ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Dipartimento di Scienze ed Ingegneria Informatica

Corso di Informatica

A Study on Applications of
Homomorphic Encryption in
Privacy-Preserving Protocols

Relatore: Presentata da:
Prof. FEDERICO MONTORI DIEGO BARBIERI
Correlatore:

Prof. SAVERIO GIALLORENZO

Sessione di Luglio 2025
Anno Accademico 2024/2025

Location

Zero-Trust

Network Protocols

Privacy

Homomorphic Encryption

A me,
Alla fortuna che mi sono creato

e al mio (di)ego

Abstract

This thesis presents a comprehensive study on the application of homomorphic en-
cryption (HE) in privacy-preserving communication protocols, with a particular fo-
cus on location-based services. We analyze and compare their effectiveness and
performance to identify the practical limitations they face in real-world scenarios.
A central part of this work explores different encoding strategies (such as z-order)
that enable location data to be securely processed under homomorphic encryption
schemes in a grid. We examine how these strategies impact both the privacy guar-
antees and the computational overhead of the protocols.

As a case study, we design and implement a protocol that allows mobile clients
to discover nearby parking spots without revealing their precise location to the
server. Special attention is given to the integration of HE in publish/subscribe and
request /response paradigms and to the trade-offs that would arise. The protocol is
designed starting from the previous analysis of existing solutions, such as LA-MQTT,
and incorporates homomorphic encryption to ensure that the server can process
location queries without accessing sensitive data. We evaluate the performance
of our protocol in terms of computational efficiency and communication overhead,
comparing it with existing solutions.

Contents

(1__Introduction|

2 Background|
[2.1 Request-Response Protocoll
RIT HTTP. e

[2.1.2 Request-Response in Io'T devices|
2.1.3 CoAP|

2.2.1 MQTT]
222 LA-MQTT|
[2.3 Universal Location Referencingl
[2.3.1 Background: Distance Measures Between Vectors|
[2.3.2 Cantor Pairingl
[2.4 Space Filling Curves|

[2.5 Privacy Preserving Techniques|.
[2.5.1 Homomorphic Encryption|
[2.5.2 Homomorphic Encryption Types|
[2.5.3 HE Translation Key|

2.6 Usage of HE for Matching|
2.6.1 PHE and FHE Implications|

[3 System Architecture]
B.1 UseCasel.
[3.2 System Overview|

(3.3.2 Mobile Clients|
[3.3.3 Serverl
[3.3.4 Certification Authority / Proxy|

3.3.5 Worker|

4 N rk Pr Lan mmunication| L.
[3.4.1 Usage of different network protocols|

|;5‘£i I IS)!!zg;g!l E! &g:l &ig:&il ----------------------------
L‘i‘gi Dl‘:itilllg:s: I Is:fg:ls:llg:s:l ----------------------------
(3.7 _Scenariol
[3.7.1 Protocol Flow].

[3.8 Security Considerations|
3.8.1 Threat Modell
[3.8.2 Mitigation Strategies Malicious Actors|

(4.1 Testing Methodology|,
4.2 Performance Evaluationl

b__Conclusion|

.1 Summary|
H.1.1 Results
[5.1.2 Protocol Scalability{.
[>.1.3 Protocol Limitations and Security Analysis|

2 Futur TKSl .o

List of Tables

2.1 The LA-MQT'T Publish-subscribe Operations|

[3.1 System Operations Aligned with Architecture|
[3.2 Adversarial Threats and Mitigation Strategies|

List of Figures

2.1 MQTT Workflow|)
[2.2 Visualization of the Cantor pairing function mapping two-dimensional |

coordinates to a singlevalud 8
[2.3 Comparison of Z-order and Hilbert curves in two-dimensional space] . 9
[3.1 Visualization of the system architecture for the proposed privacy- |

preserving location matching protocol] 18
[3.2 Visualization of the protocol flow| 22
4.1 Visualization of the Encryption and Decryption time using HEf. . . . 28
[4.2 Comparison between RSA and HE for encryption and decryption| . . 30

Chapter 1

Introduction

In recent years, location-based services have become increasingly prevalent in our
daily lives. From finding nearby accommodations or points of interest to access-
ing services tailored to our geographical context, location awareness is playing an
essential role in modern applications. However, this convenience comes at a cost:
the necessity of sharing users’ location data with third parties, often leading to
significant privacy concerns.

Exposing our location could lead to unwanted tracking, profiling, and even phys-
ical harm. Therefore, it is crucial to adopt technologies that can preserve user
privacy even in adversarial settings. For this purpose, homomorphic encryption
(HE) emerges as a promising solution that allows computations to be performed
on encrypted data without revealing the underlying plain text. This means that
sensitive information, such as our location, can be processed without exposing it to
the server. This type of encryption is becoming extremely popular in fields such as
cloud computing, where data is often stored and processed by third-party providers.
At the same time, we are witnessing a shift towards zero-trust protocols, where no
middleman is trusted and there is no central authority that can be relied upon to
handle sensitive data.

The focus of this thesis explores the applications of homomorphic encryption in
privacy-preserving protocols, considered in the context of location-based services.
In particular, I present a detailed analysis of how to securely encode location data
in a grid system, allowing for efficient processing under homomorphic encryption
schemes. A concrete application of this approach, and the primary use case examined
in this work, is the privacy-preserving discovery of nearby parking spots.

The motivation for creating a privacy-preserving protocol comes from the necessity
of implementing this type of mechanism inside the Location Aware MQTT (LA-

MQTT) protocol™™22 LA-MQTT is an extension of MQTT, optimized to work
with geofence data and location data sources. The protocol was originally meant to
be used with other types of privacy standards that would only obfuscate the client’s
position but not hide it completely.

The thesis is structured as follows: in Chapter|2| I provide the necessary background
on homomorphic encryption and location-based services, including a review of exist-
ing solutions and their limitations. In Chapter [3} I present the system architecture
of the proposed protocol, detailing how homomorphic encryption is integrated into
the publish/subscribe and request /response paradigms. In Chapter , I evaluate the
performance of the protocol in terms of computational efficiency and communication
overhead, comparing it with existing solutions. Finally, in Chapter |5 I summarize
the findings and discuss potential future work.

Chapter 2

Background

This chapter will discuss the theoretical background needed to understand the pro-
tocol presented in this thesis. We will cover the main network protocols used in dis-
tributed systems, such as Request-Response and Publish-Subscribe, and how they
can be applied to IoT devices. We will also discuss Universal Location Referenc-
ing, Space-Filling Curves, and Privacy-Preserving techniques, such as Homomorphic
Encryption, which are the foundation of the solution proposed.

2.1 Request-Response Protocol

Request-response is a fundamental communication pattern in distributed systems
where a client sends a request to a server and waits for a response. This synchronous
communication model is characterized by its simplicity and direct interaction be-
tween parties, making it suitable for operations requiring immediate feedback and
confirmation.

2.1.1 HTTP

HTTP (Hypertext Transfer Protocol) is the foundation of data communication on
the World Wide Web. It operates as a request-response protocol, allowing clients
to request resources from servers and receive responses. HTTP supports various
methods (GET, POST, PUT, DELETE) for different types of operations and is
extensible through headers and status codes.

HTTPS

HTTPS is a version of HTTP built on the SSL/TLS protocol, providing secure com-
munication over a computer network. It encrypts data exchanged between clients
and servers, ensuring confidentiality and integrity. HT'TPS is essential for protecting
sensitive information from eavesdropping and tampering.

One of the key features of HT'TPS is its use of certificates to authenticate the server,
ensuring that clients are communicating with the intended entity. This is possible
through a relatively high usage of computational resources, which is a trade-off for
the enhanced security it provides.

2.1.2 Request-Response in IoT devices

HTTPS is a commonly used choice also for IoT devices. However, its usability is
often limited due to several factors:

« Resource Constraints™23l: Encrypting and decrypting certificate stan-
dards (RSA, EEC, AES) can be computationally expensive, which is a signif-
icant concern for IoT devices with limited processing power and memory.

« Lack of Secure Firmware UpdatesBNT19. Nany IoT devices do not
support secure firmware updates, making it difficult to patch vulnerabilities
in the HTTPS implementation.

« Weak or Nonexistent Certificate Validation PPYEC21l. \any IoT de-
vices do not validate server certificates properly, leading to potential vulnera-
bilities.

This limitation has led to the development of alternative protocols and standards
that are more suitable for IoT devices, such as CoAP (see Section [2.1.3) and MQTT

(see Section [2.2.1)). These protocols are designed to be lightweight and efficient,
making them more suitable for resource-constrained devices.

2.1.3 CoAP

CoAP (Constrained Application Protocol) is a specialized web transfer protocol
designed for constrained devices and low-power networksSHBI Tt operates over
UDP, making it lightweight and suitable for IoT applications. CoAP supports
request-response interactions similar to HT'TP but is optimized for low-bandwidth
and high-latency environments.

The protocol presents several key features:

o Web protocol fulfilling M2M requirements in constrained environments.

o UDP-based with support for multicast.

o Low header overhead and parsing complexity.
o URI and Content-type support.

« Simple proxy and caching capabilities.

o A stateless HT'TP mapping, allowing proxies to be built providing access to
CoAP resources via HI'TP in a uniform way or for HT'TP simple interfaces
to be realized alternatively over CoAP.

o Security binding to Datagram Transport Layer Security (DTLS)

Due to its design, CoAP can replicate the RESTful architecture of HT'TP, supporting
methods such as GET, POST, PUT, and DELETE. Additionally, CoAP provides
an observe mechanism that enables clients to subscribe to resources and receive
notifications upon changes.

Henceforth, references to HTTP requests could be interpreted as referring to a
CoAP request. Moreover, my protocol is designed to be compatible with IoT
devices where bandwidth, data rate, and power consumption are critical factors.
CoAP’s lightweight nature and efficient use of resources make it a suitable choice
for such applications.

2.2 Publish-Subscribe Protocol

Publish-Subscribe (Pub/Sub) is an asynchronous messaging pattern where senders
(publishers) categorize messages into topics without the knowledge of the receivers
(subscribers). Subscribers express interest in specific topics and receive messages
published on those topics. This decoupled architecture enables scalable and flexible
communication in distributed systems.

2.2.1 MQTT

MQTT (Message Queuing Telemetry Transport) is a lightweight, open-source mes-
saging protocol designed for constrained devices and low-bandwidth, high-latency
networks. It implements the publish-subscribe pattern over TCP /TP, providing three
quality service levels for message delivery and supporting various security features.

The protocol defines three main network entities:

o Message Broker: The central component that manages message routing
between publishers and subscribers. It receives messages from publishers and
forwards them to subscribers based on their subscriptions.

o Publisher: A client that sends messages to the broker on specific topics.

e Subscriber: A client that expresses interest in specific topics and receives
messages published to those topics by the broker.

MQTT Quality of Service Levels

MQTT provides three quality of service (QoS) levels to ensure message delivery
reliability:

e QoS 0 (At most once): The message is delivered at most once, with no
acknowledgment from the receiver. This level is suitable for applications where
occasional message loss is acceptable.

* QoS 1 (At least once): The message is guaranteed to be delivered at least
once, with acknowledgment from the receiver. This level ensures that messages
are not lost but may result in duplicates.

e QoS 2 (Exactly once): The message is guaranteed to be delivered exactly
once, using a four-step handshake process. This level provides the highest
reliability but incurs more overhead.

MQTT Security

As we mentioned, one of the key features of MQTT is the possibility to scale the pro-
tocol to fit the needs of the application. This is possible by using different security
features, such as TLS/SSL for secure communication, authentication mechanisms
to verify client identities, and access control lists to restrict topic access. These fea-
tures help protect against unauthorized access and ensure the integrity of messages
exchanged between clients.

MQTT Workflow

Generally, the MQTT workflow starts with the client establishing a connection to
the broker, using a TCP/IP connection with optional TLS/SSL security. Once
connected, the client can publish messages to specific topics or subscribe to topics of
interest. The broker then routes messages to subscribers based on their subscriptions

(see Figure [2.1)).

2.2.2 LA-MQTT

LA-MQTT P22 extends the standard MQTT protocol by incorporating location-
based features. It enables spatial queries and location-aware message routing, mak-

publish 21.9 °C

el a_“.‘“e

C

. TempPe—

subsc“‘bg‘ *
D oo

\ish n9

subscribe: Temperature

publish 21.9 °C

i 'SUbS_Crfbe:

Figure 2.1: MQTT Workflow

19 °

&

ing it particularly suitable for IoT applications requiring geographical context in
message distribution.

The protocol is first introduced to resolve the limitations of traditional MQTT in

handling location-based data.

API Subject MQTT Topic Payload
oP

Position publish MC Publish GPS_ - {position : (P;)}
DATA

Topic subscription | MC Subscribe C(i,ty) *

MC Publish MC_SUB | {mc: i, topic:t,}

Geo fence publish | LDS Publish GEO_ - {topic : ty, content : c,,
FENCE_- | region: g, event : e }
DATA

Content publish Backend Publish C(i,tg) {content : c,}

Table 2.1: The LA-MQTT Publish-subscribe Operations

Table 2.1] summarizes the main operations of the LA-MQTT protocol, highlighting
the interactions between clients (MC), location data sources (LDS), and the backend

system.

Those operations include:

e Position Publish: MC publishes their GPS data to the broker, allowing
other clients to receive updates on their positions.

o Topic Subscription: MCs subscribe to specific topics, enabling them to
receive messages related to their areas of interest.

e Geo fence Publish: LDSs publish geo fence data, which includes the topic,
content, region, and event associated with the Geo fence.

o Content Publish: The backend publishes content related to the subscribed
topics, forwarding it to the subscribed MCs.

LA-MQTT integrates two privacy-preserving strategies within its client-side archi-
tecture: The first strategy is based on randomized location perturbation. This
method applies controlled noise to the GPS coordinates before transmission. Specif-
ically, for a given GPS value P;, a user-defined number of decimal digits is preserved,
while the remaining digits are randomly replaced. This approach balances between:

 Privacy Preservation (PP): Higher randomness enhances anonymity.

 Spatial Precision (SP): Excessive perturbation can degrade the accuracy of
spatial notifications.

The second strategy involves the use of dummy updates. Here, the MC alternates
between sending real and synthetic (dummy) location data. In each sequence of
updates, only one is the actual position; the others are randomly generated or
trajectory-based decoys.

2.3 Universal Location Referencing

Universal Location Referencing provides standardized methods for encoding and rep-
resenting geographical locations. These systems ensure consistent and unambiguous
location representation across different applications and platforms.

2.3.1 Background: Distance Measures Between Vectors

In many applications, especially related to positioning and spatial data, it is essen-
tial to measure the similarity or dissimilarity between vectors. This is particularly
relevant in fields such as machine learning, computer vision, and geographic infor-
mation systems. To analyze similarity or dissimilarity between vectors x,y € R™,
three standard distance metrics are:

Cosine similarity:
Il -yl
This measures the angle between vectors and is scale-invariant.

CS(x,y) =

FEuclidean distance:

ED(x,y) = Z(% — ;)%

i
It represents the straight-line distance but involves a non-linear square root.
Manhattan distance:

MD(x,y) = > |2; — il

Also known as the ¢; norm, it sums up absolute differences.

2.3.2 Cantor Pairing

Cantor Pairing is a mathematical technique that uniquely maps two natural numbers
to a single natural number (Figure . This bijective function 7 : N — N is
particularly useful in computer science for combining two coordinates into a single
value while maintaining the ability to recover the original coordinates.

More formally, the Cantor pairing function is defined as:

(x+y)(x+y+1)
2

m(z,y) = +y

Although this function does not preserve algebraic properties, it provides some
unique properties derived from the fact that it segments the two-dimensional space
into a zig-zag pattern.

m(z,y)+1l=m(z—1Ly+1)

Moreover, we also need to define the behavior of the function when one hits the
boundaries of the first quadrant:

m(z,0)+1=m(x+1,0)

At last, we denote the starting point of the Cantor pairing function as 7(0,0) = 0.
This means that the function starts at the origin of the two-dimensional space and
maps it to zero in the one-dimensional space. The inverse of the Cantor pairing
function can be computed as follows:

i = (M nr 1)

2 OFT T

Where n is the largest integer such that @ < z. This allows us to retrieve the

original coordinates (x,y) from the single value z.

This function is widely used in computer science, particularly in data structures
and algorithms, where it is necessary to map multi-dimensional data to a single
dimension for efficient storage and retrieval. It is also used in various applications
such as database indexing, spatial data representation, and cryptography.

/

RN

4

/)
;{
/,
¥
/

40

7

i

11717
VI
4o
VA e

44
4/

=
@

s} 1 2

Figure 2.2: Visualization of the Cantor pairing function mapping two-dimensional coordinates
to a single value

2.4 Space Filling Curves

Space-filling curves are mathematical curves that pass through every point in a
multi-dimensional space. They provide a way to map multi-dimensional data to a
single dimension while preserving spatial locality, making them valuable for spatial
indexing and data organization.

The most common space-filling curves include (Figure :
e Z-order Curve

« Hilbert Curve

The Hilbert Curve is particularly notable for its ability to preserve locality, mean-
ing that points that are close in multi-dimensional space remain close in the one-
dimensional representation.

On the other hand, the Z-order Curve, preserves the order of positions in a grid-
like manner, making it suitable for applications requiring efficient spatial queries.

S\X S\S AN mﬁ“
S@ N §\$§\“

_: \\\ ' 323@3 S
NS \S\l TS

m ‘]_’ _:%Uﬂﬁ‘ﬁuru&m
aleiE

Figure 2.3: Comparison of Z-order and Hilbert curves in two-dimensional space

Thus, it’s possible to reduce the problem of finding matching points to finding the
maximum prefix of two-bit strings.

2.4.1 Z-order Curve

As mentioned, the Z-order curve is one of the most widely used space-filling curves. It
maps multi-dimensional data into a single dimension, similar to the Cantor encoding
function. Conversely, it has some useful properties, when applied to spatial data,
such as preserving locality and allowing efficient range queries.

Z-order Encoding

The encoding process for Z-order involves interleaving the bits of the coordinates of
a point in a multi-dimensional space. For example, given a point with coordinates
(z,y), the Z-order encoding can be represented as:

n

Z(w,y) = (- 2% 4y, - 2511)
i=0
Where:
« z, and y, are the bits of the binary representation of the coordinates x and y.
e n is the number of bits used to represent each coordinate.

The Z-order curve can also be applied to encode vectors with dimensions greater
than two. In this case, the encoding process involves interleaving the bits of all
coordinates in a similar manner.

Z-order Decoding

The decoding process retrieves the original coordinates from the Z-order encoded
value. Given a Z-order value Z, the decoding can be performed by extracting the
bits corresponding to each coordinate:

=Y (Z (mod2%+?)).2!

i=0
Where:
o Z (mod 227%2) extracts the bits corresponding to the i-th coordinate.

o The result is then shifted and combined to reconstruct the original coordinate
x.

The same process can be used to find the y value by de-interleaving the other bits.

Z-order Querying

Let us consider a scenario where we want to find all points within a specific range
in a two-dimensional space. We define P as the set of points in the space, and we
want to find all points p € P such that:

p.x S [xmin7'rmax] and Py S [ymin7yma:t]

We can leverage the Z-order encoding to efficiently query this range. This is possible
by calculating the order of the encoding that we want to find. By definition, we can
represent the GPS coordinates of a point (z,,y,) into a point e,. This point will
be represented in the space of n orders, each contained in Z,.

Maximum Common Prefix Search

A key operation in Z-order-based spatial queries is finding the maximum common
prefix between two Z-order encoded values. This operation is fundamental for de-
termining spatial relationships between points.

Given two Z-order encoded values Z; and Z,, we can find the maximum common
prefix by following three steps. Firstly, we convert both values to their binary
representation. Then, we compare the bits from left to right, stopping at the first
position where the bits differ. Finally, we extract the common prefix up to that
point. The cited algorithm shows that in the worst case, the maximum common
prefix can be found in O(n) time, where n is the number of bits in the Z-order
encoding.

10

The length of the common prefix determines the size of the smallest bounding box
that contains both points. This property is particularly useful for:

e Finding the smallest region containing multiple points
e Determining if points are within a certain distance of each other
« Optimizing spatial range queries

For example, consider two points with Z-order encodings:

Z, = 3310,

The maximum common prefix is 331,, indicating that these points share the same
region in the first three orders of the encoded space. We used base 4 because it’s the
easiest way to visualize which of the four quadrants the point belongs to, as each
digit represents a quadrant in a two-dimensional space.

This prefix-based approach can be extended to handle a range of queries by:
1. Encoding the query range boundaries
2. Finding the maximum common prefix of the range
3. Generating all possible Z-order values that share this prefix

The efficiency of this approach comes from the fact that we can perform these oper-
ations using simple bitwise operations, making it suitable for real-time applications.

2.5 Privacy Preserving Techniques

Privacy-preserving techniques ensure the protection of sensitive information while
allowing necessary computations and data processing. These methods are crucial in
maintaining confidentiality in distributed systems and data analysis. For example,
in the context of location-based services, privacy-preserving techniques allow for the
sharing of location data without revealing exact coordinates, thus protecting user
privacy.

2.5.1 Homomorphic Encryption

Homomorphic Encryption(HE) is a form of encryption that allows specific types of
computations to be performed on cipher text, producing an encrypted result that,
when decrypted, matches the result of operations performed on the plain text.

11

Let us denote &, the encryption function, &' the decryption function, and f a
function that can be computed on plain texts. Homomorphic Encryption satisfies
the property:

&(f(x) = f(&(2))

In recent years, several Homomorphic Encryption schemes have been proposed, each
with different properties and capabilities. The scheme used in this thesis is the
Brakerski-Gentry-Vaikuntanathan (BGV, 2011) schemeBSV12 " which is a leveled
fully homomorphic encryption scheme that supports both addition and multiplica-
tion operations on encrypted data. The BGV scheme is particularly notable for its
efficiency and ability to handle large integers, making it suitable for practical appli-
cations in privacy-preserving computations. This scheme was based on the security
of (Ring) Learning With Errors (RLWE) (see Section [2.5.1)) problem, which is a
hard problem in lattice-based cryptography. The need for such a scheme arises from
the increasing demand for secure computations in various fields, including cloud
computing, data analysis, and machine learning. This type of new technology is
designed to resist quantum computers and cryptanalysis.

Security foundation: (Ring) Learning With Errors (RLWE)

The security of lattice-based FHE schemes, especially BGV, rests on the hardness
of the Ring Learning With Errors (RLWE) problem, a ring-based variant of the
Learning With Errors (LWE) problem introduced by Lyubashevsky, Peikert, and
Regev in 2010EPRI0 Ty RLWE, one works over a polynomial ring modulo both a
prime ¢ and an irreducible polynomial a(x):

a(z) = ag+ ayx + ... + a, 2" !, where a; € Z,,

Samples are of the form (a(z), b(x) = a(z)s(z)+e(x)), where e(x) is a small “error”
polynomial. Recovering s(x) given many such samples is presumed hard, based on
reductions to the Shortest Vector Problem (SVP) in ideal lattices.

2.5.2 Homomorphic Encryption Types

Fully Homomorphic Encryption (FHE) allows the evaluation of arbitrary cir-
cuits of additions and multiplications over encrypted data, without decryption. How-
ever, earlier FHE schemes suffered from inefficiencies, particularly due to the large
growth of noise. The BGV scheme answered these challenges by avoiding Gentry’s

12

“bootstrapping” BEY12 step via leveled evaluation, and controlling noise through

modulus switching and relinearization techniques.

Partially Homomorphic Encryption (PHE) supports only one type of oper-
ation—either addition (e.g., Paillier) or multiplication (e.g., RSA variants). These
are faster than FHE but limited in expressiveness, making them suitable for simpler
tasks where only one operation type is required.

2.5.3 HE Translation Key

Originally introduced in 1998, Blaze, Bleumer, and Strauss (BBS) IBBS98] hroposed
an application called atomic proxy re-encryption, the mechanism enables cipher-
texts encrypted under one public key to be transformed into ciphertexts decryptable
under another key—without exposing the underlying plaintexts or private keys. It
addresses the challenge of heterogeneity in multi-actor systems, eliminating the need
for a central trusted broker to perform decryption and re-encryption. Instead, each
data owner can generate a *Translation Key* that authorizes on-the-fly ciphertext
conversion by other parties.

Consider a privacy-preserving workflow involving three participants—Alice, Bob,
and Charlie—each with their respective keypairs (k;, k), (k§, kp), and (k(, kg).
Suppose Alice wants to store encrypted data on Bob’s untrusted server. She en-
crypts her data under ij and uploads the ciphertext. Since Bob cannot decrypt
(he lacks k), Charlie would also be unable to access the data directly. However, if
Alice generates and distributes a Translation Key k4_,~, Charlie can convert the ci-
phertext into one encrypted under kg and then decrypt it with k-, without learning
Alice’s private key or Bob’s data.

The Translation Key creation requires Alice’s Private key and Charlie’s Public key,
ensuring that only authorized parties can perform the conversion.

kA%C = f(k;h k;)

By allowing secure key-conditional ciphertext conversion, the Translation Key mech-
anism preserves confidentiality across distinct encryption domains. This is partic-
ularly valuable when multiple data owners—with different keys—need to perform
joint encrypted computations on a shared ciphertext under a common key.

13

2.6 Usage of HE for Matching

Homomorphic Encryption can be used to securely match location. To archive this,
we can use different techniques such as:

o Distance Calculation: It is archived by tweaking the distance calculation
algorithms (mentioned before in Section e.g., Buclidean distance, Cosine
similarity, Manhattan Distance) to work with encrypted coordinates. The
main limit comes with the constraint that the operations must be compat-
ible with the encryption scheme used. For instance, calculating the square
Euclidean distance between two points (x,¥y,) and (x5, y,) can be expressed
as:

d* = (v — 25)* + (Y1 — ¥o)?

That can be computed homomorphically and then decrypted before computing
the square root to get the actual distance. We will further discuss this in the
Testing Section [4.2]

e Encoding Coordinates: By encoding coordinates into a grid-like structure,
we can reduce the problem into finding two different points sharing the same
area-encoding. This approach comes with some limitations, mainly related to
the precision of the approximation and the size of the grid. Still, it allows for
efficient matching of points within a specific area without revealing their exact
coordinates. This is done by applying a space-filling curve, such as Z-order

(Section [2.4.1)), to the coordinates.

Privacy-Preserving Z-order Queries

When implementing privacy-preserving location queries using Z-order encoding, we
can employ homomorphic encryption to protect sensitive location dataZEWV20 Tet
us consider a scenario where a user A wants to share their location with user B
while maintaining privacy:

o Let QK 4 be the QuadKey representation of A’s location
o Let My be the bit mask specified by A for user B
o The service provider (SP) performs homomorphic multiplication: QK 4 ® Mg

To ensure unambiguous results, we increment each value in gk; € QK4 by one
before encryption, such that gk, € {1,2,3,4}. In this scheme ZLW20

o A bitmask value of 1 preserves the location data

o A bitmask value of 0 masks the location data

14

After decryption on the client device, we:
1. Remove any zero values
2. Convert the elements back to Z,

3. Generate a masked QuadKey string that produces a bounding box with the
desired level of detail

This approach is computationally efficient as it requires only one round of homo-
morphic multiplication. The resulting bounding box effectively hides both precise
locations and movement patterns, providing privacy even against colluding users.

For example, given a precise GPS coordinate (43.084451, —77.680069), the system
can generate bounding boxes of varying sizes based on the privacy preferences (where
the distance d represents the level of detail). This ensures that location data is shared
at an appropriate granularity while maintaining user privacy.

2.6.1 PHE and FHE Implications

The choice between Partially and Fully Homomorphic Encryption has significant
implications for system performance, security, and functionality. As previously dis-
cussed, the two methods used for proximity checks in a location-based scenario
require careful consideration of the encryption scheme.

If the requirements only involve checking whether two positions share a common
area, leveraging the speed and simplicity of the Z-order approach is recommended.
This method allows the usage of PHE to perform fast proximity checks without
significant overhead. As we have seen in Section [2.6] this approach can efficiently
determine if two points are within the same area by subtracting their Z-order en-
codings.

Conversely, if the goal is to compute a precise floating-point distance value, a ho-
momorphically encrypted distance function (e.g., Euclidean distance) may be nec-
essary (see Section . However, it is important to note that in this case, the final
result may be affected by computational noise inherent to FHE operations. Addi-
tionally, not all FHE schemes support floating-point operations directly, which can
complicate the implementation because of the need to convert between integer and
floating-point representations.

To conclude, the choice between PHE and FHE depends on the specific requirements
of the application. One of the main advantages of PHE is its speed and simplicity,
even though it is limited to a single operation type. On the other hand, FHE
provides greater flexibility and expressiveness, allowing for complex computations

15

on encrypted data. However, it comes with increased computational overhead and
potential noise issues, that cannot be ignored in a production-ready system.

16

Chapter 3

System Architecture

In this chapter, we present the system architecture for the proposed privacy-preserving
location-matching protocol. The main idea is to apply the principles of homomor-
phic encryption to location-based services, allowing clients to securely publish and
perform queries using their positions without revealing sensitive information.

3.1 Use Case

To clearly understand the system operations, let’s first analyze the use case of a client
who wants to find the closest parking spot available. The client needs to compute
the distances between its position and the parking spots, and finally decide whether
to park or not and where.

Even though it seems a straightforward mechanism, if we want to move the opera-
tions to the server, in order to preserve computational resources on the client side,
a lot of challenges arise. The first one is to securely share the position of the client
with the server, without exposing it to the workers. The second one is not to leak
sensible information about the clients after the computation is finished.

In this scenario, it’s not enough to simply encrypt the positions of the clients, as
the workers need to compute the distances between the positions of the clients and
the parking spots, which are also encrypted with a different key. To resolve this
problem, we could just leave the parking position in clear text on the database,
but this would expose the parking spots to the workers, who could then leak the
information for profit. Thus, by selling the parking spots to third parties, they could
be compromising the privacy of the system. In order to avoid this, and also achieve
a full privacy-oriented protocol, we need to use a re-encryption mechanism, that

17

allows the workers to compute the distances between the positions of the clients and
the parking spots, without revealing the positions of the clients to the workers.

The distance problem is avoided by using the Z-order encoding, which allows us
to reduce the problem of finding matching points to finding the maximum prefix of
two-bit strings. In our use case, the simulated server will perform a simple encrypted
subtraction between the positions of the clients and the parking spots. At last, only
the client will be able to decrypt the result, which is a simple integer value that
represents the distance between the two points (If the value is 0 is a perfect match).
The client can then use this value to decide whether to park or not, and where.

3.2 System Overview

The protocol is designed to combine a standard request-response protocol with a
publish-subscribe mechanism.

CA | Proxy Re-encrytor

Clients

// E‘ﬁ
= >//

=

Parkings

. Server/

| —
/ ‘ \Broker

Workers EQ EQ Eo

Figure 3.1: Visualization of the system architecture for the proposed privacy-preserving location
matching protocol.

Homomorphic encryption incurs high computational costs, so the system optimizes
performance by splitting the workload: the server handles only essential data pro-
cessing, while workers compute the distances between client positions. Since HE al-
lows computations on encrypted data, this approach preserves the privacy of clients’
locations without compromising efficiency.

18

3.3 Actors

3.3.1 Location Data Source

The Location Data Sources (LDS), commonly referred to as sensors or parkings, are
responsible for collecting and publishing location data. In our system, we assume
they independently publish their data to the server, based on the event they register.
For instance, if a sensor detects a free parking spot, it publishes the information to
the broker, which will start the encryption protocol. This happens also when a
parking spot is occupied, allowing the system to keep track of the available parking
spots in real time.

Note that by maintaining the availability of the parking spots, independent from the
clients, we can ensure that the system can provide privacy-preserving updates to the
server. Conversely, if the clients were also responsible for reserving the parking spots,
they would need to expose their positions to the server, which would compromise
the privacy of the system.

3.3.2 Mobile Clients

MCs or Mobile Clients are the users of the system. Their main interest is to receive
updates on the closest available parking spots, based on their current position.

In our system, the client’s responsibilities are very limited, as they do not trust the
server and all the other actors involved in the protocol. They only need to publish
their encrypted position to the server, wait for the computation to finish, and then
receive the results.

3.3.3 Server

The Backend Server (commonly called Information Broker) is the central component
of the system, responsible for managing the communication between clients and
sensors. It also acts like a database, handling and storing the encrypted parking
spot data.

This centralized component is crucial in the architecture, as it allows all sorts of
mobile actors (including clients and LDs) to have a persistent connection with the
system, although it’s not enough if we want to achieve a full zero-trust protocol.

Thanks to HE, the server can perform computation without knowing the clear text
positions of the other actors.

The second name "Information Broker” comes from the fact that the server acts like
an MQT'T broker, allowing clients to subscribe to topics and receive updates on the

19

parking spots Figure [3.1] In order to create consistent and reliable communication
between these two entities, without flooding the network with TCP /IP packets, the
server uses a pub/sub mechanism, where the clients subscribe to a topic and the
server publishes updates to that topic.

3.3.4 Certification Authority / Proxy

The certification authority (CA) is a trusted entity responsible for storing the public
keys of the clients and managing the public/private keys of the parking spots. Be-
cause he is a trusted entity, the CA knows the private keys of the parking spots. In
addition, it can generate the symmetric translation keys (see Section required
for secure computation of the client distances without revealing clear text positions.

In our system, the CA also acts like a proxy re-encryptor ®17 as it is responsible

for managing the right keys for the homomorphic operation made on the encrypted
data.

3.3.5 Worker

The name Worker refers to a generic computational unit of the system, that can
handle tasks from the server rewarded with a digital currency. In our case, the
workers are responsible for computing the distances between the positions of the
clients and the parking spots, using the homomorphic encryption scheme.

The workers’ digital reward can be described as a token that allows them to request
tasks from the server. In this way, each client can act as a worker, contributing to
the overall computation of the system.

3.4 Network Protocol and Communication

3.4.1 Usage of different network protocols

The MQTT protocol is used for the communication between the clients and the
server. It is necessary to use a pub/sub mechanism in order to keep alive the
connection between the two entities. This is achieved by having the client subscribe
to a topic, while the proxy publishes updates to that topic.

Moreover, the server is responsible for managing the connection with the LDs, al-
lowing the clients to receive updates on the parking spots. In this way, the client
MC; publishes its position Area; to the topic I Do . The server can then apply
the homomorphic operations on the data, using the keys provided by the CA.

20

When the computation is finished, the broker publishes the results to the topic
ID e, allowing the client to receive updates on the parking spots. The client can
then subscribe to the topic ID Mmc, to receive updates on the parking spots.

The HTTP protocol is used for the communication between the CA and the other
entities of the system. Because the CA performs atomic actions, such as key gen-
eration and translation, it is necessary to use a request-response protocol to ensure
that the operations are performed in a secure and reliable way.

3.5 Protocol Overview

The system is designed to allow the following operations:

API Sub- Pro- Re- Payload
ject tocol ceiver
Position Encoding Parameters | Clients | HI'TP | Server | -
/ LDs | GET
Key Obtain LDs HTTP | CA /| {id: IDparkj}
GET Proxy
Key Share Client | HTTP | CA /| {id :
POST | Proxy | ID,,., pub. key: k" .}
Position Publish Client | MQTT | Server | {position :¢,,.(P;)}
PUB
Topic Subscription Client | MQTT | Server | {topics
SUB [position, distance]}
Location Publish LDs HTTP | Server {fparkj (P;), id
POST ID,parkj, status €
{free, occ.}}
Translate Locations Server | HTTP | CA /| {positions
GET PrOXy [fparkj (Pj)}}
Work Request Worker | HT'TP | Server | -
GET
Task Finished Worker | HTTP | Server | {worker : w;, task :
POST ts, result
fparkj—wnci (R>}
Distance Publish Server | MQTT | Client | {distances : [Vj €
PUB Py e, (R)]}

Table 3.1: System Operations Aligned with Architecture

21

3.6 Distance Preference

As we mentioned in Table [3.1] the first operation that both the MCs and LDs need
to perform is to obtain the position encoding parameters from the server. In this
section, we will analyze why this is necessary and how it works.

The necessity of translating a GPS reference into a grid position encoding comes
with some limitations. First of all, the grid-like structure requires a fixed size for
both the whole area and the single grid cell. This operation is performed by the
server, in order to ensure consistency across the whole system. This operation could
be performed also by single actors, but only if they are aware of a standardized mea-
surement unit. Moreover, the subscribers could be interested in creating a custom
grid, like a system some orders of magnitude larger than the others, that should still
maintain the original atomic cell size.

For our study case, we will assume that the centralized server is responsible for
managing the parameters. In this way, he can generate a grid that contains the
geographical area of Bologna, Italy, where the simulated parking spots are located.

3.7 Scenario

Certification Authority

I Proxy

GET Translate Locations

Client Topic Subscription | MQTT Broker REST API

: > -
!g Position Publish E Ei
A A

POST Location Pub.

L3

Distance Publish

Backend Server

POST Task Finished GET Work Request

Workers E
XX

Figure 3.2: Visualization of the protocol flow

3.7.1 Protocol Flow

We can summarize the protocol flow in the following steps as shown in Figure [3.2}

22

. The clients and the parking spots register to the system, after that they re-
ceive the general position encoding parameter from the server using the Posi-
tion Encoding Parameters API via HTTP GET request. The parameters
are used to encode the positions of the clients and the parking spots. (API:
Position Encoding Parameters, Payload: {None} — {encoding params :
[z-order, precision, working area, grid cell size]})

. The mobile client MC; generates a new public/private key pair (k.. , k..)

mce;)?

and sends the public key to the certification authority (CA) using the Key
Share API via an HTTP POST request. (API: Key Share, Payload: {id :
ID ke, } — None)

mce;)

. After the CA verifies the client, it generates a symmetric key k K, for

mc;,par
each parking spot park;. The operation of key generation is performed by

Key Translation(pp, k k where pp is the public parameters of the
system, k;@ci is the public key of the client, and &

+ —
mc;) parkj)7

park, 1S the private key of
J
the parking spot. Note that the translation operation must be done each time

a new parking spot is added to the system.

. The MC; establishes an MQTT connection with the server and subscribes
to the topic 1Dy , which is used to receive updates on the parking spots.
This is done using the Topic Subscription API via MQTT. (API: Topic
Subscription, Payload: {topics : [position, distance|})

. The client will then send the encrypted position £, .(P;) to the server, where
P; is the encoded position of the client. The encryption is done using the public
key k;ci, ensuring that only the client can decrypt the position. This is done
using the Position Publish (API: Position Publish, Payload: {position :
&ne(P;)}). Moreover, this operation allows the client to also subscribe to the

topic 1D, , which is used to receive updates on the parking spots.

. The server receives the location, is notified about the MQTT subscription, and
starts the translation process, by invoking the Translate Locations API
via HTTP GET request to the CA. The CA then re-encrypts the position
for each parking spot using the associated key k:pmkj “yme,» Creating the re-
encrypted blob [Vj € P, &, (P;)]. (API: Translate Locations, Payload:

{positions : [€quy. (P)]})

. The server will then spread the re-encrypted positions to the workers, by
invoking the Work Request API via HT'TP GET request. The workers will
then compute the distances between the client position and the parking spots,
using the re-encrypted positions. (API: Work Request, Payload : {worker :
w; } — {task : t,})

23

8. Once the workers compute the distances (or other metrics) between the client
and parking spots, they send the result back using the Task Finished API
via HT'TP POST request. The result is a re-encrypted blob containing the
distances between the client position and the parking spots. (API: Task
Finished, Payload: {worker : w;, task : t;, result : {'parkjﬂmci(R)})

9. The server then publishes the aggregated results to the client via MQTT using
the Distance Publish API. The payload contains the distances between the
client’s position and the parking spots, re-encrypted with the client’s public
key. (API: Distance Publish, Payload: {distances: [Vj € P, . (R)]})

10. Finally, the client receives the re-encrypted results from the topic subscription,
decrypts them using its private key k and checks whether the location
satisfies the area matching condition.

mc;?

3.8 Security Considerations

The main goal of the study is to provide a privacy-preserving location-matching
protocol, that allows clients to securely publish and query their positions without
revealing sensitive information. In order to fulfill this goal, we need to ensure that
the system is attack-resistant and that the privacy of the clients is preserved.

In the earlier approach!Ge24 the position-matching protocol used Euclidean dis-

tance calculations between client locations and parking spots provided by a trusted
CA. While the server could not directly access this data, the mechanism inadver-
tently exposed the positions of mobile clients (MCs). The vulnerability stemmed
from the lack of client authentication, enabling malicious actors to impersonate le-
gitimate clients and intercept traffic. An attacker could exploit this by conducting a
binary search on the client’s location, sending iterative queries based on subscribed
topics. By progressively refining the search area, the attacker could pinpoint the
client’s exact position, violating location privacy.

This showcased that HE is secure if and only if the encryption and decryption
operation are performed correctly, preferably by the client itself.

As we also mentioned in the previous attack, the system is vulnerable to a lack of
authentication of the clients. Moreover, if an attacker was able to read the network
traffic, he could also manipulate the communication in order to interfere with the
pub/sub mechanism.

In my implementation, I addressed those issues by introducing different techniques
from the state of the art, such as using a proxy re-encryptor and a position encoding
mechanism based on Z-order. The choice of leaving the decryption operation to the

24

client ensures that no one is able to read the sensitive data, despite an increase of
computational resources required to re-encrypt each position for each parking spot.

3.8.1 Threat Model

In this section, we will analyze the threat model of the system, identifying the
potential attackers and their capabilities.

3.8.2 Mitigation Strategies Malicious Actors

Adversary Goal / Attack Mitigation Strategy

Malicious Client Impersonate another client or | Use digital signatures: at the
send fake position updates. time of authentication with the
CA, the client signs a digital
contract that ensures that he is
the one trying to access the sys-
tem.

Malicious Worker | Manipulate computation results | Because the user has no way
or leak client-sensitive data. of finding out if the informa-
tion has been manipulated dur-
ing the homomorphic phase, the
server needs to implement a
mechanism of fake workload to
test workers’ reliability.

Malicious Server | Access or manipulate sensitive | Because the server could only
client data or computational | drop the communication or
outcomes. modify packets, but not leak
sensitive information. It’s sug-
gested to have multiple backup
servers independent of one from
the other.

Network Attacker | Intercept and read client- | All the traffic is HE encrypted.
sensitive data from network
traffic.

Table 3.2: Adversarial Threats and Mitigation Strategies

In the Table[3.2] we summarize the potential adversaries and their goals, along with
the mitigation strategies that can be employed to counteract their attacks. It’s also
important to notice that one of the assumptions of the system was that the CA
is a trusted entity, moreover if an attacker is able to compromise the CA, he can

25

also compromise the whole system. Thus, it’s not worth to consider the CA as an
adversary.

26

Chapter 4

Testing

4.1 Testing Methodology

For the testing of the protocol, we implemented a proof-of-concept in Python, using
the OpenFHE library®”!. The testing methodology consists of the following steps.
Firstly, we generate a set of random positions for the parking spots. After that, we
generate a random position for the client, compute the z-order encoding for both the
client and the parking spots, and finally, compute the distances between the client
position and the parking spots using the homomorphic encryption scheme.

To ensure a fair comparison, we test different scenarios with different sets of hy-
perparameters, such as the number of parking spots, the number of clients running
simultaneously, a range of network delays, and the edge size in meters of a grid cell
(used to encode the GPS coordinates). The goal is to measure the performance of
the homomorphic encryption scheme in terms of encryption and decryption time, as
well as the time taken to compute the distances between the client position and the
parking spots.

At the same time, we also computed the distance calculation using a clear com-
putation (trusted backend) with asymmetric encrypted (RSA) traffic. This allows
us to compare the performance of the homomorphic encryption scheme against a
traditional asymmetric encryption scheme.

The testing environment consists of a virtual machine instance on a server, with the
following specifications:

o CPU: Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz 16 cores
« RAM: 64 GB

27

e OS: Debian 11
» Python version: 3.8
OpenFHE version: 1.3.0.0.20.4

e numpy version: 1.24.0

4.2 Performance Evaluation

The first test that we perform is to measure the time taken to encrypt and decrypt
the client position using the homomorphic encryption scheme. The results are shown
in Figure 4.1 The time taken to encrypt around 50 parking with the same key is
around 0.5 seconds, while the time taken to decrypt the client position is around 0.2
seconds. This results that the homomorphic encryption scheme is efficient for this
use case, but it still grows linearly with the number of data points.

Encryption Time Comparison Decryption Time Comparison

—8— openfhe —8— openfhe
—&— rsa —&— rsa

0.030
0.8

0.025

o
o

0.020

0.015

Decryption Time (seconds)
o
S

Encryption Time (seconds)

0.010

0.2

0.005

—— O —o—0—0—0—0—0—0 0.0 ° ° o—0

0.000

60 80 100 120 140 160 60 80 100 120 140 160
Number of Parking Spots Number of Parking Spots

Figure 4.1: Visualization of the Encryption and Decryption time using HE
The test begins with the generation of the parameters for the homomorphic encryp-

tion scheme, followed by the key generation. The code snippet in Listing shows
the code used to encrypt and decrypt the client position.

28

Listing 4.1: Encryption and Decryption of the client position
parameters = CCParamsBGVRNS ()

parameters.SetPlaintextModulus (65537)
parameters.SetMultiplicativeDepth(2)

crypto_context = GenCryptoContext (parameters)
crypto_context.Enable (PKESchemeFeature.PKE)
crypto_context.Enable (PKESchemeFeature.KEYSWITCH)
crypto_context.Enable (PKESchemeFeature . LEVELEDSHE)

keypair = crypto_context.KeyGen()
crypto_context.EvalMultKeyGen(keypair.secretKey)

The next step is to compute the distances between the client’s position and the
parking spots. The code snippet in Listing shows the code used to compute the
distances using the homomorphic encryption scheme.

Listing 4.2: Computing distances using Homomorphic Encryption

Encrypt the client's position

query_plaintext = crypto_context.MakePackedPlaintext ([query_encoded])

query_ciphertext = crypto_context.Encrypt (keypair.publicKey,
query_plaintext)

Process each spot
spots = parking_system.get_spots()

for spot_id, spot in spots.items():
Create plaintext for the spot's encoded position
spot_plaintext =
crypto_context.MakePackedPlaintext ([spot['encoded_pos']])

Homomorphic subtraction to check if positions match
diff_ciphertext = crypto_context.EvalSub(query_ciphertext,
spot_plaintext)

diff_plaintext = crypto_context.Decrypt(keypair.secretKey,
diff_ciphertext)

These two sections from the original codebase showcase how the encryption distance
calculation works. The full code contains additional logic for handling metrics and

logging.

29

In order to have a fair comparison with other common encryption standards, I made
the test run in parallel by multi-processing on the same machine. This refinement
made the test more realistic, as in a real-world scenario, multiple clients would
be sending requests to the server at the same time with multiple parking spots
(subscribers).

Total Time Comparison: OpenFHE vs RSA

25 -8~ openfhe |
’ —0— rsa

2.0

L
%]

Total Time (seconds)

g
o

0.5

60 80 100 120 140 160
Number of Parking Spots

Figure 4.2: Comparison between RSA and HE for encryption and decryption

The overall time performance of the protocol is shown in Figure confirms that
the HE standard has some overhead compared to the RSA standard, but it is still
acceptable for a real-world scenario. The main difference between the two encryption
standards is that, with symmetric encryption, the server can compute distances
much faster after decrypting the client’s position, often in just a few instructions.

Although the homomorphic encryption needs to perform a simple subtraction, it is
still slower, as values need to be packed to match HE standards as done in Listing[4.2]

It is also worth to mention the way the distances are computed in our protocol.
Firstly, we need to encode the GPS coordinates into a grid-like structure. This
operation is essential to ensure that we are considering small areas instead of points
Listing 4.3l Then we apply a unique encoding to the grid coordinates, transforming
them from a two-dimensional grid into a one-dimensional z-order curve. By having
a single integer representation we can perform easily the distance.

30

Listing 4.3: Distance computation using z-order encoding

def calculate_grid_sizes_for_radius(radius_meters, max_lat, min_lat,
max_lon, min_lon):
radius_km = radius_meters / 1000.0
lat_span = max_lat - min_lat
lon_span = max_lon - min_lon

Latitude: fixed ~111.32 km/degree
lat_cells = int(lat_span / (radius_km / 111.32))

Longitude: depends on latitude

mean_lat = math.radians((max_lat + min lat) / 2)

lon_cells = int(lon_span / (radius_km / (111.32 *
math.cos(mean_lat))))

return lat_cells, lon_cells # Return separate sizes

def normalize_gps(lat, lon, lat_cells=None, lon_cells=None,
edge_meters=500, max_lat=44.499194, min_lat=44.492307,
max_lon=11.363250, min_lon=11.325319):

if lat_cells is None or lon_cells is None:
lat_cells, lon_cells =
calculate_grid_sizes_for_radius(edge_meters, max_lat, min_lat,
max_lon, min_lon)

grid_x = int((lat - min_lat) / (max_lat - min_lat) * lat_cells)
grid_y = int((lon - min_lon) / (max_lon - min_lon) * lon_cells)

return grid_x, grid_y

To compute the z-order encoding, we use a straightforward approach that interleaves
the bits of the x and y coordinates. The code snippet in Listing 4.4] shows how we
compute the z-order encoding for the grid coordinates.

Listing 4.4: Z-order encoding for grid coordinates

def interleave_bits(x, y):

Interleave the bits of x and y to create a Morton code.

x and y should be non-negative integers, each limited to 16 bits.

Ensure inputs are within the 16-bit range

31

min(x, OxFFFF)
min(y, OxFFFF)

o]
]

y

Convert to binary and pad with zeros to 16 bits
x_bin = format(x, '016b')
y_bin = format(y, '016b')

Interleave the bits
result = "'
for i in range(16):
result += x_bin[i] + y_bin[i]

return int(result, 2)

There are also other approaches to compute distances between two encrypted points 12222

as mentioned for the methods in Section 2.3.1k

e Cosine similarity: This can be resolved by normalizing the vectors, i.e.,
x' = x/||x|| and y* = y/|y||, encrypting x" and y’, and then performing a
simple scalar product: - x}y;.

e Euclidean Distance: would require a square root operation.
Instead we use the Squared Euclidean Distance instead: SED(x,y) =
Zz@l —y;)?

e« Manhattan Distance: in this case it also requires computing the absolute
value.
If you encrypt only binary values (i.e., X,y such that z,,y, € {0,1} for all
i), you can reformulate: MD(X,y) = >_ (z; — 7:)? = HD(X,y) which is the
Hamming Distance . For non-binary vectors, you can at least compute
the Squared Manhattan Distance SMD(x,y) = > (2; — y;)? but this is
missing a square root to recover the standard Manhattan distance.

Rounding off, all of these methods have the problem of relying on calculations on
floating point numbers, which is not ideal for homomorphic encryption. Another way
could be to normalize the coordinates to integers, with a fixed order of magnitude,
but it is not worth the effort, as the z-order encoding is already a good solution for
this problem.

32

Y

Chapter 5

Conclusion

5.1 Summary

In this thesis, I presented a protocol for finding nearby parking spots on the path of
a zero-trust scenario. The protocol is based on the use of homomorphic encryption
to protect the client’s position and the parking spots, and it uses a combination
of publish/subscribe with request/response protocols to allow clients to find nearby
parking spots without revealing their position to the server. The protocol is designed
to be scalable and to work in a case, where the server cannot be trusted to handle
sensitive data.

5.1.1 Results

From the testing phase, we can conclude that the protocol is feasible and functional.
The performance of the homomorphic encryption scheme is acceptable for a real-
world scenario, although it is still computationally more expensive than a traditional
RSA solution. However, it can be applied in a server zero-trust scenario, for instance
where the server cannot be trusted to handle sensitive data. The introduction of
PRE (Proxy Re-Encryption) allows us to offload the computation to a trusted third
party, which can be used to compute the distances between the client position and
the parking spots without revealing the client position to the server. Moreover,
the presented approach resolves an issue present in the previous alternative solution
that uses HE of the server possible leak of client position, under threat model (See

Section [3.8.1)).

33

5.1.2 Protocol Scalability

One additional factor to consider is the scalability of the protocol. The MCs and
LDs can be scaled horizontally, meaning that we can add more servers to handle
more clients and parking spots. The same applies to the server and workers; for
instance, we can have multiple servers handling different areas of a metropolis, each
with its own set of parking spots. However, the CA (Certificate Authority) cannot
be scaled linearly. Indeed, the CA could have multiple instances, but they would
need to be synchronized to issue compatible certificates for the same client.

5.1.3 Protocol Limitations and Security Analysis

In conclusion, the protocol presented in this thesis is a feasible solution for the
problem of finding nearby parking spots in a nearly zero-trust scenario. This was
possible thanks to the usage of network protocols, such as the publish/subscribe
and request /response, combined with homomorphic encryption to create encrypted
blobs of malleable data. During my work, I concluded that even though the pub-
lish /subscribe protocol is preferred for this kind of application, it struggles to match
the requirements of a zero-trust scenario. Moreover, working with homomorphic
encryption adds the requirement that the server is not allowed to know the plain
text of the clients. This is a crucial point, as it does not allow us to infer information
from the client data. So, the request/response protocol works better in this sense:
the client requests anonymously a service, the server responds by applying a list of
operations to the encrypted data, and then the client can decrypt the result. In the
opposite case, the server would need to know when to respond to the client, which
is most of the time a consequence of a side-effect to the request. Let us consider the
case of the LA-MQTT protocol (see Section : the client subscribes to a topic,
and the server publishes the result based on the client’s location. In this case, the
server needs to know the client’s position to publish the result. Indeed, if this were
the case, we would not be able to apply the homomorphic encryption scheme.

If we were to design a truly zero-trust protocol, no dependency on a central Certifi-
cate Authority (CA) would be necessary. This is a common practice today, especially
in blockchain-based systems, where the CA is replaced by a distributed ledger. How-
ever, such a change would require a complete redesign of the protocol, as the CA
currently handles certificate issuance for both clients and parking spots. It would
also necessitate a different approach to client and parking spot authentication and
authorization. Furthermore, this change would significantly increase the computa-
tional burden on each sensor. Fach sensor would first need to verify whether a client
is authorized to access its data, and then encrypt the data using the client’s public
key. In our case study, this is not feasible, as Location Detectors (LDs) are resource-
constrained devices that cannot perform such complex and frequent cryptographic

34

operations.

5.2 Future Works

The testing phase revealed several areas for future work. One of them is the possible
integration of IoT-specific libraries, such as the SEAL Embedded ™21 library, which
is designed for resource-constrained devices. This would allow us to run the protocol
on edge devices, such as sensors or microcontrollers more efficiently. However, this
change would require adapting the entire system to use the Microsoft SEAL BEA23]
library across all components.

Another significant area of potential optimization involves adjacency calculation
using z-order encoding and Fully Homomorphic Encryption (FHE). In [ZIW20) the
authors propose a standard for computing meaningful queries over homomorphically
encrypted, position-related data. Although their context is a social media platform
tracking user locations to suggest nearby friends, the methods are highly relevant
here. Their approach uses z-order encoding not only to encode spatial data but also
to support privacy-preserving preference levels. For example, a user may wish to
share their location with a friend, but not reveal the exact position. By applying a
preference bitmask, the user can selectively disclose only a coarser granularity of the
z-order encoding. The paper ZBV20 3150 demonstrates how to compute the exact
distance between two points by constructing the smallest encoded bounding box
that contains them—entirely under encryption. Integrating such concepts into our
protocol could allow us not only to identify parking spots in the same area but also
to estimate distances securely. Our encoding strategy is based on converting GPS
coordinates into z-order curves, offering an approximate but compact representation
of spatial areas. While this encoding introduces a certain error margin, the trade-off
may be acceptable—or even beneficial—as it contributes to obfuscating the precise
location of the user.

35

36

References

[BBS9S]

[BGV12]

[BNT19]

[Gen24|
[Iba22]

[LPR10]

IM*22]

[M*23)]

IND21]

Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible proto-
cols and atomic proxy cryptography. In Lecture Notes in Computer

Science, Lecture notes in computer science, pages 127-144. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. In Proceedings

of the 3rd Innovations in Theoretical Computer Science Conference,
New York, NY, USA, January 2012. ACM.

Meriem Bettayeb, Qassim Nasir, and Manar Abu Talib. Firmware
update attacks and security for IoT devices. In Proceedings of the
ArabWIC 6th Annual International Conference Research Track, pages
1-6, New York, NY, USA, March 2019. ACM.

Luca Genova. Privacy nei servizi location-based service: Utilizzo della
crittografia omomorfica con la-mqtt, 2024.

Alberto Ibarrondo. Pyfhel: Distance coordinates distance calculation
tricks. "https://github.com/ibarrond/Pyfhel/issues/1565", 2022.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lat-
tices and learning with errors over rings. In Advances in Cryptology
— FUROCRYPT 2010, Lecture notes in computer science, pages 1-23.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

Federico Montori et al. La-mqtt: Location-aware publish-subscribe
communications for the internet of things. ACM Transactions on In-
ternet of Things, page 28, 2022.

Muhammad Mazhar et al. Security challenges in iot devices: A com-
prehensive review. Internet of Things, 22:100779, 2023.

Deepika Natarajan and Wei Dai. SEAL-embedded: A homomorphic en-
cryption library for the internet of things. IJACR Transactions on Cryp-

37

"https://github.com/ibarrond/Pyfhel/issues/155"

[o™]

[P+17]

[PDVRC21]

[SEA23]
[SHB14]

[ZLW20]

tographic Hardware and Embedded Systems, (3):756-779, July 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8991.

OpenFHE org et al. openfhe-python.

POLYAKOV et al. Fast proxy re-encryption for publish/subscribe sys-
tems. ACM Transactions on Privacy and Security, 20(4), 2017.

Muhammad Talha Paracha, Daniel J. Dubois, Narseo Vallina-
Rodriguez, and David Choffnes. Iotls: understanding tls usage in con-
sumer iot devices. In Proceedings of the 21st ACM Internet Measure-
ment Conference, IMC 21, page 165-178, New York, NY, USA, 2021.
Association for Computing Machinery.

Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL,
January 2023. Microsoft Research, Redmond, WA.

Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained
Application Protocol (CoAP). RFC 7252, June 2014.

Yifan Zhang, Yingjiu Li, and Robert H Wang. Privacy-preserving lo-
cation queries with homomorphic encryption. Computers € Security,
99:102064, 2020.

38

https://tches.iacr.org/index.php/TCHES/article/view/8991
https://github.com/Microsoft/SEAL

Ringraziamenti

Credo che una singola sezione di ringraziamenti a fine tesi non sia sufficiente per
riassumere tutte le persone che mi hanno seguito, accompagnato, sopportato e sup-
portato durante questo percorso. Sono sicuro che anche chi non verra nominato
personalmente sapra che possiede un posto speciale nella mia vita e non solo su
questo pezzo di carta.

Vorrei iniziare ringraziando i miei genitori Massimo e Roberta per avermi concesso
questa occasione unica. Ricordo i tempi di inizio superiori in cui, per quanto abbas-
tanza portato, non prevedevo questo futuro accademico. Con il senno di poi penso
che questa esperienza possa essere inclusa nelle scelte che rifarei senza pensarci due
volte. Non posso immaginare come sarebbe potuto essere questo percorso senza i
preziosissimi aiuti dell’esperienza di mia madre e dall’infinita pazienza e apprensione
di mio padre. Solamente quando ti rendi conto che sei alla fine ogni singola parola
spesa per te assume un significato diverso da quello colto originariamente: piu reale,
piu sentito, pit tuo. Successivamente un grazie anche a Pietro che, nonostante i
continui attriti, le discussioni e le diversita, so che mi augura sempre il meglio e mi
sprona a modo suo; sono piu che convinto che anche lui eccellera nel suo percorso
universitario e di vita.

Un infinito grazie ai quattro nonni, che ho la fortuna di avere accanto anche alla fine
di questo percorso. Speravo di potermi presentare alla cerimonia con una Fellali,
anche se con gli anni ho appreso che la preferisco solo come ricordo. Un grazie
anche a tutti gli altri parenti che mi hanno ascoltato durante le mie lamentele di un
diciotto e condiviso i momenti di gioia di un trenta (voti di materie di cui a stento
capivano il nome).

Ovviamente non si possono dimenticare professori e insegnanti, passati e futuri, una
dedica speciale va soprattutto a loro, che ogni giorno, lezione dopo lezione, ora dopo
ora riescono a trasmettere il valore della conoscenza. Mi auguro che questo possa
essere sempre trasmesso e che sia motore di ricerca della verita scientifica per gli
studenti futuri.

Vorrei anche ringraziare tutti gli amici e conoscenti: quelli che conosco da una vita,
quelli che ho incontrato da poco, quelli con cui ho perso i rapporti e quelli con cui li
ho riallacciati. Penso che ognuno di loro mi abbia fatto in parte cambiare e crescere a
modo suo, permettendo tutto questo. Spesso si sente dire che questi saranno gli anni
migliori della nostra vita, forse ¢ ancora troppo presto per smentire o confermare
cio ma, grazie a voi, so di aver condiviso delle esperienze fenomenali e affrontato i
minimi piu bassi. Non smettero mai di portarvi con me e, anche se le prospettive
future attuali prevedono due anni lontano, in queste storie non ¢’é¢ ancora scritta la
parola fine.

Per finire, un piccolo grazie anche a me stesso, per ricordarmi di cosa sono capace
dopo tutto quello a cui sono andato in contro ed ho affrontato a testa alta. Chiudo
cosl questi ultimi tre anni di vita, che siano la rampa di lancio per qualcosa di
incredibile.

	Introduction
	Background
	Request-Response Protocol
	HTTP
	Request-Response in IoT devices
	CoAP

	Publish-Subscribe Protocol
	MQTT
	LA-MQTT

	Universal Location Referencing
	Background: Distance Measures Between Vectors
	Cantor Pairing

	Space Filling Curves
	Z-order Curve

	Privacy Preserving Techniques
	Homomorphic Encryption
	Homomorphic Encryption Types
	HE Translation Key

	Usage of HE for Matching
	PHE and FHE Implications

	System Architecture
	Use Case
	System Overview
	Actors
	Location Data Source
	Mobile Clients
	Server
	Certification Authority / Proxy
	Worker

	Network Protocol and Communication
	Usage of different network protocols

	Protocol Overview
	Distance Preference
	Scenario
	Protocol Flow

	Security Considerations
	Threat Model
	Mitigation Strategies Malicious Actors

	Testing
	Testing Methodology
	Performance Evaluation

	Conclusion
	Summary
	Results
	Protocol Scalability
	Protocol Limitations and Security Analysis

	Future Works

