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Abstract

Multimodal MRI is crucial for brain tumor segmentation, but its clinical

use is hampered by the ”missing modality problem,” where incomplete data

degrades model performance and deployment. This thesis introduces the

Grouped Modality Distillation Transformer (GMD-Trans), a novel, fully su-

pervised framework designed to be inherently robust to this challenge. The

GMD-Trans architecture uses a 3D Vision Transformer (ViT) backbone for

global context modeling and a dual-stream encoder for synergistic modality

groups. Features are integrated via a cross-attention mixer (IG-CAM). Ro-

bustness is achieved through a teacher-student knowledge distillation (KD)

scheme guided by the mathematically stable Hölder Divergence to ensure per-

formance even when key modalities are absent. Evaluated on the BraTS 2021

benchmark with randomly missing modalities, GMD-Trans achieves a state-

of-the-art Dice score of 82.1% for the Tumor Core (TC), surpassing strong

baselines. Ablation studies confirm the efficacy of the proposed methods.

This specialized success, however, reveals a performance trade-off, with lower

accuracy on the Enhancing Tumor (ET) region. GMD-Trans provides a pow-

erful and efficient solution for robustly segmenting the main tumor body from

incomplete data using a fully supervised paradigm, without needing complex

pre-training or data synthesis. This work advances the development of de-

pendable AI tools for real-world neuro-oncology.
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Chapter 1

Introduction

1.1 Background and Context

The field of multi-modal learning represents a significant and rapidly evolv-

ing frontier in artificial intelligence, with the primary objective of endowing

machines with a more comprehensive and nuanced comprehension of their en-

vironment, mirroring the integrated nature of human perception. Its core prin-

ciple involves the synthesis and analysis of information from disparate and

heterogeneous sources, including but not limited to visual, textual, and acous-

tic data streams [1] [2]. The central impetus for this approach stems from the

recognition that any single source of information, when considered in isola-

tion, is often insufficient or subject to ambiguity. By strategically fusing these

complementary data streams, multi-modal systems can overcome the limita-

tions of individual modalities, leading to the creation of richer, more reliable,

and more complete internal representations of complex real-world phenom-

ena [3]. Achieving this requires a sophisticated, interdisciplinary approach

that draws upon expertise from computer vision, natural language process-

ing, and speech analysis, among other domains. The overarching ambition is

the development of artificial intelligence systems capable of perception, rea-

soning, and interaction that more closely emulate the fluid and context-aware

nature of human cognition.
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With the maturation of this research area, the need for clear and rigorous

foundational concepts has become paramount. A central element requiring

formalization is the definition of ”modality” itself. Beyond the intuitive no-

tion of simply involving multiple data formats, a more precise, functional def-

inition is essential for methodical progress. Contemporary research suggests

that modalities should be defined not merely by their format but by the distinct

representational value they offer for a given task [1]. For instance, while the

modalities for a visual question answering system are the image and its corre-

sponding text, an autonomous vehicle might rely on a combination of visual

camera data, LiDAR point clouds, and radar signals. This task-oriented per-

spective is vital for designing effective and targeted model architectures. Of

equal importance is the establishment of systematic taxonomies for classifying

the field’s wide array of methodologies [2]. Such frameworks are indispens-

able for comparing different approaches, identifying research gaps, and under-

standing the conceptual relationships between various models. These classifi-

cations are frequently organized around critical architectural decisions, most

notably the stage at which data fusion occurs—such as early, intermediate, or

late fusion —as well as the methods used for learning coordinated represen-

tations and the specific learning objectives like alignment or co-learning.

Figure 1.1 illustrates the core challenges of multimodal learning. It begins

with diverse input modalities (visual, text, audio, sensor) that are processed

through representation and alignment. These foundational steps then support

subsequent complex tasks including reasoning, generation, and transference,

while quantification provides analytical evaluation across the framework.

Deep learning continuously plays a major role in multi-modal systems. It

brings strong architectures that can translate one modality into another, im-

prove representation learning, and handle multiple modalities at once [3].

These methods have been used in many fields, such as healthcare, robotics,

video understanding, and text-to-image generation. All of these show that

multi-modal learning has great potential in real applications.
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Visual Text Audio Sensor

Input Modalities

RepresentationAlignment

Reasoning GenerationTransference

Quantification

Figure 1.1: The core technical challenges in multi-modal learning.

Medical image segmentation represents a fundamental task in computer-

aided diagnosis, enabling precise identification and delineation of anatomical

structures and pathological regions. The field has experienced transforma-

tive advancement through deep learning technologies, particularly in address-

ing complex multimodal scenarios where information from different imaging

modalities must be integrated effectively[4].

While conventional segmentation algorithms offer computational effi-

ciency and interpretability, they often prove inadequate when faced with the

inherent complexity, noise, and variability of medical imagery. The advent of

deep learning has precipitated a paradigm shift in this domain, facilitating the

development of segmentation solutions with substantially greater robustness

and accuracy across a wide range of clinical applications [5].

Despite these advancements, several critical challenges persist as active
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areas of research. A primary unresolved issue is the design of more gen-

eralized and powerful models capable of robustly handling scenarios where

certain modalities are unavailable during inference [6]. Concurrently, devel-

oping efficient and effective methods to align, integrate, and reason across

disparate data sources remains a significant technical hurdle [7]. Moreover,

for these sophisticated models to be viable for large-scale clinical deployment,

theymust satisfy stringent requirements for both scalability and computational

efficiency.

1.2 Foundations of Multi-modal Processing

The foundational principles of multi-modal processing are centered on the

effective integration and interpretation of information from heterogeneous

sources, such as text, images, audio, and video streams. The primary goal

is to build computational models that can process and relate information from

these diverse modalities to achieve amore robust and holistic understanding of

complex phenomena. Recent advancements have led to significant progress,

but the field is defined by a set of core technical challenges that must be

addressed to build effective systems. A prominent taxonomy identifies six

such challenges: representation, alignment, reasoning, generation, transfer-

ence, and quantification [7], underscoring the breadth and complexity of the

domain.

Representation learning is a cornerstone of multimodal processing, as it

addresses the primary challenge of transforming heterogeneous data into a

format that can be jointly processed. The objective is to learn representations

that can capture and exploit the complementarity and redundancy of infor-

mation across different modalities [1]. These representations can be broadly

categorized into two main types:

Joint Representations: These methods project data frommultiple modal-

ities into a shared semantic space. This creates a unified representation where
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information from different sources can be directly compared and combined.

Coordinated Representations: In contrast to forcing all modalities into

a single space, this approach learns separate representations for each modality

while enforcing constraints to keep them correlated.
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Figure 1.2: Unimodal representation learning.

Figure 1.2 shows the initial stage of unimodal representation learning,

where raw Visual, Text, and Audio inputs are processed by distinct deep learn-

ing encoders. Modality-specific architectures transform these diverse inputs

into structured Vision Features, Text Features, and Audio Features for subse-

quent multi-modal integration.

One of the most significant conceptual advancements is the adoption

of task-relative definitions of multimodality, which prioritize the functional

value of information for a specific objective over its format [1]. In medical

imaging, for instance, this perspective is critical; for brain tumor segmenta-

tion, T1-weighted and FLAIR MRI scans are considered distinct modalities

not merely because they are different imaging sequences, but because they
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provide unique, non-redundant information essential for delineating the tu-

mor core and surrounding edema, respectively. This task-centric view pro-

motes more flexible and effective system designs. Furthermore, surveys on

multi-modal co-learning are systematically addressing persistent challenges

like incomplete or noisy data, offering new taxonomies of techniques and ap-

plications that help to structure and guide future research directions [8].

A parallel and increasingly vital line of inquiry is the pursuit of model

robustness. Dedicated frameworks are being developed to analyze and im-

prove the stability of multi-modal systems under diverse and non-ideal con-

ditions, which is crucial for their deployment in safety-critical applications

like medicine [6]. At the same time, the potential of multi-modal large lan-

guage models (MLLMs) is attracting considerable attention, particularly for

tasks such as generating diagnostic reports from radiological images, which

requires a deep fusion of visual and linguistic understanding [9]. The long-

term ambition is to create generalist multi-modal AI systems that can adeptly

handle a wide variety of tasks and modalities, representing an exciting and

promising frontier for the field [10].

However, significant challenges and limitations remain. Scalability con-

tinues to be a major concern as models grow in complexity. The problem

of missing or noisy modalities is a persistent practical barrier, especially in

clinical workflows where a full complement of data is not always available

for every patient. Furthermore, there is still a lack of universally accepted

standards for evaluating multi-modal models, making direct comparisons be-

tween different approaches difficult, [11]. To address these issues, researchers

are actively exploring methods such as correlation maximization or minimiza-

tion to refine feature representations [11], as well as developing improved data

processing techniques specifically designed for modern multi-modal architec-

tures [12].

In conclusion, the foundations of multi-modal processing are built upon

a rich confluence of concepts, techniques, and applications. With sustained
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research, significant improvements in how cross-modal data is understood

and integrated within higher-level models are anticipated [13], [9]. These ad-

vances will undoubtedly influence numerous domains, including healthcare,

education, and entertainment, underscoring the importance of continued sup-

port and funding for this pivotal field.



Chapter 2

Deep Learning for Multi-modal

Data

The emergence of deep learning has fundamentally transformed the process-

ing of multimodal data, enabling sophisticated analysis of heterogeneous data

sources across diverse domains [3, 14]. This paradigm has proven particularly

transformative in medical imaging, where clinicians routinely analyze multi-

ple imaging sequences to achieve comprehensive tumor characterization.The

integration of deep learning with medical imaging has initiated a paradigm

shift in computational medicine, moving beyond simple image reconstruction

to sophisticated analysis and diagnostic support. This evolution is particu-

larly pronounced in the domain of multimodal imaging, where the synthesis

of information from disparate sources offers a more holistic view of complex

pathologies than any single modality can provide alone. This section delin-

eates the clinical rationale for multimodal analysis, outlines the foundational

challenges inherent to medical data that shape algorithmic development, and

introduces the key technological paradigms that have emerged to address these

hurdles.

Modern multimodal deep learning systems must navigate several core

technical challenges: representation learning for heterogeneous data types,

alignment of information across modalities, and the generation of cross-modal
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content. These challenges become particularly pronounced in medical appli-

cations where data heterogeneity, missing modalities, and stringent accuracy

requirements create unique computational demands.

2.1 The Clinical Imperative for Multimodality:

Beyond Single-View Diagnostics

Medical imaging is a cornerstone of modern clinical practice, offering non-

invasive windows into the human body’s internal structures and biological

processes. However, the diagnostic power of any single imaging modality is

inherently constrained by its underlying physical principles. Consequently,

a single modality often fails to present a complete characterization of a spe-

cific organ or lesion, thereby limiting the accuracy and comprehensiveness of

clinical diagnosis.

Multimodal medical image analysis addresses this fundamental limitation

by integrating complementary information from different imaging sources.

This approach mirrors the diagnostic process of a clinician, who synthe-

sizes data from a multitude of resources—including radiological images,

histopathology slides, electronic health records, and genomic data—to ar-

rive at a treatment decision[15]. The objective is to transform the imaging

paradigm from a conventional ”what you see is what you get” model to a more

adaptive and clinically potent ”what you see is what you need” approach. By

fusing data, it becomes possible to visualize previously unobservable targets,

overcome the physical limitations of individual hardware systems, and en-

able advanced visual tasks such as precise semantic segmentation and three-

dimensional reconstruction.The growing consensus is that future computer-

assisted diagnostic systems must be capable of processing multimodal data

simultaneously to achieve their full potential[15].
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2.2 Architectural Foundations and Evolution

2.2.1 Convolutional Neural Network Advances

Traditional convolutional neural networks, particularly U-Net[16] and its vari-

ants, established the foundation for medical image segmentation through their

encoder-decoder architecture with skip connections. These architectures have

demonstrated remarkable effectiveness in preserving spatial informationwhile

capturing hierarchical features. Recent advances have introduced sophisti-

cated modifications like the Modified Connected U-Net with Guided Decoder

(MCU-Net-GD)[17], which utilizes a dual U-Net structure with guided de-

coder mechanisms to enhance segmentation performance.

Figure 2.1: Classic U-Net model architecture[16].

However, CNNs face inherent limitations in modeling long-range depen-

dencies due to the locality of convolution operations. This constraint has mo-

tivated the development of hybrid architectures. Advanced CNN approaches

have also incorporated Atrous Spatial Pyramid Pooling (ASPP)[18] blocks to

gather contextual information across multiple scales, significantly improving
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segmentation accuracy for complex tumor boundaries.

2.2.2 Transformer Integration and Vision-Based Architec-

tures

The advent of Vision Transformer (ViT)[19] has precipitated a paradigm shift

in medical image segmentation, offering a transformative alternative to tradi-

tional CNNs. Figure 2.2 shows the architecture of the original Vision Trans-

former.The fundamental distinction lies in their differing architectural priors

and receptive fields. Whereas CNNs inherently operate on a local receptive

field due to the nature of their convolutional kernels, ViTs employ a self-

attention mechanism to model long-range spatial dependencies across the en-

tire image volume from the outset.

Figure 2.2: Classic Vision Transformer model architecture.

This ability to establish a global receptive field from the initial layers al-

lows Transformers to surpass the inherent locality constraints of CNNs, en-

abling the generation of more holistic and context-aware feature representa-

tions. This is particularly advantageous for interpreting the complex anatom-

ical structures and pathological variations present in multimodal MRI data.

Recent architectures exemplify this evolution. PAG-TransYnet [20], for
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instance, utilizes a dual pyramid encoder design that integrates Pyramid Vi-

sion Transformer (PVT) components specifically to capture these crucial long-

range dependencies across multiple resolutions. Similarly, SegStitch rep-

resents a significant innovation by integrating Transformers with denoising

ODE blocks. This architecture achieves remarkable efficiency, reducing pa-

rameters by 36.7% and computational operations (FLOPs) by 10.7% com-

pared to the Transformer-based UNETR, while delivering superior perfor-

mance.

2.2.3 CNN-Transformer Hybrid Innovations

The most promising developments in multimodal medical imaging involve

sophisticated hybrid architectures that synergistically leverage the comple-

mentary strengths of CNNs and Transformers through novel integration

paradigms. These advanced hybrid approaches address the fundamental limi-

tations of both architectural types: CNNs’ restricted receptive fields and local-

ity bias, and Transformers’ quadratic computational complexity and reduced

inductive bias. Contemporary hybrid designs demonstrate remarkable inno-

vation in feature integration strategies, attention mechanisms, and multimodal

fusion techniques specifically optimized for medical imaging applications.

The MCTSegframework represents a paradigmatic advancement in han-

dling missing modalities through sophisticated CNN-Transformer hybridiza-

tion [21] . This architecture employs a tripartite design incorporating a Mul-

timodal Feature Distillation (MFD) module that distills feature-level multi-

modal knowledge into different unimodalities, a Unimodal Feature Enhance-

ment (UFE) module for semantic relationship modeling between global and

local information, and a Cross-Modal Fusion (CMF)module for explicit align-

ment of global correlations even when modalities are absent. The CNN-

Transformer hybrid architecture within both UFE and CMF modules captures
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complementary local and global dependencies, demonstrating superior perfor-

mance on BraTS2018 and BraTS2020 datasets in missing modality scenarios

while achieving state-of-the-art segmentation accuracy.

TransSea introduces semantic awareness as a fundamental design princi-

ple for 3D brain tumor segmentation, implementing a sophisticated encoder-

decoder architecture that addresses semantic disparities between local and

global features [22]. The architecture incorporates a Semantic Mutual At-

tention (SMA) module at the encoding stage that seamlessly integrates global

and local features through cross-attention mechanisms, while a multiscale Se-

mantic Guidance (SG) module introduces semantic priors through supervised

learning. The decoding process employs a Semantic Integration (SI) module

that further integrates various feature mappings from the encoder with seman-

tic priors, enhancing semantic information propagation and achieving seman-

tically aware querying capabilities.

MuMoSNet addresses the inherent multimodal characteristics of MRI

images through parallel architectural design that maximizes modality-

specific feature extraction [23]. The architecture introduces a parallel ME-

Transformer encoder alongside a CNN-based encoder within a 3D U-Net

framework to separately extract modality-specific features while maintain-

ing shared feature learning capabilities. The innovative Multi-Feature Fusion

(MuFF) module learns affinity relationships between cross-modality shared

features and modality-specific features, maximizing the exploration of mul-

timodal information through sophisticated attention mechanisms that bridge

the semantic gap between different MRI sequences.
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2.3 Medical Imaging Applications of Advanced

Architectures

2.3.1 Cardiovascular and Pulmonary Applications

In cardiovascular and pulmonary applications, advanced CNN approaches

have achieved diagnostic accuracies exceeding 94% for lung disease iden-

tification. Myocardial infarction prediction has benefited from sophisticated

ensemble approaches combining deep learning models like VGG16, Incep-

tion V3 [24], and custom CNNs with machine learning techniques, enhancing

automated ECG analysis.

2.3.2 Brain Tumor Analysis and Segmentation

Brain tumor segmentation is a compelling application domain for multimodal

deep learning. Recent frameworks utilize normal brain images as reference

points for tumor identification in learned feature spaces. Advanced context ag-

gregation networks with prediction-aware decoding strategies help networks

focus on error-prone regions. Developments from the BraTS challenge have

showcased the effectiveness of architectures like MedNeXt, achieving high

Dice Similarity Coefficients on various datasets [25].

2.3.3 Emerging Clinical Applications

The application of multimodal deep learning extends to comprehensive clini-

cal integration. Systems using architectures like InceptionV3+RNN for brain

tumor grading have shown superior performance. In breast cancer analysis,

sophisticated radiomics and deep learning models have achieved high AUCs

for metastasis prediction [26].



2.4 Challenges and Future Directions 15

2.4 Challenges and Future Directions

Despite these advances, significant challenges persist. Computational scala-

bility remains a primary concern as datasets grow in size and complexity [27,

28]. The lack of standardized evaluation frameworks and benchmarks com-

plicates the comparison of different approaches.

The robustness of multimodal systems to missing or corrupted data contin-

ues to present challenges. Furthermore, the interpretability of complex mod-

els remains crucial for clinical acceptance, requiring continued development

of explainable AI. Future research must address these challenges while ad-

vancing the integration of foundation models and self-supervised learning.

The development of unified frameworks capable of handling diverse medi-

cal imaging tasks represents a critical frontier for the field [29].

Surveys of recent studies reveal several common themes: a strong focus

on multi-modal fusion, the use of deep learning frameworks, concerns about

robustness, and the importance of organizing the field through taxonomies and

benchmarks [30], [31]. Generative models and co-learning strategies continue

to attract attention. Still, researchers propose different architectures depending

on task type and application needs, leading to varied designs and viewpoints.

Overall, deep learning has brought meaningful progress to multi-modal

learning by enabling better integration and processing of diverse data types.

However, problems like computational cost, model comparison, and noise

handling remain. As the field evolves, we can expect to see more advanced

models and better solutions, moving toward more effective, adaptable, and

robust multi-modal systems[3].



Chapter 3

Multi-modal Fusion Methods

Fusionmethods play a central and often sensitive role in multi-modal learning.

They are not just technical add-ons; they are what actually make it possible to

bring different modalities: text, vision, audio, or others, together in a way that

works. Without good fusion, the promise of multi-modal learning becomes

hard to fulfill. That’s why fusion strategies are treated as a core research focus

in the community. One insight that has emerged is the importance of learning

strong uni-modal features, even under supervised multi-modal training. In

particular, [32] introduces a kind of late-fusion learning method that aims to

help models generalize better. What’s interesting here is that their approach

captures the finer details unique to each modality, while also trying to limit the

harm from noisy or less helpful ones. This is especially useful when the data

environment is unpredictable or noisy, which is often the case in real-world

settings.

Figure 3.1 illustrates three widely used multi-modal fusion strategies:

Early Fusion, Intermediate (feature-level) Fusion, and Late (decision-level)

Fusion. Early Fusion concatenates all modalities immediately after basic pre-

processing and feeds the combined input into a shared backbone network. In-

termediate Fusion first employs modality-specific backbones to extract fea-

tures, which are then merged to form a unified representation. Late Fusion

trains separate prediction heads for each modality and finally aggregates their
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outputs at the decision level.
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Figure 3.1: A comparative illustration of three primary multi-modal fusion
strategies.

Early fusion combines raw features at the input level, formalized as a

weighted combination of modality-specific features [3].

hfused = f

(
M∑

m=1
Wmxm + b

)
, (3.1)

where xm denotes the input features of modality m, Wm is a weight matrix,

b is a bias term, and f(·) is a non-linear activation function (e.g., ReLU). Late

fusion, conversely, integrates predictions from modality-specific models, as

explored by [32].

yfused =
M∑

m=1
wm · gm(xm; θm), (3.2)

where gm(xm; θm) is the prediction model for modality m, wm is the modal-

ity weight, and yfused is the final prediction. To address modality competition,

adaptive gradient modulation dynamically adjusts contributions during train-

ing [33].

∇θL =
M∑

m=1
αm(t) · ∇θLm, (3.3)
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whereLm is the loss for modalitym, αm(t) is a time-varying weight, and∇θL

is the fused gradient, ensuring balanced learning across modalities. Interme-

diate fusion methods, particularly in biomedical applications, allow gradual

interaction during training [34].

Other researchers are taking a somewhat different path. Instead of relying

purely on late-fusion, they propose models that can learn how different modal-

ities interact and support each other, on their own. For example, the work in

[35] presents a deep equilibrium model for fusion, which has shown quite im-

pressive results on many benchmarks. The model tries to capture high-level

dependencies between modalities in a very flexible way. Then, there is [36],

which argues that there is really no best fusion method that works for all prob-

lems. Depending on the task, the modality types, and even howmuch memory

the system can use, the right fusion strategy may be very different.

Somewhere in the middle, intermediate fusion methods offer another op-

tion. These are particularly interesting for domains like biomedical applica-

tions [34], where the way signals mix can be quite subtle and context-sensitive.

Intermediate fusion allows for gradual interaction between modalities during

training, which often leads to better performance overall. Additionally, [33]

proposes a method using adaptive gradient modulation. This helps reduce

what’s known as modality competition, where different data sources “com-

pete” for influence during learning. They also suggest a newmetric tomeasure

this competition, called competition strength.

Looking across these studies, there is a common theme: fusion is not just

about mixing things together. It needs to be done carefully, and often in a way

that adapts to both the data and the task. Some papers like [32] argue for late-

fusion to keep each modality’s strengths intact, while others such as [34] see

value in intermediate fusion, especially for structured or medical data. Adap-

tive methods like those in [35] and [33] focus on the idea that the relationship

between modalities can shift, and that the model needs to follow those shifts

dynamically. Also, as [36] mentions, resource availability like memory can
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Table 3.1: Comparison of common multimodal fusion strategies

Fusion
Strategy

Mechanism Key
Advantages

Major
Limitations

Representative
Mod-
els/Applications

Early Fusion Modalities
are
concatenated
at the input
layer before
being fed
into a single
encoder.

Simple to
implement;
allows the
model to
learn
low-level
cross-modal
correlations.

Prone to
modality
imbalance;
sensitive to
missing data;
requires
perfect data
alignment.

Basic CNNs
with stacked
input
channels.

Intermediate
Fusion

Modalities
are processed
by separate
streams, with
features
fused at one
or more
mid-network
layers.

Balances
modality-
specific
feature
learning with
cross-modal
interaction.

Can create
complex,
data-hungry
models;
increases
parameter
count.

Multi-path
CNNs;
models
fusing image
and genomic
data.[37]

Late Fusion
(Decision-
level)

Separate
models are
trained for
each
modality;
predictions
are
aggregated.

Highly
robust to
missing
modalities;
modular
design.

Cannot
model
inter-modal
feature de-
pendencies;
potential loss
of synergistic
information.

Ensemble
methods.[38]
Classifica-
tion by
fusing MRI
predictions
with clinical
scores.[37]

Hybrid / Mixed
Fusion

A
combination
of strategies.

Highly
flexible;
optimized for
heteroge-
neous data
types.

Complex to
design;
requires
careful
consideration
of fusion
points.

Fusing
high-level
image
features with
tabular
clinical
data.[37]
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shape what fusion strategy is even possible in practice.

An issue that shows up again and again is evaluation. How do we know

that fusion is working well? How do we compare models? Multiple works,

including [32] and [33], point out the lack of widely agreed-upon metrics.

Without proper tools to evaluate fusion quality or modality interaction, it is

very hard to say what works and what does not.

And then there is application context. Somemethods are proposed for gen-

eral use [36], while others are more specific, like those focused on biomedical

data [34]. This shows the variety in this field but also points to how challeng-

ing it is to create fusion methods that are flexible yet powerful across very

different tasks and domains.

Even though we’ve seen a lot of progress, there are still problems that

have not been solved well. Modality competition, for one, is still a bit of a

black box. While [33] suggests ways to measure and handle it, we do not

fully understand the underlying dynamics yet. There is also the point that

intermediate fusion methods, which seem promising in medical areas, have

not been tested enough in other domains [34]. So, we do not yet know how

far they can go.

To sum up, multi-modal fusion methods are essential, there is no question

about that. The field is now focused on finding smarter and more adaptive

fusion designs. These aim to balance task-specific performance with compu-

tational feasibility. At the same time, better evaluation strategies and metrics

are urgently needed. By paying closer attention to how modalities interact,

and sometimes interfere, with one another, future models may not only be-

come more accurate but also more transparent and easier to work with. That’s

the hope, at least, as multi-modal learning moves ahead.

Table 3.2 synthesises ten representative multi-modal learning methods

published between 2018 and 2025, revealing a steady transition from mod-

ular, late-fusion, or factorised designs— which integrate modality-specific

features only at the final stage and are suited to generic classification
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and data-integration tasks—to more recent deep, adaptive, and asymmetric-

reinforcement fusion schemes that embed cross-modal interactions within the

network itself. Roughly half of the surveyed approaches now include ex-

plicit safeguards for missing-modality scenarios, a necessity in biomedical or

resource-constrained settings, while the remainder still assume complete input

streams. Correspondingly, reported advantages range from computational and

label efficiency to superior benchmark performance and enhanced robustness

through balanced modality contributions. Overall, the field is moving away

from static, model-agnostic fusion toward dynamic, data-aware mechanisms

that extend multi-modal learning to noisy, incomplete, and highly specialised

application domains.



Chapter 4

Experimental Evaluation of

Multi-modal Fusion Strategies for

Brain Tumour Segmentation

This chapter presents the empirical evaluation designed to systematically com-

pare the performance of early, intermediate, and late fusion strategies for

multi-modal brain tumour segmentation. We detail the experimental proto-

col, including the dataset characteristics, preprocessing pipeline, architectural

implementations, and training regime. Subsequently, we present and analyse

the quantitative and qualitative results, culminating in a discussion that syn-

thesizes these findings and contextualises them within the broader field.

4.1 Experimental Protocol

4.1.1 Dataset and Preprocessing

Dataset Characterisation

The diagnostic power of MRI in neuro-oncology is significantly enhanced by

acquiring multiple imaging sequences, or modalities, for each patient, as il-

lustrated in Figure4.1.The study is based on the publicly available Multimodal



4.1 Experimental Protocol 24

Figure 4.1: Representative axial slices from a single patient illustrating the
complementary information provided by different MRI modalities.

Brain Tumor Segmentation (BraTS) challenge dataset[45], which serves as a

standard benchmark in the field. This dataset contains multi-parametric Mag-

netic Resonance Imaging (MRI) scans from numerous patients diagnosed with

both low-grade (LGG) and high-grade (HGG) brain tumours. The use of a

multi-parametric approach is standard clinical practice, as the combination of

different MRI modalities provides complementary information about tumour

morphology and pathology, enhancing diagnostic accuracy. Consequently,

the BraTS dataset is ideal for this multi-modal fusion study, as it provides

four standard pre-operative MRI sequences for every case: T1-weighted (T1),

T1-weighted contrast enhanced (T1ce), T2-weighted (T2), and FLAIR.

T1-weighted (T1): Provides good anatomical detail of healthy tissue.

Post-contrast T1-weighted (T1ce): A contrast agent is administered, which

accumulates in areas where the blood-brain barrier has broken down, caus-

ing the active parts of the tumor to appear bright (enhance). This modality

is therefore critical for identifying the enhancing tumor region. T2-weighted

(T2): Highly sensitive to edema (swelling), which appears as a bright signal.

T2 Fluid-Attenuated Inversion Recovery (FLAIR): Similar to T2 but with the
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signal from cerebrospinal fluid suppressed. This makes it particularly effec-

tive for visualizing the peritumoral edema, as it prevents confusion with fluid-

filled ventricles.

4.1.2 Network Architectures and Fusion Implementations

To comprehensively evaluate the impact of different fusion strategies, we em-

ploy four distinct and representative deep learning architectures for semantic

segmentation. The selection spans the evolution of segmentation models from

foundational CNNs to modern hybrid Transformer-based designs. This allows

for an analysis of whether the optimal fusion strategy is universal or contingent

upon the architectural paradigm of the backbone network.

U-Net (Baseline)

The canonical U-Net architecture serves as the fundamental baseline for this

study. Its design, featuring a symmetric encoder-decoder structure with skip

connections, has proven exceptionally effective in biomedical imaging. The

skip connections are crucial as they concatenate deep, semantic feature maps

from the encoder with shallow, high-resolution feature maps from the decoder,

enabling precise localisation of segmented objects. [16]

U-Net++

As a direct successor to U-Net, the UNet++ 4.2 architecture introduces re-

designed skip pathways that are dense and nested[46]. This modification aims

to bridge the semantic gap between the encoder and decoder feature maps, fa-

cilitating a smoother gradient flow and enabling the capture of finer-grained

details.
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Figure 4.2: UNet++ consists of an encoder and decoder that are connected
through a series of nested dense convolutional blocks[46].

DeepLabV3+

This model represents a different architectural philosophy, employing an

encoder-decoder structure where the encoder leverages atrous (or dilated) con-

volutions to explicitly control the receptive field and capture multi-scale con-

textual information without losing spatial resolution[47]. Its signature com-

ponent, the Atrous Spatial Pyramid Pooling (ASPP) module, probes incoming

features with filters at multiple dilation rates, allowing the model to robustly

segment objects of various sizes, a common challenge with brain tumours.

TransUNet

This hybrid model represents the state-of-the-art by combining the strengths

of both CNNs and Transformers[48]. It uses a CNN backbone to extract lo-

cal, high-resolution feature maps, which are then tokenized and processed by

a Transformer encoder to model global, long-range dependencies across the

entire image. The resulting context-aware features are then fed into a CNN-

based decoder to produce the final segmentation. This architecture marries

the proven feature extraction capabilities of CNNs with the superior global

context modelling of Transformers.
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Figure 4.3: Overview of the framework. (a) schematic of the Transformer
layer; (b) architecture of the proposed TransUNet[48].

4.1.3 Fusion Strategy Implementations

Each of the three primary fusion strategies—early, intermediate, and late—is

systematically implemented across all four backbone architectures, resulting

in a total of 12 distinct experimental configurations.

Early Fusion (Input-Level)

This is the most direct fusion approach. For each 2D slice, the four prepro-

cessed MRI modalities (T1, T1ce, T2, FLAIR) are stacked along the channel

dimension to form a single 4-channel input tensor of size (4×256×256). This

multi-channel tensor is then fed directly into the input layer of the respective

single-encoder architecture (UNet, UNet++, DeepLabV3+, or TransUNet).

This strategy compels the network to learn how to fuse information and dis-

entangle inter-modal relationships from the very first convolutional layer.

Intermediate Fusion (Feature-Level)

This strategy allows for modality-specific feature learning before fusion. The

standard architectures are modified to incorporate four parallel, independent
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encoder paths, one for each MRI modality. Each encoder processes its cor-

responding single-channel modality, learning a specialised feature represen-

tation. At the deepest level of the encoding path (i.e., at the bottleneck, just

before the decoder begins), the feature maps from the four parallel encoders

are concatenated. This concatenated feature tensor is then passed through

a 1x1 convolutional layer to reduce its channel dimensionality and learn a

joint, fused representation. This fused feature map is then passed to the sin-

gle, shared decoder, which reconstructs the segmentation mask[49]. This ap-

proach balances the learning of modality-specific features with the synergistic

combination of information at a high level of semantic abstraction.

Late Fusion (Decision-Level)

This strategy maintains maximal independence between modalities through-

out the learning process. For each backbone architecture, four entirely sepa-

rate models are trained from scratch, one for each of the four MRI modalities.

During inference, a given patient’s four MRI slices are passed through their

respective uni-modal models. This process yields four independent segmenta-

tion probability maps. The final segmentation is produced by averaging these

four probability maps on a pixel-wise basis. This method prevents any single

modality from dominating the feature learning process but may fail to capture

complex, non-linear interactions between modalities that can only be learned

through joint feature representation.

4.1.4 Training and Evaluation

A consistent and rigorous training and evaluation protocol is applied to all 12

experimental configurations to ensure fair and reproducible comparisons.

All models are implemented using the PyTorch deep learning framework.

The training and inference processes are executed on a high-performance com-

puting cluster equipped with NVIDIAA100 Tensor Core GPUs, providing the
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necessary computational power for these deep architectures.

Hyperparameters

To facilitate a direct comparison of the architectural and fusion choices, a

fixed set of hyperparameters is used across all experiments. The Adam op-

timizer [50] is employed for its adaptive learning-rate capabilities, with an

initial learning rate set to 1 × 10−4. A cosine annealing scheduler is used to

gradually decrease the learning rate over the training duration, which helps the

model to settle into a broad minimum of the loss landscape. All models are

trained for a maximum of 100 epochs. A batch size of 32 is used. To combat

overfitting and reduce unnecessary training time, an early stopping mecha-

nism is implemented. Training is halted if the primary evaluation metric (Dice

score) on the validation set does not improve for 15 consecutive epochs, and

the model weights from the best-performing epoch are saved.

Loss Function

Brain tumour segmentation is a task characterised by severe class imbalance,

where the number of non-tumour (background) voxels vastly outnumbers the

tumour voxels. To address this, a composite loss function is employed, com-

bining the strengths of two commonly used loss functions:

Ltotal = LBCE + LDice (4.1)

where LBCE is the standard binary cross-entropy loss and LDice is the Dice

loss. The BCE component treats the segmentation as a pixel-wise classifi-

cation problem and provides smooth gradients, while the Dice loss directly

optimises the Dice Similarity Coefficient, which is highly effective for im-

balanced sets. This combined loss function provides a stable training signal

while directly targeting the primary evaluation metric.
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Evaluation Metrics

To quantitatively evaluate and compare the segmentation performance of the

different models and fusion strategies, a set of standard metrics was employed.

Thesemetrics are derived from the comparison between the predicted segmen-

tation mask and the ground-truth mask at the pixel level. Let P denote the set

of pixels predicted as tumour by the model, and G denote the set of ground-

truth pixels manually annotated by experts. The performance is assessed using

the following metrics:

• Dice Similarity Coefficient (DSC): This is one of the most widely used

metrics for evaluating segmentation performance, measuring the spatial

overlap between the predicted and ground-truth regions. It is sensitive

to the size and location of the predicted object and is defined as:

DSC(P, G) = 2 · |P ∩ G|
|P | + |G|

(4.2)

The DSC ranges from 0 (no overlap) to 1 (perfect overlap), with higher

values indicating better performance.

• Intersection over Union (IoU): Also known as the Jaccard Index, IoU

is another critical metric that quantifies the overlap between the pre-

dicted and ground-truth sets. It is considered a stricter metric than DSC.

The formula is:

IoU(P, G) = |P ∩ G|
|P ∪ G|

(4.3)

Similar to DSC, the IoU score ranges from 0 to 1, where a higher value

signifies a more accurate segmentation.

• Precision: This metric measures the fraction of correctly identified tu-

mour pixels among all pixels predicted as tumour. It quantifies the

model’s exactness and its susceptibility to over-segmentation (False
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Positives). A high precision indicates that the model makes few false-

positive predictions.

Precision = |P ∩ G|
|P |

(4.4)

• Recall (Sensitivity): Recall, also known as Sensitivity in medical con-

texts, measures the fraction of correctly identified tumour pixels among

all actual tumour pixels in the ground truth. It reflects the model’s

ability to detect all positive instances and its susceptibility to under-

segmentation (False Negatives). A high recall indicates that the model

misses few true-positive predictions.

Recall = |P ∩ G|
|G|

(4.5)

The final reported score for eachmetric is the mean value calculated across

all subjects in the test set.

4.2 Results and Analysis

This section presents the comprehensive results from the 12 experimental con-

figurations. The findings are analysed through both quantitative metrics and

qualitative visual assessments to provide a multi-faceted comparison of the

fusion strategies and backbone architectures. The experimental results, as de-

tailed in table 4.1, provide several key insights into the interplay between net-

work architecture and multi-modal fusion strategies.

4.2.1 Dominance of Intermediate Fusion

A clear and consistent trend observed across all four backbone architectures

is the superiority of the intermediate fusion strategy. In every tested configu-

ration, intermediate fusion yielded the highest performance in all four metrics
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Table 4.1: Mean quantitative performance of different fusion strategies and
backbones. Best value for each metric is in bold.

Backbone Fusion Strategy Dice IoU Precision Recall

UNet
Early Fusion 0.8421 0.7289 0.8156 0.8702
Intermediate Fusion 0.8634 0.7594 0.8389 0.8895
Late Fusion 0.8567 0.7492 0.8301 0.8849

UNet++
Early Fusion 0.8789 0.7836 0.8542 0.9058
Intermediate Fusion 0.8991 0.8167 0.8756 0.9245
Late Fusion 0.8923 0.8056 0.8691 0.9173

DeepLabV3+
Early Fusion 0.8612 0.7567 0.8347 0.8893
Intermediate Fusion 0.8834 0.7912 0.8578 0.9107
Late Fusion 0.8754 0.7789 0.8489 0.9039

TransUNet
Early Fusion 0.8945 0.8089 0.8712 0.9196
Intermediate Fusion 0.9187 0.8507 0.9012 0.9371
Late Fusion 0.9124 0.8395 0.8934 0.9325

(Dice, IoU, Precision, and Recall). For instance, with the state-of-the-art Tran-

sUNet backbone, intermediate fusion achieves a Dice score of 0.9187, which

is notably higher than both early fusion (0.8945) and late fusion (0.9124). This

pattern holds true for UNet, UNet++, and DeepLabV3+ as well,As shown in

Figure 4.4 confirming that this approach is robustly effective.

This suggests that allowing the network to first learn modality-specific

features in parallel streams before combining them at deeper, more semantic

levels provides a distinct advantage. This method likely mitigates the ”modal-

ity competition” that can occur in early fusion and captures synergistic infor-

mation that is lost in the decision-level averaging of late fusion.

4.2.2 Superiority of Advanced Architectures

The results also demonstrate a clear performance hierarchy among the back-

bone models, where architectural innovations lead to better segmentation out-

comes. The performance generally improves from the UNet baseline to more
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Figure 4.4: Intermediate fusion training results of three models.

advancedmodels, culminating in TransUNet achieving the best overall results.

When paired with intermediate fusion, TransUNet sets the highest benchmark

with a mean Dice score of 0.9187 as shown in Figure 4.5 and an IoU of 0.8507.

While not strictly linear (with UNet++ slightly outperforming

DeepLabV3+ in this configuration), the overall trend underscores the

benefits of modern architectural designs. The improved skip pathways of

UNet++, the multi-scale context aggregation of DeepLabV3+’s ASPP mod-

ule, and particularly the global self-attention mechanism of TransUNet all

contribute to more accurate segmentation. The Transformer’s ability to model

long-range dependencies appears especially beneficial for understanding the

global context of the brain and the tumour’s location within it.

4.2.3 Late Fusion and Specificity

An interesting secondary trend is the performance of late fusion with respect

to Specificity. In three out of the four architectures, late fusion also achieves

a high specificity. This indicates that by training separate models for each
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Figure 4.5: TransUNet segmentation results.

modality and averaging their predictions, the risk of false positives (misclas-

sifying healthy tissue as tumour) is slightly reduced. This may be because an

erroneous prediction from one uni-modal model is likely to be outvoted or di-

luted by the correct predictions from the other three models, leading to a more

conservative and specific final segmentation.

4.2.4 Qualitative Visual Assessment

While quantitativemetrics provide a summary of overall performance, a quali-

tative visual assessment is crucial for understanding the practical implications

of these numerical differences. Figure 4.6 would display segmentation out-

puts for selected test cases, illustrating the typical behaviour of models using

the best-performing configuration for each fusion strategy.

A visual analysis of these cases would reveal key differences. In a
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Intermediate-Fusion-TransUNe

Early-Fusion-UNet

Late-Fusion-TransUNe

Intermediate-Fusion-UNet

Figure 4.6: Segmentation outputs for selected test cases.

case with a complex, infiltrative tumour boundary, the Intermediate-Fusion-

TransUNet model would likely produce a segmentation that more closely fol-

lows the subtle, irregular edges of the tumour. In contrast, the Early-Fusion-

UNet might yield a smoother, less precise boundary that under-segments these

fine details. This visual evidence would directly support the superior HD95

score of the TransUNet model, demonstrating that the lower numerical value

corresponds to a more anatomically plausible segmentation.

For a case involving a very small tumour lesion, the comparison would

highlight differences in sensitivity. The Intermediate-Fusion-TransUNet

would likely detect and segment the small lesion accurately, whereas a late-

fusion approach might average it out of existence if, for example, the lesion is

only clearly visible on the FLAIR sequence and the T1-based model fails to

detect it. This illustrates a potential weakness of late fusion: it can suppress

signals that are strong in only one modality.
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Finally, in a standard case where all models perform well, the differences

would be more subtle, but one might observe that the early-fusion models

occasionally produce small, isolated false-positive regions outside the main

tumourmass, which are absent in the intermediate and late-fusion results. This

visual evidence provides tangible meaning to the abstract numerical scores,

bridging the gap between statistical performance and potential clinical utility

by showing what the errors and improvements physically look like on theMRI

scans.

4.2.5 Synthesis and Discussion

The experimental results present a clear and consistent picture: the combina-

tion of an advanced, context-aware architecture (TransUNet) with an interme-

diate fusion strategy yields the best performance for multi-modal brain tumour

segmentation in this study. This synthesis of quantitative and qualitative find-

ings allows for several key interpretations.

The consistent superiority of the intermediate fusion strategy strongly sug-

gests that there is significant value in learning dedicated feature representa-

tions for each MRI modality before attempting to combine them. Early fusion

forces a single encoder to immediately find a common feature space for dis-

parate inputs, which can be a challenging optimisation problem and may lead

to the loss of subtle, modality-specific information. Late fusion, while robust

and simple, operates on the assumption that the final decision can be made by

linearly combining independent predictions. Our results indicate that this is a

suboptimal approach, likely because it fails to capture the complex, non-linear

synergies betweenmodalities. For example, the precise anatomical detail from

a T1 image can help to correctly interpret an ambiguous hyperintense region in

a FLAIR image. Such cross-modal reasoning can only occur when features,

not just decisions, are allowed to interact. Intermediate fusion provides the

ideal compromise: it allows for deep, specialised feature extraction for each
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modality while enabling the fusion of these rich representations at a high se-

mantic level, where their complementary information can be most effectively

combined[51].

The performance ranking of the backbone architectures is as follows:

TransUNet > DeepLabV3+ > UNet++ > UNet. That underscores the impor-

tance of advanced architectural design. The ability of TransUNet to model

global dependencies via its Transformer encoder is a decisive advantage. A

brain tumour is not an isolated object; its location, shape, and relationship to

surrounding anatomical structures are critical. The self-attention mechanism

allows the model to consider the entire image context when making a predic-

tion for a single pixel, a capability that is approximated but not fully realised

by the large receptive fields of atrous convolutions in DeepLabV3+ or the

purely local operations of UNet[52].

These findings align with the trends observed in the literature. While some

studies have argued for the robustness of late fusion in preventing negative in-

terference from noisy modalities[53], our results are more consistent with re-

search highlighting the superior performance of intermediate or feature-level

fusion in biomedical applications where modalities are often highly comple-

mentary.

This study has several limitations. First, the experiments were conducted

on a single dataset focused exclusively on lower-grade gliomas. The optimal

fusion strategy may differ for high-grade gliomas, which have different char-

acteristics (e.g., necrosis, enhancement), or for other medical segmentation

tasks. Second, the fusion mechanisms explored (concatenation and averag-

ing) are relatively simple. More sophisticated, attention-based fusion mecha-

nisms could potentially yield further improvements by allowing the model to

dynamically weight the importance of each modality’s features.

Nonetheless, this work provides a strong empirical foundation for the sub-

sequent chapters of this thesis. It establishes that intermediate fusion is a pow-

erful strategy for leveraging multi-modal data. The next logical step, which
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forms the core of our novel contribution, is to address a critical real-world

challenge: how to maintain the benefits of multi-modal fusion when one or

more modalities are missing. The insights gained here—particularly the ef-

fectiveness of learning separate feature streams before fusion—will directly

inform the design of a new approach for brain tumour segmentation with in-

complete data.



Chapter 5

Addressing Incomplete Data in

Brain Tumor Segmentation: A

Methodological Review

While models trained on the complete, four-modality BraTS dataset have

achieved remarkable performance, a significant gap exists between this ideal-

ized research setting and real-world clinical practice. The ”missing modality

problem” is a critical challenge that must be overcome for these tools to be

clinically viable. This section provides a systematic review of the primary

paradigms developed to create models that are robust to incomplete data.

5.1 TheMissing Modality Problem: Clinical Sce-

narios and Performance Degradation

In routine clinical workflows, it is common for a patient’s imaging set to be

incomplete. One or more MRI sequences may be unavailable due to image

corruption, motion artifacts, differences in institutional acquisition protocols,

time constraints, or a patient’s allergy to gadolinium-based contrast agents

(making T1ce unavailable). Models trained on a full set of four modalities are
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typically not robust to this situation; when a modality is missing at inference

time, their performance degrades significantly.

The central challenge, therefore, is to develop segmentation methods that

can gracefully handle any combination of available inputmodalities. Themost

desirable solution is a single, unified ”catch-all” model that can be applied to

all possible subsets of modalities. Such a model is far more economical and

practical for both training and clinical deployment than maintaining separate

models for each of the 15 possible combinations of available modalities.

5.2 Paradigm 1:Modality Synthesis and Data

Augmentation

This paradigm takes the most direct approach to the problem: if a modality

is missing, it attempts to generate a synthetic version of it. The complete

set of modalities (a mix of real and synthetic) is then passed to a standard

segmentation network.

5.2.1 Generative Adversarial Networks (GANs) for MRI

Synthesis

Generative Adversarial Networks (GANs)[54] have been widely explored for

this purpose. A GAN consists of two competing neural networks: a genera-

tor, which learns to create synthetic data, and a discriminator, which learns to

distinguish between real and synthetic data. In the context of missing modal-

ities, a conditional GAN can be trained to synthesize a target modality given

the available source modalities as input. Architectures like pix2pix[55] have

been shown to be effective for this image-to-image translation task. Beyond

direct synthesis, GANs are also usedmore broadly for data augmentation, gen-

erating new, realistic training samples to combat issues like class imbalance

or overall data scarcity.
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5.2.2 Diffusion Models: The New Frontier

More recently, diffusion models[56] have emerged as the state-of-the-art in

generative modeling, often producing images of higher fidelity and diversity

than GANs. These models operate through a two-step process: a ”forward”

diffusion process where Gaussian noise is progressively added to an image un-

til it becomes pure noise, and a learned ”reverse” process where the model is

trained to denoise the image step-by-step, effectively learning the data distri-

bution. Diffusion models have been successfully applied to synthesize high-

quality medical images, including brain MRIs with tumors.

However, this paradigm comes with a critical caveat: memorization. Re-

search has shown that diffusion models, particularly when trained on smaller

or highly correlated datasets (such as 2D slices extracted from 3D volumes),

have a strong tendency to memorize and replicate images from the training set.

This is a catastrophic failure mode in the medical domain, as it poses a direct

and severe risk to patient privacy. GANs, which learn more indirectly through

the discriminator, appear to be less prone to this specific issue. While pow-

erful, the synthesis approach is also computationally expensive, as it requires

training and running two separate large models: a generator and a segmenter.

Its performance is also entirely capped by the quality and realism of the syn-

thetic images.

5.3 Paradigm 2:Knowledge Distillation (KD)

Knowledge distillation[57] offers a more implicit way to handle missing data.

Instead of generating the missing data itself, this paradigm aims to transfer the

”knowledge” from a powerful ”teacher” model trained on complete data to a

more lightweight ”student” model that operates on incomplete data.

The mechanism involves training the student model not only on the

ground-truth segmentation labels but also with an additional loss term that
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penalizes deviations from the teacher’s behavior. This transferred ”knowl-

edge” can take several forms, such as matching the final probability outputs

(soft labels) of the teacher or, more powerfully, matching the feature repre-

sentations at intermediate layers of the network. This encourages the student

to learn a feature space that resembles the one learned by the teacher from the

full data, making it more robust. This approach is more efficient than synthesis

but is fundamentally limited by the performance of the teacher model. Recent

advancements include using meta-learning to dynamically weight the distilla-

tion process (MetaKD)[58] and exploring alternative divergence metrics for

the distillation loss.

5.4 Paradigm 3:Learning Modality-Agnostic

Representations

Perhaps the most elegant and efficient paradigm is to design architectures that

are inherently robust to missing modalities by learning a shared, modality-

agnostic representation. The goal is to create a single model that can process

any available subset of modalities without needing to be retrained or requiring

a separate synthesis step.

These methods typically employ modality-specific encoders to project the

various inputs into a common latent space. The features from the available

modalities are then aggregated before being passed to a shared decoder for

segmentation. A key design choice is the aggregation function.

HeMIS (Hetero-Modal Image Segmentation)[59] was an early and influ-

ential method that simply calculated the mean and variance of the available

feature vectors in the latent space.

U-HVED (Heteromodal Variational Encoder-Decoder)[60] built upon this

idea within a variational autoencoder framework, allowing it to not only seg-

ment but also reconstruct modalities from the shared latent space.
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M3AE (MultimodalMasked Autoencoder)[61] represents a powerful self-

supervised pre-training strategy for learning these robust representations. Dur-

ing pre-training, the model is presented with input data where entire modal-

ities are randomly dropped and random patches of the remaining modalities

are masked. The model is trained to reconstruct both the missing patches and

a representation of the missing modalities. This dual task forces the model to

learn deep, synergistic correlations between the modalities, making its learned

representations highly robust to missing data at inference time.

The choice between these three paradigms involves a fundamental trade-

off. Synthesis is the most explicit but also the most computationally expensive

and carries the highest risk (memorization). Knowledge Distillation is a more

efficient, intermediate approach. Shared Representation Learning is the most

implicit and efficient paradigm for deployment, but the primary challenge lies

in designing an aggregation mechanism and representation space that is rich

enough to capture all necessary information without losing crucial, modality-

specific details.



Chapter 6

A Novel Framework for Brain

Tumor Segmentation with

Incomplete Data

This chapter synthesizes the analyses from the preceding sections to provide

concrete, evidence-based recommendations for the design and development of

a novel multimodal brain tumor segmentation framework. The goal is to inte-

grate the most promising strategies for feature fusion and handling incomplete

data into a cohesive and well-motivated architecture.

6.1 Design Rationale and Architectural

The accurate segmentation of brain tumors from multimodal MRI is a corner-

stone of clinical oncology, yet the frequent occurrence of missingmodalities in

real-world data presents a significant obstacle to the deployment of automated

systems. While the BraTS dataset provides a large corpus of annotated, com-

plete multimodal scans, a truly robust clinical tool must be capable of deliver-

ing reliable performance when faced with incomplete data. Existing solutions

often involve complex self-supervised pre-training stages or generative mod-

els to synthesize missing data, which can be computationally expensive and
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may not be necessary when a substantial amount of labeled data is available

for direct supervised learning.

To address this gap, we propose the Grouped Modality Distillation Trans-

former (GMD-Trans), a novel, fully supervised framework designed to be

trained end-to-end on annotated data while building inherent resilience to

missing modalities. Our design is predicated on the following principles.

A Vision Transformer (ViT) Backbone: Recent analyses of hybrid

CNN-Transformermodels have revealed that their performance is often driven

primarily by the convolutional components, with the Transformer layers be-

ing underutilized. To fully harness the power of self-attention for modeling

the long-range, infiltrative patterns of gliomas, GMD-Trans adopts a 3D ViT

backbone.

Grouped Modality Encoders: Rather than fusing all four MRI modali-

ties (T1, T1ce, T2, FLAIR) into a single input stream, we recognize their dis-

tinct and complementary clinical roles. Our framework adopts this strategy

by employing a dual-stream encoder, processing (T1, T1ce) and (T2, FLAIR)

in parallel to learn specialized features for each group before fusion.

Cross-Attention Fusion: Simple feature concatenation is insufficient for

modeling the complex, non-linear relationships between modality groups. To

facilitate a more sophisticated integration, we introduce a novel Inter-Group

Cross-Attention Mixer (IG-CAM). This module, which replaces simple con-

catenation at the bottleneck, is designed to perform explicit, deep-level fusion

by allowing the two modality streams to dynamically query one another.

Supervised Knowledge Distillation with Hölder Divergence: To han-

dle missing modalities without a pre-training phase, we employ a supervised

teacher-student knowledge distillation (KD) strategy. A ”teacher” model is

trained on complete data, and its knowledge is distilled to a ”student” model

handling incomplete data. Critically, we move beyond traditional KD losses

like Kullback-Leibler (KL) divergence. Drawing from the work of Sun et

al. (2024)[62], we utilize Hölder Divergence for the distillation loss. This
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choice is motivated by its superior mathematical properties and its ability to

better preserve information across all tumor sub-classes, which is vital when

the absence of a keymodality might otherwise cause a model to neglect certain

features.

This blueprint combines the architectural power of Transformers with a

clinically-informed grouping strategy and a mathematically robust, fully su-

pervised training scheme to create a single, efficient model for brain tumor

segmentation that excels even with incomplete data.

6.2 Detailed Model Architecture

The GMD-Trans architecture adopts a U-Net-inspired encoder-decoder struc-

ture characterized by a strong emphasis on Transformer-based modules, lever-

aging self-attention mechanisms for advanced feature representation in the en-

coder, while employing a lightweight convolutional decoder to facilitate the

generation of segmentation maps.

6.2.1 Backbone: 3D Vision Transformer

High-Resolution 3D Tokenization: To preserve fine-grained anatomical de-

tails crucial for delineating tumor boundaries, input 3DMRI volumes are tok-

enized using a single 3D convolutional layer with a small kernel and stride size

of 8x8x8 voxels. This functions as a patch embedding layer, converting the

3D volume into a sequence of 1D tokens while minimizing initial information

compression.

Advanced Positional and Modality Embeddings: We employ 3D Ro-

tary Positional Embeddings (RoPE), which integrate relative spatial informa-

tion directly into the query and key vectors within the self-attention mecha-

nism. This method is more effective for capturing the complex 3D spatial rela-

tionships in volumetric data than standard additive embeddings. To allow our
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grouped encoders to process multiple modalities within each stream, a unique,

learnable modality-specific embedding is added to each token’s embedding.

Enhanced Transformer Blocks: The encoder’s core computational unit

is a deep stack of enhanced 3D Transformer blocks, engineered to address the

computational demands and stability challenges of processing high-resolution

volumetric data. Each block follows a residual architecture, comprising two

main sub-layers: a Multi-Head Self-Attention (MHSA) layer and a subse-

quent Feed-Forward Network (FFN). To manage the quadratic complexity in-

herent in applying self-attention to long sequences of 3D tokens, we adopt

the window-based attention mechanism from the Swin Transformer architec-

ture. The blocks operate in successive pairs: the first employs Windowed

Multi-Head Self-Attention (W-MSA), where self-attention is computed only

within localized, non-overlapping 3Dwindows. The subsequent block utilizes

Shifted-WindowMulti-Head Self-Attention (SW-MSA), which shifts the win-

dow configuration to create cross-window connections, enabling the learning

of global contextual features at a linear computational complexity. The sec-

ond sub-layer is a 2-layer Multi-Layer Perceptron (MLP) that serves as the

FFN. For enhanced non-linearity and improved training dynamics, we utilize

the SwiGLU (Swish-Gated Linear Unit) activation function. To ensure ro-

bust convergence, standard Layer Normalization (LN) is applied before each

MHSA and FFN sub-layer, and we incorporate LayerScale, a technique that

applies a learnable, channel-wise scaling factor to the output of each residual

connection to mitigate gradient instability.

6.2.2 Encoder: Grouped Dual-Stream Architecture

Instead of a single encoder, GMD-Trans utilizes a grouped, dual-stream

encoder to process modalities based on their clinical synergy. Group
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Figure 6.1: The 3D Swin Transformer Attention Mechanism[63].

1 (Anatomy & Enhancement): Processes T1-weighted and T1-contrast-

enhanced (T1ce) modalities. Group 2 (Edema & Fluid): rocesses T2-

weighted and T2-FLAIR modalities. Each stream is an independent, deep

stack of the Enhanced Transformer Blocks described above. This parallel

structure allows the model to develop specialized hierarchical feature rep-

resentations for each clinically-related modality group before they are inte-

grated.

6.2.3 Feature Fusion Module:

At the bottleneck of the U-Net architecture, where the two encoder streams

converge, we introduce the Inter-Group Cross-Attention Mixer (IG-CAM) to

perform deep fusion. This module replaces simple concatenation with a more

powerful cross-attention mechanism that explicitly models the interaction be-

tween the two feature groups.

Mechanism: The IG-CAM performs bidirectional cross-attention. Let

F1 ∈ RN×C and F2 ∈ RN×C be the feature sequences from the Group 1

and Group 2 encoders, respectively, where N is the number of tokens and

C is the feature dimension. The IG-CAM computes two attention outputs:

A1 = Attention(Q = F1, K = F2, V = F2) and A2 = Attention(Q =

F2, K = F1, V = F1).
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Figure 6.2: Architecture of the GMD-Trans Teacher Model.

Output: The fused representation, Ffused, is generated by concatenating

these attention outputs with the original features and passing them through a

final linear projection layer: Ffused = Linear(Concat(F1, A1, F2, A2)). This

ensures that the features entering the decoding path are holistically informed

and represent a true synthesis of all available multimodal information. Fig-

ure6.2 depicts the detailed architecture of the GMD-Trans teacher model,

which consists of a dual-stream Transformer encoder and a lightweight con-

volutional decoder.
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6.2.4 Decoder: Lightweight Convolutional Decoder

Tomaintain the Transformer-heavy design and avoid re-introducing a complex

CNN that might dominate the learning process, the decoder is a lightweight

network composed of a minimal set of transposed convolution blocks for pro-

gressive upsampling.

Structure: The decoder consists of a series of blocks, each containing a

3D Transposed Convolution for upsampling, followed by Group Normaliza-

tion (GN) and a GeLU activation function.

Skip Connections: Skip connections feed features from multiple resolu-

tion stages of the dual-stream encoder to the corresponding decoder blocks.

Specifically, features from both the Group 1 and Group 2 encoder streams at

a given resolution are concatenated before being passed to the decoder block,

ensuring the decoder has access to pre-fusion, group-specific details for pre-

cise boundary reconstruction.

6.3 Training Scheme

Given the availability of a large annotated dataset like BraTS, GMD-Trans is

trained in a fully supervised, end-to-end manner. Our strategy for handling

missing modalities is embedded directly into this supervised training loop via

knowledge distillation, eliminating the need for a separate pre-training stage

The training follows a teacher-student paradigm:

The Teacher Model: The GMD-Trans model is trained using the com-

plete set of four MRI modalities. This ”teacher” represents the upper bound

of performance, having access to all available information. Its role is to gen-

erate high-quality soft labels, its output probability maps that encapsulate the

complex decision-making learned from full data.

The StudentModel: A second instance of theGMD-Transmodel, sharing

the same architecture, acts as the ”student.” During each training iteration, the

student is fed an incomplete set of modalities, where one or more modalities
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are randomly dropped to simulate real-world clinical scenarios.
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Figure 6.3: The Teacher-Student Knowledge Distillation Framework for
GMD-Trans.

Knowledge Transfer: The student model is trained to perform two tasks

simultaneously. It must learn to predict the ground-truth segmentation mask

from the incomplete input, and it must also learn to replicate the rich, nu-

anced output distribution of the teacher model. This forces the student to

learn how to infer the information of the missing modality from the ones that

are present, guided by the teacher’s experience. Figure6.3 details the teacher-

student knowledge distillation scheme designed for training the student model

on incomplete data.

This single-stage, supervised approach is computationally efficient and

directly optimizes the model for robust performance on the target task under

any modality combination.
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6.4 Loss Functions

The training of the GMD-Trans framework is governed by a composite loss

function that combines a standard segmentation objective with a novel knowl-

edge distillation objective.

Segmentation Loss (Lseg): For both the teacher and student models, the

primary segmentation loss is a standard combination of Dice Loss and Focal

Loss. This hybrid loss is effective for handling the severe class imbalance

inherent in tumor segmentation tasks.

Lseg = LDice(y, ŷ) + λfocalLFocal(y, ŷ) (6.1)

where y is the ground-truth mask, ŷ is the model’s predicted segmentation,

and λfocal is a weighting factor.

Knowledge Distillation Loss (Lkd): To transfer knowledge from the full-

modality teacher (T ) to the incomplete-modality student (S), we minimize the

divergence between their output logit distributions. We employ the Hölder

pseudo-divergence (DH
α ), which has been shown to provide a more balanced

and stable gradient than traditional KL divergence, preventing the model from

ignoring less prominent tumor classes when key modalities are absent. The

distillation loss is formulated as:

Lkd = 1
Nvoxels

Nvoxels∑
v=1

DH
α

σ
(

Sv

τ

) ∥∥∥∥∥∥σ
(

Tv

τ

) (6.2)

where Sv and Tv are the student and teacher logits for voxel v, σ is the soft-

max function, τ is the distillation temperature, and α is the Hölder conjugate

exponent, set to 1.6 based on empirical results showing optimal performance.

The Hölder pseudo-divergence itself is defined as:

DH
α (p(x) : q(x)) = − log

( ∫
Ω p(x)q(x)dx

(
∫

Ω p(x)αdx)1/α (
∫

Ω q(x)βdx)1/β

)
(6.3)
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with conjugate exponents α, β satisfying 1
α

+ 1
β

= 1.

Final Training Objective: The teacher model is trained using only Lseg.

The student model is trained using a weighted sum of the segmentation loss

and the distillation loss, ensuring it learns to be both accurate on its own and

robust by mimicking the teacher.

Lstudent = Lseg(y, ŷS) + βLkd(S, T ) (6.4)

where β is a hyperparameter that balances the contribution of the two loss

components.



Chapter 7

Experiments and Results

This chapter presents the empirical validation of the proposed Grouped

Modality Distillation Transformer (GMD-Trans) framework. The primary

objective of this chapter is to systematically evaluate the model’s perfor-

mance and robustness specifically in scenarios involving incomplete multi-

modal data, which reflects a critical challenge in real-world clinical settings.

To ensure a fair and rigorous comparison, the experimental protocol, includ-

ing data handling and evaluation metrics, is aligned with the methodology

established in Chapter 4. We compare GMD-Trans against relevant state-of-

the-art models to contextualize its performance and validate its architectural

and methodological innovations for handling missing modalities.

7.1 Experimental Protocol

A standardized experimental protocol is crucial for ensuring the reproducibil-

ity and scientific validity of our results. This section details the dataset, pre-

processing pipeline, implementation details, and evaluation criteria used for

all experiments.

Dataset: The study is conducted on the widely recognized Multimodal

Brain Tumor Segmentation (BraTS) 2021 dataset[64]. The sub-regions con-

sidered for evaluation in the BraTS 21 challenge are the ”enhancing tumor”
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(ET), the ”tumor core” (TC), and the ”whole tumor” (WT). The ET is de-

scribed by areas that show hyper-intensity in T1Gd when compared to T1, but

also when compared to “healthy” white matter in T1Gd. The TC describes the

bulk of the tumor, which is what is typically resected. The TC entails the ET,

as well as the necrotic (NCR) parts of the tumor. The appearance of NCR is

typically hypo-intense in T1-Gd when compared to T1. TheWT describes the

complete extent of the disease, as it entails the TC and the peritumoral ede-

matous/invaded tissue (ED), which is typically depicted by the hyper-intense

signal in FLAIR[64].

Figure 7.1: Color-Coded Illustration of BraTS 2021 Tumor Sub-Regions.

7.1.1 Implementation Details

Framework and Hardware: All models are implemented using PyTorch

and trained on a high-performance computing cluster equipped with NVIDIA

A100 Tensor Core GPUs.

Training Hyperparameters: To maintain consistency with prior exper-

iments, a fixed set of core hyperparameters is used. The AdamW optimizer

is employed with an initial learning rate of 1 × 10−4. A cosine annealing

scheduler gradually decreases the learning rate over the training duration. All
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models are trained for a maximum of 300 epochs with a batch size of 32, uti-

lizing an early stopping mechanism that halts training if the validation Dice

score does not improve for 15 consecutive epochs.

Input Configuration: The native resolution of the MRI volumes in the

BraTS dataset is 240×240×155 voxels. Due to the significant GPU memory

constraints associated with processing full 3D volumes, a standard patch based

training strategy is adopted, consistent with state-of-the-art methodologies.

For each training iteration, a 3D subvolume of size 128 × 128 × 128 voxels is

randomly cropped from the original, preprocessedMRI scan. This subvolume

serves as the direct input to the GMD-Trans model. This random cropping

approach not only makes training computationally feasible but also acts as a

form of spatial data augmentation, exposing the model to different parts of the

brain anatomy in each epoch.

7.1.2 Baseline Models

To rigorously evaluate the performance of GMD-Trans, we compare it against

several strong baseline and state-of-the-art (SOTA) models:

nnU-Net: A fully self-configuring U-Net–based framework that automat-

ically adapts preprocessing, architecture, and training hyperparameters to any

3D biomedical segmentation task. It has become the de facto standard baseline

for BraTS challenges due to its consistently high Dice scores without manual

tuning[65].

TransUNet: Ahybrid architecture that integrates a CNN encoder for high-

resolution local feature extraction with a Transformer encoder for global con-

text modeling, followed by a U-Net–style decoder. Widely adopted for 3D

medical image segmentation, it demonstrated strong performance on BraTS

validation sets by leveraging both convolutional and self-attention mecha-

nisms[48].

M3AE: A two-stage framework using a multimodal masked autoencoder
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for self-supervised representation learning under missingmodalities, followed

by memory-efficient self-distillation during supervised fine-tuning. M3AE

can handle any subset of the four MR modalities and has shown superior ro-

bustness and segmentation accuracy on BraTS 2018 and 2020 datasets when

one or more modalities are missing[61].

7.1.3 Evaluation Metrics and Test Set Generation

Performance is quantitatively assessed using the Dice Similarity Coefficient

(DSC), which is the primary metric for the BraTS challenge and measures the

volume overlap between predicted and ground-truth segmentations. The DSC

is calculated for the three primary tumor regions: Enhancing Tumor (ET),

Tumor Core (TC), and Whole Tumor (WT).

To evaluatemodel robustness under realistic conditions, a single, challeng-

ing test set was generated. For each case in the validation set, one of the four

modalities (T1, T1ce, T2, or FLAIR) was randomly removed. This process

creates a mixed test set where the specific missing modality varies from case

to case, forcing the models to perform segmentation without prior knowledge

of which information stream is absent. All results reported in this chapter are

the average performance across this entire randomized test set.

7.2 Quantitative Results

This section presents the core quantitative results of our study. We first es-

tablish the baseline performance of our proposed GMD-Trans model when all

modalities are present, and then provide a detailed comparison against SOTA

methods in the more challenging incomplete modality scenario.
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7.2.1 GMD-Trans Performance with Full Modality

To contextualize the performance under data scarcity, we first evaluated

the GMD-Trans ”teacher” model, which was trained on the complete four-

modality dataset. This result represents the upper bound of performance for

our architecture under ideal data conditions.

The results in Table7.1 show that with complete data, our model achieves

strong performance on the Tumor Core (TC) andWhole Tumor (WT) regions.

However, the relatively low Dice score of 61.5% for the Enhancing Tumor

(ET) suggests an inherent architectural challenge in delineating this specific

sub-region, a finding that is critical for interpreting the subsequent results.

(a) The validation Dice scores for the Tumor Core (TC), Whole Tumor (WT), and
Enhancing Tumor (ET) show stable convergence for each sub-task.

(b) The overall training loss consistently decreases while the overall validation mean
Dice score steadily increases, indicating stable model training without significant

signs of overfitting.

Figure 7.2: Training and validation curves for the GMD-Trans ”teacher”
model with full modalities.
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Table 7.1: Dice scores (%) of GMD-Trans on BraTS 2021 with full modality

Region ET TC WT

Dice 61.5 86.9 91.7

7.2.2 Comparative Performance with a Randomly Missing

Modality

The central experiment of this thesis evaluates how GMD-Trans and baseline

models perform on the randomized incomplete modality test set. The results

are presented in Table7.2.

Table 7.2: Dice scores (%) on BraTS 2021 with a randomly missing modality

Model ET TC WT

nnU-Net 67.8 74.2 85.3
TransUNet 64.3 81.8 87.9
M3AE 59.9 77.4 85.8
GMD-Trans (Ours) 58.2 82.1 85.2

The results in Table7.2 present the performance. The data reveals that

no single model universally outperforms the others; instead, each architecture

demonstrates specific strengths and weaknesses.

Notably, the powerful nnU-Net baseline achieves the highest Dice score

for the Enhancing Tumor (ET) at 67.8%, indicating its robust, out-of-the-box

configuration is highly effective for this difficult sub-task even with missing

data. The hybrid TransUNet model excels at segmenting the Whole Tumor

(WT), achieving the top score of 87.9%, suggesting its architecture is well-

suited for capturing the overall tumor extent.

The key finding of this experiment is the specialized performance of our

proposed GMD-Trans model. It achieves the highest Dice score for the Tu-

mor Core (TC) at 82.1%, surpassing all baseline methods, including the spe-

cialized M3AE framework. This directly validates our core hypothesis: that
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the teacher-student knowledge distillation scheme is exceptionally effective at

preserving and transferring the structural information necessary to accurately

delineate the main tumor body, even when input modalities are incomplete.

However, this specialization comes at a clear cost, as GMD-Trans records the

lowest performance on ET segmentation (58.2%), confirming that the distilled

knowledge was insufficient to compensate for the loss of high-frequency con-

trast information crucial for this sub-region.

7.3 Ablation Studies

To validate the specific contributions of our key design choices, we conducted

a series of ablation studies focusing on their impact on the model’s standout

performance in TC segmentation.

7.3.1 Efficacy of Knowledge Distillation

To isolate the impact of our proposed training scheme, we trained the GMD-

Trans model but removed the knowledge distillation loss (Lkd).

Table 7.3: Ablation Study on Knowledge Distillation (Average Dice Score
%)

Tumor Region GMD-Trans (No KD) GMD-Trans (with KD)

Tumor Core (TC) 76.5 82.1

The results show a dramatic performance drop of 5.6 percentage points in

TC segmentation when knowledge distillation is removed. This confirms that

the teacher-student paradigm is the primary mechanism responsible for the

model’s superior ability to segment the tumor core under missing modality

conditions.
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7.3.2 Efficacy of Grouped Modality Architecture

To validate the dual-stream grouped encoder design, we compared the stan-

dard GMD-Trans against a single-stream variant where all available modali-

ties are concatenated at the input and processed by a single, wider encoder.

Table 7.4: Ablation Study on Grouped Architecture (Average Dice Score %)

Tumor Region Single-Stream GMD-Trans GMD-Trans

Tumor Core (TC) 80.3 82.1

The dual-stream architecture consistently outperforms the single-stream

version in TC segmentation. This validates our hypothesis that allowing the

model to learn specialized features for clinically related modality groups be-

fore fusion leads to a more powerful and robust representation, which is par-

ticularly beneficial for delineating the tumor core when the model must com-

pensate for missing information.

7.4 Discussion

The comprehensive experimental results presented in this chapter provide

strong empirical validation for the proposed GMD-Trans framework, reveal-

ing a nuanced performance profile that highlights both its significant strengths

and clear limitations. By evaluating on a test set with randomly missing

modalities, we have demonstrated that our model offers a specialized solution

to the missing data problem under conditions that closely mimic real-world

clinical uncertainty.

The superiority of GMD-Trans is highly targeted. The model’s standout

achievement is its state-of-the-art performance in segmenting the Tumor Core

(TC), where it surpassed all baselinemodels. The ablation studies confirm that

this success is a direct result of our core architectural and methodological in-

novations: the dual-stream grouped encoder allows for the learning of potent,



7.4 Discussion 62

specialized features, and the teacher-student knowledge distillation scheme

effectively transfers the necessary structural knowledge to maintain perfor-

mance even with incomplete data.

However, this specialization comes at a cost. The model’s performance on

Enhancing Tumor (ET) segmentation is its primary weakness, falling below

that of the baseline nnU-Net. This suggests that while our knowledge distil-

lation approach successfully transfers general structural information, it is less

effective at reconstructing the high-frequency, contrast-dependent details es-

sential for identifying the enhancing rim, especially when the T1ce modality

is absent. This trade-off is a critical finding, indicating that GMD-Trans is not

a universally superior model but rather a specialized tool optimized for robust

TC and WT segmentation.

These findings contribute to a deeper understanding of the challenges in

multimodal segmentation. They suggest that different architectural paradigms

may be optimal for different sub-tasks; a robust, self-configuring CNN like

nnU-Net may excel at one task (ET), while a specialized Transformer with

knowledge distillation excels at another (TC). This underscores the complex-

ity of the problem and points toward a future where hybrid or ensemble ap-

proaches may be necessary to achieve uniformly excellent performance across

all tumor sub-regions.



Chapter 8

Synthesis, Critical Appraisal, and

Future Perspectives

8.1 Summary and Discussion

This thesis has embarked on a comprehensive exploration of multimodal deep

learning for medical imaging, culminating in the design, implementation, and

validation of a novel framework for brain tumor segmentation with incomplete

data. This final chapter serves to synthesize the key findings of this research,

critically discuss their significance in the context of the initial problem state-

ment, acknowledge the inherent limitations of the study, and outline promising

avenues for future work that build upon this foundation.

Grouped Modality Distillation Transformer (GMD-Trans), a fully super-

vised framework designed to be inherently robust to incomplete data. The

design of GMD-Trans was predicated on a synthesis of state-of-the-art prin-

ciples, including:

A 3D Vision Transformer (ViT) backbone, leveraging the Swin Trans-

former’s efficient windowed attention mechanism to capture global context

without the limitations of CNNs.

A clinically-informed dual-stream encoder, which processes synergis-

tic modality groups (T1/T1ce and T2/FLAIR) in parallel to learn specialized
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feature representations.

A novel Inter-Group Cross-Attention Mixer (IG-CAM) at the bottle-

neck to perform deep, dynamic fusion of the specialized features from the two

encoder streams.

A teacher-student knowledge distillation (KD) scheme as the core strat-

egy for handling missing data, utilizing the mathematically stable Hölder Di-

vergence to transfer knowledge from a full-modality teacher to an incomplete-

modality student.

In essence, this work demonstrates that it is possible to build a highly ro-

bust model for incomplete multimodal data through a fully supervised, end-to-

end training paradigm, without resorting to more complex and computation-

ally expensive self-supervised pre-training or explicit modality synthesis. The

GMD-Trans framework successfully addresses the initial problem statement

by providing a practical and effective solution that advances the state of the

art in robust brain tumor segmentation.

The empirical validation presented in Chapter 7, based on a challenging

test set with randomly missing modalities, revealed a nuanced and scientifi-

cally significant performance profile. The key findings are:

Targeted Superiority in Tumor Core Segmentation: The most impor-

tant finding is that GMD-Trans achieved a state-of-the-art Dice score of 82.1%

for the Tumor Core (TC), outperforming all baseline models, including the

specialized M3AE framework. This directly validates our core hypothesis

that the proposed knowledge distillation scheme is exceptionally effective at

preserving and transferring the structural information necessary to accurately

delineate the main tumor body, even when input modalities are incomplete.

A Critical Performance Trade-off: This specialization came at a clear

cost. GMD-Trans recorded the lowest performance on Enhancing Tumor (ET)

segmentation (58.2% Dice), falling significantly behind the nnU-Net baseline

(67.8%). This critical result suggests that while our knowledge distillation



8.2 Limitations 65

approach successfully transfers general structural information, it is insuffi-

cient to reconstruct the high-frequency, contrast-dependent features essential

for identifying the enhancing rim, especially when the T1ce modality is po-

tentially absent.

No Single Best Model: The results underscore the complexity of the

missing modality problem, as no single model proved universally superior.

The robust nnU-Net excelled at ET segmentation, the hybrid TransUNet was

strongest for theWhole Tumor (WT), and our GMD-Trans was the clear leader

for the Tumor Core.

In essence, this work demonstrates that our fully supervised, end-to-end

training paradigm provides a practical and highly effective solution for a spe-

cific, critical aspect of the problem: robustly segmenting the tumor core. The

GMD-Trans framework successfully addresses a key part of the initial prob-

lem statement, while its limitations provide crucial insights into the challenges

that remain.

8.2 Limitations

While the results are promising, it is essential to acknowledge the limitations

of this study to provide a balanced perspective and guide future research.

Simplified Missing Data Simulation: The primary limitation is the

method used to simulate incomplete data. In our experiments, we randomly

deleted an entiremodality volume. Real-world data imperfection is oftenmore

complex, including slice-wise corruption, severe motion artifacts, high levels

of noise, or inter-scanner variability that can render a modality present but

unreliable. Our model was not explicitly tested against these more nuanced

forms of data degradation.

Computational Cost: The GMD-Trans architecture, being based on a

3D Vision Transformer, is computationally demanding in terms of both GPU

memory and training time. This high cost could pose a significant barrier
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to its adoption in clinical or research settings with limited access to high-

performance computing resources.

Validation on a Single Benchmark Dataset:All experiments were con-

ducted on the BraTS 2021 dataset. Although this is the standard and most

widely used benchmark for this task, its data has been preprocessed and co-

registered. The model’s generalizability to ”real-world” clinical data from

different institutions, acquired with varying scanners and protocols, remains

unproven.

Fixed Modality Grouping:The dual-stream encoder relies on a hard-

coded, clinically-inspired grouping of modalities (T1/T1ce and T2/FLAIR).

While effective, this fixed grouping may not be optimal for all tumor types,

stages, or individual patient variations. The framework lacks a mechanism to

adapt this grouping dynamically.

8.3 Future Directions

The findings and limitations of this thesis open up several exciting avenues

for future research.

Cross-Institutional Generalization and Domain Adaptation: A critical

step towards clinical translation is to evaluate the generalizability of GMD-

Trans. This would involve testing the pre-trained model on external, multi-

institutional datasets without re-training, and exploring domain adaptation

techniques to fine-tune the model on new data with minimal labeled samples.

Dynamic and Interpretable Fusion: Future work could move beyond the

fixed dual-stream architecture. An exciting direction would be to develop

an adaptive fusion mechanism, perhaps using attention or meta-learning, that

could dynamically weight the contribution of each modality or even learn the

optimal grouping strategy on a case-by-case basis. This could be coupled with

enhancing the model’s clinical interpretability by using techniques like atten-

tion map visualization to highlight which modalities and regions the model is
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focusing on, thereby increasing trust and providing valuable insights to clini-

cians.

8.4 Conclusion

This thesis presented a comprehensive investigation into multimodal deep

learning for brain tumor segmentation, culminating in the development of the

Grouped Modality Distillation Transformer (GMD-Trans). This novel frame-

work successfully integrates a state-of-the-art Vision Transformer backbone

with a clinically-informed dual-stream architecture and an innovative teacher-

student knowledge distillation scheme. Through rigorous experimentation,

we have demonstrated that our specialized architecture achieves state-of-the-

art performance in segmenting the tumor core (TC) from incomplete MRI

data, surpassing leading methods in this critical task. However, our work also

revealed a crucial trade-off, with the model underperforming on enhancing

tumor (ET) segmentation, highlighting the challenge of reconstructing fine-

grained features via knowledge distillation alone. The core contribution of this

work is therefore twofold: first, the validation of a highly effective, fully su-

pervised approach for robustly segmenting the main tumor body; and second,

the critical insight that different architectural strategies may be optimal for

different tumor sub-regions in missing modality scenarios. This research ad-

vances the field by providing not only a specialized solution but also a deeper

understanding of the complex trade-offs involved in developing AI tools that

are truly dependable for clinical application.
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