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Abstract 

Translation Lookaside Buffer (TLB) is an essential part of the memory management unit 

(MMU) that speeds up virtual-to-physical address translation. Due to its frequent access, 

it is especially prone to soft errors, which can lead to incorrect translations, degraded 

system performance, or even critical failures.  

Starting from a baseline TLB extended with suboptimal Single-Error Correction, 

Double-Error Detection (SECDED) mechanism, this thesis proposes alternative 

architectural solutions that preserve the TLB reliability capabilities while improving the 

TLB area and timing metrics at the cost of slower correction mechanism due to TLB 

entries invalidation in case of fault detection during translation process. 

This work ensures real-time delivery of corrected data to the MMU while persistently 

updating TLB entries to enhance reliability, reduce correction overhead, and limit soft 

error propagation. Additionally, performance is improved by removing TLB and ECC 

logic from the MMU's critical path, easing timing constraints during translation. 

To achieve this aim, five solutions have been implemented: Detection Only mode, Full 

parallel correction using separate encoder per each TLB entry, Counter-based solution 

for correction, Arbiter-based solution for correction and the last solution is about 

Performance Enhancement based on using arbiter and counter, separately. The proposed 

TLB modifications are implemented within a 64-bit RISC-V core named CVA6 capable 

of booting Linux, integrated into an open-source SoC called Cheshire. The design was 

validated through PPA analysis on GlobalFoundries 22nm (GF22) technology. Based on 

the result, there is a 5.3% and 8.14% increment in frequency for the arbiter-based 

correction mechanisms and counter-based solutions including performance 

enhancement respectively, compared to the baseline TLB. 

However, a negligible increase in CVA6 area has been observed for both arbiter-based 

(1.25%) and counter-based solutions (0.41%). 
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1.Introduction 

As embedded systems, low-power computing platforms, and high-performance 

processors become increasingly widespread across industries such as automotive, 

aerospace, healthcare, and consumer electronics, ensuring the reliability of these 

systems has emerged as a crucial design concern. 

At the same time, the RISC‑V has seen rapid adoption in safety-critical domains, thanks 

to its open Instruction Set Architecture (ISA) and readily available open-source 

processor IP cores [1]. 

A major advantage of RISC‑V is its flexibility, which allows customization of both ISA 

and hardware to satisfy specific reliability requirements. As a result, RISC‑V is gaining 

traction in systems where dependable operation is essential [2].  

Furthermore, as CMOS technology advances, driven by the need for greater 

functionality, lower power consumption, ever-smaller transistor dimensions and 

operating voltages, significant challenge emerges, particularly in memory applications. 

The escalating demand for on-chip storage has led to increasingly compact embedded 

memories. However, this technological scaling, combined with reduced supply voltages, 

makes memory cells highly susceptible to radiation-induced soft errors, compromising 

their reliability [3].  

Ensuring memory system reliability involves not only correcting transient errors but also 

maintaining performance and energy efficiency. To this end, designers commonly 

integrate Error-Correcting Codes (ECC) such as Hamming codes, into memory 

controllers, which detect and correct errors. Over time, however, memories may 

accumulate faults, necessitate periodic re-reading and scrub to prevent multiple error 

accumulation. In such designs, memory controllers primarily focus on high data 

throughput, relying heavily on ECC logic and delegating more complex fault-tolerance 

tasks to the operating system [4].  
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Also, the Translation Lookaside Buffer (TLB) emerges as one of the vulnerable 

architectural structures. Acting as a cache for recent virtual-to-physical address 

translations, the TLB is accessed frequently during memory operations which result in 

being particularly susceptible to Single Event Upsets (SEUs). When soft errors occur 

within TLB, they can lead to hard faults, silent data corruption, or even system-wide 

freeze by corrupting translation entries [5].  

A single-bit error in an entry can alter the stored virtual page number, potentially leading 

to incorrect matching behavior. This alteration can result in false negatives, where 

legitimate entries are missed. More critically, it can cause false positives, where an 

incorrect match is made. Such errors can have severe consequences, including silent 

data corruption, system crashes, or hard faults, as the processor may execute unintended 

instructions instead of the correct ones [6].  

Different methods have been proposed to protect TLBs against errors. When by using a 

parity bit [7] single-bit faults in the TLB can be detected. Upon detection of an error, the 

corresponding TLB entry is invalidated which as result memory management unit 

(MMU) is supposed to feed the TLB with correct data again. Since this recovery 

operation can be costly in terms of performance, more efficient approaches such as 

ECCs have been introduced [8], [9]. 

To mitigate the delay caused by error checking and correction, one solution [8] employs 

ECC in a backup copy and uses periodic scrubbing to refresh and correct errors. Another 

alternative [9] adapts ECC logic to enable fast error detection, initiating the correction 

process only when an error is confirmed or using scrubbing mechanisms to maintain 

reliability [6].  

However, traditional ECC implementations often focus on transient correction only: 

they correct errors combinationally during read access but do not update the corrected 

values in TLB. As a result, the same error must be re-corrected each time the entry is 

accessed, which leads to several inefficiencies like Redundant decoding cycles, 

Increased energy consumption, and Critical path delay due to ECC logic operating in 

line with the read pipeline. 
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This thesis addresses these challenges by proposing a set of architectural enhancements 

for TLB extended with ECC which is the baseline TLB for this work. These 

enhancements ensure that corrected entries are persistently updated in TLB entries, as 

well, thereby eliminating repeated correction cycles and reducing ECC logic pressure.  

The methodology is built upon five distinct strategies: 

1. Detection-Only Mode, 

Having no correction and just invalidate the detected errored entries 

2. Full parallel correction using separate encoder per each TLB entry, 

Having capability of correcting several entries with 1-bit error simultaneously 

3. Counter-based correction, 

Using counter module and a finite state machine (FSM) to sequentially scan and 

correct corrupted entries using the decoder's output. 

4. Round-robin arbiter-based correction,  

Using round-robin arbiter module to select the entry with 1-bit error to be 

corrected 

5. Performance Enhancement techniques applied to the latter two. 

Bypassing ECC when MMU wants to read TLB to improve the timing, Since 

ECC decoding and correction paths lie directly on the critical path. During this 

phase, no correction is allowed 

 

In this work an open-source RISC-V CVA6- based (64-bit) Cheshire SoC has been used, 

and an analysis of mentioned solutions have been done on GlobalFoundries 22nm 

(GF22) technology under the slow-slow (SS) process corner at 0.72 V and –40 °C. 
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2. State of the Art 

2.1 Fault Taxonomy and System Vulnerabilities 

Faults are the underlying cause of errors and failures in digital systems. A fault is latent 

defect or anomaly in hardware or software [10]. When a fault alters the system's internal 

state in an unintended way, it results in an error. If the error propagates and causes the 

system to deviate from its specified behavior, it leads to failure [10]. 

 

2.1.1 Classification of Faults in Hardware Systems  

Faults in hardware systems can be classified by duration and stability, behavioral impact 

and physical origin and manifestation. 

a) Duration and Stability 

Permanent faults are persistent issues in electronic systems that require physical repair 

or replacement to resolve. They can occur due to the aging of components over time or 

stem from defects introduced during manufacturing [10]. A common type is a stuck-at 

fault, which can result from problems like electromigration, where the continuous flow 

of electrons gradually moves atoms in a conductor, eventually leading to open circuits or 

shorts [10], [11]. 

Transient faults are temporary disruptions in electronic systems. commonly referred to 

as soft errors, may result in a bit flip within a combinational circuit, known as a Single 

Event Transient (SET) or a bit alteration in a memory element, termed a Single Event 

Upset (SEU) [12]. One common reason is the effect of radiation, which modern systems 

are more vulnerable to, because of the continuous scaling down of semiconductor 

technology [13], [14]. 



6 
 

Depending on the amount of charge disturbance brought in by the radiation event it can 

create SEUs, where cosmic rays or alpha particles momentarily flip bits in memory cells 

without causing permanent damage or as more complex variant is multi-bit Upsets 

(MBUs), where a single energetic particle can simultaneously alter multiple bits within 

the same data word, particularly in SRAM or DRAM [15]. 

As CMOS technology continues to scale down, the overall soft error rate in 

microprocessors is shaped by two opposing trends. On one hand, the SEU rate per bit in 

sequential cells tends to decrease due to reduced cell size and lower supply voltage. On 

the other hand, the total number of bits in modern processors is rapidly increasing due to 

architectural advancements like larger caches, expanded memory, and multicore 

integration. As a result, even though each individual bit becomes less susceptible, the 

total likelihood of soft errors across the entire processor rises with each generation [16]. 

Beyond radiation, electrical noise, crosstalk, electromagnetic interference (EMI), and 

power disturbances can also induce transient errors. Furthermore, environmental effects, 

such as extreme temperatures, can contribute to these faults by leading to issues like 

leakage, threshold drift, or unstable timing margins within the system [17], [18], [19]. 

Intermittent faults lead the system to alternate unpredictably between correct behavior 

and malfunctioning states [20]. 

b) Effect on System Behavior 

The effect of faults on system behavior can vary significantly depending on their nature. 

Benign faults typically render a unit inactive or stuck in a known state, leading to 

predictable system behavior [10]. These faults are often recoverable through simple 

mechanisms like reset or redundancy. In contrast, malicious faults are far more complex 

and dangerous. They produce misleading or contradictory outputs-such as a sensor 

sending inconsistent values to different parts of the system-which can undermine trust 

and system integrity [10]. 
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c) Physical faults 

They can originate from both internal and external sources. Internally, they may result 

from gradual physical degradation, such as shifts in transistor threshold voltage, aging 

effects, or physical defects like short circuits and open connections [21]. Externally, these 

faults can be triggered by environmental stressors including electromagnetic interference 

(EMI), mechanical vibrations, radiation (such as cosmic rays) [21], or extreme 

temperature variations. In addition to these naturally occurring issues, faults may also be 

introduced by human activity. These human-made faults include design-related errors 

such as flawed logic, layout inaccuracies, or incomplete specifications, as well as 

operational mistakes like improper usage, incorrect maintenance procedures, or 

configuration error in hardware or firmware [22]. 

 

2.1.2 Safety Standards 

Safety standards play a crucial role in guiding the design and validation of fault-tolerant 

embedded systems. Among these, IEC 61508:2010 [23] serves as a foundational 

framework for the functional safety of electrical, electronic, and programmable 

electronic systems, defining safety integrity levels (SILs) based on reliability metrics and 

diagnostic coverage to prevent system failure under predefined conditions. Building upon 

this, ISO 26262:2018 [24] tailors IEC 61508 to the automotive domain, introducing 

Automotive Safety Integrity Levels (ASILs) that consider severity, exposure, and 

controllability to assess the risks associated with each function. In the realm of 

microcontroller-based consumer and industrial devices, IEC60730 [25] sets out 

requirements for automatic electrical controls used in households and similar 

applications. This standard ensures embedded systems include self-diagnostic and fault 

response mechanisms, especially for safety-critical tasks such as appliance regulation or 

motor control. [25] highlights that the integration of such safety frameworks is not only 

necessary for meeting regulatory compliance but also for enabling dependable operation 

of modern, software-intensive embedded systems like autonomous platforms. 
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Another important standard relevant to low-level device safety is IEC 60747- a series of 

specifications for the design, fabrication, and reliability testing of semiconductor devices, 

including integrated circuits. It outlines parameters such as electrical characteristics, 

thermal behavior, electromagnetic compatibility (EMC), and environmental conditions, 

all of which significantly influence the performance and lifespan of integrated 

components. For insights into reliability assessment strategies and stress testing 

protocols, particularly in power semiconductors, relevant studies on humidity reliability 

are often referenced [26]. 

 

2.2 Fault Tolerance Techniques 

Ensuring fault tolerance is essential, especially for mission-critical applications. 

Although faults are often transient, commonly referred to as soft errors rather than 

permanent defects, they can still significantly disrupt system behavior, potentially 

leading to malfunctions or crashes in contemporary electronic devices [27]. 

To mitigate these risks, researchers have developed a wide range of fault-tolerant 

strategies. These approaches span from modifications in chip materials and fabrication 

processes to various design-level solutions, including hardware-based, software-based, 

or combine both like hybrid techniques [28], [29]. 

 

2.2.1 Hardware based solutions 

a) Technological Techniques 

At the lowest abstraction level, Radiation-Hardened (Rad-Hard) technologies 

provide fault tolerance by modifying the silicon-level design to resist radiation-induced 

soft errors. These techniques operate at the semiconductor fabrication level and include 

process-based methods such as doping adjustments and specialized materials [14], [21]. 
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While Rad-Hard solutions effectively reduce the need for architectural fault tolerance in 

application-specific SoCs, they are often limited by factors such as high cost, reduced 

availability, and significant increases in CVA6 area. Furthermore, these approaches are 

commonly associated with older technology nodes, making them less compatible with 

high-performance, modern chip designs despite their improved resilience to soft errors 

[19]. 

Building on this foundation, layout-based hardening techniques like LEAP-DICE 

further enhance soft error resilience by optimizing transistor placement and spatial 

separation to mitigate multi-bit upsets (MBUs). These methods focus on improving 

immunity through physical layout design rather than changes in manufacturing 

processes, offering a balance between reliability and design flexibility [16], [30], [27]. 

b) Circuit-Level Techniques 

At the circuit structure level, redundant cell architectures such as DICE, BISER, 

SEILA, and BCDMR have been extensively employed to improve fault tolerance in 

memory elements. The DICE (Dual Interlocked storage Cell) design uses interlocked 

feedback among four or more storage nodes to prevent single-event upsets from altering 

stored data.[31] BISER (Built-in Soft Error Resilience) and BCDMR (Built-in Current-

Based Detection and Masking Redundancy) enhance robustness through scan-latch-

based redundancy and current-mode logic [32]. Similarly, SEILA utilizes self-error 

detection with integrated latch architecture to improve recovery from soft errors [16]. 

Finally, node-level hardening techniques, including resistive and capacitive 

hardening, are applied at the electrical property level of memory and logic circuits. 

These approaches strengthen the charge-holding capacity of storage nodes or introduce 

resistance to stabilize bit values, making them less susceptible to transient faults. While 

effective in increasing resilience, such fine-grained modifications can lead to added 

design complexity and potential trade-offs in speed and power efficiency. [16] 
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c) Microarchitectural Techniques 

One of the techniques of this category is Hardware redundancy which involves 

duplicating or triplicating system components to enhance reliability, typically used 

where failure is unacceptable. While effective, it increases area, power, and cost. It 

comes in three forms: static (all units operate in parallel), dynamic (spares activate upon 

failure), and hybrid (a combination of both for balanced fault tolerance) [10].  

Modern systems adopt hardware redundancy at multiple design levels, particularly 

through modular redundancy strategies. Multi-core and many-core processors offer a 

high performance and energy-efficient computing solution, but their increased 

sensitivity to soft errors due to miniaturization raises reliability concerns. To address 

this, a fault-tolerant strategy named N-Modular Redundancy and M-Partitions (NMR-

MPar) is introduced [26]. This method leverages both redundancy and partitioning to 

ensure reliable operation in mixed-critical systems. By dividing tasks across different 

partitions that execute independently, NMR-MPar enhances fault isolation and allows 

critical functions to run securely on multi-/many-core platforms [26]. Commonly used 

approaches are Double Modular Redundancy (DMR) and Triple Modular Redundancy 

(TMR). In these schemes, multiple copies of a critical module process the same inputs, 

and a voter circuit determines the correct output. This ensures correct execution even in 

the presence of faults and can be implemented at varying levels of granularity. 

Meanwhile, Hybrid Modular Redundancy (HMR) combines traditional TMR and DMR 

techniques, selectively deploying them across different parts of a RISC-V multi-core 

cluster. For example, safety-critical cores may use TMR with majority voting, while less 

critical subsystems use DMR. This strategy has been adopted in fault-tolerant RISC-V 

clusters for aerospace applications due to its balance between fault coverage and 

efficiency [19].  

As an example of the methods mentioned above, it can be pointed out fine-grained TMR 

within a RISC-V core, as demonstrated in the STRV project [2], replicates circuitry and 

performs voting after each register to ensure correctness. Similarly, Gkiokas and 



11 
 

Schoeberl's design [39] uses TMR across the fetch, decode, and execute stages in a 5-

stage dual-issue core, passing results to a majority voter before memory and write-back 

stages.  

To guarantee consistency, the inputs to the duplicated or triplicated cores are tightly 

synchronized so that each core processes identical data. Their outputs are connected to 

dedicated checkers or majority voters, which verify correctness and trigger recovery 

actions if discrepancies are detected. When operating in this configuration, the grouped 

cores function as a single virtual processing unit within the system.  

Although this setup protects the cores themselves, the checkers and majority voters 

remain susceptible to soft errors. To address this vulnerability, it is assumed that 

additional safeguards are implemented, such as ECC on interconnect buses, which are 

monitored at the protocol level within the protected core domain. These measures help 

ensure the integrity of control, instruction, and data paths, even in the presence of 

transient faults.  

In contrast, coarse-grained modular redundancy involves duplicating entire cores, such 

as in Dual-Core Lockstep (DCLS) or Triple-Core Lockstep (TCLS) architectures, where 

entire processor blocks operate in parallel with boundary-level checkers and voters to 

detect and mask faults [10], [19].  

Other structural redundancy models include M-of-N system, which continues to operate 

correctly as long as at least M out of N modules remain functional [10]. Lastly, duplex 

systems employ two identical modules in parallel; if a mismatch is detected, the faulty 

unit is excluded from operation. Although duplexing provides less fault coverage than 

full NMR, it is a cost-effective solution in systems where detecting single errors with 

minimal hardware overhead is sufficient [10], [23]. 

Furthermore, one of the most fundamental strategies for soft error mitigation is 

information redundancy, where additional bits are embedded within the original data 

stream to enable detection and correction of bit-level faults. Rather than focusing on 
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hardware replication or circuit hardening, this technique employs mathematical 

encoding to identify inconsistencies in data caused by soft errors like Single Event 

Upsets (SEUs) [10].  

Information redundancy is a widely used strategy to mitigate soft errors in processor 

storage components, such as caches, memories, and register files. Additionally, such 

codes are also applied selectively in computation components like arithmetic logic units 

(ALUs), where bit-level correctness is critical [16].  

At its core, information redundancy utilizes coding theory, which formulates how 

original data can be protected using a combination of data bits and redundant bits. These 

redundant bits are strategically derived from the original data using logical operations 

(such as XOR) and can later be used to detect and potentially correct bit errors during 

readback or data processing [10]. 

Error-correcting codes are categorized in separable and non-separable codes [10]. 

Separable codes organize the data and redundancy (parity) bits into clearly distinct fields 

(Figure 2.1). That is, the original data is preserved in its entirety, and the redundant bits 

are appended separately. This structure simplifies decoding, as the data can be accessed 

directly while the redundancy is processed in parallel. Most traditional ECC, including 

Hamming-based ECC used in memory systems, fall into this category. This coding 

structure is advantageous in timing-critical components like TLBs, where fast access is 

crucial and decoding must be efficient to avoid pipeline stalls [10], [7]. 
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Figure 2.1: Even parity encoding and decoding circuits. Adapted from [10]. 

Non-separable codes, on the other hand, intermix data and redundancy bits. In such 

schemes, the encoded word does not explicitly preserve the original data layout. While 

this can sometimes lead to more compact codes or optimized implementations, it 

increases decoding complexity since the original data must be reconstructed from the 

entire codeword [10]. 

Among the simplest forms of separable coding is the parity bit. A parity code appends 

a single bit to a data block to make the number of 1’s either even (even parity) or odd 

(odd parity). This allows single-bit errors to be detected by re-computing the parity and 

comparing it to the stored parity bit [10]. While simple parity is primarily a detection 

method, more advanced parity-based strategies can also support error correction. For 

instance, per-byte parity assigns a separate parity bit to each byte, increasing the 

overhead but improving coverage, especially when errors affect distinct bytes [10]. 

Overlapping parity schemes, which compute parity across both rows and columns of a 

data matrix, offer a practical solution for both error detection and correction. They can 

identify the exact faulty bit at the intersection of affected parity checks, a technique that 

is especially relevant in RAID architecture and memory arrays [10], [43].  

To address the limitations of simple parity and provide correction capabilities, more 

robust coding schemes like Error-Correcting Codes (ECC) are employed. At the system 
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level, the most widely used techniques for safeguarding memory elements are ECC and 

parity [56]. 

d) System-Level Techniques  

Here, it can be mentioned to System-level redundancy which improves reliability 

without modifying internal processor architecture. ARM Cortex-R processors support 

Dual-Core Lockstep (DCLS) [40], where two cores run in sync and can switch to 

independent execution during reset. Fault recovery, however, is left to the surrounding 

SoC and often relies on resets or checkpointing, which can be problematic for real-time 

systems like spacecraft computers that demand minimal downtime [41].  

To address this, [42] proposed a Triple-Core Lockstep (TCLS) system using Cortex-R5, 

where an assistance unit coordinates three cores, enabling majority voting and real-time 

fault correction. The assistance unit uses Rad-Hard technology, while the cores use 

standard processes with ECC and modular redundancy. When a fault is detected, the 

affected core resets and reloads its state from memory, ensuring continued execution.  

A similar approach is used in the AURIX™ TriCore™ Microcontroller [45] which also 

applies TCLS and reset-based fault recovery. These techniques improve reliability at the 

system level without extensive architectural changes [19]. 

The other solution can be Data replication is a fundamental fault-tolerance technique 

that enhances system reliability by duplicating information, providing physical 

redundancy as opposed to coding-based methods like ECC [10]. Unlike mathematical 

redundancy, replication allows direct comparison of data copies and enables fault 

masking through majority voting or substitution, making it especially suitable for 

systems with strict timing constraints or legacy architectures where coding is 

impractical. Complete data replication involves storing two or more identical copies of 

an entire data block, allowing recovery in case of corruption, though it significantly 

increases storage requirements and is thus typically reserved for critical control registers 

or non-time-sensitive backups. In contrast, read-only data replication is used in systems 

where data is mostly read and seldom updated; here, only a single master copy is written, 
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while reads can be cross-verified among replicas to detect inconsistencies, making it 

ideal for protecting configuration data or instruction caches [10]. 

 

2.2.2 Software-based solutions 

Reliability can also be enhanced through software-level solutions. One common 

approach involves executing the same application on multiple threads—either in 

duplicate [33], [34], running in parallel or in sequence. Although this method is effective 

in addressing faults within the data path, it may not detect or recover from faults 

occurring in the processor's internal control logic, which can cause threads to hang [35], 

[20]. 

a) Software redundancy particularly in complex systems that rely heavily on critical 

embedded software [19]. It offers an essential layer of protection beyond hardware-level 

safeguards by specifically addressing faults that originate from software bugs, compiler 

errors, or incorrect logic. Two prominent techniques employed in software redundancy 

are: N-version programming, where multiple independently developed versions of a 

program are executed concurrently, and their outputs are then compared. Alternatively, 

recovery blocks involve a primary algorithm whose result is subjected to an acceptance 

test; if it fails, a backup algorithm is invoked, allowing for graceful recovery from errors 

[10], [19]. 

b) Software-Based Self-Testing (SBST), in addition to runtime redundancy, uses 

software routines to verify embedded processors by activating and detecting faults 

through normal execution paths. It's widely applied in automotive-grade 

microcontrollers and RISC-V cores, especially where external test access is limited. 

SBST supports at-speed, in-field, and periodic testing, requiring no external equipment, 

and can detect both permanent and transient faults with high coverage. However, 

traditional SBST relies on outdated fault models and demands intensive simulations 

[36]. Recent approaches improve this by using fault-independent techniques and 
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structural insights, enabling automated test generation, better fault coverage, and 

minimal performance impact, as shown as an example in tests in [37], [36]. 

c) Predictive checkpointing and rollback mechanisms periodically save the processor 

state, allowing the system to roll back to a valid state when errors are detected [10]. 

d) Time redundancy is another software-based fault-tolerance technique that relies on 

re-executing operations to detect or correct transient errors [10]. For example, a 

computation might be performed multiple times, and the results then compared. This 

method is particularly effective against transient faults, as these temporary errors are 

unlikely to recur in the exact same way during a subsequent re-execution. Time 

redundancy is often combined with information redundancy techniques to further 

enhance error detection and correction [10], [20]. 

These redundancy techniques are primarily used in the processor’s pipeline components, 

such as the instruction fetch/decode/execute units, ALUs, or control logic. While these 

methods introduce performance or area overheads, they are effective for ensuring 

execution correctness across the full instruction flow [16]. 

 

2.3 ECC 

As discussed before, ECC belongs to the Information redundancy category and provides 

a more efficient way to protect static data. It ensures strong error resilience while using 

significantly less hardware resources [23].  

ECC plays a crucial role in embedded systems designed to meet safety standards like IEC 

60730 Class C or IEC 61508 SIL2 and above [46]. While it's technically possible to reach 

these compliance levels without hardware ECC, doing so would require a significant 

amount of additional software logic [46]. Integrating ECC memory simplifies this 

process by boosting diagnostic coverage above 90%, making it much easier for systems 

to satisfy strict safety requirements [46]. Additionally, ECC can enhance security, as it 

may help detect signs of hardware tampering through unexpected error patterns [46]. 
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The widely used technique in ECC is the Hamming Single Error Correction (SEC) code, 

which is capable of correcting single-bit errors using simple and fast encoding and 

decoding logic, all while requiring minimal redundancy. A practical example of this 

implementation can be found in [47]. 

Hamming ECC consists of two processes: encoding and decoding. The encoding process 

with Hamming ECC involves adding the appropriate parity bits to the original data. The 

Hamming code process begins with a block of data bits, which determines the overall 

size of the encoded word. Based on specific bit positions, parity bits are computed by 

checking fixed combinations of the data bits. These parity bits are then inserted into 

predefined positions within the data block, forming the encoded message that includes 

both data and redundancy. Once transmitted, the receiver performs error detection by 

recalculating the parity bits using the same formulation as in the encoding process and 

comparing them to the received ones. If any mismatch is found, it indicates the presence 

of a bit of an error. When this occurs, the receiver uses the pattern of mismatched parity 

bits-known as the syndrome-to identify the position of the faulty bit and correct it (flip 

it). This mechanism enables single-bit error correction with minimal logic and is the 

foundation of SEC (Single Error Correction) codes [48], [49]. 

Extended Hamming codes enhance basic SEC functionality by also providing double-

error detection (DED). This is achieved by adding one extra parity bit that covers the 

entire encoded word, ensuring parity across all bits, including the data and the original 

Hamming parity bits. A practical implementation example can be found in [50]. 

The notation commonly used to describe the characteristics of an ECC is written as (n, 

k, m), where n represents the total length of the code word, k is the length of the original 

data, and m indicates the number of check bits added to enable error detection and 

correction [51]. An additional fundamental parameter in ECC theory is the minimum 

Hamming distance, denoted as dmin. This distance is defined as the number of bit 

positions in which two code words of the same length differ. In practical terms, it reflects 

the minimum number of bit alterations required to transform one valid code word into 

another, or alternatively, the fewest number of errors that could corrupt a valid word 
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while still yielding another valid but incorrect word. The maximum number of faults that 

an ECC scheme can detect is equal to 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 1, while the maximum number of 

correctable errors is given by the integer part of (𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 1) 2⁄ . For instance, if the 

minimum Hamming distance 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is 0, the code cannot detect or correct any errors. On 

the other hand, a code with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚= 3 can detect up to two errors and correct one [51]. 

Hsiao SEC-DED codes are an optimized variant of Extended Hamming codes [52], 

designed to offer improved efficiency in hardware implementations. These codes are 

classified as optimal minimum odd-weight column codes, meaning that every column in 

their parity check matrix contains an odd number of ones. This structure enables reliable 

double-error detection while maintaining the ability to correct single-bit errors. 

One of the key advantages of Hsiao codes lies in their simplified detection logic, which 

translates into lower latency, reduced silicon area, and decreased power consumption 

when compared to traditional Hamming SEC-DED codes. Hsiao codes are widely used 

in the protection of register files, memory arrays, and configuration registers, particularly 

in systems that require lightweight and fast error correction mechanisms [52]. Hsiao ECC 

codes have been shown to reduce the latency of conventional Hamming ECC 

implementations by approximately 8.5% [49]. 

Following the above discussion, also ECC takes advantage of syndrome decoding. If the 

syndrome equals zero, no error is detected. If the syndrome is non-zero, its pattern 

identifies the location of the bit error - allowing the system to correct it in the case of a 

single-bit fault. In Hamming codes, the syndrome directly maps to the index of the 

erroneous bit, enabling single-bit error correction. The calculation is commonly 

performed using a parity-check matrix in modulo-2 arithmetic [10]. 

Additionally, a global parity bit-computed over the entire codeword-is included in some 

ECC designs to determine whether the total parity has been altered. If the syndrome 

indicates an error but the global parity remains valid, this discrepancy suggests the 

presence of an uncorrectable multi-bit error that did not affect overall parity, helping to 

prevent mis-correction and ensuring system reliability [10]. 
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To illustrate a real-world application of ECC, the RISC-V Rocket and BOOM processor 

cores were enhanced with a configurable ECC-protected memory component [53]. In this 

implementation, ECC plays a critical role by detecting and correcting single-bit errors 

and detecting double-bit errors in various memory structures, including caches and 

buffers. The integration of ECC ensures continuous system operation without data 

corruption, all while maintaining performance and keeping hardware overhead within 

acceptable limits [53]. As another application, it can be mentioned to the paper by [19] 

demonstrates the use of ECC in space engineering to protect memory systems from 

radiation-induced errors. ECC is employed to detect and correct faults caused by cosmic 

rays, enhancing system reliability. Results show that ECC significantly improves fault 

tolerance, making it essential for reliable operation in space environments [19]. Also, 

ECC deployment is shown in the work by [54] where an error detection and correction 

system were implemented for semiconductor memory applications. The design includes 

both encoder and decoder components, demonstrating how ECC can significantly 

enhance system reliability and speed while reducing resource usage. 

In addition to its widespread use in memory arrays and processor caches, ECC plays a 

vital role in protecting structures such as the Translation Lookaside Buffer (TLB), which 

is responsible for accelerating virtual-to-physical address translation in modern 

processors. Given the high access frequency and critical role of TLB entries, even single-

bit errors can lead to severe system faults or silent data corruption. Integrating ECC 

within the TLB enables detection and correction of such errors with minimal performance 

overhead. Hsiao codes are used to safeguard TLB entries, ensuring immediate correction 

of one-bit errors through syndrome-based logic while supporting detection of more 

severe faults. This approach enhances overall system reliability without requiring costly 

duplication or complex rollback mechanisms. 

The next chapter will begin by introducing the concept and functionality of the TLB, 

followed by a discussion on how ECC can be applied to enhance its reliability. 
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3. Background 

3.1 TLB 

To introduce Translation Lookaside Table, it is needed to introduce first Virtual Memory 

and Virtual Machines. 

At any given moment, modern computers typically executing multiple processes, each 

utilizing their own independent address space. Allocating a complete address space 

worth of physical memory to every process would be highly resource-intensive, 

especially since many processes only occupy a small portion of their allocated address 

space. To address this inefficiency, systems employ virtual memory, which segments 

physical memory into blocks and distributes these segments among active processes. 

This method necessitates a protection mechanism to ensure that each process can only 

access the memory blocks assigned to it, preserving memory isolation and security [20]. 

A key benefit of virtual memory is its ability to reduce the startup time of programs, as 

it eliminates the need to load all program data and code into physical memory before 

execution begins [20]. Figure 3.1 illustrates how virtual memory pages are mapped to 

physical memory for a program divided into four pages. Beyond efficient memory 

sharing and protection, virtual memory also facilitates the process of relocating 

programs. This feature, known as relocation, enables a program to be executed from any 

location within physical memory. The program's placement can be dynamically 

adjusted-whether in physical memory or on disk-simply by altering the virtual-to-

physical address mapping. Historically, before virtual memory became widespread, 

processors relied on relocation registers to achieve this flexibility [20]. 
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Figure 3.1: The logical program in its contiguous virtual address 

space is shown on the left. It consists of four pages, A, B, C, and D. 

The actual location of three of the blocks is in physical main memory 

and the other is located on the disk. Adapted from [20]. 

 

 

This approach functions as a translation mechanism that converts Virtual Page 

Numbers (VPNs) into their corresponding Physical Page Numbers (PPNs). The 

translation is handled through software using a structured data format known as a page 

table, which maintains all the necessary mapping information. Each time memory 

access occurs, the page table identifies the exact physical memory location associated 

with the requested virtual page [20]. When a page is present in physical memory, the 

Page Table Entry (PTE) holds the corresponding physical page number along with 

several status bits. These bits provide important metadata about the page, such as 

whether it has been modified (dirty), or is executable. On the other hand, if the page is 

not currently in memory, the PTE will typically point to its location in the swap space 

on disk. This allows the operating system to retrieve the page when needed, ensuring 

efficient memory management even when physical memory is limited [55]. Paged 
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virtual memory implies that each memory access logically involves at least two 

separate operations: the first access is required to retrieve the physical address from the 

page table, and the second access is then used to obtain the actual data from memory. 

This two-step process effectively doubles the time it takes to complete a single memory 

reference. 

 

 
Figure 3.2: Virtual Address Translation. Adapted from [55]. 

 

 

As can be seen in Figure 3.2, the two main items for virtual address translation are Page 

number and Page offset. The "page number" refers to the portion of a virtual or 

physical address that indicates which page in the memory hierarchy is being addressed. 

It is used as an index into the page table. The page table maps virtual pages to physical 

pages, allowing the system to determine the corresponding physical page for a given 

virtual page. Furthermore, the "page offset" refers to the lower-order bits of a virtual 

or physical address that indicate the position of a specific byte within a memory page. 

It is kept unchanged during the address translation process. It determines the byte's 

position within the page, helping the system locate the specific data within the physical 

page [55]. 

Virtual machines (VMs), a concept nearly as longstanding as virtual memory itself, 

have seen renewed interest in recent years due to several compelling factors [20]. The 

growing demand for enhanced isolation and security in modern computing 
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environments, alongside the shortcomings in security and stability of traditional 

operating systems, has contributed significantly to this resurgence. Additionally, the 

need to allow multiple unrelated users to share a single physical machine-common in 

cloud computing and data center operations- has further driven the adoption of VMs. 

Technological advancements, particularly the substantial improvements in processor 

performance, have also made the performance overhead introduced by VMs much more 

tolerable [20]. 

VMs provide an entire system-level environment that replicates the functionality of the 

binary instruction set architecture (ISA). Typically, the virtual machine supports the 

same ISA as the host hardware, ensuring compatibility and efficient execution. Unlike 

conventional computing platforms where a single operating system has exclusive 

control over all hardware resources, virtual machines allow multiple operating systems 

to coexist and share the same physical resources.  

VMs offer two additional advantages that hold substantial commercial value. They 

provide an abstraction layer that enables complete software stacks-including older 

operating systems like DOS-to operate independently on the same physical hardware. 

This versatility allows for various scenarios, such as running outdated OS versions for 

legacy application support, using stable releases for production environments, or 

deploying newer versions for testing purposes. On the hardware level, VMs enable 

different software environments to run concurrently on a single machine, minimizing 

the need for multiple servers and enhancing overall resource efficiency. The isolation 

between VMs also improves system reliability, as each virtual machine functions 

separately [20]. 

In the context of virtual memory, retrieving the appropriate entry from the page table 

can be a time-consuming and resource-demanding task, as it requires a procedure 

known as a page table walk. This cost would be far too dear. The location of page tables 

(PTs) plays a critical role in the efficiency of virtual memory systems. Given that the 

space required for page tables is directly proportional to the size of the address space, 

the number of users, and inversely proportional to the page size, the memory footprint 

of PTs can become substantial. Due to this large space requirement, storing page tables 
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in processor registers is not feasible. As a practical solution, operating systems typically 

store page tables in the main memory. However, this approach introduces performance 

overhead, as each memory access now requires an additional reference to fetch the page 

table entry before retrieving the actual data. Consequently, this mechanism effectively 

doubles the number of memory accesses for each operation. The solution is to rely on 

the principle of locality; if the accesses have locality, then the address translations for 

the accesses must also have locality [55]. 

To mitigate this issue, processors commonly include a specialized cache called the 

Translation Lookaside Buffer (TLB), which is intended to accelerate the address 

translation process. While much smaller in size compared to the full-page table, the 

TLB stores the most recently accessed virtual pages, enabling faster retrieval and 

reducing the need for frequent page table walks [5]. TLB is a part of the MMU and use 

only for PTE not normal usage but can take advantage of all methods to improve cache 

performance. The number and structure of TLBs can vary based on the specific CPU 

make and model. Many modern processors are equipped with more than one TLB, and 

some even implement multiple levels of TLBs, like the hierarchical design of memory 

caches. This multi-level TLB architecture helps reduce the occurrence of TLB misses 

and plays a crucial role in minimizing memory access latency. 

The TLB maintains a record of Virtual Page Numbers (VPNs) along with associated 

entries in a Random Access Memory (RAM) that stores the corresponding Physical 

Page Numbers (PPNs). In virtual memory systems, the address space is divided 

between instructions and data, resulting in the implementation of two distinct TLBs: 

the Instruction TLB (ITLB) for instruction addresses and the Data TLB (DTLB) for 

data addresses [5]. 

A TLB entry functions similarly to a cache entry, where the tag contains parts of the 

virtual address, and the data section includes the physical page number, protection 

information, a valid bit, and typically a use bit and a dirty bit. These bits are managed 

by the operating system, which modifies them within the page table and then invalidates 

the related TLB entry to ensure consistency. When the entry is subsequently reloaded 

from the page table, the TLB receives an accurate and updated set of bits. TLBs are 
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generally implemented as fully associative or set-associative structures, allowing 

entries to store any mapping or a specific subset of mappings within the buffer [20]. 

As Figure 3.3 shows, whenever a translation is needed, the TLB performs a parallel 

comparison between the input data and all stored entries to swiftly identify a matching 

result. When it receives a VPN along with an Address Space Identifier (ASID) from 

the Program Counter (PC), it searches for a corresponding entry. ASID is essential for 

distinguishing between memory pages that share the same virtual address but belong 

to different processes, ensuring correct address translation and process isolation [5]. 

When a process switch occurs, the TLB might need to be flushed because the virtual 

addresses for the new process will likely map to different physical addresses, ASID 

allows the TLB to cache entries for multiple processes simultaneously by tagging each 

entry with an ASID, avoiding unnecessary flushes. A match leads to a TLB hit, 

retrieving the corresponding PPN from RAM. 

 

 

 
Figure 3.3: Fast translation using a TLB. Adapted from [55]. 
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When the TLB does not contain the required entry, miss happens, it initiates a search 

through the page table, and the appropriate entry is fetched from memory using the 

PTW. If the page is either not present in memory or resides on a disk, a page fault is 

triggered, leading to an interruption being handled by the operating system. In response, 

the OS retrieves the page from disk and loads it into memory, subsequently updating 

the TLB. During this update, a replacement algorithm is employed to determine which 

existing TLB entry should be replaced. This entire process increases system latency 

and introduces performance overhead due to the additional runtime operations involved 

[5]. 

 
 

Figure 3.4: MMU using virtual address. Adapted from [55]. 

 

As has been shown in figure 3.4, MMU sends the translation request to TLB and in 

case of facing a Miss, it starts a PTW. The MMU is a vital hardware component 

necessary for enabling advanced operating systems such as Linux. In RISC-V 

architecture, the MMU supports multiple address translation modes, one of the most 

used being the SV39 scheme, which employs a 39-bit virtual address space and page-

based memory translation. SV39 utilizes a three-level page table hierarchy to 

efficiently manage large address spaces. The first level maps 1-gigabyte pages, the 

second level handles 2-megabyte pages, and the third level manages standard 4-

kilobyte pages, providing a scalable and hierarchical structure for address translation. 

Additionally, the MMU supports a configurable number of TLB entries, allowing 

system designers to tailor the buffer to specific performance requirements. To enhance 
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efficiency during TLB misses, a hardware page table walker is integrated, which 

autonomously traverses the page table entries and facilitates rapid retrieval of the 

required mapping (Figure 3.5). 

 

 
 

 
Figure 3.5: A hardware page table walk. Adapted from [55]. 

 

Page tables can be organized using one of two main approaches: a single-level structure 

or a multi-level structure. The multi-level page table, as implemented in architectures 

like RISC- V, is particularly effective in conserving memory by managing address 

translations more efficiently. During each memory operation in processors equipped 

with physical caches, a translation from virtual to physical addresses must take place. 
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Like other memory components, TLBs are vulnerable to radiation-induced faults 

known as SEUs. These soft errors can modify the contents of one or more memory 

cells, classified as Single Bit Upsets (SBUs) or Multiple Cell Upsets (MCUs), 

respectively. With continued advancements in technology leading to smaller memory 

cells that retain less charge, the susceptibility to Multi-Bit Upsets (MBUs) has 

significantly increased. SEUs can lead to operational faults in the TLB, such as false 

hits or false misses. A false hit, also referred to as a false positive, occurs when a 

corrupted TLB entry incorrectly matches the input, resulting in the use of an incorrect 

physical page and potentially causing system failures or data corruption. In contrast, a 

false miss, or false negative, takes place when a valid TLB entry is altered by an error, 

preventing a successful match. This forces the system to fall back on a page table walk, 

thereby increasing memory access latency. 

Given the TLB's frequent usage, even though it occupies a relatively small portion of 

the system's memory, protecting it against such errors is critical. As hardware continues 

to scale down in size, the risk of multi-bit soft errors grows, making robust error 

protection mechanisms for the TLB more essential than ever [5]. 

Several techniques have been proposed to enhance the reliability of TLB-based 

structures against soft errors, and they can be categorized into three main approaches: 

circuit-level modifications, data duplication, and external error management modules. 

One solution focuses on ECC-equipped TLBs, utilizing multi-bit error protection 

schemes such as Hsiao or SEC-DED codes with specialized match-line designs to 

enhance resilience—this is demonstrated in [5]. Some proposals apply refresh-based 

fault tolerance mechanisms at the TLB level to recover from soft errors periodically 

[57]. In the realm of content addressable memory (CAM) organization, NAND match-

line structures are used to reduce the vulnerability to soft errors, as explored in [58], 

while error-correcting match schemes have been integrated into CAMs for robust 

address matching, as shown in [59]. To handle errors probabilistically, scrubbing 

intervals are dynamically tuned to minimize soft error impact in Ternary Content 

Addressable Memory (TCAM) devices [60]. 

Further enhancements in cache-related CAM structures are also seen in [61], which 
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discusses CAM-based tags in highly associative caches to tolerate soft errors. 

Additionally, error detection and correction codes are integrated into CAM arrays for 

reliable data retrieval [62], and some techniques propose the use of Bloom filters 

combined with interleaved parity to reduce error probability, as introduced in [63]. A 

more robust alternative combines data duplication with error detection codes to protect 

CAMs, ensuring redundancy at the module level [7].  

Lastly, TLB-specific strategies like parity error recovery mechanisms have also been 

suggested to correct soft errors in TLB entries [64]. 

The ECC used throughout this work is based on the Hsiao SEC-DED code which is 

used a syndrome-based decoder capable of correcting all single-bit errors and detecting 

double-bit errors. Hsiao codes reduce logic complexity by minimizing the number of 

XOR gates required for parity generation and error correction. In this design, ECC is 

applied to the TLB tag, valid bit, and content arrays as shown in Figures 3.6, 3.7 and 

3.8. 

 

 
Figure 3.6: TLB without ECC protection. Adapted from [65]. 
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Figure 3.7: TLB with adding ECC to TLB content. Adapted from [65]. 

 

Figure 3.8: TLB with adding ECC to tag and valid bit. Adapted from [65]. 

 

 

As mentioned before, a key functional component of the MMU is the page table walker. 

The primary role of the PTW is to divide a virtual address based on the specific 

translation topology and scheme in use, such as Sv39, and then resolve it into a physical 

address by traversing the hierarchical page table structures. Once the nested translation 

process is complete, the PTW updates the TLB with the resolved PTEs along with the 

current Address Space Identifier (ASID) and the Virtual Machine Identifier (VMID). 
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An additional optimization is implemented by storing the page size used for translation-

such as 4KiB, 2MiB, or 1GiB within the same TLB entry, along with the respective 

permission bits for each stage [56]. 

Taking advantage of ECC, the translation is encoded using the Hsiao code and then 

enters TLB. In each cycle the ECC decoder checks all entries in parallel and computes 

the syndrome to detect potential errors. If a 1-bit error is found, the decoder can 

identify and even correct the corrupted tag value combinationally. However, if the 

entry is not being accessed by the MMU in that cycle, the corrected tag is not written 

back into the TLB memory, and no permanent correction occurs. The decoder simply 

detects the error but does not update the stored tag. This means the same error may be 

encountered again in future cycles unless an explicit correction mechanism is 

implemented. Only when the MMU uses the entry in the same cycle, the corrected tag 

is used for translation, but even in that case, the corrected value is not saved - it is used 

transiently, without modifying the original TLB entry. 

The absence of a mechanism to permanently update the corrected value in the TLB 

memory leads to several inefficiencies and reliability concerns. First, if the underlying 

bit error remains uncorrected in the stored entry, the same fault will persist and must 

be detected and corrected repeatedly in every subsequent cycle that accesses the same 

entry. This repeated correction not only increases the workload of the ECC logic but 

also unnecessarily consumes additional power and processing time, which could 

otherwise be avoided by a one-time permanent fix. Moreover, persistent soft errors that 

are not corrected at the source increase the risk of propagating incorrect address 

translations if, for any reason, the correction mechanism fails or is bypassed. This 

undermines the dependability and performance of the address translation process. 

Therefore, ensuring that corrected entries are updated directly within the TLB is crucial 

for improving system efficiency, reducing redundant operations as well as latency, and 

enhancing overall fault tolerance [4]. 
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3.2 PULP PLATFORM 

The PULP Platform is a collaborative initiative led by the Energy-efficient Embedded 

Systems (EEES) group at the University of Bologna together with the Integrated 

Systems Laboratory (IIS) at ETH Zurich, with the primary goal of developing open-

source RISC-V hardware. Both the processor and the complete system employed in this 

work are part of the PULP Project [64]. 

 

3.3 RISC-V 

Recent developments in computing architecture have introduced the RISC-V 

instruction set architecture (ISA), which has now surpassed 10 billion shipped cores 

[56]. Unlike traditional proprietary ISAs, RISC-V stands out by offering a free, open 

standard with a modular and highly flexible extension framework, making it adaptable 

for a wide range of applications- from lightweight microcontrollers to high-

performance supercomputers. The RISC-V privileged specification also includes 

hardware-level support for virtualization through the Hypervisor extension, which was 

officially ratified in late 2021 [56]. 

In its design, the RISC-V privileged architecture specifies that virtual addresses are 

translated into physical addresses by navigating a multi-level radix-tree page table. 

There are four defined topologies for this translation:  

• Sv32 uses a two-level hierarchy for 32-bit virtual address spaces 

• Sv39 employs a three-level tree for 39-bit spaces 

• Sv48 extends this to a four-level hierarchy for 48-bit addresses 

• Sv57 utilizes a five-level tree for 57-bit virtual address spaces 

 

At each level, entries can either point to another level of the table (non-leaf) or directly 

to the final physical address translation (leaf). These pointers, along with access 

permissions, are stored in PTEs that are either 32-bit wide for RV32 or 64-bit wide for 
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RV64 architectures. Although RISC-V commonly uses a 4 KiB page size, its flexible 

hierarchy supports larger super pages, such as 2 MiB and 1 GiB in Sv39-to alleviate 

pressure on the TLB and improve address translation efficiency [56]. 

 

3.4 Cheshire 

Cheshire is a highly energy-efficient, Linux-capable, 64-bit RISC-V host platform 

designed to flexibly integrate heterogeneous domain-specific accelerators (DSAs) [66]. 

Its modular architecture features a fully configurable interconnect, a wide range of 

optional peripherals, and an integrated direct memory access (DMA) engine to 

efficiently handle data transfers between the host and connected accelerators. At its core, 

Cheshire utilizes the 64-bit CVA6 application-class processor, which provides all the 

necessary hardware to independently boot and run a general-purpose operating system 

such as Linux. This includes RISC-V-compliant core-local and platform-level interrupt 

controllers, standard I/O interfaces for accessing external storage and peripherals, and 

an interface for off-chip DRAM, which is essential because typical embedded Linux 

systems require 8-16 MB of memory, often exceeding on- chip capacity [66]. 

 

 
Figure 3.9: Architecture of the Cheshire platform. Adapted from [66]. 
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As shown in Figure 3.9, architecture centers on a main AXI4 crossbar interconnect with 

ATOP (AXI5 atomic operations) support, which connects the CVA6 cores, off-chip 

RPC DRAM via a configurable last-level cache (LLC), DSAs, and other internal 

components. The crossbar's address width, data width, and the number of manager and 

subordinate ports can all be tailored to meet specific system bandwidth and addressing 

requirements. Simpler devices that do not require burst or out-of-order transactions are 

connected via a lightweight, extensible Regbus demultiplexer, which minimizes the 

crossbar's area and power footprint. The Regbus operates with a fixed 32-bit data width, 

providing efficient communication for lower-complexity peripherals and configuration 

interfaces. 

Debug capabilities are supported by a RISC-V-compliant debug module with a JTAG 

transport interface, enabling real-time external debugging of the CVA6 processor and 

any additional RISC-V harts integrated in DSAs.  

In terms of computing capacity, Cheshire can be configured with up to 31 CVA6 cores, 

each capable of running Linux and maintaining coherence through a self-invalidation 

mechanism. 

RISC-V atomic operations are supported via a custom user-channel-based AXI4 

extension. By default, Cheshire is set up with hypervisor support and the Core Local 

Interrupt Controller (CLIC) enabled, and each core acts as an independent AXI4 

manager within the crossbar interconnect. 

The platform includes a comprehensive suite of peripherals to meet diverse application 

requirements. These include standard I/O interfaces such as UART, I2C, SPI hosts, 

and GPIO modules. All peripherals seamlessly connect through either the AXI4 or 

Regbus interconnects and are compatible with standard Linux drivers, ensuring 

straightforward software integration. 

The interconnect architecture supports up to 16 external AXI4 manager ports and up 

to 16AXI4 and Regbus subordinate ports, offering extensive flexibility for integration 

with broader system-on-chip (SoC) memory infrastructures.  
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3.5 CVA6 

The CVA6 is an application-class RISC-V processor core developed as part of the 

PULP platform and is currently maintained by the OpenHW Group (Figure 3.10). 

The CVA6 is an open-source, 64-bit RISC-V processor core featuring a 6-stage, single-

issue, in-order pipeline. It is fully capable of running Linux and implements the 

RV64GC instruction set architecture variant. Additionally, it supports SV39 virtual 

memory through an integrated MMU, provides three privilege levels (Machine, 

Supervisor, and User), and includes Physical Memory Protection (PMP) functionality 

[64],[67]. It features a configurable size, distinct TLBs for instructions and data, a 

hardware page table walker, and branch prediction mechanisms, including a branch 

target buffer and a branch history table [68]. 

The MMU in CVA6 features two compact, fully associative TLBs: a Ll DTLB for data 

and a Ll ITLB for instructions. Each TLB can store up to l6 entries and fully supports 

flush operations with the ability to filter by ASID and virtual address. 

To enable nested translation, the Ll DTLB and ITLB are designed to handle two 

translation stages, incorporating access permission checks and Virtual Machine 

Identifiers (VMIDs). Each TLB entry contains both the VS-Stage and G-Stage PTEs 

along with their respective permissions. The lookup process combines the translation 

sizes from both stages; for example, if the VS-stage provides a 4KiB translation and 

the G-stage provides a 2MiB translation, the resulting effective translation size will be 

4KiB [56]. 

The CVA6 pipeline is organized into six stages as can be seen in Figure 3.10: two 

Instruction Fetch (IF) stages, followed by Instruction Decode (ID), Instruction Issue 

(IS), Instruction Execution (IE), and Writeback (WB). The IF unit is capable of fetching 

either a single 32-bit instruction or two l6-bit compressed instructions per cycle from 

the instruction cache. Retrieved instructions are temporarily stored in an 8-entry 

instruction buffer before proceeding to the ID stage. Additionally, the IF stage includes 

basic branch prediction mechanisms to help reduce pipeline stalls and maintain 

efficient instruction flow [69]. 
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Figure 3.10: Architecture of CVA6. Adapted from [58]. 
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4. Architecture and Implementation of Correction Mechanism 

4.1 Concept 

As discussed in the preceding chapter, the TLB functions as a cache that stores recently 

used translations required for converting virtual addresses, as issued by the MMU, into 

corresponding physical addresses. When a requested virtual address is already present 

in the TLB, a hit signal is generated, allowing the MMU to proceed with minimal 

latency. Conversely, if the entry is not available, a TLB miss occurs, prompting the 

MMU to perform a PTW to retrieve the appropriate mapping and subsequently update 

the TLB with the obtained result.  

During each cycle, an ECC mechanism scans all TLB entries in parallel, detecting and 

correcting any single-bit errors to ensure that the data is reliable and prepared for 

accurate address translation. The processes of encoding and decoding in ECC introduce 

additional latency, thereby impacting the overall performance of protected storage in 

terms of read and write operations. This overhead becomes particularly detrimental in 

processor pipelines where the associated storage components are accessed frequently, 

resulting in a notable slowdown in pipeline efficiency [16]. Correcting corrupted entries 

within the TLB is essential to alleviate the computational burden on the ECC unit and 

enhance overall system reliability. In pursuit of this objective, five distinct correction 

strategies are explored in this section: (1) Detection-Only Mode, (2) Full parallel 

correction using separate encoder per each TLB entry, (3) Counter-Based Correction, 

(4) Arbiter-Based Correction, and (5) Correction mechanisms integrated with 

performance enhancement, specifically applied to the latter two approaches. 

All the proposed approaches are fundamentally based on the initial step of notifying the 

TLB about the presence of an error. In the baseline TLB design with ECC, illustrated in 

Figure 4.1, the ECC mechanism can detect and correct errors; however, it does not 

update the TLB with the corrected data. Consequently, it becomes necessary to signal 
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TLB when an error has occurred. This can be achieved by utilizing the decoder output 

signal (err_o), which leverages the syndrome bits to indicate whether a single-bit or 

multi-bit error has been detected. 

 

 

 

 

The ECC employed in this study is derived from the Hsiao Single Error Correction–

Double Error Detection (SEC-DED) code, utilizing a syndrome-based decoder that can 

accurately correct any single-bit error and detect the presence of double-bit errors. 

The interface between the ECC unit and the TLB is facilitated by two modules: 

hsiao_ecc_enc and hsiao_ecc_dec. These modules handle the transmission of raw valid 

bits, tag fields, and content bits from the MMU to the encoder, which then produces the 

encoded data. This encoded data is subsequently passed to the decoder, which generates 

output signals corresponding to the original fields. In addition to these outputs, the 

decoder also produces an err_o signal, which indicates the presence of an error. While 

the original TLB design does not utilize the err_o signal, the proposed solutions 

incorporate it by assigning its value to four newly defined flags—invalidate_tag, 

invalidate_pte, invalidate_gpte, and invalidate_valid. These flags are designed to 

capture the error notification and identify faults in the tag, content, or valid bits of the 

TLB entries.  

The occurrence of an error can be observed when the corresponding bit for the affected 

TLB entry within the error-detection flags transitions to a value of 1 or 2 within the same 

clock cycle. 

There are two primary operational modes for handling errors: entries identified as 

erroneous can either be invalidated or corrected. Depending on the selected mode, the 

validity bit of the tags is assigned accordingly to reflect whether an entry remains valid 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  ^𝑎𝑎𝑠𝑠𝑎𝑎𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑒𝑒; // 𝑝𝑝𝑎𝑎𝑒𝑒𝑎𝑎𝑝𝑝𝑠𝑠 𝑒𝑒𝑜𝑜 𝑎𝑎𝑠𝑠𝑎𝑎𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑒𝑒𝑒𝑒_𝑒𝑒[0]  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; // 1 𝑎𝑎𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑒𝑒𝑒𝑒_𝑒𝑒[1] =  ~𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 & (|𝑎𝑎𝑠𝑠𝑎𝑎𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠_𝑒𝑒);  
// 1 𝑎𝑎𝑜𝑜 𝑎𝑎𝑒𝑒𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑝𝑝 𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠 𝑎𝑎𝑠𝑠𝑎𝑎𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠 𝑏𝑏𝑎𝑎𝑝𝑝𝑎𝑎 →  𝑠𝑠𝑏𝑏𝑠𝑠𝑝𝑝𝑎𝑎 − 𝑏𝑏𝑎𝑎𝑝𝑝 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
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or is marked for invalidation. It can be set to zero to invalidate the entry or assigned the 

value from the decoder's valid-bit output (valid_dec) to retain it. If the corrupted entry 

is the same entry which is required for address translation, the output signal lu_hit_o, 

which determines whether a matching entry exists in the TLB for the virtual address 

provided by the MMU, will be deserted (set to zero), indicating a translation miss. In 

the case of two-bit errors, the ECC mechanism lacks the capability to perform 

correction. Consequently, if an entry contains more than a single-bit error in either the 

tag or content fields, the system handles this scenario by invalidating the affected entry. 

This is achieved by setting its tags’ validity bit to zero, thereby ensuring that the 

corrupted entry is excluded from future address translations. 

 

 

 

 

Figure 4.1: TLB extended with ECC 
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Regarding the handling of valid bits, it is important to note that in the combinational 

feedback loop, the decoder output is continuously fed into the encoder of the valid bits 

on each cycle. As a result, any single-bit error in the valid field is automatically corrected 

in the subsequent cycle, with the corrected data being reintegrated into the TLB. 

However, in the presence of a two-bit error within the valid bits, the decoder output 

being a collective representation of all entries, cannot isolate the specific corrupted 

entry. Therefore, under such conditions, the only viable approach is to flush the entire 

TLB and rely on PTW to repopulate the entries with accurate data. 

With the foundational concepts of error detection and correction now established, the 

subsequent sections will systematically present and analyze each of the proposed 

approaches in detail. 

 

4.2 Detection Only 

In this approach, error correction is deliberately omitted, thereby eliminating the need 

for any additional architectural modifications. Any error detected in either the tag or 

content field leads to the immediate invalidation of the affected entry. Should the MMU 

subsequently require that entry for address translation, a PTW is triggered to retrieve the 

necessary information. 

While this approach eliminates the continuous time and energy overhead associated with 

performing correction in every cycle, it introduces inefficiencies in scenarios where 

errors occur in entries needed by the MMU. In such cases, a PTW must be initiated, 

incurring additional latency and energy consumption. To address this trade-off, it is 

proposed to implement a mechanism capable of correcting at least single-bit errors (as 

illustrated in Figure 4.2), thereby improving energy efficiency and performance. The 

first correction-based approach is discussed in the following section. 
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Figure 4.2: Error Detection and Correction Process Flowchart 

 

4.3 Full parallel correction using separate encoder per each TLB entry 

In this method, the TLB architecture is modified to enable the correction of entries 

affected by single-bit errors. This is accomplished by utilizing the outputs of the ECC 

decoder, which provides corrected data, to directly update the TLB. Specifically, the tag 

or content encoders, typically used to process the PTW results received from the MMU, 

are instead driven by the decoder outputs whenever a single-bit error is detected in either 
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the tag or content fields. This re-initiate the encoding and decoding cycle, ensuring that 

the corrected, error-free data is accurately stored back into the TLB. 

However, this correction mechanism is only activated when the MMU does not intend 

to overwrite the affected entry with new data. Upon re-feeding the encoder with the 

decoder's corrected output, the system detects errors during the first cycle, allowing the 

tags_n or content_n register, responsible for holding the encoder's output, to be updated 

with corrected data. In the subsequent cycle, the tags_q or content_q register, which 

governs the actual operational state of the TLB entry, is also updated. This two-cycle 

process ensures that future address translations utilize the corrected values, thereby 

maintaining system reliability and correctness. 

The approach employed in this section is inspired by the "normal replacement" logic 

within the baseline TLB code, wherein the outputs of the tag and content encoders are 

assigned to corresponding TLB registers. To enable correction, this same assignment 

mechanism is extended to operate when the decoder’s corrected outputs are routed back 

through the encoders. This allows the corrected data to be properly encoded and stored 

within the TLB, maintaining consistency with the system's existing update pathway. 

One limitation of this approach arises when multiple TLB entries experience 1-bit errors 

simultaneously. Since the encoder can process only one input per cycle, each subsequent 

corrupted entry overwrites the output of the previous one, resulting in only the final 

entry being corrected and updated in the TLB. To address this issue, the design can be 

extended by allocating a dedicated encoder for each TLB entry, as illustrated in Figure 

4.3. For instance, in a TLB with 16 entries, 16 separate encoders would be employed. 

This architecture enables all corrupted entries with 1-bit errors to be corrected and 

updated concurrently, thereby enhancing both the efficiency and reliability of the 

correction process. 

As illustrated in Figure 4.3, the first multiplexer determines the source of input data to 

the encoder. If the MMU intends to update a specific entry, the corresponding update 

signal (update_i.tag) is directed to the encoder. Conversely, if no update is required, the 

corrected output from the decoder (tags_dec) is utilized instead. Subsequently, a second 
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multiplexer decides whether the TLB should be updated with the new encoded data or 

retain the existing values by maintaining tags_n = tags_q. This logic and architectural 

framework are similarly applied to the content of the entries. In this case, the multiplexer 

selects between the MMU-provided data (update_i.content) and the corrected output 

from the content decoder (tlb_content_dec) as the encoder input, ensuring consistency 

and flexibility in handling both tag and content corrections. The correction mechanism 

for content is the same as Figure 4.3 with having separate encoders for each entry’s 

content. 

 

 

Figure 4.3: Correction mechanism by using separate encoders per each entry  

 

However, this approach introduces a significant area overhead due to the inclusion of 

individual encoders, one for each TLB entry, instead of a single shared encoder. This 

increase in hardware resources may be considered impractical, particularly given that 

the likelihood of multiple entries experiencing simultaneous single-bit errors in real-
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world scenarios is relatively low. Consequently, the trade-off between improved 

correction capability and hardware efficiency must be carefully evaluated. 

To address this limitation, an alternative approach is proposed that utilizes a finite state 

machine (FSM) in place of multiple encoders. In this method, corrupted entries are 

corrected sequentially, one per cycle, rather than concurrently. Although this sequential 

correction introduces a delay, requiring the system to wait for the FSM to complete its 

cycle before all errors are resolved, it offers a favorable trade-off between hardware area 

and performance. 

 

4.4 Counter-based solution for correction  

In this approach, a simple finite state machine (FSM) is realized using a counter 

mechanism, as depicted in Figure 4.4. The FSM operates in two modes: IDLE and 

CORRECTING. Once a 1-bit error is detected in any of the entries (indicated by one or 

more bits of the invalidate_tag, invalidate_pte, or invalidate_gpte signals being set to 1) 

the FSM transitions from the IDLE state to the CORRECTING state. The counter then 

begins iterating from the lowest-index corrupted entry. It sequentially updates the 

correction index to target the next corrupted entry and applies the correction mechanism 

accordingly. As a result of this process, the corresponding error flag for each corrected 

entry is cleared (changing from 1 back to 0) thereby signaling that the entry has been 

successfully repaired. 

 

Figure 4.4: Counter-based correction FSM 
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The correction mechanism, as discussed before, includes injection of decoder output 

(corrected data) in encoder again and assign output of encoder to flip flop of the 

corrupted entry in TLB to update the entry (Figure 4.5) and proceed with this process 

till last corrupted entry.  

 

 

 
Figure 4.5: Counter-based correction mechanism for TLB extended with ECC 

 

Thus, only one entry is updated per cycle. It is important to note that during the counting 

cycles, if a newly corrupted entry, positioned before the next previously detected 
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erroneous entry, is identified, the counter will correct this new entry upon reaching it. 

Once corrected, the counter resumes progressing toward the originally detected 

corrupted entry, ensuring all errors are addressed in sequence. 

One notable limitation of this design is its handling of newly occurring single-bit errors 

in entries that the counter has already passed. In such cases, the counter does not revisit 

these entries during the ongoing correction cycle. However, the finite state machine 

(FSM) is prevented from transitioning back to the IDLE state due to the persistent error 

flag. As a result, the counter continues to increase up to the index of last entry, 

subsequently wrapping around to revisit earlier entries, thereby eventually correcting 

the missed error. While it is technically feasible to introduce additional hardware to 

immediately address such late-occurring errors, the likelihood of this scenario is 

exceedingly rare in practical applications. Thus, the complexity and resource cost of 

implementing such enhancements are not considered justified. 

In conclusion, this approach successfully corrects all corrupted entries while reducing 

the architectural overhead compared to the previous method. However, it still pushes 

latency due to the need for the counter to iterate from the beginning up to the index of 

the next corrupted entry. For instance, if single-bit errors exist in both entry 0 and entry 

12, the counter must remain active for 11 cycles before correcting the latter. During this 

period, if corrupted entry is required for address translation, the ECC unit must perform 

correction to support MMU access, thereby consuming additional energy. To address 

this inefficiency, an alternative solution is proposed: replacing the counter with an 

arbiter, which can directly identify and access the next corrupted entry without the need 

for sequential counting. 

 

4.5 Arbiter-based solution for correction 

By replacing the counter with a round-robin arbiter, the correction mechanism is 

optimized to eliminate the sequential counting overhead. In this configuration, a request 

vector is generated in which each bit signifies an entry with a detected single-bit error. 
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This vector is then fed into the round-robin arbiter, which efficiently cycles through the 

active requests and sequentially grants correction access to one entry at a time. This 

approach enables more targeted correction, reducing unnecessary traversal and 

improving energy efficiency. 

Unlike the counter-based approach, the arbiter does not inherently prioritize special 

index to start the correction and follow the order. Instead, it grants the next correction 

request starting from the entry immediately following the last one it served.  

 

 

 

Figure 4.6: Arbiter-based correction mechanism for TLB with ECC 
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This round-robin scheduling ensures equitable treatment of all entries and eliminates the 

risk of starvation, as each request is guaranteed to be serviced in a cyclic and fair manner. 

Upon detection of a single-bit error, the arbiter module is activated, and the 

corresponding entry is immediately corrected using the same correction mechanism 

previously described as shown in Figure 4.6. In scenarios where multiple entries contain 

errors, the arbiter sequentially processes each entry, applying corrections over 

successive cycles to ensure complete recovery without introducing significant overhead. 

There is no need to FSM here. 

 

4.6 Performance Enhancement 

Although the enhancements thus far have enabled the TLB integrated with ECC to 

correct single-bit errors effectively, the ECC process and associated correction 

mechanisms may introduce latency during MMU access to TLB entries for address 

translation. 

The integration of ECCs to enhance system reliability inevitably introduces trade-offs, 

including increased circuit delay due to data encoding and decoding processes. 

Additionally, there is a notable rise in silicon area and power consumption, attributed to 

the extra interconnects, storage elements, and the overhead introduced by the encoder 

and decoder circuitry. [52] The substantial delay introduced by encoding and decoding 

operations can potentially render the register a performance bottleneck. This delay may 

necessitate a longer clock cycle, thereby reducing the system's operating frequency and 

overall performance efficiency [52]. 

Therefore, it is needed to modify the code such that decrease the sign of decoder or error 

signals on critical path to increase the frequency. 
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To address this issue, it is essential to restrict reliance on decoder output during periods 

when the MMU accesses the TLB. Consequently, all correction mechanisms must be 

halted during this interval, as they fundamentally depend on the corrected data provided 

by the decoder. Therefore, whenever the MMU is active (lu_access_i = 1), any TLB 

entry containing a single-bit error must be invalidated, regardless of whether it is the 

specific entry required by the MMU or not. Selectively invalidating only, the needed 

entry is not a feasible approach. As a result, if the MMU requests data from a corrupted 

entry, it must initiate a PTW to retrieve the correct information. 

To ensure proper invalidation, it is critical that any TLB entry identified as corrupted 

becomes invalidated in the same cycle that the MMU initiates a translation request and 

remains invalid in subsequent cycles. This constraint is necessary to prevent 

inconsistencies: if the corrupted entry were to be corrected and revalidated in the 

following cycles, it could reappear in the TLB while the MMU is already executing a 

PTW based on the original invalidation. Such behavior may result in both the newly 

corrected entry and the one being uploaded by the PTW coexisting in the TLB. This 

overlap can lead to a functional conflict, where the TLB produces multiple hits for the 

same virtual address, thereby violating the expected invariants of the TLB’s operation. 

To meet the objective while also preventing the formation of combinational loops, the 

existing update and normal replacement logic in the TLB design (previously used to 

refresh entries with new or corrected data) has been repurposed to explicitly invalidate 

corrupted entries by setting their validity bits to zero. Unlike the correction mechanism, 

where validity is conditionally masked, this approach requires a direct update to the 

valid bit of the entry by changing the valid_update[i] signal for the affected entry. 

Furthermore, an auxiliary flag, already_invalidated[i], is introduced to track whether a 

specific entry was invalidated due to a detected single-bit error occurring concurrently 

with an MMU translation request. This ensures that the invalidation is persistent and 

correctly managed during MMU interactions. 

Additionally, the conditions governing the initiation and execution of the correction 

process have been revised. Specifically, if the MMU issues a translation request and a 
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corresponding entry in the TLB has been previously invalidated due to a detected single-

bit error during that request, the correction mechanism is inhibited. This design choice 

ensures that such entries remain invalidated and are not inadvertently corrected, thereby 

avoiding any conflict with ongoing PTWs. The invalidated entry will persist in this state 

until it is either explicitly overwritten with new data from the MMU or removed through 

a flush operation. 

Furthermore, up to this point, the translation process and match detection within the 

TLB have relied on the decoder outputs, regardless of whether the data was originally 

correct or corrected by the ECC decoder. However, to implement the ECC bypass 

strategy, it becomes necessary to revise the process so that, in the case of entries that are 

both valid and free from error, the MMU directly accesses the tag and content 

information from the TLB, completely bypassing the decoder outputs. This modification 

ensures that ECC-related latency is avoided when it is not required, thereby optimizing 

performance. 

Because of this enhancement, the registers responsible for producing the output of the 

TLB system, previously driven by the decoder outputs, must now be connected to the 

raw, uncorrected data. This change extends to the validity signal as well. As discussed 

earlier in this chapter, the validity bit of tags was previously assigned to the decoder-

corrected validity bit (valid_dec). However, in the updated architecture, this signal is 

reassigned to the raw validity bit (valid_q), under the assumption that all entries affected 

by single-bit errors have already been invalidated. Furthermore, the matching logic used 

for address translation is now required to rely solely on raw data, excluding any decoder-

corrected values. 

Therefore, the previous design for counter-based correction solution will be changed to 

Figure 4.7. 

Also, all the changes for arbiter-based correction solutions with performance 

enhancement is the same as the counter-based solution as Figure 4.8. 
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Figure 4.7: Counter-based correction mechanism with Performance Enhancement  

for TLB extended with ECC 
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Figure 4.8: Arbiter-based correction mechanism with Performance Enhancement  

for TLB extended with EC 
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5. Results 

5.1 Fault Coverage 

To validate the functionality and fault resilience of the TLB error detection and 

correction logic, first, RV64UI for different instruction test (like “and”, “add” or “xor”) 

from the official RISC-V tests have been executed in virtual environments. This test was 

chosen for its frequent memory accesses which exercise TLB lookups.  

For observing the performance of the work, simulation has been run in Questasim, where 

it was possible to inject 1-bit or 2-bit errors manually on tags, content and valid bits on 

negative edges of the clock pulse on relevant waves to evaluate the error correction and 

entry invalidation capabilities.; Figure 5.1 shows a single-bit flip happening in the TLB 

tag Flip Flop (i.e. the tags_q bus). In the same clock cycle, the bit corresponding to the 

corrupted tag bitfield positions gets asserted in the invalidation bus associated to the 

faulty tag. After a clock cycle, the TLB correction logic restores the correct content of 

the TLB tag, restoring the invalidation and hit/miss states. 

These tests have been done under both Detection Only and Correction modes across 

instruction and data TLBs (ITLB and DTLB). 

 

 
Figure 5.1: correction of 1-bit error in tag bits 

 

If 2 bits are flipped in tag or content, the detection flag shows 2 for that entry and never 

changes because that entry will be invalidated as can be seen in Figure 5.2. 
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Figure 5.2, invalidate entry [0] with 2-bit error 

 

Correction of the two entries, corrupted simultaneously, has been shown in Figure 5.3 

and 5.4 based on counter-based and arbiter-based solutions, respectively. 

 

 
Figure 5.3: counter-based correction of 1-bit error in entry [0] and [2] simultaneously 

 

 

 
Figure 5.4: arbiter-based correction of 1-bit error in entry [0] and [12] simultaneously 

 

On the contrary, in performance enhancement solution, when MMU is asking for 

translation, there will be no correction in tags, contents or valid bits, no matter if it is 1 

bit of an error or more and if the invalidated entry was the one needed for translation, 

MMU will face a miss as Figure 5.5 
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Figure 5.5: invalidation of 1-bit error in entry [0]  

in arbiter-based performance enhancement 

 

 

5.2 Frequency Results 

We conducted a Power-Performance-Area (PPA) analysis of the proposed TLBs 

implementations using the GlobalFoundries 22nm FDSOI (GF22) technology. The 

synthesis and PPA assessments were performed under the slow-slow (SS) process corner 

at 0.72 V and –40 °C, which represents a worst-case scenario commonly used for 

maximum frequency testing. This ensures that the design can meet its timing constraints 

even under the most pessimistic conditions.  

The baseline TLB design integrated with ECC but without any correction of TLB 

entries, had the ECC decoder in the critical path during MMU translation, and achieved 

a maximum frequency of 823 MHz. After applying architectural modifications to add 

correction mechanism as well as decouple the decoder output from the timing-critical 

path, the following results were observed as chart 5.1. 
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Chart 5.1, Comparison of frequency of different correction solutions  

based on Baseline TLB design 

 

These results demonstrate an ~5.35% frequency gain (867Mhz) with the arbiter and an 

~8.14% gain (890Mhz) with the counter method over the baseline TLB. The improved 

frequency confirms that eliminating decoder dependency during active MMU 

translation helps reduce logic depth and critical path delay. ECC decoding typically 

involves syndrome generation, bitwise XOR operations, and comparator trees, which 

introduce non-negligible combinational delay. This can significantly reduce the system's 

maximum achievable frequency, especially when multiple ECC bits are processed in 

parallel or complex codes like Hsiao are used. Such designs can result in persistent soft 

error correction being performed dynamically on every access, increasing both timing 

pressure and power consumption due to the reuse of slow ECC decoder logic in the 

pipeline's data path [70]. 

Furthermore, it is interesting that, although using arbiter instead of counter was 

supposed to remove the latency to count between simultaneous corrupted entries and be 

faster, it had less advancement in frequency compared to counter one. Despite both 
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methods successfully removing ECC correction from the critical path during MMU 

translation, the arbiter-based solution showed a smaller improvement in maximum 

frequency. This difference stems from the intrinsic complexity of round-robin 

arbitration logic. Unlike the counter approach, which performs sequential corrections 

using minimal combinational logic, the arbiter introduces additional control structures 

for fairness, masking, and priority rotation. These structures typically involve tree-based 

grant computation and selection logic, which add to the overall logic depth and routing 

complexity of the circuit. Consequently, the arbiter module becomes a new contributor 

to the critical path, partially offsetting the gains achieved by bypassing the ECC decoder. 

This behavior aligns with observations in literature, where round-robin arbiters are 

recognized for their robustness but also for their timing cost due to increased gate count 

and combinational delay [71].  

  

5.3 Area Results 

All synthesis and PPA evaluations were also performed at the maximum frequency 

achievable by the baseline TLB design (823Mhz). The results are summarized in Table 

5.1, where both the total CVA6 area of the design and the specific area occupied by the 

TLB subsystem (including both ITLB and DTLB modules) have been reported. 

Additionally, the resulted area for maximum frequency achieved by performance 

enhancement solutions have been illustrated in Table 5.2. 
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Correction 

Mechanism 

Total 

CVA6 

Area 

TLB 

Area 

dtlb 

Area 

itlb 

Area 

Total CVA6  

Area  

Difference % 

TLB  

Area  

Difference % 

(𝒎𝒎𝒎𝒎𝟐𝟐) (At 823Mhz)  

Baseline TLB 0.330 0.069 0.029 0.040 0 0 

Arbiter-based 

Performance 

Enhancement 

0.329 0.070 0.033 0.036 -0.30 0.86 

Counter-based 

Performance 

Enhancement 

0.333 0.069 0.033 0.036 0.19 0.19 

Table 5.1, Comparison of Area for Performance Enhancement solutions  

with Baseline TLB design at Maximum Frequency of Baseline TLB 

Table 5.2, Comparison of Area for Performance Enhancement solutions  

with Baseline TLB design at Maximum Frequency of each solution 

Correction 

Mechanism 

Maximum 

Frequency 

(MHz) 

Total 

CVA6 

Area 

 
 

TLB 

Area 

dtlb 

Area 

itlb 

Area 

Total 

CVA6 

Area  

Difference 

% 

TLB  

Area  

Difference 

% 

 
(𝒎𝒎𝒎𝒎𝟐𝟐)  

Baseline TLB 823 0.33 0.069 0.029 0.04 0   0  

Arbiter-based 

Performance 

Enhancement 

867 0.334 0.073 0.035 0.038 1.25 4.35  

Counter-based 

Performance 

Enhancement 

890 0.331 0.067 0.031 0.036 0.41 -2.37  
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The results show that the area overhead of each solution depends on the frequency 

constraint applied during implementation. At 823 MHz (baseline TLB frequency), the 

counter-based method exhibits a slight increase in both CVA6 and TLB area, while the 

arbiter-based approach shows a slight reduction in CVA6 area but increment in TLB 

area, even more than counter-based one. These results reflect the trade-off between 

centralized correction control and distributed arbitration logic as Charts 5.2. and 5.3 

The counter-based solution introduces an FSM and a scanning counter to sequentially 

identify and correct entries with ECC errors. This increases the total logic and leads to 

an overall area increase compared to the baseline. However, since correction is 

serialized, it requires fewer additions inside each TLB entry, resulting in a more modest 

increase in TLB-specific area. 

In contrast, the arbiter-based design employs a round-robin arbiter to allow parallel 

correction across entries. This reduces the need for centralized FSM control, leading to 

a decrease in the CVA6 area. However, each TLB entry must now incorporate logic to 

participate in arbitration (e.g., request generation, acknowledgment), which increases 

the local area of the TLB modules. 

 

Chart 5.2: Comparison of Area among performance enhancement solutions  

and baseline TLB 



60 
 

 

 
Chart 5.3: Comparison of Area difference percentage of  

Performance Enhancement solutions with baseline TLB 

 

When each solution is synthesized at its own maximum achievable frequency, the 

counter-based solution becomes more area-efficient within the TLB subsystem (2.37% 

decrease), likely due to better logic sharing or retiming optimizations by the synthesis 

tool; However, the overall CVA6 area increases slightly, as more aggressive 

optimization is required across the entire processor to meet timing constraints, including 

the addition of pipeline stages, buffering, and high-speed cells outside the TLB 

subsystem. 

Conversely, the arbiter-based method shows CVA6 area increase (~1.25%) and even 

more increment in TLB area (4.35%) which reflects the higher resource cost of meeting 

timing with distributed arbitration logic. The trade-off between frequency and area can 

be seen in chart 5.4. 
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Chart 5.4: Comparison of Area difference percentage of  

Performance Enhancement solutions with baseline TLB 

 

5.4 Efficiency 

Despite the overall CVA6 area increase observed in the counter-based solution, the 

increment remains below 1% compared to the baseline TLB. This marginal cost is 

acceptable when weighed against the substantial frequency gain achieved, with an 

improvement of over 8%. However, this gain comes with a trade-off: when corrupted 

entries are in use, they are invalidated and trigger a page table walk (PTW), introducing 

a runtime penalty due to the additional cycles required to restore valid TLB entries. 

Nevertheless, in scenarios where maximizing clock frequency is a key priority, the 

counter-based approach remains attractive, offering a favorable balance between area, 

performance, and fault handling overhead. 
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6. Conclusion 

This thesis presented a set of architectural and logic-level enhancements aimed at 

improving the reliability and timing performance of Translation Lookaside Buffers 

integrated with ECC support. The motivation originated from the need to protect TLB 

structures, vulnerable to soft errors due to their frequent access and compact size, 

without compromising the performance of the memory management pipeline, 

particularly in modern embedded and SoC-based RISC-V designs. 

Starting from a suboptimal ECC-extended TLB integrated in the CVA6 RISC-V core, 

the work implemented and evaluated multiple correction-capable strategies. These 

included: a Detection-Only mode to support ECC decoding without correction, a fully 

parallel correction structure using combinational encoders, and two more scalable 

approaches, one based on a round-robin arbiter and the other on a correction counter 

with FSM control. Each solution was carefully integrated and synthesized using 

GlobalFoundries’ 22nm FDSOI (GF22) technology to evaluate Power-Performance-

Area (PPA) metrics. 

Beyond fault correction, the thesis introduced a critical timing optimization: during 

MMU translation requests, ECC decoder outputs were bypassed entirely to eliminate 

their influence on the critical path. Instead of performing on-the-fly error correction, 

corrupted entries were invalidated immediately upon MMU access and repopulated via 

the PTW. This design ensured that matching and valid signals during TLB lookup were 

derived directly from raw data registers, avoiding latency penalties from ECC logic. 

PPA evaluations showed promising results. The counter-based correction solution 

achieved the highest frequency gain of approximately 8.14%, increasing from 823 MHz 

(baseline TLB maximum frequency) to 890 MHz. The arbiter-based method, while 

slightly more complex in terms of logic, reached 867 MHz, representing a 5.35% 

improvement. The frequency uplift confirms that eliminating decoder dependencies 
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during translation reduces logic depth and critical path delays. Area analysis further 

revealed that while both solutions introduced overhead to the total CVA6 area, their 

impact was minimal; however, Arbiter-based Performance Enhancement had 

considerable increment in TLB area in contrast with the Counter-based Performance 

Enhancement solution with 2.37% decrease in TLB area. 

From a system integration perspective, all proposed designs were verified under realistic 

synthesis conditions (GF22, slow-slow (SS) process corner at 0.72 V and –40 °C) 

ensuring feasibility for high-frequency applications. The proposed ECC-extended TLB 

architecture not only enhanced resilience against soft errors but also reduced the 

performance penalty typically associated with ECC logic. Compared to traditional 

parity-based or detection-only designs, the Counter-based Performance Enhancement 

Solution offers a scalable, and timing-efficient framework suitable for fault-tolerant 

RISC-V processors. 

Overall, the thesis demonstrates that combining correction mechanisms with targeted 

pipeline decoupling is an effective strategy for enhancing the reliability of the TLB 

integrated with ECC in high-performance systems without degrading operational 

frequency. 
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