
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Laurea Magistrale in Ingegneria e Scienze Informatiche

Exploiting GenAI for Plan Generation
in BDI Agents

Tesi di laurea in:
Intelligent Systems Engineering

Relatore
Prof. Giovanni Ciatto

Correlatore
Prof. Gianluca Aguzzi

Candidato
Riccardo Battistini

I Sessione di Laurea
Anno Accademico 2024–2025

ii

Abstract

Extending BDI agents with the ability to autonomously generate plans has long
been a goal in cognitive agent engineering, aiming to improve their adaptability
in dynamic environments. Recent advances in GenAI offer promising new oppor-
tunities in this area by leveraging the natural language understanding, means-end
reasoning, and abstraction capabilities of LLMs. This thesis explores the integra-
tion of GenAI-driven plan generation into AgentSpeak(L) agents, examining how
knowledge can be effectively transferred between the LLM and the BDI agent to
support dynamic, runtime plan creation. To this end, a novel framework is pro-
posed that extends the AgentSpeak(L) reasoning cycle with generative capabilities,
enabling agents to synthesize plans on-the-fly. The design and implementation of
this generative process are discussed, along with the architectural modifications
required. The framework is implemented using the JaKtA BDI interpreter, and
the quality of the generated plans is systematically evaluated across different types
of LLMs.

iii

iv

Contents

Abstract iii

1 Introduction 3

2 Background and Related Work 5
2.1 Planning in AgentSpeak(L) agents 5
2.2 JaKtA: Jason-like Kotlin Agents 9
2.3 Plan Generation in BDI Agents . 9
2.4 Reasoning and Planning in LLMs 11
2.5 GenAI Agents . 12
2.6 Integration of BDI agents with LLMs 14

3 Design 15
3.1 The structure of a PGP . 15
3.2 Triggering the generative process 17

3.2.1 On-demand PGP . 17
3.2.2 Reactive PGP . 18
3.2.3 Proactive PGP . 19

3.3 Concurrency and PGP . 20
3.4 Bridging BDI Agents and LLM Knowledge 21

3.4.1 From BDI Agents to LLM and Back 21
3.4.2 What to Encode . 21
3.4.3 How to Encode . 23

3.5 Writing Generative Agent Specifications 25

4 Implementation 27
4.1 Integration with the BDI Engine 27

4.1.1 The PGP contract . 28
4.1.2 The Generation Manager 31

4.2 Logging System . 36
4.3 Generative Process Pipeline . 39

CONTENTS v

CONTENTS

4.3.1 Context filters . 39
4.3.2 Formatters . 40
4.3.3 Parsers . 40
4.3.4 Request Handlers . 41
4.3.5 Plan Generators . 42

4.4 Generative Agent Specification . 42
4.4.1 Implementing Custom Filters 43
4.4.2 Defining Prompt Builders 44
4.4.3 Declaring the Generation Strategy 44
4.4.4 Writing the Documentation 46
4.4.5 Specifying on-demand Generation Goals 47
4.4.6 Defining Custom Log Events 48

5 Evaluation 51
5.1 The explorer robot application . 51

5.1.1 Agent . 51
5.1.2 Environment . 53

5.2 Experimental Methodology . 53
5.2.1 Experimental Setup . 54
5.2.2 Language Models . 55
5.2.3 Experiments’ Parameters 56
5.2.4 Evaluation Metrics . 56

5.3 Experimental Results . 58
5.3.1 Example PGP Prompt . 58
5.3.2 Example PGP Responses 61
5.3.3 Detailed Metrics’ Analysis 61

6 Conclusion 75
6.1 Future Work . 76

6.1.1 Plan repair and refinement mechanisms 77
6.1.2 Structured Output Formats 77
6.1.3 Improved Software Modularity 78
6.1.4 Model Context Protocol Integration 79
6.1.5 Finetuning Small Language Models 79
6.1.6 Artifacts as Tools . 80

Bibliography 81

vi CONTENTS

List of Figures

4.1 Simplified BDI control cycle that uses a reactive PGP to dynami-
cally generate new plans at runtime. 28

4.2 The interfaces that define the contract for plan generation exposed
by the belief-desire-intention (BDI) engine and the interfaces and
classes that implement this contract for a LM-based PGP. 29

4.3 Components of the GenerationManager, which orchestrates the
plan generation procedure (PGP). 31

4.4 Components of the GeneratePlanStrategy, which invokes the gen-
eration strategy provided by the user and updates the result to the
agent that requested the generation. 35

4.5 LogEvent interface hierarchy. 37
4.6 AgentEvent interface hierarchy. 37
4.7 EnvironmentChange interface hierarchy. 37
4.8 ExecutionFeedback interface hierarchy considering only goals’ re-

sults. 38
4.9 ExecutionFeedback interface hierarchy considering only PGPs’ re-

sults. 38
4.10 Set of interfaces that handle the parser’s results. 41
4.11 Set of classes that compose a LLM-based plan generation strategy. . 42

5.1 Environment modelling for the explorer robot domain. The agent
is in discrete bidimensional space, where it can move in eight ad-
missible directions, namely: the cardinal ones, with north pointing
up. Direction here denotes the current position of the agent. . . . 52

5.2 The average PRAS score for each model was calculated by sam-
pling up to five PGP results from the set of successful PGP invo-
cations. 70

5.3 Bar plots showing PC, CC, PBC, GC, RR, NGC, NBC and
GSA scores for each model, with a facet for each prompt type tested. 71

LIST OF FIGURES vii

LIST OF FIGURES

5.4 Bar plots showing PC, CC, PBC, GC, RR, NGC, NBC and
GSA scores for each model, with a facet for each value of temper-
ature tested. 72

5.5 BSA and TSR scores for each model, with a facet for each prompt
type tested. 73

5.6 BSA and TSR scores for each model, with a facet for each value
of temperature tested. 73

viii LIST OF FIGURES

List of Listings

3.1 One possible implementation of a reactive PGP 18
3.2 Fragment of the format restricting instructions that define the hy-

brid YAML and Prolog syntax that the LLM is expected to use to
format its responses in the implemented PGP prototype. 24

3.3 An example of how a description enriches an admissible goal with
an explanation of its meaning, to the benefit of both the human
programmer and the large language model (LLM)-based PGP. . . . 26

4.1 Implementation of the action formatter that converts Actions into
human-readable string representations for LLM prompts. 40

4.2 Default context filter implementation that removes meta-plans and
failure-handling plans to streamline the LLM context for plan gen-
eration. 43

4.3 Example of a user prompt template, which is populated at runtime
according to the state of the agent and the content of static files. . 45

4.4 Example of a generation strategy declared at the MAS level. 46
4.5 Example of a generation strategy declared at the agent level. 46
4.6 Example of a generation strategy declared at the plan level. 47
4.7 Example of a JaKtA agent extended with natural-language descrip-

tions . 47
4.8 Example of a JaKtA agent that will try to generate a plan to print

the numbers from zero to ten using the provided generation strategy. 48
4.9 Implementation of the move action, which provides a more specific

feedback than the default GenericActionSuccess when the action
completes successfully. 49

5.1 The ExplorerRobot agent as implemented in JaKtA. 52
5.2 The set of percepts generated by the grid world environment. . . . 53
5.3 Specification of the grid world environment in JaKtA. 54
5.4 Set of baseline plans for the ExplorerRobot agent 55
5.5 Prompt used for the LLM-as-judge evaluation. 57
5.6 The system prompt used by the robot explorer application. 59
5.7 The user prompt used by the robot explorer application. 60

LIST OF LISTINGS ix

LIST OF LISTINGS

5.8 Example response given by Claude Sonnet 4 (beautiful-volhard).
This is one of the few successful PGP invocations which use a
prompt with no hints or remarks. 61

5.9 Example response given by Deepseek V3 Chat (stoic-rhodes). . . . 62
5.10 Example response given by GPT 4.1 (stupefied-lewin). 63
5.11 Example response by Gemini 2.5 Flash (frosty-kare). This is the

response that got the highest score by the LLM judge, which co-
incidentally was Gemini 2.5 Flash itself, and was one of the few
answers the model provided that were successful. 64

x LIST OF LISTINGS

Acknowledgements

I would like to thank my supervisor Giovanni Ciatto and co-supervisor Gianluca
Aguzzi, for their guidance and support throughout this thesis. I am also thank-
ful to the doctoral candidates Martina Baiardi and Samuele Burattini for their
suggestions and feedback, which helped shape the research direction. Additional
thanks go to Professor Alessandro Ricci for his insightful input during our group
meetings. I am grateful for the opportunity to collaborate with them on a paper,
based on the thesis idea presented here, that has been accepted for publication at
the 28th European Conference on Artificial Intelligence (ECAI-2025).

Last but not least, I want to thank my family for their support, patience, and
encouragement throughout this master’s program.

1

2

Chapter 1

Introduction

Long before the current surge of interest in generative AI (GenAI), the BDI model
has worked as a paradigm for rational agents, leading to the development of several
BDI agent-oriented programming architectures [1], as well as agent programming
languages based on them—most notably, AgentSpeak(L) [2]. BDI languages pro-
mote the design of rational agents able in principle to reason about complex and
dynamically evolving environments, and proactively act upon them.

Nevertheless, traditional BDI programming frameworks typically lack mecha-
nisms allowing agents to autonomously acquire or build new plans at runtime [3].
The procedural behavior of AgentSpeak(L) agents is then limited to scenarios
where the agent behavior can be suitably defined at design time (pre-programmed):
an effective option in terms of computational efficiency, which however constrains
agent flexibility, responsiveness, and overall autonomy when facing unpredictable
environments. Extending BDI agents with planning capabilities has thus been
extensively explored [4].

Prior approaches typically attempt to bridge first-principles planning tech-
niques with BDI architectures [3], requiring a detailed model of the action space.
However, those models, usually expressed in terms of preconditions and effects,
are typically costly and often unavailable for highly-dynamic environments.

Recent advances in GenAI methodologies promise to overcome such limitations
by offering more dynamic and flexible solutions. GenAI technologies such as LLMs
provide unprecedented opportunities for empowering cognitive agents with intel-

CHAPTER 1. INTRODUCTION 3

ligent features involving the generation of cognitive abstractions (such as beliefs,
goals, plans) as well as the ability to interact in natural language.

The exploration conducted in this thesis is grounded on the assumptions that:
(i) LLMs exhibit planning capabilities [5]; (ii) LLMs easily handle natural lan-
guage, and have absorbed common sense knowledge that can be leveraged in the
planning process [6]; (iii) LLMs systems exhibit abstraction and imagination ca-
pabilities—e.g. [7], which may lead to more flexible plans than those generated by
classical planning techniques. Furthermore, given that BDI developers typically
employ mnemonic and semantically-relevant names resembling natural language
to represent cognitive abstractions, this work explores whether LLMs can generate
BDI plans by leveraging the natural-language semantics inherent in goals, actions,
and plans, potentially reducing reliance on explicitly-defined preconditions and
effects.

This work focuses on the problem of augmenting BDI agents with autonomous
plan generation capabilities by leveraging GenAI. The investigation seeks to an-
swer these four research questions: (RQ1) what information would LLMs require
to generate BDI plans? (RQ2) how should knowledge be transferred between
LLMs and BDI agents? (RQ3) how does automatic plan generation impact
BDI agents operation and specification? (RQ4) can LLMs generate reusable BDI
plans? To address them, this thesis analyzes the integration requirements for incor-
porating generative AI into BDI architectures, proposes a conceptual framework
that extends the traditional BDI model to support automated plan generation,
and presents preliminary experimental results obtained through a prototype im-
plementation in JaKtA [8].

This work is organized as follows. Chapter 2 provides background on BDI
agents and on their reasoning and planning capabilities, reviews related work on
planning in BDI systems, and introduces GenAI agents. Chapter 3 presents the
design of the generative process for runtime plan generation. Chapter 4 offers
a detailed examination of how GenAI-based plan generation procedures are inte-
grated into AgentSpeak(L) agents. Chapter 5 discusses the experimental results,
while chapter 6 concludes the work and outlines directions for future research.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

This chapter presents the theoretical and technical foundations relevant to this
thesis. Section 2.1 introduces the BDI model and its application in program-
ming AgentSpeak(L) agents. Section 2.3 discusses plan generation within BDI
architectures. Section 2.4 provides a short review of the reasoning and planning
capabilities demonstrated by LLMs. Recent developments in agent architectures
based on generative AI are outlined in section 2.5. Lastly, section 2.6 surveys
existing efforts to integrate BDI models with LLMs.

2.1 Planning in AgentSpeak(L) agents

The BDI model, inspired by human cognitive processes [9], and grounded upon
a formal framework [10] for modelling rational agents’ decision-making, has been
adopted for agent programming languages—e.g. [11]—as well as for simulating
intelligent agents [12] or human behavior [13]. BDI systems represent a wide
yet specific class of multi-agent systems (MASs), where rational agents feature
cognitive abstractions such as beliefs, goals, and intentions.

Specifically, a BDI agent [1]: (i) maintains beliefs about itself and its envi-
ronment, updated by perception, reasoning, or communication with other agents;
(ii) is guided by the desires (or goals) it aims to achieve, which may evolve over
time or give rise to new desires during their pursuit; (iii) commits to multiple con-
current intentions as a means to fulfil its desires; (iv) executes plans—as sequences

CHAPTER 2. BACKGROUND AND RELATED WORK 5

2.1. PLANNING IN AGENTSPEAK(L) AGENTS

of actions it knows how to perform—in order to achieve its goals.
Several architectures have been proposed to implement BDI agents in soft-

ware, including AgentSpeak(L) [1], procedural reasoning system (PRS) [14], and
distributed Multi-Agent Reasoning System (dMARS) [15]. For an account of the
many architectures proposed in the literature refer to the survey by Meneguzzi and
de Silva [16]. In the following, the focus is on the widely-adopted AgentSpeak(L)—
so that the terms BDI agents and AgentSpeak(L) agents may be used interchange-
ably from now on.

AgentSpeak(L) agents are animated by events, to which they respond by se-
lecting plans that guide their execution. Events may correspond to the addition
or removal of beliefs—which, in turn, may be the result of perception or commu-
nication with other agents—or to the occurrence of internal events, such as the
commitment of the agent to a new goal to pursue. Unlike purely reactive systems,
where external stimuli are directly mapped to actions, BDI agents reason about
events in the context of their current state and choose plans accordingly, via a
continuous deliberation activity. The execution of plans can, in turn, generate
new internal events, allowing the agent to progress through its reasoning cycle and
operate autonomously.

AgentSpeak(L) agents perform so-called procedural reasoning [14]: they are
equipped by human developers with procedural knowledge in terms of a plan li-
brary, a collection of plans agents can select for execution at run time. Agents’
deliberation process is then aimed at selecting the most adequate plan for any event
that may occur, so that plans are, ultimately, a way to encode specific actions to
perform in response to specific events, failing if none has been provided.

More precisely, AgentSpeak(L) plans are referred to as plan rules, denoted as:
E: C ← A1; …; An. The rule describes how the agent should react to some
triggering event E, stating for instance what to do when a new percept arises,
or how to achieve a given goal. C is the set of conditions under which the rule
is applicable (a.k.a. the rule’s context), and A1; …; An is the body of the rule,
corresponding to the actual plan, i.e., the actions to perform to handle the event.

Plan rules hence differ significantly from first-principles planning, where the
plan is a sequence of actions to be performed to reach a desired world state—
i.e., declarative goals [17]. In fact, although it is possible to write plans rules

6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1. PLANNING IN AGENTSPEAK(L) AGENTS

and goals in a declarative style to mimic classic planning [18, 19], it is often the
case that a goal expressed as the triggering event of a BDI plan rule is simply a
mnemonic name of an event the agent may be willing to react to—i.e., procedural
goals [17]. Additionally, other than encoding the procedural knowledge to achieve
goals (!Goal), AgentSpeak(L) plan rules can be written to react to the addition
or removal of beliefs (+/-Bel), as well as performing epistemic actions—e.g., a
test to retrieve information from the current belief base (?Test). (i) The addition
(resp. removal) of a belief +Bel (resp. -Bel) representing some novel (resp. old) in-
formation which the agent memorized (resp. forgot) due to reasoning, perception,
or communication; or (ii) the commitment to a new achievement (resp. test) goal
+!G (resp. +?G), representing something that the agent intends to do (resp. know).
Practically speaking, while beliefs are logic (most commonly, Prolog) facts,—i.e.
the agents’ belief base is considered as a logic theory—such as temperature(25,
celsius), goals are logic terms named after the activities they represent, such
as !go(home) or ?weather(raining). Plans events may be non-ground, in which
case the plan would react to any event matching its head via logic unification—e.g.,
the plan +temperature(X, celsius): tolerance(T) & (X > T) ← !go(away)
would match any update concerning the temperature. As shown in the last exam-
ple, plans’ contexts are just logic expressions possibly involving the variables in the
plan’s head, or any other belief from the agent’s belief base. The many activities
in a plan’s body can either be (i) subgoals, i.e., expressions such as +!G or +?G,
representing new goals to be achieved (or tested) by the agent; (ii) actions, i.e.,
logic terms denoting operations to be performed, such as move(up); or (iii) spe-
cial actions for the update of believes (e.g. +Bel or -Bel). Actions can, and most
commonly will, provoke side effects when executed, i.e. change either the agent’s
internal status or affect the environment.

Similarly to goals, actions are basically mnemonic names of functionalities
causing effects. Unlike other artificial intelligence (AI) subfields, though, pre-
/post-conditions for an action are not explicitly represented in AgentSpeak(L) as
the actions are usually invoking low-level software/hardware facilities that bring
side effects about. Typically, in BDI agents, actions may even fail due to unpre-
dictable environment dynamics making pre-/post-conditions hard to define.

Lastly, a notable feature of AgentSpeak(L) plan rules is that the body of a plan

CHAPTER 2. BACKGROUND AND RELATED WORK 7

2.1. PLANNING IN AGENTSPEAK(L) AGENTS

may contain subgoals—i.e., statements triggering the selection and execution of
other plans. Through this mechanism, AgentSpeak(L) agents can pursue complex
goals by breaking them down into smaller subgoals for which the specific plans
are selected at runtime, resulting in a non-linear execution. Yet, the underlying
assumption is that all plans are known in advance, and the agent can select them
based on the current context. Then, it may happen that a plan is not available for
a given event and context, in which case the agent may fail to achieve the goal.
To make that possible, AgentSpeak(L) assumes that low-level software/hardware
facilities are attached to the agent, and that executing the action will invoke them
accordingly. So, in a sense, actions are invocations to foreign language interfaces
(FLI).

When encountering a sub-goal during plan execution, a new internal event is
generated inside the agent, which may trigger the execution of another plan, and
so on recursively. Stacks of goals, subgoals, and partially executed plans are called
intentions. In a given moment, each agent may have multiple intention, each one
keeping track of some course of action the agent is currently carrying on.

In this framework, goals are just mnemonic names of events the agent may
be willing to react to, and, similarly, actions are just mnemonic names for func-
tionalities which provoke side effects. However, differently from other subfields
of AI, the actual semantics of goals and actions (namely, what properties of the
world should be reached for a goal to hold, or what pre-/post-conditions is an
action subject to) is not explicitly represented in AgentSpeak(L). So, it is up to
human developers to write meaningful plans, goals, and actions, similarly to what
programmers do with ordinary programming languages.

By supporting multiple concurrent intentions, BDI agents can manage complex
scenarios where multiple goals must be pursued in parallel, and where multiple
courses of actions must be interleaved to pursue them all. Yet, the underlying
assumption is that all plans are known in advance, and the agent can select them
based on the current context. It may happen that a plan is not available for a
given event and context, in which case the agent may fail to act, and the whole
intention may remain unfulfilled.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2. JAKTA: JASON-LIKE KOTLIN AGENTS

2.2 JaKtA: Jason-like Kotlin Agents

JaKtA [8] is an internal Domain-Specific Language (DSL) designed for implement-
ing BDI agents directly in Kotlin. Unlike traditional BDI frameworks which rely
on external DSLs, JaKtA is built using Kotlin’s native language features as an
internal DSL. This approach leverages Kotlin’s expressive syntax and type sys-
tem to provide a more integrated and type-safe environment for Agent-oriented
Programming (AoP).

JaKtA includes a BDI interpreter that is compliant with AgentSpeak(L), en-
abling developers to define agents, beliefs, goals, plans, and actions as first-class
Kotlin constructs. It draws inspiration from Jason [20], a widely used Java-based
framework for BDI agent programming based on an extended version of AgentS-
peak(L). While Jason provides a solid foundation for developing multiagent sys-
tems, its external DSL approach requires developers to work with a separate lan-
guage syntax and toolchain. JaKtA addresses this by embedding AoP capabilities
directly into Kotlin’s syntax, allowing developers to benefit from Kotlin’s modern
language features such as null safety, coroutines, and functional programming con-
structs. This internal DSL approach enables more seamless integration between
agent logic and conventional programming constructs, reducing the cognitive over-
head of context switching between different syntaxes. Additionally, Kotlin’s in-
teroperability with Java ensures that JaKtA maintains access to the extensive
JVM ecosystem while providing a more contemporary development experience, by
taking advantage of IDE features, debugging tools, and build systems. The frame-
work’s design also facilitates the combination of AoP with other programming
paradigms within the same codebase, leading to more sophisticated and maintain-
able agent-based systems. Due to these design advantages and its alignment with
modern development practices, JaKtA has been chosen for the development of the
PGP prototype.

2.3 Plan Generation in BDI Agents

This section highlights the main implications of integrating plan generation tech-
niques into BDI agents, which serves as a foundation for this work as well.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

2.3. PLAN GENERATION IN BDI AGENTS

The main limitation of procedural reasoning in BDI agents is that the plan
library is statically defined by the agent programmer, which has to anticipate all
the possible situations the agent may encounter. Although this is beneficial for
the agent’s predictability and controllability, it limits the agent’s flexibility and
adaptability to unforeseen situations. For this reason, the BDI community has
long been interested in the problem of automatic plan generation, incorporating
techniques from AI planning into the BDI architecture. For an in-depth overview
of the many approaches proposed in the literature so far, refer to the survey by
Meneguzzi and de Silva [4].

Section 2.1 surfaced the main differences between BDI plans and classical
(a.k.a. first-principles) planning (e.g. STRIPS [21]) which can be essentially be
summarized as: (i) BDI plans and goals are procedural, while in classical planning
they are declarative [17]; (ii) BDI actions have no clearly stated pre- and post--
conditions, while classical planning actions are defined by them (iii) BDI plans
can include subgoals for a more flexible execution flow, while classical planning
is usually assembling a linear sequence of actions to move from one world state
to another. Hierarchical Task Network (HTN) planning [22], based on the idea
of task decomposition, allows generating more abstract plans that can mimic the
invocation of subgoals and thus addressing item (iii). Nevertheless, tasks must
be defined in advance, have pre- and post-conditions and potentially ordering
constraints. Interestingly, as emerging from [4], classic planning techniques have
mostly been integrated to generate new plans, while HTN has been exploited to
perform look-ahead in the plan library and understand if a suitable chain of plans
is available.

Regardless of the specific planning technique, integrating plan generation in
BDI agents requires deciding when to trigger the generation process. The most
straightforward approach is to trigger the generation process when the agent is
unable to find a suitable plan in its library. Another common approach is to
trigger the generation through an agent action that can be invoked intentionally
by the agent programmer as part of a plan [23]. The plans generated can then
either be used to extend the original plan library, or be executed immediately (or
both). In the first case, plans should ideally be reused in the future [24], although
this may lead to a bloated plan library and conflicts with the original plans that

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4. REASONING AND PLANNING IN LLMS

need to be handled [25].

2.4 Reasoning and Planning in LLMs
LLMs demonstrate remarkable proficiency in performing complex mathematical
and logical operations, suggesting sophisticated reasoning abilities [26]. The intro-
duction of Chain-of-Thought (CoT) prompting has further amplified these capa-
bilities by encouraging models to break down complex problems into intermediate
reasoning steps, leading to substantial improvements in performance on challenging
tasks [27, 28]. However, while LLMs exhibit impressive problem-solving behavior,
questions persist on the degree of robustness and generality of such abilities, both
for what concerns LLMs and large reasoning models (LRMs) [29, 30, 31].

Recent work by Shojaee et al. [32] highlights a critical limitation of LLM rea-
soning by systematically analyzing performance under controlled complexity in
symbolic problem domains such as Tower of Hanoi and Blocks World [33]. They
identify a three-phase behavior in LRMs: dominance over non-thinking models
on moderately complex tasks, regression on simpler tasks due to “overthinking”,
and total failure as problem complexity escalates. Despite models having compu-
tational budget, they reduce reasoning effort under higher complexity, revealing a
scalability ceiling in inference-time reasoning.

Complementing these findings, Kambhampati et al. argue that LLMs funda-
mentally lack planning and self-verification capacities due to their architectural
limitations and reliance on “approximate retrieval” of similar reasoning patterns
in their training data [34, 35]. Through empirical evidence from PlanBench and
planning domain benchmarks, they show that even the most advanced models fail
to generate executable plans or reliably critique their outputs. In experiments
with the Blocks World domain, LLMs were tasked with generating valid action
sequences to reach specific goal configurations. Despite using various prompting
techniques (zero-shot, one-shot, Chain-of-Thought), success rates remained mod-
est; for instance, GPT-4 achieved only 34.3% correctness in one-shot mode. The
performance degraded significantly when the task was presented in a more syntac-
tically obfuscated variant called Mystery Blocks World, where action and object
names were replaced with arbitrary tokens. In this case, even top-performing

CHAPTER 2. BACKGROUND AND RELATED WORK 11

2.5. GENAI AGENTS

models dropped to near-zero accuracy (e.g. GPT-4 scored 4.3% in one-shot and
0.16% in zero-shot). These results support the hypothesis that LLMs often rely on
surface-level pattern matching and approximate retrieval rather than performing
true reasoning or plan synthesis. The drastic performance collapse in the obfus-
cated version indicates a brittle dependence on lexical familiarity and highlights
the lack of robust abstraction capabilities essential for planning. As an alternative
approach, they propose the LLM-Modulo framework, which treats LLMs as approx-
imate knowledge sources embedded in a generate-test-critique loop with external
verifiers. This hybrid neuro-symbolic approach allows LLMs to play constructive
roles in reasoning pipelines.

These works suggest that while LLMs can mimic certain aspects of reasoning
behavior—particularly when supported by carefully designed prompts—they do
not possess robust, generalizable reasoning or planning abilities. Their effective-
ness appears to depend significantly on context, complexity, and integration with
structured external systems capable of ensuring correctness and coherence.

Given the ongoing debate surrounding the nature and reliability of LLM rea-
soning and planning capabilities, this thesis adopts a pragmatic stance: it builds
on established best practices in prompt engineering and assumes that the current
planning and reasoning capabilities of LLMs are adequate for generating plans
within the context of BDI agent architectures. Nonetheless, chapter 6 outlines po-
tential avenues for extending this framework in future work, particularly through
the introduction of feedback loops—drawing inspiration from the LLM-Modulo
paradigm—to enhance the robustness and reliability of plan generation.

2.5 GenAI Agents
Recent advances in GenAI have sparked significant interest in developing agents
that incorporate LLMs. These systems leverage LLMs as cognitive engines, uti-
lizing their natural language processing, reasoning, planning, and knowledge re-
call abilities to create agents capable of complex, autonomous behavior [36, 37,
38]. The remarkable ability of LLMs to perform effectively across diverse do-
mains without task-specific training has made them ideal foundations for gener-
ative agents and autonomous systems [39]. In these agentic architectures, LLMs

12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.5. GENAI AGENTS

serve as the central “brain” that processes information, formulates plans, and coor-
dinates actions. This integration enables the emergence of sophisticated behaviors
that extend far beyond simple text generation, encompassing goal-directed plan-
ning, multistep reasoning, and adaptive problem-solving. The field has witnessed
the development of various paradigms, including generative agents, agentic AI,
and autonomous agents, that explore how LLMs reasoning can be harnessed for
intelligent behavior [40]. Several approaches have emerged within this broad cat-
egory.

One common approach focuses on creating “general-purpose agents” [40] ca-
pable of executing actions, managing a memory, and using software tools with
minimal human intervention. Works following this approach, e.g. Auto-GPT [41],
demonstrate that LLMs can autonomously decompose goals into actionable steps.

Another approach aims to situate LLMs in physical environments. For in-
stance, Voyager [42] represents a significant step towards lifelong learning agents
by autonomously exploring the complex environment of Minecraft, acquiring new
skills through interaction and feedback, and storing them in a skill library for fu-
ture use. Similarly, SayCan [43] and PaLM-E [44] integrate LLMs with robotic
control, using them to interpret high-level natural language instructions and gen-
erate action plans for execution.

Rather than proposing entirely new agent architectures, some works focus on
enhancing the reasoning capabilities of existing ones. The Reasoning and Act-
ing (ReAct) framework [45] proposes a method for LLMs to synergize reasoning
(generating thought traces) and acting (performing actions, e.g. tool use) in an in-
terleaved manner, enabling agents to dynamically plan, execute, and adjust based
on observations. Similarly, Reflexion [46] introduces agents that can reflect on
past failures, maintain dynamic memory, and use self-reflection to improve their
decision-making capabilities over time. While these approaches focus primarily
on enhancing reasoning capabilities, the generative agent architecture underlying
“Generative Agents” [36] provides a blueprint for single agents exhibiting believ-
able, human-like, means-end reasoning capabilities. These agents leverage memory
structures (capturing past observations and deliberations) and LLMs-driven plan-
ning to simulate daily routines, form relationships, and generate emergent social
dynamics based on their individual experiences and environment.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

2.6. INTEGRATION OF BDI AGENTS WITH LLMS

2.6 Integration of BDI agents with LLMs
Several approaches explore combining BDI principles with LLMs. The work by [47]
proposes NatBDI, a BDI agent architecture designed for natural language envi-
ronments. It leverages LLMs, specifically for natural language inference (NLI),
within the BDI reasoning cycle to determine the applicability of plans based on
natural language beliefs and context descriptions, rather than generating the plans
themselves. Another direction, presented by [48], uses the BDI structure itself to
create structured prompts (“BDIPrompting”) for LLMs. This guides the LLM to
generate more proactive and explainable task plans by framing the planning prob-
lem in terms of beliefs, desires, and intentions directly within the prompt given to
the LLM.

The approach presented in this thesis diverges by focusing on integrating gener-
ative plan generation into the well-established AgentSpeak(L)-based architecture.
While much contemporary research prioritizes creating cognitive agents that di-
rectly leverage GenAI—where agents are generative systems—this work adopts a
complementary perspective: strategically embedding generative capabilities within
the BDI framework rather than replacing it. This design preserves the controllabil-
ity, predictability, and explainability of agent behavior while leveraging generative
capabilities [49].

Recent work has proposed enabling traditional agents to interrogate LLMs
on-demand for plan adaptation in Web environments [50]. However, this thesis
focuses on generating reusable plans from existing agent knowledge rather than
relying on it to choose which actions to perform among those that are dynamically
discovered at runtime.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Design

This chapter proposes a conceptual framework that extends the BDI model to sup-
port plan generation through LLMs. It defines how the generative process works
(§3.1), along with when it should be triggered (§3.2), and how the overall AgentS-
peak(L) architecture should be adapted to accommodate generative capabilities.
Concurrency considerations are examined in section 3.3. Section 3.4 addresses
knowledge exchange between the agent and the LLM, and section 3.5 presents
guidelines for writing generative agent specifications.

3.1 The structure of a PGP

This section explores how BDI agents can leverage LLMs to dynamically synthesize
actionable plans tailored to their specific goals. This capability is enabled by
endowing each agent with a plan generation procedure (PGP), which the agent
can invoke to generate new plans and incorporate them into its plan library.

Conceptually speaking, such a PGP involves (i) encoding the agent’s current
cognitive state and operational context—specifically: available actions, existing
sub-plans, own beliefs, and the active goals the agent seeks to accomplish –into a
structured prompt comprehensible to the LLM, and (ii) parsing the LLM output
to extract the generated plans. The implementation of this PGP must ensure
that the generated plans are not only syntactically valid, but also coherent and
contextually relevant, effective and possibly efficient in achieving the goal(s) they

CHAPTER 3. DESIGN 15

3.1. THE STRUCTURE OF A PGP

have been generated for.

The PGP functionality works as follows: it accepts a goal G as input (be it
an achievement !g or a test ?G goal), and it returns a non-empty set of plans P ,
≡ p1, . . . , pm, such that at least one plan p ∈ P handles the event +G. The plans in
P are subject to the following constraints: (C1) each generated plan p ∈ P must
handle different contexts (i.e., there should never be two plans p, p′ ∈ P such that
p ̸= p′ yet both have the triggering event E and context C); (C2) the generated
plans’ contexts and bodies should refer1 to other goals or beliefs that are already
known to the agent, if these help pursuing the goal G; (C3) yet they may also
reference novel, unknown goals or beliefs; (C4) the generated plans’ bodies must
not refer to actions2 which are unknown to the agent.

The rationale behind these constraints is straightforward: the PGP should han-
dle the goal it was triggered for, and it should reuse existing knowledge whenever
possible. In particular, if the generated plans need to affect the environment, they
should do so by leveraging the actions the agent is already aware of—which were
supposedly provided by the agent programmer(s) in advance. This implies that the
PGP should keep into account which and how much information is available to the
agent, and use it in the generation process. Yet, the PGP should also be open to
the generation of new knowledge in the form of beliefs, and goals. This may open
up to the possibility, for the agent, to reuse the PGP multiple times,recursively
generating hierarchies of interrelated plans.

1In the context of AgentSpeak(L), plan contexts may refer to beliefs, for instance to check
whether a certain condition holds. Similarly, plan bodies may refer to (sub-)goals, for instance,
because the achievement of the (sub-)goal is a precondition for the accomplishment of the plan.
In this work a belief is considered as already known to the agent, if it is present in the agent’s
belief base at run time. Analogously, a goal is considered as already known to the agent, if the
agent’s plan library has a plan that handles the goal.

2Plans bodies may also refer to actions. Similarly to subgoals, these are activities to be
performed by the agent to accomplish the plan. Yet, differently than subgoals, actions are
“executed” and when that happens, they affect the environment via actuators. It is assumed
that a low-level implementation is available to the agent, which directs the actuators.

16 CHAPTER 3. DESIGN

3.2. TRIGGERING THE GENERATIVE PROCESS

3.2 Triggering the generative process

Taking inspiration from prior literature on plan generation in BDI agents, three
main approaches can be identified to trigger a PGP, namely: the on demand,
reactive and proactive ones. Each approach comes with different assumptions
and implications, concerning the role of the agents’ programmer, the shape of the
generated plans, and the autonomy of the agent.

3.2.1 On-demand PGP

The on-demand PGP is modelled as an action that the agent can invoke when-
ever it needs to generate a plan. Technically speaking, the agent is assumed to
have a built-in action generate_plan(E) in its plan library, which it can invoke
whenever it needs to generate a plan for event E. As an ordinary AgentSpeak(L)
action, generate_plan may appear in the body of any plan, and be exploited by
programmers to build smarter agents. The action would just require the agent to
provide some actual event E as input, and its effect would be the production of
a plan of the form E ← C : …, where C is the context of the plan, to be added
to the invoking agent’s plan library. Any failure in the PGP execution would be
reported as a failure of the action, to be handled by the agent as it would do for
any other action. The underlying assumption here is that the agent’s program-
mer is in charge of deciding when then agent should trigger the PGP. In fact,
by writing ordinary AgentSpeak(L) plans, programmers may decide to employ the
generate_plan action to govern what exact plan should be generated, and under
which conditions. Another consequence of this approach is that, by looking at
an agent’s plan library, one may easily identify which and how many goals are
going to require plan generation. This may be useful for debugging purposes, or
to understand the agent’s behavior in advance.

It is worth noticing that, as a consequence of constraint (C2), the PGP may
generate plans that use the generate_plan action in their body. So, generated
plans may themselves trigger the PGP to generate new plans, when executed.
This powerful feature allows the agent to hierarchically generate plans, possibly
decomposing complex plans into simpler ones, and so on recursively—provided that

CHAPTER 3. DESIGN 17

3.2. TRIGGERING THE GENERATIVE PROCESS

the underlying LLM is smart enough to understand when it is wise to postpone
the generation of a (sub-)plan, and when it is better to generate it immediately.

3.2.2 Reactive PGP

The reactive PGP is implicitly triggered by the agent’s control loop whenever an
event E occurs and the agent has no relevant plan for it. So, an unknown event
would trigger the PGP instead of making the current intention fail. If the PGP
fails, the current intention fails—in the same way as when the agent has no plan
available; if the PGP succeeds, the agent would keep on executing its intention as
if the plan was already available from start.

Provided that agents are equipped with the aforementioned generate_plan
action, one may consider implementing the reactive approach as shown in list-
ing 3.1:� �

1 pgenex ≡ -G : missing_plan_for(G) <- generate(G); G.� �
Listing 3.1: One possible implementation of a reactive PGP

This approach borrows Jason’s extended AgentSpeak(L) syntax [11] for failure
handling plans to express a plan (namely, pgenex) reacting to the failure event
provoked by the absence of a plan for goal G, to which the agent should react by
generating a plan for it, and finally pursue goal G one more time. The underlying
assumption here is that agents are equipped with the plan pgenex, as well as with
the special belief missing_plan_for(G), whether plans are missing in the agent’s
plan library for goal G.

The reactive approach improves the on-demand approach by making the gener-
ation procedure automatic, and therefore implicit. Neither the agent’s programmer
nor the LLM writing the plans have to worry about explicitly triggering the PGP:
they just have to mention goals to pursue the plans, and the agent will take care
of triggering the PGP whenever needed. In fact, another benefit here is the min-
imality of PGP executions: aside from explicit invocations, the PGP is triggered
only when strictly necessary.

Finally, the reactive approach as well supports the generation of hierarchies
of plans. In fact, as prescribed by constraint (C3), the PGP may generate plans

18 CHAPTER 3. DESIGN

3.2. TRIGGERING THE GENERATIVE PROCESS

that refer to novel, unknown goals. When met at run-time, the agent will trigger
the PGP again to generate a plan for the new goal, and so on recursively. The
main difference here is that the LLM is not required to be aware of the recursive
nature of the planning activity it is involved into. So, it can focus on the problem
suggesting the best subgoals and actions to be performed to pursue a given goal.

3.2.3 Proactive PGP

In the proactive approach, the PGP is triggered by an ad-hoc, background in-
tention, which is assumed to be built-in in each agent. The intention would be
responsible for continuously monitoring the agent’s internal state, looking for goals
or events for which the agent has no plan, and triggering the PGP for each of them.
In case that no plans are missing, the intention would simply suspend itself or do
nothing, waiting for further plans or goals being added to the agent—as these may
contain new goals or events which require plan generation.

Conceptually speaking, such an intention is never meant to terminate. Rather,
it should carry on the following operations in a loop: (i) select one event E for which
no plan is available in the agent’s plan library; (ii) trigger the PGP to generate a
plan for E on a new intention —so to allow multiple, concurrent PGPs for different
events— (iii) wait for the addition of plans or goals in the agent’s internal state;
(iv) repeat. Borrowing again from Jason syntax, the proactive approach can be
expressed as follows:� �

1 ginit ≡ !generate_plans.
2

3 pscan ≡ !generate_plans <-
4 for (event(E) & missing_plan_for(E)) {
5 !!pgp(E)
6 }; !generate_plans.
7

8 pgen ≡ !pgp(E) <- generate_plan(E).� �
There, goal ginit is one built-in initial goal of the agent, whose only purpose is
to start the generation intention along with the agent. Plan pscan is a scanning
plan: it selects known events from the agent’s internal state—via the special belief
event(E), plus the aforementioned missing_plan_for one—and triggers plan pgen

CHAPTER 3. DESIGN 19

3.3. CONCURRENCY AND PGP

on a new intention for each of them. Plan pgen , in turn, triggers the PGP to
generate a plan for the event E, without executing it thereafter. Any failure in
plan pgen would not interrupt plan pscan , as it is running on a different intention.

Similarly to the reactive approach, the proactive one allows for the generation
of hierarchical plans, without requiring any explicit action by either the agent’s
programmer or the LLM. Yet, by anticipating the PGP execution, it may also
mitigate the risk of the agent being stuck waiting for the PGP to terminate, while
also being in urgent need of a plan to know how to act. The drawback however is
that race conditions may occur, for instance between an intention needing some
missing plan, and the intention in charge of generating it. So, it may happen
that one intention fails out of a missing plan, because the intention in charge of
generating it has not been executed yet. This is a problem that may be solved by
the agent’s programmer, at the expense of additional coding efforts.

3.3 Concurrency and PGP

Regardless of how/when the PGP is triggered, any implementation approach
should take into account that the PGP is inherently blocking for the agent. In
fact, at the current state of technology, LLM are commonly queried via Web ser-
vices and they may take up to many seconds to complete their response or even
fail to respond at all, e.g. due to network issues. Even by assuming that the BDI
agent and the LLM are running on the same machine, the LLM may require entire
seconds to generate a plan. Such large time scales may be unacceptable for BDI
agents, especially if waiting for the PGP to terminate implies blocking the agent’s
control loop. This would hinder the agents’ ability to react to events in a timely
manner, and therefore its autonomy.

To mitigate this problem, implementers should consider suspending only the
intention that triggered the PGP, rather than the whole control loop of the agent.
As multiple intentions may be concurrently carried on by an AgentSpeak(L) agent,
this would allow it to “keep thinking about how to react to event E, while doing
something else”.

20 CHAPTER 3. DESIGN

3.4. BRIDGING BDI AGENTS AND LLM KNOWLEDGE

3.4 Bridging BDI Agents and LLM Knowledge

This section explores how to effectively engineer the prompts for LLM to let it
generate plans, and how to write agent specifications in AgentSpeak(L), to enrich
them with additional knowledge that can be exploited by the generative process.

3.4.1 From BDI Agents to LLM and Back

When triggered for a goal G, the PGP should: (i) convert the agent’s internal
state, as well as G, into a textual prompt, which is then used to query some LLM
of choice, then (ii) parse the LLM response to extract the generated plans. The
specific LLM chosen does not impact the design of the PGP itself, yet it may affect
the quality of the generated plans. This is further discussed in chapter 5.

So, prompt generation (structured information into free text) and parsing (free
text back into structured information) are the two main non-trivial, complementary
activities of PGP. They may be implemented in several ways, mostly differing in
terms of what to encode, and how to encode it, in the LLM prompt and in the
response.

3.4.2 What to Encode

This section describes the PGP backwards, from its end back to its start, to better
understand the rationale behind the proposed encoding.

The Response

The PGP should produce a set of BDI plans by querying a LLM, which in turn
would produce a textual response. The response should therefore represent a (pos-
sibly empty) collection of plans, where each plan should involve: (i) a triggering
event, (ii) a context—i.e. a (possibly empty) collection of conditions to test –, and
(iii) a body—i.e. a (possibly empty) collection of subgoals and actions.

CHAPTER 3. DESIGN 21

3.4. BRIDGING BDI AGENTS AND LLM KNOWLEDGE

The Prompt

To support the generation of the aforementioned plans, the PGP should provide
all—and possibly only—relevant information to the LLM via some automatically-
generated prompt, following a typical zero-shot prompting approach [51], therefore
encoding some instruction and information about the current agent’s state in nat-
ural language and in structural form. This directly addresses item (RQ1) (what
information LLMs require).

The minimal set of relevant information might consist of: (I1) the intended
meaning of the goal G for which the plans are needed along with the explicit
request to generate plans for it, (I2) the goals, actions, and beliefs which are
already known to the agent, (I3) the current plans, goals, and beliefs of the
agent; as well as instructions on (I4) what is the intended outcome of the plan
generation process, (I5) the AgentSpeak(L) syntax and its intended meaning,
(I6) how to impersonate a BDI agent willing to generate a plan (i.e., role-playing
prompting [52]), (I7) what a BDI agent is in the first place, by providing the
general notions of beliefs, desires, and intentions, and (I8) the syntax the LLM
should use to encode its responses.

Whereas the LLM needs item (I1) to know what goal the agent is willing to
pursue, item (I2) is required to know which goals, actions, or beliefs (akin to tool
specifications in ReAct [45]) the LLM could use to generate the plans.

For the LLM to account for the context currently perceived by the agent when
generating the plans, item (I3) is needed. Item (I4) informs the LLM about the
purpose and the constraints of the plan generation process, as defined in section 3.1.
This is where, for instance, the possibility of formulating new goals and beliefs
should be mentioned—along with the impossibility of creating new actions.

Item (I5) lets the LLM comply with the AgentSpeak(L) syntax, when both
reading the prompt and producing its response, and makes it aware of how cogni-
tive abstractions are modelled in AgentSpeak(L). This is where, for instance, the
LLM is informed about the three parts of a plan (event, context, and body), and
the components of a plan body (subgoals and actions). Along with item (I7),
the core idea here is to provide the LLM with enough background knowledge to
operate in the BDI domain, regardless of whether BDI literature has been included

22 CHAPTER 3. DESIGN

3.4. BRIDGING BDI AGENTS AND LLM KNOWLEDGE

in the training set of the LLM or not.
Item (I6) provides the LLM with meta-level suggestions about how to devise

plans in general. There, recommendations such as “decompose the task hierarchi-
cally” or “re-use the known goals and actions whenever useful” could be included.

Finally, item (I8) defines the instructions used to nudge the LLM towards a
response that is amenable to parsing.

It is worth noticing that, while item (I1), item (I2), and item (I3) are spe-
cific to the agent’s current state, item (I4), item (I5), item (I6), item (I7),
and item (I8) are more general, and could be factorized across different runs
of the PGP.

3.4.3 How to Encode

In principle flexibility in syntax is allowed for both the prompt and the response,
provided that (i) the syntax used for the prompt is easily manipulable by the
LLM, (ii) the syntax used for the response is easily parsable by some parser not
using LLMs.

When selecting the encoding format for LLM interactions, two main dimensions
need to be taken into account. The first dimension concerns input structure com-
plexity, spanning from highly structured programming languages through markup
languages like YAML to weakly structured natural language. The second dimen-
sion addresses the strategies to obtain a structured output [53], with three pri-
mary approaches identified by [54]: (i) constrained generation using context-free
grammars (e.g., JSON mode) or regular expressions [55], (ii) format-restricting
instructions that guide LLMs toward standardized schemas like JSON, XML, or
YAML, and (iii) natural language-to-format conversion, where models first gener-
ate natural language responses before transforming them into target formats.

These choices involve several trade-offs that impact the PGP performance. The
first one is between output structure compliance and generation performance [54]:
while highly structured formats ensure consistent parsing, they may constrain the
model’s capacity to express itself. Another is the complexity versus accessibility
trade-off: sophisticated encoding schemes can capture rich semantics but often re-
quire specialized knowledge, whereas simpler formats are more broadly usable but

CHAPTER 3. DESIGN 23

3.4. BRIDGING BDI AGENTS AND LLM KNOWLEDGE

may lack expressive power. Format familiarity also plays a significant role. Widely
used schemas such as JSON and YAML, which frequently appear in training cor-
pora, tend to yield more reliable outputs than niche formats like AgentSpeak(L),
which have limited representation in LLM training data [56, 57]. Finally, there’s
a latency versus accuracy trade-off, especially in multistep approaches like natural
language-to-format conversion, which can enhance output quality at the expense
of increased processing time and computational overhead.

This work aims at maximizing the exploitation of natural language, as done in
related works that employ LLM as a planner [40], to achieve (i), by enriching the
AgentSpeak(L) syntax with natural language descriptions. For requirement (ii),
format restricting instructions are employed to nudge the LLM towards structured
output by providing a detailed description of the expected response format as part
of the prompt. Listing 3.2 shows an example of this approach, used in the PGP
prototype, to instruct the LLM to format its responses with a hybrid YAML and
Prolog syntax.

� �
1 ## Operation Types
2 Operations must be prefixed with keywords:
3 - `execute`: primitive actions that directly interact with environment (e.g., `execute

move(north)`)
4 - `achieve`: set new subgoal that triggers another plan (e.g., `achieve reach(rock)`)
5 - `add`: add new belief to belief base (e.g., `add visited(current_location)`)
6 - `remove`: remove existing belief (e.g., `remove obstacle(north)`)
7 - `update`: modify existing belief (e.g., `update position(X, Y)`)
8
9 Always format plans as:

10 ```yaml
11 EVENT: achieve event to be pursued
12 CONDITIONS:
13 - condition to be satisfied
14 - other conditions to be satisfied
15 OPERATIONS:
16 - [execute|achieve|add|remove|update] operation to be performed
17 - [execute|achieve|add|remove|update] other operations to be performed
18 ```
19
20 Separate multiple plans with `---`. Use `<none>` for empty conditions or operations.� �

Listing 3.2: Fragment of the format restricting instructions that define the hybrid
YAML and Prolog syntax that the LLM is expected to use to format its responses
in the implemented PGP prototype.

24 CHAPTER 3. DESIGN

3.5. WRITING GENERATIVE AGENT SPECIFICATIONS

3.5 Writing Generative Agent Specifications

When BDI agents are generative and can generate their own plans, the role of the
programmer necessarily evolves to accommodate these new capabilities. Given the
current state of technology, programmers remain essential for writing the initial
plans of the agent and for providing hints about the intended semantics of the
goals, beliefs, and actions they define. Writing semantic hints as part of transfer-
ring knowledge to the LLM for improved plan generation represents the primary
focus of this section. The aim is to show how developers can provide additional
domain knowledge to the LLM in an easily maintainable way, alongside the agent’s
specification, addressing item (RQ3).

In the general case, it is not guaranteed that LLMs will be able to understand
the intended meaning of the goals, beliefs, and actions they are asked to generate
plans for/with. This is because there is no guarantee that BDI programmers would
use intuitive and self-explanatory names for them, or, that the LLM is trained on
the BDI programming language of choice. For this reason, the encoding procedure
(§ 3.4.2) is designed to include some natural-language description of each aspect
of the agent’s internal state.

Yet, descriptions cannot be automatically generated—as any automatic proce-
dure may risk being inaccurate or incomplete w.r.t. the programmer’s intent—and
programmers would be better writing them directly. Descriptions should be writ-
ten in natural language and should explain the meaning of both the admissible
and actual goals, beliefs, and actions each agent may have.

Accordingly, a PGP-equipped BDI agent requires agent programs to be written
in a way that (i) natural-language descriptions for admissible and actual mental
abstractions are part of the agent’s code, and (ii) those descriptions are used to
generate the prompt for the PGP. To this end, the AgentSpeak(L) framework,
and consequently BDI programming languages, should be extended with ad-hoc
syntactical constructs for tagging cognitive abstractions with their intended mean-
ing. Furthermore, to minimize the programmer’s burden, these constructs should
be optional, and allow for templating and reusing descriptions. Section 4.4.4 in-
troduces an implementation of these constructs and listing 3.3 shows an example
of application to document an admissible goal, using a syntax that will be detailed

CHAPTER 3. DESIGN 25

3.5. WRITING GENERATIVE AGENT SPECIFICATIONS

in section 4.4.� �
1 goals {
2 admissible {
3 +achieve("reach"("Object")).meaning {
4 "reach a situation where ${args[0]} is in the position of the agent" +
5 " (i.e. there_is(${args[0]}, here))"
6 }
7 }
8 }� �

Listing 3.3: An example of how a description enriches an admissible goal with an
explanation of its meaning, to the benefit of both the human programmer and the
LLM-based PGP.

26 CHAPTER 3. DESIGN

Chapter 4

Implementation

Building on the conceptual framework introduced in chapter 3, this chapter presents
its concrete implementation within JaKtA. The prototype supports both on-demand
and reactive PGPs, extending the existing AgentSpeak(L)-based BDI engine and
its Kotlin-based DSL for agent programming.

The implementation consists of several components: an integration layer that
connects the generative process with the BDI engine (§4.1); a logging system de-
signed to facilitate debugging and empirical evaluation (§4.2); a modular pipeline
architecture for defining generative processes (§4.3); and a generative agent spec-
ification that enables configuration and customization of PGPs (§4.4).

4.1 Integration with the BDI Engine

This section describes how the reactive PGP has been integrated into the existing
BDI engine of JaKtA, following the structure previously outlined (§ 3.1). The in-
tegration focuses on two main aspects: first, a set of interfaces defines the contract
through which the BDI engine can invoke generation procedures and use their
results (§ 4.1.1); second, the GenerationManager acts as the main entry point,
allowing the BDI engine to interact with a PGP (§ 4.1.2).

Figure 4.1 illustrates the resulting augmented control cycle of a BDI agent.
The generative process is triggered when an agent fails to retrieve a relevant plan.
If the generation succeeds, the resulting plans are added to the plan library and

CHAPTER 4. IMPLEMENTATION 27

4.1. INTEGRATION WITH THE BDI ENGINE

Goal addition/deletion

Find applicable plans

Invoke PGP

PGP succeeded?
yes no

Add plans to Plan Library Goal Failed

no

Plan found?
yes

Push plan into intentions

Process Intentions

Plan executed?
yes no

Goal Achieved Goal Failed

Figure 4.1: Simplified BDI control cycle that uses a reactive PGP to dynamically
generate new plans at runtime.

may be pushed into the intention stack. If generation fails, the goal is marked as
failed, preserving the fallback behavior of traditional BDI agents.

4.1.1 The PGP contract

The contract is built around five fundamental interfaces.
The GenerationConfig interface encapsulates all configuration parameters

needed for plan generation, allowing different generation approaches to specify
their requirements without coupling to specific implementations.

28 CHAPTER 4. IMPLEMENTATION

4.1. INTEGRATION WITH THE BDI ENGINE

Generator LMGenerator LMPlanGenerator

GenerationStrategy LMGenerationStrategy

GenerationResult

PlanGenerationResult

GenerationFailureResult LMGenerationFailure

LMGenerationResult

GenerationConfig LMGenerationConfig

GenerationState LMGenerationState

Figure 4.2: The interfaces that define the contract for plan generation exposed by
the BDI engine and the interfaces and classes that implement this contract for a
LM-based PGP.

The GenerationResult interface standardizes how generation outcomes are
communicated back to the BDI engine, whether successful or failed.

The Generator interface defines the core generation capability, abstracting
away the specific mechanisms used to produce plans.

The GenerationState interface maintains the context throughout the genera-
tion process, tracking the plan generation goal, the associated PGP identifier, and
logging capabilities.

The GenerationStrategy interface binds together a specific generator with its
configuration. This design allows the BDI engine to work with different generation
approaches transparently, regardless of the kind of planners used and of how they
are configured.

The LM-prefixed interfaces and classes, shown in fig. 4.2, implement the lan-
guage model-based PGP.

The LMGenerationConfig extends the base configuration with LM-specific pa-
rameters including model identifiers, temperature settings, maximum token limits,
and server endpoints for API communication. In table 4.1 an outline of the con-
figuration that the user can provide is given.

The LM-based implementation provides two concrete types of generation re-

CHAPTER 4. IMPLEMENTATION 29

4.1. INTEGRATION WITH THE BDI ENGINE

Parameter Type Description
model String Specifies the language model to be

used for plan generation (e.g., GPT-4,
Claude, etc.)

temperature Double Controls the randomness of the gen-
erated output. Lower values produce
more deterministic results, higher val-
ues increase creativity

maxTokens Int Maximum number of tokens that can
be generated in the response, limiting
the length of generated plans

url String The endpoint URL for the language
model API service

token String Authentication token required to access
the language model API

requestTimeout Duration Maximum time to wait for a complete
API request-response cycle

connectTimeout Duration Maximum time to wait when establish-
ing a connection to the API service

socketTimeout Duration Maximum time to wait for data trans-
fer over an established connection

contextFilter ContextFilter Filter component that determines
which contextual information should
be included in the generation prompt

promptBuilder PromptBuilder Component responsible for construct-
ing the prompt sent to the language
model, including context formatting
and instruction generation

Table 4.1: Configurable Parameters for the PGP.

30 CHAPTER 4. IMPLEMENTATION

4.1. INTEGRATION WITH THE BDI ENGINE

GenerationManager

GoalTrackingStrategy UnavailablePlanStrategy GeneratePlanStrategy

GenerationStrategy PartialPlan GeneratePlanInvalidationStrategy

Figure 4.3: Components of the GenerationManager, which orchestrates the PGP.

sults: LMGenerationResult for successful generations and LMGenerationFailure
for error cases. The success case handles both the generated plans and the admis-
sible goals and beliefs invented by the LLM, along with natural language descrip-
tions.

The LMGenerationState extends the base state interface with chat history
management. This supports iterative refinement scenarios where the initial gener-
ation may be incomplete or require clarification.

The LMPlanGenerator implements the core generation logic through two key
components: a RequestHandler responsible for sending requests to the language
model according to the chosen provider, and a Parser that interprets the model’s
responses and extracts structured plan representations. This separation allows for
independent evolution of the communication protocol and of the parsing logic.

The LMGenerationStrategy binds together the LM-specific generator and con-
figuration.

4.1.2 The Generation Manager

The GenerationManager is the central component responsible for orchestrating
the PGP within the agent’s control cycle. Its role spans across initiating plan
generation, tracking execution outcomes, managing failures, and maintaining the
integrity of the dynamically generated plan library, delegating responsibilities to
specialized strategy implementations. Figure 4.3 provides an overview of the core
components and their interactions, which will be further discussed in the following
sections.

CHAPTER 4. IMPLEMENTATION 31

4.1. INTEGRATION WITH THE BDI ENGINE

Generation Goals

The GeneratePlan goal serves as the primary interface between the BDI control
cycle and the plan generation process. This goal encapsulates a request for plan
generation, storing both the target goal for which plans should be generated and
optional configuration parameters that control the generation process. When a
GeneratePlan goal is encountered during the execution of an intention, it is pro-
cessed by the GenerationManager. The system first checks if a generation strategy
is available—if not, it returns a failure feedback indicating that plan generation
cannot proceed without a configured strategy. This design ensures that agents can
operate with or without plan generation capabilities, providing backward compat-
ibility with traditional BDI systems.

The execution of a GeneratePlan goal involves several steps: (i) the generation
strategy is optionally updated with the provided configuration, (ii) a generation
state is initialized with the current agent context, and finally (iii) the actual plan
generation request is made to the generation strategy. This process integrates with
the existing BDI control cycle, allowing generated plans to be available in the plan
library when the generation completes.

Partial Plans

Plans generated by the PGP are stored as partial plans, which maintain references
to their generation context and can be dynamically invalidated by using a plan
invalidation mechanism. Unlike traditional plans in BDI systems, partial plans
hold information about their origin, specifically the generation goal that created
them and the configuration used during generation. When a partial plan is sched-
uled in an intention, only the goals being tracked are included if there are any,
otherwise all the goals are used to create an activation record as in standard BDI
plans. When determining if a partial plan is applicable to a given event, the system
checks the standard trigger matching and guard conditions ignoring the source of
the beliefs 1.

1Agents that employ a generation strategy currently ignore belief sources when unifying with
the belief base. This limitation exists because sources cannot be reliably added to generated
beliefs automatically, and the LLM is not prompted to annotate beliefs with sources to avoid
increasing prompt complexity.

32 CHAPTER 4. IMPLEMENTATION

4.1. INTEGRATION WITH THE BDI ENGINE

Tracking the Generated Goals

The system implements a goal tracking mechanism to monitor the execution of
goals within generated partial plans. This is achieved through the TrackGoalExecution
goal type, which wraps the actual goals that need to be executed and provides
hooks for verifying their success or failure. The tracking mechanism serves multi-
ple purposes: it enables the system to detect when generated plans fail to achieve
their intended outcomes, and it provides feedback that is used for debugging and
that can potentially be used to improve future plan generation.

The GoalTrackingStrategy manages the tracked goals, replacing them with
their actual counterparts during execution and checking their results. When a
tracked goal executes successfully, the system updates the plan library to “untrack”
the goal. When all tracking goals of a partial plan get removed, then the generated
plan can be considered as successfully executable. This of course does not mean
that the plan achieves the goal for which it was generated, since no verification
mechanism is in place, nor that it does so optimally. The tracking mechanism also
handles failure cases by triggering the invalidation strategy when tracked goals
fail. This ensures that plans that prove ineffective in practice are removed from
the plan library, preventing the agent from repeatedly attempting unsuccessful
approaches. In principle this can also be used to trigger a plan repair mechanism
since it also provides the execution feedback of the failed goal being tracked.

Handling Plan Unavailability

The PGP trigger strategy determines when plan generation should be initiated
during the control cycle. The system supports both the on demand and reac-
tive approaches described in section 3.2, where plan generation is triggered by
the generate_plan action or when the agent encounters situations for which no
applicable plans exist. The UnavailablePlanStrategy interface intercepts plan
selection failures and evaluates whether they can be resolved through dynamic plan
generation. The system distinguishes between the absence of relevant plans and the
presence of relevant but inapplicable plans. The UnavailablePlanStrategyImpl
implements this logic by first categorizing the type of unavailability and then ap-
plying appropriate resolution strategies. When no plans are found for a given

CHAPTER 4. IMPLEMENTATION 33

4.1. INTEGRATION WITH THE BDI ENGINE

event trigger, the system checks if the event represents an achievement goal. If so,
it creates a new pgenex plan (§ 3.2.2) using the GenerationPlanBuilder, adding
it to the plan library along with the missing_plan_for(G) belief and an event to
trigger the generation process. For cases where relevant plans exist, but none are
applicable due to failed preconditions, the system provides detailed feedback about
the applicability failures. This includes logging information about which guards
failed and why, enabling developers and potentially the agent itself to understand
the reasons for plan rejection.

The Plan Invalidation Mechanism

The plan invalidation mechanism has the responsibility of maintaining the integrity
of the generated plan library by removing plans that have proven ineffective. The
current InvalidationStrategy implements this mechanism by selectively remov-
ing partial plans from the plan library when they are associated with failed goal
executions. The system specifically targets partial plans for removal, preserving
manually authored plans and cleaning up dynamically generated content that has
proven problematic.

There are no mechanisms in place to prevent unchecked growth of the plan
library. To prevent this issue, an InvalidationStrategy could also include mech-
anisms to “forget” plans if they are not used over time, to rank them and period-
ically remove the least important ones, to factorize them or to offload them to an
external storage once a threshold is reached.

Plan Generation Strategy

Figure 4.4 shows an overview of the GeneratePlanStrategy interface. It handles
the initial setup and delegates the actual generation request to a chosen strategy.
It then uses the GenerationResultBuilder interface to construct
PlanGenerationResults from successful plan generations, that can be integrated
transparently into the BDI engine. Each of the three Updaters within the result
builder handles a specific aspect of integrating the generated content into the
agent’s context.

The TemplateUpdater class manages the integration of newly generated ad-

34 CHAPTER 4. IMPLEMENTATION

4.1. INTEGRATION WITH THE BDI ENGINE

GenerationStrategy

GeneratePlanStrategy

GeneratePlanStrategyImpl

GenerationResultBuilder

PlanGenerationResult

GenerationProcessRegistry

GenerationProcessUpdater

Updater

PlanLibraryUpdater TemplateUpdater

GenerationResultBuilderImpl

Figure 4.4: Components of the GeneratePlanStrategy, which invokes the gen-
eration strategy provided by the user and updates the result to the agent that
requested the generation.

missible beliefs and goals into the agent’s context. For admissible beliefs, it merges
the existing beliefs with newly generated ones, using the rule head functor as a
unique identifier to prevent duplicates. Analogously, for admissible goals, it com-
bines existing and new goals using the trigger value functor to distinguish them.

The PlanLibraryUpdater handles the integration of newly generated plans
into the agent’s plan library. It processes each generated plan by wrapping the
plan goals with a TrackGoalExecution. The updated plans are then merged with
the existing plan library. Newer plans overwrite existing ones with the same trigger
and context.

The GenerationProcessUpdater manages a registry of generation processes,
updating their state according to generation results. This underlying
GenerationProcessRegistry is implemented as a map, linking each goal genera-
tion request to its corresponding generation state. The use of a registry potentially
allows handling long-running PGPs, including those involving LLMs that may re-
quire multiple interaction turns.

CHAPTER 4. IMPLEMENTATION 35

4.2. LOGGING SYSTEM

4.2 Logging System

As part of the development of the PGP, a logging system was introduced in
JaKtA to ease debugging and to extract structured data from execution traces
as part of the experimental evaluation. The logging system is based on the in-
terfaces LogEventContext and LogEvent. The first interface acts as a wrapper
of LogEvents and provides information used to unequivocally identify each event
with the identifier of the MAS execution, the identifier of the agent and the iden-
tifier of the running PGP, if they are relevant for the event. LogEvent is the base
interface from which all other log events extend. In fig. 4.5 the base hierarchy is
shown. There are three main kinds of events:

• AgentEvent references log events generated by each agent, relative to its
internal mechanics and its data structures. For example, this includes events
related to the selection, addition or removal of intentions, plans or events.
In fig. 4.5 and fig. 4.6 all the logged events are shown.

• EnvironmentEvent references the effects that are applied to the environment
after the execution of the control cycle of an agent. This includes for example
receiving, sending or broadcasting messages. In fig. 4.7 all the log events
relative to the environment provided by the BDI engine are shown. By
extending the interface, new kind of environmental conditions can be logged
from user-provided environments.

• ExecutionFeedback references events relative to the result of the execution
of the sense-reason-act cycle. This includes whether relevant or applicable
plans are not found during the deliberation or if the execution of an action
fails in the action phase. In fig. 4.8 and fig. 4.9 all the feedback events
provided by the BDI engine are shown. By extending the interface, the user
can record new kinds of feedback as a result of the execution of custom
actions.

The JaktaLogger interface provides the starting point from which the loggers
are defined, and provides a set of functions to log strings or objects, according

36 CHAPTER 4. IMPLEMENTATION

4.2. LOGGING SYSTEM

LogEvent

EnvironmentEvent

EnvironmentChange

AgentEvent

PlanGenProcedureEvent

AgentChange

BdiEvent

IntentionEvent

GoalEvent

MessageEvent

PlanEvent

ActionEvent

Figure 4.5: LogEvent interface hierarchy.

AgentEvent

PlanGenProcedureEvent

LMMessageSent

LMMessageReceived

LMGenerationRequested

AgentChange

InternalChange

BeliefChange

IntentionChange

EventChange

PlanChange

ActivityChange

Sleep

Stop

Pause

Figure 4.6: AgentEvent interface hierarchy.

EnvironmentChange

SpawnAgent

RemoveAgent

SendMessage

BroadcastMessage

PopMessage

AddData

RemoveData

UpdateData

Figure 4.7: EnvironmentChange interface hierarchy.

CHAPTER 4. IMPLEMENTATION 37

4.2. LOGGING SYSTEM

ExecutionFeedback

NegativeFeedback

GoalFailure

InvalidActionArityError

ActionSubstituionFailure

ActionNotFound

ActionFailure

TestGoalFailureFeedback

PositiveFeedback

GoalSuccess

GoalExecutionSuccess ActionSuccess

Figure 4.8: ExecutionFeedback interface hierarchy considering only goals’ results.

ExecutionFeedback

NegativeFeedback PositiveFeedback

PGPFailure

GenerationFailure

PGPSuccess

GenerationRequested GenerationCompleted

Figure 4.9: ExecutionFeedback interface hierarchy considering only PGPs’ re-
sults.

38 CHAPTER 4. IMPLEMENTATION

4.3. GENERATIVE PROCESS PIPELINE

to the chosen log level. It is implemented by the MasLogger, AgentLogger and
PgpLogger interfaces.

When logging is enabled, a MasLogger instance is created during the initial-
ization of the MAS. Subsequently, each agent is assigned its own AgentLogger.
A PgpLogger is instantiated by the generation manager when a new generation
state is initialized, specifically during the processing of a GeneratePlan goal.

The MasLogger is responsible for logging EnvironmentEvents, which include
environmental effects and user-defined environment events. The AgentLogger logs
all AgentEvents except those of type PlanGenProcedureEvent, which are handled
exclusively by the PgpLogger.

Both MasLogger and AgentLogger are also responsible for logging events of
type ExecutionFeedback.

Logging behavior is governed by the LoggingConfig class, which stores con-
figuration flags such as whether to log to the console, to one or more files, or to a
remote server. If a MAS is created without this configuration, then the application
will not log anything.

4.3 Generative Process Pipeline
This section presents the five core components that are used to implement LLM-
based generation strategies. Context filters (§ 4.3.1) retain relevant knowledge,
formatters (§ 4.3.2) encode this knowledge into LLM prompts, and parsers (§ 4.3.3)
decode structured responses. Request handlers (§ 4.3.4) manage LLM interactions,
while plan generators (§ 4.3.5) orchestrate the overall workflow.

4.3.1 Context filters

A context filter implements the interface ContextFilter, which takes in input an
ExtendedAgentContext and returns a filtered ExtendedAgentContext. The ex-
tended agent context includes both the agent context and all the additional data
that might be used to build the prompt of a LLM, such as the external actions
provided by the environment or the initial goal provided by the user. In sec-
tion 4.4.1 an example filter definition is shown. Context filters control what infor-

CHAPTER 4. IMPLEMENTATION 39

4.3. GENERATIVE PROCESS PIPELINE

mation reaches the language model, reducing information overload and improving
response quality.

4.3.2 Formatters

A formatter implements the Formatter interface and transforms internal data
structures into human-readable string representations for LLM consumption, log-
ging and debugging. The system includes built-in formatters for encoding agent
and environment context in LLM prompts. As an example, listing 4.1 shows how
the action formatter transforms action objects into descriptive strings that include
the action signature, parameter names, and optional purpose description.� �

1 val actionsFormatter = Formatter<Action<*, *, *>> { action ->
2 buildString {
3 val signature = action.actionSignature
4 append(signature.name, "(")
5 append(
6 signature.parameterNames.takeIf { it.isNotEmpty() }
7 ?.joinToString { it.capitalize() }
8 ?: (1..signature.arity).joinToString { "Parameter$it" }
9)

10 append(")")
11 action.purpose?.let { append(": $it") }
12 }.dropWordsWithTrailingNumbers()
13 }� �

Listing 4.1: Implementation of the action formatter that converts Actions into
human-readable string representations for LLM prompts.

4.3.3 Parsers

A parser implements the Parser interface and converts the text generated by the
LLM into structured internal representations. The parser implemented for the pro-
totype extracts YAML code blocks from input text. It attempts to decode content
as either PlanData or lists of TemplateData. Its responsibilities include processing
different template types (beliefs and goals), validating the parsed structures, and
accumulating any parsing errors. Figure 4.10 shows both the type of errors that
can be accumulated by the parser and the kind of results it can return. The final
result aggregates successfully parsed plans, admissible beliefs, and admissible goals

40 CHAPTER 4. IMPLEMENTATION

4.3. GENERATIVE PROCESS PIPELINE

ParserResult

GenericParseFailure

ParserFailure

AdmissibleGoalParseFailure

AdmissibleBeliefParseFailure

PlanParseFailure

EmptyResponse

ParserSuccess

NewResult

Figure 4.10: Set of interfaces that handle the parser’s results.

in the NewResult class, along with parsing errors, if there are any, or returns an
EmptyResponse if no valid content was extracted.

4.3.4 Request Handlers

The RequestHandler interface encapsulates the configuration, communication,
and delegation needed to carry out text-based completions with LLMs, returning
structured results that the rest of the pipeline can consume.

A text generation request is built from the current generation configuration
and state. Once the request is ready, it is sent to a RequestProcessor. The
RequestProcessor handles low-level communication with the model through an
OpenAI-compliant API and passes the raw response through a Parser and trans-
lates the ParserResult into a structured RequestResult.

The RequestResult interface represents whether a request had success or not.
If the request is successful a NewRequestResult object is created, which encapsu-
lates parsed plans (NewPlan), admissible goals, beliefs, and any potential parsing
errors in the NewResult object. A NetworkRequestFailure is returned instead if
there are problems such as timeouts or invalid responses.

CHAPTER 4. IMPLEMENTATION 41

4.4. GENERATIVE AGENT SPECIFICATION

LMGenerationStrategy

LMGenerationStrategyImpl

LMPlanGenerator

RequestHandler

RequestProcessor

Parser

OpenAIApi

Figure 4.11: Set of classes that compose a LLM-based plan generation strategy.

4.3.5 Plan Generators

As it is shown in fig. 4.11 the LMGenerator interface defines the high-level abstrac-
tion that is used by the LMGenerationStrategy to handle generation requests. It
relies on the RequestHandler to issue requests and parse results, while also logging
relevant messages and updating the generation state.

4.4 Generative Agent Specification

This section describes how to declare and configure generation strategies for use
by the PGP, building upon the components introduced in the previous section.
The configuration process is structured in several areas. Prompt templates can be
defined using a Kotlin DSL (§ 4.4.2), while the scope and parameters that define
the generation strategy are selected through dedicated configuration mechanisms
(§ 4.4.3). For enhanced performance, custom filters serve to regulate information
flow to the LLM (§ 4.4.2), and natural language documentation provides helpful
operational hints (§ 4.4.4). The specification of on-demand generation goals offers
additional flexibility (§ 4.4.5), and custom log events allow to debug the generation
process and support automatic evaluation procedures (§ 4.4.6).

42 CHAPTER 4. IMPLEMENTATION

4.4. GENERATIVE AGENT SPECIFICATION

4.4.1 Implementing Custom Filters

As the size of the belief base of an agent, its set of actions and available plans grows,
it becomes impractical and performance-degrading to keep all that information in
the context. For that reason, mechanisms to filter out information are needed.
Custom filters provide a mechanism to control what information from the BDI
agent state is presented to the LLM during plan generation.

The filtering mechanism operates on an ExtendedAgentContext structure that
encapsulates the complete agent state, including the initial goal, the current con-
text with beliefs and plans, and available external actions.

Effective filtering significantly improves the performance of LLM-based BDI
agents by: (i) reducing the token count in prompts, leading to faster response
times and lower computational costs, (ii) decreasing the cognitive load on the
LLM by presenting only relevant information, and (iii) minimizing the risk of the
LLM being distracted by irrelevant or contradictory information.

When implementing custom filters, the trade-off between information com-
pleteness and performance must be carefully balanced. Overly aggressive filtering
may remove crucial information that could lead to better plans, while insufficient
filtering may degrade performance without providing meaningful benefits.

� �
1 val metaPlanFilter = ContextFilter { extendedContext ->
2 extendedContext.createNewTriggerFromGoal()?.let { trigger ->
3 val generationPlanId = GenerationPlanBuilder.getGenerationPlanID(trigger)
4 extendedContext.copyWithFilteredPlans { plan ->
5 plan.id != generationPlanId &&
6 plan.trigger !is TestGoalFailure &&
7 plan.trigger !is AchievementGoalFailure
8 }
9 } ?: extendedContext

10 }� �
Listing 4.2: Default context filter implementation that removes meta-plans and
failure-handling plans to streamline the LLM context for plan generation.

The built-in filter, shown in listing 4.2, removes the special generation plans
that are automatically created when no applicable plan exists for a goal, as de-
scribed in section 3.2.2. These meta-plans are internal mechanisms that would
confuse the LLM during plan generation and are thus omitted.

CHAPTER 4. IMPLEMENTATION 43

4.4. GENERATIVE AGENT SPECIFICATION

4.4.2 Defining Prompt Builders

The PGP requires incorporating dynamic content, structured data, and contextual
information. Traditional string concatenation approaches become unwieldy and
error-prone when dealing with prompts containing nested hierarchies and condi-
tional content. A Kotlin DSL was developed to address this challenge and enable
declarative prompt construction while maintaining type safety and readability.
In listing 4.3 an example of use of the DSL is shown.

The PromptScope class serves as the primary builder for prompt construction.
It maintains an internal list of PromptSection objects and provides methods for
adding different types of content. This design separates content from presentation,
allowing the same section to be rendered at different heading levels depending on
its position in the hierarchy.

The DSL provides several directives for adding content to user or system
prompts: (i) section: creates a titled section with nested content, (ii) fromFile:
includes content from resource files, (iii) fromFormatter: applies formatting func-
tions to data, and (iv) fromString: adds literal text content. Providing both user
and system DSLs reflects how LLMs differentiate between system instructions and
user queries and allows building better prompts. This separation of concerns im-
proves code clarity, prevents accidental misuse of the two roles, and aligns with
best practices in prompt engineering.

4.4.3 Declaring the Generation Strategy

One of the most relevant aspects of the specification involves selecting an appro-
priate generation strategy and defining its scope and configuration parameters.
The framework implements a LLM-based generation strategy which leverages the
pipeline components detailed in section 4.3. After selecting a generation strategy
and configuring its parameters, the scope where the strategy applies can be defined.
The system supports three hierarchical declaration levels, each offering different
application scopes: (i) MAS-Level: defines the default generation strategy for
the entire Multi-Agent System (listing 4.4), (ii) agent-level: specifies generation
strategies for individual agents, overriding MAS-level settings (listing 4.5), and
(iii) plan-level: sets generation strategies for specific plans, taking precedence over

44 CHAPTER 4. IMPLEMENTATION

4.4. GENERATIVE AGENT SPECIFICATION

� �
1 system("SystemPrompt") {
2 section("System Message") {
3 fromFile("system.md")
4 }
5 }
6
7 user("UserPromptWithHints") { ctx ->
8 section("User Message") {
9 fromString("Below is your internal state and the specific goal I need you to plan for.")

10 section("Agent's internal state") {
11 section("Beliefs") {
12 section("Admissible beliefs") {
13 fromFormatter(ctx.admissibleBeliefs) {
14 formatAsBulletList(it, admissibleBeliefsFormatter::format)
15 }
16 }
17 section("Actual beliefs") {
18 fromFormatter(ctx.beliefs.asIterable().toList()) {
19 formatAsBulletList(it, beliefsFormatter::format)
20 }
21 }
22 }
23 section("Goals") {
24 section("Admissible goals") {
25 fromFormatter(ctx.admissibleGoals) {
26 formatAsBulletList(it, admissibleGoalsFormatter::format)
27 }
28 }
29 section("Actual goals") {
30 fromFormatter(ctx.goals) { plans ->
31 val triggers = plans.map { it.trigger }
32 formatAsBulletList(triggers, triggerFormatter::format)
33 }
34 }
35 }
36 section("Admissible actions") {
37 fromFormatter(ctx.internalActions + ctx.externalActions) {
38 formatAsBulletList(it, actionsFormatter::format)
39 }
40 }
41 }
42 section("Expected outcome") {
43 val formattedGoal = goalFormatter.format(ctx.initialGoal.goal)
44 fromString("Create plans to pursue the goal: $formattedGoal.")
45 fromString(
46 """
47 Output only the final set of plans with no alternatives or intermediate attempts.
48 End with an additional YAML block that contains a list of any new admissible goals

and beliefs you invented, including their natural language interpretation.
49 """.trimIndent(),
50)
51 }
52 }
53 }� �

Listing 4.3: Example of a user prompt template, which is populated at runtime
according to the state of the agent and the content of static files.

CHAPTER 4. IMPLEMENTATION 45

4.4. GENERATIVE AGENT SPECIFICATION

both agent and MAS-level configurations (listing 4.6). This hierarchical struc-
ture operates on a specificity-based override system. The precedence flows from
plan-level (the highest priority) to agent-level (medium priority) to MAS-level (the
lowest priority), to make sure that the most specific configuration always governs
the behavior. When conflicts arise between different declaration levels, the system
employs a granular resolution mechanism. Rather than replacing entire configu-
ration blocks, individual parameters are overwritten based on the hierarchy. This
allows for fine-grained control where, for example, an agent might inherit most
parameters from the MAS level while only modifying specific settings such as tem-
perature or max tokens.� �

1 mas {
2 lmGeneration {
3 connectTimeout = 2.seconds
4 }
5 agent("Printer") { ... }
6 }� �

Listing 4.4: Example of a generation strategy declared at the MAS level.

� �
1 mas {
2 agent("Printer") {
3 lmGeneration {
4 connectTimeout = 2.seconds
5 }
6 goals { ... }
7 plans { ... }
8 }
9 }� �

Listing 4.5: Example of a generation strategy declared at the agent level.

4.4.4 Writing the Documentation

The DSL provided by JaKtA has been extended with additional syntactical con-
structs, in order to allow programmers to provide hints, as explained in section 3.5.
The new entries of the DSL are: (i) the .meaning{…} blocks, which can be used
to tag actual goals, beliefs, or actions with their intended meaning, via a postfix
syntax; and (ii) the admissible{…} blocks, which can be used to tag admissible

46 CHAPTER 4. IMPLEMENTATION

4.4. GENERATIVE AGENT SPECIFICATION

� �
1 mas {
2 agent("Printer") {
3 goals { ... }
4 plans {
5 +achieve("print_numbers"(X, Y)) then {
6 ...
7 } givenLMConfig {
8 connectTimeout = 2.seconds
9 }

10 }
11 }
12 }� �

Listing 4.6: Example of a generation strategy declared at the plan level.

goals or beliefs with their intended meaning, via a prefix syntax. In both cases,
the meaning is expressed as a string, attained via string interpolation, which in
turn may include the functor and the arguments. The strings are then exploited
by the PGP to generate the prompt for the LLM through formatters.

An example of use of the new constructs is shown in listing 4.7.� �
1 agent("ExplorerBot") {
2 goals { ... }
3 beliefs {
4 admissible {
5 +fact { "obstacle"("Direction") }.meaning {
6 "there is an $functor to the ${args[0]}"
7 }
8 }
9 }

10 }� �
Listing 4.7: Example of a JaKtA agent extended with natural-language
descriptions

Moreover, the remark method can be used to provide the LLM with additional
constraints or suggestions to further guide the generative process. The additional
instructions are added to the prompt in a dedicated section.

4.4.5 Specifying on-demand Generation Goals

In listing 4.8 an example of agent specification that explicitly uses the on-demand
PGP approach is shown. The agent has the goal of printing the numbers from zero
to ten, but instead of providing a pre-written plan with specific implementation

CHAPTER 4. IMPLEMENTATION 47

4.4. GENERATIVE AGENT SPECIFICATION

details, the plan body contains only a call to the generate_plan action. This
provides an example of how programmers can delegate the actual plan generation
to the underlying LLM while maintaining control over when and under what con-
ditions the generation should occur. When the agent needs to achieve the goal
print_numbers(0, 10), it will execute the corresponding plan, which triggers
the PGP to generate an appropriate implementation plan. The configured LLM
will receive the natural language description “Print the numbers from 0 to 10”
along with the specific context and generate a concrete plan that implements the
required functionality.
� �

1 mas {
2 lmGeneration {
3 model = "openai/gpt-4.1"
4 temperature = 0.5
5 maxTokens = 1024
6 }
7 agent("Printer") {
8 goals {
9 +achieve("print"(0, 10))

10 admissible {
11 +achieve("print_numbers"("start", "end")).meaning {
12 "Print the numbers from ${args[0]} to ${args[1]}"
13 }
14 }
15 }
16 plans {
17 +achieve("print"(X, Y)) then {
18 generatePlan("print_numbers"(X, Y))
19 }
20 }
21 }
22 }� �

Listing 4.8: Example of a JaKtA agent that will try to generate a plan to print
the numbers from zero to ten using the provided generation strategy.

4.4.6 Defining Custom Log Events

While the logging system described in section 4.2 covers the standard BDI engine
operations, applications might require domain-specific logging capabilities that
capture the unique characteristics of their problem domain. Custom environments
that extend the Environment interface can benefit from implementing and logging
domain-specific events that capture when the system reaches particular states of

48 CHAPTER 4. IMPLEMENTATION

4.4. GENERATIVE AGENT SPECIFICATION

interest. These specialized events provide more granular insight into the environ-
ment’s behavior than generic state transitions. Analogously, when creating custom
actions, the addFeedback method from the Action interface enables the provision
of detailed, domain-specific ExecutionFeedback log events that can provide richer
diagnostic information of action outcomes beyond simple binary success or failure
indicators.� �

1 externalAction("move", "direction") {
2 val env = environment as? GridWorldEnvironment
3 if (env != null) {
4 val updatedEnvState = env.parseAction(actionName)
5 val oldPosition = env.data.state()?.agentPosition
6 if (updatedEnvState != null && oldPosition != null) {
7 updateData("state" to updatedEnvState)
8 val newPosition = updatedEnvState.agentPosition
9 val feedback = updatedEnvState.objectsPosition.entries

10 .find { it.value == newPosition }
11 ?.let { ObjectReachedEvent(it.key, arguments) }
12 ?: MoveActionSuccess(oldPosition, newPosition, arguments)
13 addFeedback(feedback)
14 }
15 }
16 }� �

Listing 4.9: Implementation of the move action, which provides a more specific
feedback than the default GenericActionSuccess when the action completes
successfully.

These user-provided log events serve multiple purposes: they streamline ex-
perimentation workflows, support monitoring and debugging capabilities, and can
provide structured input to aid LLMs in plan repair and refinement. As an example
the move action, which is shown in listing 4.9, provides specific feedback based on
movement outcomes, rather than returning generic success messages. When the
action executes successfully, it returns a MoveActionSuccess object containing
movement details. When an agent reaches its home location, the system generates
an ObjectReachedEvent providing feedback about this outcome. The feedback of
the action is used during the evaluation of the explorer bot example in chapter 5 to
assess whether a PGP completes the requested goal, by examining the execution
trace for the presence or absence of the ObjectReachedEvent.

CHAPTER 4. IMPLEMENTATION 49

4.4. GENERATIVE AGENT SPECIFICATION

50 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

This chapter evaluates the reactive PGP implementation within the “Explorer
Robot” domain, defined in section 5.1. The agent-based application used for the
evaluation features specifications enhanced by natural language descriptions, first
conceptualized in section 3.5 and then implemented in section 4.4. The experimen-
tal methodology employed to assess the agent’s behavior is presented in section 5.2
and the resulting outcomes are discussed in section 5.3.

5.1 The explorer robot application

In the explorer robot domain, an agent acts as an explorer (§ 5.1.1) and has
the objective of reaching home within a bidimensional grid world environment
(§ 5.1.2), where it can perceive obstacles in its immediate surroundings and move
in the eight cardinal directions. Figure 5.1 shows the environment model.

5.1.1 Agent

The ExplorerRobot agent, whose specification is shown in listing 5.1, is designed
to achieve high-level goals such as reaching a target object (e.g., “home”). It de-
clares a set of admissible goals and beliefs that are enhanced with natural language
explanations.

CHAPTER 5. EVALUATION 51

5.1. THE EXPLORER ROBOT APPLICATION

north_west north_eastnorth

west easthere

sud_west sud sud_east

(a) Nine admissible directions (b) Example of environment model

Figure 5.1: Environment modelling for the explorer robot domain. The agent is
in discrete bidimensional space, where it can move in eight admissible directions,
namely: the cardinal ones, with north pointing up. Direction here denotes the
current position of the agent.

� �
1 agent("ExplorerRobot") {
2 goals {
3 admissible {
4 +achieve("reach"("Object")).meaning {
5 "reach a situation where ${args[0]} is in the position of the agent" +
6 " (i.e. there_is(${args[0]}, here))"
7 }
8 }
9 +achieve("reach"("home"))

10 }
11 beliefs {
12 admissible {
13 +fact { "obstacle"("Direction") }.meaning {
14 "there is an $functor to the ${args[0]}"
15 }
16 +fact { "there_is"("Object", "Direction") }.meaning {
17 "there is an ${args[0]} in the given ${args[1]}"
18 }
19 +fact { "direction"("Direction") }.meaning {
20 "${args[0]} is a direction"
21 }
22 +fact { "object"("Object") }.meaning {
23 "${args[0]} is an object"
24 }
25 }
26 }
27 }� �

Listing 5.1: The ExplorerRobot agent as implemented in JaKtA.

52 CHAPTER 5. EVALUATION

5.2. EXPERIMENTAL METHODOLOGY

5.1.2 Environment

The application is based on a custom grid world environment, which is imple-
mented by extending the Environment class provided by JaKtA. This environ-
ment provides two external actions for robot navigation. The Move action enables
the robot to move in a specified direction, provided that no obstacles block the
path. When executed, this action reports either the success of the movement or
identifies any object that the robot encounters. If an obstacle prevents movement,
the action has no effect. The GetDirectionToMove action assists with navigation
by binding a provided variable to a randomly selected direction free of obstacles.
If no directions are available for movement, the action produces no result. The
environment generates percepts following the format shown in listing 5.2. The
complete environment specification is detailed in listing 5.3. These percepts pro-
vide information about the robot’s surroundings, including known directions and
objects, obstacles that include grid borders, free cells, and the presence of objects
in the eight cells that surround the agent’s current position.� �

1 direction(north)
2 object(house)
3 object(box)
4 free(north).
5 free(north_west).
6 free(north_east).
7 free(west).
8 free(east).
9 obstacle(south).

10 obstacle(south_west).
11 obstacle(south_east).
12 there_is(box, north_east).� �

Listing 5.2: The set of percepts generated by the grid world environment.

5.2 Experimental Methodology

The evaluation employs the explorer robot application (§ 5.1) to assess the PGP
capabilities with different sets of parameters. The experiment consists of a square
grid world with five cells along each axis containing three static obstacles, with
an explorer robot agent initially positioned at the center and a target home object

CHAPTER 5. EVALUATION 53

5.2. EXPERIMENTAL METHODOLOGY

� �
1 environment {
2 from(GridWorld())
3 actions {
4 action(move).meaning {
5 "move in the given ${args[0]}"
6 }
7 action(getDirectionToMove).meaning {
8 "provides a ${args[0]} free of obstacles where the agent can then move"
9 }

10 }
11 }� �

Listing 5.3: Specification of the grid world environment in JaKtA.

located at one corner of the grid. The home object is positioned beyond the agent’s
initial perception range, and obstacles are placed to prevent direct navigation
paths. The agent begins with the goal reach(home) but lacks any initial plan to
achieve this objective.

Individual experiments are launched by an evaluation script (§ 5.2.1), using
one of the selected language models (§ 5.2.2) configured with predetermined pa-
rameters (§ 5.2.3) to generate plans within a fixed timeout period. The evaluation
framework measures both plan validity—whether the PGP successfully generates
executable plans using available actions to reach the target—and plan quality,
through metrics detailed in section 5.2.4.

5.2.1 Experimental Setup

Running LLMs demands substantial computational power, that puts them beyond
the reach of typical consumer hardware. This reality has spawned the “LLM-as-a-
Service” ecosystem, where providers offer model access through web APIs rather
than local deployment. The landscape includes established players like OpenAI’s
Platform API and community-driven platforms like Hugging Face, alongside ag-
gregators such as OpenRouter that provide unified access to multiple models from
different providers. To conduct the experiments, the OpenRouter’s API is se-
lected as the primary interface since its unified endpoint structure eliminates the
complexity of managing multiple provider-specific integrations, easing systematic
comparisons across different models.

To assess the quality of generated plans, an automated evaluation procedure is

54 CHAPTER 5. EVALUATION

https://openrouter.ai/

5.2. EXPERIMENTAL METHODOLOGY

devised based on the chosen APIs and evaluation metrics. A DVC [58] pipeline and
Gradle tasks are used to automate the execution of a MAS for each experimental
configuration to be tested and to store the results to a remote server.

The G-Eval [59] algorithm is used through the DeepEval [60] framework to
evaluate a custom metric, the Plan-Reference Alignment Score (PRAS).
The metric is introduced to compare generated plans against the human baseline
across three key dimensions: quality of abstraction, generalizability, and adher-
ence to BDI principles. This evaluation approach is based on the LLM-as-Judge
methodology [61], which allows to systematically rate plan quality using criteria
that would be difficult to formalize through traditional metrics alone.

In order to have a reference ground truth for the evaluation, a human baseline
is provided that represents the optimal plans to achieve the goal of reaching home,
which are shown in listing 5.4.

� �
1 plans {
2 +achieve("reach"(Object)) onlyIf {
3 "there_is"(Object, "here").fromPercept
4 }
5 +achieve("reach"(Object)) onlyIf {
6 "there_is"(Object, Direction).fromPercept
7 } then {
8 execute("move"(Direction))
9 }

10 +achieve("reach"(Object)) onlyIf {
11 not("there_is"(Object, `_`).fromPercept)
12 } then {
13 execute("getDirectionToMove"(Direction))
14 execute("move"(Direction))
15 achieve("reach"(Object))
16 }
17 }� �

Listing 5.4: Set of baseline plans for the ExplorerRobot agent

5.2.2 Language Models

The experiments are based on these LLMs: Gpt-4.1, Gemini 2.5 Flash, Deepseek
Chat V3, and Claude Sonnet 4. They are selected based on their state-of-the-
art performance, as well as for their accessibility through public APIs with no
exhaustivity claim.

CHAPTER 5. EVALUATION 55

https://gradle.org/
https://dagshub.com/rbattistini/plan-generation-experiments

5.2. EXPERIMENTAL METHODOLOGY

5.2.3 Experiments’ Parameters

The only parameters that were explicitly set are the temperature, the max tokens
and the prompt type.

Temperature. The effect of temperature on plan generation was examined us-
ing three values: 0.1, 0.5, and 0.9. It was hypothesized that very low temperatures
(0.1) would produce overly rigid outputs lacking the flexibility needed for novel
objectives or ambiguous scenarios. Conversely, high temperatures (0.9) were an-
ticipated to risk compromising output quality through incoherent or hallucinatory
responses, as suggested by findings in [62].

Max Tokens. The maximum token limit of 2048 is chosen to ensure that the
model can generate complete and contextually rich BDI plans. Shorter limits were
avoided to risk premature truncation. Longer ones were not considered useful
given the limited complexity of the task.

Prompt Type. Three distinct prompting strategies are evaluated to assess
their impact on plan generation. The baseline approach excludes all natural lan-
guage specifications, providing minimal context. The intermediate strategy keeps
developer-provided hints and removes the remarks. The last approach preserves
both hints and remarks, delivering the richest contextual information including
environment-specific insights and action usage instructions. Hints and remarks
were considered separately to assess how much different types of contextual infor-
mation would influence the quality and effectiveness of the generated plans.

5.2.4 Evaluation Metrics

To evaluate the quality of generated plans, the metrics shown in table 5.1 are em-
ployed. Among these metrics, GC and TSR should be maximized (higher values
are better), while RR, GSA, BSA, GAT should be minimized (lower values are
better). The remaining metrics (PC, CC, PBC, NGC, and NBC) have no clear
optimization direction, yet they provide valuable comparative insights, with both
extremely low and high values potentially indicating issues. PRAS tends to one

56 CHAPTER 5. EVALUATION

5.2. EXPERIMENTAL METHODOLOGY

Code Metric Description
PC Plan Count Total number of generated plans.
CC Context Complexity Average number of beliefs per plan

context.
PBC Plan Body Complexity Average number of operations per

plan body.
GC Generalization Count Number of generated plans using vari-

ables rather than constants.
RR Redundancy Amount Number of useless plans (e.g., sub-

sumed).
NGC Novel Goal Count Number of newly-invented goals.
NBC Novel Belief Count Number of newly-invented beliefs.
GSA Goal Semantic Alignment Number of semantically-misaligned

admissible goals.
BSA Belief Semantic Alignment Number of semantically-misaligned

admissible beliefs.
TSR Task Success Rate Percentage of experiments where the

agent achieves the !reach(home)
goal.

GAT Goal Achievement Time Average steps required to reach the
goal in successful runs.

PRAS Plan-Alignment Reference Score Alignment of the generated plans
with the human reference

Table 5.1: Evaluation metrics for generated plans.

when the generated plans are similar to the reference ones, to zero when they are
completely different.� �

1 "Extract invented goals, beliefs, and plans from the 'actual output'.",
2 "Compare extracted plans against 'expected output' plans for logical equivalence and coverage.",
3 "Assess if invented goals/beliefs are necessary or add needless complexity compared to 'expected

output'.",
4 "Evaluate plan minimality; penalize unnecessary subgoals, conditions, or operations vs 'expected

output'.",
5 "Verify that operations correctly use specified prefixes (execute, achieve, add, etc.) and

admissible actions.",
6 "Check if conditions logically correspond to the intended plan activation scenario.",
7 "Score based on plan correctness, necessity of inventions, and adherence to minimality principle."� �

Listing 5.5: Prompt used for the LLM-as-judge evaluation.

CHAPTER 5. EVALUATION 57

5.3. EXPERIMENTAL RESULTS

5.3 Experimental Results

Each of the four chosen LLMs was queried ten times to account for the stochastic
nature of LLM responses, for each of the three prompting configurations and for
each of the three temperature values, yielding three hundred sixty total experi-
mental runs.

The average amount of input tokens is 995, with a min of 808 and a max
of 1196. The variability is due to presence of instances where multiple PGPs are
invoked, so the total count is not always equal to the number of tokens of the initial
input prompt, which has 1041 tokens. The average amount of output tokens is
223, with a min of 77 and a max of 553. For comparison, the human reference
is of 100 tokens. The average latency of the responses from OpenRouter is of
1471 milliseconds, with a min of 288 milliseconds and a max of 6120 milliseconds.
The cost to run the experiments was approximately of one USD, not considering
Deepseek since it was offered free of charge.

Only in eight instances more than one PGP is invoked, and it never results
in plans that reach home. In this subset of experiments the PGP is called two
times on average, with a single outlier in which the PGP is called nine times. All
subsequent tables and figures exclude instances where the PGP was invoked more
than once.

The analysis is structured as follows: section 5.3.1 shows how the LLMs were
prompted, section 5.3.2 shows some example responses and section 5.3.3 provides
a detailed breakdown of the outcomes.

5.3.1 Example PGP Prompt

The explorer robot application has been tested with a prompt that defines content
both for the system and user roles. Listing 5.6 shows the system prompt sent in
all the PGP invocations and listing 5.7 shows the user prompt with both hints and
remarks included.

58 CHAPTER 5. EVALUATION

5.3. EXPERIMENTAL RESULTS

� �
1 # System Message
2 You are a Belief-Desire-Intention (BDI) agent that devises plans to pursue goals.
3
4 ## Core Principles
5 - The more general the plan, the better
6 - Encode beliefs as first-order-logic (FOL) facts
7 - Encode goals as FOL terms
8 - Encode plans as triplets: (event, condition, operation)
9

10 ## Plan Structure
11 Plans have the format (event, condition, operation) where:
12 - **event**: the goal to be pursued
13 - **condition**: FOL formula tested against current beliefs
14 - **operation**: list of activities to perform
15
16 ## Event Types
17 Events must be prefixed with keywords:
18 - `achieve`: goals the agent should actively work towards (e.g., "achieve reach(home)")
19
20 ## Operation Types
21 Operations must be prefixed with keywords:
22 - `execute`: primitive actions that directly interact with environment (e.g., `execute

move(north)`)
23 - `achieve`: set new subgoal that triggers another plan (e.g., `achieve reach(rock)`)
24 - `add`: add new belief to belief base (e.g., `add visited(current_location)`)
25 - `remove`: remove existing belief (e.g., `remove obstacle(north)`)
26 - `update`: modify existing belief (e.g., `update position(X, Y)`)
27
28 ## Output Format
29 Always format plans as:
30 ```yaml
31 EVENT: achieve event to be pursued
32 CONDITIONS:
33 - condition to be satisfied
34 - other conditions to be satisfied
35 OPERATIONS:
36 - [execute|achieve|add|remove|update] operation to be performed
37 - [execute|achieve|add|remove|update] other operations to be performed
38 ```
39
40 Separate multiple plans with `---`. Use `<none>` for empty conditions or operations.
41
42 Always format newly invented admissible goals and beliefs as:
43 ```yaml
44 - goal: `my_goal(X)`
45 purpose: natural language interpretation of my_goal for a general X
46 - belief: `my_belief(Y)`
47 purpose: natural language interpretation of my_belief for a general Y
48 - ...
49 ```
50
51 ## Constraints
52 - Use FOL syntax with no quantifiers
53 - Be as general and minimal as possible
54 - Use variables instead of constants where appropriate
55 - Reuse patterns across plans
56 - Cannot invent new admissible actions
57 - Must use all invented admissible goals/beliefs
58 - Cannot reference existing admissible goals/beliefs when inventing new ones� �

Listing 5.6: The system prompt used by the robot explorer application.

CHAPTER 5. EVALUATION 59

5.3. EXPERIMENTAL RESULTS

� �
1 # User Message
2 Below is your internal state and the specific goal I need you to plan for.
3
4 ## Agent's internal state
5 ### Beliefs
6 #### Admissible beliefs
7 - obstacle(Direction): there is an obstacle to the `Direction`
8 - there_is(Object, Direction): there is an `Object` in the given `Direction`
9 - direction(Direction): `Direction` is a direction

10 - object(Object): `Object` is an object
11
12 #### Actual beliefs
13 - direction(north): north is a direction
14 - direction(south): south is a direction
15 - direction(east): east is a direction
16 - direction(west): west is a direction
17 - direction(north_east): north_east is a direction
18 - direction(north_west): north_west is a direction
19 - direction(south_east): south_east is a direction
20 - direction(south_west): south_west is a direction
21 - direction(here): here is a direction
22 - object(rock): rock is an object
23 - object(home): home is an object
24 - free(north): there is no obstacle to the north
25 - free(east): there is no obstacle to the east
26 - free(west): there is no obstacle to the west
27 - free(north_east): there is no obstacle to the north_east
28 - free(north_west): there is no obstacle to the north_west
29 - obstacle(south): there is an obstacle to the south
30 - obstacle(south_east): there is an obstacle to the south_east
31 - obstacle(south_west): there is an obstacle to the south_west
32
33 ### Goals
34 #### Admissible goals
35 - achieve reach(Object): reach a situation where `Object` is in the position of the agent (i.e.

there_is(`Object`, here))
36
37 #### Actual goals
38 None.
39
40 ### Admissible actions
41 - fail(): makes the agent fail its current intention
42 - stop(): stops the agent
43 - pause(): pauses the agent
44 - sleep(Time): makes the agent sleep for `Time` milliseconds
45 - move(Direction): move in the given direction: `Direction`
46 - getDirectionToMove(Direction): provides a Direction free of obstacles where the agent can then

move
47
48 ## Expected outcome
49 Create plans to pursue the goal: achieve reach(home).
50 Output only the final set of plans with no alternatives or intermediate attempts.
51 End with an additional YAML block that contains a list of any new admissible goals and beliefs

you invented, including their natural language interpretation.� �
Listing 5.7: The user prompt used by the robot explorer application.

60 CHAPTER 5. EVALUATION

5.3. EXPERIMENTAL RESULTS

5.3.2 Example PGP Responses

In listing 5.8, listing 5.9, listing 5.10 and listing 5.11 are shown example responses
for each of the tested models. The responses are obtained by extracting the raw
message content and are not preprocessed in any way.
� �

1 ```yaml
2 EVENT: achieve reach(home)
3 CONDITIONS:
4 - there_is(home, here)
5 OPERATIONS:
6 - <none>
7 ```
8
9 ---

10
11 ```yaml
12 EVENT: achieve reach(home)
13 CONDITIONS:
14 - there_is(home, Direction)
15 - direction(Direction)
16 OPERATIONS:
17 - execute getDirectionToMove(Direction)
18 - execute move(Direction)
19 ```
20
21 ---
22
23 ```yaml
24 EVENT: achieve reach(home)
25 CONDITIONS:
26 - <none>
27 OPERATIONS:
28 - execute getDirectionToMove(Direction)
29 - execute move(Direction)
30 - achieve reach(home)
31 ```
32
33 ```yaml
34 - <none>
35 ```� �

Listing 5.8: Example response given by Claude Sonnet 4 (beautiful-volhard). This
is one of the few successful PGP invocations which use a prompt with no hints or
remarks.

5.3.3 Detailed Metrics’ Analysis

This section examines the preliminary results obtained from the experimental eval-
uation, focusing on the specific metrics and their implications for PGP perfor-

CHAPTER 5. EVALUATION 61

5.3. EXPERIMENTAL RESULTS

� �
1 ```yaml
2 EVENT: achieve reach(home)
3 CONDITIONS:
4 - there_is(home, here)
5 OPERATIONS:
6 - execute stop()
7 ---
8
9 EVENT: achieve reach(home)

10 CONDITIONS:
11 - there_is(home, Direction)
12 - free(Direction)
13 OPERATIONS:
14 - execute move(Direction)
15 - achieve reach(home)
16 ---
17
18 EVENT: achieve reach(home)
19 CONDITIONS:
20 - there_is(home, Direction)
21 - obstacle(Direction)
22 OPERATIONS:
23 - execute getDirectionToMove(NewDirection)
24 - execute move(NewDirection)
25 - achieve reach(home)
26 ---
27
28 EVENT: achieve reach(home)
29 CONDITIONS:
30 - <none>
31 OPERATIONS:
32 - execute getDirectionToMove(Direction)
33 - execute move(Direction)
34 - achieve reach(home)
35 ```
36
37 ```yaml
38 - goal: `explore()`
39 purpose: explore the environment to find the home object when its location is unknown
40 - belief: `visited(Location)`
41 purpose: indicates that the agent has already visited this location
42 ```� �

Listing 5.9: Example response given by Deepseek V3 Chat (stoic-rhodes).

62 CHAPTER 5. EVALUATION

5.3. EXPERIMENTAL RESULTS

� �
1 ```yaml
2 EVENT: achieve reach(X)
3 CONDITIONS:
4 - object(X)
5 - not there_is(X, here)
6 OPERATIONS:
7 - achieve explore_for(X)
8 ---
9 EVENT: achieve explore_for(X)

10 CONDITIONS:
11 - object(X)
12 - not there_is(X, D)
13 OPERATIONS:
14 - execute getDirectionToMove(D)
15 - execute move(D)
16 - achieve explore_for(X)
17 ---
18 EVENT: achieve explore_for(X)
19 CONDITIONS:
20 - object(X)
21 - there_is(X, D)
22 OPERATIONS:
23 - achieve approach(X, D)
24 ---
25 EVENT: achieve approach(X, D)
26 CONDITIONS:
27 - object(X)
28 - direction(D)
29 - there_is(X, D)
30 - not there_is(X, here)
31 OPERATIONS:
32 - execute move(D)
33 - achieve reach(X)
34 ---
35 EVENT: achieve reach(X)
36 CONDITIONS:
37 - object(X)
38 - there_is(X, here)
39 OPERATIONS:
40 - <none>
41 ```
42 ```yaml
43 - goal: `explore_for(X)`
44 purpose: actively search for the location of object X when its location is unknown
45 - goal: `approach(X, D)`
46 purpose: move towards object X in direction D when X is adjacent but not yet reached
47 ```� �

Listing 5.10: Example response given by GPT 4.1 (stupefied-lewin).

CHAPTER 5. EVALUATION 63

5.3. EXPERIMENTAL RESULTS

� �
1 ```yaml
2 EVENT: achieve reach(Object)
3 CONDITIONS:
4 - there_is(Object, here)
5 OPERATIONS:
6 - <none>
7 ---
8 EVENT: achieve reach(Object)
9 CONDITIONS:

10 - NOT there_is(Object, here)
11 - NOT there_is(Object, Direction)
12 OPERATIONS:
13 - achieve explore()
14 - achieve reach(Object)
15 ---
16 EVENT: achieve reach(Object)
17 CONDITIONS:
18 - NOT there_is(Object, here)
19 - there_is(Object, Direction)
20 - direction(Direction)
21 OPERATIONS:
22 - achieve move_towards(Direction)
23 - achieve reach(Object)
24 ---
25 EVENT: achieve move_towards(Direction)
26 CONDITIONS:
27 - direction(Direction)
28 - free(Direction)
29 OPERATIONS:
30 - execute move(Direction)
31 ---
32 EVENT: achieve move_towards(Direction)
33 CONDITIONS:
34 - direction(Direction)
35 - obstacle(Direction)
36 OPERATIONS:
37 - execute fail()
38 ---
39 EVENT: achieve explore()
40 CONDITIONS:
41 - <none>
42 OPERATIONS:
43 - execute getDirectionToMove(Direction)
44 - achieve move_towards(Direction)
45 ```
46
47 ```yaml
48 - goal: `achieve explore()`
49 purpose: find new areas to search for objects
50 - goal: `achieve move_towards(Direction)`
51 purpose: move in a specific direction if possible
52 ```� �

Listing 5.11: Example response by Gemini 2.5 Flash (frosty-kare). This is the
response that got the highest score by the LLM judge, which coincidentally was
Gemini 2.5 Flash itself, and was one of the few answers the model provided that
were successful.

64 CHAPTER 5. EVALUATION

5.3. EXPERIMENTAL RESULTS

mance. While these findings provide valuable insights into model behavior and
structural plan characteristics, their broader applicability remains limited due to
the constrained experimental scope, the limited set of models examined and the
limited number of samples. Additional experimentation across diverse model ar-
chitectures and domains will be necessary to establish the generalizability of these
observations and to develop a more robust understanding of the factors influencing
the PGP performance.

Grouping by Prompt and Model

Table 5.2, fig. 5.3 and fig. 5.5 present an evaluation of the defined metrics for each
of the chosen models under three different prompting conditions. The performance
varies significantly according to the type of prompt employed, indicating sensitivity
to prompt engineering. In particular the best performance in terms of TSR is
achieved when LLMs are given the most rich context, while they seem to struggle
to generate a successful answer at all if no kind of documentation is given. This
suggests that, when Generative BDI agents are used, the role of the programmer
in providing a natural language interpretation of the domain concepts expressed
through beliefs, goals and actions is critical.

Grouping by Temperature and Model

Table 5.3, fig. 5.4 and fig. 5.6 show how the value of the metrics change as the
temperature varies. Each model exhibits a varying sensitivity to the temperature,
responding optimally under different configurations. Claude has a low TSR when
operating at low temperature settings (0.1). Both Claude and Gemini achieve
better results when configured with moderate temperature values (0.5), suggesting
they benefit from an approach that balances determinism with creative outputs.
Deepseek shows robust performance across both low and moderate temperature
settings, which might imply greater stability across different parameter ranges. In
contrast, GPT performs most effectively when configured with a low temperature.
These findings suggest that optimal temperature selection is model-dependent,
with some architectures requiring more randomness to achieve peak performance
while others excel under more constrained conditions.

CHAPTER 5. EVALUATION 65

5.3. EXPERIMENTAL RESULTS

Grouping by Temperature, Prompt Type and Model

Table 5.4 provides an overview of the best performing combinations of parameters
considering both the temperature and the prompt type. GPT 4.1 and Deepseek
report the highest TSR score, both achieving a perfect result with a temperature
of 0.1 and by providing both hints and remarks in the prompt. However, while
Deepseek maintains perfect performance even at temperature 0.5, GPT 4.1 shows
significant degradation at this setting, dropping to a TSR of 70. When prompts
lack remarks, both top-performing models experience notable drops of their score,
though they still maintain a relatively high TSR of around 90. This suggests that
contextual information plays a crucial role in their effectiveness.

Claude stands out as the only model capable of achieving a success when no
hints are provided, albeit with modest TSR values of around 10, which might im-
ply that is the most robust to information scarcity. It’s interesting to note that only
with higher temperature values (0,5 and 0,9) the model achieves those successes,
suggesting that when there is too little information, more “creative exploration”
helps in finding a valid solution to ambiguous or under-specified problems. This is
just a speculation since more experimental runs would be needed to assess whether
this is a random fluctuation or a pattern, given the very low TSR. Nevertheless,
this observation might inform future iterations of the PGP, where dynamic tem-
perature adjustment could emulate divergent and convergent thinking patterns.
A higher value might be used during the initial exploration or when the PGP gets
stuck, while a lower one can be used to focus efforts on refining viable solutions.

Gemini is the lowest performing model, showing instability at both temperature
extremes and achieving only occasional successes when working with the most
information-rich variant of the prompt.

Results considering only successful PGP invocations

The results in table 5.5 consider only successful PGP invocations. GPT 4.1 and
Gemini demonstrate the highest generalization count (GC scores of 4.21 and 4.67
respectively), indicating their enhanced ability to develop flexible, variable-based
plans instead of rigid, hard-coded approaches. Despite Gemini’s strong generaliza-
tion performance, it struggles to convert this advantage into reliable task comple-

66 CHAPTER 5. EVALUATION

5.3. EXPERIMENTAL RESULTS

tion (see table 5.4), unlike GPT 4.1 which maintains consistent success rates. This
pattern suggests that plan generality doesn’t necessarily guarantee execution ef-
fectiveness. The reverse relationship also appears true—execution success doesn’t
ensure plan reusability. Deepseek exemplifies this disconnect, achieving high TSR
while reporting the lowest generalization scores. This indicates that models can ex-
cel at completing specific tasks without developing transferable solution strategies.
Furthermore, both GPT and Gemini exhibit high GAT scores, whereas Deepseek
is the only model that consistently approaches human-level performance (GAT
33), with a score of 37. This observation suggests that highly generalized solutions
occasionally sacrifice efficiency compared to task-specific approaches.

For what concerns the plan complexity metrics, Claude, and in greater measure
Deepseek, exhibit a distinct pattern: they generate complex plan bodies (resp.
PBC of 1.67 and 2.22) while maintaining moderately complex plan contexts (resp.
CC of 1.41 and 1.33). This complexity likely stems from their low generalization
capability (resp. GC of 0.57 and 0.08), as avoiding variables naturally results in
more verbose and repetitive code structures where similar operations are explicitly
written out rather than abstracted into reusable components. In contrast, GPT 4.1
demonstrates the inverse pattern, producing the most complex contexts (CC 1.96)
while generating less complex bodies (PBC 1.53). These results seem to align with
its higher generalization performance (GC 4.21), since the model handles diverse
contingencies within the context and generates short bodies through the use of
variables, representing the opposite approach to the strategy of Deepseek and
Claude. Gemini showed the highest generalization capability, with a GC of 4.67.

Across all models, redundancy rates remained low, indicating that generated
plans rarely subsumed one another. This suggests that while models may vary in
their generalization and complexity strategies, they consistently produce distinct
solutions rather than generating overlapping or redundant plans.

Regarding goal and belief invention, Deepseek shows a marked tendency to
invent new beliefs, whereas GPT leans more toward inventing goals. Claude has
the lowest combined score, indicating the least amount of invention overall. That
said, the overall NGC and NBC scores are quite low, suggesting that the models
generally understood that no new goals or beliefs were necessary for the given
domain.

CHAPTER 5. EVALUATION 67

5.3. EXPERIMENTAL RESULTS

Considering the semantic alignment metrics, the BSA is relatively high, es-
pecially for Deepseek and Gemini. This is often due to the models introducing
new beliefs that are ultimately unused. In contrast, the GSA is quite low. This
suggests that when new goals were invented, especially by GPT-4.1 and Gemini,
they were effectively integrated and utilized. Overall, the models appear to have
followed the constraint of not inventing goals or beliefs that already existed in the
domain, showing good semantic alignment in relation to the human reference.

Plan-Reference Alignment Score

The data previously presented in the tables reveals substantial divergence between
the generated plans and the baseline reference. This divergence manifests both in
the structure and complexity of the generated plans: the plan counts are consis-
tently higher and both the context and body complexity are higher compared to
the baseline.

The PRAS evaluation scores in fig. 5.2 seems to reinforce this structural mis-
alignment, due to the uniformly low scores across all models. Notably, Gemini,
the model that obtained the highest PRAS score, is also the one with the lowest
TSR.

Model PT PC CC PBC GC RR NGC NBC GSA BSA TSR

Claude NH 5.17 1.88 1.52 3.86 0.00 2.21 1.21 0.41 1.76 6.90
Claude H 5.14 1.82 1.27 2.00 0.00 1.90 0.07 0.00 2.00 0.00
Claude HR 3.41 1.40 1.61 0.03 0.00 0.03 0.00 0.38 1.72 65.52
Deepseek NH 3.64 1.86 2.01 0.50 0.00 1.00 1.25 0.25 2.29 0.00
Deepseek H 3.54 1.85 1.97 0.00 0.00 0.25 1.21 0.25 3.36 50.00
Deepseek HR 3.57 1.40 2.08 0.30 0.00 0.37 1.03 0.47 3.47 80.00
GPT 4.1 NH 3.53 2.65 1.91 3.53 0.00 1.20 1.03 0.37 1.87 0.00
GPT 4.1 H 4.23 2.06 1.71 4.23 0.03 1.70 0.90 0.13 1.13 63.33
GPT 4.1 HR 4.47 2.00 1.36 4.37 0.00 1.57 0.07 0.00 0.57 80.00
Gemini NH 3.14 1.63 1.49 3.14 0.03 0.17 0.31 0.31 2.17 0.00
Gemini H 4.82 1.48 1.53 4.79 0.64 0.71 1.79 0.54 2.86 0.00
Gemini HR 4.04 1.13 1.13 3.96 0.00 0.86 0.18 0.18 1.75 10.71

Table 5.2: Results grouped by model and prompt type, with metrics averaged.
PT stands for the parameter “Prompt Type”. NH stands for “NoHints”, H for
“WithHints”, and HR for “WithHintsAndRemarks”.

68 CHAPTER 5. EVALUATION

5.3. EXPERIMENTAL RESULTS

Model T PC CC PBC GC RR NGC NBC GSA BSA TSR

Claude 0.1 4.80 1.74 1.37 2.00 0.00 1.43 0.40 0.43 1.93 16.67
Claude 0.5 4.44 1.69 1.51 2.04 0.00 1.41 0.33 0.11 1.56 29.63
Claude 0.9 4.47 1.67 1.52 1.87 0.00 1.30 0.53 0.23 1.97 26.67
Deepseek 0.1 3.52 1.60 2.15 0.14 0.00 0.34 1.14 0.10 3.48 62.07
Deepseek 0.5 3.46 1.60 2.07 0.29 0.00 0.57 1.25 0.39 3.14 46.43
Deepseek 0.9 3.76 1.89 1.86 0.38 0.00 0.69 1.10 0.48 2.52 24.14
GPT 4.1 0.1 3.77 2.25 1.70 3.77 0.00 1.50 0.50 0.20 0.93 63.33
GPT 4.1 0.5 4.17 2.15 1.61 4.13 0.00 1.53 0.50 0.13 1.10 43.33
GPT 4.1 0.9 4.30 2.32 1.66 4.23 0.03 1.43 1.00 0.17 1.53 36.67
Gemini 0.1 4.10 1.35 1.20 4.07 0.40 0.67 1.33 0.33 3.00 0.00
Gemini 0.5 4.21 1.46 1.47 4.14 0.21 0.52 0.41 0.24 1.76 10.34
Gemini 0.9 3.62 1.44 1.50 3.62 0.04 0.54 0.46 0.46 1.96 0.00

Table 5.3: Results grouped by model and temperature, with metrics averaged. T
stands for the parameter “Temperature”.

Model Prompt Type Temperature TSR

GPT 4.1 Hints and Remarks 0.1 100.00
Deepseek Hints and Remarks 0.1 100.00
Deepseek Hints and Remarks 0.5 100.00
GPT 4.1 Only Hints 0.1 90.00
Deepseek Only Hints 0.1 88.89
Claude Hints and Remarks 0.5 77.78
GPT 4.1 Hints and Remarks 0.9 70.00
GPT 4.1 Hints and Remarks 0.5 70.00
Claude Hints and Remarks 0.9 70.00
GPT 4.1 Only Hints 0.5 60.00
Claude Hints and Remarks 0.1 50.00
GPT 4.1 Only Hints 0.9 40.00
Deepseek Hints and Remarks 0.9 40.00
Gemini Hints and Remarks 0.5 33.33
Deepseek Only Hints 0.9 33.33
Deepseek Only Hints 0.5 30.00
Claude No Hints 0.5 11.11
Claude No Hints 0.9 10.00

Table 5.4: Results grouped by prompt type, temperature and model, sorted by
task success rate and with metrics averaged. Entries with a TSR of zero were
omitted.

CHAPTER 5. EVALUATION 69

5.3. EXPERIMENTAL RESULTS

Model PC CC PBC GC RR NGC NBC GSA BSA GAT

Deepseek 3.50 1.41 2.22 0.08 0.00 0.21 1.11 0.29 3.79 37.71
Claude 3.38 1.33 1.67 0.57 0.00 0.38 0.29 0.05 1.10 247.52
Gemini 5.33 1.17 1.31 4.67 0.00 1.33 0.33 0.33 2.67 506.33
GPT 4.1 4.21 1.96 1.53 4.21 0.00 1.60 0.42 0.02 0.70 1033.16

Optimal 3.00 1.00 1.30 3.00 0.00 0.00 0.00 0.00 0.00 33.00

Table 5.5: Results grouped by model and averaged across all metrics, considering
only successful PGP executions.

Gemini 2.5 Flash
GPT 4.1

Deepseek Chat V3
Claude Sonnet 4

0.0

0.1

0.2

0.3

0.4

S
co

re

Model

Figure 5.2: The average PRAS score for each model was calculated by sampling
up to five PGP results from the set of successful PGP invocations.

70 CHAPTER 5. EVALUATION

5.3. EXPERIMENTAL RESULTS

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

0

1

2

3

4

5

NoHints

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

WithHints

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

WithHintsAndRemarks

P
la

n
 C

o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

2.0

2.5

NoHints

Claude

Deepseek

GPT 4.1

Gemini

WithHints

Claude

Deepseek

GPT 4.1

Gemini

WithHintsAndRemarks

C
o
n
te

x
t

C
o
m

p
le

x
it

y

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

2.0

NoHints

Claude

Deepseek

GPT 4.1

Gemini

WithHints

Claude

Deepseek

GPT 4.1

Gemini

WithHintsAndRemarks

P
la

n
 B

o
d
y
 C

o
m

p
le

x
it

y

Model

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

0

1

2

3

4

5
NoHints

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

WithHints

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

WithHintsAndRemarks

G
e
n
e
ra

liz
a
ti

o
n
 C

o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.1

0.2

0.3

0.4

0.5

0.6

NoHints

Claude

Deepseek

GPT 4.1

Gemini

WithHints

Claude

Deepseek

GPT 4.1

Gemini

WithHintsAndRemarks

R
e
d
u
n
d
a
n
cy

 C
o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

2.0

NoHints

Claude

Deepseek

GPT 4.1

Gemini

WithHints

Claude

Deepseek

GPT 4.1

Gemini

WithHintsAndRemarks

N
o
v
e
l
G

o
a
l
C

o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

NoHints

Claude

Deepseek

GPT 4.1

Gemini

WithHints

Claude

Deepseek

GPT 4.1

Gemini

WithHintsAndRemarks

N
o
v
e
l
B

e
lie

f
C

o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.1

0.2

0.3

0.4

0.5

NoHints

Claude

Deepseek

GPT 4.1

Gemini

WithHints

Claude

Deepseek

GPT 4.1

Gemini

WithHintsAndRemarks

G
o
a
l
S
e
m

a
n
ti

c
A

lig
n
m

e
n
t

Model

Figure 5.3: Bar plots showing PC, CC, PBC, GC, RR, NGC, NBC and GSA
scores for each model, with a facet for each prompt type tested.

CHAPTER 5. EVALUATION 71

5.3. EXPERIMENTAL RESULTS

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

0

1

2

3

4

5
0.1

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

0.5

C
la

u
d
e

D
e
e
p
se

e
k

G
P
T
 4

.1

G
e
m

in
i

0.9

P
la

n
 C

o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

2.0

0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

C
o
n
te

x
t

C
o
m

p
le

x
it

y

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

2.0

0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

P
la

n
 B

o
d
y
 C

o
m

p
le

x
it

y

Model

Claude

Deepseek

GPT 4.1

Gemini
0

1

2

3

4

0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

G
e
n
e
ra

liz
a
ti

o
n
 C

o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.1

0.2

0.3

0.4

0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

R
e
d
u
n
d
a
n
cy

 C
o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

N
o
v
e
l
G

o
a
l
C

o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

N
o
v
e
l
B

e
lie

f
C

o
u
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.1

0.2

0.3

0.4

0.5
0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

G
o
a
l
S
e
m

a
n
ti

c
A

lig
n
m

e
n
t

Model

Figure 5.4: Bar plots showing PC, CC, PBC, GC, RR, NGC, NBC and GSA
scores for each model, with a facet for each value of temperature tested.

72 CHAPTER 5. EVALUATION

5.3. EXPERIMENTAL RESULTS

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

NoHints

Claude

Deepseek

GPT 4.1

Gemini

WithHints

Claude

Deepseek

GPT 4.1

Gemini

WithHintsAndRemarks

B
e
lie

f
S
e
m

a
n
ti

c
A

lig
n
m

e
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0

20

40

60

80

NoHints

Claude

Deepseek

GPT 4.1

Gemini

WithHints

Claude

Deepseek

GPT 4.1

Gemini

WithHintsAndRemarks

Ta
sk

 S
u
cc

e
ss

 R
a
te

Model

Figure 5.5: BSA and TSR scores for each model, with a facet for each prompt
type tested.

Claude

Deepseek

GPT 4.1

Gemini
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

B
e
lie

f
S
e
m

a
n
ti

c
A

lig
n
m

e
n
t

Model

Claude

Deepseek

GPT 4.1

Gemini
0

10

20

30

40

50

60

0.1

Claude

Deepseek

GPT 4.1

Gemini

0.5

Claude

Deepseek

GPT 4.1

Gemini

0.9

Ta
sk

 S
u
cc

e
ss

 R
a
te

Model

Figure 5.6: BSA and TSR scores for each model, with a facet for each value of
temperature tested.

CHAPTER 5. EVALUATION 73

5.3. EXPERIMENTAL RESULTS

74 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

This thesis focuses on the integration of GenAI into the AgentSpeak(L) agent ar-
chitecture to generate new plans at runtime, based on the agent’s current knowl-
edge. The goal is to assess if and how LLMs can generate plans for BDI agents,
potentially reducing reliance on human programmers or first-principle planners.

Unlike approaches that treat agents as generative systems themselves, this
work preserves the strengths of the BDI model—its theoretical foundation, pro-
gramming paradigms, and controllability—while enhancing it with generative and
natural language processing (NLP) capabilities for plan generation. The approach
encapsulates the LLM within a PGP functionality, responsible for generating plans
reactively or on-demand, ensuring compatibility with the BDI architecture. This
thesis defines the PGP interface, proposes implementation guidelines, and evalu-
ates a prototype implementation to validate the approach.

Addressing item (RQ1), the PGP is defined to use structured prompts detail-
ing current and generally admissible goals and beliefs, available actions and plans,
and the operational semantics of the BDI architecture.

For item (RQ2), structured prompts paired with parsable outputs ensure re-
liable integration of generated plans into the agent’s library, balancing expres-
siveness with formal rigor. As experimental results confirm, providing additional
semantics to the LLM via natural language descriptions of the agent’s goals, be-
liefs, and actions has a critical impact on the effectiveness of the LLM-based PGP,
along with the application of prompt engineering best practices and appropriate

CHAPTER 6. CONCLUSION 75

6.1. FUTURE WORK

sampling parameters.

Consequently, answering item (RQ3), automatic plan generation shifts the
agent specification from exhaustive plan encoding to providing the basic (proce-
dural) knowledge necessary for the problem domain, potentially leaving to the
LLM the task of handling corner cases and unexpected situations. The agent op-
eration stays the same of a classic BDI agent, with the possibility of the PGP to
be triggered explicitly (on-demand) or implicitly (reactively) to handle goals with
no matching plans.

For item (RQ4), the methodology outlined in this work shows promise for
the generation of reusable, general plans involving variables, despite variability in
LLM performance.

In conclusion, this thesis bridges traditional BDI architectures and emerging
GenAI technologies, laying the groundwork for more autonomous and explainable
cognitive agents and opening several promising research directions.

6.1 Future Work

Future work includes exploring runtime validation and verification mechanisms
to address hallucinations or inaccuracies in LLM-generated constructs. Several
other research directions might be explored, including plan repair and refinement
mechanisms (§ 6.1.1), experimentation with different structured output formats
(§ 6.1.2), enhanced modularization of BDI agent cycles (§ 6.1.3), integration with
Model Context Protocol (MCP) (§ 6.1.4), finetuning (§ 6.1.5) and use of artifacts
(§ 6.1.6).

Additionally, studying prompt robustness under varying conditions and devel-
oper inaccuracies could enhance the methodology’s practicality. Ablation studies
may clarify factors influencing prompt effectiveness (RQ1) and knowledge trans-
fer (RQ2). Testing scenarios with concurrent goals, dynamic environments, and
partial observability will validate scalability and generalization (RQ4).

76 CHAPTER 6. CONCLUSION

6.1. FUTURE WORK

6.1.1 Plan repair and refinement mechanisms

Mechanisms such as plan repair, failure learning, and adaptive refinement can en-
hance agent autonomy and long-term performance. One effective strategy involves
incorporating feedback from external entities. This has been successfully employed
to back-prompt LLMs for improved plan generation.

As an example Voyager uses the feedback from Minecraft to provide the LLM
with up-to-date information on how the environment changed in response to its
chosen actions and whether syntax errors led to failure in executing plans [42].
Analogously, Kambhampati et al. [35] demonstrate that within the LLM-Modulo
framework, incorporating external verifiers or critics can significantly enhance the
planning capabilities of language models. Their view is encapsulated in the asser-
tion: ”LLMs cannot plan themselves but can play a variety of constructive roles in
solving planning tasks—especially as approximate knowledge sources and candi-
date plan generators in so-called LLM-Modulo Frameworks, where they are used in
conjunction with external sound model-based verifiers“ [35]. This approach high-
lights the use of LLMs as generators of candidate solutions, with their correctness
checked through independent verification mechanisms. In this context, BDI en-
gines are particularly well-suited to serve as verifiers, offering detailed feedback on
the execution of LLM-generated plans.

6.1.2 Structured Output Formats

YAML was chosen as the structured format for plan generation due to the ease
with which it can be parsed and its readability, which is greater than the one of
XML or JSON. Additionally, the format’s prevalence in training data, for example
through configuration files, was hypothesized to result in more reliable generation
compared to specialized agent programming languages like AgentSpeak(L).

Future work with controlled natural languages [63] might be a promising direc-
tion for improving plan generation while addressing current limitations. Natural
language alternatives could potentially offer higher generation quality due to train-
ing data alignment—since the vast majority of LLM training corpora consists of
natural language text from books, articles, and web content rather than structured
formats—potentially increasing the quality of the generated plans. This alignment

CHAPTER 6. CONCLUSION 77

6.1. FUTURE WORK

also facilitates easier human review and modification, and better domain exper-
tise integration through natural descriptions, though at the cost of more complex
parsing.

Prompting with grammatical patterns could significantly improve parsing reli-
ability, for example, by using standardized phrasings like “when attempting to
achieve [goal] given [conditions], execute [actions]” that map deterministically
to BDI constructs. Template-based controlled generation represents a comple-
mentary avenue, where LLMs fill structured natural language templates that
encode BDI semantics while maintaining readability, potentially combined with
constraint-based generation that enforces grammatical rules as part of the gener-
ation process. For what concerns this work, the choice of using YAML prioritizes
the integration with the BDI interpreter over the theoretical advantages of native
agent programming language output or the contextual richness of natural language
planning descriptions.

6.1.3 Improved Software Modularity

Plan Generation. Despite all the LM-related logic being implemented in a
separate module, the PGP is still tightly coupled with the BDI engine. The sense-
reason-act cycle of a BDI agent could be further decomposed into pluggable com-
ponents to support dynamic composition and substitution of agent functionalities
through external modules. This approach would enable users to define in a declar-
ative way how an agent’s cognitive cycle is composed as part of its specification,
e.g. what component to use for plan selection or for running intentions. Such a
modular architecture would make it easier to separate all plan generation func-
tions from the BDI engine. Plan generation could be integrated by adjusting the
deliberation phase to handle cases where no plan is available and enhancing the
action phase to manage GeneratePlan and TrackGoalExecution goals.

Logging System. The current logging implementation is tightly coupled with
the BDI engine. An event-driven architecture can be implemented, by leveraging
Kotlin Flows, to define a separate logging module that registers as a listener for
events emitted by the BDI engine.

78 CHAPTER 6. CONCLUSION

6.1. FUTURE WORK

6.1.4 Model Context Protocol Integration

A promising direction for enhancing LLM-augmented BDI agent systems involves
leveraging MCP, an open standard that enables to build connections between data
sources and GenAI-powered applications. Unlike the current implementation of
the PGP, which requires custom interfaces for each external tool or data source
the BDI agent accesses—such as the logic to retrieve the agent’s context—MCP
provides a standardized, reusable mechanism to integrate diverse components.
MCP facilitates the construction of flexible, composable pipelines that orchestrate
retrieval, transformation, and reasoning components. This enables more sophis-
ticated plan-generation workflows, where the LLM can draw from heterogeneous
sources such as knowledge graphs, databases, reasoning tools, or other APIs.

A potential application of this approach is to integrate with a MCP server that
performs Retrieval-Augmented Generation (RAG). This can help reduce the size
of the LLM prompt, which in turn improves inference times and reduces token
consumption. Instead of passing the entire agent context to the LLM, the RAG
pipeline would extract only the most relevant subset, based for example on the
current goal or plan-in-progress.

Furthermore, the same MCP-based infrastructure could enable the LLM to
reason over execution traces of other agents—e.g., to detect cooperative or com-
petitive behaviors and act accordingly. Specialized MCP connectors could expose
the agent’s belief base, intention stack, and historical plans as structured knowl-
edge.

This architecture would not only improve the performance and adaptability
of LLM-enhanced BDI agents but also enable better reuse, composability, and
scalability across a range of agent configurations and environments.

6.1.5 Finetuning Small Language Models

An advantage of the proposed PGP is that it works with pretrained LLMs without
any kind of finetuning. That said, it is worth considering the opportunity of
finetuning small language models (SLMs), especially since with current state-of-
the-art models results seem promising.

Domain-specific finetuning could significantly improve plan generation quality

CHAPTER 6. CONCLUSION 79

6.1. FUTURE WORK

for specialized applications. Training on curated datasets of high-quality plans in
specific domains can enhance the model’s understanding of domain constraints,
best practices, and common failure modes.

Using SLMs instead of large-scale LLMs also offers notable advantages in terms
of efficiency and speed since SLMs are faster and less resource-intensive.

6.1.6 Artifacts as Tools

Future developments could explore the incorporation of artifacts—and more specif-
ically, cognitional artifacts—as a means to further structure the interaction be-
tween generative BDI agents and the environment.

Artifacts in the A&A [64] are computational entities designed to be used by
agents, exposing functionality through a well-defined usage interface, and option-
ally enriched with function descriptions and operating instructions. These features
make artifacts naturally compatible with LLMs, as they embody a set of properties
increasingly characteristic of LLM-native software development.

Artifacts provide introspectability by exposing their purpose and usage in a
form that can be reasoned about symbolically or through language. They offer
explainability through function and operation descriptions that can be explicitly
described in natural language, making them amenable to LLM understanding and
debugging. Additionally, artifacts provide modularity by offering encapsulated,
reusable functionality that could be invoked or composed by LLM-generated plans.

Recent trends in GenAI highlight the shift toward language-accessible software,
where components are made self-descriptive and navigable by LLMs. Cognitional
artifacts—by design—already promote this pattern, and could serve as interfaces
or tools that LLMs can select, understand, and use during plan generation.

As such, a promising future direction is the development of artifact-based in-
frastructures in which LLMs reason over available artifacts via their function de-
scriptions, generate plans informed by artifact operating instructions, and execute
them through artifact usage interfaces.

This would also support a more declarative, open-ended, and cognitively rich
model of agent behavior, aligning with the Agens Faber vision, where agent intel-
ligence includes the capacity to understand, use, and even construct new artifacts.

80 CHAPTER 6. CONCLUSION

Bibliography

[1] Anand S. Rao and Michael P. Georgeff. “BDI Agents: From Theory to Prac-
tice”. In: 1st International Conference on Multi Agent Systems (ICMAS
1995). Ed. by Victor R. Lesser and Les Gasser. San Francisco, CA, USA:
The MIT Press, Dec. 1995, pp. 312–319. isbn: 0-262-62102-9. url: https:
//www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf (cit. on pp. 3, 5,
6).

[2] Anand S. Rao. “AgentSpeak(L): BDI Agents Speak Out in a Logical Com-
putable Language”. In: Agents Breaking Away. Ed. by Walter Van de Velde
and John W. Perram. Vol. 1038. Lecture Notes in Computer Science. 7th
European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW’96). Springer, 1996, pp. 42–55. isbn: 978-3-540-60852-3.
doi: 10.1007/BFb0031845 (cit. on p. 3).

[3] Lavindra de Silva, Sebastian Sardiña, and Lin Padgham. “First principles
planning in BDI systems”. In: 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May
10-15, 2009, Volume 2. Ed. by Carles Sierra et al. IFAAMAS, 2009, pp. 1105–
1112. url: https://dl.acm.org/citation.cfm?id=1558167 (cit. on p. 3).

[4] Felipe Meneguzzi and Lavindra de Silva. “Planning in BDI agents: a survey
of the integration of planning algorithms and agent reasoning”. In: Knowl.
Eng. Rev. 30.1 (2015), pp. 1–44. doi: 10.1017/S0269888913000337. url:
https://doi.org/10.1017/S0269888913000337 (cit. on pp. 3, 10).

[5] Xu Huang et al. “Understanding the planning of LLM agents: A survey”. In:
CoRR abs/2402.02716 (2024). url: https://doi.org/10.48550/arXiv.
2402.02716 (cit. on p. 4).

BIBLIOGRAPHY 81

https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf
https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf
https://doi.org/10.1007/BFb0031845
https://dl.acm.org/citation.cfm?id=1558167
https://doi.org/10.1017/S0269888913000337
https://doi.org/10.1017/S0269888913000337
https://doi.org/10.48550/arXiv.2402.02716
https://doi.org/10.48550/arXiv.2402.02716

BIBLIOGRAPHY

[6] Giovanni Ciatto et al. “Large language models as oracles for instantiating
ontologies with domain-specific knowledge”. In: Knowledge-Based Systems
310 (15 2 2025), 112940:1–22. issn: 0950-7051. doi: 10.1016/j.knosys.
2024.112940. url: https://www.sciencedirect.com/science/article/
pii/S0950705124015740 (cit. on p. 4).

[7] Victor Aregbede et al. “Affordance-Based Goal Imagination for Embodied
AI Agents”. In: 2024 IEEE International Conference on Development and
Learning (ICDL). 2024, pp. 1–6. doi: 10.1109/ICDL61372.2024.10644764
(cit. on p. 4).

[8] Martina Baiardi et al. “Blending BDI agents with object-oriented and func-
tional programming with JaKtA”. In: Springer Nature Computer Science
(SNCS) 5.1003 (2024). doi: 10.1007/s42979-024-03244-y (cit. on pp. 4,
9).

[9] Michael Bratman et al. Intention, plans, and practical reason. Vol. 10. Cam-
bridge, MA: Harvard University Press, 1987 (cit. on p. 5).

[10] Anand S. Rao and Michael P. Georgeff. “Decision procedures for BDI log-
ics”. In: Journal of Logic and Computation 8.3 (June 1998), pp. 293–342.
issn: 0955-792X. doi: 10.1093/logcom/8.3.293. url: http://logcom.
oxfordjournals.org/cgi/content/long/8/3/293 (cit. on p. 5).

[11] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
multi-agent systems in AgentSpeak using Jason. Oxford, England: John Wi-
ley & Sons, 2007 (cit. on pp. 5, 18).

[12] Jomi Fred Hübner and Rafael H. Bordini. “Agent-Based Simulation Using
BDI Programming in Jason”. In: Multi-Agent Systems - Simulation and Ap-
plications. 2009, pp. 451–476. doi: 10.1201/9781420070248.CH15 (cit. on
p. 5).

[13] Carole Adam and Benoit Gaudou. “BDI agents in social simulations: a sur-
vey”. In: The Knowledge Engineering Review 31.3 (2016), pp. 207–238 (cit.
on p. 5).

82 BIBLIOGRAPHY

https://doi.org/10.1016/j.knosys.2024.112940
https://doi.org/10.1016/j.knosys.2024.112940
https://www.sciencedirect.com/science/article/pii/S0950705124015740
https://www.sciencedirect.com/science/article/pii/S0950705124015740
https://doi.org/10.1109/ICDL61372.2024.10644764
https://doi.org/10.1007/s42979-024-03244-y
https://doi.org/10.1093/logcom/8.3.293
http://logcom.oxfordjournals.org/cgi/content/long/8/3/293
http://logcom.oxfordjournals.org/cgi/content/long/8/3/293
https://doi.org/10.1201/9781420070248.CH15

BIBLIOGRAPHY

[14] F.F. Ingrand, M.P. Georgeff, and A.S. Rao. “An architecture for real-time
reasoning and system control”. In: IEEE Expert 7.6 (1992), pp. 34–44. doi:
10.1109/64.180407 (cit. on p. 6).

[15] Mark d’Inverno et al. “The dMARS Architecture: A Specification of the
Distributed Multi-Agent Reasoning System”. In: Auton. Agents Multi Agent
Syst. 9.1-2 (2004), pp. 5–53. doi: 10.1023/B:AGNT.0000019688.11109.19
(cit. on p. 6).

[16] Lavindra De Silva, Felipe Meneguzzi, and Brian Logan. “BDI Agent Archi-
tectures: A Survey”. In: Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence. Yokohama, Japan: International Joint
Conferences on Artificial Intelligence Organization, July 2020, pp. 4914–
4921. isbn: 978-0-9992411-6-5. doi: 10.24963/ijcai.2020/684. (Visited
on 06/10/2025) (cit. on p. 6).

[17] Michael Winikoff et al. “Declarative & Procedural Goals in Intelligent Agent
Systems”. In: Proceedings of the Eights International Conference on Prin-
ciples and Knowledge Representation and Reasoning (KR-02), Toulouse,
France, April 22-25, 2002. Ed. by Dieter Fensel et al. Morgan Kaufmann,
2002, pp. 470–481 (cit. on pp. 6, 7, 10).

[18] Jomi Fred Hübner, Rafael H. Bordini, and Michael J. Wooldridge. “Pro-
gramming Declarative Goals Using Plan Patterns”. In: Declarative Agent
Languages and Technologies IV, 4th International Workshop, DALT 2006,
Hakodate, Japan, May 8, 2006, Selected, Revised and Invited Papers. Ed. by
Matteo Baldoni and Ulle Endriss. Vol. 4327. Lecture Notes in Computer
Science. Springer, 2006, pp. 123–140. doi: 10.1007/11961536_9. url:
https://doi.org/10.1007/11961536%5C_9 (cit. on p. 7).

[19] Koen V. Hindriks et al. “Agent Programming with Declarative Goals”. In:
Intelligent Agents VII. Agent Theories Architectures and Languages, 7th
International Workshop, ATAL 2000, Boston, MA, USA, July 7-9, 2000,
Proceedings. Ed. by Cristiano Castelfranchi and Yves Lespérance. Vol. 1986.
Lecture Notes in Computer Science. Springer, 2000, pp. 228–243. doi: 10.
1007/3-540-44631-1_16. url: https://doi.org/10.1007/3-540-
44631-1%5C_16 (cit. on p. 7).

BIBLIOGRAPHY 83

https://doi.org/10.1109/64.180407
https://doi.org/10.1023/B:AGNT.0000019688.11109.19
https://doi.org/10.24963/ijcai.2020/684
https://doi.org/10.1007/11961536_9
https://doi.org/10.1007/11961536%5C_9
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/3-540-44631-1%5C_16
https://doi.org/10.1007/3-540-44631-1%5C_16

BIBLIOGRAPHY

[20] Programming Multi-Agent Systems in AgentSpeak Using Jason. 1st ed. John
Wiley & Sons, Ltd, 2007. doi: 10.1002/9780470061848. url: https://
onlinelibrary . wiley . com / doi / 10 . 1002 / 9780470061848 (visited on
07/02/2025) (cit. on p. 9).

[21] Richard Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the Ap-
plication of Theorem Proving to Problem Solving”. In: Artif. Intell. 2.3/4
(1971), pp. 189–208. doi: 10.1016/0004-3702(71)90010-5. url: https:
//doi.org/10.1016/0004-3702(71)90010-5 (cit. on p. 10).

[22] Ilche Georgievski and Marco Aiello. “HTN planning: Overview, comparison,
and beyond”. In: Artif. Intell. 222 (2015), pp. 124–156. doi: 10.1016/J.
ARTINT.2015.02.002. url: https://doi.org/10.1016/j.artint.2015.
02.002 (cit. on p. 10).

[23] Felipe Rech Meneguzzi and Michael Luck. “Leveraging New Plans in AgentS-
peak(PL)”. In: Declarative Agent Languages and Technologies VI, 6th Inter-
national Workshop, DALT 2008, Estoril, Portugal, May 12, 2008, Revised
Selected and Invited Papers. Ed. by Matteo Baldoni et al. Vol. 5397. Lecture
Notes in Computer Science. Springer, 2008, pp. 111–127. doi: 10.1007/978-
3-540-93920-7_8. url: https://doi.org/10.1007/978-3-540-93920-
7%5C_8 (cit. on p. 10).

[24] Lavindra de Silva, Sebastian Sardiña, and Lin Padgham. “First principles
planning in BDI systems”. In: 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May
10-15, 2009, Volume 2. Ed. by Carles Sierra et al. IFAAMAS, 2009, pp. 1105–
1112. url: https://dl.acm.org/citation.cfm?id=1558167 (cit. on
p. 10).

[25] Rafael C. Cardoso, Louise A. Dennis, and Michael Fisher. “Plan Library Re-
configurability in BDI Agents”. In: Engineering Multi-Agent Systems - 7th
International Workshop, EMAS 2019, Montreal, QC, Canada, May 13-14,
2019, Revised Selected Papers. Ed. by Louise A. Dennis, Rafael H. Bor-
dini, and Yves Lespérance. Vol. 12058. Lecture Notes in Computer Science.
Springer, 2019, pp. 195–212. doi: 10.1007/978-3-030-51417-4_10. url:
https://doi.org/10.1007/978-3-030-51417-4%5C_10 (cit. on p. 11).

84 BIBLIOGRAPHY

https://doi.org/10.1002/9780470061848
https://onlinelibrary.wiley.com/doi/10.1002/9780470061848
https://onlinelibrary.wiley.com/doi/10.1002/9780470061848
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/J.ARTINT.2015.02.002
https://doi.org/10.1016/J.ARTINT.2015.02.002
https://doi.org/10.1016/j.artint.2015.02.002
https://doi.org/10.1016/j.artint.2015.02.002
https://doi.org/10.1007/978-3-540-93920-7_8
https://doi.org/10.1007/978-3-540-93920-7_8
https://doi.org/10.1007/978-3-540-93920-7%5C_8
https://doi.org/10.1007/978-3-540-93920-7%5C_8
https://dl.acm.org/citation.cfm?id=1558167
https://doi.org/10.1007/978-3-030-51417-4_10
https://doi.org/10.1007/978-3-030-51417-4%5C_10

BIBLIOGRAPHY

[26] Jie Huang and Kevin Chen-Chuan Chang. “Towards Reasoning in Large
Language Models: A Survey”. In: Findings of the Association for Computa-
tional Linguistics: ACL 2023. Ed. by Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki. Toronto, Canada: Association for Computational Linguis-
tics, July 2023, pp. 1049–1065. doi: 10.18653/v1/2023.findings-acl.67.
(Visited on 06/10/2025) (cit. on p. 11).

[27] Jason Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Lan-
guage Models. Jan. 2023. arXiv: 2201.11903 [cs]. (Visited on 10/26/2024)
(cit. on p. 11).

[28] Takeshi Kojima et al. Large Language Models Are Zero-Shot Reasoners.
Jan. 29, 2023. doi: 10 . 48550 / arXiv . 2205 . 11916. arXiv: 2205 . 11916
[cs]. url: http://arxiv.org/abs/2205.11916 (visited on 06/10/2025).
Pre-published (cit. on p. 11).

[29] R. Thomas McCoy et al. Embers of Autoregression: Understanding Large
Language Models Through the Problem They Are Trained to Solve. Sept. 24,
2023. doi: 10.48550/arXiv.2309.13638. arXiv: 2309.13638 [cs]. url:
http://arxiv.org/abs/2309.13638 (visited on 12/16/2024). Pre-published
(cit. on p. 11).

[30] R. Thomas McCoy et al. When a Language Model Is Optimized for Reason-
ing, Does It Still Show Embers of Autoregression? An Analysis of OpenAI
O1. Oct. 4, 2024. doi: 10.48550/arXiv.2410.01792. arXiv: 2410.01792
[cs]. url: http://arxiv.org/abs/2410.01792 (visited on 12/16/2024).
Pre-published (cit. on p. 11).

[31] Zhaofeng Wu et al. Reasoning or Reciting? Exploring the Capabilities and
Limitations of Language Models Through Counterfactual Tasks. Mar. 28,
2024. doi: 10.48550/arXiv.2307.02477. arXiv: 2307.02477 [cs]. url:
http://arxiv.org/abs/2307.02477 (visited on 06/10/2025). Pre-published
(cit. on p. 11).

[32] Parshin Shojaee et al. “The Illusion of Thinking: Understanding the Strengths
and Limitations of Reasoning Models via the Lens of Problem Complexity”.
In: () (cit. on p. 11).

BIBLIOGRAPHY 85

https://doi.org/10.18653/v1/2023.findings-acl.67
https://arxiv.org/abs/2201.11903
https://doi.org/10.48550/arXiv.2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
https://doi.org/10.48550/arXiv.2309.13638
https://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
https://doi.org/10.48550/arXiv.2410.01792
https://arxiv.org/abs/2410.01792
https://arxiv.org/abs/2410.01792
http://arxiv.org/abs/2410.01792
https://doi.org/10.48550/arXiv.2307.02477
https://arxiv.org/abs/2307.02477
http://arxiv.org/abs/2307.02477

BIBLIOGRAPHY

[33] John K. Slaney and Sylvie Thiébaux. “Blocks World revisited”. In: Artif.
Intell. 125.1-2 (2001), pp. 119–153. doi: 10.1016/S0004-3702(00)00079-
5. url: https://doi.org/10.1016/S0004- 3702(00)00079- 5 (cit. on
p. 11).

[34] Subbarao Kambhampati. “Can Large Language Models Reason and Plan?”
In: Annals of the New York Academy of Sciences 1534.1 (Apr. 2024), pp. 15–
18. issn: 0077-8923, 1749-6632. doi: 10.1111/nyas.15125. arXiv: 2403.
04121 [cs]. url: http://arxiv.org/abs/2403.04121 (visited on 06/08/2025)
(cit. on p. 11).

[35] Subbarao Kambhampati et al. LLMs Can’t Plan, But Can Help Planning
in LLM-Modulo Frameworks. June 12, 2024. arXiv: 2402.01817 [cs]. url:
http://arxiv.org/abs/2402.01817 (visited on 11/05/2024). Pre-published
(cit. on pp. 11, 77).

[36] Joon Sung Park et al. “Generative Agents: Interactive Simulacra of Human
Behavior”. In: Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology, UIST 2023, San Francisco, CA, USA,
29 October 2023- 1 November 2023. Ed. by Sean Follmer et al. ACM, 2023,
2:1–2:22. doi: 10.1145/3586183.3606763. url: https://doi.org/10.
1145/3586183.3606763 (cit. on pp. 12, 13).

[37] Theodore R. Sumers et al. “Cognitive Architectures for Language Agents”.
In: Trans. Mach. Learn. Res. 2024 (2024). url: https://openreview.net/
forum?id=1i6ZCvflQJ (cit. on p. 12).

[38] Lei Wang et al. “A survey on large language model based autonomous
agents”. In: Frontiers Comput. Sci. 18.6 (2024), p. 186345. doi: 10.1007/
S11704-024-40231-1. url: https://doi.org/10.1007/s11704-024-
40231-1 (cit. on p. 12).

[39] Sébastien Bubeck et al. “Sparks of Artificial General Intelligence: Early ex-
periments with GPT-4”. In: CoRR abs/2303.12712 (2023). doi: 10.48550/
ARXIV. 2303.12712. arXiv: 2303.12712. url: https://doi.org/10.
48550/arXiv.2303.12712 (cit. on p. 12).

86 BIBLIOGRAPHY

https://doi.org/10.1016/S0004-3702(00)00079-5
https://doi.org/10.1016/S0004-3702(00)00079-5
https://doi.org/10.1016/S0004-3702(00)00079-5
https://doi.org/10.1111/nyas.15125
https://arxiv.org/abs/2403.04121
https://arxiv.org/abs/2403.04121
http://arxiv.org/abs/2403.04121
https://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.48550/ARXIV.2303.12712
https://doi.org/10.48550/ARXIV.2303.12712
https://arxiv.org/abs/2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712

BIBLIOGRAPHY

[40] San Murugesan. “The Rise of Agentic AI: Implications, Concerns, and the
Path Forward”. In: IEEE Intell. Syst. 40.2 (2025), pp. 8–14. doi: 10.1109/
MIS.2025.3544940. url: https://doi.org/10.1109/MIS.2025.3544940
(cit. on pp. 13, 24).

[41] Hui Yang, Sifu Yue, and Yunzhong He. “Auto-GPT for Online Decision
Making: Benchmarks and Additional Opinions”. In: CoRR abs/2306.02224
(2023). doi: 10 . 48550 / ARXIV . 2306 . 02224. arXiv: 2306 . 02224. url:
https://doi.org/10.48550/arXiv.2306.02224 (cit. on p. 13).

[42] Guanzhi Wang et al. “Voyager: An Open-Ended Embodied Agent with Large
Language Models”. In: Trans. Mach. Learn. Res. 2024 (2024). url: https:
//openreview.net/forum?id=ehfRiF0R3a (cit. on pp. 13, 77).

[43] Rishi Hazra, Pedro Zuidberg Dos Martires, and Luc De Raedt. “SayCanPay:
Heuristic Planning with Large Language Models Using Learnable Domain
Knowledge”. In: Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Arti-
ficial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Van-
couver, Canada. Ed. by Michael J. Wooldridge, Jennifer G. Dy, and Sri-
raam Natarajan. AAAI Press, 2024, pp. 20123–20133. doi: 10.1609/AAAI.
V38I18.29991. url: https://doi.org/10.1609/aaai.v38i18.29991
(cit. on p. 13).

[44] Danny Driess et al. “PaLM-E: An Embodied Multimodal Language Model”.
In: International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA. Ed. by Andreas Krause et al. Vol. 202. Pro-
ceedings of Machine Learning Research. PMLR, 2023, pp. 8469–8488. url:
https://proceedings.mlr.press/v202/driess23a.html (cit. on p. 13).

[45] Shunyu Yao et al. “ReAct: Synergizing Reasoning and Acting in Language
Models”. In: The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
url: https://openreview.net/forum?id=WE%5C_vluYUL-X (cit. on pp. 13,
22).

BIBLIOGRAPHY 87

https://doi.org/10.1109/MIS.2025.3544940
https://doi.org/10.1109/MIS.2025.3544940
https://doi.org/10.1109/MIS.2025.3544940
https://doi.org/10.48550/ARXIV.2306.02224
https://arxiv.org/abs/2306.02224
https://doi.org/10.48550/arXiv.2306.02224
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://doi.org/10.1609/AAAI.V38I18.29991
https://doi.org/10.1609/AAAI.V38I18.29991
https://doi.org/10.1609/aaai.v38i18.29991
https://proceedings.mlr.press/v202/driess23a.html
https://openreview.net/forum?id=WE%5C_vluYUL-X

BIBLIOGRAPHY

[46] Noah Shinn et al. “Reflexion: language agents with verbal reinforcement
learning”. In: Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023. Ed. by Alice Oh et al.
2023. url: http://papers.nips.cc/paper%5C_files/paper/2023/
hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
(cit. on p. 13).

[47] Alexandre Yukio Ichida, Felipe Meneguzzi, and Rafael C. Cardoso. “BDI
Agents in Natural Language Environments”. In: Proceedings of the 23rd In-
ternational Conference on Autonomous Agents and Multiagent Systems, AA-
MAS 2024, Auckland, New Zealand, May 6-10, 2024. Ed. by Mehdi Dastani
et al. International Foundation for Autonomous Agents and Multiagent Sys-
tems / ACM, 2024, pp. 880–888. doi: 10.5555/3635637.3662942. url:
https://dl.acm.org/doi/10.5555/3635637.3662942 (cit. on p. 14).

[48] Minsu Jang et al. “A Structured Prompting based on Belief-Desire-Intention
Model for Proactive and Explainable Task Planning”. In: International Con-
ference on Human-Agent Interaction, HAI 2023, Gothenburg, Sweden, De-
cember 4-7, 2023. ACM, 2023, pp. 375–377. doi: 10.1145/3623809.3623930.
url: https://doi.org/10.1145/3623809.3623930 (cit. on p. 14).

[49] Alessandro Ricci et al. “The Cognitive Hourglass: Agent Abstractions in
the Large Models Era”. In: Proceedings of the 23rd International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2024, Auckland,
New Zealand, May 6-10, 2024. Ed. by Mehdi Dastani et al. International
Foundation for Autonomous Agents and Multiagent Systems / ACM, 2024,
pp. 2706–2711. doi: 10.5555/3635637.3663262. url: https://dl.acm.
org/doi/10.5555/3635637.3663262 (cit. on p. 14).

[50] Sebastian Schmid, Michael Freund, and Andreas Harth. “Adaptive Planning
on the Web: Using LLMs and Affordances for Web Agents”. In: Knowledge
Graphs and Semantic Web - 6th International Conference, KGSWC 2024,
Paris, France, December 11-13, 2024, Proceedings. Ed. by Sanju Tiwari et al.
Vol. 15459. Lecture Notes in Computer Science. Springer, 2024, pp. 93–108.

88 BIBLIOGRAPHY

http://papers.nips.cc/paper%5C_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://doi.org/10.5555/3635637.3662942
https://dl.acm.org/doi/10.5555/3635637.3662942
https://doi.org/10.1145/3623809.3623930
https://doi.org/10.1145/3623809.3623930
https://doi.org/10.5555/3635637.3663262
https://dl.acm.org/doi/10.5555/3635637.3663262
https://dl.acm.org/doi/10.5555/3635637.3663262

BIBLIOGRAPHY

doi: 10.1007/978-3-031-81221-7_7. url: https://doi.org/10.1007/
978-3-031-81221-7%5C_7 (cit. on p. 14).

[51] Takeshi Kojima et al. “Large language models are zero-shot reasoners”. In:
Proceedings of the 36th International Conference on Neural Information Pro-
cessing Systems (NeurIPS 2022). New Orleans, LA, USA: Curran Associates
Inc., 2024. isbn: 9781713871088. url: https://openreview.net/pdf?id=
e2TBb5y0yFf (cit. on p. 22).

[52] Aobo Kong et al. “Better Zero-Shot Reasoning with Role-Play Prompting”.
In: CoRR abs/2308.07702 (2023). doi: 10 . 48550 / ARXIV . 2308 . 07702.
arXiv: 2308.07702. url: https://doi.org/10.48550/arXiv.2308.07702
(cit. on p. 22).

[53] Xiangru Tang et al. “Struc-Bench: Are Large Language Models Really Good
at Generating Complex Structured Data?” In: CoRR abs/2309.08963 (2023).
doi: 10 . 48550 / ARXIV . 2309 . 08963. arXiv: 2309 . 08963. url: https :
//doi.org/10.48550/arXiv.2309.08963 (cit. on p. 23).

[54] Zhi Rui Tam et al. Let Me Speak Freely? A Study on the Impact of For-
mat Restrictions on Performance of Large Language Models. Oct. 2024.
doi: 10 . 48550 / arXiv . 2408 . 02442. arXiv: 2408 . 02442 [cs]. (Visited
on 06/10/2025) (cit. on p. 23).

[55] Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large
Language Models. Aug. 2023. doi: 10.48550/arXiv.2307.09702. arXiv:
2307.09702 [cs]. (Visited on 06/10/2025) (cit. on p. 23).

[56] Jialin Yang et al. StructEval: Benchmarking LLMs’ Capabilities to Generate
Structural Outputs. May 26, 2025. doi: 10 . 48550 / arXiv . 2505 . 20139.
arXiv: 2505 . 20139 [cs]. url: http : / / arxiv . org / abs / 2505 . 20139
(visited on 06/28/2025). Pre-published (cit. on p. 24).

[57] Do Xuan Long et al. LLMs Are Biased Towards Output Formats! Systemati-
cally Evaluating and Mitigating Output Format Bias of LLMs. Feb. 23, 2025.
doi: 10.48550/arXiv.2408.08656. arXiv: 2408.08656 [cs]. url: http:
//arxiv.org/abs/2408.08656 (visited on 06/28/2025). Pre-published (cit.
on p. 24).

BIBLIOGRAPHY 89

https://doi.org/10.1007/978-3-031-81221-7_7
https://doi.org/10.1007/978-3-031-81221-7%5C_7
https://doi.org/10.1007/978-3-031-81221-7%5C_7
https://openreview.net/pdf?id=e2TBb5y0yFf
https://openreview.net/pdf?id=e2TBb5y0yFf
https://doi.org/10.48550/ARXIV.2308.07702
https://arxiv.org/abs/2308.07702
https://doi.org/10.48550/arXiv.2308.07702
https://doi.org/10.48550/ARXIV.2309.08963
https://arxiv.org/abs/2309.08963
https://doi.org/10.48550/arXiv.2309.08963
https://doi.org/10.48550/arXiv.2309.08963
https://doi.org/10.48550/arXiv.2408.02442
https://arxiv.org/abs/2408.02442
https://doi.org/10.48550/arXiv.2307.09702
https://arxiv.org/abs/2307.09702
https://doi.org/10.48550/arXiv.2505.20139
https://arxiv.org/abs/2505.20139
http://arxiv.org/abs/2505.20139
https://doi.org/10.48550/arXiv.2408.08656
https://arxiv.org/abs/2408.08656
http://arxiv.org/abs/2408.08656
http://arxiv.org/abs/2408.08656

BIBLIOGRAPHY

[58] Ruslan Kuprieiev et al. DVC: Data Version Control - Git for Data & Models.
Version 3.60.1. June 2025. doi: 10.5281/zenodo.15646974. url: https:
//doi.org/10.5281/zenodo.15646974 (cit. on p. 55).

[59] Yang Liu et al. G-Eval: NLG Evaluation Using GPT-4 with Better Hu-
man Alignment. May 23, 2023. doi: 10.48550/arXiv.2303.16634. arXiv:
2303.16634 [cs]. url: http://arxiv.org/abs/2303.16634 (visited on
07/04/2025). Pre-published (cit. on p. 55).

[60] Jeffrey Ip and Kritin Vongthongsri. deepeval. Version 3.2.3. June 2025. url:
https://github.com/confident-ai/deepeval (cit. on p. 55).

[61] Haitao Li et al. “LLMs-as-Judges: A Comprehensive Survey on LLM-based
Evaluation Methods”. In: CoRR abs/2412.05579 (2024). doi: 10.48550/
ARXIV. 2412.05579. arXiv: 2412.05579. url: https://doi.org/10 .
48550/arXiv.2412.05579 (cit. on p. 55).

[62] Ari Holtzman et al. The Curious Case of Neural Text Degeneration. Feb. 14,
2020. doi: 10.48550/arXiv.1904.09751. arXiv: 1904.09751 [cs]. url:
http://arxiv.org/abs/1904.09751 (visited on 06/24/2025). Pre-published
(cit. on p. 56).

[63] Tobias Kuhn. “A Survey and Classification of Controlled Natural Languages”.
In: Computational Linguistics 40.1 (Mar. 2014), pp. 121–170. issn: 0891-
2017, 1530-9312. doi: 10.1162/COLI_a_00168. arXiv: 1507.01701 [cs].
url: http://arxiv.org/abs/1507.01701 (visited on 06/25/2025) (cit. on
p. 77).

[64] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. “Artifacts in the A&A
Meta-Model for Multi-Agent Systems”. In: Autonomous Agents and Multi-
Agent Systems 17.3 (Dec. 1, 2008), pp. 432–456. issn: 1573-7454. doi: 10/
czjpkd. url: https://doi.org/10.1007/s10458-008-9053-x (visited on
12/24/2021) (cit. on p. 80).

90 BIBLIOGRAPHY

https://doi.org/10.5281/zenodo.15646974
https://doi.org/10.5281/zenodo.15646974
https://doi.org/10.5281/zenodo.15646974
https://doi.org/10.48550/arXiv.2303.16634
https://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2303.16634
https://github.com/confident-ai/deepeval
https://doi.org/10.48550/ARXIV.2412.05579
https://doi.org/10.48550/ARXIV.2412.05579
https://arxiv.org/abs/2412.05579
https://doi.org/10.48550/arXiv.2412.05579
https://doi.org/10.48550/arXiv.2412.05579
https://doi.org/10.48550/arXiv.1904.09751
https://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://doi.org/10.1162/COLI_a_00168
https://arxiv.org/abs/1507.01701
http://arxiv.org/abs/1507.01701
https://doi.org/10/czjpkd
https://doi.org/10/czjpkd
https://doi.org/10.1007/s10458-008-9053-x

	Abstract
	Introduction
	Background and Related Work
	Planning in AgentSpeak(L) agents
	JaKtA: Jason-like Kotlin Agents
	Plan Generation in BDI Agents
	Reasoning and Planning in LLMs
	GenAI Agents
	Integration of BDI agents with LLMs

	Design
	The structure of a PGP
	Triggering the generative process
	On-demand PGP
	Reactive PGP
	Proactive PGP

	Concurrency and PGP
	Bridging BDI Agents and LLM Knowledge
	From BDI Agents to LLM and Back
	What to Encode
	How to Encode

	Writing Generative Agent Specifications

	Implementation
	Integration with the BDI Engine
	The PGP contract
	The Generation Manager

	Logging System
	Generative Process Pipeline
	Context filters
	Formatters
	Parsers
	Request Handlers
	Plan Generators

	Generative Agent Specification
	Implementing Custom Filters
	Defining Prompt Builders
	Declaring the Generation Strategy
	Writing the Documentation
	Specifying on-demand Generation Goals
	Defining Custom Log Events

	Evaluation
	The explorer robot application
	Agent
	Environment

	Experimental Methodology
	Experimental Setup
	Language Models
	Experiments' Parameters
	Evaluation Metrics

	Experimental Results
	Example PGP Prompt
	Example PGP Responses
	Detailed Metrics' Analysis

	Conclusion
	Future Work
	Plan repair and refinement mechanisms
	Structured Output Formats
	Improved Software Modularity
	Model Context Protocol Integration
	Finetuning Small Language Models
	Artifacts as Tools

	Bibliography

