ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Dipartimenti di Informatica - Scienza e Ingegneria
Corso di Laurea in Informatica

Resource Estimation of Quantum Programs

through Type Inference:
QuRA and Shor’s Algorithm

Relatore: Presentata da:
Chiar.mo Prof. Omar Ayache
Ugo dal Lago

Correlatore:

Dott.

Andrea Colledan

I Sessione
Anno Accademico 2024/2025

The best feeling

1s when you know

how to be lucky

The original phrase “know how to be lucky” is grammatically
awkward because luck is typically seen as something that
happens to you rather than something you actively do.

Contents

[Abstractl
(I _Introduction|

2 Quantum Computing Principles|
2.1 A Little Bit of History| oL
[2.2 Postulates of Quantum Mechanics[.
2.3 What'saqubit? o
[2.3.1 No-cloning Theorem|
2.4 Quantum Circuits|.
2.4.1 Quantum Gates|
242 Universal Gates| oo
2.5 Quantum Algorithms|

[3 Shor’s Algorithm|
[3.1 The Impact on Cryptography|
I;illll E:l;!:i{il‘g:iil :Stiilgz s!t lll§: ‘LI!' ---------------------

[3.2.1 'The New Advantage|

(3.3 The Protocoll o
[3.4 The Period-finding Algorithm|

[4 Quantum Programming Languages|
MI TIntroductionl
[4.1.1 Categories of Quantum Programming Languages|.

4.2 Quipper|
[4.2.1 Proto-Quipper-RA|

[4.2.2 Entangling Two Qubits in Proto-Quipper-RA[.

4.3 QuRA|
[4.3.1 Core Functionalityl
[4.3.2 Execution Example and Analysis|
[Width Analysis of Shor’s Quantum Subroutine|
Islill E:ilg:!ll‘l :i!l!lg:l !lIg:I -----------------------------
5.2 Quantum Phase Estimation|
I:il;i (Jl;!!:ls: l I]ll!:l‘l!zlll
B3T Adder
H.3.2 Modular Adderlo
[5.3.3 Controlled Modular Multipler|.
[5.3.4 Modular Exponentiation|o
Li.;i.:i l;!z!zl g!l !llg: E!li!s:lg: l l]ll!:li!!lll
(H.3.6 Shor’s Width Estimationl
6 Results and Future Workl
61 Conclusions
[6.2 Ongoing and Future Workl

[Bibliography|

List of Programs

[4.1 Proto-Quipper-RA Bell pair| 23
[4.2 Applying hadamard gates to a list of qubits| 25
b.1 The Shor functionl.o 29
b2 Adder circwitl 32
[>.3 Adder first phase circuit|o 33
[>.4 Adder second phase circuit|. 34
b5 Subtractor cireuit]lo o 35
[>.6 Carry operation| 36
[5.7 Sum operation|.o 36
[>.8 Inverse carry operation|o 36
H.9 Modular adder circuitf 38
[>.10 Conditional deleting subroutinel 39
.11 Inverse modualr adderl L. 40
[>.12 Control modular multiplier circuit|. 43
(.13 Find bit subroutine 44
[H.14 Bit wise Toffoli subroutine 45
[>.15 Conditional register transter subroutinel 46
[>.16 Inverse control modular multiplier|. 47
[5.17 Modular exponentiation circuit| 49

618 Oracle functionl oo 50

List of Figures

2.1 Bloch sphere representation. Image adapted from Glosser.ca [16]| . . .
5.1 Shor’s algorithm circuit structure. Adapted from [4f|
5.2 Adder circuit structure. Reproduced from @]]
5.3 Carry and sum operation. Reproduced from [39]
5.4 Modular adder circuit structure. Reproduced from [39]
5.5 Control modular multiplier circuit structure. Reproduced from

5.6 Modular exponentiation circuit structure. Reproduced from [B9] . . .

Sommario

Il calcolo quantistico promette di risolvere alcuni problemi complessi sfruttando i
principi della meccanica quantistica, come la sovrapposizione, che consente ai qubit
di sfruttare il parallelismo in un modo diverso da quello disponibile nel calcolo
classico. Nonostante questo potenziale, i dispositivi quantistici odierni presentano
limitazioni significative, come alti tassi di errore, tempi di coerenza brevi e nu-
mero limitato di qubit. Stimare con precisione le risorse necessarie agli algoritmi
quantistici, in particolare il numero di qubit e di operazioni, ¢ fondamentale per
determinarne la fattibilita sull’hardware esistente e su quello del prossimo futuro.
Questa tesi affronta tali sfide con QuRA, un tool per I’analisi del consumo di risorse
di programmi quantistici. L’approccio ¢ dimostrato attraverso un’analisi dettagliata
dell’algoritmo di Shor, un algoritmo quantistico chiave con importanti implicazioni
per la crittografia grazie alla sua capacita di scomporre efficacemente grandi numeri
interi, minacciando di rompere protocolli come RSA. Fornendo garanzie matem-
aticamente supportate sui limiti delle risorse, questo lavoro chiarisce le esigenze
pratiche dell’implementazione dell’algoritmo di Shor. Questi contributi hanno im-
plicazioni significative sia per lo studio teorico che per la realizzazione pratica del
calcolo quantistico.

il

Abstract

Quantum computing promises to solve certain complex problems by exploiting the
principles of quantum mechanics, such as superposition, which allows qubits to lever-
age parallelism in a way that differs from what is available in classical computing.
Despite this potential, today’s quantum devices have significant limitations, such
as high error rates, short coherence times, and a limited number of qubits. Accu-
rately estimating the resources required by quantum algorithms — in particular,
the number of qubits and operations — is essential to determine their feasibility
on current and near-future hardware. This thesis addresses these challenges with
QuRA, a tool for analysing the resource consumption of quantum programs. The
approach is demonstrated through a detailed analysis of Shor’s algorithm, a key
quantum algorithm with important implications for cryptography thanks to its abil-
ity to efficiently factor large integers, threatening to break protocols such as RSA.
By providing mathematically supported guarantees on resource bounds, this work
clarifies the practical requirements for implementing Shor’s algorithm. These contri-
butions have significant implications both for the theoretical study and the practical
realization of quantum computing.

il

v

Chapter 1

Introduction

Some problems have too many paths to attempt — but what if a computer could take
all of them at once? This is the promise of quantum computing. On the other hand,
classical computers can only dream of this possibility. These astonishing machines,
built on the discovery of quantum mechanics, have different fundamentals; they use
the so-called “Modern Physics” in order to unravel an enormous potential. This fun-
damental difference enables quantum computers to achieve exponential speedups for
various problems in cryptography [36], optimization [19], and simulation of quantum
systems.

At the heart of this difference lies the unit of information itself. Classical computers
process information using bits, which can take the value of either 0 or 1. Quantum
computers, in contrast, use quantum bits, or qubits, which can exist in a linear com-
bination of both 0 and 1 simultaneously — a property known as superposition. This
allows qubits to encode and process exponentially more information than classical
bits, enabling quantum algorithms to realize the so-called quantum advantage [41].

Today’s quantum devices still struggle with high error rates, short coherence times,
and a limited number of logical qubits. These constraints make it crucial to under-
stand how many resources a quantum algorithm truly needs. Knowing precisely how
many qubits and how many operations are required helps us determine whether an
algorithm can realistically run on the quantum hardware we currently have or may
have in the near future.

This work is motivated by the quest for more effective ways to analyze and opti-
mize the resources used by quantum algorithms. As quantum hardware improves,
predicting and reducing resource requirements becomes increasingly important if we
want to run practical quantum algorithms. Currently, estimating these resources is
often done manually or through classical simulations, which can be slow, prone to

errors, and difficult to scale for more complex programs.

This thesis addresses these challenges by examining resource estimation through type
inference, using QuRA (Quantum Resource Analysis) [7] to mechanically verify the
resource requirements of Shor’s algorithm. The main contribution of this work is
a detailed analysis of the space complexity of Shor’s algorithm, performed semi-
automatically through QuRA.

Shor’s algorithm is central to this study because of its profound impact on cryp-
tography. Its ability to factor large integers efficiently poses a serious threat to
widely used cryptographic protocols like RSA, which underpins much of today’s
digital security. By analysing the resources required to implement Shor’s algorithm,
this thesis shines a light on what it would realistically take to execute a quantum
algorithm capable of compromising current cryptographic systems.

QuRA does not just estimate resources — it formally verifies them. When one
writes a program in QuRA’s language, Proto-Quipper-RA, the type checker infers
how many qubits and operations are needed to run the program in a worst-case
scenario, automatically discharching mathematical proofs to an SMT solver [5], to
ensure that these bounds are correct.

The conclusions drawn here impact both theoretical quantum computing research
and the practical implementation of quantum algorithms. On the theoretical side,
this work presents, to the best of our knowledge, the first implementation of Shor’s
algorithm, whose resource requirements are mechanically guaranteed by construc-
tion, thanks to QuRA’s support for rich type annotations.

Related Work Many works have tackled the problem of quantum resource esti-
mation, both examining the theory behind it and creating practical tools [111, 40].
Key developments in this sense include quantum programming languages that can
analyze resource use as you write code, methods to optimize quantum circuits auto-
matically [21], and compilers that convert high-level quantum programs into efficient
circuits [20]. However, systematic approaches to resource estimation through type
inference remain relatively underexplored, representing a significant opportunity for
advancing the field [2, 17, 39].

Outline The structure of this thesis is designed to take the reader step by step
from the foundations of quantum computing to the specific results of this research.

o Chapter 2 begins by setting the stage with a brief historical look at quantum
mechanics and the principles that underpin it. The discussion moves on to the
qubit, exploring its peculiar properties — such as superposition and entangle-
ment — and the implications of the no-cloning theorem. The chapter wraps

up with an introduction to quantum circuits and gates, as well as a brief look
at quantum algorithms.

Chapter 3 turns to Shor’s algorithm, with a focus on its profound implications
for cryptography. It contrasts classical and quantum approaches to factoriza-
tion, highlights which cryptographic protocols become vulnerable in light of
Shor’s breakthrough, and explains the algorithm itself, paying close attention
to the period-finding routine at its core.

Chapter 4 shifts the focus to the tools used to implement quantum algorithms
— quantum programming languages. After categorizing different paradigms, it
delves into two notable examples: Quipper (and its extension, Proto-Quipper-
RA) and QuRA tool. Through code snippets and explanations, the chapter
shows how these languages express quantum computations in practice.

Chapter 5 is at the heart of this work, presenting an analysis of the circuit
width complexity of Shor’s algorithm. It starts by outlining the overall struc-
ture of the circuit before zooming in on its key components, such as Quantum
Phase Estimation and the oracle function. The oracle itself is broken down into
its building blocks — the adder, modular adder, controlled modular multiplier,
modular exponentiation, and the root of the oracle — with each analysed in
detail.

Chapter 6 reviews the key results of this thesis and reflects on their broader
impact. It closes by exploring promising avenues for future research.

Chapter 2

Quantum Computing Principles

2.1 A Little Bit of History

In the beginning of the 20" century, physicists realized that the microscopic world
— atoms, electrons, photons — is governed by different rules than those we are used
to in the macroscopic world that surrounds us every day. This finding eventually
became the formal theory of quantum mechanics and, generations later, the notion
of quantum-based computing.

For a few centuries prior to that, the main tool people used to describe the world was
classical physics. Isaac Newton described it in the 17" century [27] and it was able
to exactly predict the movement of planets, projectiles, and other observable objects.
At the beginning of the 20" century, this paradigm was expanded considerably with
Albert Einstein’s theory of relativity, which revolutionized our understanding of
space, time, and gravitation [12].

But at extremely small scales, experiments produced results that classical theories
could not account for. To deal with this, physicists came up with the so-called old
quantum physics [30] — a combination of early models and concepts — that even-
tually became the complete theory of quantum mechanics by the mid 20*" century.

Quantum mechanics brought new notions quite different from classical intuition.
One of them is the Heisenberg uncertainty principle, according to which certain pairs
of physical observables, such as position and momentum, cannot simultaneously have
a precise determination [22]. Another is superposition, the ability of a quantum
system to be in many states at once until someone makes a measurement. And
a third key concept is entanglement, a type of relationship between particles that
withstand explanation by classical physics. Together, they formed the backbone of

quantum computing.

Quantum computers represent an extraordinary leap forward that could help us
overcome the fundamental limitations of classical computing. That said, it’s impor-
tant to remember that quantum computers are not simply a more efficient version
of classical computers. They are governed by entirely different rules, which open
doors to new possibilities as well as new challenges that researchers are working on
to this day.

2.2 Postulates of Quantum Mechanics

These foundational principles, adapted from Nielsen and Chuang [28], provide the
mathematical backbone of quantum computing:

1. State space

Each isolated quantum system corresponds to a complex Hilbert space. The
system’s state is represented by a unit vector in that space. For a qubit (two-
level system) this looks like:

[Y) = a|0) + B[1) st |af* +[8)* = 1. (2.1)

2. Evolution

In the absence of measurement or external interaction, the system evolves
deterministically according to the Schrodinger equation. If the system is in
the state |¢(t)) at time ¢, its evolution is governed by the Hamiltonian H of
the system:

L d
th— (1)) = H [¢(t). (2.2)

Equivalently, the evolution over a time interval can also be expressed as the
application of a unitary operator U(tq,t):

(t2)) = Ulta, ta) [0(t1)) st UU=1. (2.3)

The unitary operator U can be interpreted as a quantum gate that transforms
the state according to this postulate.

3. Measurement

Observation, i.e. every interaction with the environment, collapses the quan-
tum state in a way described by a set of measurement operators {M,,}. If the

state before measurement is |¢), the probability of

p(m) = (G| M, My, [4) (2.4)
) = o 9), (2.5)
p(m)

with the completeness condition ensuring valid probabilities:

> MM, =1. (2.6)

m

. Composite systems

The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. For example, for two qubits
the overall state space is

H=C'®C*=C" (2.7)

If system 1 is prepared in state |¢);) and system 2 in state |1)9), then the joint
state of the total system is the tensor product

[91) @ |2) - (2.8)

Superposition The tensor product structure of composite systems can be
understood by considering the superposition principle. If |A) is a state of
system A and |B) a state of system B, then the combined system should
include the state |A) ® |B). Because quantum mechanics allows any linear
combination (superposition) of states to also be a valid state, the joint state
space must contain all possible superpositions of such product states. This
requirement naturally leads to the tensor product construction for the state
space of composite systems.

Importantly, not all states in the composite space can be written as a simple
product of states from each subsystem. Such states, which can be expressed
as

|¢>AB = |77Z}>A ® |¢>B) (2.9)

are called separable or product states. For example,
004 @ [1)g (2.10)

is a separable state.

Entanglement In contrast, entangled states cannot be factored into states
of individual subsystems. A canonical example is the Bell state

1
V2

which exhibits correlations between the two qubits that cannot be explained
by classical means.

|®T) = (100) +|11)), (2.11)

2.3 What’s a qubit?

A qubit (quantum bit) is the fundamental unit of information in quantum com-
putation. It is a quantum system with a two-dimensional Hilbert space, meaning
it can be described by two orthonormal basis states, typically denoted |0) and |1).
Unlike classical bits, a qubit can exist in a superposition [4| of these two states, which
lives in the state space

The Bloch Sphere A qubit’s state can also be represented geometrically on the
Bloch sphere, a unit sphere in R? that provides an intuitive visualization of its state
space. Any pure qubit state |¢)) can be expressed using two real parameters, 6 and

o, as
[t)) = cos (g) |0) 4 ¢ sin (g) 1),

where 0 < 0 <7 and 0 < ¢ < 27.

2= 1)

Figure 2.1: Bloch sphere representation. Image adapted from Glosser.ca [16]

Here, 6 corresponds to the polar angle (measured from the positive z-axis), and ¢
is the azimuthal angle in the xy-plane. This parametrization maps the qubit state
to a unique point on the surface of the sphere. The north pole (6 = 0) represents
the basis state |0), and the south pole (6 = 7) corresponds to |1). Superpositions
lie on other points on the sphere’s surface, with the relative phase between |0) and
|1) encoded in the azimuthal angle ¢.

The Bloch sphere is a powerful tool to visualize single-qubit operations as rotations
around axes, aiding intuition for quantum gates and state evolution.

How are they made?

Physically, a qubit is realized using any quantum system that has exactly two well-
defined energy levels that can be manipulated and measured. These systems are
governed by the Hamiltonian, which describes their energy structure and dynamics.
Several distinct physical implementations of qubits exist, each with advantages and
limitations in terms of coherence time, scalability, and controllability:

e Superconducting qubits: These are built using Josephson junctions in su-
perconducting circuits. They are among the most widely used in current quan-
tum processors (e.g., by IBM and Google). They operate at millikelvin tem-
peratures and offer fast gate times.

e Trapped ion qubits: Individual ions are confined using electromagnetic fields
in a vacuum trap. Quantum information is encoded in the ion’s internal elec-
tronic states. Trapped ions offer high-fidelity operations and long coherence
times.

e Photonic qubits: Quantum information is carried Quantum Programming
Languages by individual photons, with polarization, time-bin, or path encod-
ing. Photons are robust to decoherence and ideal for quantum communication,
although implementing two-qubit gates is challenging.

Each of these platforms satisfies the fundamental requirements for qubit implemen-
tation, making them suitable for quantum computation under different contexts.

2.3.1 No-cloning Theorem

Another fundamental result in quantum mechanics is the no-cloning theorem,
which states that it is impossible to create an identical copy of an arbitrary unknown
quantum state.

Suppose we have an unknown state [¢)) and a fixed “blank” state |e) intended as a
target for cloning. We want to check if there exists a unitary operator U such that

U([y)®le)) =) @ ¢, (2.12)

meaning U copies the state |¢)) from the fist system into the second.

Proof: Consider two arbitrary normalized states |¢) and |¢). If cloning were pos-
sible, then

U(lp) @le)) = [Y) @), and U(lg) @ le)) = [¢) ©[9) .

Taking the inner product of these two results and using unitarity of U, we get

(W) = ((¥]e))*,

which implies
[(¢]¢)] =0 or L
Thus, |¢) and |¢) must be either orthogonal or identical states.

To see why this is a contradiction for general states, consider the superposition state

10

|+) = |0>\J/r§‘1>. Then, by linearity,

v o) =v (L 010)

1

=5 (U(!0> ®le)) +U(|1) @ !6>))
1

= E<‘0>®’0>+|1>®|l>>’

which is not equal to the cloned state |+) @ [+) = $(]0) + [1)) ® (|0) + |1)).

Therefore, no such unitary U can exist that clones an arbitrary unknown quantum
state, proving the no-cloning theorem.

2.4 Quantum Circuits

Quantum circuits provide a framework for performing computations on quantum
systems. They are the quantum analogue of classical Boolean circuits (see Section
6 of the textbook [3]), but follow the laws of quantum mechanics.

A standard computation begins with n qubits initialized in the state [0)*™ (or some-
times the dual basis state [1)"). A sequence of quantum operations — reversible,
unitary gates — is then applied to the qubits, modifying the probability amplitudes
and relative phases of the quantum state. These gates exploit essential quantum
phenomena such as superposition, entanglement, and interference, which enable
quantum algorithms to achieve speed-ups over classical algorithms for certain prob-
lems.

As the qubits evolve under the action of the gates, the solution to the computational
problem is encoded in the amplitudes of the quantum state. Finally, a measurement
projects the quantum state onto one of the computational basis states, revealing the
result with a probability given by the squared amplitude of that state.

Designing quantum circuits that are both correct and efficient is crucial. The choice
and sequence of gates must guide the computation towards the desired result while
minimizing the consumption of physical resources and the accumulation of errors.
This makes quantum circuit design both a theoretical and an engineering challenge.

When analyzing and implementing quantum circuits, three key resource measures
are often considered:

e Width: the number of qubits (wires) required by the circuit.

11

e Depth: the length of the longest path of gates that must be applied sequen-
tially — that is, the number of time steps assuming parallel execution where
possible.

e Gate count: the total number of elementary gates used in the circuit.

These measures are critical when studying the feasibility of implementing quantum
algorithms on real hardware, where the number of available qubits is limited, co-
herence times are finite, and error rates are significant. Proving bounds on these
resources is therefore an essential part of both theoretical analysis and practical
design of quantum algorithms.

2.4.1 Quantum Gates

A quantum logic gate can be seen as the quantum analogue of a classical logic gate,
with some fundamental differences and constraints. Most importantly, quantum
gates must be unitary operations [2, ensuring that they are reversible and preserve
the total probability of the quantum system. This means they cannot create or
destroy information, and hence certain classical operations are forbidden in quantum
circuits:

e Fan-out: In classical circuits, the output of a gate can be freely copied to mul-
tiple wires (fan-out). In quantum mechanics, the no-cloning theorem forbids
copying an arbitrary quantum state, so fan-out is not allowed.

e Fan-in: In classical circuits, multiple wires can be merged (e.g., OR or AND
gates). In quantum circuits, such irreversible merging is not possible because
it would not correspond to a unitary (reversible) operation.

Quantum gates are mathematically represented by unitary matrices acting on the
state vector of the qubits. A single-qubit gate is represented by a 2 x 2 unitary
matrix, while a two-qubit gate is a 4 x 4 unitary matrix, and so on.

2.4.2 Universal Gates

In classical computation, the NAND gate (or equivalently NOR) is universal, mean-
ing any Boolean function can be implemented using only NAND gates. Quantum
computation also has the concept of universality, but it requires a different set of
gates because of the need for unitarity and reversibility.

In quantum computation, a set of gates is said to be universal if any unitary
transformation can be approximated to arbitrary precision by a finite sequence of
gates from this set. Some examples of universal set for quantum computing is:

12

e All single-qubit gates (e.g., the Pauli gates X, Y, Z, and the Hadamard gate
H) plus at least one entangling two-qubit gate, such as the controlled-NOT
(CNOT) gate.

e Another way to have universal gate set is with Toffoli gate and Hadamard gate
(see [1])

Together, these gates sets can approximate any unitary operation on n qubits. Un-
like classical gates, where universality is exact and discrete, in quantum circuits
universality is usually approximate because the space of unitary operations is con-
tinuous.

2.5 Quantum Algorithms

Quantum algorithms are systematic procedures designed to solve computational
problems by exploiting the unique features of quantum mechanics, such as superpo-
sition, entanglement, and interference.

While a quantum circuit represents a specific implementation of a computation —
a concrete sequence of gates acting on qubits — it only operates on inputs of a
fixed size. This means that a single circuit alone is not sufficient to fully describe
a quantum algorithm, which instead is a more general, abstract recipe capable of
handling inputs of arbitrary size.

Just as classical algorithms translate into different circuits depending on the size of
the input or other parameters. To describe quantum algorithms within the circuit
model, we therefore consider families of circuits: sets of circuits where each member
corresponds to a specific input size and correctly implements the desired computa-
tion for that size. In this way, a quantum algorithm can be seen as specifying how
to construct, for any given input size, the appropriate circuit to solve the problem.

This distinction between the abstract algorithm and the concrete family of circuits
that realize it is fundamental for designing scalable and meaningful quantum solu-
tions.

As an example, in Chapter [5| we will present an implementation of Shor’s algorithm,
where classical parameters are used to generate the specific quantum circuit corre-
sponding to the desired input size. This illustrates how a single algorithm gives rise
to a family of circuits rather than just one fixed instance.

13

14

Chapter 3

Shor’s Algorithm

3.1 The Impact on Cryptography

In 1994, Peter Williston Shor, an American mathematician, published a paper that
changed cryptographic security [36]. His work demonstrated that quantum com-
puters could outperform the best known classical algorithms for two mathematical
problems, solving them exponentially faster: modular exponentiation and prime
factorization.

Modern cryptography relies heavily on a fundamental mathematical challenge: given
a large integer N, finding its prime factors is computationally hard. For small num-
bers, this task is straightforward. For example, it is evident that 15 = 3 x 5. How-
ever, as numbers increase in size, this problem becomes computationally challenging.
Attempting to factor a 2048-bit number would require enormous computational re-
sources using classical methods.

3.1.1 Classical State of the Art

Before Shor’s breakthrough, the most efficient classical algorithm for integer factor-
ization was the General Number Field Sieve (GNFS)[6], which runs in time:

O (exp ((64/9)"3(log N)/3(log log N)*/?)) .

While this is technically sub-exponential, it is still too slow for the large numbers
used in cryptography like 1024-bit numbers. This computational barrier has allowed

15

cryptographers to build secure systems on the assumption that factoring large in-
tegers is intractable. It is a classic example of using computational complexity as a
security foundation.

3.1.2 Cryptographic Protocols Under Threat

Two of the most widely used cryptographic protocols directly depend on the hard-
ness of number-theoretic problems that Shor’s algorithm can solve efficiently.

3.2 RSA: The Factorization Fortress

The RSA cryptosystem builds its security directly on the integer factorization prob-
lem. In RSA, we begin by generating two large prime numbers p and ¢, and com-
puting their product N = pq, called the modulus. The modulus N is made public,
while the prime factors p and ¢ are kept secret.

From p and ¢, we compute Euler’s totient function ¢(N) = (p — 1)(¢ — 1), which
counts the number of integers coprime with N. To generate the public and private
keys, we then choose an integer e, called the public exponent, such that 1 < e <
©(N) and ged(e, ¢(N)) = 1. This ensures that e has a multiplicative inverse modulo

@(IN).

The private key d is computed as the modular inverse of e modulo ¢(N), i.e., it
satisfies the congruence:
ed =1 (mod ¢(N)).

This means d can be computed using the extended Euclidean algorithm, which
efficiently finds d such that ed — kp(N) = 1 for some integer k.

The pair (N,e) forms the public key and is published, while d (and equivalently
p and ¢) must remain secret. If an attacker manages to factor N into p and g¢,
they can compute ¢(N) and thus also compute d from e, breaking the encryption.
With d in hand, the attacker can decrypt any message that was encrypted with the
corresponding public key.

Diffie-Hellman: The Discrete Logarithm Challenge

The Diffie-Hellman key exchange protocol is based on the discrete logarithm prob-
lem. Given elements g and h in a finite group, the discrete logarithm problem asks
us to find an integer x such that ¢g* = h. In Diffie-Hellman, two parties agree on
a prime p and generator g, then exchange public keys g% mod p and ¢® mod p to
establish a shared secret g®® mod p.

16

Shor’s algorithm efficiently solves both the factorization and discrete logarithm prob-
lems, making it a threat to both RSA and Diffie-Hellman.

3.2.1 The New Advantage

The key insight behind Shor’s polynomial-time complexity of O((log N)?) is based
on the quantum computing’s ability to solve the period-finding problem more ef-
ficiently than classical ones. While bit-based computers must essentially search
through exponentially many possibilities to find the period of a function, qubit-
based computers can exploit quantum interference to perform this task in polyno-
mial time. By preparing a superposition of all possible inputs and applying the
Quantum Fourier Transform—which transforms from the computational basis to
the frequency domain—the quantum system can efficiently extract the hidden pe-
riod through interference patterns (see Section 3.5 of the textbook [25]), the quantum
system naturally amplifies the correct period through constructive interference while
suppressing incorrect answers through destructive interference.

3.3 The Protocol

Peter Shor found a way to convert the factorization problem into a period finding
problem, even it could seem a useless operation, this is actually the key factor in
making this problem solvable from a quantum computer. The next steps shows how
the algorithm changes the factorization of a number N (possibly prime) into an
order finding problem:

1. Pick a number a, 1 < a < N that is coprime with N (which means that
ged(a, N) = 1);

2. Find the “order” r of the function f,, N(x) = a" mod N, where r is the
smallest exponent such that " =1 mod N;

3. If r is even compute z = a’/> mod N.

If gcd(a’/? 41, N) # 1, then the factors {p, ¢} are in {gcd(z + 1, N), gcd(z —
1,N)}

Else find another a

3.4 The Period-finding Algorithm

Now we explain how the algorithm works on a quantum computer. The general
idea is to prepare quantum registers: one to encode the number N, and another

17

to explore all possible exponents in superposition. Thanks to the phenomena of
superposition and interference, the outcome of the quantum circuit gives, with high
probability, the information we need to determine the period. This quantum part
corresponds to step 2 of the aforementioned protocol.

We can break down the period-finding algorithm into two main steps:

1. Quantum Phase Estimation: We apply the quantum phase estimation al-
gorithm, using a unitary operator U which performs the modular multiplica-
tion by a modulo N. We start with a state of the form

0)**" @ |1),

where the first register has 2n qubits and the second register has n qubits
initialized to |1). The eigenvalues of U encode the period r, and the initial
state |1) can be expressed as a sum of eigenvectors of U. Because of this, after
applying the phase estimation circuit, we obtain an output in the first register

of the form)
22271’
r
where j is an integer chosen uniformly at random from 0,1,...,r — 1. This

result contains information about the period r hidden in the fraction j/r.

2. Post-processing with continued fractions: Once we measure the first
register and obtain an integer that approximates j/r 22", we use the continued
fractions algorithm (on a classical computer) to approximate the ratio j/r and
deduce the value of r. This classical step is necessary because the quantum
output is only an approximation to the actual period, and continued fractions
provide an efficient way to recover it exactly.

In essence, the quantum part gives us a good approximation of a rational number
whose denominator is the period r, and the classical part computes the exact value
of r from this approximation.

In Chapter [5, we will discuss in more detail how the quantum circuit can be imple-
mented, analyzing the width of its routines and subroutines.

18

Chapter 4

Quantum Programming Languages

4.1 Introduction

Classical programming languages, although fit for digital computation, are not
equipped to describe the principles and constraints of quantum mechanics. Fun-
damental quantum phenomena—such as superposition [4} entanglement [, and mea-
surement [3}—have no direct counterpart in classical logic or memory models. More-
over, quantum operations must be unitary [2] and reversible [5.3] and the no-cloning
theorem prohibits copying arbitrary quantum states—breaking assumptions
that be the reason for many classical programming paradigms.

Quantum programming languages (QPLs) are designed to bridge this gap by pro-
viding abstractions that naturally reflect the behaviour of quantum systems. Unlike
in classical computation, where variables can often be duplicated, reassigned, or dis-
carded freely, quantum data must be manipulated according to the rules of quantum
mechanics. For instance, if a variable represents a qubit, it cannot be arbitrarily
duplicated or reassigned before it is consumed—such as by applying a gate or per-
forming a measurement. Once a qubit has been used in an operation, the program
must track its usage to ensure it is not accidentally reused in a way that would
violate the principles of quantum physics.

4.1.1 Categories of Quantum Programming Languages

Quantum programming languages can be broadly divided into two categories, de-
pending on their level of abstraction and their intended execution model:

¢ QRAM-Oriented Languages
These languages assume an abstract Quantum Random Access Machine (QRAM)

19

model, extending the classical von Neumann model to include quantum mem-
ory and instructions. Examples include Q# and Open@QASM, which are de-
signed to express quantum programs that interact with quantum hardware or
simulators while maintaining a clear separation between classical and quantum
components.

QRAM languages usually expose primitives for allocating qubits, applying uni-
tary operations, measuring qubits, and integrating classical control flow. They
often feature syntax that resembles low-level assembly, allowing the program-
mer to explicitly orchestrate both classical and quantum operations.

These languages also serve as intermediate representations for quantum pro-
grams, making them suitable targets for compilers and toolchains that trans-
late high-level quantum algorithms into executable instructions for specific
hardware backends. For example, OpenQASM is often used to specify quan-
tum circuits that can be fed directly to quantum processors.

Circuit-Generation Languages

In contrast, circuit-generation languages focus on the construction and manip-
ulation of quantum circuits at a higher level of abstraction. They provide ex-
pressive, often functional, constructs to define and compose quantum circuits
programmatically, which are then compiled into lower-level representations
(such as QRAM instructions) for run time execution.

Popular examples include Qiskit, Cirg and Quipper. These frameworks typi-
cally offer features such as:

— Detailed control over the circuit layout and gate sequence
— Classical control structures and loops for scalable circuit construction

— Back-end integration for executing circuits on real or simulated quantum
devices

— Resource analysis with classical parameters and circuit optimization tools

Notably, some circuit-generation languages also include toolchains to transpile
circuits (see Qiskit Transpiling documentation [31])— transforming a high-level
circuit into an equivalent one that conforms to the native gate set and connec-
tivity of a given quantum device. Other critical steps supported include qubit
mapping and circuit optimization, aimed at minimizing depth, gate count, and
susceptibility to noise, which are crucial in the NISQ (Noisy Intermediate-Scale
Quantum) era.

Functional-style circuit-generation languages like Quipper, and @) Wire choose

20

a different approach, offering high-level abstractions inspired by functional
programming. They support powerful type systems that enforce quantum
constraints, enable formal reasoning about programs, and encourage modular,
compositional design. These properties are especially useful as quantum algo-
rithms grow in complexity, and they contribute to the development of robust
and verifiable quantum software.

Languages from this last category, and in particular Quipper, will provide the frame-
work for constructing circuits and for establishing the formal statements of our work.

4.2 Quipper

Quipper [35] is a domain-specific quantum programming language embedded in
Haskell, designed for the scalable construction of quantum circuits. A key concep-
tual distinction in Quipper is between circuit generation time and circuit execution
time [18]. During circuit generation, the programmer defines how a circuit should
be shaped for a family of classical inputs, including the size of registers or subcir-
cuits. This phase may include parameters known at generation time (e.g., an integer
specifying the number of qubits). During circuit execution, instead quantum states
represent inputs that will only be instantiated at execution time on a quantum de-
vice. This distinction allows Quipper to define general circuit families parametrized
by input size or structure, which is crucial for studying resource usage such as circuit
width.

One of the strengths of Quipper lies in the rich set of primitives it provides for
manipulating qubits, gates, and circuits. It supports common quantum gates, con-
trolled operations, ancilla management and measurement. Furthermore, it includes
higher-level features such as boxed subcircuits, which promote modularity and scal-
ability, as well as functions to estimate circuit resources like gate count, qubit usage,
and circuit depth.

Despite its many strengths, Quipper has some limitations. While Haskell provides a
strong type system and supports higher-order functional programming—both useful
in expressing abstract circuit construction—it lacks two type-theoretic features that
are particularly desirable in quantum programming: [linear types and dependent
types. Linear types enforce that quantum data is neither duplicated nor discarded
without measurement, in accordance with the no-cloning theorem. Dependent types
can further enhance correctness guarantees by allowing types to depend on values,
for instance, to encode circuit sizes directly in the type system.

21

Proto-Quipper These shortcomings motivated the development of Proto-Quipper,
a family of research-oriented languages based on Quipper [13], 8] 24 33}, 14, 32} 10, 9.
Each member of the Proto-Quipper family targets specific aspects of language de-
sign, offering a structured environment to study theoretical principles and to model
extensions of the original language.

Proto-Quipper incorporates linear types to enforce the no-cloning theorem at the
type level, ensuring that quantum data cannot be duplicated or discarded arbitrar-
ily. It also employs dependent types to allow classical parameters to describe and
control the structure of quantum circuits, encoding relationships between classical
and quantum data directly in the type system.

Overall, the Proto-Quipper family demonstrates how advanced type-theoretic tech-
niques—such as linearity and dependency—can provide strong correctness guaran-
tees and formal reasoning capabilities, while also offering a flexible framework for
exploring and extending the semantics of quantum programming languages.

4.2.1 Proto-Quipper-RA

Proto-Quipper-RA is a type-safe, functional quantum programming language de-
signed to support flexible and compositional resource estimation of quantum cir-
cuits. It builds on the foundations of Proto-Quipper but introduces a more expres-
sive type system that enables the static analysis of quantum resources such as gate
count, qubit usage, and circuit depth.

The type system of Proto-Quipper-RA combines three powerful techniques: refine-
ment types [37, 3], effect typing [20], 29], and closure types [34].

e Refinement Types Refinement types allow for attaching quantitive infor-
mation to types in order to express constraints on quantum resources. For
example, a type might encode the number of qubits a wire carries or the ex-
pected size of a subcircuit. These indices are parametric, in that they can
depend on classical input parameters, enabling precise and scalable reasoning
about families of circuits.

e Effect Typing Effect typing extends the type system to track the global
resource usage of a circuit-producing function. Each function is annotated
not only with the types of its inputs and outputs, but also with a symbolic
expression summarizing its side effects, such as how many gates it adds or
how many qubits it allocates. These effects are composed according to the
structure of the program, allowing the estimation of total circuit cost.

e Closure Types Closure are used to safely handle higher-order functions that
generate subcircuits. When such functions capture wires from the surround-

22

ing scope, closure types ensure that the size of these captured resources is
correctly reflected in the analysis. This mechanism is essential for maintaining
soundness in the presence of abstraction and partial application.

4.2.2 Entangling Two Qubits in Proto-Quipper-RA

Now we slow down a bit and take time to understand how to build a quantum circuit
written in Proto-Quipper-RA. The following example aims is to produce a Bell pair,
i.e., to entangle two qubits 4| in the state |®T) = \%(|00> +[11)).

1 bell :: '[0](

2 forall [0,0] dq.

3 forall [0,0] dp.

| (Qubit{dq}, Qubit{dpl})

5 -0[2,0]

6 (Qubit{max(dq+1, dp) + 1}, Qubit{max(dq+l, dp) + 1}))
7 bell dq dp (q, p) =

8 let q = (force hadamard @dq) q in
9 let (q,p) = (force cnot @dq+l1 @dp) q p in
0 (q,p)

Listing 4.1: Proto-Quipper-RA Bell pair

Function Body Description
We now describe the operations performed by the circuit, line by line.
1. let q = (force hadamard @dq) q applies a Hadamard gate to qubit g.

2. let (q,p) = (force cnot @dg+l @dp) q p applies a CNOT gate with con-
trol q and target p.

3. The final result is the pair (q, p), now entangled.

Type Signature Explanation

Going deeper with the explanation, we proceed talking about the “elements” of the
language (e.g. !, forall, Qubit, —o.) and then the usage of the parameters.

e -0 denotes a linear implication called lollipop function, it distinguish be-
tween the shape of input the and the shape output.

e forall dq. forall dp. introduces a symbolic index variable dq and dp which
is the dependent type property of the language, these parameters are clas-
sical, which means they are known at generation time.

23

e ! is a operator from linear logic; it indicates that the function does not
contains linear resources bits nor qubits so there is no violation of the No-
cloning theorem [2.3.1]

e (Qubit, Qubit) is the input type: a pair of qubits.

Resource—Tracking Annotations

Now that we have grasped the constructs and symbols of the language, we can
proceed to explain the dependent classical parameters.

e —0[2,0] the index 2 in -0[2,0] is the effect annotation of the function. It
tells us that bell function produces a circuit of width at most 2 when applied.
On the other hand the 0 in -0 [2,0] is the closure annotation, the function’s
closure has width 0, this means that no additional resources are being added
from the environment.

e ! [0] The annotation 0 on the bang is the closure index. It indicates that no
extra qubit resources are captured from the surrounding context.

e forall[0,0] dq. forall[0,0] dp. the two indices means the same of the
indices in -o

e (Qubit{dq}, Qubit{dp}) is the input type, where the indices are computed
to reflect resource usage after the application of gates. In this case the
parameters inside the brackets define the depth of the qubit. Similarly,
(Qubit{max(dg+1, dp) + 1}, Qubit{max(dg+1, dp) + 1}) is the output
type, where the indices are updated to reflect the new resource usage after
applying the circuit operations. This way of annotating qubit types with sym-
bolic expressions, such as dq, dp and their combinations, represent the use
of refinement types in Proto-Quipper-RA: types are refined with quanti-
tative information (like depth), enabling precise reasoning about local circuit
metrics.

This example demonstrates how Proto-Quipper-RA expresses not only the behaviour
of a quantum circuit but also the symbolic tracking of resources such as width and
wire depth. Having a lot of details makes the language particularly useful for formal
reasoning and resource estimation.

4.3 QuRA

QuRA is a specialized tool designed for analysing the resource consumption of quan-
tum circuits produced by quantum circuit description programs. Implemented in

24

Haskell, QuRA is originally based on the foundational work of Colledan and Dal
Lago [9], focusing on estimating the width, depth and gate counts of quantum cir-
cuits generated by programs written in the Proto-Quipper language.

4.3.1 Core Functionality

The tool operates by taking as input programs written in Proto-Quipper-RA, and
returns both the program’s type and the width and depth of the circuit it constructs.
QuRA employs a sophisticated approach combining a type inference algorithm and
SMT-solving (see textbook [5]) to automatically infer circuit properties with min-
imal program annotations, making it highly accessible for quantum software devel-
opers.

Instead of synthesizing indices that describe specifically the width of constructed
circuits, the system now synthesizes indices based on abstract resource composition
operations. When performing checks on these indices, the operations are translated
into concrete arithmetic operators depending on the specific resource being analysed.

Finally, QuRA’s analysis is underpinned by a sound theoretical foundation: type
checking in QuRA ensures that the inferred bounds are correct for every possible
assignment of the classical parameters, guaranteeing that resource constraints hold
parametrically, not just for particular inputs.

4.3.2 Execution Example and Analysis

To illustrate the execution of an algorithm written in Proto-Quipper-RA and its
analysis with QuRA, consider the following example, which applies Hadamard gates
to a list of n qubits. This program demonstrates how dependent and linear types
are used to reason about resources such as depth and width symbolically.

mapHadamard :: ![0](
forall[0,0] d.
forall[0,0] n.
(List[_<n] Qubit{d})
-o[n,0]
(List [_<n] Qubit{d+1}))
mapHadamard d n list =
let hadaStep = 1lift forall step. \(gs,q) :: (List[_<step] Qubit{d
+1}, Qubit{d}). gs: (force hadamard @d) q
in fold(hadaStep, [], list)

Listing 4.2: Applying hadamard gates to a list of qubits

Running the QuRA tool on this program with the command:

25

$ qura mapHadamard.pq -g width -1 depth

produces the following output:

Output:
Analyzing file ‘mapHadamard.pq’.
Checked type, width, depth.

mapHadamard :: ![0] (forall[O, O] d. forall[O, O] n.

List[_ < n] Qubit{d} -o[n, 0] List[_ < n] Qubit{d + 1})

Let us analyse this output in detail:

This

The type reported by QuRA matches the declared type of the function, con-
firming that the program is well-typed and that the type constraints imposed
by the type system hold for all values of the classical parameters d and n. This
reflects the theoretical guarantee of correctness for all possible instantiations
of these parameters.

The annotation ! [0] indicates that the function is duplicable and does not
consume linear resources itself, in line with linear type discipline and the
no-cloning theorem.

The dependent types appear in the quantified variables forall[0, 0] d.
forall[0, 0] n., which allow the function to express the behaviour of the
circuit parametrically in terms of d (the initial depth of qubits) and n (the
length of the qubit list).

The refinement types are visible in the list length annotation List[_ < nl
and the qubit indices Qubit{d} and Qubit{d+1}, which track, respectively,
the bounds on list size and the depth of each qubit after applying a Hadamard
gate.

The linear implication -o[n, 0] shows that the function consumes its input
linearly and produces an output while increasing the circuit width by at most
n and without adding external closure resources. Here the n corresponds to
the number of Hadamard gates applied.

example highlights how QuRA leverages the expressiveness of Proto-Quipper-

RA’s type system to automatically verify and infer tight upper bounds on the re-
source usage of the circuit: width, depth, and gate count. Notably, the correctness
of the output is guaranteed parametrically for all classical inputs d and n, reflecting
the soundness of the underlying type system.

26

Chapter 5

Width Analysis of Shor’s
Quantum Subroutine

5.1 Circuit structure

The general structure of the circuit presents three stages. It begins with an ini-
tialization phase where n Hadamard gates create a uniform superposition across
the upper register qubits, establishing the quantum parallelism foundation for the
algorithm.

The middle section contains the oracle function implementation, consisting of con-
trolled operations that encode the modular exponentiation problem into the quan-
tum state through entanglement between the control (the upper quantum register)
and target register (the lower quantum register), that we are going to call respec-
tively |x) and |w).

The final stage applies the inverse quantum Fourier transform to extract the relative
phase from the quantum state, followed by measurement operations that provide the
classical output needed for period determination. This overall structure represents
the standard quantum approach to period finding, where quantum superposition
enables the parallel evaluation of the function, quantum entanglement encodes the
periodicity, and quantum interference through the QFTT reveals the structure of the
hidden period.

27

‘O> mEl 4 ﬁé:
0) | H T =
‘1) //71 Uago — Ua21 I Uagzn_1 /74:

Figure 5.1: Shor’s algorithm circuit structure. Adapted from [4]

Complexity at first sight

The computational bottleneck of Shor’s algorithm lies fundamentally in its modular
exponentiation subroutine, which is represented as the oracle function U in the
period-finding component. This operation, which computes a* mod N for large
integers, dominates both the time and space complexity of the entire algorithm.
While the quantum Fourier transform and other quantum operations contribute with
a polynomial overhead, the modular exponentiation requires the most significant
allocation of quantum resources, particularly in terms of qubit requirements and
gate depth. The implementation of this subroutine necessitates careful optimization
of quantum arithmetic circuits, as it directly determines the algorithm’s practical
feasibility for factoring large composite numbers.

Circuit Implementation

The shor higher-order function takes as input two parameters: n, the bit-length
of the number to factor, and we, the qubit width required by the oracle; and two
inputs: the oracle function, which has been passed as function.

The routine constructs two qubit register of length n: the |z) register in the state |0),
then applies Hadamard gates to create superposition and the ancillary register |w)
prepared in [1). Afterwards it applies the oracle subroutine and performs inverse
Quantum Fourier Transform (iqft) for phase estimation.

The last step after we have computed the modular exponentiation is to measure the
registers, collapsing them into |0) or |1) for every qubit in the register |z) and |w),
the outcome is the classical bit register r, which is the period we were looking for
and the base of the power a.

28

i shor :: ![0]
2 (forall[0, O] n.
: forall[0, 0] we.

(Circ[wel(
5 (List[_ < n + 1] Qubit,
6 List[_ < n + 1] Qubit,
7 List[_ < n + 1] Bit),
8 (List[_ < n + 1] Qubit,
9 List[_ < n + 1] Qubit,
10 List[_ < n + 1] Bit)),
11 List[_ < n + 1] Bit)
12 -o[max(n + 1 + n + 1 + n + 1, we), O]
13 (List[i < n + 1] Bit,
14 List[i < n + 1] Bit,

List[_ < n + 1] Bit))
¢ shor n we (oracle, regMod) =
17 -- prepare n qubits in the state |0> then apply hadamard
18 let x = (force mapHadamard @ n) (force ginitOMany @ n) in
9 -- Init register 1
0 let w = (force ginitiMany @n) in
-- oracle function
let (x, a, regMod) = apply(oracle, (x, w, regMod)) in
-- phase estimation throught inverse QFT
let r = (force igft @ n @ 0) x in
-- measure the results
((force mapMeasure @ n) r, (force mapMeasure @ n) a, regMod)

NN N NN NN
ST VO R

Listing 5.1: The Shor function

General Width Complexity

The type signature expresses the space complexity, that is, the width of the circuit,
in the effect notation (see Section 4.2.2)) of -o[max(n+1 + n+l + n+1, we), 0] .

This describes the width of Shor as the maximum value between 3*(n+1) and we .
The first term accounts for the working registers, without counting the oracle: one
register for the control qubits x prepared in the state |0) and Hadamard transformed,
the register w used as target of the modular exponentiation and the regMod for
auxiliary classical bits to store N, which will simplify further operations (namely
cModMult see Section . On the other hand, we captures the width of the

function oracle.

5.2 Quantum Phase Estimation

The estimation of the quantum phase happens through the inverse QFT which is
the bridge between quantum computation and classical readout in phase estimation

29

algorithms. Before we apply the QFTT, the quantum state exists in a superposition
where phase information is encoded in the complex amplitudes of the quantum state.
These interference patterns contain the very information we seek to extract, the
unknown phase ¢, but in a form that is completely inaccessible through conventional
measurement techniques.

The mathematical explanation of the inverse QFT exceeds the scope of this thesis
so the interested reader is advised to go deeper into the topic with the textbook
Quantum Computation and Quantum Information [28]. Regarding the implemen-
tation of the circuit, it is already implemented in QuRA’s standard library [9]. The
relevant aspect regarding the width of this subroutine is that the signature type is
-o[n, 0] which means that the QFT has width linear i nits input size.

5.3 Oracle Function

The oracle function U implements the modular exponentiation operation that forms
the computational base of Shor’s algorithm. This subroutine represents the most
technically complex component of the factorization protocol, requiring precise quan-
tum arithmetic circuits to perform modular operations while maintaining quantum
coherence throughout the computation.

The implementation approach presented in this thesis follows the theoretical frame-
work developed by V. Vedral, A. Barenco and A. Ekert [39], with additional imple-
mentation details drawn from [23].

The oracle performs the unitary transformation

Uan |2) |w) — |z) |[a® mod N),

where the parameter a represents the exponential base that varies according to the
quantum state encoded in register |w), and N denotes the composite integer targeted
for factorization. The base a is determined by the superposition state of the |w)
register, generating the periodic sequence a® mod N that enables period finding.
The parameter N serves as both the modulus for all arithmetic operations and the
number whose prime factors the algorithm seeks to determine.

The implementation follows a hierarchical decomposition that can be visualized as
a computational tree structure, where each level represents increasing specialization
of quantum arithmetic operations.

e The root level, the oracle function manages the entire modular exponenti-
ation process. This root function calls the modular exponentiation subroutine

30

5.3.4, which implements the repeated squaring algorithm necessary for efficient
exponentiation.

e The modular exponentiation, in turn, relies on the controlled modular mul-
tiplier subroutine to perform individual multiplication operations while
maintaining the modular constraint.

e Moving further down the hierarchy, the controlled modular multiplier invokes
the modular adder subroutine to execute addition operations within the
specified modulus.

e Finally, at the leaf level of this dependency tree, the modular adder utilizes the
fundamental quantum adder subroutine that performs binary addition
operations on quantum registers.

We will start from the bottom—the leaf—the quantum adder, and proceed upwards
towards root. This bottom-up approach allows us to establish the fundamental
building blocks before constructing the more complex operations that depend upon
them.

The following sections will examine each level of the tree structure systematically,
beginning with the quantum addition circuits at the leaves and progressively building
toward the complete modular exponentiation at the root.

Reversibility Constraint

Given the reversibility constraint mentioned in [2 quantum mechanics imposes the
requirement that all operations be reversible, and thus must be implemented using
unitary transformations. This constraint shapes the design of the quantum circuit
developed in this work. In particular, for every computational subroutine employed,
such as addition, modular addition, or controlled modular multiplication, the corre-
sponding inverse operation is implemented. For instance, the adder is complemented
by a subtractor, the modular adder by its inverse counterpart, and the controlled
modular multiplier by its inverse controlled operation. This pairing ensures that all
steps in the algorithm can be cleanly reversed when necessary, a critical feature for
operations such as uncomputation and modular inversion, and essential to maintain
coherence and prevent the accumulation of garbage states.

5.3.1 Adder

The quantum adder circuit represents the foundational element of the hierarchi-
cal implementation, serving as the leaf node in the computational tree that ulti-
mately enables Shor’s factorization algorithm. As the most elementary arithmetic

31

1
2

3

operation, the adder provides the basic building block upon which all higher-level
operations: modular addition, modular multiplication, and ultimately modular ex-
ponentiation are constructed.

Circuit Architecture

The adder circuit accepts two n-bit quantum registers a and b representing the
operands to be summed, along with an overflow qubit b,,; to handle potential
carry-out from the most significant bit position. The output consists of the sum
distributed across the input registers, with the overflow qubit indicating whether
the result exceeds the representational capacity of n bits. This seemingly simple
operation requires a slightly unconventional quantum circuit design to achieve the
necessary reversibility while maintaining computational efficiency.

The quantum adder follows a two-phase architectural design that manages carry
propagation while maintaining reversibility throughout the computation. This im-
plementation, shown in [5.2], divides the addition process into distinct phases that
handle carry generation and sum computation one at a time, providing precise con-
trol over ancillary qubit usage and enabling proper management of all intermediate
states.

Jaaav

a+h

I e e e S R R s e B P R e T i R ey o L i B g e [o

Figure 5.2: Adder circuit structure. Reproduced from [39)

Circuit Implementation

adder :: '[0](
forall [0,0] n.
(List[_<n+1] Qubit,

32

List[_<n+1] Qubit,

Qubit)

-o[3*(n+1) + 1, 0]

(List[_<n+1] Qubit,
List[_<n+1] Qubit,

Qubit))

adder n (a, b, overflow) =

-- first phase

let (rest:((c,a),b),overflow) = (force adderFirstPhase @ n) (a,b,

overflow) in
-- middle operations
let (a,b) = (force cnot @ 0) a b in
let (c,a,b) = (force csum @ 0) (c,a,b) in
-- second phase
let (lastc, final) = (force adderSecondPhase @ n) (c, rest) in
let _ = (force gdiscard @ 0) lastc in
-- add the first block back in
let complete = (((force revpair @ n) final) : (a,b)) in
-- separate a and b
let (a,b) = (force qunzip @ n+l) complete in
-- rearrange the bits in the right order
((force rev @ n+1) a, (force rev @ n+l) b, overflow)

Listing 5.2: Adder circuit

First Phase The adderFirstPhase function implements the carry propagation
logic using a cascade of carry gates applied to each bit position. The circuit be-
gins by organizing the input operands into structured triplets consisting of the two
operand bits and an associated carry bit. Each bit position requires an ancillary
qubit to store the outgoing carry, which is initialized to |0) for all positions except
where carry-in from the previous position is required.
adderFirstPhase :: ![0](

forall[0,0] n.

(List[_ < n + 1] Qubit,

List[_ < n + 1] Qubit,

Qubit)

-o[3*x(n + 1) + 1, 0]
(List[_ < n + 1]

((Qubit, Qubit), Qubit),
Qubit))

adderFirstPhase n (a, b, overflow) =

let ab = (force qgzip @ n @ 0) (a,b) in

let reslist:(a,b) = ab in

let reslist = (force interleave @ n @ 0) reslist in --every first
position is a, every second is b, every third is c

let abc = reslist:((a,b),overflow) in

let cfirst = force qinit0O in

33

16

let adderStepFirst = 1lift forall step . \((reslist, c), ((a,b),

cnext)) :: ((List[i<step] ((Qubit,Qubit),Qubit), Qubit), ((Qubit
,Qubit) ,Qubit))
let (c, a, b, cnext) = (force carry @ 0)) (c, a, b, cnext) in
(reslist : ((c, a), b), cnext) in

let (reslist,overflow) = fold(adderStepFirst, ([], cfirst), abc)
in

-- note that the output triples are reversed so return them in
the right order

((force revtriplets @ n) (reslist :: List[i<n+1] ((Qubit,Qubit),
Qubit)), overflow)

Listing 5.3: Adder first phase circuit

Second Phase The adderSecondPhase function performs the dual function of
computing the final sum bits and uncomputing the intermediate carry bits to re-
store reversibility. This phase applies a sequence of inverse carry operations icarry
followed by sum operations to each bit position, working in reverse order from the
msb to the Isb.

adderSecondPhase :: !'[0](
forall[0,0] n.
(Qubit,
List[_<n] ((Qubit, Qubit), Qubit))
-o[3*n + 1, 0]
(Qubit ,
List [_<n] (Qubit, Qubit)))
adderSecondPhase n (cfirst, abc) =
--carry followed by sum, carry discarded
let csum = 1lift \(c,a,b,cnext) :: (Qubit,Qubit,Qubit,Qubit).
let (c,a,b,cnext) = force icarry (c,a,b,cnext) in
let (c,a,b) = force csum (c,a,b) in
let _ = (force qgdiscard) cnext in
(c,a,b) in
let boxedSum = box csum in
--step function:
let adderStepSecond = 1lift $ forall step. \((cnext, reslist), ((c,

a),b)) :: ((Qubit, (List[_<step] (Qubit,Qubit))),((Qubit,Qubit),
Qubit)).
let (c,a,b,cnext) = apply(boxedSum, (c,a,b,cnext)) in

(c, reslist:(a,b))
in fold(adderStepSecond, (cfirst,[]), abc)

Listing 5.4: Adder second phase circuit

34

1

Subtractor

As we discussed earlier, it is necessary to create the inverse operation of adder,
which is the subtractor. It is implemented by applying the inverse of each gate in
the adder circuit in reverse sequence. Both circuits have identical width complexity,
as shown in the type signature -o[3*(n+1)+1, 0] , requiring the same number of
ancillary qubits and producing outputs with identical qubit overhead.

subtractor :: ![0](
forall[0,0] n.
(List[_<n+1] Qubit,
List[_<n+1] Qubit,
Qubit)
-o[3*(n+1) + 1, 0]
(List [_<n+1] Qubit,
List[_<n+1] Qubit,
Qubit))
subtractor n (a, b, overflow) =
-—- First Phase
let ab = (force qzip @ n @ 0) (a,b) in
-- This operation will be done n times (on list_n+1) so we save
up the last pair (a,b) then single handedly manage it
let ab:(alast,blast) = ab in
let (list,clast) = (force subtractorFirstPhase @ n @ 0) ab in
-- bottom of the valley, individually handle
let (clast,alast,blast) = (force csum @ 0) (clast,alast,blast) in
let (alast,blast) = (force cnot @ 0) alast blast in
let (clast,alast,blast,overflow) = (force icarry @ 0) (clast,
alast ,blast ,overflow) in
-—- Second Phase
let (list,cfirst) = (force subtractorSecondPhase @ n @ 0) ((force
revtriplets @ n) list, clast) in
-- discard the last carry qubit
let _ = (force gdiscard @ 0) cfirst in
-- reassemble the last pair into the 1list
let list = list:(alast,blast) in
-- separate a and b
let (a,b) = (force qunzip @ n+l @ 0) list in
--rearrange the bits in the right order
((force rev @ n+1) a, (force rev @ n+l) b, overflow)

Listing 5.5: Subtractor circuit

Key Subroutines

Carry and Sum The carry operation itself is implemented using a combination
of Toffoli and CNOT gates that compute the carry-out based on the current bit
values and carry-in. The circuit processes each bit position sequentially, with the

35

carry output from position ¢ serving as the carry input to position i+ 1. This creates
a dependency chain that must be maintained throughout the computation to ensure
correctness.

AUHVD
]
NS

Figure 5.3: Carry and sum operation. Reproduced from [39]

carry :: !'[0](
(Qubit, Qubit, Qubit, Qubit)
-o[4, 0]
(Qubit, Qubit, Qubit, Qubit))

5 carry (c, a, b, cnext) =

let (a, b, cnext) = (force toffoli) a b cnext in
let (a,b) = (force cnot) a b in
let (c, b, cnext) = (force toffoli) c b cnext in

(c, a, b, cnext)

Listing 5.6: Carry operation

csum :: ![0](
(Qubit, Qubit, Qubit)
-o[3, 0]
(Qubit, Qubit, Qubit))

csum (c, a, b) =
let (a,b) = (force cnot) a b in
let (c,b) (force cnot) c¢c b in
(c, a, b)

Listing 5.7: Sum operation

Inverse Carry The icarry operation “uncomputes” the carry bits from the first
phase, reversing the carry computation while preserving the information needed
for sum calculation. This uncomputation maintains the reversibility of the overall
operation.
icarry :: !'[0](

(Qubit, Qubit, Qubit, Qubit)

-o[4, 0]

(Qubit, Qubit, Qubit, Qubit))
icarry (c, a, b, cnext)

36

let (c, b, cnext) = (force toffoli) ¢ b cnext in
let (a,b) = (force cnot) a b in

let (a, b, cnext) = (force toffoli) a b cnext in
(c, a, b, cnext)

Listing 5.8: Inverse carry operation

Width Complexity

The adder circuit requires 2 qubit registers for the sum, 1 ancillary register for the
carry, and 1 additional bit for overflow detection. This totals 3 * (n + 1) + 1
qubits for the addition process, where n+1 accounts for the assumption that the
input length is greater than zero.

5.3.2 Modular Adder

The quantum modular adder is the middle ground operation of the whole structure.
This important subroutine forces the modular constrains by a factor N into the adder
function. The unitary operation can be summarized with the following formula

la) |b) — |a) |a +b mod N),
for integers 0 < a,b < N. In order to get this result it is important to notice that we

have to use also the subtractor. This way, it is possible to perform the operation
in place, without use new “memory” (qubit) and guaranteeing the reversibility.

Circuit Architecture

The circuit is built by a sequence of adder and subtractor, to perform an in-place
and reversible operation. The process follows 5 steps:

1. The first adder sums the two register with adder subroutine performing

|a) [b) — |a) la +) .

2. Then a register is swapped with N and subtracted

INY|a+b) — |NY|a+b— N).

3. Moving forward to the part of the circuit that makes it reservable, if a+b—N <
0 means that we need to add back in the modulus

IN)|la+b— N)— |N)|a+b)

37

on the other hand if a +b — N > 0 the N register is set to |0) because we
already have the right value

|0)|la4+b—N)+—10)|a+b— N).
4. Moreover, to complete the unitary process and restore the temporary qubit to
its initial state |0) we subtract a
la)[a+b mod N)+— l|a) |(a+b mod N)— a)

and check if an overflow occurs. If this is the case it means that earlier the
temp bit was in |1) so it is restored to |0), otherwise it is left unchanged.

5. Ultimately, we add a back in, getting the final result of modular addition:

la) [(a+b mod N)—a)+—la)la+b mod N).

>
5
g
&
=
=
o
S

mod N

Figure 5.4: Modular adder circuit structure. Reproduced from [39)

Circuit Implementation

1 modAdder :: !'[0](

2 forall[0,0] n.

3 (List[_<n+1] Qubit,
| List[_<n+1] Qubit,
5 List[_<n+1] Qubit)
6 -o[4*%(n + 1) + 3,0]
7 (List[_<n+1] Qubit,
8 List[_<n+1] Qubit,
9 List[_<n+1] Qubit))
10 modAdder n (a, b, x) =
11 -- 1init overflow qubit

38

let overflow = (force qinit0O) in
-- init temp qubit

let temp = (force qinit0) in

== @[

let (a, ab, overflow) = (force adder @n) (a, b, overflow) in

-- a+tb-x

let (x, abx, overflow) = (force subtractor @n) (x, ab, overflow)
in

-—- Inverse CNOT

let overflow = (force gnot) overflow in

let (overflow,temp) = (force cnot) overflow temp in

let overflow = (force qgnot) overflow in

-— "cancel" block

let (tx, temp) = (force deleteBlock @n) (x, temp) in

== @Pl9=5rIFE R

let (tx, abxtx, overflow) = (force adder @n) (tx, abx, overflow)
in

-— "cancel" block

let (x, temp) = (force deleteBlock @n) (tx, temp) in

-- atb-xt+t*x-a

let (a, abxtxa, overflow) = (force subtractor @n) (a, abxtx,

overflow) in
-- Make temp qubit return to [0>

let (overflow,temp) = (force cnot) overflow temp in

-- atb-x+t*x-a+a

let (a, abxtxaa) = (force adder @n) (a, abxtxa, overflow) in
let _ = (force gdiscard) temp in

(a, abxtxaa, x)

Listing 5.9: Modular adder circuit

Key subroutines

Conditional Deleting function The most important subroutine besides adder
and subtractor is deleteBlock which is the subroutine that avoids the additions
of N if the overflow bit is set to 1. The value of the state is “saved” into a temporary
qubit temp (initially prepared in state |0)) through a series of CNOT gate. This
process is being discussed briefly in [39] and implemented in [23].

deleteBlock :: !'[0](

forall[0,0] n.
(List[_<n+1] Qubit, Qubit)
-o[n + 1 + 1,0]
(List [_<n+1] Qubit, Qubit))

deleteBlock n (list, temp) =

let deleteStep = 1lift forall step. \((gs,temp), q) :: ((List[_<
step] Qubit, Qubit), Qubit).
let (temp, q) = (force cnot) temp q in (qs:q, temp)

39

9 in fold(deleteStep, ([],temp), list)

Listing 5.10: Conditional deleting subroutine

Inverse Modular Adder

To perform modular subtraction, we use the inverse of the modular adder circuit.
This operation transforms the input state

la) |b) — |a) |a — b mod N)

and serves as the logical reverse of modular addition.

The structure of the circuit closely mirrors that of the modular adder, but with the
key steps executed in the opposite order. It makes use of three subtractors and two
adders, along with auxiliary registers and temporary qubits. These are essential for
handling conditional operations (such as whether to add or subtract the modulus
N) and ensuring the entire process remains unitary and reversible.

As in the case of modular addition, we introduce a temporary register to store
N, and a helper qubit to keep track of whether an overflow (or in this case, an
underflow) occurred. Throughout the computation, intermediate states are carefully
“uncomputed” to clean up any temporary values and return all ancillary qubits to
their original states, so that only the desired result a — b mod N remains in the
output register.

| iModAdder :: '[0](

2 forall [0,0] n.

3 (List[_<n+1] Qubit,
4 List[_<n+1] Qubit,
5 List[_<n+1] Qubit)
-o[4*%(n + 1) + 2,0]
(List[_<n+1] Qubit,
List[_<n+1] Qubit,
9 List[_<n+1] Qubit))
10 iModAdder n (a, b, x) =
11 -- init overflow qubit

o] -~ =]

12 let overflow = (force qinit0O) in

13 -- init temp qubit

14 let temp = (force qinit0) in

15 -- a-b

16 let (a, ab, overflow) = (force subtractor @n) (a, b, overflow) in
17 -- Make temp qubit return to [0>

18 let (overflow,temp) = (force cnot) overflow temp in

19 -- a-b+a

20 let (a, aba, overflow) = (force adder @n) (a, ab, overflow) in

21 let (tx, temp) = (force deleteBlock @n) (x, temp) in

40

-—- a-bta-t*x

let (tx, abatx, overflow) = (force subtractor @n) (tx, aba,
overflow) in

let (x, temp) = (force deleteBlock @n) (tx, temp) in

-— a-bta-t*xx+t*x

let (x, abatxtx, overflow) = (force adder @n) (x, abatx, overflow
) in

-- Inverse CNOT and overflow operation

let overflow = (force gnot) overflow in

let (overflow,temp) = (force cnot) overflow temp in

let overflow = (force qgnot) overflow in

== B=[9FA=TIREIFEEEE=E

let (a, abatxtxa) = (force subtractor @mn) (a, abatxtx, overflow)
in

let _ = (force gdiscard) temp in

(a, abatxtxa, x)

Listing 5.11: Inverse modualr adder

Width Complexity

As shown earlier, the type signature determines the width of the circuit is 4% (n+1)+2 ,
this is because there been used 3 register of n+1 qubits for a, b and x, 1 temp qubit
for modular operation and the n+1 carry register plus the overflow qubit used dur-
ing adder and subtractor subroutines.

5.3.3 Controlled Modular Multiplier

The step before reaching the modular exponentiation is the controlled multiplication,
which is done like the others with a set modulo. The function that multiplies
two registers modulo N is f, y(z) = ax mod N, which can be performed with a
series of controlled sums and subtractions using the aforementioned modular adder
subroutine and its inverse, which are the building block of this subroutine.

Therefore, the multiplication can be seen like this
n—1
ar mod N = 2%z + 2'azy +...2" tax, | = Z 2ax;,
i=0

where |x) is the register that will be used as controller. Additionally, there is another
control qubit |¢) which is being passed down from the root subroutine. These two
registers, at iteration i, encode 2¢ into an ancillary register, which is used as an
addend in the modular sum.

41

Circuit Architecture

The circuit operates on three quantum registers: a control register |¢), an input
register |z), and an ancillary register initialized to |0). The goal is to compute
ar mod N, where a and N are classical constants. The operation is performed
conditionally, based on the value of the control qubit |¢). If |¢) = 1, the circuit
computes multiplication. Otherwise, the state remains unchanged.

The overall structure includes a series of quantum modAdder blocks, which are con-
trolled by the individual bits |x;) and |¢). Each modular adder performs a conditional
addition of the constant value a - 2° mod N, where i is the bit index. After each
addition, the same controlled operation is performed again to restate the old value
of the targeted qubit of ancillary register, to maintain the reversibility of the circuit.

In the end, there is a conditional operation that happens only if |¢) was set to |0)
and performs a “copy” E|

The entire subroutine can thus be summarized as follows:

{m 10) — |z) |z) if |c)=10),

|z) |0) — |z) |ax mod N) otherwise.

AOW HHAAY
AOW ¥Hdav
AOW HHAAY

Q
Q
=R
=
(e
=
,ﬂ
=
o
o

Figure 5.5: Control modular multiplier circuit structure. Reproduced from [39]

Circuit Implementation

!This is not an actual copy because of It is more of a move of the value from the register
x) to the register |y).

42

1 cModMult :: ![0](

forall[0, O] n.
(Qubit ,

List[_ <n+1] Qubit,
List[_ <n+1] Qubit,
List[_ <n+1] Bit)
-o[6x(n+1)+4, 0]
(Qubit ,

List[_ <n+1] Qubit,
List[_ <n+1] Qubit,
List[_ <n+1] Bit))

2> cModMult n (c, x, regB, regMod) =

-- Init working register (a*27k)
let regh = (force qinitOMany @ n) in
-- Control Modular Step Function
let cModMultStep = 1lift forall step. \((c,qgs,reghA,regB,regMod),q)
((Qubit, List [_<step] Qubit, List[_<n+1] Qubit, List[_<n+1]
Qubit, List[_<n+1] Bit), Qubit).
-- Prepare the qubits register from classic register
let (regMod, regQ) = (force qinitFromBits @ n) regMod in
-- First toffoli on regA’s k-th bit
let (c,q,regh) = (force bitWiseToffoli @ n @ step) (c, q, regh)
in
-- Modular Adder
let (regh,regB,regQ) = (force modAdder @ n) (regA, regB, regQ)
in
-- Discard regQ
let _ = (force gdiscardMany @ n) regQ in
-- Second toffoli on regA’s k-th bit
let (c,q,regh) = (force bitWiseToffoli @ n @ step) (c, q, regh)
in
(c,qs:q,reghA,regB,regMod) in
-- Fold 1loop
let (c,x,regh,regB,regMod) = fold(cModMultStep, (c,[],reghA,regB,
regMod), x) in
-- Discard regA

let _ = (force qgdiscardMany @ n) reghA in
-- moveBlock
let (c,x,regB) = (force moveBlock @ n) (c, x, regB) in

(c, x, regB, regMod)

Listing 5.12: Control modular multiplier circuit

Key subroutines

Finding a qubit in a register During the development of the circuit, it became
necessary to explicitly apply type coercion, as QuRA was unable to fully infer the
types of certain intermediate expressions. This situation emerged particularly in the

43

1
2
3
1
5

6

8

findBit function, which is used to split a quantum register into two sublists and
extract the qubit located at a specific index. The coercion is required on line 5 of
findBit, where the expression

let rlist:q = (rlist !:: List[_<(n-step)+1] Qubit)

assumes that rlist is non-empty. This condition is critical because we de-structure
the list to extract the last qubit before reassembling the sublists.

QuRA trusts that this coercion is valid — that is, the list rlist indeed contains at
least one element at this point. This can be justified by pen-and-paper as follows:

1. The parameter i is introduced in the function bitWiseToffoli, which is itself
called inside the fold loop within cModMult.

2. The loop in cModMult iterates over the input register x, which is of type List [_
< n + 1] Qubit.

3. Therefore, the number of iterations, and thus the maximum value of i, is at
most n.

4. Inside findBit, the folding range is defined as range @ (i + 1), which pro-
duces the list {0,1,...,i} of length 7 + 1.

5. This implies that during each iteration of the loop in findBit, the variable
step ranges from 0 to q.

6. Since 7 < n, it follows that i +1 < n 4 1, and in particular, for every 0 <
step < i + 1, we have step < n.

Initially, rlist has type List[_ < n + 1] Qubit, and in each iteration one qubit
is removed and added to 11ist. After k steps, the size of rlist is n+ 1 — k, which
remains strictly positive for all £ <7+ 1 < n + 1. Hence, when the destructuring
pattern rlist : qis applied, the list is guaranteed to be non-empty.

As a result, the coercion rlist !:: List[_ < (n - step) + 1] Qubit is valid,
and the same argument applies symmetrically to 11ist. Thus, despite the limita-
tions of automatic type inference in this case, the coercions are semantically correct
and do not invalidate the analysis.

findBit :: !'[0](
forall[0, O] n.
forall[0, O] i.
List[_ < n + 1] Qubit
-o[max[step < i + 1]step + 1 + (n - step + 1) - 1, 0]
(List[_ < i + 1] Qubit,
List[_ < (n + 1) - (i + 1)] Qubit))
findBit n 1 reghA =

44

let regh = (force rev @ n+l) regh in -- in order to correctly
search from the end

let findStep = 1lift forall step. \((llist,rlist),_) :: ((List [_<
step] Qubit, List [_<(n+1)-step] Qubit),()).
let rlist:q = (rlist !:: List[_<(n-step)+1] Qubit) in --

coercition type
let 1list = 1llist:q in (1llist,rlist)

let (llist,rlist) = fold(findStep, ([],regA), (force range @ i+1)
) in -- i >= 1

(11list, (force rev @(n+1)-(i+1)) rlist)

Listing 5.13: Find bit subroutine

Bit-Wise Toffoli This function applies Toffili gates on the regA’s k-th bit based
on the i-th iteration of cMultModStep function.

At the end of the bitWiseToffoli function, a coercion is performed to reassign the
type of the reconstructed register regh as List[_ < n + 1] Qubit. This coercion
is:

(c, q, regh !:: List[_ < n + 1] Qubit)

This type coercion is a direct consequence of the previous structural guarantees
established in the findBit function. Specifically, we have already proven that the
register is split into two parts whose lengths add up to exactly n+1. The reversal and
recombination of these sublists through the concat function reconstructs the original
list with the same length, namely n+ 1. Since no qubits are added or discarded, and
all list operations preserve the total length of the register, the coercion to List [_
< n + 1] Qubit is both semantically valid and structurally justified.

bitWiseToffoli :: ![0](
forall[0, O] n.
forall [0, 0] i.
(Qubit,
Qubit,
List[_ < n + 1] Qubit)
-o[(max[step < 1 + 1]step + 1 + (n - step + 1) - 1) + 2, 0]
(Qubit ,
Qubit,
List[_ < n + 1] Qubit))
bitWiseToffoli n i (c, q, regh) =
-- find the qubit for the toffoli operation (placed at the end of
1list)
let (llist,rlist) = (force findBit @ n @ i) reghA in
-- get last qubit from 1llist (target)
let 1llist:trg = 1llist in
let (c,q,trg) = force toffoli ¢ q trg in

45

18
19

20

1
2
3
1

-- reassemble the list in the opposite way because of the findBit
function

let w = 1llist : trg in

let regh = (force concat @ i+1 @ (n+1)-(i+1)) (w, rlist) in

(c,q,reghA !:: List[_<n+1] Qubit)

Listing 5.14: Bit wise Toffoli subroutine

Conditional Register Transfer The last subroutine used in the cModMult rou-
tine is moveBlock, responsible for conditionally transferring the quantum state
stored in the |z) register into the |y) register (implemented in the code as regB),
provided that the control qubit |¢) is in the |0) state. This corresponds to the fi-
nal section of the controlled modular multiplication circuit depicted in Figure [5.5]
where the thick double wires indicate the flow of multi-qubit registers. In the visual
representation, this corresponds to the curved wires connecting |z) to |y) on the
right side of the main circuit block, where the condition on ¢ ensures that the move
only occurs if no operation was performed (i.e. if ¢ was 0).

From a quantum programming perspective, this transfer is not a classical copy but
a controlled operation that modifies |y) based on the state of |z) and the value of
|c). Since direct copying is not permitted by the no-cloning theorem, the move is
implemented in the moveBlock which will be discuss in the next paragraph.

moveBlock :: ![0](
forall[0,0] n.
(Qubit, List[_<n+1] Qubit, List[_<n+1] Qubit)
-o[2*n + 3,0]
(Qubit, List[_<n+1] Qubit, List[_<n+1] Qubit))
moveBlock n (c, x, regB) =
-- First X gate for inverse CNOT
let ¢ = force gqnot c in
-- Step function
let moveStep = 1lift forall step. \((c,xs,qs),(x,q)) :: ((Qubit,
List[_<step] Qubit, List[_<step] Qubit),(Qubit,Qubit)).
let (c,x,q) = (force toffoli) ¢ x q in (c,xs:x,qs:q) in
let (c,x,regB) = fold(moveStep, (c,[],[]),(force qgzip @n) (x,
regB)) in
-- Second X gate for inverse CNOT
let ¢ = force qnot c in
(c, (force rev @n+1) x, (force rev @n+1) regB)

Listing 5.15: Conditional register transfer subroutine

Inverse Control Modular Multiplier

The iCModMult routine mirrors the structure of cModMult, but replaces each modu-
lar addition with its inverse counterpart iModAdder, effectively performing modular

46

subtraction. As in the forward case, the operation is conditioned on the control
qubit c, and the moveBlock subroutine ensures that the register regB is correctly
initialized when ¢ = 0. The rest of the structure remains symmetric with respect

1

to the forward version.

iCModMult :: ![0](

forall[0, O] n.

(Qubit, List[_ <n+1] Qubit,
List[_<n+1] Qubit,
List[_<n+1] Bit)
-o[6x(n+1)+4, 0]

(Qubit, List[_<n+1] Qubit,
List[_<n+1] Qubit,
List[_<n+1] Bit))

iCModMult n (c, x, regB, regMod) =
-- Init working register (ax*27k)
let regh = (force qinitOMany @ n) in
-- Move the prepared register x into regB if c = O
let (c,x,regB) = (force moveBlock @ n) (c, x, regB) in

Control Modular Step Function

let cModMultStep = 1lift forall step. \((c,qgs,reghA,regB,regMod),q)

((Qubit, List [_<step] Qubit, List[_<n+1] Qubit, List[_<n+1]
Qubit, List[_<n+1] Bit), Qubit).
-- Prepare the qubits register from classic register
let (regMod, regQ) = (force qinitFromBits @ n) regMod in
-- First toffoli on regA’s k-th bit
let (c,q,regh) = (force bitWiseToffoli @ n @ step) (c, q, regh)
in
-- Inverse Modular Adder
let (reghA,regB,regQ) = (force iModAdder @ n) (reghA, regB, regQ)
in
-- Discard regQ
let _ = (force gdiscardMany @ n) regQ in
-- Second toffoli on regA’s k-th bit
let (c,q,regh) = (force bitWiseToffoli @ n @ step) (c, q, regh)
in
(c,qs:q,reghA,regB,regMod) in

-- Fold 1loop
let (c,x,regh,regB,regMod) = fold(cModMultStep, (c,[],regh,regB,
regMod), x) in

discard regh

let _ = (force gdiscardMany @ n) reghA in
(c, x, regB, regMod)

Listing 5.16: Inverse control modular multiplier

47

Width Complexity

Analysing the width of the cModMult, QuRA tells us is that the memory require-
ment for this subroutine is 6*(n+1)+4 , this comes from the modAdder which was

4x(n+1)+3 , in addition to that we have a control qubit ¢, a n+1 qubit register for
regQ qubits and a n+1 for bits to be transformed into qubits, store in regMod.

5.3.4 Modular Exponentiation

The final component of the algorithm is the modular exponentiation subroutine,
which composes the previously discussed primitives cModMult and iCModMult. Its
purpose is to compute the function

fan(xz) =a® mod N,

which is central to the factorization problem and the core of the quantum speed-up
in Shor’s algorithm.

Let # = 2%z + 2'2y + --- + 2™ 12, be an integer encoded in binary using the

qubits |zo) ..., |Tm-_1). Using exponent laws, we rewrite a” as:
m—1
m—1 J o
a® =a*™ . a* . gt . gP e = | | a®'"i,
J=0

This decomposition is essential because it allows us to implement modular exponen-
tiation using a sequence of controlled modular multiplications. For each qubit z;, a
controlled modular multiplication by a* mod N is performed if z; = 1.

Mathematically, the controlled modular multiplication transforms the state as fol-
lows:

[a5) [y) [0) = |2;) |y) |y - % mod N)

Because z; € {0,1}, this either multiplies y by a? mod N (if xj = 1) or leaves it
unchanged (if z; = 0).

To ensure unitarity and reversibility, each multiplication step is followed by an in-
verse operation that clears any temporary values in the auxiliary registers (e.g.,
restoring previously empty register to |0)).

Circuit Architecture

Each iteration of the modular exponentiation therefore consists of:

48

1. Applying cModMult controlled on qubit x;,
2. Swapping the result into the correct register,
3. Applying iCModMult to undo temporary computation and clean ancilla.

The transformation for one bit x; within the full modular exponentiation looks like:
[4) [a°) [0) = [ag) [a°) o™ mod N) — |zy) [a**'** mod N) [0)

where e = Ef;é 2Jx; is the partial exponent computed so far. At each stage, the
output register accumulates the product a” mod N, built from the contributions of
all qubits.

This approach guarantees that the output register ends up in the state |a* mod N)
and all ancilla qubits are returned to their initial state |0).

Ty —e ®
Ty
xlIl
o o o o o o
1 g g = g g = ¢ mod N
= o CE =2 = @ mo
= = = = = =
= = - | o o @ = —
3 M = M H H
0 = 1= =g == Zm=| 0
S S S S S S
S S S S S S
7 3 , >
a a a a a

Figure 5.6: Modular exponentiation circuit structure. Reproduced from [39]

Circuit Implementation

modularExp :: ![0](forall[0, 0] n.
(List[_<n+1] Qubit,
List[_<n+1] Qubit,

List[_<n+1] Qubit,
List[_<n+1] Bit)
-o[7*x(n+1)+ 4, 0]
(List[_<n+1] Qubit,

49

10

13

15

16

18

List[_<n+1] Qubit,
List[_<n+1] Qubit,
List[_<n+1] Bit))

modularExp n (x, regl, regO, regMod) =
let modularStep = 1lift forall step . \((gs,regO,regl,regMod),q)

((List[_<step] Qubit, List[_<n+1] Qubit, List[_<n+1] Qubit,
List[_<n+1] Bit), Qubit).
-- Controlled Multiplication
let (q, regl, regO, regMod) = (force cModMult @n) (q,regl,reg0,
regMod) in
-- Inverse operation
let (q, reg0O, regl, regMod) = (force iCModMult @n) (q,reg0,regl
,regMod) in
(gs:q,regl,reg0,regMod)
in fold(modularStep, ([],regl,reg0,regMod), x)

Listing 5.17: Modular exponentiation circuit

Width Complexity

The only new thing compared to others subroutines is that there is a register x
in which is store the modulo N. So adding n+1 to the previous complexity of
cModMult, which was 6*(n+1)+4 , resulting in 7*(n+1)+4 .

5.3.5 Root of the Oracle Function

To conclude the modular exponentiation subroutine and embed it in the broader
context of Shor’s algorithm, we define the oracle, which simply initialize the regis-
ters and calls the modualrExp routine, discarding the ancillary register regO0.

Circuit Implementation

1 oracle :: ![0](forall[O0, O] n.

9

0
11
12

13

Circ[7 * (n+1) + 4]
((List[_< n + 1] Qubit,
List[_< n + 1] Qubit,
List[_< n + 1] Bit),
(List[_< n + 1] Qubit,
List[_< n + 1] Qubit,
List[_< n + 1] Bit)))

oracle n = box $ 1lift \(x, regl, regMod)
(List[_< n + 1] Qubit, List[_< n + 1] Qubit, List[_< n + 1] Bit).

- Prepare ancillay register

let reg0 = force qinitOMany @ n in

- Modular exponentiation

let (r, a, reg0, regMod) = (force modularExp @n) (x,regl,reg0,

regMod) in

50

16

17

-- Discard register O
let _ = (force gdiscardMany @n) reg0O in
(r, a, regMod)

Listing 5.18: Oracle function

5.3.6 Shor’s Width Estimation

With this result it is possible to call the shor higher-order function on the oracle and
estimate the width of the whole of the Shor’s quantum subroutine, which is given by
7x(n+1)+4 . This corresponds to 6x(n+1)+4 qubits and n+1 bits, meaning that
with the implementation of Vedral et al. [39], it is possible to run Shor’s algorithm
using at most 6*(n+1)+4 logical qubits, where n+1 is the input size of the number
to factorize.

This result can be considered a correct estimation because it has been verified by
QuRA'’s type inference system. Which is formally proven to be sound [9).

o1

52

Chapter 6

Results and Future Work

6.1 Conclusions

We have demonstrated that the number of qubits required to execute the Shor’s
algorithm on a quantum device is linear in the bit-size of N. This result is consistent
with what Vedral et al. proved in their work [39], where they also showed that the
number of qubits scales linearly with the bit-size of V.

The main contribution of this thesis has been the formal estimation of the width of
Shor’s algorithm, carried out with a verifiable proof. By employing the QuRA tool,
we have performed an automatic and static analysis of the quantum circuit, which
rigorously infers the resource requirements based on formal type rules.

This automated, proof-based approach not only confirms the expected linear scal-
ing but also provides a trustworthy and reproducible method for estimating circuit
width, validated by the soundness of QuRA’s type system. To the best of our
knowledge, this represents a novel application of static analysis and formal verifica-
tion techniques to quantify the resource usage of Shor’s algorithm.

6.2 Ongoing and Future Work

An aspect that has not yet been fully explored in this dissertation is the estimation
of the circuit depth and the total gate count of Shor’s quantum subroutine. This
is currently the focus of ongoing work. Preliminary analyses suggest that both the
depth and the number of gates are expected to be upper-bounded by a polynomial
function of the bit-size of N consistently with the known asymptotic complexity of
the algorithm [36]. A more detailed study of these complexity measures, as well as

33

potential optimizations, is planned as future research.

Additionally, the techniques presented in [I5] show that it is possible to reduce
the required number of qubits further, achieving an upper bound of approximately
3n+0.002n logn. Investigating whether the QuRA tool can be extended to formally
verify such more advanced and optimized constructions represents a natural next
step. Such work could further strengthen the connection between formal verification
and cutting-edge resource-efficient quantum algorithm design.

o4

Bibliography

1]

2]

[10]

D. Aharonov. A simple proof that toffoli and hadamard are quantum universal,
2003. URL https://arxiv.org/abs/quant-ph/0301040.

M. Amy, O. Di Matteo, V. Gheorghiu, M. Mosca, A. Parent, and J. Schanck.
Estimating the cost of generic quantum pre-image attacks on sha-2 and sha-3.
In Proc. of SAC 2016, 2017.

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, USA, 1st edition, 2009. ISBN 0521424267.

Bender2k14. Quantum circuit for Shor’s algorithm (modular exponen-
tiation). https://commons.wikimedia.org/w/index.php?curid=34319883,
2014. Created in LaTeX using Q-circuit. Licensed under CC BY-SA 4.0.

A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability -
Second Fdition. 10S Press, 2021. ISBN 978-1-64368-160-3.

J. P. Buhler, H. W. Lenstra, and C. Pomerance. Factoring integers with the
number field sieve. In A. K. Lenstra and H. W. Lenstra, editors, The develop-
ment of the number field sieve, pages 50-94, Berlin, Heidelberg, 1993. Springer
Berlin Heidelberg. ISBN 978-3-540-47892-8.

A. Colledan. Qura documentation, 2025. URL https://qura.readthedocs.
io/en/latest/.

A. Colledan and U. Dal Lago. On Dynamic Lifting and Effect Typing in Circuit
Description Languages. In Proc. of TYPES 2022, 2023. ISBN 978-3-95977-285-
3.

A. Colledan and U. Dal Lago. Flexible type-based resource estimation in quan-
tum circuit description languages. In Proc. of POPL 2025, 2025.

A. Colledan, U. Dal Lago, and N. Vazou. Circuit width estimation via effect
typing and linear dependency. ACM Trans. Program. Lang. Syst., May 2025.

95

https://arxiv.org/abs/quant-ph/0301040
https://commons.wikimedia.org/w/index.php?curid=34319883
https://qura.readthedocs.io/en/latest/
https://qura.readthedocs.io/en/latest/

[11]

[12]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

ISSN 0164-0925. doi: 10.1145/3737282. URL https://doi.org/10.1145/
3737282.

U. Dal Lago, A. Masini, and M. Zorzi. Quantum implicit computational com-
plexity. Theoretical Computer Science, 411(2):377-409, 2010.

A. Einstein. Die grundlage der allgemeinen relativitatstheorie. Annalen der
Physik, 354(7):769-822, 1916. doi: 10.1002/andp.19163540702. URL https:
//doi.org/10.1002/andp.19163540702. Archived from the original.

P. Fu, K. Kishida, and P. Selinger. Linear dependent type theory for quantum
programming languages: Extended abstract. In Proc. of LICS 2020, 2020.

P. Fu, K. Kishida, N. J. Ross, and P. Selinger. Proto-quipper with dynamic
lifting. In Proc. of POPL 2023, 2023.

C. Gidney and M. Ekera. How to factor 2048 bit rsa integers in 8 hours
using 20 million noisy qubits. Quantum, 5:433, Apr. 2021. ISSN 2521-
327X. doi: 10.22331/q-2021-04-15-433. URL http://dx.doi.org/10.22331/
q-2021-04-15-433|

G. Glosser. Glosser.ca - Own work. Wikimedia Commons, 2010. URL https:
//commons .wikimedia.org/w/index.php?curid=23263326. CC BY-SA 3.0.

M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt. Applying grover’s
algorithm to aes: Quantum resource estimates. In Proc. of PQCrypto 2016,
2016.

A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. An Intro-
duction to Quantum Programming in Quipper, page 110-124. Springer Berlin
Heidelberg, 2013. ISBN 9783642389863. doi: 10.1007/978-3-642-38986-3_10.
URL http://dx.doi.org/10.1007/978-3-642-38986-3_10.

L. K. Grover. A fast quantum mechanical algorithm for database search, 1996.
URL https://arxiv.org/abs/quant-ph/9605043.

E. Hainry, R. Péchoux, and M. Silva. A programming language characterizing
quantum polynomial time. In Proc. of FoSSaCS 2023, 2023. ISBN 978-3-031-
30828-4.

T. Héaner, T. Hoefler, and M. Troyer. Assertion-based optimization of quantum
programs. In Proc. of OOPSLA 2020, 2020. doi: 10.1145/3428201. URL
https://doi.org/10.1145/3428201.

W. Heisenberg. Uber den anschaulichen inhalt der quantentheoretischen kine-
matik und mechanik. Zeitschrift fir Physik, 43(3):172-198, 1927. ISSN

56

https://doi.org/10.1145/3737282
https://doi.org/10.1145/3737282
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.22331/q-2021-04-15-433
http://dx.doi.org/10.22331/q-2021-04-15-433
https://commons.wikimedia.org/w/index.php?curid=23263326
https://commons.wikimedia.org/w/index.php?curid=23263326
http://dx.doi.org/10.1007/978-3-642-38986-3_10
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1145/3428201

[23]

[24]

[25]

[26]

[27]

[31]

[32]

[33]

0044-3328. doi: 10.1007/BF01397280. URL https://doi.org/10.1007/
BF01397280.

H. T. Larasati and H. Kim. Simulation of modular exponentiation circuit for
shor’s algorithm in qiskit. In 2020 14th International Conference on Telecom-
munication Systems, Services, and Applications (TSSA, pages 1-7, 2020. doi:
10.1109/TSSA51342.2020.9310794.

D. Lee, V. Perrelle, B. Valiron, and Z. Xu. Concrete Categorical Model of
a Quantum Circuit Description Language with Measurement. In Proc. of

FSTTCS 2021, 2021. ISBN 978-3-95977-215-0.

N. D. Mermin. Quantum Computer Science: An Introduction. Cambridge
University Press, USA, 2007. ISBN 0521876583.

A. Mycroft, D. Orchard, and T. Petricek. Effect systems revisited—control-flow
algebra and semantics. In Semantics, Logics, and Calculi: Essays Dedicated

to Hanne Riis Nielson and Flemming Nielson on the Occasion of Their 60th
Birthdays. Springer International Publishing, 2016. ISBN 978-3-319-27810-0.

I. Newton. The Mathematical Principles of Natural Philosophy. Daniel
Adee, New York, 1846. URL https://redlightrobber.com/red/links_pdf/
Isaac-Newton-Principia-English-1846.pdf. Translated into English with
commentary by Andrew Motte; revised by N. W. Chittenden.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2010.

F. Nielson and H. R. Nielson. Type and effect systems. In Correct System
Design: Recent Insights and Advances. Springer Berlin Heidelberg, 1999. ISBN
978-3-540-48092-1.

A. Pais. Subtle is the Lord: The Science and the Life of Albert Einstein. OUP
E-Books. OUP Oxford, 2005. ISBN 9780192806727. URL https://books.
google.it/books?id=0QYTDAAAQBAJ.

[. Quantum. Qiskit transpiling documentation, 2025. URL https://quantum.
cloud.ibm.com/docs/en/guides/transpile.

F. Rios and P. Selinger. A categorical model for a quantum circuit description
language. In Proc. of QPL 2017, 2017.

N. Ross. Algebraic and Logical Methods in Quantum Computation. PhD thesis,
Dalhousie University, 2015.

o7

https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://redlightrobber.com/red/links_pdf/Isaac-Newton-Principia-English-1846.pdf
https://redlightrobber.com/red/links_pdf/Isaac-Newton-Principia-English-1846.pdf
https://books.google.it/books?id=0QYTDAAAQBAJ
https://books.google.it/books?id=0QYTDAAAQBAJ
https://quantum.cloud.ibm.com/docs/en/guides/transpile
https://quantum.cloud.ibm.com/docs/en/guides/transpile

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

G. Scherer and J. Hoffmann. Tracking data-flow with open closure types. In
Proc. of LPAR 2013, 2013.

P. Selinger. Quipper: A scalable quantum programming language, 2013. URL
https://www.mathstat.dal.ca/~selinger/quipper/.

P. Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124-134, 1994. doi: 10.1109/SFCS.1994.365700.

N. Vazou, E. L. Seidel, and R. Jhala. Liquidhaskell: Experience with refinement
types in the real world. In Proc. of Haskell 201/, 2014. ISBN 9781450330411.

N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Refinement
types for Haskell. In Proc. of ICFP 2014, 2014. ISBN 978-1-4503-2873-9.

V. Vedral, A. Barenco, and A. Ekert. Quantum networks for elementary
arithmetic operations. Physical Review A, 54(1):147-153, July 1996. ISSN
1094-1622. doi: 10.1103/physreva.54.147. URL http://dx.doi.org/10.1103/
PhysRevA.54.147.

T. YAMAKAMI. A schematic definition of quantum polynomial time com-
putability. The Journal of Symbolic Logic, 85(4):1546-1587, Sept. 2020. ISSN
1943-5886. doi: 10.1017/j51.2020.45. URL http: //dx.doi.org/10.1017/js1.
2020.45.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin,
D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang,
L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan.
Quantum computational advantage using photons. Science, 370(6523):1460—
1463, 2020. doi: 10.1126/science.abe8770. URL https://www.science.org/
doi/abs/10.1126/science.abe8770.

58

https://www.mathstat.dal.ca/~selinger/quipper/
http://dx.doi.org/10.1103/PhysRevA.54.147
http://dx.doi.org/10.1103/PhysRevA.54.147
http://dx.doi.org/10.1017/jsl.2020.45
http://dx.doi.org/10.1017/jsl.2020.45
https://www.science.org/doi/abs/10.1126/science.abe8770
https://www.science.org/doi/abs/10.1126/science.abe8770

Acknowledgments

I take a moment to thank my entire family, particularly Daniela, Camelia, Angela,
Federica, Gregorio, Carlo, and Gianluigi. My friends Diego, Fabio, Gregorio, and
especially Alice, Emanuele, Lorenzo, Samuele, and all the people who have supported
me up to this point in my life, those who are still doing so, and those who will do
so in the future.

Special thanks go to my Prof. Ugo Dal Lago and Dr. Andrea Colledan, who have
supported me and helped me grow in this first small step towards a future in the
field of scientific research.

Finally, I wanted to thank myself for managing to make it despite everything.

99

	Sommario
	Abstract
	Introduction
	Quantum Computing Principles
	A Little Bit of History
	Postulates of Quantum Mechanics
	What's a qubit?
	No-cloning Theorem

	Quantum Circuits
	Quantum Gates
	Universal Gates

	Quantum Algorithms

	Shor's Algorithm
	The Impact on Cryptography
	Classical State of the Art
	Cryptographic Protocols Under Threat

	RSA: The Factorization Fortress
	The New Advantage

	The Protocol
	The Period-finding Algorithm

	Quantum Programming Languages
	Introduction
	Categories of Quantum Programming Languages

	Quipper
	Proto-Quipper-RA
	Entangling Two Qubits in Proto-Quipper-RA

	QuRA
	Core Functionality
	Execution Example and Analysis

	Width Analysis of Shor's Quantum Subroutine
	Circuit structure
	Quantum Phase Estimation
	Oracle Function
	Adder
	Modular Adder
	Controlled Modular Multiplier
	Modular Exponentiation
	Root of the Oracle Function
	Shor's Width Estimation

	Results and Future Work
	Conclusions
	Ongoing and Future Work

	Bibliography

