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Abstract

La Supergravità pura N = 1, D = 4 è una moderna teoria di campo di gauge della Supersimmetria, elaborata
da Daniel Z. Freedman, Peter van Nieuwenhuizen e Sergio Ferrara nel 1976. Nella sua versione massimale, ha

rappresentato una delle più promettenti proposte teoriche in termini di uni�cazione delle interazioni
fondamentali del secolo scorso, precorrendo la Teoria delle Stringhe.

Si vuole qui ricostruirne progressivamente il formalismo, introducendo per gradi le conoscenze teoriche
necessarie, quali gruppi di simmetria spazio-temporale, teoria quantistica di campi scalare e fermionico,

Supersimmetria, interpretazione della Relatività Generale come teoria di gauge, formalismo tetrardico, teoria
di Rarita Schwinger e derivazione del Lagrangiano di Supergravità pura a partire dal modello supersimmetrico

di Wess-Zumino.
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Introduction

Supergravity (often abbreviated as SUGRA) represents the very �rst promising mirage of Uni�cation Theory

of the four fundamental forces under a unique gauged symmetry group.

Originally formulated in 1976 by Daniel Zissel Freedman, Sergio Ferrara and Peter van Nieuwenhuizen, in
its pure form, it is the theory of gauged unbroken N = 1 Supersymmetry (SUSY).

Therefore, to approach SUGRA, it's essential to comprehend SUSY, which is fundamentally a generalisation
of a continuous global symmetry group to both fermionic and bosonic generators in a super-Lie algebra.

Gauging a symmetry substantially means promoting its parameters to functions on the group domain; for
instance, the Standard Model is based on the SU(3)⊗ SU(2)⊗U(1) gauged symmetry group, under which the
electroweak and strong forces are uni�ed.

Supersimmetry attempts to connect internal and space-time symmetries whithin a non trivially factorisable
group, overcoming the limitations of the Coleman-Mandula theorem. Since an algebra has an irreducible
representation on particle states, bosons and fermions are grouped in multiplets.

Therefore, we will �rst need to achieve two preliminary goals: �rst comprehending some basic representation
theory of the Poincarè group and theWigner classi�cation, to then probe Quantum Field Theory and the Lorentz
invariant Lagrangian formalism of the Canonical Quantization, and apply it to spinors in Special Relativity,
deriving the renowned Dirac equation.

At this point, we will be ready to delve into Supersymmetry, its algebra representation on particle states,
and understand how superpartners arise.

Then we will be almost halfway there: indeed, SUGRA requires the spinorial parameter of a SUSY transfor-
mation to be graded to a space-time function, and we will see that a naive Minkowskian domain is not suitable
for such purpose: for this reason, the second part of the Supersymmetry chapter will be pinpointed on the
derivation of the Wess-Zumino model in the more �tting super�eld formalism.

Next, we will introduce the gauge formulation of General Relativity, and its tetrads (or vierbein) formal-
ism, exploring how the graviton emerges as a �rst order perturbative tensorial �eld of the Minkowski metric,
and completing the SUGRA multiplet, by quantizing the vector-spinor Rarita-Schwinger �eld and identify the
gravitino.

At this point, we will be prepared enough to tackle the �nal boss: deriving the pure SUGRA Lagrangian as a
natural term arising when trying to achieve local SUSY invariance of the Wess-Zumino action, and covariantize
it in the vierbein formalism.

I know this may sound like a painful endeavour, and I cannot deny that during the last months I really had
to pledge myself to both gather it and to make this dissertation as �owing as possible.

The funniest part is that not only SUGRA has no direct experimental support (no graviton and gravitino
have ever been observed): most of its predictions are wrong. For instance, it foresees a ridicolously high value
of the cosmological constant.

So why should we care about SUGRA at all? First, a delightful answer for everyone: it represents the
low energy limit (≤ 1019 eV ) of Superstring Theory, which nowadays is one of the most accredited uni�cation
theories in theoretical physics. Secondly, I will let someone much more quali�ed than me rejoin:

It is more important to have beauty in one's equations than to have them �t experiment.

� Paul A. M. Dirac [2]
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Chapter 1

Space-Time Symmetry Groups

In this chapter, we aim to get to grips with some representation formalism, by studying the Poincaré group
ISO(1, 3), being the de�ning symmetry group of a relativistic theory.

First, we will infer the structure constants of its Lie algebra, on an abstract level, to then examine its particle
representation in the context of Wigner's classi�cation, and introduce the concept of spin.

Thereafter, we will focus on irreducible representations of the double cover of its Lorentz subgroup SO(1, 3),
algebraically deducing theWeyl spinor, to then construct the Dirac Spinor Ψ, instead transforming in a reducible
one, by studying the Cli�ord algebra, and making sure to spell out the connection among these two structures
in the chiral basis.

All the statements will be properly demonstrated, but we want to reassure the reader that a more discursive
treatement will follow alongside, since the key purpose of this chapter is understanding the captivating power
of the representation theory of ISO(1, 3) and its SO(1, 3) subgroup.

1.1 Poincaré group ISO(1, 3)

In its natural representation, ISO(1, 3) is the group of isomorphisms on Minkowski space-time R1,3, de�ned as
the external semiproduct of the Lorentz group O(1, 3) and the translations group R4:

ISO(1, 3) ≡ O(1, 3)⋉R4 ⇐⇒ ISO(1, 3) =
{
gα ∈ GL(1, 3) : g−1

α ηgα = η
}
⇐⇒

⇐⇒
{
(Λ, a) ∈ ISO(1, 3) ⇐⇒ (Λ, a) · (Λ′, a′) = (ΛΛ′, a+ Λa′) , ∀Λ ∈ O(1, 3) , a ∈ R4

} (1.1)

where · is the ISO(1, 3) group composition, η is the Minkowskian metric tensor and GL(1, 3) is the group of
linear space-time transformations.

1.1.1 ISO(1, 3) algebra

ISO(1, 3) is a Lie group:



gα · gβ ∈ ISO(1, 3)

∃ g−1
α ∈ ISO(1, 3)

∃ I ∈ ISO(1, 3) : g−1
α · gα = I

∨

{
gα · gβ
g−1
α

are di�eomorphisms

∀ gα, gβ ∈ ISO(1, 3) (1.2)

of dimension d(ISO(1, 3)) = d((O(1, 3))) + d(R4) = 10.

7



CHAPTER 1. SPACE-TIME SYMMETRY GROUPS 8

Therefore, there exists a basis of 10 generators for its tangent space (i.e. its Lie algebra iso(1, 3)): since the
factors of a semiproduct forming a Lie group are also Lie groups, the resulting basis of generators will be given
by the union of those of the two subgroups.

The di�erence of a product and a semiproduct physically lies in the non commutativity of the generators of
the subgroups between each others, resulting in non trivial structure constants. We now want to compute the
commutation relations between the generators, directly from Equation 1.1.

Lorentz algebra o(1, 3)

Given Λ ∈ SO(1, 3), ω ∈ GL(1, 3) and ϵ ∈ R+, we can Taylor expand the Lorentz transformation near the
identity:

Λ = eϵω
µ
ν ≃ δµν + ϵωµ

ν +O(ϵ2) ϵ≪ 1 (1.3)

and, seeing as (Λ,1) ∈ ISO(1, 3), Λ is an isomorphism, and consequently:

Λµ
ρηµνΛ

ν
σ = ηρσ =⇒

(
δµρ + ϵωµ

ρ

)
ηµν (δ

ν
σ + ϵων

σ) = ηρσ ⇐⇒

ηρσ + ϵωρσ + ϵωσρ + ϵ2mT
ρν
mν

σ ≃ ηρσ + ϵωρσ + ϵωσρ = ηρσ =⇒ ωρσ = −ωσρ

(1.4)

Ergo an element of o(1, 3) is a real antisymmetric 4×4matrix, which can be expressed as a linear combination
of six real antisymmetric generators MAB :{

ωµ
ν = 1

2

(
ΩABM

AB
)µ

ν

MAB = −MBA
, A,B, µ, ν ∈ [0, 4] ∩ N (1.5)

In this notation, A and B are the representation indices, expressing ω on the basis of the algebra, and µ, ν
are the usual space-time indices.

A possible set of generators is:
(MAB)µν = ηAµδBν − ηBµδAν (1.6)

since:
(MBA)µν = ηBµδAν − ηAµδBν = −

(
ηAµδBν − ηBµδAν

)
= −MAB (1.7)

which can be used to derive the representation-independent commutation relations of the Lorentz algebra:

[
MAB ,MCD

]
= (MAB)µν(M

CD)νσ − (MCD)νσ(M
AB)µν =

=
(
ηAµδBν − ηBµδAν

) (
ηCνδDσ − ηDνδCσ

)
−
(
ηCµδDν − ηDµδCν

) (
ηAνδBσ − ηBνδAσ

)
=

= ηBC
(
ηAµδDσ − ηDµδAσ

)
− ηBD

(
ηAµδCσ − ηCµδAσ

)
− ηAC

(
ηBµδDσ − ηDµδBσ

)
+ ηAD

(
ηBµδCσ − ηCµδBσ

)
=

= ηBC(MAD)µσ − ηBD(MAC)µσ − ηAC(MBD)µσ + ηAD(MBC)µσ

from which we obtain the de�ning algebra of SO(1, 3):

[
MAB ,MCD

]
= ηBCMAD − ηBDMAC − ηACMBD + ηADMBC (1.8)

Translations algebra R4

A pure translation T (a) in R1,3 is de�ned as:

T (a) ∈ GL(1, 3) : xµ =⇒ x′µ = xµ + aµ (1.9)
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and it is naturally connected to the identity, given that, for small aµ:

T (a)xµ = xµ + aµ ≃ xµ + aν∂νx
µ = (δµν + aν∂ν)x

µ ≃ ea
ν∂νxν (1.10)

We have just found the directional derivatives on the basis of the Minkowski space to generate the Lie
algebra of R(1, 3), so, since they form a coordinate basis at any point, they commute:

[Pµ, Pν ] = 0 (1.11)

Poincarè algebra iso(1, 3)

All that remains is calculating the relations between the generators of the Lorentz transformations and the
translations.

If we tried to proceed directly we would reach a formal contradiction, lying in the incompatibility of the
representations we used in the previous demonstrations: although the structure constants of an algebra are
completely independent from its representation, we must be careful to be coherent when connecting the subal-
gebras.

Indeed, for the Lorentz transformations, we have operated on a tensor �eld on R1,3, while for the translations
we've acted directly on space time, via di�erential operators, which is perfectly �ne, up until we want to merge
the approaches.

Of course, we can choose either one of these representations and express all the generators accordingly. For
instance, we may decide to adopt the di�erential one:

Mµν = xµ∂ν − xν∂µ (1.12)

and compute the commutation relations as follows:

[Mµν , P ρ] = (xµ∂ν − xν∂µ) ∂ρ − ∂ρ (xµ∂ν − xν∂µ) =

= xµ∂ν∂ρ − xν∂µ∂ρ − ∂ν∂ρxµ − xµ∂ρ∂ν + ∂µ∂ρxν + xν∂ρ∂µ =

= ∂µ∂ρxν − ∂ν∂ρxµ = ∂µηρν − ∂νηρµ = Pµηρν − P νηρµ

(1.13)

We �nally collected them all, and in the meantime, we got our hands dirty with some representation theory!
For a reason that will be clari�ed in chapter 2, since a generator is de�ned up to a multiplicative scalar, we can
rewrite them as: 

[Pµ, Pν ] = 0

[Mµν , Pρ] = i(ηνρPµ − ηµρPν)

[Mµν ,Mρσ] = i(ηµρMνσ − ηνρMµσ + ηνσMµρ − ηµσMνρ)

(1.14)
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1.1.2 Irreducible Particle Representation of ISO(1, 3)

ISO(1, 3) is the de�ning space-time symmetry group of any relativistic quantum �eld theory : therefore, we need
to �nd a suitable representation on particle states.

From the Quantum Mechanics course, we recall the Wigner Theorem:

Wigner's Theorem:

Symmetries in Quantum Mechanics are implemented as (anti)unitary operators on a Hilbert space.

In Groups Theory, a Casimir is de�ned as an operator commuting with all the generators of the algebra,
and thus invariant under the action of the group, and it can be used to label a representation.

For ISO(1, 3), there are two of such transformations:

{
C1 = PµP

µ

C2 = 1
4ϵ

µνρσPνMρσϵµνρσP
νMρσ ≡WµW

µ
(1.15)

From our backing knowledges of the covariant formalism of Special Relativity, we may be tempted to argue
that C1 and C2 are simply 4-scalars, and thus necessarily invariant: but this is not obvious at all! In general,
an operator being invariant in a certain representation doesn't extend to any other: thus, to make sure that it
is actually a Casimir, one must verify its commutativity with the generators.

With a little algebra, this is rapidly achieved:

(i) [PµPµ, Pµ] = Pµ [Pµ, Pµ] + [Pµ, Pµ]Pµ = 0

[Mµν , P ρPρ] = [Mµν , P ρ]Pρ + Pρ [M
µν , P ρ] = i(ηνρPµ − ηµρP ν)Pρ + iPρ(η

νρPµ − ηµρP ν) =

= i ((ηνρPµ − ηµρP ν)Pρ + Pρ(η
ρνPµ − ηρµP ν)) = i (P νPµ − PµP ν + P νPµ − PµP ν) = 0

(ii)
1

4
[ϵµνρσPνMρσϵµνρσP

νMρσ, Pα] ∝ ϵµνρσϵµνρσ [PνMρσP
νMρσ, Pα] =

= ϵµνρσϵµνρσ (P
νMρσ [PνMρσ, P

α] + [PνMρσ, P
α]P νMρσ) =

= ϵµνρσϵµνρσ (P
νMρσ (Pν [Mρσ, P

α] + [Mρσ, P
α]Pν) + (Pν [Mρσ, P

α] + [Mρσ, P
α]Pν)P

νMρσ) = 0

(iii)
1

4

[
ϵµνρσPνMρσϵµνρσP

νMρσ,Mαβ
]
∝ ϵµνρσϵµνρσ

[
PνMρσP

νMρσ,Mαβ
]
=

= ϵµνρσϵµνρσ
(
P νMρσ

[
PνMρσ,M

αβ
]
+
[
PνMρσ,M

αβ
]
P νMρσ

)
=

= ϵµνρσϵµνρσ
(
P νMρσ

(
Pν

[
Mρσ,M

αβ
]
+
[
Mρσ,M

αβ
]
Pν

)
+
(
Pν

[
Mρσ,M

αβ
]
+
[
Mρσ,M

αβ
]
Pν

)
P νMρσ

)
= 0

Now let's try to understand the physical meaning of the Casimirs.

From QM, we know that a translation on a wave function on the coordinate space is implemented by
exponentiating the momentum operator p = −iℏ∇, and in the previous section we demonstrated that the
partial derivatives are the generators of R1,3.

Similiarly, the time translations generator is the Hamiltonian H, which, via the correspondence principle,
is the observable associated to the energy of a system: therefore, it is logically straightforward to identify Pµ

with the 4-momentum of a particle. Now that we know what Pµ is, the physical meaning of Wµ (namely, the
Pauli-Lubanski vector) will soon be clari�ed.

In the context of the Wigner's classi�cation, we can construct irreducible representations on particle states,
viz multiplets, labeled by the eigenvalues of the casimirs.
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For this purpose, we can choose to a convenient frame, where the Casimirs are easily computed, expressing
the Lorentz transformation in the boosts and rotations Lie basis:{

Ji =
1
2ϵijkM

jk j, k = 1, 2, 3

Ki =M0i i = 0, 1, 2, 3
(1.16)

and then discern the analysis in terms of the particle mass.

Massive case

If the mass m of a particle is not null we can always boost to a frame such that:

{
Pµ = (m, 0, 0, 0)

Wµ =
(
0,−mJ⃗

) =⇒

{
C1 = m2

C2 = −m2J2
(1.17)

Since J i are spatial rotation generators, we can interpret j as the eigenvalue of the module of J2, i.e. the
spin of the particle, and j3 as its projection on the z axis.

From the angular momenta algebra, we deduce that a massive multiplet of the Poincaré group is composed
by (2j + 1) massive particle states, labeled as:

{ |m, j, j3 ⟩ } , j3 ≤ |j| (1.18)

Maseless case

If m = 0, we can opt for a frame such that:{
Pµ = (E, 0, 0, E)

Wµ =M12P
µ

=⇒

{
C1 = 0

C2 = 0
(1.19)

Since both Casimirs are null for any maseless particle, how can we distinguish them?

Well, if we notice that in this coordinates the Pauli-Lubanski vector is just the phase shifted 4-momentum,
we can replace the second casimir with the parameter of such U(1) transformation, namely the helicity.

Before jumping to hasty conclusions, we have to remember that a maseless particle always carries two oppo-
site helicity states, and this aspect cannot be ignored, since it has fundamental implications on the predictions
of the Standard Model. Hence, the multiplet will be composed of:

{ |E, h ⟩ , |E,−h ⟩ } (1.20)

In this section we discussed the importance of the spin in the representation of a particle.

The next question we will attempt to answer is: what are the geometrical involvements telling whole from
halved spin particles? We will demonstrate that fermions naturally arise in a speci�c representation of the
Lorentz group.
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1.2 Spin(1, 3) group

Noticeably, the Lorentz group has spinorial representations. What does this mean?

First, we note that there exists a bijection between a generic xµ ∈ R1,3 and a 2 × 2 hermitian matrix
X ∈ GL(2, C):

{
xµ −→ X = xµσ

µ =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
, σµ =

(
1, σi

)}
=⇒ xµxµ = det [X] (1.21)

where σi are the Pauli matrices. Then we consider the action of the group of unitary matrices SL (2, C) on X:

X
SL(2,C)−−−−−→ X ′ = SXS† =⇒ det

[
SXS†] = det2 [S] det [X] = det [X] (1.22)

meaning S is an isomorphism on GL(2,C), and thus a Lorentz transformation on R1,3 (indeed, it has 6
degrees of freedom): it directly follows that a representation of SL(2,C) is also a valid for SO(1, 3) up to global
properties.

To be precise, de�ning Spin(1, 3) such that:

SO(1, 3) ≃ Spin(1, 3)/Z2 (1.23)

the spinorial representation of the Lorentz groups are those that are double valued representations, though
single valued as reps of SL(2,C), meaning that the actual isomorphism is:

SL(2, C) ≃ Spin(1, 3) (1.24)

In terms of representation, the lowest dimensional non trivial vector space which SL(2,C) acts upon, is
certainly C2.

A left hand Weyl spinor is a two component complex vector transforming in an irreducible representation of
Spin(1, 3):

ψα ∈
(
1

2
, 0

)
: ψ′

α = S β
α ψβ , S ∈ SL (2,C) (1.25)

From the group theoretical representation theory, we can borrow the following result:

Given a representation of a group, its complex conjugate, transforming by S∗, is another representation,
independent from the other one if:

∄ C : S∗ = CSC† (1.26)

In our case, this condition is satis�ed, and we may hence construct another independent irreducible repre-
sentation of Spin(1, 3), as its action on a right handed Weyl spinor :

(ψα)
† ≡ ψ̄α̇ ∈

(
0,

1

2

)
: ψ̄′

α̇ = (S∗)
β̇
α̇ ψ̄β̇ (1.27)
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1.2.1 Algebraic structures from spinors

Before moving on, it is suitable to acquaint ourselves with some spinorial algebra, and build systematic methods
to construct tensors from them.

Scalars

First, we de�ne the following invariant tensors under SL (2,C):


ϵαβ = ϵα̇β̇ =

(
0 1

−1 0

)

ϵαβ = ϵα̇β̇ =

(
0 −1

1 0

) :

{
ϵαβϵβγ = 1αγ

ϵα̇β̇ϵβ̇γ̇ = 1α̇γ̇
(1.28)

A scalar, belonging to the (0, 0) representation of the Spin(1, 3) group, can be written as a product of left
or right spinors:{

ψ, χ ∈
(
1
2 , 0
)
=⇒ ψχ = ϵαβψαχβ = ψβϵ

T βαχα = χ1ψ2 − χ2ψ1

ψ̄, χ̄ ∈
(
0, 12

)
=⇒ ψ̄χ̄ = ϵα̇β̇ψ̄α̇χ̄β̇ = χ̄2ψ̄1 − χ̄1ψ̄2

⇐⇒ (ψχ)
†
= ψ̄χ̄

which is indeed a scalar under the action of SO(2,C), since:

ψχ −→ S γ
α S δ

β ϵ
αβψδχγ = S γ

α ST δ
β ϵ

T βαψδχγ = S γ
α ST δαψδχγ = ∗

ST δ
β ϵ

T βα =

(
S11 S21

S12 S22

)(
0 −1
1 0

)
=

(
S21 −S11

S22 −S12

)
= ST δα

∗ = STγ
αS

αδψδχγ =

(
S11 S21

S12 S22

)(
S21 S22

−S11 −S12

)
ψχ =

(
0 det [S]

det [S] 0

)
ψχ =

= det [S] ϵγδψδχγ = ψχ

So, in analogy with the metric tensor, one can use the ϵ matrices to rise and lower the indices of the spinor,
coherently with their anticommutation properties:{

ψα = ϵαβψβ

ψα = ϵαβψ
β

{
ψα̇ = ϵα̇β̇ψβ̇

ψ̄α̇ = ϵα̇β̇ψ̄
β̇

(1.29)

Vectors

Vectors belong to the
(
1
2 ,

1
2

)
of Spin(1, 3) and can be explicitly built from left and right Weyl spinors:

{
ψσµχ̄ = ψα (σµ)αα̇ χ̄

α̇

(σµ)αα̇ =
(
1, σi

)
αα̇

(1.30)

which transforms as a vector under a Lorentz transformation, which can be veri�ed by contracting it with
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the transformed of a 4-vector xµ under the isomorphism 1.21:

ψXχ̄ = ψαXαα̇χ̄
α̇ = ϵαβψβXαα̇ϵ

α̇β̇χ̄β̇ −→ ϵαβ
[
S γ
β ψγ

] [
S δ
α Xδδ̇ (S

∗)
δ̇
α̇

]
ϵα̇β̇

[
(S∗)

γ̇

β̇
χ̄γ̇

]
=

=
[
ψβ
(
S−1

) α

β

] [
S δ
α Xδδ̇ (S

∗)
δ̇
α̇

] [
χ̄β̇
(
S∗−1

) α̇

β̇

]
= ψXχ̄

One may symmetrically proceed in the same way to construct a vector from another set of matrices:{
(σ̄µ)

α̇α
= ϵαβϵα̇β̇ (σµ)ββ̇ =

(
1,−σi

)α̇α
χ̄α̇ (σ̄µ)

α̇α
ψα = −ψα (σµ)αα̇ χ̄

α̇
(1.31)

which does not form an independent representation with respect to the �rst one, since in can be written as
a linear combination, as shown, and thus the condition in Equation 1.26 does not hold.

1.2.2 Generators of SO(1, 3)

We now need to clarify the connection between the same Lorentz transformation Λ in the vectorial and in the
spinorial representations of SO(1, 3). To do this, we may de�ne the antisymmetric product of sigma matrices
as:

(σµν)
β
α =

i

4
(σµσ̄ν − σν σ̄µ)

β
α (1.32)

One can indeed demonstrate them to obey the Lorentz algebra, by computing their commutors:

[σµν , σρτ ] = i(ηµρσντ − ηνρσµτ + ηντσµρ − ηµτσνρ) (1.33)

The conjugate generators are given by:

(σ̄µν)
α̇
β̇ =

i

4
(σ̄µσν − σ̄νσµ)

α̇
β̇ (1.34)

Therefore, the Weyl spinors transform accordingly as:ψα
Spin(1,3)−−−−−−→ exp

{
− i

2ωµνσ
µν
} β

α
ψβ

ψ̄α̇
Spin(1,3)−−−−−−→ exp

{
− i

2ωµν σ̄
µν
}α̇

β̇
ψ̄β̇

(1.35)
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1.3 Dirac Spinors

A fundamental geometrical structure to describe massive fermions is the Dirac spinor Ψ, which is a four
component complex vector transforming in a reducible representation of the Spin(1, 3) group.

Before deriving it, it's essential to introduce the Cli�ord Algebra Cl(1, 3) in four dimensions:

{γµ, γν} = 2ηµν1 (1.36)

where γµ are 4× 4 matrices and ηµν is the Minkowski metric.

In a general representation, we can construct a new set of matrices {Sµν}:

Sµν =
1

4
[γµ, γν ] =

{
0 µ = ν
1
2γ

µγν µ ̸= ν
(1.37)

and verify that they form a representation of the Lorentz algebra, by evaluating their commutation relations:

[Sµν , Sρσ] =
1

2
[Sµν , γργσ] =

1

2
{γρ [Sµν , γσ] + [Sµν , γρ] γσ} = ∗

[
Sij , γk

]
=

1

2

(
γiγjγk + γiγkγj − γiγkγj − γkγiγj − γiγkγj + γiγkγj

)
=

=
1

2

(
γi
{
γj , γk

}
−
{
γk, γi

}
γj
)
=

1

2

(
γi(2ηjk)− (2ηki)γj

)
= γiηjk − ηkiγj

∗ =
1

2
{γρ (γµηνσ − ησµγν) + (γµηνρ − ηρµγν) γσ} =

=
1

2
γργµηνσ − 1

2
γργνησµ +

1

2
γµγσηνρ − 1

2
γνγσηρµ =

=
1

2
(2Sρµ + ηρµ) ηνσ − 1

2
(2Sρν + ηρν) ησµ +

1

2
(2Sµσ + ηµσ) ηνρ − 1

2
(2Sνσ + ηνσ) ηρµ =

= Sρµηνσ − Sρνησµ + Sµσηνρ − Sνσηρµ

The Dirac spinor transforms in the spinorial representation of SO(1, 3) as:
Ψα(x) −→ S [Λ]

α
β Ψ

β(Λ−1x)

Λ = exp
{

1
2ΩµνM

µν
}

S [Λ] = exp
{

1
2ΩµνS

µν
} (1.38)

where Mµν are the generators of the Lorentz group acting on the coordinate space, while Sµν are those
acting on the spinor space. It's important to notice that, albeit the basis of SO(1, 3) is di�erent, the same
choice of representation coordinates Ωµν assures to make the same Lorentz transformation in both spaces.

Now one may ask how are Weyl spinors related to Dirac spinors, and the answer lies in the question, since
there exists a particular basis of Cl(1, 3) where the link becomes explicit: the chiral (or Weyl) representation:

γµ =

(
0 σµ

σ̄µ 0

)
, σµ =

(
1, σi

)
, σ̄µ =

(
1,−σi

)
(1.39)
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It is straightforward to prove them to verify the de�ning commutation relation of the algebra:

γµγν =

(
0 σµ

σ̄µ 0

)(
0 σν

σ̄ν 0

)
=

(
σµσ̄ν 0
0 σ̄µσν

)
=⇒ {γµ, γν} =

(
σµσ̄ν + σν σ̄µ 0

0 σ̄µσν + σ̄νσµ

)
=⇒

=⇒



{
γ0, γ0

}
=

(
21 0

0 21

)
= 21

{
γ0, γi

}
=

(
−1σi + σi1 0

0 1σi + σ̄i1

)
= 0

{
γi, γj

}
= −

({
σi, σj

}
0

0
{
σi, σj

}) = −2δij1

=⇒ {γµ, γν} = 2ηµν1

In this representation, the S [Λ] matrices are block diagonal:

[γµ, γν ] =

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)
=⇒

Sµν =
1

4
[γµ, γν ] =


1
4

[
γ0, γi

]
=

(
−2σi1 0

0 2σi1

)
boosts

Sij = − 1
2ϵ

ijk

(
σk 0

0 σk

)
rotations

and thus also �nite Lorentz transformations are block diagonal:

S[Λ] =



(
e−

i
2ωijσ

k

0

0 e−
i
2ωijσ

k

)
rotations(

e−
i
2ω0iσ

i

0

0 e
i
2ω0iσ

i

)
boosts

=

(
e−

i
2ωµνσ

µν

0

0 e−
i
2ωµν σ̄

µν

)
(1.40)

The diagonal terms are exactly the Lorentz transformations of the left and right Weyl spinors, proving that
the Dirac representation is indeed reducible, and decomposes into the chiral ones:

Ψ =

(
ψα

ψ̄α̇

)
=⇒

{
ψα −→ exp

{
− i

2ωµνσ
µν
} β

α
ψβ

ψ̄α̇ −→ exp
{
− i

2ωµν σ̄
µν
}α̇

β̇
ψ̄β̇

⇐⇒ Ψ ∈
(
1

2
, 0

)
⊕
(
0,

1

2

)
(1.41)

Before moving on to the next chapter, it's appropriate to mention the Majorana spinor, as it will be adopted
when deriving SUGRA Lagrangian in chapter 6.

A Majorana spinor ψ is a real 4-component spinor, satisfying the following reality condition:

ψC ≡ Cψ̄T = iCγ0Tψ∗ = ψ ,

{
CT = −C
γTµ = −CγµC−1

(1.42)

We shall not dive any further in it, for this is more than enough for our purposes.

Now, backed by the acquired knowledge, it's time to move on and explore the foundations of Quantum Field
Theory.



Chapter 2

Essential Quantum Field Theory

Quantum Field Theory a modern theoretical framework describing the dynamics of relativistic particles, and
an inevitable step to gather the foundational formalism of the Standard Model.

There are two main formulations of QFT: the path integral and the canonical quantization one. While the
�rst one has the advantage of being manifestly Lorentz covariant, it requires additional mathematical tools to
be properly de�ned, and which would exceed the purposes of this dissertation.

Hence, we'll opt for the canonical quantization, although this will require some cautions along the way:
the issue with such an Hamiltonian-based formalism is that it requires to compute a conjugate momentum, by
separating the previously on equal footing spacetime coordinates.

From our backing knowledges of Quantum Mechanics, we know that the canonical quantization is the
standard method to jump from the classical to a quantum theory, consisting in promoting dynamical variables
to operators, and imposing quantum conditions on their commutators.

Likewise, in QFT one de�nes a quantum �eld ϕ to be an operator-valued function of spacetime coordi-
nates, and the momentum �eld π its conjugate dynamical variable.

To consistently include QM, for the scalar �eld analogous commutation relations must hold:
[ϕ(x), ϕ(y)] = 0

[π(x), π(y)] = 0

[ϕ(x), π(y)] = iδ(3)(x− y)

(2.1)

The goal of this chapter is to understand how Lorentz invariant Lagrangian densities for the �elds can be
constructed: not only this will allow us to derive the equations of motion, but, crucially, their Hamiltonian,
which will exhibit how particles actually emerge from a quantized �eld.

Especially, we will describe how to expand free �elds in terms of creation and annihilation operators, and
highlighting the di�erences between bosonic and fermionic quantizations, to build particle states consistently
with the Spin-Statistics theorem.

17
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2.1 Scalar Field

Before getting to spinor �elds, it's a good idea to start from the basics and have a glimpse to the scalar one for,
although its algebraic properties might look kind of trivial, from a purely physical perspective its description
leads to decisive involvements.

2.1.1 Plausibility proof of the Klein Gordon Lagrangian

The dynamics of a scalar �eld is described by the Klein-Gordon Lagrangian:

LKG =
1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 =

1

2
π2 − 1

2
(∇ϕ)2 − 1

2
m2ϕ2 (2.2)

We now want to justify its form.

In the �rst chapter, we began �ddling with some symmetries, by introducing the Wigner's Theorem, which
essentially states that such a transformation must be implemented as a unitary, or antiunitary, operator on an
Hilbert space. Maybe it's me, but this doesn't sound like a �rst principle: �rst, it speci�cally refers to the
ket representation, and second, the Analitical Mechanics course oriented me to think to a symmetry as a pure
geometrical feature of a manifold.

Quantum Field Theory is built upon a Lagrangian formalism, which de�nes a symmetry of a �eld to be a
transformation leaving the action S invariant, allowing to invoke the renowned Noether's Theorem, stating that
any in�nitesimal continuous symmetry of a �eld gives rise to a conserved current:{

δϕi(x) = ϵA∆A ϕi(x)

ϵA ≪ 1
: S(ϕ) = S(ϕ′) =⇒ ∃ Jµ

A = − δL
δ(∂µϕi)

∆Aϕ
i +Kµ

A : ∂µJ
µ
A = 0 (2.3)

where ∆A denote the generators of the symmetry group, and Kµ
A is a total derivative.

Energy-momentum tensor

The conserved current associated to space-time translations is the energy-momentum tensor Tµν

L(ϕi + ϵν∂νϕ
i) = L(ϕi) + ϵν∂νL =⇒ (jµ)ν ≡ Tµν =

∂L
∂(∂µϕi)

∂νϕi − ηµνL (2.4)

What's peculiar of this tensor is that its null 4-divergence manifests the energy-momentum conservation
laws, providing a rather simple plausibility argument of the Klein Gordon Lagrangian. Hence, let's exhibit the
SKG invariance under the action of R4:

LKG(ϕ+ ϵν∂νϕ) =
1

2
∂µ(ϕ+ ϵν∂νϕ)∂µ(ϕ+ ϵν∂νϕ)−

1

2
m2(ϕ+ ϵν∂νϕ)

2 =

=
1

2
(∂µϕ+ ϵν∂ν∂

µϕ) (∂µϕ+ ϵν∂ν∂µϕ)−
1

2
m2
(
ψ2 + (ϵν∂νϕ)

2 + 2ϵν(∂νϕ)ϕ
)
=

=
1

2
(∂µϕ∂µϕ+ ϵν∂ν∂

µϕ∂µϕ++ϵν∂ν∂
µϕ∂µϕ+ ϵν∂ν∂

µϕϵν∂ν∂µϕ)−
1

2
m2
(
ψ2 + (ϵν∂νϕ)

2 + 2ϵν(∂νϕ)ϕ
) (1)
≃

(1)
≃ 1

2
(∂µϕ∂µϕ+ ϵν∂ν∂

µϕ∂µϕ+ ϵν∂ν∂
µϕ∂µϕ)−

1

2
m2
(
ϕ2 + 2ϵν∂νϕϕ

)
=

=
1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 + ϵν

(
∂ν∂

µϕ∂µϕ− ∂νm
2ϕ2
)
= LKG + ϵν∂ν

(
∂µϕ∂µϕ−m2ϕ2

)
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Since the Lagrangian varies by a total derivative, the action is invariant under translations, which implies
that we can derive the energy-momentum tensor from Equation 2.4.

Tµν
KG = ∂µϕ∂νϕ− ηµνLKG (2.5)

and exhibit the resulting conservation laws, by separating the components of ∂µT
µν = 0.

� ν = 0 (Energy conservation):

To prove the consistency of the energy conservation law, we �rst write the Hamiltonian density as the
Legendre transform of the Lagrangian one:

H = ϕ̇2 − ∂µϕ∂
µϕ+

1

2
m2ϕ2 =

1

2
π2 +

1

2
(∇⃗ϕ)2 + 1

2
m2ϕ2 (2.6)

to then focus on the �rst equation provided by the null divergence:

∂µT
µ0 = ∂0T

00 + ∂iT
i0 = ∗

T 00 = ∂0ϕ∂0ϕ− 1

2
∂iϕ∂

iϕ− 1

2
m2ϕ2 = ∂0ϕ∂0ϕ− 1

2
∂iϕ∂

iϕ− 1

2
m2ϕ2 =

=
1

2
ϕ̇2 − 1

2
(∇⃗ϕ)2 − 1

2
m2ϕ2

T 0i = ∂0∂iϕ− η0iL = ϕ̇∇⃗ϕ

∗ = ∂0

[
1

2
ϕ̇2 − 1

2
(∇⃗ϕ)2 + 1

2
m2ϕ2

]
− ∇⃗ ·

[
ϕ̇∇⃗ϕ

]
=

∂

∂t
H− ∇⃗ · S⃗ = 0

� ν = i (Momentum conservation):

∂µT
µi = ∂0T

0i + ∂jT
ji = ∗

T 0i = ∂0ϕ∂iϕ− η0iL = ϕ̇ · ∇⃗ϕ =⇒ ∂0T
0i = ∂0

[
ϕ̇∇⃗ϕ

]
= ϕ̈∂iϕ+ ϕ̇∂iϕ̇

T ij = ∂iϕ∂jϕ− ηij
[
1

2
∂kϕ∂

kϕ− 1

2
m2ϕ2

]

∂j(∂
jϕ∂iϕ) = (∂j∂

jϕ)∂iϕ+ ∂jϕ∂j∂
iϕ

∂jη
ijL = −ηij∂jL = −∂iL

∗ = ∂0T
0i + ∂jT

ji = ϕ̈∇⃗ϕ+ ϕ̇∇⃗ϕ̇+ (□ϕ)∇⃗ϕ+ ∇⃗ϕ∂j∂iϕ− ∂iL =

=
∂

∂t
p⃗+ ∇⃗ · π = 0

The Lagrangian is indeed physically consistent, so we shall derive the dynamics of the �eld from the Euler-
Lagrange equations:

∂µ

(
δL

δ(∂µϕ)

)
− δL
δϕ

= ∂µ∂µϕ+m2ϕ ≡ □ϕ+m2ϕ = 0 (2.7)

which is the renowned Klein-Gordon equation.
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2.1.2 Scalar �eld quantization

To evaluate canonical quantization, we can show that Equation 2.7 could've been obtained by quantizing the
relativistic energy-momentum relation on an Hilbert space diagonalised with respect to the coordinate operator:{

E −→ E = −i∂t
p −→ p = −i∇⃗

=⇒ −∂20ϕ+ ∇⃗2ϕ+m2ϕ = □ϕ+m2ϕ = 0 (2.8)

Creation and annihilation operators

Directly inserting the Fourier transform of the scalar �eld in the Klein-Gordon equation, we �nd:

ϕ(x⃗, t) =

∫
dx3

(2π)3
eip⃗·x⃗ϕ(p⃗, t) =⇒

[
∂20 + (p2 +m2)

]
ϕ(p⃗, t) = 0 (2.9)

whose general solution to be is given by an in�nite linear superposition of simple harmonic oscillators of
frequency ω =

√
p2 +m2.

From the backing knowledges of non-relativistic QM, we know how to algebraically solve its associated
eigenvalue problem: in QFT this can be analogously achieved by introducing the creation and annihilation (or
ladder) operators of the �elds:

{
a ≡

√
ω
2 ϕ+ i

2ωπ

a† ≡
√

ω
2 ϕ− i

2ωπ
⇐⇒

{
ϕ =

√
1
2ω (a+ a†)

π = −i
√

ω
2 (a− a†)

(2.10)

allowing us to rewrite the Fourier expansion 2.9 as:

ϕ(x⃗, t) =

∫
d3p⃗

(2π)3
1√
2ω

(
ap⃗ e

ip⃗·x⃗ + a†p⃗ e
−ip⃗·x⃗

)
(2.11)

uniquely de�ning its dynamical conjugate:

π(x⃗, t) =

∫
d3p⃗

(2π)3

√
ω

2

(
−iωap⃗ eip⃗·x⃗ + iωa†p⃗ e

−ip⃗·x⃗
)

(2.12)

From commutation relations between the �elds in Equation 2.1, we compute the creation and annihilation
operators' ones:

(i) [ϕ(x⃗), ϕ(y⃗)] = 0 ⇐⇒ ei(p⃗·x+q⃗·y⃗) [ap⃗, aq⃗] + ei(p⃗·x⃗−q⃗·y⃗)
[
ap⃗, a

†
q⃗

]
+ c.c. = 0

(ii) [π(x⃗), π(y⃗)] = 0 ⇐⇒ ei(p⃗·x+q⃗·y⃗) [ap⃗, aq⃗]− ei(p⃗·x⃗−q⃗·y⃗)
[
ap⃗, a

†
q⃗

]
+ c.c. = 0

(iii) [ϕ(x⃗), π(y⃗)] = −iω
∫

d3p d3q
(2π)6

1√
2ω

√
ω
2

[(
ap⃗ e

ip⃗·x⃗ + ap⃗ e
−ip⃗·x⃗) ,(aq⃗ eq⃗·y⃗ + a†q⃗ e

−iq⃗·y⃗
)]

=

= i
2

∫
d3p d3q
(2π)6

(
ei(p⃗·x⃗−q⃗·y⃗)

[
ap⃗, a

†
q⃗

]
+ e−i(p⃗·x⃗−q⃗·y⃗)

[
a†p⃗, aq⃗

])
2.1
= iδ(x⃗− y⃗) = i

∫
d3p
(2π)3 e

ip⃗·(x⃗−y⃗) ⇐⇒

⇐⇒
∫

d3q
(2π)3

[
ap⃗, a

†
q⃗

]
eip⃗·(x⃗−y⃗) = eip⃗·x⃗ ⇐⇒

∫
d3q

(2π)3

[
ap⃗, a

†
q⃗

]
= 1 =

∫
d3q δ(3)(p⃗− q⃗)
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From the sum of (i) and (ii), along with the summability condition, and from the last one, we obtain:

{
[ap⃗, a(q⃗)] =

[
a†p⃗, a

†(q⃗)
]
= 0[

ap⃗, a
†(q⃗)

]
= (2π)3δ(3)(p⃗− q⃗)

(2.13)

Hamiltonian operator

The last step is to rewrite the Hamiltonian in terms of the ladder operators, by integrating its density H over
the spacial domain 1

H =
1

2

∫
d3x

(
π2 + (∇ϕ)2 +m2ϕ2

)
=

1

2

∫
d3x d3p d3q

(2π)6

[
−
√
ωp⃗ ωq⃗

2

(
ap⃗ e

ip⃗·x⃗ − a†p⃗ e
−ip⃗·x⃗

)(
aq⃗ e

iq⃗·x⃗ − a†q⃗ e
−iq⃗·x⃗

)
−

1

2
√
ωp⃗ ωq⃗

(
ip⃗ ap⃗ e

ip⃗·x⃗ + a†p⃗ e
−ip⃗·x⃗

)(
iq⃗ aq⃗ e

iq⃗·x⃗ − iq⃗ a†q⃗ e
−iq⃗·x⃗

)
+

m2

2
√
ωp⃗ ωq⃗

(
ap⃗ e

ip⃗·x⃗ + a†p⃗ e
−ip⃗·x⃗

)(
aq⃗ e

iq⃗·x⃗ + a†q⃗ e
−iq⃗·x⃗

)]
=

=
1

2

∫
d3x d3p d3q

(2π)6

[
−
√
ωp⃗ ωq⃗

2

(
ap⃗ aq⃗ e

ix⃗·(p⃗+q⃗) − ap⃗ a
†
q⃗ e

ix⃗·(p⃗−q⃗) − a†p⃗ aq⃗ e
−ix⃗·(p⃗−q⃗) + a†p⃗ a

†
q⃗ e

−ix⃗·(p⃗+q⃗)
)
−

− i

2
√
ωp⃗ ωq⃗

(
p⃗ · q⃗ ap⃗ aq⃗ eix⃗·(p⃗+q⃗) − p⃗ · q⃗ ap⃗ a†q⃗ e

ix⃗·(p⃗−q⃗) + p⃗ · q⃗ a†p⃗ aq⃗ e
−ix⃗·(p⃗−q⃗) − p⃗ · q⃗ a†p⃗ a

†
q⃗ e

−ix⃗·(p⃗+q⃗)
)
+

+
m2

2
√
ωp⃗ ωq⃗

(
ap⃗ aq⃗ e

ix⃗·(p⃗+q⃗) + ap⃗ a
†
q⃗ e

ix⃗·(p⃗−q⃗) + a†p⃗ aq⃗ e
−ix⃗·(p⃗−q⃗) + a†p⃗ a

†
q⃗ e

−ix⃗·(p⃗+q⃗)
)]

=

=
1

4

∫
d3p d3q

(2π)3

[√
ωp⃗ ωq⃗

(
ap⃗ aq⃗δ

(3)(p⃗+ q⃗)− ap⃗ a
†
q⃗ δ

(3)(p⃗− q⃗) + a†p⃗ aq⃗δ
(3)(p⃗− q⃗)− a†p⃗ a

†
q⃗ δ

(3)(p⃗+ q⃗)
)
−

− i
√
ωp⃗ ωq⃗

(
p⃗ · q⃗ ap⃗ aq⃗ δ(3)(p⃗+ q⃗)− p⃗ · q⃗ ap⃗ a†q⃗ δ

(3)(p⃗− q⃗)− p⃗ · q⃗ a†p⃗ aq⃗ δ
(3)(p⃗− q⃗) + p⃗ · q⃗ δ(3) (p⃗+ q⃗)

)
+

+
m2

√
ωp⃗ ωq⃗

(
ap⃗ aq⃗ δ

(3)(p⃗+ q⃗) + ap⃗ a
†
q⃗ δ

(3)(p⃗− q⃗)− a†p⃗ aq⃗ δ
(3)(p⃗− q⃗)− a†p⃗ a

†
q⃗ δ

(3)(p⃗+ q⃗)
)]

=

=
1

4

∫
d3p

(2π)3

[
√
ωp⃗ ω−p⃗

(
ap⃗ ap⃗ − ap⃗ a

†
p⃗ + a†p⃗ a−p⃗ − a†p⃗ a

†
−p⃗

)
− ip2

√
ωp⃗ ω−p⃗

(
ap⃗ a−p⃗ − ap⃗ a

†
p⃗ − a†p⃗ ap⃗ + a†p⃗ a

†
−p⃗

)
+

+
m2

√
ωp⃗ ω−p⃗

(
ap⃗ a−p⃗ + ap⃗ a

†
p⃗ − a†p⃗ ap⃗ − a†p⃗ a

†
−p⃗

)]
=

=
1

4

∫
d3p

(2π)3
1

ωp⃗

[(
−ω2

p⃗ + p2 +m2
) (
ap⃗ a−p⃗ + a†p⃗ a

†
−p⃗

)
+
(
ω2
p⃗ + p2 +m2

) (
ap⃗ a

†
p⃗ + a†p⃗ ap⃗

)]
=

=
1

2

∫
d3p

(2π)3
ωp⃗

(
ap⃗ a

†
p⃗ + a†p⃗ ap⃗

)
=

∫
d3p

(2π)3
ωp⃗

(
a†p⃗ ap⃗ +

1

2
(2π)3δ(3)(0)

)

This divergence arises since we're trying to compute the energy of a vacuum state in the whole space.

Neglecting further discussions about renormalization, for our purposes, we can simply redi�ne the Hamil-
tonian as the energy di�erence between the excited states and the vacuum, by imposing the zero energy to be

1We reassure that the following calculation is not necessary to understand the physical involvements of the canonical quantization,
although we suggest to go through it to anyone whose interested in developing some familiarity with the algebraic side.
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null, so that:

H =

∫
d3p

(2π)3
ωp⃗ a

†
p⃗ ap⃗ (2.14)

We can then easily compute the commutation relations of the ladder operators with the Hamiltonian, simply
noticing that, from Equation 2.13, if q⃗ ̸= p⃗ , the commutator between the latter vanishes, and hence we can
reduce to an integration of a Dirac delta:

[ap⃗, H] = ap⃗

(∫
d3q

(2π)3
ωq⃗ a

†
q⃗ aq⃗

)
−
(∫

d3q

(2π)3
ωq⃗ a

†
q⃗ aq⃗

)
ap⃗ =

= ap⃗

[∫
d3q

(2π)3
ωq⃗ a

†
q⃗ aq⃗ δ (p⃗− q⃗)

]
−
[∫

d3q

(2π)3
ωq⃗ a

†
q⃗ aq⃗ δ (p⃗− q⃗)

]
ap⃗ =

= ap⃗

[
− 1

(2π)3
ωp⃗ a

†
p⃗ ap⃗

]
−
[
− 1

(2π)3
ωp⃗ a

†
p⃗ ap⃗

]
ap⃗ =

= − 1

(2π)3
ωp⃗

[
ap⃗ a

†
p⃗ ap⃗ − a†p⃗ ap⃗ ap⃗

]
= − 1

(2π)3
ωp⃗

[
ap⃗, a

†
p⃗

]
ap⃗ = −ωp⃗ ap⃗

with an analogous calculation for a†p⃗ , leading to:

{
[ap⃗, H] = −ωp⃗ ap⃗[
a†p⃗, H

]
= ωp⃗ a

†
p⃗

(2.15)

We �nally proved that particles in QFT arise as excitations of �elds:

| p⃗ ⟩ = a†p⃗ | 0 ⟩ =⇒

{
H| p ⟩ = ωp⃗| p⃗ ⟩
ω2
p⃗ = p⃗2 +m2

(2.16)

2.1.3 Relativistic Normalization

We've stressed a lot the fact that canonical quantization is not manifestly Lorentz covariant, and all the previous
derivations are accomplished in the non-relativistic limit.

Can we directly extend this formalism to relativistic particles? Let's �gure this out.

The scalar product of two particles is given by:

〈
p⃗
∣∣ q⃗ 〉 = (2π)3δ(3)(p⃗− q⃗) (2.17)

p⃗ and q⃗ are 3-vectors, so the result is not a Lorentz scalar. Therefore, we need to de�ne a Lorentz invariant
metric.

From the relativistic energy-momentum relation:

pµp
µ = p20 − p⃗ 2 = m2 = E2 − p⃗ 2 ⇐⇒ p0 = ±

√
E (2.18)

The signed value of p0 is Lorentz invariant, and so it is the following measure:

∫
d4p δ(p20 − p⃗ 2 −m2) =

∫
d3p

2Ep⃗
(2.19)
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Therefore, this can be taken as the relativistic normalized measure in the momentum space, allowing to
derive the relativistically normalised state | p ⟩:

| p ⟩ =
√
2Ep⃗ | p⃗ ⟩ =

√
2Ep⃗ a

†
p⃗ | p⃗ ⟩ (2.20)

The scalar �eld is the simplest prototype we could've analyzed to understand the dynamics in QFT, yet it's
e�ective to understand what's required to approach the next step: the Dirac spinor �eld.
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2.2 The Dirac Field

As anticipated in section 1.3, a Dirac spinor is a 4 component complex object transforming in a reducible
representation of Spin(1, 3):

Ψ ∈
(
1

2
, 0

)
⊕
(
0,

1

2

)
(2.21)

Now it is time to connect its algebra with the QFT formalism, and we will by studying its dynamics.

2.2.1 Plausibility proof of the Dirac Lagrangian

The dynamics of a spinor �eld Ψ is ruled by the Dirac action:

SD =

∫
d4x Ψ̄(iγµ∂µ −m)Ψ (2.22)

In the �rst place, as we did for the scalar �eld, since we don't like to take result for granted2, we want to
give a plausibility argument for this Lagrangian, by proving that it is Lorentz invariant. If one wanted to push
further, another argument is proving the energy conservation consistency, by computing the energy-momentum
tensor as we did in section 2.1.1 for the scalar �eld; since the Lorentz invariance proof is already not prosaic,
we will omit this and encourage the reader to attemt it autonomously.

For our purposes, we will work in the chiral representation, and verify that each component of the Lagrangian
is indeed invariant under the action of Spin(1, 3).

We know from Equation 1.38 a spinor to transform in a general representation as:

Ψα(x) → S [Λ]
α
β Ψ

β
(
Λ−1x

)
(2.23)

implying its conjugate to transform as:

(Ψ∗)
T
(x) = Ψ†α(x) −→ Ψ† β (Λ−1x

)
S [Λ]

† α
β (2.24)

Therefore their product, transforms as:

Ψ†α(x)Ψα(x) −→ Ψ† β (Λ−1x
)
S [Λ]

† α
β S [Λ]

β
α Ψβ

(
Λ−1x

)
(2.25)

But, unlike rotations, there's no way that a boost is in general a unitary transformation, meaning that this
quantity is not a Lorentz scalar. Anyway, we can solve this issue rather easily, by leveraging the easily veri�able
relation γ0γµγ0 = (γµ)

†
:

S†µν =
1

4
([γν , γµ])

†
=

1

4

[
γ† ν , γ†µ

]
= −γ0Sµνγ0 =⇒ S [Λ]

†
= γ0S [Λ]

−1
γ0 (2.26)

and de�ne the Dirac adjoint as:

Ψ̄(x) ≡ Ψ†(x)γ0 −→ Ψ†γ0S [Λ]
−1
γ0γ0 = Ψ†γ0S [Λ]

−1
(2.27)

2. . . and to start to get comfortable with some spinor algebra.
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Now we can perform the whole calculation, by expanding the transformations to linear order:

Ψ̄(x)† (iγµ∂µ −m)Ψ(x)
Spin(1,3)−−−−−−→ Ψ†S [Λ]

†
γ0
(
iγµΛ ν

µ ∂ν −m
)
S [Λ]Ψ = ∗

Ψ̄Ψ = ψ†γ0ψ(x) −→ Ψ†S[Λ]†γ0S[Λ]Ψ = Ψ†γ0Ψ = Ψ̄Ψ

∗ = −mΨ†S[Λ]†γ0S[Λ]Ψ + iΨ†S[Λ]†γ0γµΛ ν
µ ∂νS[Λ]Ψ

(2.27)
= −mΨ̄Ψ + iΨ̄S[Λ]−1γµΛ ν

µ ∂νS[Λ]Ψ = ∗

S[Λ]−1γµS[Λ] ≃
(
1 +

1

2
ΩρσS

ρσ

)
γµ
(
1− 1

2
ΩρσS

ρσ

)
= γµ − 1

2
γµΩρσS

ρσ +
1

2
ΩρσS

ρσγµ +
1

4
ΩρσS

ρσγµΩρσS
ρσ =

= γµ − Ωρσ
1

2
[γµ, Sρσ] +

1

4
ΩρσS

ρσγµΩρσS
ρσ = γµ − 1

2
Ωρσ (η

σµγρ − ηρνγσ) +
1

4
ΩρσS

ρσγµΩρσS
ρσ =

= γµ +
1

2
Ωρσ (η

ρµδσν − ησµδρν) γ
ν +

1

4
ΩρσS

ρσγµΩρσS
ρσ ≃ γµ +

1

2
ΩρσM

ρσγµ ≃ Λµ
νγ

ν

∗ = −mΨ̄Ψ + iΨ̄S [Λ]
−1
S [Λ] γµS [Λ]

−1
∂νS [Λ]Ψ = Ψ̄ (iγµ∂µ −m)Ψ

Varying the action with respect to Ψ̄, one directly gets the renowned Dirac equation:

(iγµ∂µ −m)Ψ ≡ (∂/−m)Ψ = 0 (2.28)

2.2.2 Fermionic Quantization

To retrace what we did for the scalar case, we need to quantize the theory, meaning to expand the �elds in
terms of the creation and annihilation operators and compute their quantum relations with the Hamiltonian
operator, to give rise to particle states.

This represents a fundamental passage: from the QM and the Statistical Mechanics course, we learnt that
bosons and fermions are diametrically di�erent: the �rsts obey the Bose-Einstein statistic, have an integer spin
and a composite system must be described by a symmetric wavefunction on an Hilbert space, while the seconds
are described by the Fermi-Dirac statistic, have half-integer spin and obey the Pauli exclusion principle.

We need to change something in the canonical quantization, something that may re�ect the antisymmetry
of a fermionic wavefunction. Directly from 2.13 we observe that it is the ladder operators algebra to determine
the bosonic nature of the scalar �elds:

a†p⃗a
†
q⃗ | 0 ⟩ = a†p⃗a

†
q⃗ | 0 ⟩ ⇐⇒ | p⃗, q⃗ ⟩ = | q⃗, p⃗ ⟩ (2.29)

In this section we will show that, in order to achieve a fermionic binary system, one can directly substitute
the commutation with analogous anticommutation relations3:{Ψα (x⃗) ,Ψβ (y⃗)} =

{
Ψ†

α (x⃗) ,Ψ†
β (y⃗)

}
= 0{

Ψα (x⃗) ,Ψ†
β (y⃗)

}
= δα,βδ

(3) (x⃗− y⃗)
(2.30)

3Note that the conjugate dynamical variable of Ψ is iΨ†.
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Monocromatic solutions of the Dirac equation

Before quantizing, we will show the free Dirac �eld to be a linear superposition of positive ad negative energy
states, by solving the Dirac equation using the plane wave ansatz:

Ψ = up⃗e
−ip⃗·x + vp⃗e

ip⃗·x⃗ (2.31)

Equation 2.28 then becomes:
(γµpµ −m)

(
up⃗e

−ip⃗·x + vp⃗e
ip⃗·x⃗) = 0 (2.32)

which we can solve term by term, by leveraging the linearity:

(γµpµ −m)up⃗ =

(
−m pµσ

µ

pµσ̄
µ −m

)(
u1
u2

)
= 0 ⇐⇒

{
pµσ

µu2 = mu1

pµσ̄
µu1 = mu2

=⇒

=⇒ (p · σ) (p · σ̄)u1 · u2 = m2u1 · u2

A rapid calculation shows that (p · σ) (p · σ̄) = m2, meaning that these equations are not independent; we
can hence choose either one and try to impose a second ansatz u1 = (p · σ) ξ̃, where ξ̃ is a constant spinor:

pµσ̄
µu1 = (p · σ̄) (p · σ) ξ̃ = −mu2 =⇒ u2 = mu1 =⇒ up⃗ =

(√
p · σξ√
p · σ̄ξ

)
(2.33)

In a similiar fashion, one �nds:

vp⃗ =

( √
p · ση

−
√
p · σ̄η

)
(2.34)

where η is another constant spinor.

We proved Ψ to be a linear superposition of two spinors oscillating with positive (up⃗) and negative (vp⃗)
frequencies. As foreseeable in the maseless limit, these de�ne positive and negative energy states4, corresponding
to two a particle-antiparticle couple.

Quantization of the Dirac �eld

Being a monocromatic Dirac spinor a linear superposition of two positive and negative energy states, a generic
one can be Fourier expanded as:

Ψ(x⃗) =
∑2

s=1

∫
d3p
(2π)3

1√
2Ep⃗

[
bsp⃗u

s
p⃗e

ip⃗·x⃗ + c† sp⃗ vsp⃗e
−ip⃗·x⃗

]
Ψ† (x⃗) =

∑2
s=1

∫
d3p
(2π)3

1√
2Ep⃗

[
bs †p⃗ us †p⃗ e−ip⃗·x⃗ + csp⃗v

s †
p⃗ eip⃗·x⃗

] (2.35)

where:

� s labels the helicity states.

� bp⃗ and cp⃗ are respectively the annihilation operators for a spinor and an antispinor.

� b†p⃗ and c†p⃗ are the creation operators for a spinor and an anti-spinor.

4This statement can be properly demonstrated from the energy-momentum tensor of the �eld.
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We now want to prove the fermionic algebra of the ladder operators:{
brp⃗, b

s †
q⃗

}
=
{
crp⃗, c

s †
q⃗

}
= (2π)

3
δrsδ(3) (p⃗− q⃗) (2.36)

to be equivalent to the �elds' ones in 2.30.

{
Ψ(x⃗) ,Ψ† (y⃗)

}
=

2∑
r,s

∫
d3p d3q

(2π)
6

1

2
√
Ep⃗Eq⃗

[{
brp⃗, b

s †
q⃗

}
urp⃗u

s †
q⃗ ei(p⃗·x⃗−q⃗·y⃗) +

{
cr †
p⃗ , csq⃗

}
vrp⃗v

s †
q⃗ e−i(p⃗·x⃗−q⃗·y⃗)

]
=

2.36
=

2∑
r,s

∫
d3p d3q

(2π)
3

1

2
√
Ep⃗Eq⃗

δrs
[
urp⃗u

s †
q⃗ ei(p⃗·x⃗−q⃗·y⃗) + vrp⃗v

s †
q⃗ e−i(p⃗·x⃗−q⃗·y⃗)

]
δ(3) (p⃗− q⃗) =

=

2∑
s

∫
d3p

(2π)
3

1

2Ep⃗

[
usp⃗u

s
q⃗γ

0 eip⃗·(x⃗−y⃗) + vsp⃗v
s
q⃗γ

0e−ip⃗·(x⃗−y⃗)
]
=

=

∫
d3p

(2π)
3

1

2Ep⃗

[(
p0γ

0 + piγ
i +m

)
γ0 +

(
p0γ

0 − piγ
i −m

)
γ0
]
eip⃗·(x⃗−y⃗) =

=

∫
d3p

(2π)
3 e

ip⃗·(x⃗−y⃗) = δ(3) (x⃗− y⃗)
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Hamiltonian operator

As we did for the scalar �eld, the next step is writing the Hamiltonian operator in terms of the creation and
the annihilation operators, to then derive its quantum relations with the ladder operators.

(i) H = πΨ̇− L = Ψ†∂0Ψ− Ψ̄(iγµ∂µ −m)Ψ = Ψ̄
(
−iγi∂i +m

)
Ψ

(ii)
(
−iγi∂i +m

) 2∑
s=1

∫
d3p

(2π)
3

1√
2Ep⃗

[
bsp⃗u

s
p⃗e

ip⃗·x⃗ + c† sp⃗ vsp⃗e
−ip⃗·x⃗

]
=

=

2∑
s=1

∫
d3p

(2π)
3

1√
2Ep⃗

[
bsp⃗(−γipi +m)usp⃗e

ip⃗·x⃗ + c† sp⃗ (γipi +m)vsp⃗e
−ip⃗·x⃗

]
=

=

2∑
s=1

∫
d3p

(2π)
3

γ0√
2Ep⃗

[
bsp⃗p0u

s
p⃗e

ip⃗·x⃗ − c† sp⃗ p0v
s
p⃗e

−ip⃗·x⃗
]
=

2∑
s=1

∫
d3p

(2π)
3

√
Ep⃗

2
γ0
[
bsp⃗u

s
p⃗e

ip⃗·x⃗ − c† sp⃗ vsp⃗e
−ip⃗·x⃗

]

(iii) H =

{
2∑

r=1

∫
d3q

(2π)
3

1√
2Eq⃗

[
br †
q⃗ ur †

q⃗ e−iq⃗·x⃗ + crq⃗v
r †
q⃗ eiq⃗·x⃗

]}
·

{
2∑

s=1

∫
d3p

(2π)
3

√
Ep⃗

2
γ0
[
bsp⃗u

s
p⃗e

ip⃗·x⃗ − c† sp⃗ vsp⃗e
−ip⃗·x⃗

]}
=

=

2∑
r,s=1

∫
d3x d3p d3q

(2π)
6

√
Ep⃗

4Eq⃗

[
br †
q⃗ ur †

q⃗ e−iq⃗·x⃗ + crq⃗v
r †
q⃗ eiq⃗·x⃗

]
·
[
bsp⃗u

s
p⃗e

ip⃗·x⃗ − c† sp⃗ vsp⃗e
−ip⃗·x⃗

]
= ∗

∫
d3x

(2π)
3

[
br †
q⃗ ur †

q⃗ e−iq⃗·x⃗ + crq⃗v
r †
q⃗ eiq⃗·x⃗

]
·
[
bsp⃗u

s
p⃗e

ip⃗·x⃗ − c† sp⃗ vsp⃗e
−ip⃗·x⃗

]
=

=

∫
d3x

(2π)
3

[
br †
q⃗ ur †

q⃗ bsp⃗u
s
p⃗e

i(p⃗−q⃗)·x⃗ − br †
q⃗ ur †

q⃗ c† sp⃗ vsp⃗e
−i(p⃗+q⃗)·x⃗ + crq⃗v

r †
q⃗ bsp⃗u

s
p⃗e

i(p⃗+q⃗)·x⃗ − crq⃗v
r †
q⃗ c† sp⃗ vsp⃗e

−i(p⃗−q⃗)·x⃗
]
=

= br †
q⃗ ur †

q⃗ bsp⃗u
s
p⃗δ

(3) (p⃗− q⃗)− br †
q⃗ ur †

q⃗ c† sp⃗ vsp⃗δ
(3) (p⃗+ q⃗) + crq⃗v

r †
q⃗ bsp⃗u

s
p⃗δ

(3) (p⃗+ q⃗)− crq⃗v
r †
q⃗ c† sp⃗ vsp⃗δ

(3) (p⃗− q⃗) =

= br †
p⃗ bsp⃗ u

r †
p⃗ usp⃗ − br †

−p⃗u
r †
−p⃗c

† s
p⃗ vsp⃗ + cr−p⃗v

r †
−p⃗b

s
p⃗u

s
p⃗ − crp⃗v

r †
p⃗ c† sp⃗ vsp⃗

∗ =

2∑
r,s=1

∫
d3p

(2π)
3

1

2

[
br †
p⃗ bsp⃗ u

r †
p⃗ usp⃗ − br †

−p⃗u
r †
−p⃗c

† s
p⃗ vsp⃗ + cr−p⃗v

r †
−p⃗b

s
p⃗u

s
p⃗ − crp⃗v

r †
p⃗ c† sp⃗ vsp⃗

]
2.33
=

=

∫
d3p

(2π)
3Ep⃗

(
bs †p⃗ bsp⃗ − csp⃗c

† s
p⃗

)
2.36
=

∫
d3p

(2π)
3Ep⃗

(
bs †p⃗ bsp⃗ + c† sp⃗ csp⃗ − (2π)

3
δ(3)(0)

)

Analogously to the scalar case, we can neglect further discussions about renormalization and redi�ne the
Hamiltonian as:

H =

∫
d3p

(2π)
3Ep⃗

(
bs †p⃗ bsp⃗ + cs †p⃗ csp⃗

)
(2.37)

With similiar calculations to 2.1.2, the commutation relations between the ladder operators and H are
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straightforwardly obtained: 

[
H, brp⃗

]
= −Ep⃗b

r
p⃗[

H, crp⃗

]
= −Ep⃗c

r
p⃗[

H, br †
p⃗

]
= Ep⃗b

r †
p⃗[

H, cr †
p⃗

]
= Ep⃗c

r †
p⃗

(2.38)

As required a multiple fermionic state satis�es the spin-statistics theorem:

br1 †
p⃗1

br2 †
p⃗2

| 0 ⟩ = | p⃗1, r1; p⃗2, r2 ⟩ = −br2 †
p⃗2

br1 †
p⃗1

| 0 ⟩ = −| p⃗2, r2; p⃗1, r1 ⟩ (2.39)



Chapter 3

Supersymmetry

3.1 A brief introduction

To start o�, we shall recall the main di�erences between photons and fermions, which we discussed in the
previous chapters, to understand why Supersymmetry thinks, to say the least, out of the box, or, to be more
precise, doesn't even perceive the box as a limitation:

1. Transformation properties: a generic fermion belongs to a spinorial representation of Spin(1, 3), while
a boson to a tensorial one: {

|f⟩ ∈ (n, 0)⊕ (0, n) n ∈ N/2
|b⟩ ∈

(
m
2 ,

m
2

)
m ∈ N

(3.1)

as a matter of fact, since the helicity of a particle is given by the sum of the left and the right hand
chirality components, its value is integral for bosons and semi-integral for fermions.

2. Spin-statistics theorem: multiple fermionic and bosonic systems are respectively described by anti-
symmetric and symmetric states on an Hilbert space, and are thus described by the Fermi-Dirac and the
Bose-Einstein statistics:

fFD(ϵ) =
1

exp
{

ϵ
kBT

}
+ 1

, fBE(ϵ) =
1

exp
{

ϵ
kBT

}
− 1

(3.2)

resulting in diametrically di�erent properties, most of which are known from the Statistical Mechanics
course.

3. Quantization: fermions and bosons respectively emerge as excitations of spinorial and gauge tensorial
�elds, and the quantum relations between creation and annihilation operators in the two cases are:[ap⃗, aq⃗] =

[
a†p⃗, a

†
q⃗

]
= 0[

ap⃗, a
†
q⃗

]
= (2π)3δ(3)(p⃗− q⃗)

for bosons

{ap⃗, aq⃗} =
{
a†p⃗, a

†
q⃗

}
= 0{

ap⃗, a
†
q⃗

}
= (2π)3δ(3)(p⃗− q⃗)

for fermions

(3.3)

4. Physical role: In the Standard Model, bosons are force carriers: the photon γ (s = 1) mediates the
electromagnetic interaction, the gluon g (s = 1) the strong force, and so on and so forth. On the other
hand, fermions, such as the electron (s = 1

2 ) and the quarks (s = 1
2 ) form matter, and interact through

bosons.

30



CHAPTER 3. SUPERSYMMETRY 31

And if this is not enough to discourage anyone to search for a symmetry in such context, we shall mention
that there exists a so called no-go theorem, namely the Coleman-Mandula Theorem, which apparently
de�nitely shuts down any attempt of uni�cation: at the core, it states that space-time (ISO(1, 3)) and internal
(U(1), SU(3), SU(2)L ,. . . ) symmetry groups can combine only trivially, meaning as a direct factorisation,
essentially implies that the structure constant relating generators of di�erent subgroups of the resulting Lie one
are necessarily null.

Such a group would simply be represented, on particle states, as its action on a multiplet formed by those
of the subgroups, meaning that no transformation could ever make ones turn into each others.

Supersymmetry is a brilliant stratagem to overcome this limitation: if a standard Lie group isn't a possibility,
why not combining bosonic and fermionic generators to form a Lie supergroup? The resulting superalgebra would
hence be de�ned by commutation and anticommutation relations.

The free N = 1 SUSY algebra implements the Poincarè supergroup, and is formed by a spinor-antispinor
pair, namely the supercharges, and the generators of the Poincarè group, plus the generator of the U(1) internal
symmetry, that we will discuss in a bit.

The �rst part of this chapter will indeed be pinpointed on the representation theory of the SUSY algebra.

But, by the end of it, one may ask: if a Lie group is a di�erentiable manifold, what the heck is a Lie
supergroup? Unsurprisingly, a supermanifold, which will be the focus of the second half.
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3.2 N = 1 SUSY algebra

We hereby introduce N = 1 SUSY algebra, in a generic representation. The Poincarè supergroup is implemented
by the ensuing generators:

Qα, Q̄α̇︸ ︷︷ ︸
supercharges

, Pµ,Mµν︸ ︷︷ ︸
ISO(1,3)

, M︸︷︷︸
U(1)

(3.4)

and its de�ning superalgebra is formed by the following commutation and anticommutation relations:

� Poincaré algebra :

Recalling from Equation 1.14:
[Pµ, Pν ] = 0

[Mµν , Pρ] = i(ηνρPµ − ηµρPν)

[Mµν ,Mρσ] = i(ηµρMνσ − ηνρMµσ + ηνσMµρ − ηµσMνρ)

(3.5)

as proven in subsection 1.1.1.

� Lorentz transformations of supercharges:

Supercharges must equivalently transform under the action of the Lorentz group as spinors and as fermionic
operators acting on an Hilbert space.{

Qα =⇒ exp
{
− i

2ωµνσ
µν
} β

α
Qβ spinor

Qα =⇒ exp
{

i
2ωµνM

µν
}
Qα exp

{
− i

2ωµνσ
µν
}

operator
=⇒

=⇒ exp

{
− i

2
ωµνσ

µν

} β

α

Qβ = exp

{
i

2
ωµνM

µν

}
Qα exp

{
− i

2
ωµνσ

µν

}
=⇒

=⇒
(
1− i

2
ωµνσ

µν

)
Qα =

(
1+

i

2
ωµνM

µν

)
Qα

(
1− i

2
ωµνM

µν

)
=⇒

=⇒ − i

2
ωµνσ

µνQα ≃ − i

2
Qα ωµνM

µν +
i

2
ωµνM

µνQα =⇒ (σµν)α βQβ = [Mµν , Qα]

� Supercharges translations:

[Qα, P
µ] = 0 (3.6)

For the Lorentz covariance, the right hand side of this equation must be of type c(σµ)αα̇Q̄
α̇, with c ∈ C.

Then, for the Jacobi identity:

[Pµ, [P ν , Qα]] + [P ν , [Qα, P
µ]] + [Qα, [P

µ, P ν ]] = [Pµ, [P ν , Qα]] + [P ν , [Qα, P
µ]] =

= −c(σν)αα̇
[
Pµ, Q̄α̇

]
+ c(σµ)αα̇

[
P ν , Q̄α̇

]
= |c|2 (σν σ̄µ − σµσ̄ν)

β
α Qβ = 0 =⇒ c = 0

� Supercharges anticommutation :
{Qα, Qβ} = 0 (3.7)

With a similiar argument to the previous point, for the Lorentz covariance:

{Qα, Qβ} = c(σµν)αβMµν =⇒ [Pµ, {Qα, Qβ}] = c(σµν)αβ [P
µ,Mµν ] = 0 =⇒ c = 0
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since, for the Poincaré algebra [Pµ,Mµν ] ̸= 0.

� (Anti)Supercharges anticommutation :

{
Qα, Q̄α̇

}
= 2 (σµ)αα̇ Pµ (3.8)

� R-symmetry : {
[R,Qα] = −Qα

[R,Qα̇] = −Qα̇

(3.9)

Supercharges must equivalently transform under the action of U(1) as spinors and as fermionic operators
on an Hilbert space, so, similiarly to the second point:{

Qα =⇒ e−iωRQα spinor

Qα =⇒ eiωRQαe
−iωR operator

=⇒

e−iωRQαe
iωRQαe

−iωR =⇒

=⇒ (1− iωR)Qα = (1 + iωR)Qα (1− iωR) =⇒

=⇒ RQα

(1)
≃ QαR+RQα = −Qα =⇒ [R,Qα] = −Qα

3.2.1 Fermionic and Bosonic degrees of freedom

Before diving into the representation theory of the SUSY algebra on particle states, we shall point out a simple,
yet crucial, implication of the relations we derived in the previous section: since a fermionic generator carries a
semi-integral spin, the state obtained applying it to a s spin one will de�nitely have s± 1

2 spin, for the algebra
of SU(2).

Therefore, one may de�ne the following operator:

(−1)F :

{
(−1)F | b ⟩ = | b ⟩
(−1)F | f ⟩ = −| f ⟩

(3.10)

and apply it to the supercharge operator Qα:

(−1)FQα = −Qα(−1)F =⇒
{
(−1)F , Qα

}
= 0 =⇒ tr

[
(−1)F

{
Qα, Q̄α̇

}]
= tr

[
(−1)FQαQ̄α̇ + (−1)F Q̄α̇Qα

]
=

tr
[
−Qα(−1)F Q̄α̇ + (−1)F Q̄α̇Qα

]
= 0 =⇒ σµ

αα̇tr
[
(−1)FPµ

]
| pµ ⟩ = σµ

αα̇pµtr
[
(−1)F

]
| pµ ⟩ = 0 =⇒

=⇒ tr
[
(−1)F

]
= nF − nB = 0

This means that the number of bosons in a non interacting SUSY must always equalize that of the fermions.
The trace of the (−1)F operator is called Witten index.

This simpli�ed derivation will be formally demonstrated in the next section.
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3.2.2 SUSY representation on particle states

In this section we want to achieve similiar results to those of subsection 1.1.2, where we used the eigenvalues of
the Casimirs of ISO(1, 3) to label particle states, both in the massive and the maseless cases.

Since the super-Poincarè group is, after all, an extension of a Lie group, one may naively think that they
share the same Casimirs: {

C1 = PµP
µ

C2 = 1
4ϵ

µνρσPνMρσϵµνρσP
νMρσ ≡WµW

µ
(3.11)

which are bosonic, and thus, to verify that they do not mutate under SUSY transformations, we have to
compute the commutation relations with the generators, and verify if they nullify. We've already proven that
C1 and C2 do commute with the generators of the Poincarè algebra in subsection 1.1.2, so what remains is to
check whether this holds with supercharges, as well.

(i) [PµP
µ, Qα] = Pµ [P

µ, Qα] + [Pµ, Qα]P
µ 3.6
= 0

(ii) [WµWµ, Qα] =
1

4
[ϵµνρσPνMρσϵµνρσP

νMρσ, Qα] ∝ ϵµνρσϵµνρσ [PνMρσP
νMρσ, Qα] =

= ϵµνρσϵµνρσ (P
νMρσ [PνMρσ, Qα] + [PνMρσ, Qα]P

νMρσ) =

= ϵµνρσϵµνρσ (P
νMρσ (Pν [Mρσ, Qα] + [Mρσ, Qα]Pν) + (Pν [Mρσ, Qα] + [Mρσ, Qα]Pν)P

νMρσ) ̸= 0

We've proven that only the 4-momentum is still a Casimir of the superalgebra, since supercharges are indeed
invariant under translation from 3.6. After all, this is exactly what we wanted to achieve: all the particles in a
supermultiplet share the same mass, but have di�erent spin, breaking the Coleman-Mandula restrictions.

Thus, to build the multiplets, we will start from those of the Poincarè groups, and act with the supercharges.

Maseless multiplets

From the results of subsection 1.1.2, we know that a massless particle can be represented on an Hilbert space
as a ket of the type | pµ, h ⟩, where h is the helicity.

We derived this by boosting to a frame such that Pµ = (E, 0, 0, E):

{
Qα, Q̄α̇

} 3.8
= 2 (σµ)αα̇ Pµ = 2E

(
1+ σ3

)
αα̇

= 4E

(
1 0
0 0

)
=⇒

=⇒ ⟨pµ, h|
{
Qα, Q̄α̇

}
| pµ, h ⟩ = 4E ⟨pµ, h|

(
1 0
0 0

)
| pµ, h ⟩ =⇒

⟨pµ, h|
{
Q2, Q̄2̇

}
| pµ, h ⟩ = ⟨pµ, h|

(
Q2Q̄2 + Q̄2Q2

)
| pµ, h ⟩ = 0 ⇐⇒

⇐⇒ Q2| pµ, h ⟩ = Q̄2| pµ, h ⟩ = 0

where we used the fact that the scalar product is a positive de�nite form.

Since Q2 and its conjugate annihilate this state, we may simply cansider the action of the �rst components
of the spinor couple to construct the multiplet, for, after a suitable rescaling, they implement fermionic creation
and annihilation operators: {

a ≡ Q1√
4E

a† ≡ Q̄1√
4E

=⇒

{{
a, a†

}
= 1

{a, a} =
{
a†, a†

}
= 0

(3.12)
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As we already know, from the quantization of the Dirac �eld in subsection 2.2.2, the representation of this
algebra consists of: {

| pµ, h ⟩, a†| pµ, h ⟩
}
≡ {| 0 ⟩, | 1 ⟩} :

{
a†| 0 ⟩ = | 1 ⟩
a| 1 ⟩ = | 0 ⟩

(3.13)

It is now straightforward to evaluate the helicity of these particles, since it represents the eigenvalue of a
rotation around the, say, z axis:

{[
M12, Qα

]
=
(
σ12
) β

α
Qβ[

M12, Q̄α̇
]
=
(
σ12
)α̇

β̇
Q̄β̇

⇐⇒


[
M12, Q1

]
=
(
σ12
) β

1
Qβ = 1

2Q1[
M12, Q̄1̇

]
=
(
σ12
)1̇

β̇
Q̄β̇ = 1

2 Q̄
1 = − 1

2 Q̄1

meaning that Q1 and Q̄1 respectively raise and lower h by 1
2 , as qualitatively predicted in subsection 3.2.1.

Following the same cosiderations of subsection 1.1.2, we have to complete the multiplet, by add the opposite
helicity states, in order to preserve CPT conservation:

{
| pµ, h ⟩ , | pµ, h− 1

2
⟩ = Q̄1√

4E
| pµ, h ⟩ , | pµ,−h ⟩ , | pµ,−h+

1

2
⟩ = Q̄1√

4E
| pµ,−h ⟩

}
(3.14)

To better grasp what we've just built, let's analyze some examples:

1. If h = 1
2 the multiplet is composed of 4 maseless particles:

{
| pµ,−

1

2
⟩ , | pµ, 0 ⟩ , | pµ,

1

2
⟩
}

which represents a Weyl spinors and a complex scalar particle (double multiplicity).

2. If h = 1, the multiplet is given by:{
| pµ,−1 ⟩ , | pµ,−

1

2
⟩ , | pµ,

1

2
⟩ , | pµ, 1 ⟩

}

which represets a Weyl spinor and a s = 1 maseless boson (such as the photon γ) couple.

3. The h = 2 case happens to be crucial for our purposes:{
| pµ,−2 ⟩ , | pµ,−

3

2
⟩ , | pµ,

3

2
⟩ , | pµ, 2 ⟩

}

This multiplets is composed by a s = 3
2 fermion and a s = 2 boson couple, which are respectively the

Rarita-Schwinger gravitino and the graviton. Much more on this later on.

3.2.3 Massive multiplets

Analogously to the derivation in subsection 1.1.2, we can boost the massive state | pµ, j, j3 ⟩ to the rest frame,
where Equation 3.8 becomes:

{
Qα, Q̄α̇

}
= 2 (σµ)αα̇ Pµ = 2m1

This time we cannot ignore the second components of the spinors couples: as before, we can de�ne the
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creation and annihilation operators, by rescaling the supercharges:

{
aα ≡ Qα√

2m

a†α̇ ≡ Q̄α̇√
2m

=⇒


{
aα, a

†
α̇

}
= σαα̇

{aα, aα} =
{
a†α̇, aα̇

}
= 0

(3.15)

Considering | pµ, j, j3 ⟩ to be annihilated by aα, this algebra is fundamentally represented by the following
multiplet: {

| pµ, j, j3 ⟩ , a†1| pµ, j, j3 ⟩ , a
†
2| pµ, j, j3 ⟩ , a

†
1a

†
2| pµ, j, j3 ⟩

}
(3.16)

As in the maseless case, we study the helicity, but this time, by simply considering the Spin(1, 3) represen-
tation the states belong to:

| pµ, j, j3 ⟩ ∈
(
1

2

)
=⇒

{
a†α| pµ, j, j3 ⟩ ∈ (j)⊗ ( 12 ) = (j + 1

2 )⊕ (j − 1
2 )

a†1a
†
2| pµ, j, j3 ⟩ ∈ (j)

where the last statement holds since a bosonic operator can't mutate the spin of a particle. Finally the N=1
SUSY massive multiplet is given by:{

| pµ, j, j3 ⟩ , | pµ, j −
1

2
, j3 ⟩ , | pµ, j +

1

2
, j3 ⟩

}
(3.17)

where the �rst state has multiplicity 2, according to the null Witten index requirement.

For example, if j = 1
2 the multiplet is given by:

{
| pµ, 0 ⟩ , | pµ,

1

2
⟩ , | pµ, 1 ⟩

}
(3.18)

Now that we derived the multiplets, it is time to switch viewpoint, viewing the Poincarè supergroup as a
di�erentiable supermanifold, and introduce a, to say the least, peculiar formalism.
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3.3 Super�elds formalism

By the end of this section, we will be able to give a meaning to the Wess-Zumino Model Lagrangian:

SWZ =

∫
d4x d4θΦ†Φ =

∫
d4x

(
∂µϕ

†∂µϕ− iψ̄σ̄µ∂µψ + F †F
)

(3.19)

representic the most basic non interacting supersymmetric theory, and being a crucial step towards Super-
gravity.

For such purpose, we need to introduce the concept of super�eld, as a �eld de�ned on a (for our purposes)
6-dimensional manifold, extending R1,3.

3.3.1 Superspace

Conceptually, superspace R1,3|4 is a manifold extending the Minkowski space-time to include both commuting
and anticommuting dimensions, meaning that:

(
xµ, θα, θ̄

α̇
)
∈ R1,3|4 (3.20)

where xµ ∈ R1,3, and θα and θ̄α̇ are Grassmann-valued spinors.

A Group theoretical point of view

Given a Lie group G, we can de�ne the fundamental representation as its action on the vector space which most
naturally accomodates it. For instance, the Poincaré group naturally acts on the Minkowski space.

A less immediate choice is the coset space, which is a manifold de�ned as:

M = G/H : ⇐⇒ g · h ∈ M ∀h ∈ H , g ∈ G (3.21)

For example, SU(2) is, as a manifold S3. Considering now the subgroup H = U(1) ⊂ SU(2), we get the
coset space S3/U(1) ∼ S2.

From this point of view, R1,3 is the coset of ISO(3, 1) over SO(3, 1):

R1,3 = ISO(3, 1)/SO(3, 1) (3.22)

Indeed, the Poincaré group is generated by both Mµν and Pµ, while the Lorentz group is generated only by
Mµν , implying that the coset can be parametrised by the coordinates with respect to the translation generators
Pµ (xµ), de�ning xµ ∈ R1,3.

We can proceed in a similiar fashion for the SUSY case: a general transformation of the super-Poincaré
group can be expressed as:

g(ω, a, θ, θ̄) = exp

(
− i

2
ωµνM

µν + iaµP
µ + iθαQα + iθ̄α̇Q̄

α̇

)
(3.23)

Thus, if we consider the coset of the coset of the super-Poincaré group over the Lorentz group:

R1,3|4 =
ISO(1, 3|4)
SO(1, 3)

(3.24)
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we get a parametrization of the manifold in terms of the coordinates xµ and the Grassmann-valued spinor
coordinates θα and θ̄α̇.

SUSY transformations on Superspace

Now we can demonstrate how SUSY transformations act on R1,3|4. We will work in the coset representation,
and make use of the Baker-Campbell-Hausdor� formula:

eAeB = eA+B+ 1
2 [A,B]+... ∀ A,B ∈ g (3.25)

A generic element {g} of the super-Poincaré group in the coset representation can be factorised as:

g(ω, x, θ, θ̄) = g̃(x, θ, θ̄)h(ω) , h(ω) ∈ SO(1, 3) , g̃(x, θ, θ̄) ∈ R1,3|4 (3.26)

and thus a vector of the coset in this representation can be expressed in the form of g̃(x, θ, θ̄), up to a
bijection. This is why the BCH formula will be particularly useful in this case.

We thus study at the action of each generator in Equation 3.4 on g̃:

1. Translations:

U(aµ) = exp {iaµPµ}

U(a)g̃(x, θ, θ̄)
3.25
= exp

{
i

(
iaµP

µ + xµP
µ + θαQ

α + θ̄α̇Q̄α̇ +
1

2

[
aµP

µ, xµP
µ + θαQ

α + θ̄α̇Q̄α̇

])}
=

3.6
= exp

{
i
(
iaµP

µ + xµP
µ + θαQ

α + θ̄α̇Q̄α̇

)}
= g̃(x+ a, θ, θ̄)

which is the familiar action of the translation operator on R1,3.

2. Lorentz transformations:

K (Ωµν) = exp

{
− i

2
ωµνM

µν

}

K (Ωµν) g
(
x, θ, θ̄

)
= exp

{
− i

2
ωµνM

µν

}
exp

{
ixσP

σ + iθαQα + iθ̄α̇Q̄
α̇
}
= ∗

[ωµνM
µν , xσP

σ] = ωµν [M
µν , xσP

σ] = ωµν (xσ [M
µν , Pσ] + [Mµν , xσ]P

σ) =

= iωµν [xσ (η
σνPµ − ησµP ν) + (xµηνσ − xνηµσ)P

σ] =

= iωµν [x
νPµ − xµP ν + P νxµ − xνPµ] = 0

[ωµνM
µν , θαQα] = ωµν [M

µν , θαQα] = ωµν (θ
α [Mµν , Qα] + [Mµν , θα]Qα) =

= ωµν

[
θα(σµν) β

α Qβ − (σµν)αβθ
βQα

]
= 0

∗ = exp

{
− i

2
ωµνM

µν + ixσP
σ + iθαQα + iθ̄α̇Q̄

α̇

}
= g̃

(
Λx, S [Λ] θ, S [Λ]

†
θ̄
)
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3. Supercharges:

V (ξ, ξ̄) = exp
{
iξαQ

α + iξ̄α̇Q̄α̇

}
V (ξ, ξ̄)g̃(x, θ, θ̄) = exp

{
iξαQα + iξ̄α̇Q̄

α̇
}
exp

{
ixµP

µ + iθαQ
α + iθ̄α̇Q̄

α̇
}
= ∗

[
θ̄α̇Q̄α̇, ξαQ

α
]
= θ̄α̇Q̄α̇ξαQ

α − ξαQ
αθ̄α̇Q̄α̇ = ξαQ

αQ̄α̇θ̄
α̇ + ξαQ

αQ̄α̇θ̄
α̇ =

ξα
{
Qα, Q̄α̇

}
θ̄α̇

3.8
= 2

(
ξασµ

αα̇θ̄
α̇
)
Pµ

∗ = exp
{
iξαQα + iξ̄α̇Q̄α̇ + ixµP

µ + iθαQ
α + iθ̄α̇Q̄

α̇ + i
(
θασµ

αα̇ξ̄
α̇ − ξασµ

αα̇θ̄
α̇
)
Pµ

}
=

= g̃
(
x+ iθσξ̄ − iξσθ̄, θ + ξ, θ̄ + ξ̄

)
Thanks to the coset representation, we were able to derived the SUSY transformations of superspacial

coordinates: 
δxµ = aµ + iθασµ

αα̇ξ̄
α̇ − iξασµ

αα̇θ̄
α̇

δθα = ξα

δθ̄α̇ = ξ̄α̇

(3.27)

Now that we formalised the concept of supermanifold, we can begin exploring some interesting algebraic
structures de�ned on it.

3.3.2 Super�elds

For our purposes, a super�eld Y (x, θ, θ̄) is a complex-valued scalar function on R1,3|4.

Since θ, θ̄ are Grassmann variables, if we Taylor expand Y with respect to them, this truncates at quadratic
terms, allowing to obtain an explicit form of the super�eld in terms of its components:

Y (x, θ, θ̄) =

∞∑
n,m=0

1

n!m!

∂n+mY

∂θn∂θ̄m
(θα)

n (
θ̄α̇
)m ∣∣∣

θ=θ̄=0
=

2∑
n,m=0

1

n!m!

∂n+mY

∂θn∂θ̄m
(θα)

n (
θ̄α̇
)m ∣∣∣

θ=θ̄=0
=

= Y (x)
∣∣∣
(0,0)

+
∂Y

∂θα

∣∣∣
(0,0)

θα +
∂Y

∂θ̄α̇

∣∣∣
(0,0)

θ̄α̇ +
∂2Y

∂θα∂θ̄α̇

∣∣∣∣∣
(0,0)

θαθ̄α̇ +
1

2

∂2Y

∂θα∂θβ

∣∣∣
(0,0)

θαθβ+

+
1

2

∂2Y

∂θ̄α̇∂θ̄β̇

∣∣∣
(0,0)

θ̄α̇θ̄β̇ +
1

2

∂2Y

∂θα∂θβ∂θ̄α̇

∣∣∣
(0,0)

θαθβ θ̄α̇ +
1

2

∂2Y

∂θα∂θ̄α̇∂θ̄β̇

∣∣∣
(0,0)

θαθ̄α̇θ̄β̇+

+
1

4

∂2Y

∂θα∂θβ∂θ̄α̇∂θ̄β̇

∣∣∣
(0,0)

θαθβ θ̄α̇θ̄β̇ =

= Y
∣∣∣
(0,0)

+ ∂αY
∣∣∣
(0,0)

θα + ∂̄α̇Y
∣∣∣
(0,0)

θ̄α̇ + ∂α∂̄
α̇Y
∣∣∣
(0,0)

θαθ̄α̇ +
1

2
∂α∂βY

∣∣∣
(0,0)

θαθβ +
1

2
∂̄α̇∂̄β̇Y

∣∣∣
(0,0)

θ̄α̇θ̄β̇+

+
1

2
∂α∂β ∂̄

α̇Y
∣∣∣
(0,0)

θαθβ θ̄α̇ +
1

2
∂α∂̄

α̇∂̄β̇Y
∣∣∣
(0,0)

θαθ̄α̇θ̄β̇ +
1

4
∂α∂β ∂̄

α̇∂̄β̇Y
∣∣∣
(0,0)

θαθβ θ̄α̇θ̄β̇ ≡

≡ ϕ(x) + θαψα(x) + θ̄α̇χ̄
α̇(x) + θ2M(x) + θ̄2N(x) + θαθ̄α̇Vαα̇ + θ2θ̄α̇λ̄

α̇ + θ̄2θαρα(x) + θ2θ̄2D(x)

(3.28)

Although this is a signi�cant step forward, looking back at the SUSY representation theory, there are way
more �elds than we would've expected; but this shouldn't be surprising at all: after all, we saw the Dirac spinor
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to be built from a left hand and a right hand Weyl spinor.

Analogously, Y transforms in a reducible representation of the SUSY algebra, and we need some criteria to
constraint it, and evaluate the multiplets.

SUSY transformations on Super�elds

While in section 3.3.1 we considered U as belonging to the coset representation of ISO(1, 3|4), we are now
studying the algebra representation on particle states, and thus we have to switch the point of view, viewing
both Y and U as operators acting on an Hilbert space.

Hence, we leverage the transformations properties of operators on the Hilbert space to derive the super�elds'
ones:

1. Translations:

U = exp {iaµPµ}

Y (x+ a, θ, θ̄) = UY (x, θ, θ̄)U† =⇒ Y (x) + a∂Y (x) +O(a2) =
[
1 + iaP +O(a2)

]
Y
[
1− iaP +O(a2)

]†
=

= Y − iY aP + iaPY +O(a2) =⇒ ∂Y = iPY − iY P ⇐⇒ [Pµ, Y ] = −i∂µY

2. Lorentz transformations:

K (Ωµν) = exp

{
− i

2
ωµνM

µν

}

KY (x, θ, θ̄)K† = Y (Λx, S [Λ] θ, S [Λ]
†
θ̄) =⇒

(
1− i

2
ωµνM

µν

)
Y (x, θ, θ̄)

(
1 +

i

2
ωµνM

µν

)
= Y +

∂Y

∂x
δx+

∂Y

∂θ
ϵ+

∂Y

∂θ̄
ϵ̄ =⇒

=⇒ Y +
i

2
Y ωµνM

µν − i

2
ωµνM

µνY = Y − i

2
∂µY (ωµνM

µν)
σ
ρ xσ+

+ ∂θY

(
− i

2
(ωµνσ

µν)
β
α θβ

)
+ ∂̄θ̄Y

(
− i

2
(ωµν σ̄

µν)
β̇
α̇ θ̄β̇

)
=⇒

=⇒ YMµν −MµνY = ∂µY (Mµν)
σ
ρ xσ + ∂θY

(
− (σµν)

β
α θβ

)
+ ∂̄θ̄Y

(
− (σ̄µν)

β̇
α̇ θ̄β̇

)
=⇒

=⇒ [Y,Mµν ] = ∂µY (Mµν)
σ
ρ xσ + ∂θY

(
− (σµν)

β
α θβ

)
+ ∂̄θ̄Y

(
− (σ̄µν)

β̇
α̇ θ̄β̇

)
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3. Supercharges:

V (ϵ, ϵ̄) = exp
{
iϵαQα + iϵ̄α̇Q̄

α̇
}

V Y (x, θ, θ̄)V † = Y (x+ iθσµϵ̄− iϵσµθ̄, θ + ϵ, θ̄ + ϵ̄) =⇒

(
1 + iϵαQα + iϵ̄α̇Q̄

α
)
Y
(
1− iϵαQα − iϵ̄α̇Q̄

α
)
= Y +

∂Y

∂x
δx+

∂Y

∂θ
ϵ+

∂Y

∂θ̄
ϵ̄+O(ϵ2) +O(ϵ̄2) =⇒

=⇒ Y − iY ϵQ− iY ϵ̄Q̄+ iϵQY + iϵ̄Q̄Y = Y + ∂µY
(
iθσµϵ̄− iϵσµθ̄

)
+ ϵ∂θY + ϵ̄∂̄θ̄Y ⇐⇒

=⇒ [ϵQ, Y ] +
[
ϵ̄Q̄, Y

]
= −θσµϵ̄∂µY + ϵσµθ̄∂µY + iϵ∂θY + iϵ̄∂̄θ̄Y =⇒

=⇒

{
[Q,Y ] =

(
σµ
αα̇θ̄

α̇∂µ + i ∂
∂θα

)
Y[

Q̄, Y
]
=
(
θασµ

αα̇∂µ + i ∂
∂θ̄α̇

)
Y

Now we can de�ne the following set of operators:
Pµ = −i∂µ
Qα = −i∂α − σµ

αα̇θ̄
α̇∂µ

Q̄α̇ = i∂̄α̇ + θασµ
αα̇∂µ

(3.29)

which we can check to form another representation of the SUSY algebra, now acting on super�elds:

{
Qα, Q̄α̇

}
=
(
−i∂α − σµ

αα̇θ̄
α̇∂µ

) (
i∂̄α̇ + θασµ

αα̇∂µ
)
+
(
i∂̄α̇ + θασµ

αα̇∂µ
) (

−i∂α − σµ
αα̇θ̄

α̇∂µ
)
=

= ∂α∂̄α̇ − i∂αθ
ασµ

αα̇∂µ − iσµ
αα̇θ̄

α̇∂µ∂̄α̇ − σµ
αα̇θ̄

α̇∂µθ
ασµ

αα̇∂µ+

+ ∂̄α̇∂α − i∂̄α̇σ
µ
αα̇θ̄

α̇∂µ − iθασµ
αα̇∂µ∂α − θασµ

αα̇∂µσ
µ
αα̇θ̄

α̇∂µ =

= ∂α∂̄α̇ − iσµ
αα̇∂µ + iσµ

αα̇∂µ − σµ
αα̇θ̄

α̇∂µθ
ασµ

αα̇∂µ−

− ∂α∂̄α̇ + iσµ
αα̇∂µ + iσµ

αα̇∂µ + σµ
αα̇θ̄

α̇∂µθ
ασµ

αα̇∂µ =

= 2iσµ
αα̇∂µ = 2σµ

αα̇Pµ

{Qα, Qβ} =
(
−i∂α − σµ

αα̇θ̄
α̇∂µ

) (
−i∂β − σµ

ββ̇
θ̄β̇∂µ

)
+
(
−i∂β − σµ

ββ̇
θ̄β̇∂µ

) (
−i∂α − σµ

αα̇θ̄
α̇∂µ

)
=

= −∂α∂β + i∂ασ
µ

ββ̇
θ̄β̇∂µ + iσµ

αα̇θ̄
α̇∂µ∂β + σµ

αα̇θ̄
α̇∂µσ

µ

ββ̇
θ̄β̇∂µ+

− ∂β∂α + i∂βσ
µ
αα̇θ̄

α̇∂µ + iσµ

ββ̇
θ̄β̇∂µ∂α + σµ

ββ̇
θ̄β̇∂µσ

µ
αα̇θ̄

α̇∂µ =

= −∂α∂β + i∂ασ
µ

ββ̇
θ̄β̇∂µ + iσµ

αα̇θ̄
α̇∂µ∂β + σµ

αα̇θ̄
α̇σµ

ββ̇
θ̄β̇∂µ∂µ+

+ ∂α∂β − iσµ
αα̇θ̄

α̇∂µ∂β − i∂ασ
µ

ββ̇
θ̄β̇∂µ − σµ

αα̇θ̄
α̇σµ

ββ̇
θ̄β̇∂µ∂µ = 0 =

{
Q̄α̇, Q̄β̇

}
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The in�nitesimal variation of Y is de�ned to be:

δY = i
[
ϵQ+ ϵ̄Q̄, Y

]
= i
(
ϵQ+ ϵ̄Q̄

)
Y (3.30)

By expanding this variation, one can get the full set of variations under global SUSY, for all the �elds. Since
this is as huge as straightforward, we will omit the full calculation. In the following, we will not need to know
the variations of all the �elds appearing in a super�eld: sure enough, looking back at 3.19, those who matter
for our purposes are the scalar and the Weyl spinor �elds' ones:

δϕ = ϵψ + ϵ̄χ̄

δψ = 2ϵM + (σµϵ̄) (i∂µϕ+ Vµ)

δχ̄ = 2ϵ̄N − (ϵσµ) (i∂µϕ− Vµ)

(3.31)

3.3.3 Chiral Super�elds

As we've seen by Taylor expanding Y with respect to the Grassman variables, since it transforms in a reducible
representation of the super-Poincarè group, there appear to be way too many �elds, compared to those forming
a multiplet.

In analogy with the Dirac spinor, we can imagine to construct some sort of chiral representation, to reveal
more fundamental structures.

The canonical way to proceed is to introduce the covariant derivatives of the SUSY algebra:{
Dα ≡ ∂α + iσµ

αα̇θ̄
α̇∂µ

D̄α̇ ≡ −∂̄α̇ − iθασµ
αα̇∂µ

(3.32)

If we think about the basics of di�erential geometry on a manifold M in General Relativity, a covariant
derivative is constructed in order to parallelly transport geometrical structures with respect to the di�eomor-
phisms group Diff (M) along a given curve.

In a similiar fashion, we hereby want to de�ne di�erentiation operations which can parallelly transport a
super�eld by preserving its supersymmetric transformation properties.

In fact, we can easily chack these operators to anticommute with the supercharges:

{Dα,Qβ} =
{
Dα, Q̄β̇

}
=
{
D̄α̇,Qβ

}
=
{
D̄α̇, Q̄β̇

}
= 0 (3.33)

and thus with an in�nitesimal SUSY transformation:{
δY = i (ϵQ+ ϵ̄Q)Y[
ϵQ+ ϵ̄Q̄,Dα

]
=
[
ϵQ+ ϵ̄Q̄, D̄α̇

]
= 0

(3.34)

Importantly, this implies that both DαY and D̄α̇Y are also super�elds, and we can therefore consider to set
some conditions on Y thanks to this property.

Speci�cally, we can impose the following chirality constraints:{
D̄α̇Φ = 0 chiral

DαΨ = 0 anti-chiral
(3.35)

The multiplet structure can �nally be mirrored on a super�eld.



CHAPTER 3. SUPERSYMMETRY 43

To simplify the calculation, we will switch to an appropriate coordinate system:

D̄α̇Φ
(
xµ + iθσµθ̄, θ, θ̄

)
≡ D̄α̇Φ

(
yµ, θ, θ̄

)
= 0

D̄ᾱy
µ =

(
−∂̄α̇ − iθασν

αα̇∂ν
) (
xµ + iθβσµ

ββ̇
θ̄β̇
)
=

= −∂̄α̇xµ − i∂̄α̇

(
θβσµ

ββ̇
θ̄β̇
)
− iθασν

αα̇∂νx
µ + θασν

αα̇∂ν

(
θβσµ

ββ̇
θ̄β̇
)
=

= −i∂̄α̇
(
θβσµ

ββ̇
θ̄β̇
)
− iθασµ

αα̇ = iθβσµ

ββ̇
δα̇

β̇
θ̄β̇ − iθασµ

αα̇ = 0

D̄α̇θβ =
(
−∂̄α̇ − iθασν

αα̇∂ν
)
θβ = −∂α̇θβ = 0

D̄α̇θ̄
β̇ =

(
−∂̄α̇ − iθασν

αα̇∂ν
)
θ̄β̇ = −∂̄α̇θ̄β̇ = δ β̇

α̇

Thus the chirality constraint reduces to requesting the super�eld to depend only on yµ and θ, meaning that
in this frame, we can literally drop all terms in the expansion 3.28 which do not obey such condition, obtaining:

D̄α̇Φ(x, θ, θ̄) = 0 ⇐⇒ Φ = Φ(yµ, θ) = ϕ(y) +
√
2θψ(y) + θ2F (y) (3.36)

where
√
2 is a convention.

By then expanding Y in the originary frame, we �nally get:

Φ(x, θ, θ̄) = ϕ(x) +
√
2θψ(x) + θ2F (x) + iθσµθ̄∂µϕ(x)−

i√
2
θ2∂µψ(x)σ

µθ̄ − 1

4
θ2θ̄2□ϕ(x) (3.37)

This looks much more similiar to what we've found studying the multiplets, except for an additional �eld,
often referred to as an auxiliary �eld, and we will deal with it very soon.

Of course, a symmetrical analysis can be carried out for the anti-chirality constraint.

3.3.4 Actions over superspace

If we have a super�eld K(x, θ, θ̄) which is functions of other super�elds, we can construct an action of the form:

S =

∫
d4x d4θK(x, θ, θ̄) (3.38)

which is real if K is real, meaning K = K†.

This must be invariant under SUSY transformations, and we want to check wheter it is or not:

δS =

∫
d4x d4θ δK

3.30
=

∫
d4x d4 θ

[
ξα
(
∂αK − iσθ̄∂µK

)
+
(
−∂̄α̇K + iθασµ∂µK

)
ξ̄α̇
]

=

∫
d4x

∫
d2θ

∫
d2θ̄

[
ξα
(
∂αK − iσθ̄∂µK

)
+
(
−∂̄α̇K + iθασµ∂µK

)
ξ̄α̇
]

But, for the Taylor expansion of a super�eld in 3.28, K is at most second order in θ, θ̄, so, since an integration
over superspace with respect to a Grassmann variable is equivalent to a di�erentiation, the terms containing
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∂αK or ∂̄α̇K vanish, while the terms di�erentiated with respect to xµ give at most boundary terms, which are
assumed to vanish, as usual.

This derivation demonstrates that any action of the form 3.38 is necessarily SUSY invariant.

3.3.5 The free Wess-Zumino model

We reached a point where we are more than able to derive the action in Equation 3.19: since we necessarily
have to obtain a real lagrangians, and it must involve both chiral and antichiral super�elds, as proposed in the
ansatz 3.38.

The simplest possible will be suitable for us:

Schiral =

∫
d4x d4θΦ†Φ =

∫
d4xd4θ

[
ϕ†(x) +

√
2θ̄ψ̄(x) + θ̄2F †(x)− iθσµθ̄∂µϕ

†(x) +
i√
2
θ̄2θ∂µψ̄(x)σ

µθ − 1

4
θ2θ̄2□ϕ†(x)

]
·

·
[
ϕ(x) +

√
2θψ(x) + θ2F (x) + iθσµθ̄∂µϕ(x)−

i√
2
θ2∂µψ(x)σ

µθ̄ − 1

4
θ2θ̄2□ϕ(x)

]

This calculation can be straightforwardly carried out thanks to the mathematical tools that we've introduced
in the previous sections. Due to its remarkable length, we will directly discuss the important result:

SWZ =

∫
d4x d4θΦ†Φ =

∫
d4x

(
∂µϕ

†∂µϕ− iψ̄σ̄µ∂µψ + F †F
)

(3.39)

The Lagrangian includes the standard kinetic terms for a real scalar ϕ and a Weyl spinor ψ �elds, plus an
additional term in the auxiliary �eld F , which is not kinetic, meaning that, when quantised, it doesn't give rise
to any particle state.

This is the action of the Wess-Zumino model, and represents the achievement we promised at the beginning
of this section. For now, we can shelve it in our backpack, and come back to it in the last chapter, where we'll
exhibit the necessity of gravity when gauging SUSY.



Chapter 4

General Relativity as a Gauge Theory

After a long and intense digression on Supersymmetry, it is time to start thinking about overtaking an important
step that we've disregarded up to now: locality.

It is well known that General Relativity is built upon the tensorial formalism of di�erential geometry, and
describes the e�ect of gravity as a matter of geometry of a curved Lorentzian manifold.

So the �rst question to ask ourselves is wheter the formalism we've developed is compatible with General
Relativity, and, if not, if we shall we dismantle the entire apparatus to build a suitable one.

If there is something that dealing with other people taught me, beside ..., is that most of the times a
compromise is the way to go: locality in Quantum Field Theory is achieved thanks to gauge transformations,
essentially consisting in promoting symmetry parameters to function of space time, in the framework of Yang
Mills theories, while in General Relativity with the tensiorial formalism of di�erential geometry.

Thus. . . , why not reinterpreting gravity as a gauge theory? Simple as that. . .

Allow me to add other . . . to remark the disconcerting immediacy of this solution.

Reinterpreting gravity as a gauge theory will keep us busy during the �rst portion of this chapter.

If we proceed along this way, we will most likely bump upon the existance of a gauge �eld, transforming in
some kind of tensorial representation of the Lorentz group: this way we will discover the graviton.

But Supersymmetry taught us that the graviton multiplet is complemented by the gravitino, which is a
spinor. Thus, we need a formalism apt to describe spinors subjected to gravity: this is the tetrads formalism of
General Relativity, and it will have us engaged throughout the whole second part of the chapter.

4.1 Gravity as a gauge theory

Gauging gravity might seem a considerable endeavor, so we want to start from the very basis, by recalling the
General Relativity postulates:

1. Principle of General Covariance: Laws of physics are valid in any reference frame.

2. Equivalence Principle: In any point of the space time, it is possible to de�ne an inertial frame, which
is that of a free falling observer.

In the canonical formalism of GR, these can be redrafted under a more geometrical viewpoint:

1. Principle of General Covariance: Physical equations are covariant with respect to the di�eomorphism
group on the space-time manifold.

2. Equivalence Principle: There exists a gaussian reference frame of the tangent space at any point of the
manifold.
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But we can push even further and, rather bravely, unify them under a unique postulate:

Gravity is the gauge theory of the group:

SO(1, 3)⋉Diff(3, 1) (4.1)

on the �ber bundle TPM⊗M ∀P ∈ M.

Let's see what this implies by studying the small perturbations of the metric around the minkowskian one
ηµν .

4.1.1 Linearised theory

The SO(1, 3) symmetry of TP (M) at any point allows us to continuously perturb the metric gµν around a
gaussian frame:

gµν = ηµν + hµν , |hµν | ≪ 1 (4.2)

From this, we can expand the other fundamental metrical structures to linear order:

� Metric connection :

Γγ
αβ =

1

2
gγλ (∂αgλβ + ∂βgαλ − ∂λgαβ) =

=
1

2

(
ηγλ + hγλ

)
(∂α (ηλβ + hλβ) + ∂β (ηαλ + hαλ)− ∂λ (ηαβ + hαβ)) ≃

≃ 1

2
ηγλ (∂αhλβ + ∂βhαλ − ∂λhαβ)

� Riemann tensor :

Rσρµν =
1

2
(∂ρ∂µgσν + ∂ν∂σgρµ − ∂ν∂µgσρ − ∂ρ∂σgµν) ≃

≃ 1

2
(∂ρ∂µhσν + ∂ν∂σhρµ − ∂ν∂µhσρ − ∂ρ∂σhµν)

� Ricci tensor :

Rρ
ρµν ≡ Rµν =

1

2

(
∂ρ∂µhρν + ∂ν∂

ρhρµ − ∂ν∂µh
ρ
ρ − ∂ρ∂

ρhµν
)
=

=
1

2

(
∂ρ∂µhρν + ∂ν∂

ρhρµ − ∂ν∂µh
ρ
ρ −□hµν

)
� Ricci scalar :

Rµ
µ ≡ R =

1

2

(
∂ρ∂µhρµ + ∂µ∂

ρhµρ − ∂µ∂
µh−□h

)
= ∂ρ∂µhρµ −□h

� Einstein tensor :

Gµν = Rµν − 1

2
gµνR =

1

2

(
∂ρ∂µhρν + ∂ν∂

ρhρµ − ∂ν∂µh
ρ
ρ −□hµν − ∂ρ∂σhρσηµν + ηµν□h

)
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Being Tµν the energy-momentum tensor, from the Field Equations in the presence of matter:

Gµν = 16πGNTµν (4.3)

we can insert the linearised form of the right-hand side to obtain:

∂ρ∂µhνρ + ∂ρ∂νhµρ −□hµν − ∂µ∂νh− ηµν (∂
ρ∂σhρσ −□h) = 16πGNTµν (4.4)

They are way too hefty to be actually fully evaluating the symmetry, and the reason is that we still haven't
�xed the gauge.

As always, to exhibit a symmetry, it's appropriate to study the invariance of the action: in this case, the
action is given by the Fiertz-Pauli one, which is the Einstein-Hilbert one, SEH , to quadrtic order in h.

Let's derive it:

SEH =
1

16πGN

∫
d4x

√
−gR ∝ ∗

√
−g =

√
−det(ηµν + hµν) =

√
−det(η) · exp

{
1

2
Tr
{
ln(1 + η−1h)

}}
=

= exp

{
1

2
Tr

{
hµµ − 1

2
hµνh

ν
µ +O(h3)

}}
= 1 +

1

2
h+

1

8
h2 − 1

4
hµνhµν +O(h3)

∗ ∝
∫ (

1 +
1

2
h+

1

8
h2 − 1

4
hµνhµν

)
(∂ρ∂µhρµ −□h) =

∫ (
∂ρ∂µhρµ −□h+

1

2
h∂ρ∂µhρµ − 1

2
h□h+

+
1

8
h2∂ρ∂µhρµ − 1

8
h2□h− 1

4
hµνhµν∂

ρ∂µhρµ +
1

4
hµνhµν□h+O(h3)

)
=

=

∫ (
−1

2
(∂ρh)∂µhρµ +

1

2
∂µh∂

µh− 1

4
h∂ρh∂µhµρ +

1

4
h∂µh∂µh+

1

2
hµν∂ρhµν∂

µhρµ − 1

2
hµν∂ρhµν∂ρh

)
=

=

∫ (
−1

2
∂ρh∂µhρµ +

1

2
∂µh∂

µh+
1

4
∂ρh∂µhµρ −

1

4
∂µh∂µh− 1

2
∂ρhµν∂

µhρµ +
1

2
∂ρhµν∂ρh

µν

)
=

=

∫ (
−1

4
∂ρh∂µhρµ +

1

4
∂ρh∂

ρh− 1

2
∂ρhµν∂

µhρµ +
1

2
∂ρhµν∂ρh

µν

)

Integrating by parts and rearranging the indeces, we �nally obtain the Fierz-Pauli action:

SFP =
1

8πGN

∫
d4x

[
−1

4
∂ρhµν∂

ρhµν +
1

2
∂ρhµν∂

νhρµ +
1

4
∂µh∂

µh− 1

2
∂νh

µν∂µh

]
(4.5)

Varying it with respect to hµν , it's straightforward to obtain the linearised Einstein equations in the vacuum:

δSFP =
1

8πGN

∫
d4x

(
1

2
∂ρ∂

ρhµν − ∂ρ∂νhρµ − 1

2
∂ρ∂ρhη

µν +
1

2
∂ν∂µh+

1

2
∂ρ∂σh

ρσηµν

)
δhµν =

=
1

8πGN

∫
d4x (−Gµνδh

µν) = 0 =⇒ Gµν = 0

(4.6)

To couple the theory to matter, we can simply add a matter term to the Fierz-Pauli action, and extrapolate
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the energy-momentum tensor directly from its de�nition, but we do not really need this for our aims.

We can now exhibit the gauge symmetry of the theory with respect to Diff(1, 3) as well: given a local
di�eomorphism xµ → xµ − ξµ(x), we know the linearised metric to vary as

δgµν = (Lξg)µν = ∇µξν +∇νξµ =⇒ hµν → hµν + (Lξh)µν = hµν + ∂µξν + ∂νξµ (4.7)

and SFP is invariant under such transformation:

δSFP ∝
∫
d4xGµν (∂

µξν + ∂νξµ) =

∫
d4x2Gµν∂

µξν =

∫
d4x2 (∂µGµν) ξ

ν = 0 (4.8)

where in the second equality we've neglected the total derivative and in the third one we used the linearised
Bianchi identity:

∂µG
µν = 0 (4.9)

proving the statement.

Happily, we proved the existance of a very interesting gauge symmetry, which is kindly suggesting to �x the
gauge, by pitilessly fobbing us with the horribly looking Field Equations in Equation 4.4.

4.1.2 De Donder Gauge �xing

Fixing the gauge not only will provide us better looking �eld equation, but, most importantly, will facilitate
the count of the physical degrees of freedom of the gauge �eld associated to the symmetry group.

The most commonly used condition in this framework is the traceless de Donder gauge, which is the
analogous of the Lorentz gauge for a boson tensor �eld:

∂µA
µ = 0︸ ︷︷ ︸

Lorentz

−→ ∂µh̄
µν ≡ ∂µ

(
hµν − 1

2
hηµν

)
= 0︸ ︷︷ ︸

de Donder

(4.10)

which is always legitimate since, for the covariance:

∂µhµν − 1

2
∂νh = fν

Diff(1,3)−−−−−−→ ∂µ (hµν + ∂µξν + ∂νξµ)−
1

2
∂ν (h+ 2∂µξµ) =

= ∂µhµν +□ξν + ∂µ∂νξµ − 1

2
∂νh− ∂ν∂

µξµ = fν +□ξν

Meaning that choosing the de Donder Gauge is equivalent to apply a di�eomorphism such that fν = □ξν .

We can now simplify the linearised Field Equations in 4.4:

∂µ∂
ρhρν + ∂ν∂

ρhρµ −□hµν − ∂µ∂νh− ηµν (∂
ρ∂σhσρ −□h) = 16πGNTµν =

= ∂µ

(
1

2
∂νh

)
+ ∂ν

(
1

2
∂µh

)
−□hµν − ∂µ∂νh− ηµν

(
∂ρ
(
1

2
∂ρh

)
−□h

)
=

= ∂µ∂νh−□hµν − ∂µ∂νh− 1

2
ηµν□h− ηµν□h = −2□hµν − 3

2
ηµν□h

Upon inserting the h̄ de�nition, the equations become:

□h̄µν = −16πGNTµν (4.11)
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4.1.3 The Graviton Field

Looking at the linearised theory under the gauge symmetry perspective interestingly suggests us to interpret
the �rst order perturbative �eld hµν of the minkowskian metric ηµν as a maseless tensorial particle �eld: the
graviton.

Let' count its degrees of freedom: it is a symmetric tensor (hµν ∈ Sym+ (1, 3)) and the de Donder gauge is
a set of 4 independent constraints:

d =
4 · (4− 1)

2︸ ︷︷ ︸
h∈Sym+

− 4︸︷︷︸
d.D.g.

= 2 (4.12)

Since hµν ∈ Sym+(1, 3) ⊂ GL(1, 3), it transforms in a tensorial representation of Spin(1, 3):

(1, 1) ≡ (1, 0)⊗ (0, 1) of Spin(1, 3) (4.13)

and thus has an helicity of 2.

Awesome: we just discovered a boson of a SUSY multiplet: therefore, there must exist a complementary
h = 3

2 fermion: we will discover this missing piece in the next chapter.

Before this, it's essential to to acquire the necessary formalism to deal with spinors on a curved manifold.
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4.2 The Vierbein

Since M is a Lorentzian manifold, it locally "resembles" R1,3, meaning that TP (M) ≃ R1,3, where we know
the spinor formalism to hold.

In order to extend the covariance of the Dirac Lagrangian from Spin(1, 3) to Spin(1, 3)⋉Diff(1, 3), we now
introduce the vierbein (or frame �eld) as a linear transformation "bridging" between global frames (intrinsic
coordinate systems on M) to local ones (on the tangent space TP (M) to a non singular point P ∈ M):

eaα ∈ TM : gαβ = eaα ηab e
b
β (4.14)

where a, b, c... denote the local indices.

Strictly speaking, a vierbein belongs to the equivalence class of all the possible vierbeins related by a local
Lorentz transformation:

e
′a
µ ηab e

′b
ν = Λ−1a

be
b
µ ηacΛ

−1c
de

d
ν = eaµηabe

b
ν = gµν =⇒ e

′a
µ ∼ Λ−1a

be
b
µ (4.15)

since Λ ∈ ISO(1, 3), and thus preserves η.

The inverse vielbein is de�ned as:

(eαa )
−1

:

{
eaαe

α
b = δab

eαae
a
β = δαβ

(4.16)

which directly implies:
eαagαβe

β
b = eαae

a
αηabe

b
βe

β
b = ηab (4.17)

The role of the vierbein in the tetrads formalism is analogous to that of gµν in the canonical one.

Therefore, to complete the picture, our next tasks will be:

1. Express the main metrical structures in terms of the vierbein.

2. Write a Diff(1, 3) invariant Dirac action.

3. Reinterpret the perturbative graviton �eld hµν in this framework, which will be much more apt to perform
SUSY transformations on M.

4.2.1 Metrical structures in the tetrads formalism

Volume forms and integration

The �rst requirement to satisfy to write a Diff(1, 3) invariant action is of course a volume form.

In the classical formalism the usual choice is the metric-compatible canonical volume form dV =
√
−g d4x,

which we also used in the �rst sections of this chapter to compute the Fiertz-Pauli action.

It is immediate to write it in terms of the vierbein:

g = det
(
eµaη

abeνb
)
= det(eµa)det(η

ab)det(eνb ) = −det(eµa)2 ≡ −e2 =⇒
√
−g d4x = e d4x (4.18)

The Spin Connection

We now need to evaluate the metric compatible parallel transport "translating" the Cristo�el symbol Γµ
νρ in

the vierbein formalism: this way, we will be able to de�ne the covariant derivative with respect to Diff(1, 3).
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We can hence write a covariant derivative of a local vector, according to the usual ansatz, to then impose
the compatibility with that of a global one:

DαV
β = eβaD

(ω)
α V a ≡ eβa

(
∂αV

a + ω a
α bV

b
)
= eβa

[
∂α
(
eaγV

γ
)
+ ω a

α bV
b
]
=

= eβa
[
eaγ∂αV

γ +
(
∂αe

a
γ

)
V γ + ω a

α bV
b
]
= ∂αV

β + eβa
(
∂αe

a
γ

)
V γ + ω a

α be
b
γV

γ

∂αV
β + eβa

(
∂αe

a
γ

)
V γ + ω a

α be
b
γV

γ = ∂αV
β + Γβ

αγV
γ =⇒

=⇒ eβa
(
∂αe

a
γ

)
V γ + ω a

α be
b
γV

γ = Γβ
αγV

γ =⇒ Γβ
αγ = eβa

(
∂αe

a
γ

)
+ ω a

α be
β
ae

b
γ =⇒

=⇒ ω a
α b = Γβ

αγe
γ
b e

a
β − eβa(∂αe

a
γ)e

γ
b e

a
β = Γβ

αγe
γ
b e

a
β − eβa(∂αe

a
βδ

β
γ )e

γ
b e

a
β =

= Γβ
αγe

γ
b e

a
β − eβa(∂αe

a
β)δ

β
γ e

γ
b e

a
β = Γβ

αγe
γ
b e

a
β − eβa(∂αe

a
β)e

β
b e

a
β =

= Γβ
αγe

γ
b e

a
β − eβaδ

a
b (∂αe

a
β) = Γβ

αγe
γ
b e

a
β − eβb (∂αe

a
β)

Since in this formalism, the a�ne connection is tortionless, it is also symmetric, so we can �nally de�ne the
spin connection as:

ω a
α b = eaβe

γ
bΓ

β
γα − eβb (∂αe

a
β) (4.19)

Thus, if the Cristo�el symbol de�nes a metric compatible parallel transport under the action of Diff(1, 3),
ω a
α b de�nes the same operation with respect to the local SO(1, 3) symmetry.

This way, we can evaluate the Minimal Coupling principle with respect to the local Lorentz group, de�ning
the covariant derivative of a spinor as:

Dµ ≡
(
∂µ − i

4
ω bc
µ σbc

)
(4.20)

4.3 The generalised Dirac action

We now have �nally covered all the necessary steps to describe spinors on a curved manifold, thanks to the
power of the reinterpretation of gravity as a gauge theory.

First, we shall recall the Dirac action on Minkowski space-time:

S =

∫
d4x ψ̄(iγa∂a −m)ψ (4.21)

To obtain the invariance under the symmetry group in 4.1, we have to:

1. Replace the measure with the canonical volume form, to integrate over the manifold:

d4x −→
√
−gd4x = ed4x (4.22)

2. Express the gamma matrices in the local frame:

γa → γµ = eµaγ
a (4.23)
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Which can be checked to satisfy a generalised Cli�ord algebra:

{γµ, γν} =
{
eµaγ

a, eνbγ
b
}
= eµaγ

aeνbγ
b + eνbγ

beµaγ
a = eµa

{
γa, γb

}
eνb = 2gµν (4.24)

3. Evaluate the Minimal Coupling Principle, by substituting the partial derivative with the covariant one
4.20:

∂a −→ Da = ∂a −
i

4
ωbc
a σbc (4.25)

where σbc =
i
2 [γ

b, γc] are the generators of the Lorentz group.

The resulting action is therefore:

S =

∫
d4x eψ̄(iγµDµ −m)ψ (4.26)

and the generalised Dirac equation is:

δS

δψ̄
= 0 =⇒ (iγµDµ −m)ψ = 0 (4.27)



Chapter 5

Rarita-Schwinger Theory

In the previous chapter we found the graviton hµν to emerge as a �rst order perturbation of the metric of
the space-time manifold M, and, by counting its degrees of freedom, we discovered it to belong to the h = 2
maseless multiplet of the SUSY algebra representation on particle states, and we anticipated that we would've
had to complete it with a h = 3

2 fermion, namely the gravitino.

Although the necessity of such a particle for Supergravity will be fully cleari�ed in the �nal chapter, we
can already begin to foresee the reason: many times throughout this dissertation we've recalled SUGRA to
be the gauge theory of SUSY, and this essentially means that the spinorial parameter of a Supersymmetry
transformation is promoted to a space-time function.

Both from our backing knowledges of gauge theories, and from the observations of the last chapter, we know
a gauge symmetry to require the existence of one or more tensor �elds for the action to be invariant under such
transformations: if such parameter is a supercharge, then its variation will unavoidably carry both a spinor and
a vector index.

Although this will be demonstrated in the following chapter, these considerations are apt to lay the ground
to approach the present analysis.

The Rarita-Schwinger theory describes the dynamics of such fermions on a minkoskian manifold.

5.1 Maseless Rarita-Schwinger Field

5.1.1 The Action

As always, in order to show the symmetries of a theory, it's suitable to start from an action. The dynamics of
the maseless gravitino is described by the Rarita-Schwinger action:

SRS = −
∫
d4x Ψ̄µγ

µνρ∂νΨρ (5.1)

where:

γµνρ =
1

3!

∑
perm

sign(σ)γσ(µ)γσ(ν)γσ(ρ) (5.2)

representing the antisymmetrized product of gamma matrices.
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We now want to show and/or demonstrate its main properties:

1. First order in space-time derivatives.

2. Lorentz invariance : the Lagrangian is manifestly a Lorentz scalar.

3. Local SUSY invariance : if we promote the spinor parameter ϵ to a function on space-time ϵ(x), the
gravitino variation under such transformation becomes:

δΨµα(x) = ∂µϵ(x) (5.3)

and, crucially, we can show it to be a symmetry of the Rarita-Schwinger theory:

LRS = Ψ̄µγ
µνρ∂νΨρ −→

(
Ψ̄µα̇ + δΨ̄µα̇

)
γµνρ∂ν (Ψρα + δΨρα

) =

=
(
Ψ̄µα̇ + ∂µϵ̄α̇

)
γµνρ∂ν (Ψρα + ∂ρϵα(x)) =

= Ψ̄µα̇γ
µνρ∂νΨρα + Ψ̄µα̇γ

µνρ∂ν∂ρϵα + (∂µϵ̄α̇) γ
µνρ∂νΨρα + (∂µϵ̄α̇) γ

µνρ∂ν∂ρϵα(x) =

= LRS + (∂µϵ̄α̇) γ
µνρ∂νΨρα +

[
Ψ̄µα̇ + ∂µϵ̄α̇

]
γµνρ∂ν∂ρϵα(x) =

= LRS + (∂µϵ̄α̇) γ
µνρ∂νΨρα = LRS + ∂µ (ϵ̄α̇γ

µνρ∂νΨρα)

where in the last two lines we used the fact that the contraction of a symmetric with an antisymmetric
tensor is always null. Since the Lagrangian varies to a boundary term, local SUSY is an invariance of the
action.

4. Hermitian, so that equation of motion for Ψ̄ is the Dirac conjugate of that of Ψ.

We can directly derive the equation of motion from the Euler-Lagrangian equations:

∂µ

(
δLRS

δ
(
∂µΨ̄

))− δLRS

δΨ̄
= 0 =⇒ γµνρ∂νΨρ = 0 (5.4)

with a conjugate equation for Ψ̄.

5.1.2 Degrees of Freedom

Just as we did for the graviton, we want to count the number of degrees of freedom of the gravitino: the presence
of the gauge symmetry in Equation 5.3 suggests us to impose some kind of constraint to isolate the physical
ones.

A possible constraint is given by an analogous of the Coulomb gauge:

γiΨi = 0 , i = 1, 2, 3 (5.5)

By introducing the gravitino strength, in analogy with Yang-Mills theories:

Ψµν ≡ ∂µΨν − ∂νΨµ ≡ 2∂[µΨν] (5.6)

the equations of motion can be rewritten by separating in components:

γµΨµσ = 0 ⇐⇒

{
γi∂iΨ0 − ∂0γ

iΨi = 0

γ0∂0Ψi − ∂iγ
0Ψ0 = 0

(5.7)
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From the gauge condition in Equation 5.5, we see that:

γi∂iΨ0 − ∂0γ
iΨi = γi∂iΨ0 = 0 =⇒

(
γi∂i

)2
Ψ0 = 0 =⇒ ∇2Ψ0 = 0 =⇒ Ψ0 = 0

By contracting with γi the spacial components of the equation of motions we can derive another constraint:

∂iΨi = 0 (5.8)

Hence, we obtained a set of (4 − 1)2
4
2 = 12 constraints. The remaining 4 · 2 4

2 − 12 = 4 are halved by the
equation of motions.

The total number of degrees of freedom before imposing the equations of motion and the gauge is called
o�-shell degrees of freedom, while the resulting number is called on-shell degrees of freedom.

5.2 Quantization of the Rarita-Schwinger �eld

As we mentioned in the introduction, the maseless Rarita-Schwinger �eld belongs to the

Ψ ∈
[(

1

2
, 0

)
⊕
(
0,

1

2

)]
⊗
(
1

2
,
1

2

)
(5.9)

representation of Spin(1, 3), meaning that it carries both a vector and a spinor indices.

Since we are dealing with the free limit, the spatial components of the �eld can be expanded as a superposition
of plane waves:

Ψi(x) = exp {ip · x} vi (p⃗)u(p⃗) (5.10)

where u(p⃗) ≡ up⃗ is four component spinor, hence given by the sum of positive and negative energy states,
since Ψi satis�es the Dirac equation, whereas the vector vi p⃗ can be expanded in the basis of the transverse
polarization vectors and the momentum:

vi p⃗ = api + bϵi (p⃗,+) + cϵi (p⃗,−) (5.11)

where ϵ (±) are the polarization vectors of a quantized vector �eld, satisfying that piϵi = 0. For the last
constraint in Equation 5.7, we see that a = 0, and thus:

Ψi(x) = exp {ip · x}
[
b+ϵ+p⃗ u

+
i p⃗ + c+ϵ−i p⃗u

+
p⃗ + b−ϵ+p⃗ u

−
p⃗ + c−ϵ−p⃗ u

−
p⃗

]
(5.12)

Moreover, the constraint γiΨi = 0 ultimately determines c+ = b− = 0, and thus the quantized maseless
gravitino �eld can be written as:

Ψµ(x) =

∫
d3p

(2π)
3
2p0

∑
h

[
eip⃗·xϵhp⃗ µu

h
p⃗c

h
p⃗ + e−ip⃗·xϵ∗ h

p⃗ µ v
h
p⃗d

∗h
p⃗

]
(5.13)

where the sum is extended over the ± 3
2 helicity states, chp⃗ is the annihilation operator for particles and d†p⃗ is

that of the antiparticle.



Chapter 6

Supergravity

After an arduous, but extremely rewarding journey, everything is ready to approach Supergravity.

As anticipated in the introduction to chapter 5, we will hereby craft the SUGRA Lagrangian as a necessary
additional term to sum to the Wess-Zumino Model to achieve local SUSY invariance for the one chiral multiplet
{ϕ, ψ}: we will evaluate the h = 3

2 multiplet by showing superpartners to naturally arise. Ultimately, this will
permit us to isolate the SUGRA term, and identify it as the Lagrangian of the pure theory.

The following and last aim of this analysis will be to covariantize LSUGRA under the action of Diff(1, 3)
on a curved space-time manifold M, by exploiting the vierbein formalism.

Hopefully, we will appreciate how all the knowledges we acquired throughout the previous chapters will
condense in a harmonious theory.

6.1 Gauging SUSY in the WZ model

To begin, we rewrite the Wess-Zumino Lagrangian, eliminating the ghost �eld term, and in terms of Majorana
spinors (end of section 2.2):

LWZ = ∂µϕ
†∂µϕ− iψ̄σ̄µ∂µψ = ∗

χ =

(
ψα

ψ̄α̇

)
, χ̄ = χ†γ0 =

(
ψ̄α̇

ψα

)†

, γµ =

(
0 σµ

σ̄µ 0

)

χ̄Lγ
µ∂µχR + χ̄Rγ

µ∂µχL =
(
ψ̄, 0

)( 0 σµ

σ̄µ 0

)
∂µ

(
ψ
0

)
+
(
0, ψ

)( 0 σµ

σ̄µ 0

)(
0
ψ̄

)
=

= ψ̄σ̄µ∂µψ + ψσµ∂µψ̄ = ψ̄σ̄µ∂µψ +
(
ψ̄σ̄µ∂µψ

)†
= ∂µ

(
ψ̄σ̄µψ

)
− ∂µψ̄σ̄

µψ+

+
(
∂µ
(
ψ̄σ̄µψ

)
− ∂µψ̄σ̄

µψ
)†

= −2iψ̄σ̄µ∂µψ + t.d.

∗ = −∂µϕ∂µϕ∗︸ ︷︷ ︸
Lscalar

−1

2
(χ̄Rγ

µ∂µχL + χ̄Lγ
µ∂µχR)︸ ︷︷ ︸

Lspinor

+t.d.

(6.1)
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In section 3.3.4 we've proven it to be invariant under global SUSY transformations up to boundary terms,
leveraging the super�elds formalism and neglecting an explicit calculation, since an action of the type in Equa-
tion 3.38 is necessarily endowed with such property:

δLWZ = ∂µK
µ (6.2)

Here we will instead need to develop an explicit calculation, to show how the Noether supercurrent di�ers
in local from the global variations.

From the variations of the required components of a super�eld, from in section 3.3.2, it is straightforward
to rewrite the spinorial ones in the Majorana basis:

δϕ = ϵψ + ϵ̄χ̄

δψ = iσµϵ̄∂µϕ

δχ̄ = −iϵσ̄µ∂µϕ

⇐⇒


δϕ = ϵ̄L χL , δϕ∗ = ϵ̄RχR

δχL = 1
2γ

µ∂µϕ ϵR , δχR = 1
2γ

µ∂µϕ
∗ ϵL

δχ̄L = − 1
2 ϵ̄Rγ

µ∂µϕ , δχ̄R = − 1
2 ϵ̄Lγ

µ∂µϕ
∗

(6.3)

With these, we may compute the variation of the action:

δS =

∫
d4x (δL) =

∫
d4x (δLscalar + δLspinor) = ∗

Lspinor = −χ̄Lγ
µ∂µχR − χ̄Rγ

µ∂µχL = −χ̄Rγ
µ∂µχL + ∂µ (χ̄R) γ

µχL

∗ =

∫
d4x (−∂µ(δϕ)∂µϕ∗ − δχ̄Rγ

µ∂µχL + ∂µ(δχ̄R)γ
µχL + h.c.) =

I.b.P.
=

∫
d4x

(
δϕ□ϕ+2∂µ (δχ̄R) γ

µχL + ∂µ (−δϕ∂µϕ∗ − δχ̄Rγ
µχL) + h.c.

)
=

∫
d4 (ϵ̄LχL□ϕ

∗ − ∂µ (ϵ̄Lγ
µ∂µϕ

∗) γµχL + ∂µKµ + h.c.) =

=

∫
d4x [ϵ̄LχL□ϕ

∗ − ∂µ (ϵ̄L) γ
µ∂µϕ

∗γµχL − ϵ̄L∂µ∂νϕ
∗γνγµχL + ∂µKµ + h.c ] =

Cl
=

∫
d4x [−∂µ (ϵ̄L) γµ∂µϕ∗γµχL + ∂µKµ + h.c ] = 0 ⇐⇒ ∂µϵ̄L,R = 0

which shows that, if the spinorial parameter is constant, the action is invariant, as expected, since the
Lagrangian varies by a total derivative:

δL = ∂µ (Kµ +Kµ∗) ≡ ∂µKµ (6.4)

where Kµ is the Noether supercurrent:

Kµ = [(−δϕ∂µϕ∗ − δχ̄Rγ
µχL) + h.c.] =

[(
−ϵ̄LχL∂

µϕ∗ +
1

2
ϵ̄Lγ

µ∂µϕ
∗γµχL

)
+ h.c.

]
(6.5)
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On the other hand, if we were to gauge SUSY, the spinorial parameter would be promoted to a function of
space-time, ϵ −→ ϵ(x), restricting to a so called Kahler manifold in the superspace, and the Lagrangian would
no longer be invariant up to a boundary term:

δL = (∂µϵ̄)j
µ = (∂µϵ̄L)j

µ
L + (∂µϵ̄R)j

µ
R

jµL ≡ −γµ∂µϕ∗γµχL

jµR ≡ −γµ∂µϕγµχR

(6.6)

where jµ = jµL + jµR is the super-Noether current, which is conserved, as it can be proven by showing that
it has null divergence, by leveraging the equation of motions of the �elds.

6.1.1 Adding the SUGRA multiplet

In order to compensate the variations and achieve the invariance of the action, in a similiar fashion to Yang-Mills
theories, we can associate a gauge �eld Ψ to the supercurrent, which, as forseen in chapter 5, necessarily carries
both a spinorial and a vectorial index, resulting in an additional term L′

WZ to LWZ :

L′
WZ = − 1

MP

(
Ψ̄Lµj

µ
L + Ψ̄Rµj

µ
R

)
= − 1

MP
Ψ̄µα̇j

µα̇ :

{
δΨL,Rµ =MP∂µϵL,R

δΨ̄L,Rµ =MP∂µϵ̄L,R

(6.7)

where is the MP is the reduced Planck mass, necessary to equate the mass dimensions.

Now we can prove that the variations we intended to compensate actually vanishes, but a new piece, generated
by δjµR,L generates:

δL′
WZ = δLWZ + δL′

WZ = (∂µϵ̄) j
µ + ∂µKµ − 1

MP

(
δΨ̄µα̇j

µα̇ + Ψ̄µα̇δj
µα̇
)
=

= (∂µϵ̄) j
µ + ∂µKµ − 1

MP

(
δΨ̄µLj

µ
L + δΨ̄µRj

µ
R + Ψ̄µα̇δj

µα̇
)
=

= (∂µϵ̄) j
µ + ∂µKµ − 1

MP

(
(MP∂µϵ̄L) j

µ
L + (MP∂µϵ̄L) j

µ
R + Ψ̄µα̇δj

µα̇
)
=

= (∂µϵ̄) j
µ + ∂µKµ − (∂µϵ̄j

µ) +
1

MP
Ψ̄µα̇δj

µα̇ = ∂µKµ +
1

MP
Ψ̄µ (j

µ
L + jµR) =

= ∂µKµ +
1

MP

[
Ψ̄µLδj

µ
L + Ψ̄µRδj

µ
R

]
≃ ∗

Ψ̄µLδj
µ
L = Ψ̄µLδ (−γµ∂µϕ∗γµχL)

∗ ≃ ∂µKµ − 1

MP
ϵ̄γµΨνT

µν

(6.8)

In order to cancel the non boundary term, we introduce a symmetric tensor gµν , obeying the transformation
rule:

δgµν ∼ 1

2MP
(ϵ̄γµψν + ϵ̄γνψµ) ≡

1

MP
ϵ̄γ(µψν) (6.9)

and insert a respective term in the Lagrangian:

L′′
WZ ∼ −gµνTµν (6.10)
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Since the only bilinear form which can enter the Lagrangian coupled with the energy-momentum tensor
is the space-time metric, we demonstrated that local SUSY invariance requires to complete the Wess-Zumino
multiplet with the graviton gµν and the gravitino Ψµα, which are indeed superpartners.

The resulting Wess-Zumino Lagrangian is:

L = LWZ + L′
WZ + L′′

WZ︸ ︷︷ ︸
Lint(ϕ,χ,g,Ψ)

+Lkin(gµν) + Lkin(ψµ) (6.11)

From the analysis of SUSY algebra representation, we see that the resulting multiplet is reducible to the
sum of the h = 3

2 and h = 1
2 multiplets, respectively corresponding to {Ψ, g} and {ϕ, χ}.

This suggests to identify the Lagrangian of pure SUGRA on Minkowski spacetime as:

L̃SUGRA = Lkin(gµν) + Lkin(ψµ) (6.12)

To complete the analysis, we need to covariantize it under Diff(M) on a generalised spacetime manifold.

6.2 Pure SUGRA Lagrangian

In order to achieve the covariance under the di�eomorphisms group, we can leverage our knowledges of the
tetrads formalism and the Rarita-Schwinger theory and retrace the same steps we followed in section 4.3, to
covariantize the pure SUGRA action:

1. Replace the measure d4x with the canonical volume form:

d4x −→ ed4x : e = det(eaµ) =
√
−g (6.13)

2. Express the gamma matrices in the vierbein basis:

γa −→ γµ = eµaγ
a (6.14)

3. Evaluate the Minimal Coupling Principle, by leveraging Equation 4.20:

∂µ −→ Dµ = ∂µ − i

4
ωab
µ σab (6.15)

This way, we �nd the free SUGRA action in the hypothesis of maseless multiplet:

SSUGRA =

∫
d4x LSUGRA =

∫
d4x (LEH + LRS) =

∫
d4x e

(
M2

P

2
R− 1

2
ψ̄µγ

µνρDνψρ

)
(6.16)

which is invariant under the covariantized version of the variations of the �elds in Equation 6.7 and Equa-
tion 6.91.

1For a complete demonstration of the invariance of SSUGRA under SUGRA variations of the �elds lies outside the purposes of
this thesis, and we refer to excellent textbooks such as [1] and [4] for anyone interested in a complete proof.
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The action of pure Supergravity represents the �nal aim of this dissertation: under its charm, it encapsulates
the amazingly broad formalism we explored throughout this work.

No conclusion paragraph would ever manage to o�er such a pleasing farewell.
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