): for great values
of the squared distance σ2, compared to the squared minimal length L2

0, g̃ab
tends to gab, and SL0

tends to σ2. When we go to the limit σ2 → 0, however,
we get a real modified squared distance which tends to L2

0. At the same time,
g̃ab tends to a form which diverges for vanishing squared distances σ2, precisely
to balance the 0 coming out from it, giving a finite result. In approaching this
limit, in which emerges strongly the behaviour of the non classical part of the
qmetric, we could think that are predominant some of the properties of the
quantum nature of the spacetime, and that they can be underlined specializing
the general form g̃ab for σ2 → 0. In doing this, we simply apply basic notions
of Taylor expansions, starting precisely from the unknown function SL0 . As
usual, to simplify the discussion, we study the simplest case of spacetime: we
take a completely flat spacetime in four dimensions, so our classical metric gab
is simply ηab, and (2.1) becomes:

η̃ab =
SL0

σ2
ηab + ϵ

{
σ2S′2

L0

SL0

− SL0

σ2

}
qaqb; (3.2)

because ∆/∆S = 1 in this case. Writing explicitly the form of qa and qb, we
get:

η̃ab =
SL0

σ2
ηab +

{
σ2S′2

L0

SL0

− SL0

σ2

}
∂aσ

2∂bσ
2

4σ2
. (3.3)

Now we start to work in the case of small distances, which is analogous to the
limit σ2 → 0. Of course, the function SL0 , which represents the corrected dis-
tance, is unknown. In our treatment, we only know that it is a function of
σ2. Supposing that SL0

is sufficiently regular, meaning that, being a physi-
cal function, it has not exotic features, at least around σ2 = 0, we can make
the hypothesis that for squared distances which tend to 0 it admits such an
expansion:

SL0 ≃ L2
0 + kσ2, for σ2 → 0, (3.4)

where k is an unknown parameter, that is the first coefficient in its expansion
for small value of the squared distance. We can see that, in going through this
limit, since we are considering just the first order of SL0

we deal with only one
unknown real parameter instead of an entire function. This can be useful for the
study of different systems, in which we analyze dynamics around the minimal
length scale: in such cases, we have just one free parameter in the description,
that maybe can also be fixed imposing some physical requirement. An important
fact to underline is that k should be positive: it must be different from zero to
satisfy the third fundamental requirement of the qmetric ([|SL0

|/S′2
L0
](0) <∞),
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and, having k < 0, for σ2 → 0 we obtain SL0 < L2
0, so k > 0. Now, plugging

the condition (3.4) in the form of η̃ab, we get:

η̃ab =
L0 + kσ2

σ2
ηab +

{
σ2k2

L2
0 + kσ2

− L2
0 + kσ2

σ2

}
∂aσ

2∂bσ
2

4σ2
, (3.5)

having clearly S′
L0

= k. In what follows, we will perform some calculation,
keeping just the relevant terms in σ2, and to do that could be important to
underline this: while σ2 is tending exactly to 0, the value L2

0, despite is expected
to be very small, is fixed. So, for example, in ratios between σ2 and L2

0 the higher
term is L2

0:
σ2

L2
0

→ 0, for σ2 → 0. (3.6)

The construction is of course independent on the precise numerical value (and
order) of L2

0; we know that physically it should be L0 ≃ 10−35, but in any case,
in our treatment this is a constant value, so we have the condition indicated in
the last equation. We get:

η̃ab =

(
k +

L2
0

σ2

)
ηab −

(
L2
0(L

2
0 + 2kσ2)

4σ4(L2
0 + kσ2)

)
∂aσ

2∂bσ
2. (3.7)

We note that, in doing the explicit computation, a piece quadratic in k already
simplifies. Now, let us collect all terms at the numerator:

η̃ab =
4σ2(L2

0 + kσ2)2ηab − (L4
0 + 2kL2

0σ
2)∂aσ

2∂bσ
2

4σ4(L2
0 + kσ2)

. (3.8)

Until now, we did not approximate anything in the form, up to the function SL0

for which we wrote a hypothetical expansion. Now, we look at the denominator.
Factorizing out L2

0, we have the term in brackets which becomes (1 + kσ2/L2
0).

We apply the expansion:

1

4σ4L2
0(1 +

kσ2

L2
0
)
≃ 1

4σ4L2
0

(
1− kσ2

L2
0

)
. (3.9)

Inserting this expansion in the form above, and doing computations, after col-
lecting terms in front of ηab and ∂aσ

2∂bσ
2, we can arrive at:

η̃ab ≃

(
L2
0

σ2
+k− k2σ2

L2
0

− k3σ4

L4
0

)
ηab+

(
− L2

0

4σ4
− k

4σ2
+

k2

2L2
0

)
∂aσ

2∂bσ
2. (3.10)

This is the approximated form we found, in which we ordered the terms in
growing powers of σ2. As we see, there are three terms, one in front of ηab and
two in front of ∂aσ

2∂bσ
2, that are divergent in σ2 → 0. This makes sense, be-

cause without diverging terms we cannot balance the behaviour of the standard
squared distance in the studied limit, as anticipated. Now, we want to contract
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with dxadxb, to find the approximated form of the line element in this limit. Be-
fore doing that, however, we underline an important point: the quantity we find
has the meaning of infinitesimal distance around L2

0, in the sense that we are
considering increments of square distance that start already from the minimal
one L2

0. One possible way to formalize this feature is to consider the difference
between the metric we are considering and another formal one, which has k = 0
and so gives only the constant contribution equal to L2

0 in the limit σ2 → 0 (as
we said, the case k = 0 is actually forbidden). Let us denote it with δk

√
SL0 ,

not to be confused with d
√
SL0 , which denotes instead the differential of the

effective geodesic distance, that diverges in the σ2 → 0 limit.
We have, from the relations of the standard metric:

ηabdx
adxb = (dσ)2,

∂aσ
2∂bσ

2dxadxb = 4σ2(dσ)2;
(3.11)

from these we then see what terms cancel out in taking the contraction. Re-
markably, terms linear in k cancel out, giving a contribution which is quadratic
and cubic in k: (

δk
√
SL0

)2
≃ k2σ2

L2
0

(dσ)2 − k3σ4

L4
0

(dσ)2. (3.12)

This result is consistent with the same line element computed starting only from
our hypothesis about the modified squared distance SL0 , namely SL0 ≃ L2

0+kσ
2.

Let us see this:

δ
√
SL0 ≃

d
√
SL0

dσ2
dσ2 =

kdσ2

2
√
L2
0 + kσ2

≃ k

2L0

(
1− kσ2

2L2
0

)
dσ2; (3.13)

So (recalling that dσ2 = 2σdσ):

(
δ
√
SL0

)2
=

[
k

2L0

(
1− kσ2

2L2
0

)
2σdσ

]2
≃ k2σ2

L2
0

(dσ)2 − k3σ4

L4
0

(dσ)2. (3.14)

In the last, we considered the term in σ6 negligible, but it would give:(
δ
√
SL0

)2
=
k2σ2

L2
0

(dσ)2 − k3σ4

L4
0

(dσ)2 +
k4σ6

4L6
0

(dσ)2. (3.15)

So, from these we have an hint about the presence of an alternative sign; this
could have a deep meaning, suggesting that, in the field of all the possible forms
of SL0

(σ2), we have to look for some function which, if admitting an expansion
around σ2 = 0, it occurs with alternative signs.
There are more considerations that we can say about this discussion; however,
since we have to focus on another point, we just wanted to show some basic
features. This topic could be explored further in the future.
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3.2 A spacetime characterization based on L0

Here we want to explore a possible way of interpreting the minimal length L0,
namely, the identification of this scale as a radius of curvature for a given
classical spacetime. In particular, L0 will give a limit about the maximal value
of curvature we can have in a classical spacetime, or in other words, that the
spacetime support. There are different references in which, to study such a
limit, are taken generic components of the curvature tensor in the theory, or
some general combination of them [12]; in what follows, we propose another
method, which instead of general components works with scalars, and more
precisely, the Kretschmann one. The advantage of doing this is that we work
with coordinates independent objects; moreover, even if we are dealing with
non-local concepts, like L0 and the qmetric, in this discussion we look just at
classical scalars, so associated only to a point in the spacetime, being computed
from standard tensors.

3.2.1 Maximal Kretschmann scalar for Schwarzschild space-
time

Our interpretation is very simple, and to start with, we take the important
case of a Schwarzschild spacetime. It is precisely in this case that, due to
the particular form of the metric and the properties of Einstein equation, it
particularly makes sense to consider the Kretschmann invariant.
We know the Schwarzschild metric, which we recall in dimensional units:

ds2 = −

(
1− 2Gm

rc2

)
dt2 +

(
1− 2Gm

rc2

)−1

dr2 + r2dΩ2; (3.16)

where m is the mass of the star, or the black hole, concentrated in a point
which is the origin of coordinates, and r is the distance from it. Now, we know
that such a spacetime is surely not flat, being characterized by a non-vanishing
value of the Riemann tensor Rabcd. It is usual to define different types of scalar
quantities, computed contracting the various tensors we have in the theory.
This scalars can give a summary of the spacetime curvature, depending on the
spacetime point itself. For example, is well known that for a two-dimensional
sphere of radius r, embedded in a three-dimensional space, we have a constant
curvature, which can be found by the Ricci scalar R, that gives R = 2/r2. We
see that this quantity is inversely proportional to the square of the radius of the
sphere, which is consistent with an intuitive picture one can have: the more a
sphere is big, the less you feel you are curving if you move along the surface. In
analogy, it is common to talk about the concept of radius of curvature also in
a general manifold, and this also makes sense from a dimensional analysis, since
from the definition in terms of the derivative of the metric tensor, we have:

R ∼ l−2, (3.17)
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where for l we mean length. As we said, the are many scalars we can write down
with different combinations of tensors; for Physics, of course the simplest and
most important is the Ricci one, because it enters in the gravitational action
giving the usual Einstein equation. Nevertheless, to study some properties of
the spacetime itself, it could be relevant also to look at other quantities.
Take now the previous situation: a Schwarzschild spacetime. Suppose that we
want to consider the spacetime property of a minimal length, knowing that we
can associate a length also to the curvature scalars. Specifically, we want to
ask ourselves: having a minimal length, does it happen that we have a limit
about the magnitude of curvature in the spacetime considered? In our simple
example of a Schwarzschild spacetime, to answer this question we start to list
the main tensors we have: the metric tensor gab, the Ricci tensor Rab and the
Riemann tensor Rabcd. Combining them, we can define the principal scalars in
the theory; the simplest are: the Ricci scalar R = gabRab, the scalar RabR

ab and
the Kretschmann scalar RabcdR

abcd. However, if we are in vacuum, it is easy
to take Einstein equation and, contracting with the metric and substituting, to
obtain the following results:

R = 0, Rab = 0; (3.18)

which means that, of the three scalars above, two are identically zero in vacuum:
R = RabR

ab = 0. The only scalar which for sure is different from zero, being in
practice the square of the most general tensor that encodes information about
curvature, is the Kretschmann scalar, which we call now K, and which for
Schwarzschild gives (in dimensional units):

K =
48G2m2

c4r6
. (3.19)

We see immediately two consistent facts: the scalar is radially symmetric, since
it depends just on the distance r from the center of the black hole, which is
defined from the area of the surface around the center via r =

√
A/4π; then,

we see that the only divergence we have is for r = 0, meaning that the only
singular point in this spacetime is the center of the black hole. Looking at this
scalar, how can we effectively implement a minimal length L0 to study some
possible bounds of the curvature? One of the possibilities is to plug directly
r = L0, interpreting the minimal length as a minimal distance from the point in
which the mass is located, and this would give a value of the Kretschmann scalar
which can be interpreted as the limiting value of curvature for Schwarzschild
spacetime. This method, however, could have some issues: of course we cannot
go closer than L0 to the center, for the limits imposed by the qmetric, but
this could give a value of the Kretshmann invariant which depends a lot on the
particular spacetime we are in. We could think, instead, that each spacetime
we have should be compared with the same value of the curvature, in other
words, with the same radius of curvature. Our choice, so, is to interpret L0 as
a curvature radius, and since K has dimensions of l−4, with l being a length,
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we take the following condition for the limit curvature:

|K| ≃ 1

L4
0

. (3.20)

The absolute value is taken because we consider the magnitude of the scalar K.
So, for a Schwarzschild spacetime in four dimensions, we can define the region
of spacetime of allowed curvature by:

48G2m2

c4r6
<

1

L4
0

→ r >

(
48G2m2L4

0

c4

)1/6

. (3.21)

This has of course the same radial symmetry as the Kretschmann scalar, mean-
ing that we are defining a three-dimensional sphere centered in the point mass:
in this sphere, the curvature is too high for the limits imposed by the presence
of a minimal length L0. The radius of this sphere can be called r0. We see an
interesting dependence in the mass m:

r0 ∼ m1/3, (3.22)

so, the more massive is our point-particle located at the origin, the bigger is
the distance from this point at which curvature starts to be too high. We are
actually removing a sphere from our spacetime, with radius r0, and if we think
at the volume V0 of this sphere, we see that is linear in the mass:

V0 ∼ m. (3.23)

Now, let us see some numerical values of this radius, to have an idea of the
physical order of magnitude that r0 can have.
For L0, we take the Planck length LP =

√
(ℏG/c3). Of course, as we know, L0

could be not precisely this values, but the order of magnitude is expected to be
the same. For astrophysical objects like black holes, we have different orders
for the mass: from a few times the solar mass M⊙ for standard black holes to
incredibly large values like 106M⊙ for supermassive black holes. Take the solar
mass as an example. We have:

r0 =

(
48L4

PG
2M2

⊙
c4

)1/6

≃ 1.4× 10−22 m. (3.24)

While for a mass of 106M⊙, since the mass enters with a power of 1/3, we get:

r0 ∼ 10−20 m. (3.25)

These orders could have an unexpected meaning: introducing a minimal scale
of the order of the Planck one, so 10−35 m, actually for Schwarzschild we get
a limit distance from the center of the body of order of 10−20 m, which is very
big compared to the Planck length. It means that we lose the concept of usual
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spacetime at a distance which is more and more large with respect to LP , at
least for a Schwarzschild spacetime. Now we try to deal with the relation for r0
from a different point of view: requiring that the limiting distance r0 is truly
the same as L0, we ask: what kind of mass can give such a result?
Setting as before L0 = LP , we obtain:

m0 =
L0c

2

4
√
3G

=
1

4

√
ℏc
3G

≃ 3.1× 10−9 Kg. (3.26)

This makes sense, since the order found is precisely comparable to the one of
the Planck mass, and so we have consistency about the procedure applied, even
if it is a naive method to study bounds on the spacetime curvature.

3.2.2 Limit curvature and gravitational waves

In this part, we treat the concept introduced above in the case of a spacetime
with nearly constant metric; more precisely, one through which are passing grav-
itational waves. We want to study a possible limit on curvature in the case of
spacetime perturbations given by gravitational wave, eventually emitted by a
coalescing binary. Take the case of a flat spacetime. We can understand from
the very beginning that, probably, to reach this value of limiting curvature we
need a GW frequency which is incredibly high, and so the study of this problem
could seem to have no sense; however, different constants enter in the compu-
tation, giving an interesting contribution. Moreover, it could be conceptually
interesting to see what kind of curvature can give a gravitational wave, even
if it is very weak. We start recalling that, in the approximation of nearly flat
spacetime, we have for the metric:

gab = ηab + hab; (3.27)

where ηab is the Minkowski metric and hab is the dynamical metric, for which we
suppose |hab| << 1. We know from the standard theory of General Relativity
that, in vacuum, setting a suitable gauge condition we obtain that hab has
to satisfy a wave equation, which is precisely the Einstein equation for small
deviation from the Minkowski metric [13]. It turns out that the general solution
hab, which can be seen as a 4×4 matrix in function of the spacetime coordinates,
can be written in a very useful form, in which only two components, called h×
and h+, are independent and different from zero. In this case, we have:

hab =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (3.28)

in which all the spacetime dependence is in the functions h× and h+, which
are called cross and plus polarizations. Of course the specific form of these
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functions depends on the characteristics of the waves, and in particular on the
source. A binary system of black holes in coalescence, that is the main subject of
our work, actually produces gravitational waves, a point that will be explained
in the next chapter in more details; for now, we cite just the form of h× and h+
in this case, describing the various factor that enter:

h+(t) =
4

r

(GMc

c2

)5/3(πfgw
c

)2/3 1 + cos2 θ

2
cos (2πfgwt+ 2ϕ),

h×(t) =
4

r

(GMc

c2

)5/3(πfgw
c

)2/3
cos θ sin (2πfgwt+ 2ϕ).

(3.29)

In the last formulas, Mc is the chirp mass, a function of the two masses of the
black holes m1 and m2:

Mc =
(m1m2)

3/5

(m1 +m2)1/5
; (3.30)

fgw is the frequency of the gravitational wave; t is actually the retarded time,
which takes into account the fact that gravitational waves travel at a finite speed
(the speed of light) through the space; r is the distance from the center of the
coalescing binary; θ is geometrical quantity which depends on the orientation
of the point of detection with respect to the position of the binary, ϕ is a
constant shift. As explicitly indicated, the dependence in which we focus for
physical application (like the real detection of gravitational waves on Earth or
in the space) is the time dependence, an important point for what follows. It is
clear that the particular kind of gravitational waves we are considering depends
strongly on the characteristic of the source; this can be seen easily for Mc, and
it holds also for fgw, since it turns out to be proportional to the frequency at
which the two components of the binary are orbiting around each other, called
orbital frequency or source frequency fs.
Now, return to the concept of curvature, and specifically to the one of scalars
quantities. As we said, we consider a situation in which the spacetime is almost
flat, and is crossed by gravitational waves produced in some region, probably
far. It means that we are in vacuum, and the simplest scalars we can define
from the tensors we have at hand are again identically zero. Another time, we
look at the Kretschmann scalar K = RabcdR

abcd. Luckily, in the case of nearly
flat spacetime, due to the particular form of the metric and the fact that in the
computations hab is treated as a small parameter, the Riemann tensor assumes
a very simplified form, that can be written as [13]:

Rabcd =
1

2
(∂b∂chad + ∂a∂dhbc − ∂a∂chbd − ∂b∂dhac). (3.31)

We can now compute the Kretschmann scalarK; after some passages, relabelling
some dummy variables, we have:

K = RabcdR
abcd = (∂b∂chad)(∂

b∂chad) + (∂b∂chad)(∂
a∂dhbc)

+ (∂b∂chad)(∂
a∂chbd) + (∂b∂chad)(∂

b∂dhac).
(3.32)
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Now, consider the gravitational waves indicated above. Since we have just two
spatial components different from zero, keeping only time derivatives terms, we
have:

K ∼ (ḧ×)
2 + (ḧ+)

2. (3.33)

This is a very simple result, symmetric in the two polarizations: a property
which makes sense, looking at the form of hab. Plugging the explicit form of
h×(t) and h+(t), we obtain:

(ḧ×)
2 + (ḧ+)

2 =
16

r2c4

(
GMc

c2

)10/3(
πfgw
c

)4/3

(4π2f2gw)
2

×

[(
1 + cos2(θ)

2

)2

cos2(Ψ(t)) + cos2(θ) sin2(Ψ(t))

]
,

(3.34)

where we added the correct power of c to have a dimension of m−4, and Ψ(t) is
the total phase dependent on t. The double derivative had the effect to bring
in front of the function another term ∼ f2gw, then the square produced a total
additional factor ∼ f4gw. Now, we have a scalar dependent on time, in particular
a periodic function: it is common in these situations to take a mean value of
the quantity considered on several periods, indicated by ⟨⟩. In our case, since
we have ⟨cos2(2πfgwt+2ϕ)⟩ = ⟨sin2(2πfgwt+2ϕ)⟩ = 1/2, we get an additional
factor of 1/2 in front of all. Then, we can look at the factor in square brackets,
which depends just on θ. One can integrate over the complete solid angle and
divide by 4π, obtaining the average value of the term which is 4/5. So we obtain:

⟨K⟩ ∼ ⟨(ḧ×)2 + (ḧ+)
2⟩ = 32

5r2c4

(
GMc

c2

)10/3(
πfgw
c

)4/3

(4π2f2gw)
2. (3.35)

The quantity in the last equation represents the mean curvature of spacetime,
in the angle, and in time, due to gravitational waves generated by a coalescing
binary. Here we suppose to be at a fixed, great distance r from the source, in a
region of almost null curvature, as happens in the real cases. Suppose that we
are at a generic point in space, fixing the angle θ. While time is passing, that
space point feels a value of curvature (in our discussion identified with K) which
is periodically varying in time, of which we took the mean value. We underline
that the forms of h× and h+ considered here hold in the case of great distances
compared to the size of the source, so, for example, the case of gravitational
waves emitted by a coalescing binary and detected on Earth. Of course, seeing
the constants that appear in (3.35), we can understand that we need a huge
frequency value fgw to have a mean value of curvature comparable with the
maximal one, if we have L0 ∼ LP . As anticipated, from gravitational waves
moving in a flat spacetime endowed with a minimal length of the order of the
Planck one, the issue of reaching a critical value of K is for now irrelevant.
The discussion above, however, is based on the assumption of nearly flat space-
time: we are expanding the metric around the Minkowskian one, and so the
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predominant part of the metric is flat, giving intuitively that the curvature is
very weak. We know, in any case, that gravitational waves propagate also in a
curved background, for example, a region close to a black hole. In this case, we
have for the metric:

gab = gab,0 + hab; (3.36)

where gab,0 is the constant, leading part of the metric, but different from a flat
one, and hab is, as usual, the dynamical part. We explain briefly what happens
for such a metric. In this case, we still have a wave equation for hab, but the
differential operator associated with its evolution takes into account the pres-
ence of non-vanishing Christoffel symbols [13]. In particular, we will have that
the form of the Riemann tensor is different with respect to (3.31), having part
related to the covariant derivative ∇a. This, in principle, gives a different scalar
K, which depends of course on the particular geometry connected to gab,0. In
practice, now the curvature value associated with K is not near to zero, but
instead is near to the one given by gab,0, and it oscillates periodically around
its mean value, as before. Computing this mean value, now we can truly find a
value higher than the maximal one, since we start from a background curvature
different from zero, which could be also high. The gravitational waves add a
small amount of curvature, depending on their frequency, but this amount can
be enough to reach the maximal curvature.

Instead of searching particular numerical values, we want to finish this part
talking more about the case of a Kretschmann scalar dependent on time. We
take the particular example of a scalar periodic in time, but the central point
of the discussion holds also for a general dependence in time. Let us call this
scalar K(t), which in the case seen above is the Kretschmann scalar without
considering a mean value over time. Now we consider cases of positive values
for K(t) at each instant of time, otherwise we have to consider absolute values.
Suppose for a moment that we have a value of the frequency so high that we
reach a mean value of the curvature which is less than the maximal one, but
close, in the sense that it is almost of the same order, just a little smaller:
⟨K⟩ ≲ Kmax. For the case of gravitational waves propagating in flat spacetime,
we see that it is not easy to have a sufficiently high frequency; however, working
in an already curved spacetime, as explained before, it could happen. Evolving
in time, K(t) will oscillate around its mean value, between its minimum K−
and its maximum value K+. So, at a generic instant of time, we have:

K− ≤ K(t) ≤ K+. (3.37)

Now, suppose that K+ > Kmax; in other words, suppose that, while having
anyway a mean value less than the limiting one, our K(t) reaches values which
are greater than this limiting one, periodically in time. So, while time is passing,
restricting to a period of the wave we actually have that the spacetime curvature
is in an allowed range of values for a certain interval of time, and here we can
still apply the description via the concept of metric, which at most should be
the qmetric, because we are at an order of the radius of curvature which is in
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any case comparable with L0. In the other interval, we are above the limit, and
spacetime has not the standard meaning of a coherent structure describable
by a metric tensor. After an interval of time passed above the limiting level
of curvature, the scalar K(t) will return to values which are less then Kmax,
then it will go to K−, and restart to grow, and this continues periodically in
time. Of course, is not easy to understand completely what it means such
a behaviour; for example, when K(t) is above Kmax, we should think that
the concept of spacetime actually loses its meaning, and consequently also the
concept of time t we are considering for the evolution of K(t). If something
like this phenomenon can happen, even if for now it is probably not common
to deal with such situations, should we think that spacetime returns to its
previous structure after having passed a limit value of curvature, or that it goes
to another configuration, different with respect to the standard one? According
to the effective qmetric description, such circumstances in which Kmax is passed
should not occur.
In any case, in this section we wanted to give a simple method with which
one can characterize a spacetime under study, looking at a limit imposed by a
minimal length. In regions with a curvature much smaller than the maximal, one
can describe spacetime curvature locally with usual tensors, like Rabcd. When
we are in a region with an allowed curvature, but close to the maximal one,
spacetime is describable, but we should look at bitensors instead of tensors,
corrected with the effective qmetric, giving R̃abcd. Over the maximal value,
actually we cannot say anything, since we lose consistency with the quantities
associated with the standard spacetime properties. The qmetric, in any case,
suggests that the curvature, after reached the maximal value, cannot increase
further, giving a sort of frozen behaviour for the spacetime. Schematically, we
can summarize with the following classification:

K << Kmax, K ≲ Kmax, K > Kmax

Rabcd, R̃abcd, ?
(3.38)

with, according to the qmetric description, the case ofK > Kmax being collapsed
to K = Kmax. In this way, instead of bitensors, we consider standard tensors
to classify spacetime regions of allowed curvature, indicating how we actually
need to look at a bitensorial description.

3.3 Hawking radiation with quantum of area

To proceed in our discussion of effective properties given by the introduction of a
minimal length, and consequently, a step in area in a black hole horizon, we now
study the case of a well known phenomenon: the emission of Hawking radiation
[14],[15]. This works as follow: combining a QFT with a curved spacetime
background, we discover the presence of a non-trivial value of temperature for
the black hole, connected with the value of its surface gravity on the horizon.
Due to the presence of this temperature, we observe the emission of particles,
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here considered as scalar fields, with a spectral distribution which is a function
of the particle frequency ω. We recall some basic concepts.
Taking the case of a Schwarzschild black hole of massm, area A = 16πm2G2/c4,
we have, on the horizon, a temperature TH:

TH =
ℏc3

8πmGkB
, (3.39)

inversely proportional to the mass of the black hole. The spectral distribution,
in function of the frequency ω of the field, is found to be:

N(ω) =
1

e
ℏω

kBTH − 1
. (3.40)

This form is found considering, in a first approximation, the effective potential
of the black hole Veff (r) completely negligible. However, this function gives
problems for ω → 0; indeed, we get a divergence. To solve this issue, and obtain
a more physical distribution, one can consider that actually the function above
is obtained considering that all the radiation emitted arrives at infinity; in other
words, we are ignoring possible reflections given by the potential. If we define,
as usual, the two coefficients R(ω) and T (ω) related respectively to the reflection
and transmission of signals of frequency ω, we have of course:

|R(ω)|2 + |T (ω)|2 = 1. (3.41)

In (3.40), since we have not the reflection term, we have |T (ω)|2 = 1, which is
actually at the numerator of the function. In the general case, we would have:

N(ω) =
|T (ω)|2

e
ℏω

kBTH − 1
, (3.42)

where the term |T (ω)|2 is also called grey body factor. Through the technique of
the asymptotic match, it is possible to fix the coefficient, obtaining (G = c = 1):

Ngb(ω) =
16m2ω2

e
ℏω

kBTH − 1
, (3.43)

where now with Ngb we indicate the distribution corrected with the grey body
factor. Now we see that in the limit for ω → 0, the function is well defined,
giving a behaviour linear in ω and then convergent to 0. Now, let us study what
can happen if we add the presence of a quantum in horizon area.
In the standard case, having the emission of radiation by a black body, we
actually have a changing in the mass, and, consequently, of the horizon area.
But since we have a finite step in area, it is not possible to increase continuously
m and A, because we need an amount of energy high enough to produce the
minimal step in area ∆A. Suppose that we consider each particle singularly,
and so having an amount of energy proportional to its own frequency ω. If the
frequency is not high enough, the energy of that particle cannot give a sufficient
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variation of mass, or area, to the black hole. It means that we have, actually,
the effective emission of radiation only starting from a specific frequency which
we call ωcrit. Since our step in area is ∆A = 4πL2

0, in units G = c = 1 we can
factorize out the coefficient which relates the Planck length LP and the minimal
one L0. We have:

∆A = 4πL2
0 = αL2

P = αℏ. (3.44)

Take now the mass-area relation for Schwarzschild black hole: A = 16πm2. In
a variational form, we can say that a small variation of mass δm and a small
variation of area δA are related by:

δm =
δA

32πm
. (3.45)

It means that we also have a step in mass connected to the one in the area,
leading:

δm =
αℏ

32πm
. (3.46)

Suppose we have a quantum particle with a specific frequency ω, that gives
an amount of energy E = ℏω. This particle can be emitted only if, in absolute
value, it gives a variation of mass δm equal or greater than the one in the last
equation. We obtain:

ℏωcrit = δm→ ωcrit =
α

32πm
. (3.47)

This is the form of the critical frequency, at which the black hole is able to emit
or absorb energy. Return now to the spectral distribution N(ω), in its simple
form (3.40).
We can write in a more useful form the exponent at the denominator of (3.40),
defining:

ω0 =
kBTH
ℏ

. (3.48)

In this way, we get:

N(ω) =
1

e
ω
ω0 − 1

. (3.49)

It is interesting to note that the ratio ωcrit/ω0 is independent on the mass of
the black hole, depending only on the parameter α:

ωcrit
ω0

=
α

4
. (3.50)

Consequently, we have that, changing the mass of the black hole, we can change
the value of TH and also the value of the frequency at which we start to have
emission, but the value of the density of particles emitted at that frequency
remains the same:

N(ωcrit) =
1

e
α
4 − 1

. (3.51)
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Figure 3.1: Graph of the function Ngb(x).

If we consider the addition of the transmission coefficient, we have another time
that N(ωcrit) depends just on α. Indeed:

|T (ωcrit)|2 = 16m2ω2
crit =

α2

64π2
, (3.52)

and we arrive at:

Ngb(ωcrit) =
α2

64π2

1

e
α
4 − 1

. (3.53)

It could be useful to have a graph of Ngb(ω). Setting x ≡ mω, we can see the
behaviour in Figure 3.1.

Consider the addition of the critical frequency ωcrit. We can understand
that, for the discussion above, the emission of radiation for frequencies in the
range [0;ωcrit) is suppressed, and the function should be modified in the form.
We call the corrected distribution function, including the grey body factor,
Ngb,α(ω). Following a naive modification, we can initially think that the effective
distribution now takes the form:

Ngb,α(ω) =

{
0 if ω < ωcrit,

Ngb(ω) if ω ≥ ωcrit.
(3.54)

Here, we have explicitly wrote the label α to remember that the effective mod-
ification is controlled by the value of this parameter. Since we are cutting an
entire piece of the function, setting it to zero, also an entire piece of the graph
and of the subtended area in the figure is now forced to be identically zero. It
is clear, now, that depending on the value of ωcrit, we can have a large range
of frequencies in which the emission is suppressed. Since we see clearly that we
deal with only a maximum point, to understand more quantitatively when it
happens that we have the bigger part of the emission suppressed, we can take
as a reference point the position of the maximum value, which we call ωmax. In
practice, we want to know when is satisfied the condition:

ωcrit > ωmax. (3.55)
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The first point is to understand what is the value ωmax. Let us compute the
derivative of Ngb(ω):

N ′
gb(ω) =

32m2ω

e
ℏω

kBTH − 1
− 16m2ω2(

e
ℏω

kBTH − 1
)2 . (3.56)

We should impose N ′
gb(ω) = 0, and solve for ω. However, we see easily that this

is not an equation solvable analytically. To find at least an approximated value,
we should proceed numerically. Before that, nevertheless, we try to understand
by hand what is the value of ωmax, then we can compare with the more precise
value found numerically. Our procedure is simple: recall that we can write the
exponent with the help of ω0, as in (3.49). From a certain point of view, ω0 is
a sort of characteristic frequency of the distribution. Try to consider values of
ω which are multiples of ω0. Start with ω0 itself, and plug into the derivative
N ′
gb(ω). Easily we can see:

N ′
gb(ω0) > 0, (3.57)

so the value ωmax is after ω0. Now we try with 2ω0. Plugging in the derivative,
we see:

N ′
gb(2ω0) < 0, (3.58)

meaning that ωmax is before 2ω0. Naively, we can suppose that the position of
ωmax is almost in the middle of this range, and we take the indicative value:

ω′ =
3

2

kBTH
ℏ

= 1.5ω0. (3.59)

This is obtained from a very naive procedure, looking just at the form of the
graph and the sign of N ′

gb(ω). Now, if we solve numerically the equation
N ′
gb(ω) = 0, we actually find for the value of ωmax:

ωmax = 1.5833ω0 ≃ 1.6ω0. (3.60)

We see, then, that this value is not so far from the one found before. Now we
can solve the inequality ωcrit > ωmax; substituting the form of TH, we have:

α

32πm
>

1.5833

8πm
→ α ≳ 6.3. (3.61)

For such a value of α, then, we have a big suppression of Hawking radiation.
In literature, there are different proposals for the constant α [9]; in this work,
we will focus essentially on four possibilities: α = 4 ln 2, α = 4 ln 3, α =
4π, α = 8π. The last two values are bigger a lot compared to the one in the
last inequality; in these cases, the position of the value of ωcrit is probably far
from ωmax, and the great part of the Hawking radiation is cut. Consequently, if
we deal with such values for α, to detect Hawking radiation will be even more
difficult than the standard case, because, in addition to the probably small value
of the horizon temperature (for macroscopic black holes), we are left, due to

50



Figure 3.2: The graph of Ngb,α(x) in a first approximation.

effective quantum corrections, just with a small part of the complete radiation.
Now, we can think that the form of Ngb,α(ω) we are considering takes into
account drastically the effects of quantization: our function now has two pieces,
one identically equal to zero, the other following the standard distribution. We
can see this in the graph of Figure 3.2.

We could want to define a function which, taking into account quantum ef-
fects, is modified also in the shape and in the behaviour, giving in any case a
distribution equal to zero before the frequency ωcrit. However, such a distribu-
tion derives probably from a complete quantum theory of spacetime applied to
the case of Hawking radiation. Nevertheless we can try to write down at hand
some modified version of the function, and see if could make sense to study a
modified spectral distribution. In practice, still considering (3.54), we change
the function Ngb(ω) in the second line, looking for a less drastic alternative.
One possibility is to do the replacement ω → (ω − ωcrit), keeping in any case
the complete function equal to zero until we arrive at ωcrit. In this way, we con-
serve precisely the original behaviour, but shifted in ω by an amount of ωcrit.
However, in this case the integral of the function from zero to infinity would
be unchanged, meaning that the total power emitted remains the same. This
seems to be unphysical, since we are actually cutting a part of the emission, and
not redistributing it.
Before considering reflection effects, the transmission coefficients was equal to 1,
with all the radiation going to infinity. After the introduction of not negligible
reflections, we got a value |T (ω)|2 = 16m2ω2. It is clear that our consider-
ations impacts precisely on this coefficient, and in a first approximation the
modification was:

|T (ω)|2 → θ(ω − ωcrit)|T (ω)|2. (3.62)

So, to have a lighter changing, instead of a Heaviside theta we can define a
general function f(ω), which modifies the transmission coefficients with some
suitable conditions:

|T (ω)|2 → f(ω)|T (ω)|2, f(ω) = 0 for ω ∈ [0;ωcrit). (3.63)

Now, in finding the form of |T (ω)|, being interested in a correction that avoids
divergencies around ω = 0, an expansion for small frequencies was applied.
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Since we are in any case considering a |T (ω)| derived for small ω, we can follow
the same strategy, considering the function f(ω) expandable for small values of
ω, getting:

f(ω) ≃ a+ bω; (3.64)

with the parameters a and b to be determined imposing some conditions.
We can, for example, require that in approaching ωcrit both the function Ngb,α
and its derivative go to zero. This would give as a consequence a very smooth
behaviour; in addition, we also get probably another maximum value different
from the one found before. Since in this case we are forcing the distribution
function to be zero in the critical frequency, we are also losing the feature seen in
the discussion above, for which we got that Ngb(ωcrit) is dependent on α only.
In order to keep this characteristic information, we want to propose another
kind of modification, based on different conditions. We demand that at ωcrit
we still have the value computed above, namely:

Ngb,α(ωcrit) = Ngb(ωcrit). (3.65)

Then, demanding that the emission starts with the same density of particles at
that frequency, we also try to demand that the emission starts smoothly, and
we require:

N ′
gb,α(ωcrit) = 0. (3.66)

These two conditions are enough to fix the values of a and b. The first condition
translates into:

(a+ bω)|ωcrit = 1 → a = 1− bωcrit. (3.67)

So we have:
(a+ bω) = 1 + b(ω − ωcrit). (3.68)

For the second condition, having found a in function of b, we substitute and
compute the derivative. Imposing it equal to zero for ω = ωcrit, we get b:

b =
1

ω0

e
ωcrit
ω0

e
ωcrit
ω0 − 1

− 2

ωcrit
= 8πm

(
e

α
4

e
α
4 − 1

− 8

α

)
. (3.69)

Consequently, for a:

a = 1− bωcrit = 3− α

4

e
α
4

e
α
4 − 1

, (3.70)

completing the first order form of f(ω).
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Chapter 4

Minimal length and
quantum of area: tidal
heating

In this section we present the main subject of our work, the coalescence of two
black holes, and we discuss the effects which take place in this dynamics due
to the presence of a quantum of area for a black hole: in particular, we will
focus on an important phenomenon, the tidal heating. Despite the fact that the
quantization of the area, derived from a minimal length L0 ∼ LP , scales as L

2
0,

and so is expected to have an incredibly small magnitude, it turns out that in
some physical processes it can leave a signature also at a macroscopical level,
which, connected to basic parameters of the system, can also be observed. The
coalescence of a binary of black holes is one of these cases.
Classically, the dynamics of a coalescing binary is divided in three parts: the
first, called the inspiral part, is the one in which the two compact bodies or-
bit around each other, at a distance which is big compared to a characteristic
size of both the two objects (for example, this characteristic size can be the
Schwarzschild radius in the case of non rotating black holes); the second, called
merging (plunge), is the one in which, naively speaking, starts the fusion be-
tween the two black holes, and it takes place when the separation between the
two bodies approaches the characteristic size of them and strong field effects
can not be neglected; the third is called ringdown and is the last part of the
dynamics, in which a final Kerr black hole is formed by the initial two, and emits
a specific spectrum of gravitational waves before reaching stability. A complete
study of the coalescence of a binary is an extremely hard task, which requires to
take into account the full (non-linear) structure of General Relativity and the
application of the right formalism for each part of the dynamics. However, our
interest is specifically in one of the effect that takes place during the inspiral
phase: the tidal heating, which is the absorption of gravitational waves, emitted
by the binary, by the companions of the binary itself ([16], [17], [18]). For this
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reason, we will focus just on this part, eventually mentioning some properties
of the other phases.
In order to have, at least, a classical and simplified picture of the problem, we
begin by describing the dynamics of the two black holes from a completely New-
tonian point of view, meaning that we consider simply two pointlike particles
orbiting around each other. This extremely simplified study will actually be the
basis for all the corrections. We give then a brief explanation about the formal-
ism we need, which is the Post-Newtonian formalism, in which corrections to
the zero-order Newtonian dynamics arises as v/c series in the analytical expres-
sions of the quantities which characterize the system, like the orbital energy and
the emitted power. Then, we look at the laws of black hole mechanics, briefly
mentioning the change on the parameters of each of the black holes during the
inspiral phase. We proceed by explaining how the presence of a step in area
changes strongly the classical picture, and we underline the signature of this
modification present in the gravitational waves signal. We will give particular
emphasis to the modification in observable quantities, for example the gravita-
tional wave phase. Subsequently, we compare the magnitude of these effects to
the one of another well known physical effect, the Hawking radiation, finding
an interesting result regarding the comparison of two quantum effects in curved
spacetime. Also some numerical values of the quantities involved are given, tak-
ing specific cases of the parameters involved, for example, suitable initial masses
ratio.

4.1 Newtonian inspiral of compact binaries

We follow essentially the discussion of Chapter four of [13]. For now, we also
restore the constants G and c.
Consider the case of two pointlike bodies in the empty space, with masses m1

and m2 and positions r1 and r2. Going to the center-of-mass frame (CM), the
dynamics reduces to a one-body problem:

r̈ = −GM
r3

r; (4.1)

where:
µ ≡ m1m2

m1 +m2
, M ≡ m1 +m2, r ≡ r2 − r1, r ≡ |r| (4.2)

are, respectively, the reduced mass, the total mass, the relative coordinate and
the distance between the two bodies. For simplicity, we consider the case of
circular orbits; also in the Post-Newtonian treatment, actually, is considered
often the case of quasi-circular orbit, due to the fact that in the typical dynamics
of the system, effects of circularization of the orbit are present.
Considering the orbital frequency ωs and the orbital radius R, we can write the
relation v2/R = GM/R2, with v = ωsR, and via the Kepler law:

ω2
s =

GM

R3
. (4.3)
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This system has been studied from the point of view of the production of grav-
itational waves, as it is one of the simplest physical system from which we have
such a production. We simply recall the main results. First, we recall the
chirp mass:

Mc ≡ µ3/5M2/5 =
(m1m2)

3/5

(m1 +m2)1/5
, (4.4)

which is useful to write compactly some results. Recalling the basic features
about gravitational waves present in Chapter two, we know that the gravita-
tional wave signal is encoded in hab. The form of hab is largely simplified in the
DeDonder gauge, and in the form of plus and cross polarizations, as we have
seen. We have, in time dependence:

h+(t) =
4

r

(GMc

c2

)5/3(πfgw
c

)2/3 1 + cos2 θ

2
cos (2πfgwt+ 2ϕ), (4.5)

h×(t) =
4

r

(GMc

c2

)5/3(πfgw
c

)2/3
cos θ sin (2πfgwt+ 2ϕ). (4.6)

As before, t is the retarded time, and the gravitational wave frequency is fgw.
We recall that, in the quadrupole approximation, for the relevant mode holds
fgw = 2fs, with fs = (ωs/2π) the orbital frequency. In the following we will
work essentially in that approximation.
We recall also the power radiated in gravitational waves, per unit solid angle:

dP

dΩ
=

2c5

πG

(GMcωgw
2c3

)10/3
g(θ); (4.7)

where

g(θ) =
(1 + cos2 θ

2

)2
+ cos2 θ. (4.8)

Another time, we want to look at quantities like (4.5) and (4.6) after taking the
mean value over a long time scale compared to the characteristic period of the
wave. We know that ⟨cos2(2ωt + 2ϕ)⟩ = ⟨sin2(2ωt + 2ϕ)⟩ = 1/2, independent
of ϕ. The angular distribution of the radiated power, which is proportional to〈
ḣ2+ + ḣ2×

〉
, is then independent of ϕ. Recalling also the angular average of the

factor g(θ), which gives: ∫
g(θ)

4π
dΩ =

4

5
, (4.9)

we have, for the total radiated power:

P =
32c5

5G

(GMcωgw
2c3

)10/3
. (4.10)

This is, actually, the Newtonian picture with the additional emitted power due
to the presence of gravitational waves: indeed, without explicitly mentioning
this, we have already corrected the complete Newtonian version of the problem,
simply introducing P .
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If we have an energy emitted to infinity, however, we have a loss of energy by the
binary system. The source of the radiated energy should be the total energy of
the system, which is the sum of the kinetic and potential energies of the orbit,
namely:

Eorbit = Ekin + Epot = −Gm1m2

2R
. (4.11)

Looking at the previous, since we must have the conservation of the total energy,
it is clear that emitting (positive) energy via gravitational waves, the orbital
energy must decrease, in the sense that it becomes more and more negative, but
this means that R has to decrease in time, since we are considering fixed the
two masses. Looking at (4.3), if R decreases, ωs increases. If ωs increases, from
(4.10) we see that it increases the radiated power. We have, so, a sort of ripple
effect, in which the emitted energy continuously increases, and R continuously
decreases. This, on a sufficiently large scale of time, will lead the system to the
plunge, a sort of a fusion between the two black holes, and in general to the
phenomenon of coalescence. It is remarkable that we can see this behaviour just
considering the Newtonian version with the addition of an emitted power due
to gravitational waves.
Let us now look at (4.3). We see that the radial velocity Ṙ can be written also:

Ṙ = −2

3
R
ω̇s
ωs

= −2

3
(ωsR)

ω̇s
ω2
s

. (4.12)

As long as the condition ω̇s << ω2
s is satisfied, |Ṙ| is much smaller than the

tangential velocity ωsR, and so we can treat the orbit as a circular one with a
slowly varying radius. Working in this condition, we study a first approxima-
tion of the back-reaction of GWs, searching explicit laws of the quantities that
characterize the system, for example the frequency. We can write the orbital
energy introducing ωgw instead of R, obtaining:

Eorbit = −
(G2M5

c ω
2
gw

32

)1/3
. (4.13)

Now, balancing the energy, we write:

P = −dEorbit
dt

; (4.14)

and we have:

ω̇gw =
12

5
21/3

(GMc

c3

)5/3
ω11/3
gw . (4.15)

Substituting fgw = ωgw/2π and integrating, we get a function fgw(t) which
diverges at a certain finite value of t, which is identified as the time of coalescence
and which we call tcoal. We introduce, then, a new time coordinate τ ≡ tcoal−t,
called time to coalescence; in terms of this, we have:

fgw(τ) =
1

π

( 5

256τ

)3/8(GMc

c3

)−5/8

. (4.16)
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It is useful to work with τ because we can read easily the divergence of the
frequency value at τ = 0. We can also insert numerical values and a mass of
reference, which is often the solar mass M⊙ ≈ 1.98 × 1030 kg, to have an idea
of the order of magnitude. We have then:

fgw(τ) ≃ 151 Hz
(M⊙

Mc

)5/8(1 s
τ

)3/8
. (4.17)

Inverting this equation for τ , we can see at which instant of time before the
coalescence corresponds a certain frequency. Taking the case of Mc = 1.21M⊙
(which corresponds for example to a binary of two stars each one of 1.4M⊙),
we have: a radiation of about 10 Hz, which is the order of the lowest frequen-
cies accessible to ground-based interferometers, is emitted at τ = 17 min to
coalescence; radiation of about 100 Hz is emitted at 2 seconds to coalescence;
a 1000Hz radiation is emitted around the last few milliseconds. Looking also
at (4.3), we can see that the separation between the two bodies in the case of
m1 = m2 = 1.4M⊙ when the emitted frequency is 1kHz is R ≈ 33 km. This
order of distances can be reached, for example, by neutron stars or black holes,
but at such distances we are actually close to the phase at which the two bodies,
in our case black holes, start to feel the reciprocal strong field; in other words,
at these scales they are approaching the plunge phase.

We can compute also the evolution of the orbital radius. From (4.15),(4.12)
and (4.3), we have (the dot means derivation with respect to t):

Ṙ

R
= −2

3

ω̇gw
ωgw

= − 1

4τ
, (4.18)

and integrating in τ :

R(τ) = R0

( τ
τ0

)1/4
= R0

( tcoal − t

tcoal − t0

)1/4
; (4.19)

where R0 is the value of R at the initial time t0, and τ0 = tcoal − t0. This
function decreases very smoothly for a long time range, which is consistent with
our approximation of quasi-circular orbits. Then, it starts to decrease rapidly,
close to the value tcoal, which signals the beginning of the plunge phase. Looking
at (4.3) and (4.16), we can also find the relation between the initial value of the
radius R0 and the time to coalescence τ0, which leads:

τ0 =
5

256

c5R4
0

G3M2µ
. (4.20)

An important parameter to take trace of the gravitational wave signal is the
number of cycles spent by the gravitational wave in the detector bandwidth.
Usually, we can take trace of the signal between two frequencies fmin and fmax:
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fmin is the lowest accessible frequency, which in our cases is around 20 Hz;
fmax is the frequency at which we stop to count cycles, that it could be taken
as the frequency at which the phase under study ends and the next is starting.
Supposing that the period T (t) of the wave is a slowly varying function of time,
we can write that the number of cycles in a small time interval dt is:

dN =
dt

T (t)
= fgw(t)dt, (4.21)

and for the total number we have so:

N =

∫ tmax

tmin

fgw(t)dt =

∫ fmax

fmin

fgw
˙fgw
dfgw, (4.22)

where tmin and tmax are the instants of time corresponding to the two fre-
quencies we are considering. For practical measurements, this is a very useful
quantity, and to have a precise theoretical predictions we need an accurate
study of the gravitational waveform, in particular of the accumulated phase Φ.
In fact, this will be one of the principal tasks of our work. Let us give a first
description of the waveform. Consider a particle moving in the plane (x, y) on
a quasi-circular orbit, with radius R(t) and angular velocity ωs(t); this particle
has Cartesian coordinates given by:

x(t) = R(t) cos
(Φ(t)

2

)
, (4.23)

y(t) = R(t) sin
(Φ(t)

2

)
; (4.24)

where Φ(t), since the frequency is varying, is given by an integral:

Φ(t) = 2

∫ t

t0

ωs(t
′)dt′ =

∫ t

t0

ωgw(t
′)dt′. (4.25)

In principle, in computing GW production from the relations deriving from the
quadrupole approximation, we should consider that: ωgw is not constant but is
a function of time; R also is not constant and so there are contributions from
its derivatives, and, in the arguments of the trigonometric functions, instead
of ωgwt we have to put Φ(t). However, we work in the condition ω̇s << ω2

s ,
and in practice, in a considerable range of frequencies, we can neglect terms
proportional to Ṙ(t) or ω̇s(t). Moreover, the frequencies at which we should
start to consider such contributions turn out to be of the order of 10 kHz, which
are after the order of frequencies at which plunge phase begins. So, in practice,
we just substitute ωgwt with Φ(t) in the trigonometric functions and ωgw with
ωgw(t) in the prefactor. All these quantities will be actually evaluated at the
retarded time. Having the frequency as a function of τ , we can find that Φ(τ)
is:

Φ(τ) = −2
(5GMc

c3

)−5/8

τ5/8 +Φ0. (4.26)
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Here Φ0 = Φ(τ = 0) is the value of Φ at coalescence. Since we are interested in
the radiation emitted in the direction from the bodies toward us, we introduce
the angle γ as the angle between the normal to the orbit and the line-of-sight.
Expressing the two polarizations of the wave in terms of γ and τ , we get:

h+(τ) =
1

r

(GMc

c2

)5/4( 5

cτ

)1/4(1 + cos2 γ

2

)
cos(Φ(τ)), (4.27)

h×(τ) =
1

r

(GMc

c2

)5/4( 5

cτ

)1/4
cos γ sin(Φ(τ)). (4.28)

We already said the the frequency of the wave tends to a divergence approach-
ing the time of coalescence; now we can see that this feature holds also for the
amplitude. This behaviour is called chirping.
To compare experimental data with the theoretical waveform, however, requires
the Fourier transform of the wave amplitude. To compute such a Fourier trans-
form could be not so easy, because our functions h+, h× are defined only in the
region −∞ < t < tcoal. The result turns out to be (here with a tilde we indicate
the transform):

h̃+(f) =
( 5

24

)1/2 1

π2/3
eiΨ+(f) c

r

(GMc

c3

)5/6 1

f7/6

(1 + cos2 γ

2

)
, (4.29)

h̃×(f) =
( 5

24

)1/2 1

π2/3
eiΨ×(f) c

r

(GMc

c3

)5/6 1

f7/6
cos γ. (4.30)

The two phases in the exponents are related by Ψ× = Ψ+ + π/2 and:

Ψ+(f) = 2πf
(
tc +

r

c

)
− Φ0 −

π

4
+

3

4

(GMc

c3
8πf

)−5/3

. (4.31)

The phase of the wave is one of the most important objects of our study, because
the effect due to quantization of the area of a black hole imprints the form of
this phase, leaving an observable effect of this quantum correction. We will give,
in the following sections, the Post-Newtonian correction to this phase function,
with the other PN-corrected quantities related to the binary inspiral.
As we said, our discussion makes sense until we approach a specific orbital fre-
quency, corresponding to a value of the distance between the two bodies at
which our strong field effects are no longer negligible. Indeed, in our treatment
we did not consider any modification of the dynamics due to a modified back-
ground geometry in which the bodies are moving. For our discussion, is crucial
to understand how can be identified this characteristic scale. In order to give
just an idea, we now consider the case of two Schwarzschild black holes orbiting
in a quasi-circular orbit, with a decreasing separation R(t). In the Schwarzschild
geometry, in the limit of a test mass (so one of the two bodies is much lighter
than the other), there is a minimum value of the radial distance beyond which
stable circular orbits are not allowed; this limit orbit is called Innermost Stable
Circular Orbit (ISCO). Taking usual coordinates (t, r, θ, ϕ), the location of this
rISCO is:

rISCO =
6GM

c2
, (4.32)
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with as usual M the total mass. So, our discussion takes place in a regime in
which r ≥ rISCO. From the Kepler law (4.3), we see that the corresponding
source frequency fs is:

fs,ISCO =
1

12π
√
6

c3

GM
. (4.33)

We can insert numerical values and get:

fs,ISCO ≈ 2.2 kHz
(M⊙

M

)
. (4.34)

This means that, if we take for example the case of a BH binary with total mass
M = 20M⊙, we obtain fs,ISCO ≈ 110 Hz. Actually, we are precisely interested in
the case of two black holes with similar mass, with almost m1 ≈ m2 ≈ 10M⊙, so
this order of magnitude could be relevant, even if this is the case of Schwarzschild
black holes, and in a real coalescence, each of the two black holes is spinning,
so we need to consider Kerr geometries. We present also the energy spectrum
in the inspiral phase, in frequency domain:

dE

df
=
π2/3

3G
(GMc)

5/3f−1/3, (4.35)

which, after integration up to a maximum value fmax, gives the total energy
radiated:

∆Erad =
π2/3

2G
(GMc)

5/3f2/3max. (4.36)

In numerical value, setting fmax = 2fs,ISCO for the quadrupole approximation,
we have that the total radiated energy during inspiral depends just on the
reduced mass of the system:

∆Erad ≃ 8× 10−2µc2, (4.37)

that is a huge amount of energy. Actually we can also make the computation
from another point of view: in the Schwarzschild metric, the binding energy of
the ISCO is given by:

Ebinding,ISCO =
(
1− 2

√
2

3

)
µc2 ≃ 5.7× 10−2µc2, (4.38)

and this is the energy emitted by the inspiraling binary from a large distance
of separation to the ISCO one. The PN correction to this binding energy are of
the order of a few per cent. So, this first computation gives in any case correct
orders of magnitude.

4.2 PN expansion and templates for inspiral bi-
naries

We now present a brief explanation about the concept of Post-Newtonian ex-
pansion (PN expansion), which is the mathematical structure implemented to
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study systems like coalescing binaries of black holes or neutron stars. In such
systems, the dynamics is governed by gravitational force, and for this reason
they are called self-gravitating. In our work, we will refer just to the analytical
results which derive from this approach applied to the case of a coalescing black
holes binary; for a complete treatment of the PN expansion we remand to [13],
[16].
For a self-gravitating system with total mass M , we have:(v

c

)2
∼ 2GM

c2d
=
RS
d
, (4.39)

with v the orbital velocity and d a typical size of the system; in the case of a
binary, is the orbital distance. Actually, RS/d gives a measure of the strength of
the gravitational field near the source, so an expansion in powers of v/c should
be associated to an expansion in RS/d, and so a deviation from the case of
non-relativistic speeds should be associated to a deviation from the case of flat
spacetime background. This means that we deal with cases in which (v/c)2

and RS/d are comparable; in this approach, are considered slowly-moving and
weakly self-gravitating sources of gravitational waves, where the two previous
parameters are small, comparable but not negligible. We will also consider that
the matter energy-momentum tensor of the source, T ab, has a compact sup-
port. As in the case of electromagnetism, it is usual to distinguish between two
regions: the near zone and the far zone. They are defined as follow. The
reduced wavelength of the radiation emitted λ̄ is larger than d by a factor of
(c/v), so supposing that (v/c) is small we have d≪ λ̄. The near region is defined
as the region in which r ≪ λ̄, and it is possible to identify also a subregion,
called exterior near zone, in which d < r ≪ λ̄. In the near region retardation
effects are negligible, and almost we have static potential. Here, a PN expansion
in powers of (v/c) is consistent. The far zone is the defined by the condition
r ≫ λ̄. Here, retardation effects are important, and this is the region in which
the observed waves take place. A modified approach is required, basically im-
plemented via considering Minkowski spacetime. The near and far regions meet
in an intermediate region of superposition, in which r ∼ λ̄. From an initial anal-
ysis of the problem, we could think that we can correct the equation of motion
of the sources at the decided order of (v/c), and then compute the corrected
GW production by these sources. However, due to the complex structure of
the theory (in particular its non-linearity), it is not consistent to split in two
steps this procedure: the emission of gravitational waves costs energy, and at
a certain order the back-reaction of GWs on the sources is not negligible and
affects their equation of motion. Moreover, the gravitational field can be itself
a source of gravitational waves, and the GWs computed at a certain order in
(v/c) will be the source of other GWs at higher orders (this is a typical effect
in a non-linear theory).

The Post-Newtonian approximation starts with the following expansion of
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the metric:

g00 = −1 + g
(2)
00 + g

(4)
00 + g

(6)
00 + ...,

g0i = g
(3)
0i + g

(5)
0i + ...,

gij = δij + g
(2)
ij + g

(4)
ij + ...;

(4.40)

where g
(n)
ab means that the term is of order (v/c)n ≡ ϵn in the expansion. Simi-

larly, the energy-momentum tensor is expanded as:

T 00 = T 00,(0) + T 00,(2) + ...

T 0i = T 0i,(1) + T 0i,(3) + ...

T ij = T ij,(2) + T ij,(4) + ....

(4.41)

These expansions are motivated by symmetries considerations. Now, in the
previous section we saw what is, from a Newtonian point of view, the binary
evolution. We can say that this is the case of the Newtonian limit of the complete
metric, which can be identified with the first order of the expansion above. We
can think that, if we try to expand at higher orders the metric and the energy
momentum tensor, we get corrections to the evolution of the main parameters
of the binary in power of (v/c), dependent on the order at which we stop our
expansions. This is the main concept of the PN expansion, and in our work
we will look at forms of the various parameters of the binary at a certain order
in (v/c) (or, adimensionally, v), which are called templates. In particular, our
focus will be on the flux of energy in function of the dimensionless velocity v,
indicated with F (v). Now, there is an important point to underline. In the
evolution of the motion, we saw that are emitted gravitational waves, which
carry energy from the binary to infinity. This is precisely the flux mentioned
above, which can be called F∞(v). However, going through higher orders in the
expansions, so, to higher powers of v, we have another contribution to the energy
flux, which does not go to infinity but instead it is directed to the horizons and
absorbed by the two black holes. This is called FH(v). This is connected to the
presence of a back-reaction in the system: the emission of gravitational waves
impacts on the horizons, modifying the parameters of the black holes and also
the evolution of the system. This is called tidal heating. Being an effect which
appears at a (relative) high order in v, it is completely absent in the first terms
of the expansion. The total flux of energy out of the orbital energy is therefore
F (v) = F∞(v) + FH(v). In the following, we give the templates of both these
fluxes of energy, which are taken from [19] (here, we set G = c = 1):

F∞(v) =
32

5
η2v10

[
1−

(
1247

336
+

35

12
η

)
v2 + (4π + FSO)v

3

]
,

FH(v) =
32

5
η2v10

[
− Ψ5

4
v5 +

Ψ8

2
v8

]
,

(4.42)
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where:
η ≡ m1m2

M2
, v = (πMf)1/3. (4.43)

In η, m1 and m2 are as usual the masses of the black holes, and M = m1 +m2;
in the definition of v, f is the instantaneous frequency of the gravitational
waves emitted. Ψ5 and Ψ8 are factors related to the changing in the masses of
the black holes, with their complete form given in the appendix, and FSO is a
spin-orbit term which is taken from [20]. They are dependent, in general, on a
dimensionless ratios for each black hole, χi ≡ Ji/m

2
i . Near to these expansions

we have, of course, the one of the orbital energy, which for consistency is another
time in function of the (dimensionless) relative velocity [19]:

E(v) = −η
2
v2

[
1− 9 + η

12
v2

]
. (4.44)

An interesting fact is that, having the expansions above at a certain order in v,
we can compute the accumulated phase ψ(v) of the gravitational waves emitted
[21]. It works as follow. Take the definition of v given above, and consider the
relation between the instantaneous frequency f and the variation of the orbital
phase:

dϕ

dt
= πf. (4.45)

Consider also the energy balance equation:

dE(v)

dt
= −F (v). (4.46)

Combining these, we can write:

ϕ(v) = ϕc −
∫ v

vi

dv̄v̄3
E′(v̄)

F (v̄)
, (4.47)

where ϕc and vi are constants. Recalling that the only multipole mode of the
gravitational waves considered is the one with m = 2, we know that:

h(t) = A(t) cos (ϕgw(t)), (4.48)

with A(t) is a slowly varying in time amplitude. The Fourier transform of the
waveform is then:

h̃(f) = B(f)eiψ(f). (4.49)

Here B(f) is a prefactor dependent by the frequency, and ψ(f) is the phase, for
which, in the stationary phase approximation, holds:

ψ(f) = 2πft(v)− 2ϕ(v)− π

4
. (4.50)

We can also find an useful parametrization for the time t(v) in function of v,
another time using (4.45),(4.47):

t(v) = tc −
∫ v

vi

dv̄
E′(v̄)

F (v̄)
. (4.51)
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Combining the last equations, we get the form of the phase in the frequency
domain, in which we write explicitly the dependence on v:

ψ(v) =
2tcv

3

M
− 2ϕc −

π

4
− 2

∫ v

vi

dv̄(v3 − v̄3)
E′(v̄)

F (v̄)
. (4.52)

This is an important object in our discussion: the first three terms are constant,
so we will focus on the term dependent on the integral. This term can be called
δψ(v) and for which we can write:

δψ(v) = −2

∫ v

dv̄(v3 − v̄3)
dE(v̄)

dv̄

1

F∞(v̄) + FH(v̄)
. (4.53)

Now, we can see, looking at the templates given above, that the two fluxes F∞
and FH have very different orders in v:

F∞(v)

FH(v)
∼ v−5, (4.54)

so we could expect that the contribution to the phase from tidal heating is
small compared to the one from the flux at infinity. However, in general is not
negligible. We can identify the various contribution inside δψ(v). We write:

δψ(v) = δψPP(v) + δψTH(v), (4.55)

where we distinguish the point particle contribution, so without effects of ab-
sorption by the presence of an horizon, and the tidal heating contribution.
There are different references which give the form of both of these phase contri-
butions [16, 22]; in our discussion, we compute δψPP(v) neglecting completely
the flux to the horizon in the denominator in (4.53), so our form could differ
a bit with respect to some other found in references. In any case, this is done
just to give an example of the orders of magnitude, since our focus is, instead,
δψTH(v), which is computed expanding the denominator in the integral of δψ(v)
and considering just first order contributions coming from FH(v). This is done
because, since we are working with expansion in v, could be not consistent to
neglect completely a term with lower powers of v keeping terms which are of
higher order. In doing this we follow essentially [19]. The details of the compu-
tation will be shown in the appendix.
We now want to specify that, in the entire work, if it is not specified differently,
we look at the case in which m1 = m2, and so M = 2m1 = 2m2. Changing
a bit the notation, we will call the single mass of each black hole simply M/2.
Moreover, when we study the case of Kerr black holes, which actually is the case
closer to the physical system in the known universe, we will always assume, if
not specified differently, that the two spins of the black holes are aligned each
other, and aligned with the orbital angular momentum; moreover, for the ratios
χi, we assume that χ1 = χ2. Combined with the condition of equal masses,
we get that J1 = J2. For simplicity, however, let us begin from the case of
Schwarzschild black holes, and compute both δψPP(v) and δψTH(v).
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4.2.1 Templates of δψ(v) for Schwarzschild black holes with
equal masses

Let us start computing the term δψPP(v).
Starting from (4.53), in the term containing the fluxes functions we set:

η =
m2m2

M2
=

1

4
, FH(v) = 0. (4.56)

Since this is the case of two black holes with spins equal to zero, we have also,
as we can see in the appendix:

FSO = 0, Ψ5 = 0, Ψ8 =
1

4
. (4.57)

We obtain:

1

F∞(v̄)
=

5

2v̄10
[
1−

(
1247
336 + 35

48

)
v̄2 + 4πv̄3

] ≃ 5

2v̄10

[
1 +

373

84
v̄2 − 4πv̄3

]
,

(4.58)
in which we have approximated the fraction, considering the term dependent in
v small compared to 1. On the other hand, we have for the orbital energy:

dE(v̄)

dv̄
= − v̄

4

(
1− 37

24
v̄2

)
. (4.59)

Now we plug in this expansions in the definition of δψPP(v) given above, getting:

δψPP(v) = −2

∫ v

dv̄(v3 − v̄3)

(
− v̄

4

(
1− 37

24
v̄2

))(
5

2v̄10

[
1+

373

84
v̄2 − 4πv̄3

])
.

(4.60)
Making the integration for a generic v, we obtain the general form of the shift
of the phase δψPP(v):

δψPP(v) = −185π

24
ln(v)− 185π

72
− 69005

10752

1

v
− 3π

2

1

v2
+

2435

4032

1

v3
+

3

32

1

v5
. (4.61)

Beside this contribution, we have the one coming from the total flux, and to
compute that, as we said, we consider the horizon flux term FH(v) small com-
pared to F∞(v). Then, we isolate the contribution of the tidal heating alone,
identified in the expansion. Starting from the general form (4.53), we have, for
the fraction in the integral, the substitution:

1

F∞(v̄) + FH(v̄)
→ − 5

16

1

v̄2
; (4.62)

then for δψTH(v) we have:

δψTH(v) ≃ −5v3

96

(
3 ln(v)− 1

)
+

37

512
v5. (4.63)
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Of course, since the quantities computed derive from expansions stopped at a
certain PN order, they have still the meaning of expansions of a precise order in
v, but we kept all the orders deriving from the integration, without neglecting
pieces in the middle steps. Often in our discussion, instead of the precise form
of the functions we work with, we are interested in order of magnitude of the
parameters of the binary, and in comparing them.

We recall that, since our study is focused on the inspiral phase, we know
that the discussions we make are consistent only up to a certain frequency of
the source (binary), which in the previous section, for Schwarzschild black holes,
was identified with the ISCO frequency (setting now G = c = 1):

fs,ISCO =
1

12π
√
6

1

M
. (4.64)

Since the only relevant multipole mode for the emitted gravitational waves is
m = 2, we set always, otherwise specified differently, fgw = 2fs, with fgw the
frequency of the emitted gravitational waves and fs the source frequency. The
ISCO frequency is then associated to a limit gravitational wave frequency, which
we call fgw,ISCO. In the case of Schwarzschild, is simply:

fgw,ISCO =
1

6π
√
6

1

M
. (4.65)

Since the parameter v is related to the instantaneous gravitational wave fre-
quency by (4.43), we can compute immediately the critical value of v at which
our study, and concretely our templates, stop to be consistent. That is:

vISCO = (πMfgw,ISCO)
1/3 =

( 1

6
√
6

)1/3
≃ 0.41. (4.66)

We also have to consider the frequency at which a typical detector is able to
follow the evolution of a gravitational wave, and the corresponding value of v,
that we call vgw,0. We can take for the minimum gravitational wave frequency
fgw,0 = 20 Hz (fs,0 = 10 Hz), that is realistic for modern GW interferometers,
that gives:

vgw,0 ≃ (πMfgw,0)
1/3 ≃ 0.054; (4.67)

where here the frequency is constant, depending just on the characteristics of
the detector; consequently, vgw,0 depends on the total mass of the binary, for
which we took an indicative real value of 20M⊙. We see that the order of
magnitude is clearly small compared to vISCO, so it is surely possible to follow
the evolution of the inspiral phase via the emitted gravitational waves, through
a typical GW detector.

Plugging these values in the form of δψPP(v) and δψTH(v), we can compute
the total shift in the phase during the inspiral, due to the presence of both
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F∞(v) and FTH(v). We have:

δψPP(vgw,0) ≃ 2.0× 105,

δψTH(vgw,0) ≃ 8.0× 10−5,

δψPP(vISCO) ≃ −13;

δψTH(vISCO) ≃ 0.014.

(4.68)

We see immediately that the quantities have a very different order of magnitude.
Moreover, we see that the two contributions at vISCO have different sign; this
is related to the fact that, during the inspiral, tidal heating acts as a sort of
friction in the dynamics of the two black holes, retarding the standard evolution
made up by the emission of energy to infinity via gravitational waves.
After this example regarding the case of two Schwarzschild black holes, we want
to follow the same steps for the case of two Kerr black holes. As we said, in
order to simplify the discussion, we study the case of equal masses and equal
spins of the bodies.

4.2.2 Templates of δψ(v) for Kerr black holes with equal
spins and masses

As before, we start from the term δψPP(v) (to avoid heavy notation, we keep the
same symbols used before, despite the fact that now we refer to another type of
black holes). Of course, since now we are considering the case of a non-null value
for the spins, it turns out that our templates depend on an additional parameter,
which should be fixed to an initial value in order to get some numerical results.
In order to have, at least qualitatively, an idea of the order of magnitude in this
case, we decide to fix χ1 = χ2 = 0.5. We have again η = 1/4, but now we get:

FSO =
59

6
, Ψ5 =

7

32
, Ψ8 =

7

32

[
1 +

√
3

2

]
. (4.69)

Starting from the case without the term FH, we have:

1

F∞(v̄)
=

5

2

1

v̄10

[
1 +

373

84
v̄2 − (4π + FSO)v̄

3

]
. (4.70)

For the orbital energy, we still have (4.44).
Plugging these terms into the definition of δψPP(v) and integrating, we obtain:

δψPP(v) ≃
5

4

[
− 37

24

(
4π +

59

6

)
ln(v)− 37

72

(
4π +

59

6

)

− 41403

8064

1

v
− 3

10

(
4π +

59

6

)
1

v2
+

(
487

1008

)
1

v3
+

3

40

1

v5

]
.

(4.71)

To calculate the contribution from tidal heating alone, we follow again the steps
in [19], expanding as usual the denominator containing both the terms F∞ and
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FH and keeping only the terms which contain the first order contributions from
FH. We get, for the fraction:

1

F∞ + FH
=

5

2

1

v10

[
7

128
v5 +

373

768
v7 −

(
7

64

(
1 +

√
3

2

)
+

7

64

(
4π +

59

6

))
v8

]
.

(4.72)

Inserted in the definition of ψ(v), this gives a contribution which is identified
with the one of tidal heating alone, which is:

δψTH(v) =
5

4

[
− 7

384
(1 + 3 ln(v))− 1233

2048
v2−(

7

64

(
1 +

√
3

2

)
+

7

64

(
4π +

59

6

))
v3

3
(3 ln(v)− 1)

]
.

(4.73)

We can also write this phase underlining the various PN terms and their order,
indeed we have:

δψTH(v) =
3

32

[
ψ2.5 + ψ3.5v

2 + ψ4v
3
]
, (4.74)

where ψ2.5, ψ3.5 and ψ4 are respectively the terms of 2.5, 3.5, 4 PN order; and
it holds:

ψ2.5 = − 35

144
(3 ln(v) + 1),

ψ3.5 = −2055

256
,

ψ4 = −20

9
(3 ln(v)− 1)

[
7

32

(
4π +

59

6

)
+

7

32

(
1 +

√
3

2

)]
.

(4.75)

We also list δψTH(v) corresponding to the extreme ratio χ = 1. In this case, for
the coefficients we have:

Ψ5 = 1, Ψ8 =
1

2
, FSO =

59

3
. (4.76)

From these, we obtain:

δψTH(v) =
3

32

[
− 10

9
(3 ln(v) + 1)− 2055

56
v2 − 20

9

(
121

6
+ 4π

)
(3 ln(v)− 1)v3

]
.

(4.77)
These are the structures we need to make our discussion. In the next section,

we begin the explanation of the effect of a minimal increment of area on the
dynamics of a black holes binary, specifically on tidal heating and on the phase
shift due to the energy flux related to it. We begin by explaining what the
critical frequency is, a value of the orbital frequency (or, equivalently, of the
parameter v) which plays an important role in our analysis and should be com-
pared to the ISCO frequency (equivalently, vISCO). In order to have a simplified
picture of the situation, we will start another time from the Schwarzschild case.

68



4.3 Tidal heating with qmetric effects

Here starts the core of our discussion, namely the modification of the phe-
nomenon of tidal heating due to quantization of area effects. Firstly, we will
explain in details what is the consequence of a quantum of area in the black
hole horizon, with particular emphasis on the orders of magnitude which en-
ter. Indeed, we will see remarkably that, despite the fact that quantization of
area is (probably) of the order of L2

P , so really hard to detect, its effect on the
behaviour of a black hole impacts in an accessible range of frequencies. In our
discussion, we initially explore the case of Schwarzschild black holes, and then
we describe the more physical situation of Kerr black holes.
We will explain in detail what is expected in the tidal heating of each com-
panion of the binary, underlining what happens in observable parameters like
the phase of the emitted gravitational waves, ψ. In this we focus on specific
configurations, and we describe also, at a qualitative level, what is expected for
a more general situation.
In the last part, we compare the order of magnitude obtained for different
physical parameters in the case of binaries under study with the one from an-
other interesting phenomenon studied in the section above, the emission of the
Hawking radiation. We do that principally to make a comparison between two
quantum effects in a curved spacetime, and to make clear that quantum correc-
tions can take place at very different orders of magnitude. The important fact
to underline, in this case, is also another: the two effects taken into account
are both of quantum nature, but the emission of Hawking radiation is related
to the presence of quantum fields in a classical curved spacetime, while the
modification of tidal heating regards the modification of the spacetime itself by
quantum effects, being related so to the behaviour of quantum curved space-
time. It is interesting to compare, at least from the point of view of the order
of magnitude, this two kinds of effects, which both involve quantum effects in a
curved spacetime.

4.3.1 Quantum of area and tidal heating: Schwarzschild
black holes

Let us start from the case of a Schwarzschild black hole, in which we have just
one parameter: the mass. For completeness, in what follows we take up again
what said in chapter two, in the discussion about the critical frequency for a
Schwarzschild black hole. From the area-mass relation and from thermodynam-
ics of black holes, we have, in units with G = c = 1 [23]:

A = 16πm2, δA = 32πmδm; (4.78)

where A is the horizon area of the black hole and m is its mass. If the black
hole gains a small amount of mass δm, the area must change consequently of a
small amount δA given by the formula above. Since the horizon of a black hole
is a null surface, implementing the structure of the qmetric we can apply what
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we have discussed in the first chapter, finding that there is a minimal step in
area ∆A = 4πL2

0. In other words, the mass and the horizon area of the black
hole can’t change continuously by infinitesimal increments, because the area A
is forced to be incremented, at least initially, by a finite amount ∆A. From the
formula above, we have immediately that also the mass m must initially change
by a finite amount ∆m given by:

∆m =
L2
0

8m
. (4.79)

We can understand that, since the mechanism which allows the black hole to
gain mass is principally the absorption of energy, adding minimal length effects
has as a result that black holes are not able to absorb all the energy which
impacts the horizon: if an amount of energy arrives at the surface, it can be
absorbed only if it would cause an increment in the area equal or greater than
∆A.
Suppose that this amount of energy is carried by a physical wave, with specific
values of frequency f and wavelength λ. Going to the quantum description, we
can say that such a wave carries an energy E = ℏω, where ω is the pulsation.
We have so that the condition for the absorption becomes:

ω =
∆m

ℏ
=

L2
0

8mℏ
; (4.80)

giving a condition on the frequency that can be absorbed. This is precisely what
we called critical frequency. With a little redundancy in the terminology, we
will call critical frequency equivalently ω, f or the templates parameter v, and
they will be indicated respectively with ωcrit, fcrit and vcrit. Now, we know that
it is usual to suppose that the minimal length squared L2

0 is, if not precisely
equal to, of the order of the Planck length L2

P , with the constant between them
which is an unknown parameter of the theory. We define this ratio parameter
from the point of view of quantum of area, writing:

∆A = 4πL2
0 = αL2

P = αℏ. (4.81)

From the last, it follows that if the minimal length is exactly equal to the Planck
length, α = 4π. With this definition, we can write ωcrit as:

ωcrit =
α

32πm
. (4.82)

It is expected that only a complete theory of quantum gravity can give a precise
value of this constant. In the literature, however, there are different proposals
which come from trials of giving a complete theory of quantum gravity or simply
by heuristic arguments [24]. Here we cite four of them; in growing order, their
numerical values are:

α1 = 4 ln 2,

α2 = 4 ln 3,

α3 = 4π,

α4 = 8π.

(4.83)
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The first two values derive from a proposal by Bekenstein and Mukhanov, based
on statistical considerations, for which:

∆A = 4 ln(k)L2
P , k > 1. (4.84)

They also proposed the value k = 2, while Hod proposed k = 3 [9]. About the
other two values, which have a more trigonometric form, we can say: the value
of 4π is simply from the qmetric description, identifying L0 = LP , while 8π
derives still from Bekenstein, in an earlier analysis. Let us see what happens by
substituting into the formula of ωcrit these values of α. We have:

ωcrit,1 =
ln 2

8πm
,

ωcrit,2 =
ln 3

8πm
,

ωcrit,3 =
1

8m
,

ωcrit,4 =
1

4m
.

(4.85)

In order to have an idea of the numerical value of the pulsations (in Hertz)
associated to these values of α, let us restore the constants G and c. We have
to add simply the factor c3/G. Plugging the values in all the four frequencies,
and considering an indicative value for the mass, for example m = 10M⊙ we see
that we move almost in a range ωcrit ∈ [564Hz; 5112Hz]. This is surprisingly,
because it means that, for a macroscopic object like a black hole with a mass of
ten solar masses, with an horizon area which is also macroscopic, the implemen-
tation of a minimal length of the order of the Planck length has implications at
frequencies of the order of kHz, which is, in principle, an observable range.

Now, return to our discussion about tidal heating. As we said above, in
the classical description, in the evolution of the binary motion a part of the
gravitational waves generated are captured by the horizons of the two black
holes involved, causing a changing of their parameters. This is controlled by the
function FH(v). Take still the case of Schwarzschild black holes. The gravita-
tional waves generated by the binary have a frequency which, in our quadrupole
approximation, is two times the frequency of the source: fgw = 2fs. So, at the
horizons of both the black holes arrive gravitational waves which, instant per
instant, have a frequency directly proportional to the one of the source. The
orbital frequency evolves in this way: it starts from an initial value fs,0, which
is the minimum value at which a detector is sensitive; grows up continuously,
and it would diverge analytically, but we have seen that it is consistent to stop
the study of the inspiral phase at the value of the ISCO frequency fs,ISCO. We
already saw the values of vISCO and vgw,0. Let us now introduce the critical
frequency in the system. Adding the presence of a quantum in the horizon area,
each of the two black holes has now an associated critical frequency fcrit,i, which
depends on its mass mi. Since we are considering the case of equal masses, we
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see that this critical frequency is the same for both the black holes, and so we
drop the label i, writing:

fcrit =
ωcrit
2π

=
α

64π2m
=

α

32π2M
, (4.86)

where M = m1 +m2 = 2m. Before the gravitational wave emitted reaches this
value, both the black holes cannot absorb the flux going through the horizon,
because the energy carried is not enough to give a gain of area at least of
the minimal amount. So, it is crucial to understand where this frequency is
in the range of interest. Looking at the numerical value computed above, we
can consistently assume that fcrit is above 2fs,0, so, each of the black holes
starts to absorb after the frequency at which a detector is able to detect the
emitted gravitational wave, and this is important for the observations. Let us
now compare fcrit with the limit value fISCO. Leaving α as a free parameter,
we set the following inequality:

fcrit > 2fISCO → α

32π2M
>

1

6π
√
6M

→ α >
16π

3
√
6
≃ 6.8. (4.87)

This means that, for α greater than 6.8, the frequency at which each of the two
black holes starts to absorb is higher than the maximum frequency reached by
the emitted gravitational waves in the inspiral phase, and this result does not
depend on the masses involved. Suppose that we have such a value of α. It
means that, during the entire phase under study, we have that the phenomenon
of tidal heating is completely neglected by quantum effects. This is remarkable,
because quantum corrections of the spacetime are supposed to take place at
very short scales, but, in this case, their consequences impact on a macroscopic
phenomenon like tidal heating.
A graph of the situation is indicated in Figure 4.1, where on the x-axis we have
α, and on the y-axis we have the values of vgw,0, vISCO, vcrit.

Computing the numerical values of the four cases of α we have, we easily see
that two of them, α1 and α2, are lesser than 6.8, while the other two, α3 and
α4, are greater. So we arrive at this result: for Schwarzschild black holes with
equal masses, if the value α is equal to 4π or 8π, tidal heating is completely
suppressed.
What happens for the other two cases? The binary starts to evolve, and the
gravitational wave frequency grows up with the source frequency. In the first
part of the inspiral phase, when the frequency is lesser than the critical value,
tidal heating is absent. When the GW frequency reaches the critical value,
classical tidal heating is turned on, and the evolution starts to follow the classical
picture, until we arrive at the ISCO point and the inspiral phase stops. Now it
is interesting to see quantitatively the difference between the complete classical
description of the system and the one corrected with these quantum effects.
We know that, for a specific value of fgw, we have associated a value of v, which
plugged in the templates listed in the section above gives us the accumulated
phase of the gravitational wave δψ(v). We have identified also a piece of δψ(v),
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Figure 4.1: The comparison between the relevant values of v in the case of
Schwarzschild black holes, as a function of α. In blue, vgw,0; in green, vISCO; in
yellow, vcrit, which is the only one dependent on α. We took for vgw,0 a total
mass of 20M⊙.

called δψTH(v), which is associated precisely to the presence of the tidal heating.
In the classical description of the system, this piece gives contribution to the
shift in the phase at all frequencies, but in our description, we have to change
this feature, knowing that for a range of frequencies (which can also correspond
to the entire inspiral phase) this term is absent, being absent tidal heating itself.
More concretely, we can in practice substitute δψTH(v) with an effective version:

δψTH(v) → θ(v − vcrit)δψTH(v), (4.88)

where a Heaviside theta is added to formally take into account the presence or
absence of tidal heating, controlled by the parameter v.
Now, it is clear that, with respect to the classical description, we have actually
a lack of the term δψTH(v) in the phase of the observed gravitational wave:
this phase shift can be calculated via the templates of the previous section. In
order to explore what are the orders of magnitude of this effect, we want to
explicitly compute this difference between classical and quantum case, for the
four values of α listed in (4.83). After that, we will show the general behaviour
of δψTH(vcrit), leaving α free. We go in numerical order, and we divide the cases:
tidal heating starts in inspiral phase and tidal heating is absent in inspiral
phase. So we start from α1 and α2.
Let’s compute the values of v associated to ωcrit,1 and ωcrit,2. We have:

vcrit,1 = (πMfcrit,1)
1/3 =

(
ln 2

8π

)1/3

≃ 0.30

vcrit,2 = (πMfcrit,2)
1/3 =

(
ln 3

8π

)1/3

≃ 0.35.

(4.89)

In order to take into account the fact that the detector starts to follow the
evolution of the gravitational waves, and so of their phase, from a vgw,0, we
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should compute δψTH(vcrit) and then subtract the contribution of δψTH(vgw,0).
Plugging the values in δTHψ(v), we have:

δψTH(vgw,0) ≃ 7.9× 10−5,

δψTH(vcrit,1) ≃ 6.8× 10−3,

δψTH(vcrit,2) ≃ 9.8× 10−3.

(4.90)

From these, we obtain:

∆ψTH1 = δψTH(vcrit,1)− δψTH(vgw,0) ≃ 6.7× 10−3,

∆ψTH2 = δψTH(vcrit,2)− δψTH(vgw,0) ≃ 9.7× 10−3.
(4.91)

The last two quantities represent the phase shift observed in the gravitational
wave signals via a typical detector, in the cases of α1 and α2, due to the absence
of tidal heating derived from the addition of a finite step in area for black
hole horizons. It is clear that the orders of magnitude computed are small; as
said, tidal heating gives a contribution to the phase which is not easy to detect
directly.
Now we can proceed with the other two case, namely, α3 and α4. In these cases,
we have seen that the numerical value of α is such that we do not have tidal
heating at all in inspiral. This means, in practice, that the phase shift with
respect to the classical case is computed during the total inspiral phase, and so
stopped at the value of vISCO ≃ 0.41. We have already computed δψTH(vISCO)
in (4.68), we have just to subtract δψTH(vgw,0) and we obtain:

∆ψTH3 = ∆ψTH4 = δψTH(vISCO)− δψTH(vgw,0) = 1.4× 10−2. (4.92)

This is another time of small order of magnitude. From this we understand
that, at least for the case of two Schwarzschild black holes, the maximum value
of the phase shift considered has order comparable to (4.92).

Since, in principle, we are also interested in study what happens varying
α, it is interesting to see what is the behaviour of δψTH(vcrit,α), where now
we underline that α is taken as free parameter. For each value of α we have
a different vcrit and we obtain actually a function of α, δψTH(α). Taking the
analytical form (4.63) and plugging vcrit = (πMfcrit)

1/3, we obtain:

δψTH(α) = − 5α

3072π

(
ln
( α

32π

)
− 1
)
+

37

512

( α

32π

)5/3
. (4.93)

This represents the phase shift, due to the suppression of tidal heating, because
of the introduction of a quantum step in horizon area. We recall that we are
in the case of two Schwarzschild black holes, with equal masses. We can take a
plot of that function, considering, of course, positive values for α (Figure 4.2).

We see from the graph that the function grows for growing values of α, but
we know that, after α = 6.8, our phase shift is stopped at the value vISCO. A
more practical graph, for our purpose, should be given by Figure 4.3, in which
the function is constant after α = 6.8, equal to a value δψTH(vISCO).
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Figure 4.2: The function δψTH(α). Since vcrit is actually a function of α, we
obtain a dependence in that parameter for the phase shift due to reduction of
tidal heating.

Figure 4.3: A different version of the previous graph, in which is taken into
account that after α = 6.8 the phase shift we measure is equal to δψTH(vISCO).
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In the next subsection, we want to study the more physical case of two Kerr
black holes, and see the orders of magnitude in that system. For that situation, it
is clear we have to deal with a more complicated structure, since the parameters
of each black hole are two: the mass and the angular momentum. Instead of
work directly with the angular momentum, we take the ratio χ = J/m2, and we
will see that now the relevant values of the parameter v we have to deal with
are not constant, but dependent on this χ. After having shown what are the
analytical changes, we go through a numerical evaluation of the phase shift, to
see what kind of orders of magnitude comes into play.

4.3.2 Quantum of area and tidal heating: Kerr black holes

Here we follow the methods presented in [23].
For Kerr black holes, since we have the addition of a non vanishing angular
momentum, we have to modify the thermodynamical relation seen above. In
particular, take the case of a Kerr black hole of mass m, angular momentum J
and horizon area A. We have the new mass condition (G = c = 1):

m =

√
A

16π
+

4πJ2

A
(4.94)

If we follow Bekenstein’s heuristic method of quantization, for the minimal step
in area we have as usual ∆A = αL2

P . Supposing that the step in area is not
just initial, but is actually constant and finite for each value of A, we get that
the total value of the horizon area can be written as:

A = αL2
PN = αℏN, (4.95)

where N plays the role of a quantum number. The same we do with the spin,
since from standard quantum mechanics we know that is quantized: J = ℏj,
where j is a semi-integer number bounded by 0 ≤ j ≤ αN/8π. We have conse-
quently that the total mass m of the black hole depends on the two quantum
numbers N and j:

mN,j =

√
αℏN
16π

+
4πℏj2
Nα

. (4.96)

This relation gives the mass (or energy) spectrum of the Kerr black hole under
consideration. Since we see that it is not uniform, we could ask ourselves if
this kind of spectrum can give similar results to the case of Schwarzschild. We
start to study this problem focusing on the mass, and we take mN,j as a set of
eigenvalues for some set of quantum states of the black hole. When the black
hole undergoes a transition, we can think that for the mass eigenvalue we have
simply mN,j → mN+∆N,j+∆j . We are interested mainly in the transition of the
mass given by the interaction between the black hole and a gravitational wave
of a given frequency, for which we can write the carried energy, as usual, as
E = ℏω. For the mass holds then:

|mN+∆N,j+∆j −mN,j | = ℏω. (4.97)
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Since we want to study the case of the minimal jump in the energy level, we
can set ∆N = 1. On the other hand, the interaction of our interest is the one
between a gravitational wave emitted by a binary and one of the two components
of the binary itself, so we know that for such gravitational waves the relevant
mode is the quadrupolar one with l = 2,m = 2 [13]. From angular momentum
conservation, we have then the selection rule ∆j = 2, giving for (4.97):

mN+1,j+2 −mN,j = ℏω. (4.98)

Now, remember that we are interested in physical system like astrophysical black
holes: to get a macroscopic value for the mass mN,j , knowing also the bounds
for the semi-integer number j, we should assume a large value of N . Take the
difference in (4.98) with the specific form of mN,j given by (4.96), and perform
the limit for N → ∞. Calling now explicitly the frequency of the absorption
ωcrit, we obtain:

ℏωcrit =
κℏα
8π

+ 2ℏΩH, (4.99)

where with κ and ΩH we indicate, respectively, the surface gravity and the
angular velocity of the horizon of the black hole. Their explicit expression are
both function of the ratio χ = J/m2, with 0 ≤ χ ≤ 1, and they lead:

κ =

√
1− χ2

2m(1 +
√

1− χ2)
, ΩH =

χ

2m(1 +
√

1− χ2)
. (4.100)

The equation (4.99) is of great importance for us; this is the equivalent version
of (4.82) but for Kerr black holes. Indeed, if we set χ = 0, we recover precisely
(4.82).
Suppose now we have our binary system, made of two Kerr black holes, of the
same mass m1 = m2 = m and with the same angular momentum, aligned each
other and aligned with the orbital angular momentum. We indicate as usual
the total mass with M = 2m. For the parameter vcrit holds:

vcrit = (πMfgw)
1/3 =

(
πM

ωcrit
2π

)1/3
=(

α
√
1− χ2

16π(1 +
√
1− χ2)

+
χ

(1 +
√
1− χ2)

)1/3

.

(4.101)

It is obvious that now we have a more involved structure for the critical fre-
quency, and also for vcrit; in order to have a picture of its behaviour, it could
be useful to see the graph Figure 4.4. In this, we took the value α3.

Seeing that the function is monotonous, we can take an intermediate value
of χ, for example χ = 1/2, and compute numerically the values of vcrit for the
various values of α proposed, to compare with the ones from the Schwarzschild
case. We get:

vcrit(χ = 0.5) =

(
α
√
3

16π(2 +
√
3)

+
1

(2 +
√
3)

)1/3

. (4.102)
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Figure 4.4: Graph of vcrit in function of the ratio χ, with α = α3.

Plugging the four values of α in literature, we obtain:

vcrit,1(χ = 0.5) ≃ 0.67,

vcrit,2(χ = 0.5) ≃ 0.68,

vcrit,3(χ = 0.5) ≃ 0.73,

vcrit,4(χ = 0.5) ≃ 0.79.

(4.103)

Beside, we have the values for the Schwarzschild case, which can be obtained
from (4.101) setting χ = 0. We have:

vcrit,1(χ = 0) ≃ 0.30,

vcrit,2(χ = 0) ≃ 0.35,

vcrit,3(χ = 0) = 0.50,

vcrit,4(χ = 0) ≃ 0.63.

(4.104)

We see that the spin increases the value of vcrit, but for higher values of α, the
difference between the values for χ = 0.5 and χ = 0 tends to decrease.
Now, we know that in our analysis we are considering the coalescence of two Kerr
black holes, and another important value of v is the one corresponding to the
ISCO frequency. Another time, in the case of Kerr black holes in coalescence,
the form that gives this value of frequency is more involved with respect to the
Schwarzschild case, and is dependent on χ. From [16], we have the following
dependence:

πMfgw,ISCO = {(3 + Z2 − [(3− Z1)(3 + Z1 + 2Z2)]
1/2)3/2 + χ}−1, (4.105)

where we have already written the gravitational wave frequency corresponding
to ISCO, fgw,ISCO, and where Z1 and Z2 are defined as:

Z1 = 1 + (1− χ2)1/3[(1 + χ)1/3 + (1− χ)1/3],

Z2 = (3χ2 + Z2
1 )

1/2.
(4.106)

So we have consequently:

vISCO = {(3 + Z2 − [(3− Z1)(3 + Z1 + 2Z2)]
1/2)3/2 + χ}−1/3. (4.107)
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Figure 4.5: A graph of vISCO for the Kerr case, as a function of χ.

As before we would like to have a picture of this behaviour. The graph of vISCO

in function of χ in the range [0; 1] is shown in Figure 4.5.
This relation is again monotonous. The extreme values are:

vISCO(χ = 0) =
(1
6

)1/2
,

vISCO(χ = 1) =
(1
2

)1/3 (4.108)

Of course, for χ = 0 we get the Schwarzschild value, while for the extreme ratio
χ = 1 we get vISCO(χ = 1) ≃ 1.9vISCO(χ = 0). Following the same strategy
as before, we should understand at which value of v starts tidal heating in the
system, due to the presence of a step in area. In principle, we have to solve the
following inequality, where we leave free both α and χ:

vcrit > vISCO →

→

(
α
√
1− χ2

16π(1 +
√

1− χ2)
+

χ

(1 +
√
1− χ2)

)1/3

>

{(3 + Z2 − [(3− Z1)(3 + Z1 + 2Z2)]
1/2)3/2 + χ}−1/3.

(4.109)

To solve analytically for χ is, of course, a mess, but we can manage the inequal-
ity in a different way: we solve for α, meaning that we get a condition for α
dependent on the ratio χ. For each of the four values of α under consideration,
we will have a specific value of χ at which the condition vcrit > vISCO is satisfied.
We define, for simplicity, the following two functions:

W1 =

√
1− χ2

16π(1 +
√
1− χ2)

, W2 =
χ

(1 +
√
1− χ2)

. (4.110)

In this way, after having reorganized, we have:

α >
1

W1{(3 + Z2 − [(3− Z1)(3 + Z1 + 2Z2)]1/2)3/2 + χ}
− W2

W1
. (4.111)
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Figure 4.6: Here the graphs of vgw,0 (blue line), vISCO (green line), vcrit (yellow
line) as functions of α. Having fixed χ1 = χ2 = 0.5, the only one function that
depends on α is vcrit. The important point of the graph is that vcrit > vISCO

always, for α positive.

Let us see the case χ = 0.5. For the ISCO value we have vISCO ≃ 0.48, and for
the inequality we have:

α > −17, 3. (4.112)

This means that, for initial value of χ = 0.5 for each black hole, we have
vcrit > vISCO for each of the four values of α considered. This is an interesting
result, and we show the graph in Figure 4.6.

As we see, the value of vcrit (yellow line), at which classical tidal heating can
start, is always above the value of vISCO (green line). So, in this case, the phase
shift due to the presence of a step in area is computed considering the integral
in the definition of δψ(v) from v0 to vISCO. In analogy with the Schwarzschild
case, we could call this phase shift ∆ψTH(1,2,3,4), underlying that it holds for
each value of α considered. However, we have a stronger result: this shift holds
for all values of α > 0, so we call it simply ∆ψTH. We indicate also that we
are in the Kerr case, with an explicit dependence on the ratio χ. Recalling the
template for Kerr black holes (4.73), we have:

∆ψTH(χ = 0.5) =

δψTH(χ = 0.5, vISCO)− δψTH(χ = 0.5, vgw,0) ≃ 0.066− 0.176 ≃ −0.11.

(4.113)

This is a small order of magnitude, but in any case is of great conceptual im-
portance.

We want to see what we obtain in the case of extreme ratio χ = 1. We have
vISCO ≃ 0.79, and since the term containing α goes away, the inequality (4.111)
leads:

1 >
(1
2

)1/3
, (4.114)
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Figure 4.7: A summary of the various relevant values of v, now functions of
χ. The constant blue line is as usual vgw,0; then, we can distinguish the five
functions of vcrit for different values of α; the other blue line is vISCO.

which is always satisfied, and so we get that also in this case the phase shift due
to the absence of tidal heating is during the entire inspiral phase. The graph in
this case is not necessary, since we deal with three constant functions. Looking
at the template for δψTH in the case χ = 1 (4.77), we get numerically:

∆ψTH(χ = 1) =

δψTH(χ = 1, vISCO)− δψTH(χ = 1, vgw,0) ≃ 3.6− 0.81 = 2.8.
(4.115)

Compared to the last cases, this is some orders of magnitude bigger; in any case,
having two Kerr black holes in a binary with initial values of ratio χ equal to or
close to 1 is not a common situation in astrophysical observations for now. It is
interesting, another time, to see that also for this value of χ for each black hole
we have the complete suppression of tidal heating during the inspiral phase. In
order to have a graphical picture of the relation between the relevant values
of v in function of χ, it should be interesting to plot them in the same graph,
taking now fixed values for α, that are the four considered in this work and also
α = 0, to see what happens if the quantum of area is actually reduced to an
infinitesimal one. This is shown in Figure 4.7.

We see clearly that, after a certain value of χ, almost each function vcrit,α
is above the one of vISCO, suggesting that, actually, the real astrophysical case
of two Kerr black holes, despite being the most difficult analytically, is also the
most interesting from the point of view of quantum-of-area impact. In the case
of equal masses and equal spins, it is sufficient to have a certain amount of
ratio χ for each black hole to have a suppression of tidal heating at all, for each
relevant value of α in literature. Moreover, seeing that, in the region of small
values of χ, for higher α the graph of vcrit,α seems to rise, we should expect that
this feature is enforced if α is greater than the values in the literature. Another
important fact should be underlined: we see that, even in the graph of vcrit,α=0,
we get a non-trivial dependence in χ. We should ask why, since we are setting
α = 0, and we are then neglecting the quantum of area. The point is that,
in finding the condition of absorption for Kerr black holes, the quantization of
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the area was not the only quantum correction we made: we treated the entire
black hole as a quantum object, quantizing by hand also its angular momentum,
imposing J = jℏ and introducing another quantum number, independent on
the one related to the quantization of the area. Searching the minimal step in
energy, we then set j = 2 for angular momentum, and so it is consistent that
we still have a non-constant behaviour for vcrit,α=0.

4.3.3 General case of different masses: qualitative descrip-
tion

It is important to underline a property of the cases examined in the previous ex-
amples: since we considered equal masses, and in the Kerr case also equal spins,
in the evolution of the binary the two black holes follow the same changing in
their parameters, and the system is really symmetric in the formal transforma-
tion BH1 → BH2, and viceversa. One of the consequences of this symmetry is
that, in the quantum description, when tidal heating is turned on for one of the
two black holes, the same happens for the other. Intuitively, this allows us to
divide the inspiral phase in two effective subphases: the first completely without
tidal heating, the second with the presence of tidal heating felt by each of the
two black holes. Of course, this happens in the case of vcrit < vISCO, otherwise
the entire inspiral phase takes place without tidal heating. What happens in
the case of different masses? Take, for example, the case of two Schwarzschild
black holes, with m1 < m2. Now, for the value of ωcrit, we have not just one
value which holds for both black holes, but each of the two has its own critical
frequency:

ωcrit,BH1 =
α

32πm1
,

ωcrit,BH2 =
α

32πm2
,

(4.116)

with ωcrit,BH1 > ωcrit,BH2. Since we deal with macroscopic values of the masses,
and the minimal frequency of the detector is around f0 ≃ 20Hz, we suppose that
both the two frequency are higher than the minimum one for detection, so in any
case, tidal heating is supposed to start in the observable range. We distinguish
three cases:

1. Both critical frequencies are less than the ISCO frequency.

2. One of the two frequencies is less than the ISCO one, the other is greater.
Since we have ωcrit,BH1 > ωcrit,BH2, the frequency inside the inspiral
frequency range is ωcrit,BH2.

3. Both the critical frequencies are greater than the ISCO one.

Start from the first case. When the system starts to evolve (or, if we want,
the system starts to be observed), each black hole does not feel tidal heating.
Increasing the value of the orbital frequency, we arrive at a point in which we
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reached the value of gravitational wave frequency sufficient to turn on tidal
heating for one of the two black holes, BH2. At this point, we start to have a
partial tidal heating, which, from the point of view of the gravitational wave
phase, corresponds to a partial phase shift. The system continues to evolve with
this partial tidal heating until we reach the value of the other critical frequency
ωcrit,BH1, at which also BH1 starts to absorb gravitational waves emitted by
the system. In this last part of the inspiral phase, we have the complete clas-
sical tidal heating, and so the complete accumulated phase associated. We can
say that, colloquially, the inspiral phase is made by three subphases: the first
without tidal heating, the second with a partial tidal heating, the third with
the complete classical tidal heating.
In the second case, one of the two values of the frequency is higher than the
ISCO one, namely ωcrit,BH1. For the first black hole, we have the complete
absence of tidal heating during the inspiral phase. The system starts to evolve,
and in the initial subphase there is no tidal heating, until we arrive at the fre-
quency ωcrit,BH2. At this point, it starts the tidal heating for BH2. The system
evolves with this partial tidal heating until we arrive at ISCO frequency, and
the inspiral phase stops. In this case we can then identify two subphases, the
first without tidal heating as before, the second with only partial.
The third case is the simplest one: the two critical frequencies are both higher
than the ISCO one, meaning that during the entire inspiral phase tidal heating
is completely neglected.
At this point, it is important to understand one point: what does it mean
precisely partial? Let us explain that. When we computed the templates for
δψTH(v), we had η = 1/4, and we inserted the coefficients Ψ5, Ψ8 already. In
the general case, we have clearly another value for η, since the masses are no
longer equal. For the coefficients Ψ5 and Ψ8, we have to pay attention: they
depend again on the mass ratio, but, as explained in the appendix, they are the
sum of contributions of tidal heating of both the black holes. More precisely:

Ψ5 = A
(1)
5 +A

(2)
5 , Ψ8 = A

(1)
8 +A

(2)
8 ; (4.117)

where A
(i)
5 and A

(i)
8 are terms which derive from the capacity of absorption of

BH1 and BH2. In the case of equal masses, they were initially set to zero,
and when tidal heating starts, each A(i) becomes, in principle, different from
zero at the same time, and in (4.117) we get the complete sum. In the general
case, while they start from zero as in the equal-masses case, when we reach
the first of the two critical frequencies, only the terms A(i) corresponding to
the black hole that started to absorb gravitational waves become different from
zero, and so each of the sums in (4.117) has actually just one term; in other
words, these sums become partial. If also the other critical frequency is less than
ISCO frequency, after having reached this, we start to have the complete sum
for both Ψ5 and Ψ8, as is considered in the previous sections. More formally,
remembering the way in which we wrote the effective term of tidal heating
modified by the introduction of a quantum in the horizon area, in equation
(4.88), we can write some similar form also for the general case. We define
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the new template δψpTH(v), which corresponds to the phase shift given by the
partial tidal heating: the one in which enter just the partial sums derived from
(4.117). Recalling that to ωcrit,BH1 and ωcrit,BH2 correspond, respectively, two
values of v that we call vcrit,BH1 and vcrit,BH2, we write:

δψTH(v) → θ(v − vcrit,BH2)δψ
p
TH(v) + θ(v − vcrit,BH2)θ(v − vcrit,BH1)δψTH(v),

(4.118)
where as usual θ means the Heaviside function.

4.4 Quantum effects in curved spacetime: a com-
parison

In this section, we want to make a simple comparison between two quantum
effects, which both take place in a curved spacetime and so contain non trivial
gravitational effect: the first is the Hawking radiation and the second is the q-
version of tidal heating. Our comparison will be from the energy point of view;
more specifically, we want to show what kind of order of magnitude enter in
both the effects, and to see if there is a consistent difference between them. To
compare these two effects makes sense because of the following fact: the Hawking
radiation is a quantum effect in a classical curved spacetime, meaning that we
have quantum fields which are evolving in a classical gravitational background;
on the other hand, (classical) tidal heating is a complete gravitational effect,
but after the effective correction given by the presence of the step in area, we
deal actually with a quantum version of tidal heating, but quantum here means
that we include effective quantum corrections of the spacetime itself. In what
follows, we assume that the total mass of the two system is the same, in order to
have the same order of magnitude of the mass. This means that, if we assume
a binary system with total with total mass m = m1 +m2, the black hole which
emits thermal radiation is taken with mass m.
Start from the case of a Schwarzschild black hole of mass m, and consider its
thermal emission. The law which gives the total power emitted by a black body
of temperature T and with surface A is well known, and leads:

P = σAT 4, (4.119)

where σ is the Stefan-Boltzmann constant, which is dependent on several phys-
ical constant:

σ =
2π5

15

k4B
c2h3

= 5.670373× 10−8 W

m2K4 . (4.120)

Here, kB is the Boltzmann constant and h the Planck constant. We can consider
the black hole as a black body with surface equal to the horizon area, and with
temperature given by the Hawking temperature TH, for which we have:

TH =
hc3

16π2mGkB
. (4.121)
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We see the characteristic behaviour of TH: being inversely proportional to the
mass m, the more massive the black hole is, the more difficult becomes the
observation of the temperature. This is one of the reason for which Hawking
radiation is so hard to detect. For the horizon area A, we have as usual A =
16πm2. Inserting constant to get dimension of squared meters, we have:

A =
16πm2G2

c4
. (4.122)

Plugging the values in (4.119), we obtain:

PT =
2π5k4B
15c2h3

16πm2G2

c4

(
hc3

16π2mGkB

)4

∼ m−2, (4.123)

where the label to the subscript stays for thermal, to identify that we are talk-
ing about the power emitted due to the presence of a temperature TH. We are
interested specifically in the mass dependence of the power emitted: is inversely
proportional to the square of the black hole mass, or, in other words, propor-
tional to the squared black hole temperature.
Now, let us consider a binary system with total mass m, and let’s focus on the
flux term related to tidal heating, FH. We recall the form used in the text,
already in dimensional form:

FH(v) =
32

5

c5

G
η2v10

[
− Ψ5

4
v5 +

Ψ8

2
v8

]
, (4.124)

The factor c5/G is to have a term with dimensions of J/s. Now, we know that
v is a small parameter, such that 0 < v < 1. In order to study the order of
magnitude, we can consider just the leading term of (4.124):

FH(v) ≃
32

5

c5

G
η2v10

(
− Ψ5

4
v5

)
= −8

5

c5

G
η2Ψ5v

15. (4.125)

We recall that the parameter η is such that 0 < η < 1/4, so, even if we
consider generic mass ratios, this factor enters with an order which is almost 1.
For the coefficients Ψ5 and Ψ8, then, we have a dependence in mass ratios and
spins of the black holes (if we consider spinning bodies); in any case, they also
enter with an order which is almost 1. For the frequency, having in mind what
is the order of magnitude of the ISCO frequency, we can consider a range which
is almost between 1Hz and 100Hz. Now, we recall also that v = (πmf)1/3;
inserted in (4.125), gives us a dependence in m to the fifth power:

FH(v) = −8π5

5

c5

G
η2Ψ5f

5m5; (4.126)

so FH ∼ m5. We have also a dependence on the gravitational wave frequency,
or equivalently, a dependence in the source frequency, to the fifth power again.
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This is the template associated with tidal heating flux, at the leading order inm:
since it is a classical effect, why we are considering it for a comparison between
quantum effect? As we explained in the section above, due to the presence of
a step in area, tidal heating could be largely suppressed, giving a phase shift
with respect to the classical case but also a lack in the power absorbed by the
horizons; from this point of view, this lack of energy is a complete quantum ef-
fect, despite the fact that the analytical form of the function is the same. Since
we have a dependence on a positive power of m, and we consider macroscopic
values of the mass, as for real astrophysical systems, we can have a huge amount
of energy which is missing in the effective quantum case.

Now we can see clearly that for the ratio |FH/PT| holds:

|FH|
|PT|

∼ m7. (4.127)

This is a remarkable result: comparing two quantum systems, both with a
curved spacetime, we discovered that the dependence on the mass is very dif-
ferent. While the Hawking radiation, from the emitted-power point of view, is
for now almost undetectable, the lack of absorbed power by the black holes of a
binary is incredibly large, and is still a quantum effect on macroscopic objects,
connected this time to quantum properties of the spacetime itself. However,
since as we said this flux of energy regards the horizons of the black holes, and
so, is confined in an inaccessible region of the spacetime, it is not, in any case,
detectable in a direct way. We wanted to show that, even if one is considering
a quantum effect in a macroscopic system, with a non-negligible gravitational
field, this does not mean that all the physical consequences are almost unde-
tectable: quantum gravitational effects are supposed to be significant when we
are at the Planck length, but the consequences of them can be considerable at
a much higher scale.
We can also make the discussion more quantitative, introducing the numerical
values of all the constants, to control also the order of magnitude of the coef-
ficient in front of the ratio. For the power radiated via Hawking radiation, we
get, keeping the mass free:

PT ≃ 3.6× 1034 m−2. (4.128)

For the tidal heating flux, we can write:

|FH| ≃ 1.8× 1055f5m5. (4.129)

Now, recalling what we said about the coefficients in the form of FH, we have
just to consider the frequency in a range [1; 100]Hz. The ratio leads:

|FH|
|PT|

≃ [5.0; 500]× 1020 m7. (4.130)

Even if we look at the numerical coefficient, we discover a great difference be-
tween the two effects. This underlines another time the important point: despite
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the fact that we have two quantum effects, which both depend, directly or indi-
rectly, on the Planck scale or ℏ, the orders in play are very different. This gives
a remarkable result: while the energy, or power, emitted by thermal radiation
by a black hole is truly hard to detect (at least, for now and for macroscopic
black holes), the one suppressed in tidal heating due to the presence of a min-
imal length of the order of the Planck scale, being in any case an energy not
accessible at infinity but present in the black holes region, is incredibly large.
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Chapter 5

Conclusions and outlooks

We have finished our discussion about minimal length and correlated effects,
specifically in the case of a coalescing binary. Now we want to collect the main
results we found, briefly recalling the path followed.
To introduce the qmetric was necessary to understand the important conse-
quence of a minimal area around a point, given by a minimal length in space-
time, which leads to the presence of a minimal step in the horizon area for a
black hole ∆Amin = 4πL2

0 = αL2
P . We saw some features derived from the

implementation of such properties in the spacetime; for example, the way we
proposed to interpret a Lorentz invariant minimal length as a limit radius of cur-
vature. The case of Schwarzschild spacetime suggests that is the Kretschmann
scalar that we should consider, like in (3.20) and (3.21), to study possible limits
on local curvature. It would be interesting to generalize the method and to
study also more involved geometries, like the Kerr one.
As a preamble of the main work of the thesis, we decided to consider an effec-
tive modification of the emission of Hawking radiation, due to the presence of
a step in area for the black hole horizon, studying the dependence in α. It is
remarkable that the great part of the emitted radiation seems to be actually
strongly suppressed, if we have α > 6.3 (see (3.61), (3.55)).

Now, we talk about the results of the main subject of the work: the effect
of area quantization for a coalescing binary. We start from the case of two
Schwarzschild black holes with equal masses. In this simple case, the first im-
portant function we have to consider is the template δψTH(v), that gives the
GW phase shift due to the presence of tidal heating, which is the absorption, by
the two black hole horizons, of the gravitational waves produced by the binary.
It is in function of the dimensionless orbital velocity v.

We obtained that the frequency at which each of the two black holes is
able to absorb the energy ℏω carried by a gravitational wave (called critical
frequency) is linear in α and inversely proportional to the mass m of the black
hole (4.82). This frequency has to be compared with the ISCO one, at which the
inspiral phase goes into the merge, that is again inversely proportional to the
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mass. A graphical situation is represented in Figure 4.1, where the dimensionless
parameter v = (πMfgw)

1/3 is considered. It is clear that, after a value α ≃ 6.8,
the critical frequency is higher than the ISCO one, meaning that each of the
black holes is not able to absorb gravitational waves during the entire inspiral
phase. This is a strong result: for certain values of α, tidal heating is completely
suppressed. This, in particular, holds for α3 = 4π and α4 = 8π, two of four
relevant values present in the literature. For these, the total phase shift due to
the absence of tidal heating is computed (4.92).

For the other two values, we have different phase shifts, in these cases ex-
plicitly dependent on α (see (4.91)). The phase shifts are computed starting
from the minimum frequency at which a detector is able to follow the gravita-
tional wave evolution. Since we are, in general, interested to the case of free
α, an important function is the template (4.93), which gives the phase shift in
function of α, with graph in Figure 4.2. Of course, for α > 6.8, we have actually
a condensation of the phase shift to the value δψTH(vISCO), because at vISCO

stops in any case the inspiral phase. A more practical graph is then given in
Figure 4.3.
For the more realistic situation of two Kerr black holes in a binary, the dynam-
ics of the system is more involved, because of the addition of the spins, which
are taken to be equal and aligned for the two black holes, and aligned to the
orbital angular momentum. As usual, the masses are taken to be equal. This
choice allows us to work in a completely symmetric system, as in the case of
Schwarzschild. First, it is explained what is the relation between the critical
frequency of each black hole and α, which turns out to depend, in addition to α
and the mass m, also on the dimensionless ratio χi = Ji/m

2
i , for which of course

holds χ1 = χ2. The behaviour of vcrit is shown in Figure 4.4 for α = α3. The
function of the ISCO frequency is also given, as a function of χ, that has to be
compared with the critical one. The graph of vISCO is plotted in Figure 4.5. In
order to explore what happens, at least indicatively, for χ ∈ [0; 1], we decided
to fix χ and to follow the same procedure as the case of Schwarzschild. Having
already studied the case χ = 0 (spin equal to zero), we decided to set a middle
value χ = 0.5, and then explore the case of extreme ratio χ = 1. The results
are really remarkable: both for χ = 0.5 and for χ = 1, it turns out that tidal
heating is suppressed for the entire inspiral phase, giving the maximum values
for the phase shift, namely δψTH(χ = 0.5, vISCO) and δψTH(χ = 1, vISCO). The
graphical situation for χ = 0.5 is shown in Figure 4.6, while for χ = 1 a graph-
ical representation is not necessary, since the dependence on α disappears in
vcrit, leaving just constant functions . The numerical values for the respective
cases are given in (4.113), (4.115); as before, these are computed starting from
the minimum frequency for the GWs detection. A graph which summarize the
qualitative comparison between all the relevant frequencies in function of χ, fix-
ing different values of α, is then shown in Figure 4.7. It is easy to see what is the
effect of the spin: it is sufficient to have a reasonably large value of χ to obtain
that vcrit is always above the value of vISCO, giving a complete suppression of
tidal heating. We think that, conceptually, this is one of the most important
results.
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It is then explained qualitatively what is expected for the case of generic
values of masses. For the case of m1 = m2, we have that in the inspiral phase
tidal heating is turned on at the same time for each black hole, because of the
symmetry of the system: the critical frequency is the same for both the black
holes. This allows us to identify, naively speaking, two subphases: one without
tidal heating at all, and the other with a complete, classical tidal heating. In
the case of different masses, we have no longer one critical frequency, but two,
one for each black hole. We can say that, if both these two frequencies are less
than the ISCO one, we have to divide the inspiral phase in three subphases,
with an effective correction of δψTH given by (4.118).
Before we conclude, just a final remark. Prototypical of quantum effects in
curved spacetime is the Hawking radiation, which is tied to Planck scale physics
as it is evident from the fact that the entropy it foresees corresponds to ∼ 1
degree of freedom per L2

P unit of area of the horizon; this radiation turns out to
be really feeble for solar mass black holes. The quantum effect we have studied in
this thesis also comes from Planck scale physics (recall that the quantum of area
is O(1)L2

P ), then how can we have hope to detect it? To answer this question the
emitted power by Hawking radiation has been compared with the (lack of) power
associated to a quantum-corrected version of tidal heating. In doing this, the
two systems are considered to have the same total mass. We underline again
the important conceptual difference between the two: the Hawking radiation
involves the presence of quantum fields evolving in a classical curved spacetime
near a black hole horizon, while our correction of tidal heating implements
quantum properties of the horizon spacetime which impact on dynamics of
classical gravitational fields. It is surprising to discover that, despite both
are quantum effects in curved spacetime, the lack of power we can have for
suppression of tidal heating is incredibly big compared to the radiated power
for Hawking radiation: we see from (4.130) that for the ratio |FTH|/|PT| we have
an order of 1020 and a dependence in the mass which is m7. This could happen,
essentially, because in the quantum correction of tidal heating we have a classical
amount of energy which is neglected due to quantum effects (the presence of
a critical frequency for the exchange of that energy), but the neglected flux of
energy FH, even if relatively small compared to F∞, derives in any case from one
of the most powerful phenomenon of the universe, that is the coalescence of two
black holes. What actually happens is that a Planck scale effect is able to inhibit
or turn on a classical one, giving a strong impact on macroscopical systems like
a coalescing binary. These arguments should be studied more concretely in
the future, implementing a more suitable form also for the modified template
associated to the phase shift, and focusing also on the dependence on α, which,
via the observations, can help in discriminating between the possible proposals
for a quantum theory of spacetime.
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Appendix A

Properties of disformally
coupled metrics

Here we list some properties of disformally coupled metrics. A more complete
discussion can be found in [7]. Take a spacetime described by the metric gab,
and take a certain scalar field φ(x), dependent on the spacetime point x. We
can define another metric g̃ab such that:

g̃ab = Ω2gab − ϵΛtatb, (A.1)

where Ω = Ω[φ], Λ = Λ[φ] are functions of the scalar field φ(x) and:

ta =
∂aφ√

ϵgij∇iφ∇jφ
, gabtatb = ϵ. (A.2)

Two metric related by the last equation are said to be disformally coupled.
Note that here, instead of A and B, we are using the symbols Ω2 and Λ; this
is done also to underline that the case we studied in the text is actually a bit
different: instead of a scalar φ, we have a biscalar σ2 in our functions Ω and
Λ. Although the terminology seems to suggest it, the law relating the two
metrics gab and g̃ab is not a sort of contrary of the conformal one. Indeed, in
the given form, this relation is a more general case which allows, as a subcase,
the one of conformal relation between two metrics. To be precise, we have two
important special cases: the case with Λ = 0 and the one with Λ = Ω2 − Ω−2.
The first is precisely a conformal relation, while the second, with an improper
convention, is said to be disformal again. In the case studied in the text, we
have φ(x) → σ2(x, x′), and for the function Ω2:

Ω2(x, x′) = 1 +
L2
0

σ2(x, x′)
. (A.3)

Now we just list some important results for the two special cases cited. Starting
from the conformal one, we have in D dimensions:
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• g̃ab = Ω2gab,

• h̃ab = Ω2hab,

• K̃ab = ΩKab + (∇tΩ)hab,

• K̃ = Ω−1K + (D − 1)Ω−2∇tΩ;

where the quantities written were introduced in the main text. In particular, hab
is the induced metric on a level surface Σ of φ, called also first fundamental
form; Kab is the second fundamental form and K̃ = g̃abK̃ab its trace; ∇t =
ta∇a, with t

a = gabtb. In the other case, we have:

• g̃ab = Ω2gab − ϵ(Ω2 − Ω−2)tatb,

• h̃ab = Ω2hab,

• K̃ab = Ω3Kab + (Ω2∇qΩ)hab,

• K̃ = ΩK + (D − 1)∇qΩ.

We see that the relation between the induced metrics is the same, while for the
second forms, we obtain in practice an additional factor Ω2. It is interesting
to see also the composition of two disformal coupling. Actually, the rule turns
out to be very simple, after having introduced the function α, already defined
in the text, which read:

α = (Ω2 − Λ)−1. (A.4)

Take now a metric gab, and apply a disformal coupling defined by the function
Ω′2 and α′. Here we call the new metric g′ab, obtaining:

g′ab = Ω′2gab − ϵ(Ω′2 − α′−1)tatb. (A.5)

Now, apply a second disformal transformation, characterized by the functions
Ω′′2 and α′′, obtaining g′′ab:

g′′ab = Ω′′2g′ab − ϵ(Ω′′2 − α′′−1)t′at
′
b. (A.6)

It is easy to see, by explicit calculation, that we can go directly from gab to g
′′
ab

simply multiplying the functions Ω2 and α:

g′′ab = (Ω′Ω′′)2gab − ϵ
[
(Ω′Ω′′)2 − (α′α′′)−1

]
tatb. (A.7)

In other words, if we work with Ω2 and α, the composition is a simple mul-
tiplication at the level of this functions, giving the coefficients of the direct
transformation:

Ω′′′ = Ω′Ω′′, α′′′ = α′α′′. (A.8)
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Appendix B

Coefficients Ψ5, Ψ8

Here we show how to obtain the form of the coefficients Ψ5 and Ψ8 written in
the main text, and is explained from where they come from. We follow [19].
Consider a binary made up by two black holes, with masses m1 and m2 and
total mass M = m1+m2. As we said, during the inspiral each of the black hole
absorbs a part of the emitted gravitational wave, changing its parameters (mass,
angular momentum...) due to the exchange of energy and angular momentum
carried by the gravitational waves. This is what is called tidal heating. For now,
we identify the flux of absorbed energy formally with FH, while the flux related
to the energy carried to infinity is called F∞. Now we give an explanation on
how to find the form of such flux FH, precisely in terms of the rate of change of
the masses m1 and m2. This turns out to be, compared to the main flux F∞, a
very small effect. Being both the fluxes expansions for small value of parameter
v, the smallness of FH means actually that its first order contribution in v has a
power very bigger compared to the one of the first order of F∞. Start from the
rate of change, for example, of the mass m1 with respect to time, which can be
computed via the resolution of the Teukolsky equation in the Weyl formalism
[19]. We have:

dm1

dt
=

(
dE

dt

)
N

(
m1

m

)3
v5

4

[
− χ1(L̂ · Ĵ1) + 2

v3r+1

m

][
1 + 3χ2

1

]
, (B.1)

where (dE/dt)N = (32/5)η2v10 is the energy loss due to emission of gravitational
waves in the quadrupole approximation, χ1 is the dimensionless ratio J1/m

2
1 of

BH1, L̂ is the orbital angular momentum, Ĵ1 is the spin of BH1. The form of
r+ is given for rotating black holes by:

r±i = mi ±
√
m2
i −

Ji
mi

(B.2)

Of course, for BH2 we have the same structure but with the replacement

1 → 2. Now, two functions are defined, which are called A
(5)
i and A

(8)
i , where
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i = 1, 2 label stays for BH1 or BH2. They read:

A
(5)
i =

(
mi

m

)3

χi(L̂ · Ĵi)

[
1 + 3χ2

i

]
,

A
(8)
i =

(
mi

m

)4[
1 +

√
1− χ2

i

][
1 + 3χ2

i

]
.

(B.3)

As we can see, they depend just on ratios, like mi/m or χi. With these defini-
tions, the rate of change of the mass mi can be written then:

dmi

dt
=

(
dE

dt

)
N

[
−A

(5)
i

v5

4
+A

(8)
i

v8

2

]
. (B.4)

Now, since to absorption of energy corresponds surely to a change in the mass
of the black hole, and since the above function has the correct dimensions, we
identify precisely the power absorbed by each black hole with:

FH,i =
dmi

dt
. (B.5)

In this way, we can define the total absorbed flux absorbed by the two black
holes, as:

FH =
∑
i

FH,i =

(
dE

dt

)
N

[
−Ψ5

v5

4
+ Ψ8

v8

2

]
, (B.6)

where Ψ5 and Ψ8 are precisely the coefficients of interest.
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Appendix C

Approximation for
templates of δψTH

In this appendix, we show better how to identify the term related to tidal heating
in the expansion of the fraction containing the two fluxes contributions, namely:

1

F∞ + FH
. (C.1)

Recall that we have:

F∞(v) =
32

5
η2v10

[
1−

(
1247

336
+

35

12
η

)
v2 + (4π + FSO)v

3

]
,

FH(v) =
32

5
η2v10

[
−Ψ5

v5

4
+ Ψ8

v8

2

]
;

(C.2)

where we are considering a generic ratio η and a non-vanishing value of the spin.
For the sum, we have:

F∞(v) + FH(v) =
32

5
η2v10

[
1 + C2v

2 + C3v
3 + C5v

5 + C8v
8

]
, (C.3)

without ambiguity about the values of Ci, since each one is connected to the
correspondent order in v. We underline that the coefficients coming from tidal
heating are C5 and C8. Let us define x ≡ C2v

2 + C3v
3 + C5v

5 + C8v
8, and

consider now the fraction:

1

F∞(v) + FH(v)
=

5

32η2
1

v10
1

1 + x
≃ 5

32η2
1

v10
(1− x+ x2 + ...), (C.4)

where we expand the denominator at the second order in x. In doing so, since
the maximum order of the denominator is 8, we will neglect all the terms which
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are at an order higher than 8. After having to that, we keep just terms which
contain C5 or C8 at least one time. We have:

1− x+ x2 ≃ 1− C2v
2 − C3v

3 − C5v
5 − C8v

8

+ C2
2v

4 + C2
3v

6 + 2C2C3v
5 + 2C2C5v

7 + 2C3C5v
8 + ...,

(C.5)

where we stopped at order 8. Now, let’s keep just the terms containing some-
thing coming from FH(v). They are:

−C5v
5, −C8v

8, +2C2C5v
7, +2C3C5v

8. (C.6)

This gives:

1

F∞ + FH
→ 5

32η2
1

v10

[
Ψ5

v5

4
−Ψ8

v8

2
+Ψ5

(
1247

336
+
35

12
η

)
v7

2
−Ψ5(4π+FSO)

v8

2

]
,

(C.7)
this expression is precisely the one considered to find the various templates
connected to tidal heating in the text.
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