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Abstract

Applichiamo il metodo Diagrammatic Monte Carlo all’Hamiltoniana di Holstein
nel limite atomico. Le risultanti proprietà dello stato fondamentale del polarone
sono in accordo con la soluzione esatta, confermando la validità della nostra im-
plementazione. Iniziamo questa tesi con uno studio della teoria dei molti corpi,
concentrandoci sull’espansione diagrammatica dell’interazione elettrone-fonone.
Introduciamo poi il polarone di Holstein nella sua forma in seconda quantizzazione
e deriviamo la soluzione esatta per il limite atomico, quando il parametro di hopping
è impostato a zero. Gli interessi principali di questo lavoro risiedono nel quadro
teorico della teoria dei campi della materia condensata, così come nelle metodolo-
gie computazionali sviluppate per il Diagrammatic Monte Carlo nel contesto del
problema del polarone. Sviluppi futuri potrebbero includere l’estensione del metodo
all’Hamiltoniana di Holstein completa, dove il parametro di hopping è diverso da
zero.
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Abstract (English)

We apply the Diagrammatic Monte Carlo method to the Holstein Hamiltonian in the
atomic limit. The resulting ground-state properties of the polaron are found to be in
agreement with the exact solution, confirming the validity of our implementation. We
begin this thesis by reviewing many-body theory, with a focus on the diagrammatic
expansion of the electron-phonon interaction. We then introduce the Holstein
polaron in its second-quantised form and derive the exact solution for the atomic
limit, when the hopping parameter is set to zero. Key interests of this work lie
in the theoretical framework of condensed matter field theory, as well as in the
computational methodologies developed for the Diagrammatic Monte Carlo in the
context of the polaron problem. Further developments may include extending the
method to the full Holstein Hamiltonian, where the hopping parameter is nonzero.
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Introduction

The Diagrammatic Monte Carlo (DiagMC) method is a computational technique
based on the Markov chain Monte Carlo. It is used to calculate quantities that are
expressed in terms of diagrammatic series [1]. In condensed matter physics, the
DiagMC method allows one to stochastically sample Feynman diagrams and compute
the expectation values of quantities of interest, such as the Green’s function. DiagMC
was first developed in 1998 by Prokof’ev and Svistunov [2] to study the polaron
problem.

The polaron problem itself was first introduced by Landau in 1933 [3]. A polaron
is a quasiparticle consisting of an electron with its self-induced polarisation in a ionic
crystal. In this thesis, we focus on the Holstein polaron [4], which was developed by
its author to describe a one-dimensional molecular crystal. In this model, electron-
phonon interactions are taken to be short range, and phonons are assumed to be
dispersionless and optical. Here we study the atomic limit, whose second-quantised
Holstein Hamiltonian is greatly simplified and has an exact solution. This solution is
used to benchmark the implemented DiagMC algorithm to verify its correctness.

In this thesis, a great emphasis is placed in building the theoretical framework
that leads to the formulation of Green’s functions and Feynman diagrams. After
a review of the fundamentals of condensed matter physics in Ch. 1, in Ch. 2 we
introduce the Green’s functions. In Ch. 3, we make use of Wick’s theorem to expand
the electron-phonon Green’s function in terms of free propagators, and introduce
the rules to draw Feynman Diagrams. The Holstein Hamiltonian is then introduced
in Ch. 4, and an exact solution is presented for the second-quantised Hamiltonian in
the atomic limit. Finally, Ch. 5 is devoted to present the DiagMC method and its
implementation in C++. The exact solution developed in Ch. 4 serves as a benchmark
to verify the correctness of the DiagMC algorithm.
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Fundamentals of Condensed
Matter Physics

1
The original formalism of Quantum Mechanics was only interested in studying the
motion of particles, with the electromagnetic field remaining classical. This approach
is called first quantisation [5]. Despite its success in describing a diverse set of physi-
cal phenomena, first quantisation has built-in limitations when addressing scenarios
where the number of particles is not conserved. Later on, the electromagnetic field
was quantised, and the particles themselves were represented by quantised fields,
leading to a more comprehensive framework known as second quantisation. In this
approach, each state is represented in the occupation number basis.

Here, we assume the basic principles of Quantum Mechanics as known. However,
for the purpose of the present chapter, in Sect. 1.1 we recall the essentials of the
first quantisation for many-body problems. In Sect. 1.2, we introduce the second
quantisation formalism. In Sect. 1.3, we review the concept of crystal lattice and
tight-binding approximation, which is the basis for the Holstein model. Finally, in
Sect. 1.4, we introduce the concept of phonons, which are the quantised normal
modes of the lattice vibrations.

1.1 Review of First Quantization

We will start our review of first quantisation by considering N -particle systems,
i.e. systems containing n identical particles [5]. Two particles are considered
identical if they share the same quantum numbers. In first quantisation, we denote
the N -particle state function as ψ(r1, r2, . . . rN ). The fundamental assumption
is the principle of indistinguishability1, so that identical particles are considered
indistinguishable in principle. Suppose now that the positions ri and rj of two
particles are interchanged [5]:

ψ(r1, . . . , ri, . . . , rj , . . . , rN ) −→ ψ(r1, . . . , rj , . . . , ri, . . . , rN ).

1The principle of indistinguishability states that identical particles cannot be distinguished from one
another by any physical measurement. This implies that exchanging two identical particles does
not lead to a new physical state.
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From the principle of indistinguishability, this operation must yield the same physical
state, which implies that the modified wave function can differ from the original one
at most by a prefactor λ:

ψ(r1, . . . , ri, . . . , rj , . . . , rN ) = λψ(r1, . . . , rj , . . . , rk, . . . , rN ).

Interchanging again the same two positions:

ψ(r1, . . . , ri, . . . , rj , . . . , rN ) = λ2ψ(r1, . . . , ri, . . . , rj , . . . , rN ),

we conclude that λ = ±1. We thus identify two possible species of particles, bosons
and fermions:

ψ(r1, . . . , ri, . . . , rj , . . . , rN ) = +ψ(r1, . . . , rj , . . . , ri, . . . , rN ) (bosons),
ψ(r1, . . . , ri, . . . , rj , . . . , rN ) = −ψ(r1, . . . , rj , . . . , ri, . . . , rN ) (fermions).

(1.1)

For fermions, It is immediate to see that if ri = rj then ψ = 0. This is the Pauli
exclusion principle, stating that two fermions cannot occupy the same state.

Let us now consider the orthonormal single-particle basis {ψν(r)}, where ν is a
set of quantum numbers. By using the completeness relation, it is easy to show that
the N -Particle state function can be written as a linear superposition of the product
of the single-particle basis states:

ψ(r1, r2, . . . , rN ) =
∑

ν1,...,νN

Aν1,ν2,...,νNψν1(r1)ψν2(r2) . . . ψνN (rN ).

CoefficientsAν1,ν2,...,νN must be chosen according to the type of the particle so that Eq.
(1.1) is respected. In particular, it is possible to define the bosonic symmetrisation
operator Ŝ+ and the fermionic antisymmetrisation operator Ŝ− acting on the product
of single-particle states in the following way:

Ŝ±

N∏
j=1

ψνj (rj) = A

∣∣∣∣∣∣∣∣∣∣∣

ψν1(r1) ψν1(r2) . . . ψν1(rN )
ψν2(r1) ψν2(r2) . . . ψν2(rN )

...
...

. . .
...

ψνN (r1) ψνN (r2) . . . ψνN (rN )

∣∣∣∣∣∣∣∣∣∣∣
±

.
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For the fermionic operator Ŝ−, the Slater determinant [6] is used. The Slater
determinant is simply the ordinary determinant:∣∣∣∣∣∣∣∣∣∣∣

ψν1(r1) ψν1(r2) . . . ψν1(rN )
ψν2(r1) ψν2(r2) . . . ψν2(rN )
...

...
. . .

...
ψνN (r1) ψνN (r2) . . . ψνN (rN )

∣∣∣∣∣∣∣∣∣∣∣
−

=
∑

p∈SN

 N∏
j=1

ψνj (rp(j))

 sign(p).

Exchanging two columns of the Slater determinant changes its sign, thereby fulfilling
the fermionic antisymmetrisation requirement in Eq. (1.1). As for the bosons, we
use the permanent (the sign-less analogue of the determinant),∣∣∣∣∣∣∣∣∣∣∣

ψν1(r1) ψν1(r2) . . . ψν1(rN )
ψν2(r1) ψν2(r2) . . . ψν2(rN )
...

...
. . .

...
ψνN (r1) ψνN (r2) . . . ψνN (rN )

∣∣∣∣∣∣∣∣∣∣∣
+

=
∑

p∈SN

 N∏
j=1

ψνj (rp(j))

 .

Here, SN denotes the symmetric group of all N ! permutations p, with sign(p) rep-
resenting the sign of the permutation. The normalisation factor A is found to be

1∏
ν′
√

nν′ !
1√
N ! , where nν′ is the occupation number of state ν ′.

In summary, any wave function in the Hilbert space may be expressed as

ψ(r1, r2, . . . , rN ) =
∑

ν1,...,νN

Cν1,ν2,...,νN Ŝ±ψν1(r1)ψν2(r2) . . . ψνN (rN ).

1.2 Second Quantisation

In the second quantisation representation, each state is represented by the occupation
numbers of the single-particle states [5]. Let us denote nνj as the occupation number
of the state νj (i.e. the number of particles in the state νj), then the basis states for
the N -particle system are simply defined as

|nν1 , nν2 , nν3 , . . .〉, with
∑

j

nνj = N.

The writing |nν1 , nν2 , . . .〉 is a shorthand notation for the state with nν1 particles in
the state ν1, nν2 particles in the state ν2, and so on. The Fock space is formed by those
states that are a linear superposition of the basis defined above. The occupation
numbers nνj are of course non-negative integers, i.e. nνj ∈ N0. It is natural to

1.2 Second Quantisation 5



introduce the occupation number operator n̂νj , which is defined as the operator that
acts on the previous basis states and counts the number of particles in the state νj:

n̂νj |nν1 , . . . , nνj , . . .〉 = nνj |nν1 , . . . , nνj , . . .〉 . (1.2)

Notation. Let us make an important remark about the operator notation. In this
thesis we will follow Mahan’s approach [7]. An operator will be generally denoted
in its Schrödinger representation by O, while its interaction representation will
be denoted by Ô(t). Representations are discussed in detail in Sect. 2.1. When
ambiguity between an operator and its eigenstate arises, we will use the hat like in
Eq. (1.2).

1.2.1 Boson Creation and Annihilation Operators

Let us now suppose that the particles with quantum numbers νj are bosons. The
next step is to introduce the boson creation operator b†

νj
, which is defined as the

operator that increments the occupation number of the state |νj〉:

b†
νj
| . . . , nνj−1 , nνj , nνj+1 , . . .〉 ≡ B+(nνj ) | . . . , nνj−1 , nνj + 1, nνj+1 , . . .〉, (1.3)

withB+(nνj ) to be determined. Now, it is clear that the only nonzero matrix elements
of b†

νj
are 〈nνj + 1|b†

νj
|nνj 〉. It follows immediately that the complex conjugation

(
〈nνj + 1|b†

νj
|nνj 〉

)∗
= 〈nνj |bνj |nνj + 1〉 (1.4)

is also nonzero. Therefore, the operator bνj ≡
(
b†

νj

)†
acts to decrease the occupation

number nνj . We thus define the boson annihilation operator bνj in direct analogy
with Eq. (1.3):

bνj | . . . , nνj−1 , nνj , nνj+1 , . . . .〉 = B−(nνj ) | . . . , nνj−1 , nνj − 1, nνj+1 , . . .〉.

Let us consider the vacuum state |nνj = 0〉. By definition, the annihilation operator
must satisfy bνj |nνj = 0〉 = 0, which implies B−(0) = 0. To fix the normalization,
we require b†

νj
|nνj = 0〉 = |nνj = 1〉, so we set B+(0) = 1. Applying Eq. (1.4), we

then find B−(1) = 1.

Recall that bosonic states are symmetric under particle exchange. This means that
the order in which creation operators are applied does not matter:

b†
νi
b†

νj
|φ〉 = b†

νj
b†

νi
|φ〉 ,

6 Chapter 1 Fundamentals of Condensed Matter Physics



which leads to the commutation relations2

[
b†

νi
, b†

νj

]
= 0,

[
bνi , bνj

]
= 0.

It is clear that b†
νj

and bνk
commute if j 6= k. However, if j = k we see that

bνjb
†
νj
|0〉 − b†

νj
bνj |0〉 = |0〉 − 0 = |0〉 ,

hence, we require
[
bνj , b

†
νj

]
= 1. In conclusion, we have found the three commuta-

tion relations for the bosonic operator:[
bνj , b

†
νk

]
= δνj ,νk

,
[
b†

νj
, b†

νk

]
= 0,

[
bνj , bνk

]
= 0, (1.5)

Now consider the following commutation relations:

[b†
νbν , bν ] = −bν [b†

νbν , b
†
ν ] = b†

ν , (1.6)

Now, let us analyse the Hermitian operator bνb
†
ν . For any nonzero state |φ〉, we have

〈φ|b†
νbν |φ〉 ≥ 0, so for any real eigenvalue λ such that b†

νbν |φλ〉 = λ |φλ〉, it follows
that λ ≥ 0. Using Eq. (1.6), we find that

(b†
νbν)bν |φλ0〉 = (bνb

†
ν − 1)bν |φλ0〉 = bν(b†

νbν − 1)|φλ0〉 = bν(λ0 − 1)|φλ0〉, (1.7)

which means that the operator bν has decreased the eigenvalue λ0 by 1. This
process can be repeated until a negative eigenvalue is encountered, when the above
condition for λ is violated. When λ = 0, we are applying the operator bν on the
empty state |ν = 0〉. By denoting |φλ〉 = |nν〉, with λ = n = 0, 1, . . . , we immediately
conclude that b†

νbν is the number operator in Eq. (1.2):

b†
νbν |nν〉 = nν |nν〉 .

and that bν |nν〉 ∝ |nν − 1〉. The value B−(nν) is immediately found to be

〈nν |b†
νbν |nν〉 = nν , 〈nν |b†

νbν |nν〉 = |B−(nν)|2 =⇒ B−(nν) =
√
nν .

We can write Eq. (1.7) for the creation operator:

(b†
νbν)b†

ν |nν〉 = (n+ 1)b†
ν |nν〉,

2The second follows immediately by Hermitian conjugation of the first.
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from which we conclude that the creation operator increases the number by one, i.e.
b†

ν |nν〉 ∝ |nν + 1〉. Now calculate

|B+(nν)|2 = 〈nν |bνb
†
ν |nν〉 = 〈nν |b†

νbν |nν〉+ 〈nν |nν〉 = nν + 1

In summary, we have found that

bν |nν〉 =
√
nν |nν − 1〉 , b†

ν =
√
nν + 1 |nν + 1〉 .

Most importantly, we conclude that it is possible to write any N -particle system of
bosonic particles by using the operators we have just introduced:

Ŝ+
∣∣∣ψνn1

(r̃1)
〉 ∣∣∣ψνn2

(r̃2)
〉
. . .
∣∣∣ψνnN

(r̃N )
〉

= b†
νn1
b†

νn2
. . . b†

νnN
|0〉.

1.2.2 Fermion Creation and Annihilation Operators

We introduce the fermion creation and annihilation operators c†
νj

and cνj , respectively.
In analogy with the boson operators:

c†
νj

∣∣∣. . . , nνj−1 , nνj , nνj+1 , . . .
〉

= C+
(
nνj

) ∣∣∣. . . , nνj−1 , nνj + 1, nνj+1 , . . .
〉
,

cνj

∣∣∣. . . , nνj−1 , nνj , nνj+1 , . . .
〉

= C−
(
nνj

) ∣∣∣. . . , nνj−1 , nνj − 1, nνj+1 , . . .
〉
.

In order to make the state antisymmetric for particle interchange, one must account
for the order of the occupation numbers. We require that, if j 6= k:∣∣∣. . . , nνj = 1, . . . , nνk

= 1, . . .
〉

= −
∣∣∣. . . , nνk

= 1, . . . , nνj = 1, . . .
〉
,

which implies:
c†

νj
cνk
|φ〉 = −cνk

c†
νj
|φ〉 ,

i.e. the operators cνj and c†
νk

must anticommute if j 6= k. However, c†
νj

and cνj do
not: {

c†
νj
, cνj

}
|0〉 =

(
c†

νj
cν + cνjc

†
νj

)
|0〉 = |0〉 ,

from which we conclude{
cνj , c

†
νk

}
= δνj ,νk

,
{
c†

νj
, c†

νk

}
= 0,

{
cνj , cνk

}
= 0. (1.8)

It is immediate to observe that(
c+

νj

)2
= 0,

(
cνj

)2
= 0.
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We see that c†
ν and cν raises or lowers the eigenvalue of c†

νcν respectively(
c†

νcν

)
c†

ν |φ〉 = c†
ν

(
c†

νcν

)
|φ〉 − c†

ν |φ〉 = (nν + 1) c†
ν |φ〉

and (
c†

νcν

)
cν |φ〉 = (nν − 1) cν |φ〉 .

We now evaluate(
c†

νcν

)2
= c†

ν

(
cνc

†
ν

)
cν = c†

ν

(
1− c†

νcν

)
cν = c†

νcν −
(
c†

ν

)2
(cν)2 = c†

νcν

and find that
c†

νcν

(
c†

νcν − 1
)

= 0

which implies that c†
νcν |n〉 = n |n〉 with n = 0, 1, as expected for the fermions due

to Pauli exclusion principle. We identify n̂ν ≡ c†
νcν as the fermion number operators.

In summary:

cν |0〉 = 0, c†
ν |0〉 = |1〉, cν |1〉 = |0〉, c†

ν |1〉 = 0.

As we did for the bosons, we conclude that it is possible write any N -particle system
of fermionic particles by using the fermionic operators:

Ŝ−
∣∣∣ψνn1

(r̃1)
〉 ∣∣∣ψνn2

(r̃2)
〉
. . .
∣∣∣ψνnN

(r̃N )
〉

= c†
νn1
c†

νn2
. . . c†

νnN
|0〉.

1.2.3 Operators

One-particle operators

Let us first consider the one-particle operator Tj = T (rj,∇rj ). In first quantisation,
we write it as [5]

Tj =
∑

νa,νb

Tνaνb
|ψνb

(rj)〉 〈ψνa(rj)| ,

with
Tνbνa =

∫
drj ψ

∗
νb

(rj)T (rj ,∇rj )ψνa(rj).

In an N-particle system, we often consider the operator given by the sum of all
the identical operators acting on each particle, i.e. Ttot =

∑N
j=1 Tj . An immediate

1.2 Second Quantisation 9



example of this kind is the kinetic operator, which is given by the sum of the kinetic
operators for each particle. The action on the product state is

Ttot |ψνn1
(r1)〉 |ψνn2

(r2)〉 . . . |ψνnN
(rN )〉 =

=
N∑

j=1

∑
νbνa

Tνbνa |ψνn1
(r1)〉 . . . |ψνb

(rj)〉 〈ψνa(rj)|ψνnj
(rj)〉 . . . |ψνnN

(rN )〉

=
N∑

j=1

∑
νbνa

Tνbνaδνbνnj
|ψνn1

(r1)〉 . . . |ψνb
(rj)〉 . . . |ψνnN

(rN )〉
(1.9)

In second quantisation, one simply inserts the operator b†
νb

at site nj in Eq. (1.9),
obtaining the following representation:

Ttotb
†
νn1

. . . b†
νnN
|0〉 =

∑
νaνb

Tνbνa

N∑
j=1

δνa,νnj
b†

νn1
. . . b†

νb
. . . b†

nN
.

In order to find an optimal representation for the operator, one wants to have the
same operators on the left and right hand side of the equation. Thus, let us consider
ν ≡ νnj . Suppose that ν appears p > 0 times in the left hand side with a contribution(
b†

ν

)p
|0〉. In the RHS, the contribution is

b†
νb

(
b†

ν

)p−1
|0〉 = b†

νb

(1
p
bνb

†
ν

)(
b†

ν

)p−1
|0〉 =

(1
p
b†

νb
bν

)(
b†

ν

)p
|0〉.

Summing over j, the factor δνa,νnj
yields p identical contributions cancelling the

factor 1/p, hence

Ttot

[
b†

νn1
. . . b†

νnN
|0〉
]

=
∑
a,b

Tνbνab
†
νb
bνa

[
b†

νn1
. . . b†

νnN
|0〉
]
,

leading to the the operator identity:

Ttot =
∑
a,b

Tνaνb
b†

νa
bνb
.

The same procedure can be followed for the case of fermions, where the operator is
given by

Ttot =
∑
a,b

Tνaνb
c†

νa
cνb
.
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If we take the quantum numbers to be the wavevectors, then the matrix for the
electron kinetic operator is diagonal [8]:

〈
k′σ′∣∣T |kσ〉 = ~2k2

2m δk′,kδσ′,σ.

Thus, second quantisation representation of the kinetic operator is

T =
∑
k,σ

~2k2

2m c†
k,σckσ, (1.10)

The free-electron Hamiltonian in second quantisation is

Hfree =
∑
k,σ

~2k2

2m c†
kσckσ =

∑
k,σ

~2k2

2m nkσ,

where we introduced the occupation number operator nkσ.

Two-particle operators

We shall now consider two-particle operators, e.g. the Coulomb interaction

V (ri − rj) = e2

4πε0

1
|ri − rj |

.

The operator V can be decomposed as

V (ri, rj) =
∑
νaνb
νcνd

Vνcνd,νaνb
|ψνc(ri)〉|ψνd

(rj)〉〈ψνa(ri)|〈ψνb
(rj)|,

with
Vνcνd,νaνb

=
∫
dridrj ψ

∗
νc

(ri)ψ∗
νd

(rj)V (ri−rj)ψνa(ri)ψνb
(rj).

In a N-particle system, we are often interested in considering all possible interactions
between the particles:

Vtot(r1, . . . , rN ) =
N∑

i>j

V (ri, rj) = 1
2

N∑
i,j 6=i

V (ri, rj).
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The operator acts on a product state as follows:

Vtot |νn1〉 |νn2〉 . . . |νnN 〉

= 1
2

N∑
j 6=k

∑
νaνb
νcνd

Vνcνd,νaνb
δνa,νnj

δνb,νnk
|νn1〉 . . . |νc〉j . . . |νd〉k . . . |νnN 〉 . (1.11)

In second quantisation, we follow a similar procedure to what was described in
the previous section and gets the following operator identity:

Vtot = 1
2
∑
νiνj
νkνl

Vνiνjνkνl
a†

νi
a†

νj
aνl
aνk

.

1.2.4 Harmonic Oscillator

The harmonic oscillator is a particularly important example in many-body theory,
so we shall study the second-quantised form [5]. The one-dimensional harmonic
oscillator’s Hamiltonian is

H = 1
2mp2 + 1

2mω
2x2,

with x and p being the position and the momentum operators, respectively. The
important aspect is that they are conjugate variables:

[x, p] = i~.

It is possible to introduce the operators

aω = 1√
2

(
x√

~/mω
+ i

p

~

√
~/mω

)
,

a†
ω = 1√

2

(
x√

~/mω
− i p

~

√
~/mω

)
.

(1.12)

These operators allow us to express the position and momentum operators as:

x =
√
~/mω√

2

(
a†

ω + aω

)
,

p = ~
i√

2
√
~/mω

(
a†

ω − aω

)
,

12 Chapter 1 Fundamentals of Condensed Matter Physics



and the Hamiltonian is rewritten in terms of aω and a†
ω as:

H = ~ω
(
a†

ωaω + 1
2

)
.

It is straightforward to verify that the operators defined in Eq. (1.12) obey the same
bosonic commutation relations as in Eq. (1.5). The corresponding eigenstates |n〉
are given by:

|n〉 =

(
a†
)n

√
n!
|0〉 , H |n〉 = ~ω

(
n+ 1

2

)
|n〉 .

By similarity with the boson creation operators, a† operator, increases the number of
quanta in the harmonic oscillator by one. We shall see its usefulness when describing
phonon fields, which are the quantised excitations of the harmonic oscillator in a
solid.

1.3 Crystal Lattice

It is known that in solid systems the fundamental structure is called lattice, which
consists of a regular arrangement of ions. At zero temperature, the ions remain fixed
in their equilibrium position. In this case, the electrons interact only with the static
lattice potential, giving rise to a term Vel-lat. At finite temperature, the ions vibrate
around their equilibrium positions; such vibrations can be described in terms of
quantised normal modes of the lattice, known as phonons. The interaction between
phonons and electrons is indicated as Vel-ph. Before studying the phonons, in this
section we see how to formalise the lattice structure and state the Bloch’s theorem.

1.3.1 Bloch’s Theorem

The equilibrium positions R of each ion in a three-dimensional lattice can be
represented through the lattice basis vectors {a1,a2,a3} as

R = n1a1 + n2a2 + n3a3, n1, n2, n3 ∈ Z.

We define the reciprocal lattice as the Fourier transform of the equilibrium positions
from the real space to the wavevector space, referred to as reciprocal space (RS). The
reciprocal lattice (RL) is defined as [5]

RL ≡
{

G ∈ RS : eiG·R = 1
}
,
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and any vector G of the RL can be written through some basis {c1, c2, c3}

G = n′
1c1 + n′

2c2 + n′
3c3, n′

1, n
′
2, n

′
3 ∈ Z.

It can be shown that the following definition of the RL basis is consistent with the
definition of the RL given above:

c1 = 2π a2 × a3
a1 · a2 × a3

, c2 = 2π a3 × a1
a2 · a3 × a1

, c3 = 2π a1 × a2
a3 · a1 × a2

.

Because of the periodicity of the lattice, it is often useful to work in the First Brillouin
Zone, which is made of all the vectors of the reciprocal space that are closer to G = 0
than to any other vector in the reciprocal lattice. The First Brillouin Zone (FBZ) is
thus defined as

FBZ = {k ∈ RS : |k| < |k−M|, ∀M ∈ RL \ {0}}

Any vector p ∈ RS in the reciprocal space can therefore be represented as the sum
of a vector in the reciprocal lattice and a vector in the First Brillouin Zone:

p = G + k, G ∈ RL, k ∈ FBZ.

Let us now consider the Hamiltonian consisting of the kinetic part of the electrons
and the static interaction between the lattice and the electrons:

HBloch = Tel + Vel-latt(r), (1.13)

where the potential is periodic in the lattice:

V (r + R) = V (r) ∀R ∈ RL.

Any potential periodic in the lattice may be written through a Fourier transform as
follows:

V (r) =
∑
G
VGe

iG·r.

We will now state Bloch’s theorem [9] without proving it.

Theorem 1.1 (Bloch’s theorem). The wavefunctions of the crystal Hamiltonian HBloch

can be written as the product of a plane wave of vector k ∈ FBZ and an appropriate
function periodic in the lattice:

HBlochψnkσ = εnkψnkσ, ψnkσ(r) = unk(r)eik·rχσ,
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where unk(r + R) = unk(r), k ∈ FBZ and n ∈ N is the band index.

Bloch’s theorem classifies energy eigenstates according to the FBZ wavevector k
as well as a band index n ∈ N. This gives rise to the band structure. According to
the effective-mass approximation [5], one can prove that the eigenstates ψnkσ(r)
may be approximated by plane waves if the electronic mass is changed to a material-
dependent effective mass m∗:

ψnkσ = 1√
V
eik·rχσ,

with k unrestricted, and V is the volume.

1.3.2 Tight-Binding Approximation

The tight-binding model [10] is one of the simplest approaches to describe the
electronic structure of solids. In the tight-binding approximation, electrons are
considered to be tightly bound to the atom sites. For this reason, they are assumed
to occupy atomic-like orbitals and can "hop" between neighbouring sites due to
the overlap of these orbitals. This approximation is of great interest for this thesis
because it is the basis for the Holstein model.

We consider a crystal lattice made of N identical molecules or atoms, which are
located at positions Rn in the three-dimensional space. Each molecule contributes
identically to the potential to which the electrons are subjected. The total potential
is given by the sum of the potentials of all the molecules in the crystal lattice:

V (r) =
∑

n

U(r−Rn).

Because of the short-range approximation, one assumes the one-electron wave
function of the m-th energy level to have the following form

ψm (r) = 1√
N

∑
n

am(Rn, r)φm (r−Rn) , (1.14)

where φ(r−Rn)m are the wave orbitals for the n-th molecule located at position
Rn. These orbitals are solution to the stationary Schrödinger equation for a single
electron in the potential of the n-th molecule:[

− ~2

2m ∇
2 + U(r − Rn)

]
φ(r − Rn) = E φ(r − Rn).
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Tight binding in second quantisation

In Eq. (1.10), we have seen how the kinetic operator can be written in second
quantisation. In absence of external fields, the Hamiltonian for a single electron
would be written as

Hfree =
∑
kσ

εkσc
†
kck, εk = ~2k2

2m (1.15)

In Eq. (1.14), we can consider the functions ψm to be Bloch’s wavefunctions:

ψm(k, r) = 1√
N

∑
n

am(Rn, r)eik·Rn ,

which leads to the second-quantised Hamiltonian3:

Hel =
∑

k
εkc

†
kσckσ,

[
− ~2

2m∇
2 + V (r)

]
ψm0(k, r) = εkψm0(k, r),

where the dispersion relation for εk is of course different from the free-electron
energy in Eq. (1.15). However, it is often the case that, when working with electron
wave functions that are tightly bound to their lattice sites, it is more convenient to
use the the Wannier states, which are the Fourier transform of the Bloch’s states [11,
12]:

am0(Rn, r) = 1√
N

∑
k∈FBZ

e−ik·Rnψm0(k, r)

The Wannier states form a orthonormal basis of the single-particle Hilbert space.
The unitary transformation between the Bloch and the Wannier states induces an
operator transformation:

cjσ = 1√
N

∑
k∈FBZ

eik·Rjckσ,

ckσ = 1√
N

∑
j

e−ik·Rjcjσ,
(1.16)

It is then possible to write the Hamiltonian in the lattice representation as

Hel = 1
N

∑
ij

∑
k
eik·(Ri−Rj)εkc

†
icj = 1

N

∑
ij

tijc
†
icj , (1.17)

3Since we are only interested in one specific electronic band, say m0, we suppose m ≡ m0, and we
suppress the index m from the following operator notations.
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Fig. 1.1: Comparison of the free electron energy dispersion (red) and the tight-binding
energy dispersion (blue).

where we have introduced the hopping matrix or hopping term:

tij ≡
∑

k
eik·(Ri−Rj)εk. (1.18)

The meaning of Eq. (1.17) is quite intuitive. An electron is annihilated at the site
Rj and created at the site Ri. When this happens, we say that the electron hops from
the j-th site to the i-th site. The hopping term tij is interpreted as the the energy
associated to this process. It is easy to see that the value of tij will be negligible for
large distances between the sites i and j, this effect is even more pronounced given
that the potential U(r) is assumed to be short-ranged. Therefore, in the tight-binding
approximation the hopping parameter tij is nonzero only for nearest neighbour sites,
and its value is taken to be constant: −t. In the nearest-neighbour approximation,
the Hamiltonian can be written as

Htb = −t
∑
〈i,j〉

(c†
icj + c†

jci) = − t2
∑
i,δ

(
c†

ici+δ + c†
i+δci

)
, (1.19)

where we have dropped the sum over the same indexes (i = j) because it is a
constant shift in energy4. The symbol 〈i, j〉 denotes that the sum is over the pairs of
sites i, j that are close neighbours. The term δ is used to index the nearest neighbour
sites. In case of the extreme atomic limit, the energy levels εk are degenerate, and
we take tij = −tδij: the hopping is completely suppressed. It is possible to rewrite

4This is true if we assume that the lattice energies εi are the same.
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Fig. 1.2: Schematic representation of lattice vibrations in a one-dimensional chain. Each
site is at a position R0

n = na, and the corresponding atom is displaced by un from
its equilibrium position.

the Hamiltonian back in the momentum space:

Htb =− t

2
1
N

∑
i

∑
δ

∑
k,k′

[
e−ik·Rieik′·(Ri+Rδ)c†

kck′ + eik·Rie−ik′·(Ri+Rδ)c†
kck′

]

=
∑

k
εtb

k c
†
kck,

(1.20)
with the dispersion relation:

εtb
k = −t

∑
δ

cos(k ·Rδ). (1.21)

The tight-binding dispersion relation is plotted in Fig. 1.1 together with the free
electron dispersion relation.

1.4 Phonons

In the previous sections, the concept of lattice vibrations was introduced. To describe
vibrations, a simplified model is considered: we take a one-dimensional lattice
consisting of N identical atoms of mass m, equally spaced by a lattice constant a.
Therefore, in equilibrium each atom occupy the position R0

n = na, where n labels the
site index. We denote by un the displacement of the n-th atom from its equilibrium
position R0

n. This model is represented in Fig. 1.2.

The ground-state energy of the system is expanded in powers of the displacements
[13]:

E0(u1, . . . , uN ) ≈ E0(0) +
∑

n

[
∂E0
∂un

]
u=0

un + 1
2
∑
n,m

[
∂2E0

∂un∂um

]
u=0

unum
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Where we used u ≡ (u1, u2, . . . , uN ). Since un = 0 represents an equilibrium
position, the first-derivative term is zero. The interatomic force constants are defined
as

Dnm ≡
[

∂2E0
∂un∂um

]
u=0

, (1.22)

and thus the total crystal energy is

E0(u1, . . . , uN ) = E0(0) + 1
2
∑
n,m

Dnmunum.

By Eq. (1.22), Dnm is real and symmetric: Dnm = Dmn ∈ R. Furthermore, when all
atomic displacements are equal we require all forces to be zero; this gives rise to the
sum rule: ∑

m

Dnm = 0, ∀n.

We also require interatomic forces to be relevant only when they occur between
neighbouring sites; that is, we impose:

Dnm 6= 0 ⇐⇒ |n−m| ≤ 1.

By applying the symmetry rules stated above, we find:

Dnn = 2C, Dn,n+1 = Dn+1,n = −C.

This leads to the energy5

E0 = 1
2C

∑
n

(
2u2

n − unun+1 − unun−1
)

= 1
2C

∑
n

(
u2

n + u2
n+1 − unun+1 − un+1un

)
= 1

2C
∑

n

(un − un+1)2 .

In Quantum Mechanics, this Hamiltonian is written as

H =
∑

n

1
2πp

2
n + 1

2C
∑

n

[
2u2

n − unun+1 − unun+1
]
. (1.23)

As was done in Sect. 1.3.1, periodic boundary conditions are imposed on the
system. With N atom sites forming a linear chain of distance a, then the wavevector
k must satisfy

kNa = nπ, n ∈ Z

5Ignoring the constant part of the Hamiltonian.
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and the wavevectors k in the FBZ are given by

k = −π
a

+ n

N

2π
a

with n = 1, . . . , N, (1.24)

so there are N wavectors in the FBZ.

We can then rewrite Eq. (1.23) using the Fourier transforms of the conjugate
variable

pn = 1√
N

∑
k∈FBZ

pke
ikR0

n , pk = 1√
N

N∑
j=1

pne
−ikR0

n ,

un = 1√
N

∑
k∈FBZ

uke
ikR0

n , uk = 1√
N

N∑
j=1

une
−ikR0

n ,

(1.25)

with the commutation rules:

[uk, pk] = i~δk,k′ , [uk, uk′ ] = [pk, pk′ ] = 0.

To compute Eq. (1.23), we use the following relations:

∑
n

u2
n = 1

N

∑
n

∑
kk′

ei(k+k′)R0
nukuk′ =

∑
kk′

[
1
N

∑
n

ei(k+k′)R0
n

]
ukuk′ =

=
∑
kk′

δk,−k′ukuk′ =
∑

k

uku−k,∑
n

p2
n =

∑
q

pqp−q,

∑
n

unun+1 = 1
N

∑
n

∑
kk′

ei(k+k′)R0
n+ik′aukuk′ =

∑
k

uku−ke
−ika.

where we used the fact that R0
n+1 = R0

n + a. These equations are now inserted into
Eq. (1.23), yielding

H =
∑

k

1
2Mpkp−k + 1

2C
∑

k

uku−k

[
2− e−ika − eika

]
=
∑

k

[ 1
2Mpkp−k + 1

2Mω2
kuku−k

]
,

with
ω2

k = 4C
M

sin2
(
ka

2

)
.
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We now perform a canonical transformation to appropriate creation and annihilation
operators. We introduce the operator bk, which is defined such that

uk =
√

~
2Mωk

[
bk + b†

−k

]
(1.26)

pk = −i

√
M~ωk

2
[
b−k − b†

k

]
(1.27)

It is straightforward to verify that the above definitions of bk and b†
k satisfy the

bosonic commutation relations, previously introduced in Eq. (1.5):[
bk, b

†
k′

]
= δk,k′ , [bk, bk′ ] =

[
b†

k, b
†
k′

]
= 0.

We therefore identify bk and b†
k as the annihilation and creation operators for the

k-th mode, respectively. Using these operators, the Hamiltonian of the system takes
the form

H =
∑

k

~ωk

[
b†

kbk + 1
2

]
.

which describes a set of independent quantum harmonic oscillators, one for each
mode k. The quantised excitations of these oscillators are known as phonons, which
represent discrete quanta of lattice vibrations.

Phonon modes: acoustic and optical. In the one-dimensional case [5], when the
unit cell contains more than one atom the phonon dispersion relation is no longer a
single continuous curve. Instead, the dispersion relation splits into multiple branches,
analogous to the formation of the Bloch bands for the electrons. These branches
are called phonon modes and are indexed by the branch index λ. For instance, with
two atoms per unit cell the dispersion curve is divided into two branches. Phonons
in the lower branch are called acoustic phonons; those in the upper branch require
high energies to be excited, and are called optical phonons because they are excited
by optical radiation. In a one-dimensional chain, for s ions per unit cell, there
always is 1 acoustic branch and s− 1 optical branches. Each phonon is indexed by a
wavevector k and a branch index λ, and the phonon frequency is denoted by ωkλ.

Three-dimensional case. The three-dimensional case can be analysed in a manner
analogous to the one-dimensional case; here we summarize the main results. For
each value of k in the single-atom unit cell, the harmonic oscillator admits three
polarization vectors

{
εk,1, εk,2, εk,3

}
that form an orthonormal basis. Typical exam-
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ples of these polarizations are transverse, longitudinal, and general. The atomic
displacement can then be written as

ukλ ≡ fkλ
1√
2

(
b†

−kλ + bkλ

)
εkλ (1.28)

with

fkλ =
√

~
Mωkλ

,
[
bkλ, b

†
k′λ′

]
= δk,k′ δλ,λ′ .

The phonon Hamiltonian is

Hph =
∑
kλ

~ωkλ

(
b†

kλbkλ + 1
2

)
.

If the number of atoms in the unit cell is increased from 1 to s, then it is possible
to show that there are 3 acoustic modes and 3(s− 1) optical modes. The λ index is
used to distinguish index both the polarisation and the mode.

1.4.1 Electron-Phonon Interaction

Having established a model for the phonons, we proceed to examine the coupling
between electrons and lattice ions. As previously discussed, the electron-ion interac-
tion in a crystalline solid can be decomposed into two distinct contributions [5], the
interaction with the static lattice potential and the phonons:

Vel-ion = Vel-latt + Vel-ph.

Let us denote the electron density at position r by ρel(r). Each ion is displaced by a
quantity uj from its lattice site R0

j , so its position is Rj = R0
j + uj . The Coulomb

potential between an electron in r and an ion located at Rj is given by Vion(r−Rj).
To account for all N ions, sum over the index j:

Vel−ion =
∫
d3r

(−e) ρel (r)
N∑

j=1
Vion (r−Rj)

 , (1.29)

and consider the Taylor expansion around the equilibrium position R0
j :

Vion(r−Rj) ≈ Vion

(
r−R0

j

)
−∇rVion

(
r−R0

j

)
· uj .
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Eq. (1.29) is then evaluated as

Vel−ion =
∫
dr(−e)ρel(r)

N∑
j=1

Vion
(
r−R0

j

)
−
∫
dr(−e)ρel(r)×

×
N∑

j=1
∇rVion

(
r−R0

j

)
· uj . (1.30)

The first term Vel−latt is the static interaction with the lattice. This term was already
studied Sect. 1.3.1, in the crystal Hamiltonian HBloch: it is already taken into account
in the Bloch bands. The dynamic part of the interaction is the electron-phonon
interaction, which is the second term in Eq. (1.30):

Vel−ph =
∫
drρel(r)

∑
j

euj · ∇rVion
(
r−R0

j

) . (1.31)

First, consider the Fourier transform of Vion(r−R0
j ):

Vion(r−R0
j ) = 1

V
∑

p
Vpe

ip·
(

r−R0
j

)
= 1
V

∑
k∈FBZ
G∈RL

Vk+Ge
i(k+G)·

(
r−R0

j

)
,

where
Vp =

∫
V
d3r

{
e−ip·rVion(r)

}
.

The derivative in Eq. (1.30) is computed as

∇rVion(r−R0
j ) = 1

V
∑

k∈FBZ
G∈RL

Vk+Gi (k + G) ei(k+G)·(r−R0
j ).

Then use the relation in Eq. (1.28):

ukλ ≡
√

~
2Mωkλ

(
b†

−kλ + bkλ

)
εkλ,

and compute the sum:

∑
j

e
1√
N

∑
k∈FBZ

uke
ik·R0

j =
∑

j

e
1√
N

∑
k∈FBZ

√
~

2Mωkλ

(
b†

−kλ + bkλ

)
εkλe

ik·R0
j .
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We obtain:

1
V
∑

j

euj · ∇rVion
(
r−R0

j

)
= 1
V
∑

j

e
1√
N

∑
k∈FBZ

∑
q∈FBZ
G∈RL

√
~

2Mωkλ
×

×
(
b†

−kλ + bkλ

)
eik·R0

j εkλ · Vk+G i (q + G) ei(q+G)·
(

r−R0
j

)
(1.32)

The exponential term with the sum over j yields

N∑
j=1

eiR0
j ·(k−q−G) =

√
Nδk,q+G,

and summing over k, Eq. (1.32) is rewritten as

∑
j

euj · ∇rVel
(
r−R0

j

)
= 1
V

∑
q∈FBZ
G∈RL

λ

Mq,G,λ

(
bqλ + b†

−qλ

)
ei(q+G)·r,

with the electron-phonon coupling strength defined as

Mq,G,λ = ie

√
N~

2Mωqλ
(q + G) · εqλVq+G.

Finally, we consider in Eq. (1.31) the electron density term. This is written using
the number operator as6

ρel(r) = 1
V
∑

k,p,σ

e−ip·rc†
k+p,σckσ

This term in inserted in Eq. (1.29) and yields

Vel−ph =
∫
d3r

 1
V
∑
k,p,σ

e−ip·rc†
k+p,σck,σ

1
V
∑
q,G

Mq,G,λ

(
bq,λ + b†

−q,λ

)
ei(q+G)·r


= 1
V
∑

k,q,G
Mq,G,λc

†
k+q+G,σck,σ

(
bqλ + b†

−qλ

)

In conclusion, the electron-phonon interaction is written in second quantisation as

Vel−ph = 1
V
∑
kσ

∑
qλ

∑
G
Mq,G,λc

†
k+q+G,σck,σ

(
bqλ + b†

−qλ

)
. (1.33)

6To obtain this expression, simply take the Fourier transform of the electron density operator.
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The processes where G 6= 0 are called umklapp processes and they are often
negligible when compared to normal processes (G = 0); this is because the term
Vq+G depends on 1

(q+G)2 . For this reason, in this thesis we will consider G = 0.
Furthermore, we consider only one phonon mode λ, so the sum over λ is removed
as well:

Vel−ph = 1
V
∑
kσ

∑
q
Mqc

†
k+q,σckσ

(
bq + b†

−q

)
. (1.34)
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Green’s Functions 2
In this chapter, we introduce the Green’s functions, which are the quantity we
ultimately aim to calculate through the Diagrammatic Monte Carlo for the Holstein
polaron. We start by introducing the interaction representation in Sect. 2.1 and the
Dyson series in Sect. 2.2. Sects. 2.3 – 2.5 will give a brief overview of the Green’s
functions formalism. Finally, Sect. 2.6 will address how to extract observables
relevant to the polaron problem from the imaginary-time Green’s function. In this
chapter, we follow Mahan’s notation once again and set ~ = 1 [7].

2.1 Interaction Representation

Before introducing the Green’s functions formalism, we turn our attention to three
different representations in Quantum Mechanics [7]: Schrödinger, Heisenberg, and
interaction representation.

Schrödinger representation. The most common representation when working with
a time-independent Hamiltonian is the Schrödinger representation:

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 =⇒ |ψ(t)〉 = e− i

~Ht |ψ0〉 .

Thus, the wave functions |ψ(t)〉 are time dependent, whereas operators are indepen-
dent of time1.

Heisenberg representation. In contrast, the Heisenberg representation treats the
wave functions as time independent, and the operators as dependent on time. The
time evolution of an operator O(t) is given by

i~
∂O(t)
∂t

= [O(t),H] =⇒ O(t) = eiHtO(0)e−iHt.

1Unless the operator explicitly depends on time t. However, in this thesis we will not consider such
cases.
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Notice how the time dependence of these operators appear to be contrary. However,
they actually yield the same physical results. To see this, simply evaluate the matrix
element of an operator O(t) between two wave functions |ψ1〉 and |ψ2〉:

〈ψ1|O(t)|ψ2〉 = 〈ψ1|e
i
~HtO(0)e− i

~Ht|ψ2〉 = 〈ψ1(t)|O(0)|ψ2(t)〉 .

Because of this, the Heisenberg representation is equivalent to the Schrödinger
representation.

Interaction representation. Finally, consider a Hamiltonian of the form:

H = H0 + V,

where H0 is the unperturbed part, which is taken to be exactly solvable, and V

contains the interactions. In the interaction representation, both the operators and
the wave functions are time dependent and are defined as:

Ô(t) ≡ eiH0tOe−iH0t, |ψ̂(t)〉 ≡ eiH0e−iHt |ψ(t)〉 . (2.1)

Note that, in general, eiH0te−iHt 6= eiH0t−iHt, as the equality only holds if the
operators commute: [H0,H] = [H0, V ] = 0. However, if that is not usually the case.
If the operators were to commute, then the problem would be trivial and it would
not require the use of many-body theory.

Notation. Let us repeat again a few important remarks about the notation that
was used up to to this point and will be used in further chapters. We shall use a
common notation in many-body physics that was adopted by Mahan [7]:

• In the Schrödinger representation, the wave function and the operator are
denoted by |ψ(t)〉 and O, respectively.

• In the Heisenberg representation, the wave function and the operator are
denoted by |ψ〉 and O(t), respectively.

• In the interaction picture, the wave function and the operator are denoted by
|ψ̂(t)〉 and Ô(t), respectively.

Lastly, we show that the matrix elements in the interaction representation are
equivalent to those of the other representations:〈

ψ̂1(t)
∣∣∣Ô(t)

∣∣∣ψ̂2(t)
〉

=
〈
ψ1(0)

∣∣∣eiHte−iH0t
(
eiH0tOe−iH0t

)
eiH0te−iHt

∣∣∣ψ2(0)
〉

=
〈
ψ1(0)

∣∣∣eiHtO(0)e−iHt
∣∣∣ψ2(0)

〉
= 〈ψ1(t)|O(0)|ψ2(t)〉 .
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2.2 Dyson Series

By Eq. (2.1), in the interaction representation the time evolution of an operator is
governed by the unperturbed Hamiltonian H0. We show that the time dependence
of the wave functions is given by the interactions [7]:

∂

∂t
|ψ̂(t)〉 = ieiH0t (H0 −H) e−iHt |ψ(0)〉

= −ieiH0tV e−iHt |ψ(0)〉

= −ieiH0tV e−iH0t
[
eiH0te−iHt |ψ(0)〉

]
= −iV̂ (t) ˆ|ψ〉 (t), (2.2)

This is referred to as equation of motion. Next, we define the time-evolution operator.

Definition 2.1 (Time-evolution operator). The time-evolution operator Û(t) is
defined in the interaction picture as

Û(t) ≡ eiH0te−iHt =⇒ |ψ̂(t)〉 = Û(t) |ψ(0)〉 , (2.3)

By Eq. (2.2), the equation of motion for the operator Û(t) is

∂

∂t
Û(t) = −iV̂ (t)Û(t) =⇒ Û(t) = 1− i

∫ t

0
dt1V̂ (t1)Û(t1). (2.4)

This is a recursive relation, i.e. we write Û(t1) as

Û(t1) = 1− i
∫ t1

0
dt2V̂ (t2)Û(t2),

and replace into Eq. (2.4):

Û(t) = 1− i
∫ t

0
dt1V̂ (t1) + (−i)2

∫ t

0
dt1

∫ t1

0
dt2V̂ (t2)Û(t2).

By iterating this process repeatedly, we find

Û(t) = 1− i
∫ t

0
dt1 V̂ (t1) + (−i)2

∫ t

0
dt1

∫ t1

0
dt2 V̂ (t1)V̂ (t2) + · · ·

=
∞∑

n=0
(−i)n

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn V̂ (t1)V̂ (t2) . . . V̂ (tn) (2.5)
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Time-ordering operator. Next, we introduce the time-ordering operator T , whose
action on a group of time-dependent operator is to arrange them by placing the
earliest times to the right. For example, suppose that t1 > t2 > t3, we have

T V (t2)V (t3)V (t1) = V (t1)V (t2)V (t3).

If the operators upon which T acts are fermionic, then by the anticommutation rule
in Eq. (1.8) the expression must be multiplied by −1.

Notation. When considering a group of operators upon which T acts, we omit the
parenthesis. For example, by notation

T ABC

we are referring to
T (ABC) .

Eq. (2.5) can be rewritten using T as follows. Consider the integral

1
2!

∫ t

0
dt1

∫ t

0
dt2T V̂ (t1)V̂ (t2) =

= 1
2!

∫ t

0
dt1

∫ t1

0
dt2V̂ (t1)V̂ (t2) + 1

2!

∫ t

0
dt2

∫ t2

0
dt2V̂ (t2)V̂ (t1),

the second term in the RHS is the same as the first (simply swap integration variables
t1 and t2). Thus, the n = 2 term in Eq. (2.5) is rewritten as∫ t

0
dt1

∫ t1

0
dt2V̂ (t1)V̂ (t2) = 1

2!

∫ t

0
dt1

∫ t

0
dt2T V̂ (t1)V̂ (t2).

It can be shown similarly that this is true for any number n of operators. Therefore,
Eq. (2.5) is rewritten as

Û(t) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

0
dt1

∫ t

0
dt2 · · ·

∫ t

0
dtnT

[
V̂ (t1) V̂ (t2) · · · V̂ (tn)

]
, (2.6)

which is known as Dyson series. It is often abbreviated as

Û(t) = T exp
[
−i
∫ t

0
dt1V̂ (t1)

]
,

which is just an alternative notation to represent the series in Eq. (2.6).
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S-matrix operator. Similarly to how we defined Û(t), we now define the S-matrix
operator.

Definition 2.2 (S-matrix). The S-matrix is defined as the operator that evolves |ψ̂(t′)〉
from t′ to t

ψ̂(t) = S(t, t′)ψ̂(t′).

We can find an expression for S(t, t′) in terms of the operator Û(t):

ψ̂(t) = Û(t)ψ̂(0) = S(t, t′)Û(t′)ψ̂(0),

which implies
S(t, t′) = Û(t)Û †(t′).

2.3 Real-Time Green’s Functions

2.3.1 Electron Green’s Function

Let us now state the definition of the electron real-time Green’s function at zero
temperature [7].

Definition 2.3 (Electron Green’s function at zero temperature). The electron Green’s
function at zero temperature is defined in the Heisenberg representation as

G(λ, t− t′) = −i 〈| T cλ(t)c†
λ(t′) |〉 , (2.7)

In particular, the operator c†
λ(t) is the electron’s creation operator in the Heisenberg

representation for some quantum numbers λ (e.g. λ = (p, σ)). |〉 is the ground state
of the Hamiltonian H = H0 + V . Since we are using the Heisenberg representation,
|〉 is independent of time, whereas the operator cλ(t) is given by

cλ(t) = eiHtcλe
−iHt.

We now use the notation 〈| . . . |〉 to differentiate from 〈. . .〉: the latter will be em-
ployed later as the thermodynamic average.

Now consider t > t′: Eq. (2.7) becomes

G(λ, t− t′) = −i 〈| cλ(t)c†
λ(t′) |〉 ,
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which can be seen as taking the ground state |〉, creating an excitation λ at time t′,
and later destroying such excitation at time t. Suppose now that t′ > t instead; in
this case, the Green’s function is

G(λ, t′ > t) = i 〈| c†
λ(t′)cλ(t) |〉 ,

which is interpreted as the destruction of an electron in the state λ at time t and
the creation of that same state at a later time t′. Note that this is only possible if |〉
contains an electron in the state λ at the initial time t.

2.3.2 Phonon Green’s Function
Consider now the electron-phonon interaction as defined in Eq. (1.33). The opera-
tors Aqλ and A†

qλ are defined as [7]:

Aqλ ≡
(
bqλ + b†

−qλ

)
, A†

qλ ≡
(
b†

qλ + b−qλ

)
.

Aqλ can be thought of as the operator removing q; this can be done either by
annihilating a phonon of momentum q through bq or by creating a phonon of
opposite momentum −q through b†

−q. Similarly, A†
qλ is seen as the operator that

adds q, and that is done by creating a phonon of momentum −q or destroying one
of momentum q.

Definition 2.4 (Phonon Green’s Function). The phonon Green’s function at zero
temperature is defined in the Heisenberg representation as2

D(q, t− t′) ≡ −i 〈| T Aq(t)A−q(t′) |〉 ,

2.4 Matsubara Green’s Function

2.4.1 Definition
In this section, we aim to introduce the effects of temperature in the Green’s functions
formalism. We will work in the grand-canonical ensemble and use the Hamiltonian
[14]:

H̄ ≡ H − µN = H̄0 + V

and
H̄0 = H0 − µN,

2From now on we ignore the polarization λ of the phonons.
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where µ is the chemical potential and N the number of particles. The Hamiltonians
under consideration usually have the property that they commute with the number
operator, that is

[H0, N ] = 0,

[H,N ] = 0.

It is therefore possible to define simultaneous eigenstates of H0 and N , as well of H
andN . We now call H̄0, defined as above, the non-interacting problem, which is then
affected by the perturbation V . Once again, we suppose that the non-interacting
problem H0 is fully solvable, so that by extent H̄0 is as well.

We may now introduce the effects of temperature in real time by redefining
Eq. (2.7) as an average over the grand-canonical ensemble. That is indeed what
we will do in Sect. 4.3. However, the thermal average requires the introduction of
the factor e−βH̄ in the numerator of Eq. (2.7), whereas the operators c†(t) evolves
according to e±iH̄t. This mismatch in the exponents, one real and one imaginary,
renders the perturbation theory that we will soon see a difficult task. It is easier to
work in imaginary time, by substituting it→ τ . As for the real time, we define an
imaginary-time Heisenberg picture as

O(τ) = eτH̄Oe−τH̄ ,

and the interaction representation as

Ô(τ) = eτH̄0Oe−τH̄0 . (2.8)

Û(t) can easily be generalised to the imaginary-time version:

Û(τ) = eτH̄0e−τH̄ . (2.9)

After introducing the imaginary time τ and the grand-canonical Hamiltonian H̄, we
may now define the Matsubara Green’s function.

Definition 2.5 (Matsubara Green’s function for the electron). The Matsubara
or imaginary-time Green’s function for the electron is defined in the Heisenberg
representation as

G(λ, τ, τ ′) ≡ −
〈
Tτ cλ(t)c†

λ(t′)
〉
. (2.10)

2.4 Matsubara Green’s Function 33



The notation3 〈A〉 is now used to refer to the thermodynamic average of an
operator A. Tτ is the imaginary time-ordering operator, and acts identically to the
real time-ordering operator T . Eq. (2.10) is then written as the trace

G(λ, τ, τ ′) = − 1
Z

Tr
(
e−βH̄Tτe

τH̄ ĉλe
−(τ−τ ′)H̄ ĉ†

λe
−τ ′H̄

)
, (2.11)

where Z is the grand-canonical partition function:

Z = Tr
[
e−βH̄

]
.

2.4.2 Properties

It is easy to show4 that the Matsubara Green’s function only depends on the time
difference τ − τ ′ and that β ≤ τ ≤ β. As a consequence, we can set τ ′ = 0 and study

G(λ, τ) = −
〈
Tτ cλ(τ)c†

λ

〉
with β ≤ τ ≤ β (2.12)

By using the cyclic property of the trace, we can show that the Matsubara Green’s
function is periodic (aperiodic) for bosons (fermions) in the imaginary time:

G(λ, τ) = ±G(λ, τ − β). (2.13)

We make use of this property and use the formalism of discrete Fourier transform to
expand the Matsubara Green’s function in terms of discrete frequencies:

G(λ, τ) = 1
β

+∞∑
n=−∞

e−iωnτG(λ, iωn).

We then impose the constraint in Eq. (2.13) to find that

e−iωnτ = ±e−iωn(τ−β) =⇒ eiωnβ = ±1,

which implies

ωn =
{

2nπ/β n ∈ Z for bosons,
(2n+ 1)π/β n ∈ Z for fermions.

ωn are know known as Matsubara frequencies. The inverse transformation is

G(λ, iωn) = 1
2

∫ β~

−β~
eiωnτG(λ, τ) dτ.

3This is different from the notation 〈|A |〉 used before, which simply denoted the term 〈ψ|A |ψ〉.
4See [14] for a detailed proof.
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2.4.3 Green’s Functions and the U-operator

We now take the wave vector k and the spin index σ as the quantum numbers, i.e.
λ = (k, σ). Consider the Matsubara Green’s function for the electron:

G(kσ, τ) = − 1
Z

Tr
[
e−βH̄Tτe

τH̄ckσe
−τH̄c†

kσ

]
, (2.14)

with
H̄ = H̄0 + V = H0 − µN + V,

and the partition function
Z = Tr

[
e−βH̄

]
.

Then we consider the Û operators in the interaction representation:

Û(τ) = eτH̄0e−τH̄ , Û−1(τ) = eτH̄e−τH̄0 .

The creation and annihilation operators are written in the interaction representation
as in Eq. (2.8):

ĉkσ(τ) = eτH̄0ckσe
−τH̄0 .

Eq. (2.14) is then written for τ > 0 as

G(kσ, τ) = −
Tr
[
e−βH̄0eβH̄0e−βH̄eτH̄e−τH̄0eτH̄0ckσe

−τH̄0eτH̄0e−τH̄c†
kσ

]
Tr
[
e−βH̄0eβH̄0e−βH̄

]
= −

Tr
[
e−βH̄0Û(β)Û−1(τ)ĉkσ(τ)Û(τ)ĉ†

kσ

]
Tr
[
e−βH̄0Û(β)

] ,

(2.15)

where we used the cyclical property of the trace and the identity 1 = eαe−α. The
operator Û(β) is then solved in terms of the τ -ordered products. The equation of
motion is

∂

∂τ
Û(τ) = eτH̄0

(
H̄0 − H̄

)
e−τH̄ = −eτH̄0V e−τH̄ = −e−τH̄0V e−τH̄0eτH̄0e−τH̄

∂

∂τ
Û(τ) = −V̂ (τ)Û(τ),

which is then formally solved as was done in Sect. 2.2, with minor changes:

Û(τ) =
∞∑

n=0

(−1)n

n!

∫ τ

0
dτ1

∫ τ

0
dτ2 · · ·

∫ τ

0
dτnTτ V̂ (τ1) V̂ (τ2) . . . V̂ (τn) =

= Tτ exp
[
−
∫ τ

0
dτ1V̂ (τ1)

]
.
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Next, the S-matrix in imaginary time is

S(τ1, τ2) = Tτ exp
[
−
∫ τ2

τ1
dτV̂ (τ)

]
,

which implies the usual relations:

S(τ2, τ1) = Û(τ2)Û−1(τ1), S(τ3, τ2)S(τ2, τ1) = S(τ3, τ1).

Also, we denote S(τ) ≡ S(τ, 0) = U(τ). Finally, these equations are inserted into
(2.15) to produce the result

G(kσ, τ) = −
Tr
[
e−βH̄0TτS(β, τ)ĉkσ(τ)S(τ)ĉ†

kσ(0)
]

Tr
[
e−βH̄0S(β)

] (2.16)

Then, we define the average over the non-interacting state energies as

〈A〉0 ≡ Tr
[
Ae−βH̄0

]
,

and Eq. (2.16) is written more compactly as

G(kσ, τ) = −

〈
TτS(β)ĉkσ(τ)ĉ†

kσ(0)
〉

0
〈S(β)〉0

(2.17)

Finally, let us mention that a similar expression can be derived for the real-time
Green’s function at zero temperature. The procedure is similar, but particular care
is required to bridge the non-interacting and the interacting states. The necessary
result is from the Gell-Mann and Low theorem [15]. The Green’s function is found
to be:

G(λ, t− t′) = −i〈|0 T ĉλ(t)ĉ†
λ(t′)S(∞,−∞) |〉0

〈|0 T S(∞,−∞) |〉0
.

2.4.4 Free Propagators
An important result that we will use in the diagrammatic expansion is the Green’s
function for the free electron G(k, θ). In this case, the interaction term V is zero,
hence the S-matrix operator is the identity. Eq. (2.17) becomes [14]:

G0(kσ, τ) = −〈T ckσ(τ)c†
kσ(0)〉0

= −θ(τ)〈ckσ(τ)c†
kσ(0)〉0 + θ(−τ)〈c†

kσ(0)ckσ(τ)〉0

=
[
−θ(τ)〈ckσ(0)c†

kσ(0)〉0 + θ(−τ)〈c†
kσ(0)ckσ(0)〉0

]
e−ε̄kστ/~

= [−θ(τ)(1− nf (ε̄kσ) + θ(−τ)nf (ε̄kσ)] e−ε̄kστ ,
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where θ(τ) is the step function, and nf (ε̄kσ) is the Fermi-Dirac distribution. In
this thesis, we are interested in the zero-temperature limit T → 0. With similar
calculations for the bosonic case we find the electron and boson free propagators at
zero temperature5:

G0(k, τ) = −e−εkτ if τ > 0, (2.18)

D0(q, τ) = −e−ωqτ if τ > 0. (2.19)

2.5 Retarded Green’s Function

The retarded Green’s functions are particularly important in the nonzero-temperature
theory [14]: all measurable quantities, such as conductivities, are retarded correla-
tion functions. For the scope of this thesis, here we just give some brief results that
will be used later.

Definition 2.6 (Unperturbed Green’s function). The retarded Green’s function is
defined in the Heisenberg representation as

GR(kσ, t) = −iθ(t)
〈[
ckσ(t), c†

kσ(0)
]〉

(2.20)

where [A,B] is the commutator (anti-commutator) for bosons (fermions), 〈. . .〉 is the
thermodynamic average, and θ(t) is the step function.

An important observable is the spectral density function A(kσ, ω), which gives
information about the distribution of the energies of the system. It can be shown
that:

GR(kσ, ω) = lim
η→0+

∫ ∞

−∞

A(kσ, ε)
ω − ε+ iη

dε

2π ,

which implies:
A(kσ, ω) = −2 ImGR(kσ, ω). (2.21)

2.6 Ground-State Energy and Quasiparticle Weight

We now introduce a new observable that we may infer from the Green’s function
[16]. Let us consider a set of orthonormal eigenstates ψk such that H |ψk〉 = εk |ψk〉.

5Setting µ = 0 and suppressing the spin indexes.
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Then the Matsubara Green’s function in Eq. (2.11) is taken in the zero temperature
limit and rewritten using the completeness relation [16]:

G(k, τ) = −〈ψ0 | ck(τ)c†
k(0) | ψ0〉

= −
∑

p
〈ψ0 | eHτ ck(0)e−Hτ | ψp〉 〈ψp | c†

k(0) | ψ0〉

= −
∑

p
e−εpτ | 〈ψp | c†

k(0) | ψ0〉 |2

For each excited state we may define the quasiparticle weight as

Z0(k) ≡ | 〈ψ0 | ck | ψp〉 |2 = | 〈ψp | c†
k | ψ0〉 |2

We take the limit τ → ∞ and the dominant term is the first excited state with
nonzero matrix element, say |ψq〉. Thus:

G(k, τ) τ→∞−−−→ | 〈ψ0 | ck | ψq〉 |2e−ε0
kτ = Z0,GS (k) e−ε0

kτ

By taking the limit, we have selected the lowest excited energy ε0
k . The quasiparticle

weight Z0,GS (k) quantifies how much the first excited state resembles a free particle,
measuring the overlap between the interacting state and the bare-electron state.

Let us make a few clarifications in the case of our interest: an interaction between
the electron and the phonons. By knowing the Green’s function limit for τ →∞ we
can therefore determine the quasiparticle weight Z0,GS (k) as well as the ground-
state energy of the polaron EGS. When Z0,GS = 1, the overlap between the state
with one free electron and the particle state is maximum: hence, the particle behaves
like a free electron. Conversely, when Z0,GS = 0, the particle loses its bare-electron
behaviour and is in fact a polaron, which is a bound state of the electron and the
phonon cloud.

38 Chapter 2 Green’s Functions



Feynman Diagrams 3
Feynman introduced in 1949 the idea of representing Green’s functions (GF) through
series of diagrams [17]. Since then, this approach have become a standard tool in
quantum field theory and many body physics for studying perturbative expansions.
Essentially, Feynman diagrams allow to visualise each term of the perturbative
expansion of the GF through a graphical representation, where each line represents
a specific free propagator and each vertex represents an interaction. The theoretical
justification of this approach is based on Wick’s theorem, whose main result is that
the GF of a many-body system can be written as a sum of products of free GFs. Each
of these product is translated into a diagram.

We begin this chapter with a summary of the Wick’s theorem in Sect. 3.1, then
we show how to use it to expand the electron-phonon interaction in Sect. 3.2. In
Sect. 3.3 we prove an important theorem, called cancellation theorem, which greatly
simplifies the evaluation of diagrams. Finally, in Sect. 3.4 we collect all the results
previously obtained in a series of ready-to-use rules for drawing Feynman diagrams.

3.1 Wick’s Theorem

In Sect. 2.4, we wrote the expression for the imaginary-time Green’s function G(kσ, τ)
using the non-interacting states. Using the Dyson series of the S-matrix operator
(Eq. (2.6)), we rewrite the numerator of the GF as

〈
TτS(β)ĉkσ(τ)ĉ†

kσ(0)
〉

0

= −
∞∑

n=0

(−1)n

n!

∫ β

0
dτ1 . . .

∫ β

0
dτn

〈
Tτ ĉkσ(τ)V̂ (τ1) · · · V̂ (τn) ĉ†

kσ(0)
〉

0
. (3.1)

However, Eq. (3.1) does not really tell us how to calculate the GF: we still do not
know how to evaluate 〈. . .〉0, which is a thermal average over the non-interacting
states. Using Wick’s theorem, it is possible to expand it in terms of the free GFs in
Eqs. (2.18) and (2.19). Let us first define the contraction of two operators [14].
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Definition 3.1 (Contraction). Let Â and B̂ be two operators in the interaction picture.
Their contraction is defined as

ÂB̂ = 〈T ÂB̂〉0 ,

If Â, B̂, Ĉ, D̂ are fermionic operators, a term such as ÂB̂ĈD̂ is to be interpreted

as −ÂĈB̂D̂, because B̂ and Ĉ need to be interchanged. From the definition, we see
that (suppose τ > τ ′)

ĉk(τ)ĉ†
k(τ ′) = 〈Tτ ĉk(τ)ĉ†

k(τ ′)〉0 = −G0(k, τ − τ ′) (3.2)

Let us now state Wick’s theorem [18].

Theorem 3.1 (Wick’s theorem). The ensemble average over a noninteracting system
of the time-ordered product of interaction picture operators is equal to the sum over all
possible contracted pairs:

〈T ÂB̂ĈD̂〉0 = ÂB̂ĈD̂ · · ·+ ÂB̂ĈD̂ · · ·+ ÂB̂ĈD̂ · · ·+ . . .

A alternative statement of Wick’s theorem is as follows. Let â1, â2, . . . , â2n be
operators in the interaction picture. Then,〈

T
2n∏
i=1

âi

〉
0

=
∑

π∈P2n

sgn(π)
n∏

k=1

〈
T âπ(2k−1)âπ(2k)

〉
0

(3.3)

where the sum is over all pairwise partitions π of the set {1, 2, . . . , 2n}, and sgn(π) is
the sign of the permutation required to bring the operators into the order specified
by the pairing. For bosons, sign(π) is always +1; for fermions, sign(π) is +1 if π is
an even permutation, −1 if it is odd.

Basically, Wick’s theorem states that we need to sum over all possible ways of
pairing the operators in the time-ordered product, and for each possible way of
pairing we calculate the product of the expectation values of each pair. For each
partition, if we are working with fermionic operators, we need to account for the
sign of the permutation required to bring the operators into the order specified by
the pairing. For instance, suppose we need to evaluate the ensemble average of 4
fermionic operators:

〈T ÂB̂ĈD̂〉0 = 〈T ÂB̂〉0 〈T ĈD̂〉0 − 〈T ÂĈ〉0 〈T B̂D̂〉0 + 〈T ÂD̂〉0 〈T B̂Ĉ〉0 . (3.4)

40 Chapter 3 Feynman Diagrams



Because of Eq. (3.2), if the operators are ĉ†
q and ĉ†

q, then Eq. (3.4) is actually a sum
of products of free propagators, which we can easily calculate.

3.2 Diagrammatic Expansion of the Electron-Phonon
Interaction

Let us recall the GF that was previously evaluate in Eq. (2.17):

G(kσ, τ) = −

〈
TτS(β)ĉkσ(τ)ĉ†

kσ(0)
〉

0
〈S(β)〉0

. (3.5)

We take the interaction V̂ (τ) to be the electron-phonon interaction, which was
evaluated in Eq. (1.34):

V̂ (τ) =
∑
qks

MqÂq(τ)ĉ†
k+q,s′(τ)ĉks(τ).

We take the first two orders of the Dyson series in Eq. (3.1) and write the GF as1:

G
(
pσ, τ − τ ′)

= G(0) (p, τ − τ ′)+ (−1)2
∫ β

0
dτ1

〈
Tτ ĉpσ(τ)V̂ (τ1) ĉ†

pσ

(
τ ′)〉

0
+

+ (−1)3

2!

∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ ĉpσ(τ)V̂ (τ1) V̂ (τ2) ĉ†

pσ

(
τ ′)〉

0
(3.6)

The first term, at the 0-th order, is the free electron GF. The term at the first order
is cancelled out because it contains an odd number of phonon operators Âq, so we
only need to evaluate the second integral:

〈
Tτ ĉpσ(τ)V̂ (τ1) V̂ (τ2) ĉ†

pσ (0)
〉

0
=
∑

q1, q2
k1, k2
s, s′

Mq1Mq2×

×
〈
Tτ ĉpσ(τ)Âq1(τ1)ĉ†

k1+q1,s(τ1)ĉk1s(τ1)Âq2(τ2)ĉ†
k2+q2,s′(τ2)ĉk2s′(τ2)ĉ†

pσ(0)
〉

0

1Let us ignore the denominator for now: it will be evaluated later.
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∑
q1, q2
k1, k2

Mq1Mq2

〈
Tτ Âq1 (τ1) Âq2 (τ2)

〉
0

=
∑

q1, q2
k1, k2

Mq1Mq2 δq1,−q2 D0 (q1, τ1 − τ2)

=
∑

k1, k2
q1

Mq1M−q1 D0 (q1, τ1 − τ2) (3.7)

where we denoted with D0 the free phonon imaginary-time Green’s function. The
sum over q2 has yielded q1 = −q2, which we now use to calculate the electron term.
We now apply the Wick’s theorem (Th. 3.1) and consider all the possible pairings
between the operators in the average. There are 6 possible pairings:

〈
Tτ ĉpσ(τ) ĉ†

k1+q1,s(τ1) ĉk1s(τ1) ĉ†
k2−q1,s′(τ2) ĉk2s′(τ2) ĉ†

pσ(τ ′)
〉

0
=〈

Tτ ĉpσ(τ) ĉ†
k1+q1,s(τ1)

〉
0

〈
Tτ ĉk1s(τ1) ĉ†

k2−q1,s′(τ2)
〉

0

〈
Tτ ĉk2s′(τ2) ĉ†

pσ(τ ′)
〉

0︸ ︷︷ ︸
(a)

+
〈
Tτ ĉpσ(τ) ĉ†

k2−q1,s′(τ2)
〉

0

〈
Tτ ĉk1s(τ1) ĉ†

pσ(τ ′)
〉

0

〈
Tτ ĉk2s′(τ2) ĉ†

k1+q1,s(τ1)
〉

0︸ ︷︷ ︸
(b)

+
〈
Tτ ĉpσ(τ) ĉ†

k1+q,s(τ1)
〉

0

〈
Tτ ĉk1,s(τ1) ĉ†

pσ(τ ′)
〉

0

〈
Tτ ĉ

†
k2−q1,s′(τ2) ĉk2s′(τ2)

〉
0︸ ︷︷ ︸

(c)

+
〈
Tτ ĉpσ(τ) ĉ†

k2−q1,s′(τ2)
〉 〈
Tτ ĉk2,s′(τ2) ĉ†

pσ(τ ′)
〉

0

〈
Tτ ĉ

†
k1+q1,s(τ1) ĉk1s(τ1)

〉
0︸ ︷︷ ︸

(d)

+
〈
Tτ ĉpσ(τ) ĉ†

pσ(τ ′)
〉

0

〈
Tτ ĉ

†
k1+q1,s(τ1) ĉk1s(τ1)

〉
0

〈
Tτ ĉ

†
k2−q1,s′(τ2) ĉk2s′(τ2)

〉
0︸ ︷︷ ︸

(e)

−
〈
Tτ ĉpσ(τ) ĉ†

pσ(τ ′)
〉

0

〈
Tτ ĉk1s(τ1) ĉ†

k2−q1,s′(τ2)
〉

0

〈
Tτ ĉk′(τ2) ĉ†

k1+q1,s(τ1)
〉

0︸ ︷︷ ︸
(f)

.

(3.8)

Notice that 〈
Tτ ĉps(τ2)ĉ†

qs′(τ1)
〉

0
= −δp=qδs=s′G0 (p, τ2 − τ1) ,

which is the free electron GF, and was already evaluated in Eq. (2.18). Also,
remember that q1 is the wave vector of the phonon in Eq. (3.7). The expressions
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(c), (d), and (e) imply q1 = 0, which means that the phonon has a null wave vector.
Such phonons do not exist, so these terms simply vanish. We thus have

〈
Tτ ĉpσ(τ) ĉ†

k1+q1,s(τ1) ĉk1,s(τ1) ĉ†
k2−q1,s′(τ2) ĉk2s′(τ2) ĉ†

pσ(τ ′)
〉

0
=

δp=k2=k1+q1 δs=s′=σ G0 (p, τ − τ1) G0 (p− q1, τ1 − τ2) G0
(
p, τ2 − τ ′)

+ δp=k1=k2−q1 δs=s′=σ G0 (p, τ − τ2) G0 (p + q1, τ2 − τ1) G0
(
p, τ1 − τ ′)

− δk1=k2−q1 δs′=s G0
(
p, τ − τ ′) G0 (k1, τ1 − τ2) G0 (k1 + q1, τ2 − τ1) . (3.9)

In summary, the expectation value in the second-order term of Eq. (3.6) for the
electron-phonon Green’s function can be explicitly written as:

〈
Tτ ĉpσ(τ)V̂ (τ1) V̂ (t2) ĉ†

pσ (0)
〉

0
=

∑
k1k2q1

|Mq1 |2D0 (q1, τ1 − τ2)× {

δp=k2=k1+q1 δs=s′=σ G0 (p, τ − τ1) G0 (p− q1, τ1 − τ2) G0
(
p, τ2 − τ ′)+

+ δp=k1=k2−q1 δs=s′=σ G0 (p, τ − τ2) G0 (p + q1, τ2 − τ1) G0
(
p, τ1 − τ ′)+

− δk1=k2−q1 δs′=s G0
(
p, τ − τ ′) G0 (k1, τ1 − τ2) G0 (k1 + q1, τ2 − τ1)} (3.10)

Drawing Feynman diagrams. Let us now now explain how to construct Feynman
diagrams. The central idea is that a Green’s function G(p, τ − τ ′) can be represented
as a series of diagrams. Each diagram corresponds to a term in the perturbative
expansion and consists of a set of lines, where each line represents a free Green’s
function G0 or D0, as seen in the expressions above. In particular, we represent the
electron’s Green’s function G0 with a solid line and the phonon’s Green’s function D0

with a dashed line. The electron’s GF has an orientation in time, which is depicted
with an arrow, but the phonon’s GF does not. As a matter of fact, the following rules
apply:

D0
(
q, τ − τ ′) = D0

(
−q, τ ′ − τ

)
.

By using these rules, the three diagrams resulting from Eq. (3.10) are depicted in
Fig. 3.1.

Topologically distinct diagrams Notice however that the first two diagrams (a) and
(b) are equivalent. This can be shown by considering the integral

∫ β

0
dτ1

∫ β

0
dτ2

∑
q
|Mq|2D0 (q, τ2)

×
[
G0 (p, τ − τ1)G0 (p− q, τ1 − τ2)G0

(
p, τ2 − τ ′)

+ G0 (p, τ − τ2)G0 (p + q, τ2 − τ1)G0
(
p, τ1 − τ ′)].
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p p− q1

q1

p

0 τ1 τ2 τ

(a)

p p + q1

−q1

p

0 τ1 τ2 τ

(b)

p

k1 + q1

k1

q1

0 τ

τ1 τ2

(f)

Fig. 3.1: Second-order Feynman diagrams for the electron-phonon Green’s function.

p p− q1 p− q1 − q2 p− q2 p

q1 q2

0 τ1 τ2 τ3 τ4 τ

(e)

Fig. 3.2: Fourth-order Feynman diagrams for the electron-phonon Green’s function.

It is evident that the two terms in the square brackets are equivalent, as they differ
only by the exchange of the integration variables τ1 and τ2. Relabelling τ1 ↔ τ2 in
the second term yields the first, so both integrals contribute equally2. Therefore,
diagrams (a) and (b) represent the same physical process and contribute identically
to the expansion. Such diagrams are said to be topologically equivalent. Now see
that in the perturbative expansion in Eq. (3.8) has a prefactor of 1

2! in front of the
integral. With prefactor cancels out exactly the factor of 2 that arises from the two
equivalent diagrams (a) and (b). The same reasoning applies at higher orders: for
example, at fourth order (n = 4), a diagram such as that shown in Fig. 3.2 would
appear. There are 4! equivalent diagrams corresponding to all permutations of the
vertices, but the 1/4! prefactor in the expansion cancels this multiplicity. In general,
we conclude that only topologically distinct diagrams need to be drawn, with each
diagram counted once in the perturbative expansion.

Finally, the diagram (f) in Fig. 3.1 is not equivalent to the other two, as it is a
topologically distinct diagram. It is in fact a disconnected diagram. It is shown in the
next section that disconnected diagrams do not contribute to the Green’s function.

2This equivalence is also apparent from diagrams (a) and (b) in Fig. 3.1: swapping the two vertices
(corresponding to τ1 and τ2) transforms diagram (a) into (b).
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τ1 τ2

(g)

τ1 τ2

(h)

Fig. 3.3: Second-order vacuum polarisation diagrams.

0 τ

τ3 τ4

τ1 τ2

(i)

Fig. 3.4: Example of a disconnected diagram originating from diagram (a) in Fig. 3.1.

3.3 Disconnected Diagrams

The diagrammatic expansion of the GF for the electron-phonon interaction has given
rise to a disconnected diagram, depicted in Fig. 3.1 (f). First, let us clearly define
what a disconnected diagram is.

Definition 3.2 (Disconnected diagram). A Feynman diagram is said to be discon-
nected if at least one of its internal points τ1, τ2, .., τn is not connected to the external
points 0 and τ .

If we now were to expand the S-matrix operator S(β) in the denominator of
Eq. (3.5), a series of diagrams like those in Fig. 3.3 would appear:

〈S(β)〉0 = −
∞∑

j=1

(−1)j

j!

∫ β~

0
dτ1 · · ·

∫ β~

0
dτj

〈
Tτ V̂ (τ1) · · · V̂ (τj)

〉
0
≡ 1+S(1)+S(2)+. . .

These are called vacuum polarisation diagrams. It is then possible to show that those
diagrams exactly cancel out the disconnected diagrams appearing in the numerator
of Eq. (2.17), so that only connected diagrams contribute to the GF. The claim is
that the numerator of Eq. (2.17) can always written as

〈Tτ ĉλ(τ)ĉ†
λ(0)S(β)〉0 = Gc (λ, τ)

(
1 + S(1) + S(2) + . . .

)
,
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where Gc (λ, τ) is the sum of only the connected diagrams’ GFs. For example, the
disconnected diagram in Fig. 3.4 is just the product of the connected part of diagram
(a) in Fig. 3.1 and the second-order disconnected part in Fig. 3.3 (h). Then the same
factor appearing in both numerator and denominator cancels out, leaving only the
connected diagrams’ GF Gc. This is called the cancellation theorem [14].

Theorem 3.2 (Cancellation theorem). The numerator of any disconnected diagram
may be written as:

〈Tτ ĉλ(τ)ĉ†
λ(0)S(β)〉0 = Gc(λ, τ) 〈S(β)〉0

where Gc is the Green’s function for the connected part.

Proof. From Eq. (3.1), for a disconnected diagram the n-th order term can be written
as the product of a connected part c and a disconnected part:

δG(n)

= −
n∑

m=0

(−1)n

m!(n−m)!

(∫ β

0
dτ1 · · ·

∫ β

0
dτm

)〈
Tτ ĉkσ(τ)ĉ†

kσ(0)V̂ (τ1) · · · V̂ (τm)
〉

0,c

×
(∫ β

0
dτm+1 · · ·

∫ β

0
dτn

)〈
Tτ V̂ (τm+1) · · · V̂ (τn)

〉
0
,

where m is the number of disconnected points. The binomial coefficient term is
the number of ways to choose m disconnected points from n total points. Then the
summation over m is rewritten as

n∑
m=0

1
m!(n−m)! · · · =

∞∑
m=0

∞∑
j=0

δn,m+j
1

m!j! · · · ,

and the numerator is rewritten as the sum of all order terms from n = 0 to∞:

〈Tτ ĉλ(τ)ĉ†
λ(0)S(β)〉0

= −
∞∑

n=0

∞∑
m=0

∞∑
j=0

δn,m+j
1

m!j!

(
−1
~

)n ∫ β~

0
dτ1 · · ·

∫ β~

0
dτm

×
〈
T ĉkσ(0)ĉ†

kσ(0)V̂ (τ1) · · · V̂ (τm)
〉

0,c

×
∫ β

0
dτ1 · · ·

∫ β

0
dτj

〈
T V̂ (τ1) · · · V̂ (τj)

〉
0
,
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where we relabelled the time variables τm+1, . . . , τn → τ1, . . . , τj , which was possible
because of the delta (only terms with j = n −m are nonzero). Summing over n
then yields:

〈Tτ ĉλ(τ)ĉ†
λ(0)S(β)〉0

= −
∞∑

m=0

1
m!

(
−1
~

)m ∫ β

0
dτ1 · · ·

∫ β

0
dτm

〈
T ĉkσ(τ)ĉ†

kσ(0)V̂ (τ1) · · · V̂ (τm)
〉

0,c

×
∞∑

j=0

1
j!

(
−1
~

)j ∫ β

0
dτ1 · · ·

∫ β

0
dτj

〈
T V̂ (τ1) · · · V̂ (τj)

〉
0
.

The last factor is exactly the Dyson series expansion of the denominator 〈S(β)〉0.
Thus, the theorem is proved.

3.4 Feynman Rules
Having established the rules for constructing Feynman diagrams, we hereby sum-
marise the rules [14] relevant to the electron-phonon interaction to calculate the
Matsubara Green’s function in the momentum space G(pσ, τ).

Rules for the electron-phonon interaction.
1. Only even orders 2n are nonzero.

2. For each order 2n, draw all topologically distinct and connected diagrams
with: n phonon lines, 2 external electron lines, and 2n− 1 internal electron
lines.

3. Momentum and spin must be conserved at each vertex.

4. Each electron line of momentum p with vertices τ1 to τ2 is assigned the factor
G0(kσ, τ2 − τ1).

5. Each phonon line of momentum q with vertices τ1 to τ2 is assigned the factor
|Mq|2D(q, τ2 − τ1).

6. Multiply each electron loop by a factor of −1.

7. Sum or integrate over all internal coordinates.

Let us briefly justify the rules above based on what we have learned in the pre-
vious sections. Rule 2 is derived: i) from the discussion in Sect. 3.2, where it was
established that only topologically distinct diagrams contribute to the perturbative
expansion; and ii) from Th. 3.2, which states that only connected diagrams con-
tribute to the GF. Rules 1–7 are a direct consequence of the expansion that was
established in in Sect. 3.2.
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Holstein Hamiltonian in the
Atomic Limit

4
In his original paper [4], Holstein introduced a model to describe the polaron
problem in a one-dimensional molecular crystal. The polaron problem involves an
electron interacting with the lattice vibrations, which are described as phonons. The
Hamiltonian is regarded as the sum of three terms that we have already derived
and discussed in the previous chapter: the electronic term Hel, the phononic term
Hph, and the electron-phonon interaction term Hel−ph. It is often the case that the
electron-phonon interaction may not treated as a perturbation, and gives in fact
rise to the self-trapping of the electron in the lattice. One can imagine that an
electron is initially fixed at some site in the lattice: the surrounding lattice particles,
due to the electron-lattice interactions, are displaced in new equilibrium positions.
These displacements will provide a potential well for the electron; if such a well
is sufficiently deep, then the electron will be trapped in a bound state and unable
to move unless accompanied by the well. The unit formed by the electron and the
lattice is called a polaron.

In this chapter, the Holstein Hamiltonian in its first-quantised form will be in-
troduced in Sect. 4.1. In Sect. 4.2, we elaborate its second-quantised form in the
atomic limit, which is the one that will be used in the rest of the thesis. The Holstein
Hamiltonian in the atomic limit will be solved exactly in Sect. 4.3, where we find an
exact form for the ground-state polaron energy and the ground-state quasiparticle
weight. Such values are used as a benchmark in Ch. 5.

4.1 The Holstein Hamiltonian
The molecular-crystal model in the original Holstein’s formulation [4] is assumed to
be a linear chain onN identical diatomic molecules. Only the internuclear separation
of the molecules may vary, giving rise to the lattice vibrations. The Hamiltonian of
the lattice reads

Hph = 1
2M

N∑
n=1

p2
n + 1

2

N∑
n=1

Mω2
0x

2
n,

where xn is the deviation of the internuclear separation from its equilibrium position,
pn is the associated canonical momentum of the n-th molecule, M is the relative
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a a

Fig. 4.1: Schematic representation of the one-dimensional Holstein Model. There exist N
identical diatomic molecules that are separated by a distance a. Each diatomic
molecule is represented by a pair of atoms, which are connected by a spring.

mass, and ω0 is the harmonic vibrational frequency. The phonons are thus assumed
to be optical and dispersionless. This model is illustrated in Fig. 4.1. Adding the
electron kinetic energy we get the full Hamiltonian:

H =
∑

n

(
− ~2

2M
∂2

∂x2
n

+ 1
2Mω2

0x
2
n

)
− ~2

2m
∂2

∂r2 +
∑

n

U (r −Rn, xn) (4.1)

A single electron is studied in the tight-binding approximation, which was discussed
in Sect. 1.3.2. It will be briefly presented here for the Holstein model. The state of
the system is taken to be the linear superposition of the molecular electron wave
functions φ(r − na, xn):

ψ(r, xn) =
N∑

n=1
an(x1, . . . , xN )φ(r − na, xn).

Each wave function φ(r − na, xn) is a solution of the Schrödinger equation for a
single electron in the potential of the n-th molecule:[

− ~2

2m∇
2 + U (r − na, xn)

]
φ (r − na, xn) = E (xn)φ (r − na, xn) .

A complete calculation leads to a differential equation for the coefficients an:[
i~
∂

∂t
−
∑

p

(
− ~2

2M
∂2

∂x2
p

+ 1
2Mω2

0x
2
p

)
− E (xn)−Wn (x1 . . . xN )

]
αn (x1 . . . xN )

=
∑
(±)

J (xn, xn±1)αn±1 (x1 . . . xN )

(4.2)
with

Wn (x1 . . . xN ) =
∫
|φn (r − na, xn)|2

∑
p 6=n

U (r − pa, xp) dr,

J (xr, xm) =
∫
φ∗

n (r − na, xn)U (r − na, xn)φ (r −ma, xm) dr.
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The sum
∑

(±) is taken to be over the nearest neighbours of the n-th molecule,
i.e. n − 1 and n + 1. The term Wn(x1, . . . , xN ) is the potential energy of the n-th
molecule due to all the other molecules in the lattice, and J(xn, xn±1) is the hopping
term between the n-th molecule and its nearest neighbours.

The Holstein Hamiltonian in its first-quantised form in Eq. (4.1) is outside the
scope of this thesis, so the solution written above will not be discussed further.
Rather, it is interesting to explain the approximations that were introduced by
Holstein, understand their physical meaning, and how they can be reformulated in
the second quantisation formalism.

Holstein approximations. The first approximation to do in Eq. (4.2) is to neglect
the term Wn(x1, . . . , xN ): the rationale behind this is that the electron is assumed
to be localised in a single molecule by a short-range potential, and therefore the
interaction with the other molecules is negligible. The second approximation is to
assume that the hopping term J(xn, xn±1) is constant, i.e. it does not depend on the
position of the molecules in the lattice. Such approximation was already justified
in the tight-binding model, and −J corresponds in fact to the hopping parameter
−t in Eq. (1.20). Lastly, the energy En(xn) is assumed to depend linearly from the
displacement xn of the n-th molecule from its equilibrium position: En(xn) = −Axn.

It is found in the original Holstein’s formulation that the Schrödinger’s equation
under these approximations reads:

i~
∂

∂t
αn =

∑
p

(
− ~2

2M
∂2

∂x2
p

+ 1
2Mω2

0x
2
p

)
αn − t (αn+1 + αn−1)αn −Axnαn. (4.3)

4.2 Holstein Hamiltonian in Second Quantisation
We have already encountered the first term of Eq. (4.3) when discussing phonons.
The assumption made by Holstein is that the phonons are dispersionless, with a
constant frequency ω0. The phonon Hamiltonian is written in second quantisation
as1

Hph = ω0
∑

q

(
b†

qbq + 1
2

)
.

The second term in Eq. (4.3) includes the energy of the electron and the hopping
term. In the wave-vector notation and in the tight-binding approximation, this is
written as

Hel =
∑

k
εkc

†
kck.

1This is the three-dimensional formulation.
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The energy εk has a dispersion relation that is found in the tight-binding approx-
imation, e.g. in Eq. (1.21) for the nearest-neighbour approximation. Finally, the
electron-phonon interaction was already encountered in Sect. 1.4.1. Such assump-
tion derives from the fact that the potential in the Holstein model grows linearly with
the distance, and the matrix elements of the interaction are derivative of the poten-
tial. The electron-phonon interaction term in the Holstein model was derived in Eq.
(1.33). Umklapp processes are assumed to be negligible, hence G = 0. Furthermore,
the interaction term in Eq. (4.3) does not depend on the momentum. We then
consider the interaction matrix as constant, and equal to g√

N
. The electron-phonon

interaction reads2:

Hel−ph = g√
N

∑
k,q

c†
k+qck

(
b†

−q + bq
)
.

In its second-quantised formulation, the Holstein Hamiltonian reads

HHolstein =
∑

k
εkc

†
kck + ω0

∑
q

(
b†

qbq + 1
2

)
+ g√

N

∑
k,q

c†
k+qck

(
b†

−q + bq
)
. (4.4)

Atomic limit. However, this Hamiltonian cannot be solved exactly. Rather, here we
are interested in the atomic limit. In the atomic limit, the electrons are considered
tightly bound to the atoms, so much that they cannot hop between the sites: the
hopping term t is set to 0. More formally, the hopping matrix in Eq. (1.18) must
be tij ∝ δij , so that it is nonzero only when i = j. From Eq. (1.18) one can also
see that, for this to be satisfied, the site energy εi is constant: εi = ε. By using the
relations in Eq. (1.16) for the electron operators, the Hamiltonian is written as

Hatom = εc†c + ω0
∑

q

(
b†

qbq + 1
2

)
+ c†c

∑
q
Mq

(
b†

−q + bq
)
, (4.5)

where Mq = g√
N
eiq·Ri . Since the sites are now decoupled, we study the single-site

Hamiltonian, where c ≡ ci. Further application of Eq. (1.16) for the boson operators
leads to:

Hatom = εc†c + ω0b
†b + gc†c

(
b† + b

)
. (4.6)

4.3 Exact Solution in the Atomic Limit
The Holstein Hamiltonian in the atomic limit in Eq. (4.5) has an exact solution. Here,
we consider a more general model where the phonon frequency is not assumed to

2We omit the indexes for the spin.
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be constant. This is called the independent boson model. Later on, we will specialise
to the case of constant phonon frequency and coupling. The Hamiltonian we wish
to solve is [7]

H = c†c

[
ε+

∑
q
Mq

(
bq + b†

−q

)]
+
∑

q
ωqb

†
qbq. (4.7)

This Hamiltonian describes a single electron coupled to phonons, where ε is the
energy of the electron, Mq is the coupling strength between the electron and the
phonon with wave vector q, and ωq is the frequency of the phonon with wave vector
q. Before tackling this Hamiltonian, we need to perform the so-called Lang-Firsov
transformation, which is a unitary transformation.

4.3.1 Lang-Firsov Transformation

The Hamiltonian is rewritten by a transformation of the type

H̄ = eSHe−S = c†c (ε−∆) +
∑

q
ωqb

†
qbq, (4.8)

where

∆ =
∑

q

M2
q

ωq
.

We now show that applying the transformation in Eq. (4.8) to any product of
operators is simply the product of the transformed operators. This is easily shown
by considering

eSA1A2 · · ·Aνe
−S =

(
eSA1e

−S
) (
eSA2e

−S
)
· · ·
(
eSAνe

−S
)

= Ā1Ā2 · · · Āν ,

where we have used the identity eSe−S = 1, and we denoted with Āj the transformed
operator Aj . Furthermore, the transformation of a function of operators is the
function of the transformed operators:

eSf(A)e−S = eS
∞∑

n=0
anA

ne−S =
∞∑

n=0
an(Ā)n = f(Ā). (4.9)

Using these properties, we can compute the transformed Hamiltonian H̄ by applying
the transformation to each operator individually. This is done by evaluating

eS =
∑

n

Sn

n! =⇒ Ā = eSAeS = A+ [S,A] + 1
2! [S, [S,A]] + . . . ,
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with the operator

S = c†c
∑

q

Mq
ωq

(
b†

q − bq
)
.

The transformation is applied to each operator in Eq. (4.8),

c̄ = cX,

c̄† = c†X†,

b̄q = bq −
Mq
ωq

c†c,

b̄†
q = b†

q −
Mq
ωq

c†c,

where we introduced the operator

X ≡ e−
∑

q
Mq
ωq

(
b†

q−bq
)
. (4.10)

This operator commutes with c, hence the number operator is the same in the new
representation:

c̄†c̄ = c†cX†X = c†c.

The Hamiltonian in Eq. (4.7) is then rewritten as

H̄ = εcc̄
†c̄+

∑
q
ωq

(
b†

q −
Mq
ωq

c†c

)(
bq −

Mq
ωq

c†c

)
+

+
∑

q
Mq

(
b†

q + bq − 2Mq
ωq

c†c

)
c†c,

which simplifies into

H̄ = c†c (εc −∆) +
∑

q
ωqb

†
qbq = He +Hp.

In the last equality, H was separated into an electronic part He and a phonon part
Hp:

He ≡ c†c (εc −∆) , Hp ≡
∑

q
ωqb

†
qbq. (4.11)
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4.3.2 Green’s Function

The aim is to compute the Green’s function (GF) of the Holstein Hamiltonian. To
account for the temperature, we will use the grand canonical ensemble by averaging
over the trace:

G(t) = − i

Z
Tr
(
e−βHeiHtce−iHtc†

)
, for t > 0.

Notice that it is not necessary here to use the Matsubara formalism. We introduce
the identity 1 = e−SeS:

G(t) = − i

Z
Tr
(
e−βHeiHtce−iHtc†e−SeS

)
,

and make use of the cyclic properties of the trace to rewrite the GF as

G(t) = − i

Z
Tr
(
eSe−βHeiHtce−iHtc†e−S

)
= − i

Z
Tr
(
e−βH̄eiH̄tc̄e−iH̄tc̄†

)
.

This evaluation is non-trivial: the operators c̄ and c̄† do not commute with b† and
b because they depend on X, which was defined in Eq. (4.10). We write the X
dependence explicitly:

G(t) = − i

Z
Tr
(
e−βH̄eiH̄tcXe−iH̄tc†X†

)
.

The part in the middle can be computed as follows:

eiH̄tcXe−iH̄t = e−i(εc−∆)tceiH̄tXe−iH̄t = e−i(εc−∆)tcX(t), (4.12)

where

X(t) ≡ exp
[
−
∑

q

Mq
ωq

(
b†

qe
iωqt − bqe

−iωqt
)]
.

Now call
ε̄c ≡ ε−∆.

By making use of Eq. (4.12), the Green’s function is written as

G(t) = −i 1
Z

Tr
(
e−βε̄cncc†

)
Tr
[
e−βHpX(t)X†(0)

]
, (4.13)

where we separated the expression into an electronic and a phonon part. This
is possible because the Hamiltonian was itself separated into the electronic and
the phonon part, defined in Eq. (4.11). The partition functions are Zel and Zph

respectively, such that Z = ZelZph.
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The electronic part is easily calculated as

1
Zel

Tr
(
e−βε̄ncc†

)
= 1
Zel

Tr
(
e−βε̄n(1− n)

)
= 1
Zel

[
Tr
(
e−βε̄n

)
− Tr

(
e−βε̄nn

)]
= 1
Zel

(
1 + e−βε̄ − e−βε̄

)
= 1
Zel
· 1

= 1− nf (ε̄)

where nf (ε) is the Fermi-Dirac distribution.

Phonon part

Evaluating the phonon part

F (t) ≡ 1
Zph

Tr
[
e−βHPX(t)X†(0)

]
is more difficult, but it can be done exactly. First, F (t) is arranged as

F (t) = 1
Zph

Tr
[
e

−β
∑

q
ωqnqX(t)X†(0)

]
=
∏
q

Fq(t), (4.14)

where we introduced

Fq ≡
1
Zq

∞∑
n=0

e−βnω 〈n|X(t)X†(0)|n〉 =

= 1
Zq

∞∑
nq=0

e−βnqωq 〈nq| e−λqBq(t)eλqBq(0) |nq〉 ,

Bq(t) ≡ b†
q e

iωqt − bq e
−iωqt,

λq ≡
Mq
ωq

The partition function Z is given by

Z =
∏
q
Zq, Zq =

∞∑
nq=0

e−βnqωq =⇒ 1
Zq

= 1− e−βωq .
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Now let us drop all q subscripts in the expression for a more concise notation. We
have

Fq(t) =
(
1− e−βω

) ∞∑
n=0

e−βnω〈n|e−λ
(

b†eiωt−be−iωt
)
eλ
(

b†−b
)
|n〉,

where the state |n〉 is

|n〉 =

(
b†
)n

√
n!
|0〉.

In order to separate the operators into the exponentials, we make use of Feynman’s
theorem on the disentangling of operators [19].

Theorem 4.1 (Feynman’s theorem on disentangling of operators). Let A and B be
two operators. If their commutator C = [A,B] commutes with both of them, that is

[C,A] = [C,B] = 0,

then
eA+B = eAeBe−1/2[A,B].

This theorem will not be proved. Now recall that

Fq(t) =
(
1− e−βω

) ∞∑
n=0

e−βnω 〈n|X(t)X†(0)|n〉 , (4.15)

with
X(t) = e−λ

(
b†eiωt−be−iωt

)
,

X(0) = eλ
(

b†−b
)
.

We set
A ≡ −λb†eiωt

B ≡ λbe−iωt

which yields
[A,B] = −λ2

[
b†, b

]
= λ2,

and the operators X(t) and X†(0) may be rewritten as

X(t) = eA+B = e−λ2/2e−λb†eiωt
eλbe−iωt

,

X†(0) = e−λ2/2eλb†
e−λb .

Eq. (4.15) becomes

Fq(t) =
(
1− e−βω

) ∞∑
n=0

e−βnω 〈n|e−λ2
e−λb†eiωt

eλbe−iωt
eλb†

e−λb |n〉 . (4.16)
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We now need to get all the annihilation operators on the right and the creation
operators on the left. To do so, we exchange the operators in the middle. They are
written as

eλb(t)eλb† = eλb† (
e−λb†

eλb(t)eλb†)
(4.17)

The term in the parenthesis is exactly the same as Eq. (4.9) by setting

S ≡ −λb†.

With the same reasoning, we notice that the boson annihilation operator is rewritten
as

e−λa†
aeλa† = a− λ

[
a†, a

]
+ λ2

2!
[
a†,
[
a†, a

]]
. . .

= a+ λ,

so the term in Eq. (4.17) is rewritten as

e−λa†
eλa(t)eλa† = exp

[
λe−iωt(a+ λ)

]
= eλ2e−ıωt

eλa(t).

Finally, inserting this back into Eq. (4.16) we get

Fq(t) =
(
1− e−βω

)
e−λ2

(
1−e−iωt

) ∞∑
n=0

e−βωn 〈n|eλb†
(

1−eiωt
)
e−λb

(
1−e−iωt

)
|n〉

Now, rename u ≡ λ
(
1− e−iωt

)
, such that

Fq(t) =
(
1− e−βω

) ∞∑
n=0

e−βnω 〈n|eu∗b†
e−ub |n〉 (4.18)

which we want to rewrite using N = 1
eβω−1 . First of all the exponential is expanded

in a power series

e−ub |n〉 =
∞∑

l=0

(−u)l

l! bl|n〉. (4.19)

The result is computed by using the properties of the boson annihilation operators
that were outlined in Sect. 1.2.1. The result of bl |n〉 is calculated iteratively. First
see that if l > n then bl |n〉 = 0; that is because by applying the operator n times we
arrive at bl−n |0〉, which is 0 if l − n > 0.
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If l ≤ n, the following applies:

b|n〉 = n1/2|n− 1〉

b2|n〉 = [n(n− 1)]1/2|n− 2〉
...

bl|n〉 =
[

n!
(n− l)!

]1/2
|n− l〉

The expansion in Eq. (4.19) is therefore written as follows, where we make use of
the fact that the sum is truncated when l > n:

e−ua|n〉 =
n∑

l=0

(−u)l

l!

[
n!

(n− l)!

]1/2
|n− l〉. (4.20)

The next term to be calculated in Eq. (4.18) is of course the other exponential
acting on on the left. However, the term 〈n| eu∗b†

is simply the Hermitian conjugate
of Eq. (4.20), so that the left term is written as

〈n|eu∗a† =
n∑

m=0

(u∗)m

m!

[
n!

(n−m)!

]1/2
〈n−m|.

Inserting this into Eq. (4.18), the bra and the ket are multiplied and by their
property of orthonormality they yield a delta 〈n−m|n− l〉 = δn−m,n−l = δm,l. Their
product is then

〈n|eu∗a†
e−ua|n〉 =

n∑
l=0

(
−|u|2

)l
(l!)2

n!
(n− l)! = Ln

(
|u|2

)
,

where we found that this power series is just the Laguerre polynomial of order n.
Next, consider the generating function of Laguerre polynomials:

(1− y)
∞∑

n=0
Ln

(
|u|2

)
yn = e|u|2y/(y−1)

If we rename y ≡ e−βω, then y
y−1 = −N = − 1

eβω−1 . We finally find a simpler
expression for F (t):

Fq(t) =
(
1− e−βω

)
e−λ2

(
1−e−iωt

)
〈n|eu∗b†

e−ub |n〉

= e−λ2
(

1−e−iωt
)
e−|u|2N

≡ e−ηq(t)

4.3 Exact Solution in the Atomic Limit 59



with
N = 1

eβω − 1 , u = λ
(
1− e−iωt

)
.

The phase ηq(t) in the exponential is then computed as

ηq(t) = λ2
(
1− e−iωt

)
+ |u|2N

= λ2
[(

1− e−iωt
)

+
(
1− e−iωt

) (
1− eiωt

)
N
]

= λ2
[
(N + 1)

(
1− e−iωt

)
+N

(
1− eiωt

)]
.

Recall from Eq. (4.14) that the phonon contribution to the Green’s function is given
by

F (t) =
∏
q

Fq (t) = e
−
∑

q ηq(t) ≡ e−η(t),

where (restoring the subscripts):

η(t) =
∑

q
ηq(t) =

∑
q

(
Mq
ωq

)2 [
Nq

(
1− eiωqt

)
+ (Nq + 1)

(
1− e−iωqt

)]
Nq = 1

eβωq − 1

(4.21)

Finally, we combine the phonon and the electronic part in Eq. (4.13), and obtain
the Green’s function:

G(t) = −i e−it(ε−∆) e−η(t) [1− nF (ε̄)] , (4.22)

4.3.3 Observables in the Atomic Limit

Building on the derivation of the Green’s function in Eq. (4.22), we now focus on
the Holstein Hamiltonian in the atomic limit, where all phonons share the same
frequency, ωq = ω0. For simplicity, we assume a constant coupling Mq = g√

N
. At

zero temperature, all phonon modes are in their ground state, i.e., Nq = 0. Under
these conditions, the energy shift in Eq. (4.8) simplifies to

∆ =
∑

q

M2
q

ω0
= g2

ω0

Then the phase is greatly simplified:

η(t) =
∑

q

(
g2/N

ω0

)(
1− e−iω0t

)
= g2

ω2
0

(
1− e−iω0t

)
,
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and the Green’s function in Eq. (4.22) becomes:

G(t) = −iθ(t) exp
[
−itε− g2

ω2
0

(
1− iω0t− e−iω0t

)]
.

Frequency Distribution

We now wish to evaluate the distribution of the energies. Recall from Eq. (2.21) that
the spectral density function is given by

A(ω) = −2ImGR(kσ, ω) =

= −2 Im
{
−i
∫ ∞

0
dt eiωte

−itε− g2

ω2
0

(
1−iω0t−e−iωn′

)}

= 2 Re
{∫ ∞

0
dt eiωte

−itε− ∆
ω0

(
1−iω0t−e−iωn′ t

)}
The exponential is expanded in a power series:

e∆e−iω0t =
∑

r

(∆/ω0)r

r! e−iω0tr

By a proper evaluation of the oscillating integral, we find

A(ω) = 2πe−∆/ω0
∞∑

r=0

(∆/ω0)r

r! δ(ω − ε+ ∆− rω0). (4.23)

The spectral function is given by a sum of delta functions. The peak heights are
distributed according to a Poisson distribution. In case of weak coupling g → 0
(∆→ 0), a single peak is found at ω = ε. For strong coupling g →∞ (∆→∞), the
peaks are distributed over a wider range and states with energies ωr = ε+ rω0 −∆
are found. These states do indeed occur when the electron is coupled to some
phonons. The number n of excitations ω0 is distributed according to a Poisson
distribution:

Np0 = ∆
ω0

= g2

ω2
0
, n ∼ Poisson(Np0) =⇒ P (n) =

Nn
p0
n! e

−Np0 .

The average binding energy however is still ε:

〈ω〉 = 1
2π

∫ ∞

−∞
A(ω)ω dω = e−Np0

∑
r

N r
p0
r! (ε−∆ + ω0r) = ε−∆ +Np0ω0 = ε
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Fig. 4.2: Spectral function A(ω) in the atomic limit of the Holstein model.

Quasiparticle Weight and Binding Energy

Finally, recall that in Sect. 2.6 an expression for the quasiparticle weight and the
binding energy of the polaron was found by taking the limit of the Matsubara Green’s
function for τ →∞:

G(k, τ) τ→∞−−−→ Z0 (k) e−ε0
kτ

Then we take Eq. (4.22) and find the Matsubara Green’s function by replacing t with
−iτ . By taking the limit τ →∞, we find:

G(τ) τ→∞−−−→ −e
−ετ− g2

ω2
0

(1−ω0τ)
= e−g2/ω2

0e
−
(

ε− g2
ω0

)
τ

(4.24)

We have found EGS = − g2

ω0
to be the ground-state energy of the polaron. In

conclusion, the observables of interest are

EGS = − g
2

ω0
, (4.25)

Z0,GS = e−g2/ω2
0 , (4.26)

and they can be computed through a linear fit of Eq. (4.24).
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Diagrammatic Monte Carlo 5
Diagrammatic Monte Carlo (DiagMC) was first introduced in the 1998 by Prokof’ev
and Svistunov [2] who applied it to the polaron problem. In its most general form,
DiagMC is a numeric method based on the Markov chain Monte Carlo that enables
the calculation of quantities that are described in terms of diagrammatic expansions
[1]. In Sects. 5.1–5.2, we will introduce the theoretical framework of DiagMC. In
Sect. 5.3, we will apply the Feynman rules of the electron-phonon interaction to
formulate the DiagMC method for the Holstein Hamiltonian in the atomic limit.
Finally, in Sects. 5.4–5.5 we will discuss our own application of the DiagMC and the
results obtained.

5.1 Markov Chain Monte Carlo

The term Markov chain Monte Carlo (MCMC) refers to a class of algorithms based
on the Markov chains used to draw samples from a probability distribution [20].

Definition 5.1 (Markov chain). Let S be a countable set called the state space. A
sequence of random variables X = {X1, X2, . . . , Xn, . . . } taking values in S is called a
Markov chain if, for all n, the conditional probability satisfies

P (Xn = x | Xn−1, . . . , X1) = P (Xn = x | Xn−1),

That is to say that the probability density function of Xn only depends on the
random variable immediately before Xn−1 and not on the others. Let us now define
the probability to be in the state xi ∈ S at step n. Such probability is denoted by

p
(n)
i ≡ P (Xn = xi).

Let us now define a transition matrix

Pij ≡ P (Xn+1 = xi|Xn = xj),

and suppose that the above definition does not depend on the step n.
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Definition 5.2 (Stochastic matrix). Pij is a stochastic matrix if:

∑
i

Pij = 1 ∀ j, Pij > 0 ∀ i, j,

By definition of conditional probability we can thus evaluate the probability that
Xn+1 = xi as:

p
(n+1)
i =

∑
j

Pijp
(n)
j .

When working with a MCMC it is often the case that the transition matrix Pij is
known, as well as the initial probabilities p(0)

i , where of course
∑

i p
(0)
i = 1. It is easy

to show that
∑

i p
(n+1)
i = 1 as well.

What we are mostly interested in is that, under very general conditions and
independent of the starting distribution p

(0)
i , with enough steps the probability

distribution converges to a certain distribution p:

P (Xn = x)→ p(x),

which is called stationary distribution. We now introduce some definitions that will
be useful to understand the conditions under which the Markov chain converges to
a unique stationary distribution.

Definition 5.3 (Period of a State). Consider a state xi ∈ S of a Markov chain
{X1, X2, . . . }. The state xi has period d if d is the greatest common divisor of all
possible number of steps n such that the chain can return to xi in n steps: P (Xn = xi |
X0 = xi) > 0.

In other words, if the state xi has a period of d, then the Markov chain can
only return to xi in d, 2d, 3d, . . . steps. For example, if the period is d = 3, then
starting from xi, the chain can return to xi only after 3, 6, 9, . . . steps, but never after
1, 2, 4, 5, . . . steps.

Definition 5.4 (Aperiodic Markov Chain). A Markov chain {X1, X2, . . . } is aperiodic
if all its possible states xi ∈ S are aperiodic; that is, if their period is d = 1.

Definition 5.5 (Irreducible Markov Chain). A Markov chain is irreducible if for any
two states xi, xj ∈ S, there exists some integer n such that

P (Xn = xj | X0 = xi) > 0.

The intuitive meaning of this condition is that the state space is "connected": it is
always possible to go from any state to any other state with enough steps. We now
state a very important theorem that is the basis of the MCMC methods.
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Theorem 5.1 (Existence and uniqueness of the stationary distribution). Let Pij be a
stochastic matrix, and consider a Markov chain that is irreducible, aperiodic, and has a
finite state space. Then there exists a unique stationary distribution pi such that

lim
n→∞

p
(n)
i = pi, pi =

∑
j

Pijpj , (5.1)

where p(n)
i is the probability of being in state xi at step n. In other words, regardless of

the initial distribution, the Markov chain converges to a unique stationary distribution
pi as n→∞.

The latter of (5.1) is called stationarity condition. A Markovian process that
satisfies the above conditions and therefore has a unique stationary distribution is
said to be ergodic. We now define another condition for the distribution pi.

Definition 5.6 (Detailed Balance Condition). A probability distribution pi and a
transition matrix Pij satisfy the detailed balance condition if, for all states xi, xj ∈ S:

piPij = pjPji, (5.2)

The intuitive meaning is that at equilibrium the probability of a transition from i to
j is exactly the same as the probability of transitioning from j to i. It is immediate to
see that the detailed balance condition in Eq. (5.2) does in fact imply the stationarity
condition in Eq. (5.1).

Let us take a moment to appreciate the implications of Th. 5.1. Under the
conditions of ergodicity, after a certain time (called thermalisation time), the Markov
chain will converge to a unique stationary distribution pi. The first surprising aspect
is that pi does not depend on the initial distribution p

(0)
i . The second important

aspect is that the stationary distribution pi is unique. This enables us with a powerful
tool for sampling: we can devise an algorithm whose transition matrix Pij satisfies
the detailed balance condition with respect to a desired probability distribution pi,
which is the target distribution we want to sample from. The transition matrix Pij is
already designed with pi in mind. Then we know that pi is a stationary distribution
for the Markov chain and, because of its uniqueness, the theorem guarantees that the
sampled distribution will converge to the desired pi in a sufficient number of steps.

Finally, a quick note on the detailed balance condition. It is not necessary to satisfy
the detailed balance condition for a probability density function pi to be stationary.
In fact, the condition Eq. (5.1) does not imply detailed balance, which is a stronger
condition. However, here we are interested in the Metropolis-Hastings algorithm,
which is a detailed-balance method.
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5.1.1 Metropolis-Hastings Algorithm

Extension to continuous state spaces. So far, we have considered the Markov chain
with a discrete state space S = {x1, x2, . . . } and transition probabilities denoted by
the matrix elements Pij = P (Xn+1 = xi | Xn = xj). However, for the DiagMC, the
state space is continuous, and the states are represented by continuous variables
x ∈ Rd (or some continuous domain).

The transition probabilities are described by a transition kernel or density, which
we denote as π(x← y). This represents the probability density of transitioning from
state y to state x in one step of the Markov chain. Formally,

π(x← y) dx = P (Xn+1 ∈ [x, x+ dx) | Xn = y).

The transition kernel π(x ← y) generalizes the discrete transition matrix Pij to
continuous state spaces, and it satisfies the normalisation condition∫

π(x← y) dx = 1 ∀y.

Correspondingly, the probability distribution at step n is described by a density
function p(n)(x), and the evolution of the distribution is given by the integral
equation

p(n+1)(x) =
∫
π(x← y) p(n)(y) dy.

Metropolis-Hastings Algorithm The idea behind the Metropolis-Hastings algorithm
is as follows [21]. Suppose the system is in some state y ∈ S. A new state x ∈ S is
then proposed according to a certain proposal distribution q(x | y). The proposed
variable x is then either accepted or rejected according to the acceptance ratio A:

A(x← y) = min
{

1, q(y | x)f(x)
q(x | y)f(y)

}
. (5.3)

If the proposed variable is accepted, then the state is set to x; otherwise, it remains
at y. This algorithm has the transition kernel:

π(x← y) = q(x | y)A(x← y) if x 6= y.

It is easy to see that the Metropolis-Hastings transition kernels satisfy the detailed
balance condition for the desired target distribution f(x):

π(x← y) f(y)∫
f(z) dz = π(y ← x) f(x)∫

f(z) dz .
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Algorithm 1 Metropolis-Hastings Algorithm

Input: Target density f(x), proposal distribution q(x | y), initial state x0, number
of samples N
Set x← x0
for i = 1 to N do

Sample x′ from q(x′ | x)
Compute acceptance ratio: A = min

{
1, q(x|x′)f(x′)

q(x′|x)f(x)

}
Draw u ∼ Uniform(0, 1)
if u < A then

x← x′

end if
Record x as the i-th sample

end for

It was stated before that the detailed balance condition implies the stationarity con-
dition, so f(x) is a stationary distribution for the Markov chain under consideration.
Under the assumption that π(x← y) is ergodic, by Th. 5.1 the Markov chain must
be unique. This means that after a certain number of steps, called thermalisation
time, the samples xi obtained from the algorithm will be distributed according to
the desired probability density function

xi ∼
f(x)∫
f(z) dz .

In Alg. 1, we write the Metropolis-Hastings algorithm in pseudocode.

5.2 Diagrammatic Monte Carlo

In Ch. 3, we discussed how the Green’s function can be expanded as a series, with
each term represented by a Feynman diagram. More generally, a diagrammatic
expansion of a physical quantity Q takes the form of a series of integrals, each with
an increasing number of integration variables:

Q(y) =
∞∑

m=0

∑
ξm

∫
dx1 · · · dxmF(ξm, y, x1, x2, . . . , xm) (5.4)

Here, y denotes a set of parameters on which Q(y) depends. The index m indicates
the order of the diagrams, and ξm labels different diagrams of the same order. The
variables xi are the integration variables associated with each diagram.

Diagrammatic Monte Carlo (DiagMC) is a computational technique that enables
the simulation of quantities defined by such diagrammatic series [1]. In this ap-
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proach, Q(y) is interpreted as a distribution function over the variables y. The
value of Q(y) is then estimated using a Markov chain Monte Carlo process, which
samples diagrams stochastically. In the context of the polaron problem, Q(y) is
naturally associated with the Matsubara Green’s function in the momentum-time
representation, G(k, τ). Thus, Q corresponds to the Matsubara Green’s function G,
and y represents the variables (k, t). The integration variables xi correspond to the
internal times and momenta of each diagram ξm.

The terms F(ξm, y, x1, . . . , xm) represent the weights of the diagrams ξm. The
m = 0 term corresponds to the free-particle Green’s function (GF) G0(τ). According
to Wick’s expansion, higher-order terms (m > 0) are products of non-interacting
GFs and interaction vertices Mq(k). As established earlier,

G(0)(k, τ2 − τ1) = e−εk(τ2−τ1) if τ2 > τ1,

for the electron, and

D0(q, τ2 − τ1) = e−ωq(τ2−τ1) if τ2 > τ1,

for the phonon.

To simulate the distribution Q(y), diagrams relevant to the physical problem are
generated stochastically. This is achieved using a Metropolis-Hastings algorithm,
where each step involves proposing an update to the current diagram. The algorithm
was introduced in the previous section; here, we reiterate its application to DiagMC.
At each step, a modification to the current diagram is proposed, the acceptance
ratio (Eq. (5.3)) is evaluated, and the update is accepted or rejected accordingly. If
accepted, the diagram is updated.

In their original formulation [2], Prokof’ev et al. classified the possible updates
into two categories:

Type I updates These updates modify a variable of the current diagram without
altering its structure. Such updates are analogous to simulating a continuous
distribution for a fixed function F . An example of a type I update, which will be
used later, is changing the electron’s time of flight τ .

For a type I update, suppose we propose a change in the variables from ~x =
(x1, . . . , xm) to ~x′ = (x′

1, . . . , x
′
m). The acceptance ratio is then:

A(x→ x′) = min
{

1, F(ξm, y
′, ~x′)

F(ξm, y, ~x) ·
q (~x | ~x′)
q (~x′ | ~x)

}
,

where q(~x′ | ~x) is the probability of proposing ~x′ given the current state ~x.
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Type II updates. These updates alter the structure of the diagram, i.e., they change
the form of the function F . An example is the addition of a phonon line, which
modifies the diagram’s structure. Suppose that a process A transforms the diagram
as follows:

F(ξm, y, x1, . . . , xm) A−→ F(ξm+n, y, x1, . . . , xm, xm+1, . . . , xm+n)

The update A introduces n new variables ~x = (xm+1, . . . , xm+n). The new variables
~x are chosen according to a distribution function W (~x), and the update is proposed
with probability1 pA. The function W (~x) does not require a specific form, but it
must ensure (a) that physical constraints are respected and (b) that the updates are
ergodic, so the resulting transition kernel is ergodic.

To ensure ergodicity, it is natural to define the complementary process B, which is
the reverse of A and removes the variables ~x:

F(ξm, y, x1, . . . , xm) B←− F(ξm+n, y, x1, . . . , xm, xm+1, . . . , xm+n).

This update is proposed with probability pB.

Given the forward and reverse processes, the acceptance ratio for the Metropolis-
Hastings algorithm can be computed. For the process A, which modifies the diagram
by adding variables ~x = (x1, . . . , xn), the acceptance ratio is given by Eq. (5.3):

AA = min
{

1, pB
pA
· F(ξm+n, y, x1, . . . , xm, ~x)
F(ξm, y, x1, . . . , xm) · 1

W (~x)

}
.

Here, q(new state with added variables ~x | old state) = pA ·W (~x) is the product
of the probabilities of two independent events: (a) proposing the update A with
probability pA, and (b) choosing the new variables ~x according to W (~x). The
acceptance ratio for the reverse process B is analogous:

AB = min
{

1, pA
pB
· F(ξm, y, x1, . . . , xm)
F(ξm+n, y, x1, . . . , xm, ~x) ·W (~x)

}
,

Before proceeding to the implementation for the Holstein Hamiltonian, let us
consider the acceptance ratio A and the distribution function W (~x). As previously
stated, W (~x) can be chosen arbitrarily, provided that the resulting diagram is
physically valid and all possible diagrams are accessible (ergodicity condition).
However, W (~x) should ideally be chosen to closely match the actual distribution
given of F(ξm, x1, . . . , xm, ~x). If these distributions coincide, the acceptance ratio

1pA generally depends on W (~x).
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becomes AA = 1, resulting in an optimal algorithm. Conversely, if W (~x) is poorly
chosen, the acceptance ratio decreases, leading to longer thermalisation times.

Finally, recall that pA is the proposal probability for process A, and pB for process
B. For example, consider the processes [21]

A = add a phonon line, B = remove a phonon line,

It may seem reasonable to assume that creation and annihilation are proposed with
equal probability, implying pA/pB = 1. However, this is not generally the case. Even
if the update types (A or B) are proposed with the same frequencies, their overall
probability depends on how the variables are chosen. For example, A requires
choosing two points τi and τi+1 to insert the new phonon line, whereas B involves
choosing one of the Nph phonon lines to remove. Such choices generally lead to
different proposal probabilities for the two processes pA 6= pB.

5.3 DiagMC for the Holstein Hamiltonian in the Atomic
Limit

5.3.1 Diagram Weights

Let us now consider the Holstein Hamiltonian in the atomic limit that was previously
stated in Eq. (4.6) in the form2

H = εc†c + ω0
∑

q
b†

qbq + g√
N
c†c

∑
q

(
bq + b†

q

)
,

which is equivalent to

H = εc†c + ω0b
†b + gc†c

(
b + b†

)
.

We shall now consider the zero-temperature case in the Matsubara formalism. For a
correct implementation of the DiagMC for Holstein Hamiltonian, we need to establish
the possible diagrams that can be generated by the electron-phonon interaction. To
do that, we make use of the Rules 1–7 of Sect. 3.4 to generate each diagram and
later to calculate its weight. Some of the resulting diagrams are shown in Fig. 5.1.
In order to respect the rules, one electron line of momentum p is always present
and connected to the external vertices at times 0 and τ . Several phonon lines are

2In this form, the electron-coupling constant is actually g with a certain phase, as denoted in Eq. (4.5).
However, we see that later the squared module of the coupling constant appears, so we can safely
drop the phase factor.
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Fig. 5.1: Several Feynman diagrams for the atomic limit Holstein Hamiltonian.

connected to the electron line at different times. Each vertex must conserve the
momentum and spin.

Later, we need to evaluate the weight of each diagram. Each electron line con-
tributes as G0(p, τ2 − τ1); each phonon lines contributes as D0(k, τ2 − τ1). Each
electron-phonon vertex contribute with the interaction g√

N
. For example, the di-

agram in Fig. 5.1 (b) has the diagram weight as follows, where we sum over the
possible momentum q of the phonons:

F(p, {τi}) = g2

N
G0(p, τ1)G0(p, τ − τ2)

∑
q
G0(p− q, τ2 − τ1)D0(q, τ2 − τ1) =

= g2

N
e−ετ1e−ε(τ2−τ1)e−ε(τ−τ2)∑

q
e−ω0(τ2−τ1).

Over a 1-dimensional lattice of N sites, there are exactly N distinct momenta
derived from the conditions in Eq. (1.24). Under the assumption of working with
dispersionless phonons with the same energy, we see that the phonon Green’s
function is in fact identical for all momenta. The sum over q thus yields exactly N
identical terms, so a prefactor of N appears and cancels out with the denominator.
The electron part does not depend on the momentum either, since we have assumed
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that electrons can only have a single energy ε. The diagram weight for Fig. 5.1 (b)
therefore is

F(p, {τi}) = g2e−ετe−ω0(τ2−τ1). (5.5)

Let us now generalise this result by supposing there are m phonon lines. The term
in Eq. (5.5) that is related to the electron is always the ending time τ , as all times τi

cancels out in the sum. However, by Feynman rules the phonon part is the product
of all different phonon’s GFs:

m∏
i

e−ω0(τ2i−1−τ2i) = e−ω0
∑

i
(τ2i−1−τ2i) ≡ e−ω0

∑
i

Li ,

where Li ≡ τ2i − τ2i−1 is the length of the i-th phonon. Furthermore, we know that
for m phonons there must be 2m coupling vertices. The diagram weight therefore is

F(p, {τi}) = g2me−ετe−ω0
∑m

i
Li .

5.3.2 Updates

Now that we have established the weight of all possible connected diagrams, it
is necessary to implement the updates that will allow us to sample the diagrams
stochastically [21]. The updates need to be ergodic, meaning that they must allow
the Markov chain to explore the entire configuration space of diagrams. This is a
necessary condition for the Markov chain to converge to the correct distribution.

Change τ

The first update to be performed is of type 1 and consists in changing the length
τ of the electron line by choosing a new value τ ′. The only constraint is that
τ ′ > τ2m ≡ τp, where τp is the time of the latest electron-phonon vertex. This update
and its complementary are represented in Fig. 5.2.

As stated in the previous section, for code efficiency it is important to choose τ ′

with a proper distribution. Let us consider the acceptance ratio for this update:

A
(
τ → τ ′) = F(ξm, x1, . . . , τ

′, . . . , xm)
F(ξm, x1, .., τ, . . . , xm) ·

q(τ | τ ′)
q(τ ′ | τ) = e−ε(τ ′−τ) · q(τ | τ

′)
q(τ ′ | τ) .

Then, for an acceptance ratio of A = 1, it we should choose

q(τ ′ | τ)
q(τ | τ ′) = e−ε(τ ′−τ), (5.6)
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Fig. 5.2: Diagrammatic representation of the change τ update.
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Update: A

Update: B

Fig. 5.3: Diagrammatic representation of the add/remove phonons updates.

then our variable τ ′ should be chosen as en exponential distribution from τp to∞:

τ ′ − τp ∼ Exp (λ (τp)) ,

Thus, τ also has the same distribution and the condition in Eq. (5.6) is satisfied. By
using this proposal distribution we achieve a perfect acceptance ratio of 1.

A common way of sampling τ ′ in this way is through the inverse transform sampling
method. The idea is that the cumulative density function of the variable τ is uni-
formly distributed. This can easily be seen by considering r ∼ Uniform(τmin, τmax)
(say q(τ | τ ′) ≡ F (τ)):

P (F (τ) ≤ r) = P (τ ≤ F−1 (r)) = F
(
F−1 (r)

)
= r.

To sample our variable τ then we can simply generate r uniformly between 0 and 1
and then calculate

τ = F−1 (r) = τp −
ln (r)
ε

.

Add/Remove phonon lines

The next updates to be implemented are of type II and consist in adding or removing
phonon lines. Let us call them

A ≡ add a phonon line, B ≡ remove a phonon line.
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They are depicted in Fig. 5.3. In order to calculate pA/pB it is necessary to state
the procedure for choosing each update clearly. Let us call SNph

the initial state
and SNph+1 the final state. The first step of the implementation is that, in the most
general case, we choose to either add (A) or remove (B) phonon lines with some
probabilities: wA and wB, respectively. For the add phonon lines update A we need
to choose the starting and the ending position of the phonon lines. The starting
position is chosen uniformly from 0 to τ , whereas the ending position is chosen
exponentially distributed from τstart to τ :

qs(τstart) = 1
τ
, qe(τend) = ω0 e

−ω0(τend−τstart)

1− e−ω0(τ−τstart)

The total proposal probability for A therefore is

pA ·W ({τstart, τend}) = wA · qs(τstart) · qe(τend) = wA ·
1
τ
· ω0 e

−ω0(τend−τstart)

1− e−ω0(τ−τstart)
.

For updates of type B we need to choose the phonon line to be removed. The
phonon line is chosen uniformly among all. For the reverse update (Nph + 1→ Nph),
the proposal probability of B is:

pB = wB ·
1
Nph

.

Finally, the diagram weight ratio is evaluated:

F
(
SNph+1, ~x, {τstart, τend}

)
F
(
SNph

, ~x
) = g2e−ω0(τend−τstart).

The acceptance ratio for the update A(Nph → Nph + 1) is (from Eq. (5.3)):

AA (Nph → Nph + 1) = g2e−ω0(τend−τstart)τ
1− e−ω0(τ−τstart)

ω0 e−ω0(τend−τstart)
· 1
Nph + 1 ·

wA
wB

.

5.4 Implementation
The DiagMC method for this thesis was implemented in C++. The work was largely
based on a DiagMC package developed by Thomas Hahn [22]. For reference, we
rewrite the atomic limit Holstein Hamiltonian here:

H = εc†c + ω0b
†b + gc†c

(
b + b†

)
. (5.7)

The following parameters are initially chosen for the simulations:
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• The site energy ε of the electron.

• The phonon frequency ω0.

• The electron-phonon coupling strength g.

• The maximum imaginary time τmax and the number of bins Nbins for the
histogram.

• The weight or probability wi for each update type to be chosen.

• The time length t of the simulation.

The code is structured in two parts: the thermalisation phase and the sampling phase.
The thermalisation phase is almost identical to the sampling phase, except that the
diagram state is not measured. For this reason in Alg. 2 the thermalisation phase is
not explicitly shown. The sampling phase is performed according to the Metropolis-
Hastings algorithm that was largely discussed in the previous sections. The time
length of the sampling phase is decided by the time length t of the simulation; for
the sake of simplicity, in Alg. 2 the loop is shown for a number of fixed steps Nsample.
We now briefly describe the procedure of each sampling step.

Update proposal. In this step, an update type is chosen according to the weights
wi. The update types were already discussed in Sect. 5.3.2 and they are:

• Change τ : the length of the electron line is changed to a new value τ ′ that is
drawn from the proposal distribution q(τ ′ | τ ′), which is exponential.

• Add phonon line: a new phonon line is added to the diagram. The start time
τstart is drawn uniformly from the interval [0, τ ] and the end time τend is drawn
from an exponential distribution qe(τend) between τstart and τ .

• Remove phonon line: a phonon line is removed from the diagram. The phonon
line to be removed is chosen uniformly from the list of all phonon lines in the
current diagram.

After the update type is chosen and the parameters are drawn, the acceptance ratio
A is computed according to the diagram weights F and the proposal probabilities.
The acceptance ratio was already determined in Sect. 5.3.2.

Acceptance step. In this step, a random number u is drawn from a uniform distri-
bution in the interval [0, 1]. If u < A, the update is accepted and the diagram state
is updated accordingly. Otherwise, the diagram state remains unchanged.

Measurement. The bin corresponding to the current time τ is updated in the
histogram.
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At the end of the sampling phase, we estimate the probability density function
p(τ) by dividing the number of samples in each bin n(τ) by the total number of
samples N :

p(τ) = n(τ)
Nδτ

,

where δτ is the size of the bin. p(τ) differs from the GF by a unknown normalisation
constant K:

p(τ) = G(τ)
K

. (5.8)

However, it is possible to calculate the normalisation constant K0 of the free GF by
integrating it over the time interval [0, τmax]. Then, let N0 be the number of 0-th
order diagrams, the ratio between the normalisation constants is the same as the
ratio between the number of 0-th order diagrams and the total number of diagrams:

N0
N

= K0
K
.

The GF is extracted from Eq. (5.8):

G(τ) = K0
N0δτ

n(τ).

5.5 Results

The results of the simulations are presented in this section. The main observables of
interest are the ground-state quasiparticle weight Z0,GS ≡ Z0 and the ground-state
energy EGS of the polaron. These can be extracted from the measured Green’s
function G(τ) such that (from Eq. (4.24))

|G(τ)| ∼ Z0e
−(EGS+ε)τ . (5.9)

Then a linear fit of the logarithm is performed:

ln |G(τ)| = a+ bτ,

and thus the quasiparticle weight and energy are extracted as

Z0 = ea, EGS = −b− ε.

Such values are then compared to the exact results in Eqs. (4.26) and (4.25) to
verify the correctness of the implementation.
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Algorithm 2 DiagMC of the atomic Holstein Hamiltonian

Input: ε, ω0, g, τmax, number of samples N , number of thermalisation steps Ntherm,
update type weights wi (i=1, 2, 3)
Initialise diagram state as free electron line (e.g., m = 0 phonon lines, τ initialised)
Set x← x0 . Thermalisation phase
for i = 1 to Ntherm do

Thermalisation step
end for . Sampling phase
for i = 1 to Nsample do

Draw up according to weights wi from the list [change τ , add phonon line,
remove phonon line]

Propose an update to the diagram (change τ , add/remove phonon line, etc.)
if up is "change τ " then

Draw τ from q(τ | τ ′)
else if up is "add phonon line" then

Draw τstart ∼ Uniform(0, τ)
Draw τend ∼ qe(τend)

else if up is "remove phonon line" then
Draw phonon line n ∈ [1, 2, . . . , Nph]

end if
Compute A with diagram weights F and proposal probabilities
Draw b ∼ Uniform(0, 1)
if b < A then

Update the diagram state
end if
Measure G(τ)

end for

The update weights wi were all set to 1, so all update types were equiprobable.
The parameters chosen for the simulations are reported in Table 5.1. The execution
time of each simulation was set to t = 20 seconds.

Careful consideration must be given to the choice of the parameter ε. If ε is
chosen to be too small in absolute value (ε� |EGS |), then the the Green’s function
in Eq. (5.9) will be an increasing exponential, leading to poor statistics at small τ .
Conversely, if ε is too large (ε � |EGS |), then the Green’s function will decay too
quickly, leading to a small number of diagrams at large τ . For this reason, the value
of ε must be chosen such that it is close to that of the energy |EGS |. This is not an
issue, since we already have an exact solution for the energy in Eq. (4.25), which
can be used to set ε accordingly.

The results of the simulations are presented in Table 5.2. For each value of g,
several values of ε were tested to find the optimal parameters. Figs. 5.4 and 5.5
display the logarithm of the GF G(τ) and its linear fit for values of g = 1 and g = 2,
respectively. The results show that the fitted values for the energy and quasiparticle
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Parameter τinit τmax ω0

Value 5.0 10.0 1.0
Tab. 5.1: Simulation parameters. ε and g are not listed here since they are changed at

every simulation.

# g ε Eexact Zexact Efit std(Efit) Zfit std(Zfit)

1 0 0.1 0.00 1.00 0.0005 0.0007 1.002 0.006
2 0.25 0.25 -0.0625 0.939 -0.0619 0.0005 0.943 0.004
3 0.50 0.375 -0.25 0.779 -0.248 0.001 0.790 0.005
4 1.0 1.1 -1.00 0.368 -1.001 0.001 0.365 0.003
5 1.5 2.3 -2.25 0.1054 -2.249 0.001 0.106 0.001
6 2.0 4.04 -4.00 0.0183 -4.012 0.004 0.0183 0.0006

Tab. 5.2: Comparison of the exact and fitted values for the polaron energy and quasiparticle
weight for different coupling strengths g and site energies ε.

weight are in good agreement with the analytical results, confirming the correctness
of the implementation.

Finally, 200 simulations were performed with g sweeping from 0 to 4. The value
of ε was chosen to be ε = g2

ω0
+ 0.2. Notice that this choice is suboptimal, because

in Tab. 5.2 we observed that the optimal value of ε is not a linear function of the
polaron energy. Nevertheless, the results in Figs. 5.6 and 5.7 show a good agreement
with their analytical counterparts.

Next follows an interpretation of the results. In Fig. 5.6 we see that the ground-
state energy EGS is zero when the coupling constant is null. This is of course
expected: if g = 0, then Eq. (5.7) is that of a free electron with constant energy ε
decoupled from the phonons. As g increases, the energy becomes more negative,
indicating that the polaron is becoming more bound. The quasiparticle weight Z0

in Fig. 5.7 is 1 when g = 0, which is also expected. Recall that the quasiparticle
weight is the weight of the bare-electron state. For the zero-interaction case, this is
of course 1 as the electron is free. As g increases, Z0 decreases because the electron
gets dressed by the phonons.
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Fig. 5.4: The logarithm of the Green’s function for g = 1 from the DiagMC sampled data
(red) and its linear fit (blue).
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Fig. 5.5: The logarithm of the Green’s function for g = 2 from the DiagMC sampled data
(red) and its linear fit (blue).
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Fig. 5.6: The polaron ground-state energy EGS against the coupling constant g. The exact
solution (dashed line) is compared with the DiagMC simulation results (solid line).
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Fig. 5.7: The ground-state quasiparticle weight Z0 against the coupling constant g. The
exact solution (dashed line) is compared with the DiagMC simulation results (solid
line).
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Conclusions

The first part of this thesis was focused on developing the theoretical knowledge to
address the Holstein Hamiltonian and the Diagrammatic Monte Carlo. We started by
introducing the fundamentals of second quantisation, with emphasis on the phonons
and the electron-phonon interaction, at the heart of the Holstein model. In the
following chapter, we introduced the Green’s function formalism with particular
emphasis on the imaginary-time Green’s function, which is the main tool used in
this thesis. We then showed how Wick’s theorem enables us to expand the electron-
phonon interaction in terms of free electron and phonon Green’s functions. After
achieving a great simplification with the cancellation theorem, we were able to
establish the Feynman rules for systematically determining the expansion of the
electron Green’s function for the electron-phonon interaction.

Later, we introduced the Holstein polaron and wrote the atomic-limit Hamiltonian
in second quantisation. An exact solution for the zero-temperature case enabled us
to determine the form of two fundamental observables: the ground-state polaron
energy and the quasiparticle weight. In the following chapter, we briefly introduced
the theoretical framework of the Diagrammatic Monte Carlo and its application
to the polaron problem. The Feynman rules allowed us to determine the updates
of the Metropolis-Hastings algorithm for the electron-phonon interaction. Finally,
we presented an application of the Diagrammatic Monte Carlo for the Holstein
Hamiltonian in the atomic limit.

The Monte Carlo simulations enabled us to sample the Green’s function, from
which we determined the ground-state polaron energy and the quasiparticle weight.
Initially, we performed several tests at specific values of the coupling strength
and quantitatively compared the results with the exact solution as a reference.
Subsequently, the simulations were extended to a broader range of coupling strengths
in order to examine the dependence of the ground-state polaron energy and the
quasiparticle weight on the coupling parameter. The trends obtained from these
simulations were then qualitatively compared with the exact predictions, showing
good overall agreement. The consistency of these results with the exact solution
allowed us to validate our application of the Diagrammatic Monte Carlo, which was
thus deemed correct.

Further improvements of the method could be made by conducting a more precise
fine-tuning of the simulation parameters – such as the bare-electron energy and
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the maximum time τ of the diagram. This would lead to more precise evaluation
of the properties for larger values of g. A natural and significant extension would
be to implement the full Holstein Hamiltonian beyond the atomic limit. Such a
development would require introducing new updates to add and remove external
phonon lines.

82 Conclusions



Bibliography

[1] K. V. Houcke, E. Kozik, N. Prokof’ev, and B. Svistunov. “Diagrammatic Monte Carlo”.
In: Physics Procedia 6 (2010), pp. 95–105. DOI: 10.1016/j.phpro.2010.09.034.
arXiv: 0802.2923 [cond-mat] (cit. on pp. 1, 63, 67).

[2] N. V. Prokof’ev and B. V. Svistunov. “Polaron Problem by Diagrammatic Quantum
Monte Carlo”. In: Physical Review Letters 81.12 (Sept. 21, 1998), pp. 2514–2517. DOI:
10.1103/PhysRevLett.81.2514. arXiv: cond-mat/9804097 (cit. on pp. 1, 63, 68).

[3] L. D. Landau. “Electron Motion in Crystal Lattices”. In: Phys. Z. Sowjetunion 3 (1933).
Ed. by D. ter Haar. DOI: 10.1016/b978-0-08-010586-4.50015-8 (cit. on p. 1).

[4] T. Holstein. “Studies of Polaron Motion: Part I. The Molecular-Crystal Model”. In:
Annals of Physics 8.3 (Nov. 1, 1959), pp. 325–342. DOI: 10.1016/0003-4916(59)
90002-8 (cit. on pp. 1, 49).

[5] H. Bruus and K. Flensberg. ManyBody Quantum Theory in Condensed Matter Physics:
An Introduction. Oxford University PressOxford, Sept. 2, 2004. DOI: 10.1093/oso/
9780198566335.001.0001 (cit. on pp. 3, 5, 9, 12, 13, 15, 21, 22).

[6] J. C. Slater. “A Simplification of the Hartree-Fock Method”. In: Physical Review 81.3
(Feb. 1, 1951), pp. 385–390. DOI: 10.1103/PhysRev.81.385 (cit. on p. 5).

[7] G. D. Mahan. Many-Particle Physics. Boston, MA: Springer US, 2000. DOI: 10.1007/
978-1-4757-5714-9 (cit. on pp. 6, 27–29, 31, 32, 53).

[8] A. L. Fetter and J. D. Walecka. Quantum Theory of Many-particle Systems. Courier
Corporation, June 20, 2003. 644 pp. Google Books: 0wekf1s83b0C (cit. on p. 11).

[9] F. Bloch. “Über die Quantenmechanik der Elektronen in Kristallgittern”. In: Zeitschrift
für Physik 52.7 (July 1, 1929), pp. 555–600. DOI: 10.1007/BF01339455 (cit. on p. 14).

[10] J. C. Slater and G. F. Koster. “Simplified LCAO Method for the Periodic Potential
Problem”. In: Physical Review 94.6 (June 15, 1954), pp. 1498–1524. DOI: 10.1103/
PhysRev.94.1498 (cit. on p. 15).

[11] G. H. Wannier. “The Structure of Electronic Excitation Levels in Insulating Crystals”.
In: Physical Review 52.3 (Aug. 1, 1937), pp. 191–197. DOI: 10.1103/PhysRev.52.191
(cit. on p. 16).

[12] A. Altl and S. B. D. er. Condensed Matter Field Theory, Second Edition. DOI: 10.1017/
CBO9780511789984CBO9780511789984 (cit. on p. 16).

[13] D. Di Sante and C. Franchini. Interactions and Correlations in Condensed Matter Course
Notes, University of Bologna. 2023 (cit. on p. 18).

83

https://doi.org/10.1016/j.phpro.2010.09.034
https://arxiv.org/abs/0802.2923
https://doi.org/10.1103/PhysRevLett.81.2514
https://arxiv.org/abs/cond-mat/9804097
https://doi.org/10.1016/b978-0-08-010586-4.50015-8
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1093/oso/9780198566335.001.0001
https://doi.org/10.1093/oso/9780198566335.001.0001
https://doi.org/10.1103/PhysRev.81.385
https://doi.org/10.1007/978-1-4757-5714-9
https://doi.org/10.1007/978-1-4757-5714-9
http://books.google.com/books?id=0wekf1s83b0C
https://doi.org/10.1007/BF01339455
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1017/CBO9780511789984CBO9780511789984
https://doi.org/10.1017/CBO9780511789984CBO9780511789984


[14] R. A. Jishi. Feynman Diagram Techniques in Condensed Matter Physics. Cambridge:
Cambridge University Press, 2013. DOI: 10.1017/CBO9781139177771 (cit. on pp. 32,
34, 36, 37, 39, 46, 47).

[15] M. Gell-Mann and F. Low. “Bound States in Quantum Field Theory”. In: Physical Review
84.2 (Oct. 15, 1951), pp. 350–354. DOI: 10.1103/PhysRev.84.350 (cit. on p. 36).

[16] A. S. Alexandrov and J. T. Devreese. Advances in Polaron Physics. Vol. 159. Springer
Series in Solid-State Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
DOI: 10.1007/978-3-642-01896-1 (cit. on pp. 37, 38).

[17] R. P. Feynman. “Space-Time Approach to Quantum Electrodynamics”. In: Physical
Review 76.6 (Sept. 15, 1949), pp. 769–789. DOI: 10.1103/PhysRev.76.769 (cit. on
p. 39).

[18] G. C. Wick. “The Evaluation of the Collision Matrix”. In: Physical Review 80.2 (Oct. 15,
1950), pp. 268–272. DOI: 10.1103/PhysRev.80.268 (cit. on p. 40).

[19] R. P. Feynman. “An Operator Calculus Having Applications in Quantum Electrodynam-
ics”. In: Physical Review 84.1 (Oct. 1, 1951), pp. 108–128. DOI: 10.1103/PhysRev.84.
108 (cit. on p. 57).

[20] R. Waagepetersen. A Quick Introduction to Markov Chains and Markov Chain Monte
Carlo (Revised Version) (cit. on p. 63).

[21] J. Gubernatis, N. Kawashima, and P. Werner. Quantum Monte Carlo Methods: Algo-
rithms for Lattice Models. 1st ed. Cambridge University Press, Jan. 31, 2016. DOI:
10.1017/CBO9780511902581 (cit. on pp. 66, 70, 72).

[22] T. Hahn. Simple-MC (cit. on p. 74).

84 Bibliography

https://doi.org/10.1017/CBO9781139177771
https://doi.org/10.1103/PhysRev.84.350
https://doi.org/10.1007/978-3-642-01896-1
https://doi.org/10.1103/PhysRev.76.769
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/PhysRev.84.108
https://doi.org/10.1103/PhysRev.84.108
https://doi.org/10.1017/CBO9780511902581

	Abstract
	Acknowledgments
	Contents
	Introduction
	1 Fundamentals of Condensed Matter Physics
	1.1 Review of First Quantization
	1.2 Second Quantisation
	1.2.1 Boson Creation and Annihilation Operators
	1.2.2 Fermion Creation and Annihilation Operators
	1.2.3 Operators
	1.2.4 Harmonic Oscillator

	1.3 Crystal Lattice
	1.3.1 Bloch's Theorem
	1.3.2 Tight-Binding Approximation

	1.4 Phonons
	1.4.1 Electron-Phonon Interaction


	2 Green's Functions
	2.1 Interaction Representation
	2.2 Dyson Series
	2.3 Real-Time Green's Functions
	2.3.1 Electron Green's Function
	2.3.2 Phonon Green's Function

	2.4 Matsubara Green's Function
	2.4.1 Definition
	2.4.2 Properties
	2.4.3 Green's Functions and the U-operator
	2.4.4 Free Propagators

	2.5 Retarded Green's Function
	2.6 Ground-State Energy and Quasiparticle Weight

	3 Feynman Diagrams
	3.1 Wick's Theorem
	3.2 Diagrammatic Expansion of the Electron-Phonon Interaction
	3.3 Disconnected Diagrams
	3.4 Feynman Rules

	4 Holstein Hamiltonian in the Atomic Limit
	4.1 The Holstein Hamiltonian
	4.2 Holstein Hamiltonian in Second Quantisation
	4.3 Exact Solution in the Atomic Limit
	4.3.1 Lang-Firsov Transformation
	4.3.2 Green's Function
	4.3.3 Observables in the Atomic Limit


	5 Diagrammatic Monte Carlo
	5.1 Markov Chain Monte Carlo
	5.1.1 Metropolis-Hastings Algorithm

	5.2 Diagrammatic Monte Carlo
	5.3 DiagMC for the Holstein Hamiltonian in the Atomic Limit
	5.3.1 Diagram Weights
	5.3.2 Updates

	5.4 Implementation
	5.5 Results

	Conclusions
	Bibliography

