
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea Magistrale in Matematica

Investigating barren plateaus in
variational quantum algorithms via the

Clifford group

Relatore:
Chiar.mo Prof.
De Palma Giacomo

Correlatore:
Chiar.mo Prof.
Pastorello Davide

Presentata da:
Giovannini Elena

Anno Accademico 2024-2025





Abstract

Quantum computing is a model of computing that is based on the laws of quan-
tum mechanics. A promising path toward demonstrating quantum advantage in
the near term is the use of Variational Quantum Algorithms (VQAs). VQAs are
quantum algorithms that rely on a set of tunable parameters, the optimization
of which is handled by a classical computer, creating a hybrid quantum-classical
loop. The goal of a VQA is to find the set of parameters that minimizes a cost
function that depends on them. The potential of these circuits is often ham-
pered by the Barren Plateau (BP) phenomenon, which indicates that the cost
function results being flat in vast regions of the parameter space far from the
minimum, rendering the training of the VQA practically infeasible. The goal
of this thesis is to relate the flatness of the cost function to the architectural
features of a quantum circuit. This is the same problem addressed in [Napp,
arXiv:2203.06174], however, we approach the problem in a different manner. To
this aim we make use of the Pauli group, i.e. the group generated by the Pauli
matrices along with the identity, and its normalizer, the Clifford group. We
study the problem in two different configurations. In the first configuration, we
assume that the architecture of the circuit is not fixed, as each gate is applied
to randomly sampled sites at each step. We study this model with the proper-
ties of Markov chains and we derive an analytical upper bound on the expected
magnitude of the gradient of the cost function, which decays exponentially with
the number of gates in the circuit. We also numerically demonstrate that the
bound does not exhibit exponential decay for shallow circuits. In the second
configuration the architecture is fixed and we study the model as a random walk.
For the same quantity we obtain an analytical lower bound that exponentially
decays with the minimum number of gates that a trajectory of the random walk
must pass trough.
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Abstract

La computazione quantistica è un modello di computazone basato sulle leggi
della meccanica quantistica. Un approccio promettente per dimostrare la supe-
riorità dei computer quantistici rispetto a quelli classici, è rappresentato dagli al-
goritmi quantistici variazionali (VQA, Variational Quantum Algorithms). Questi
sono algoritmi quantistici che si basano su un insieme di parametri regolabili,
la cui ottimizzazione è affidata ad un computer classico, creando così un ci-
clo ibrido classico-quantistico. Lo scopo di un VQA è quello di trovare il set di
parametri che minimizza una funzione di costo che dipende dai parametri stessi.
Nonostante le incoraggianti premesse, l’ottimizzazione di questi circuiti è spesso
ostacolata dal fenomeno del barren plateau (BP), che comporta l’appiattimento
della funzione di costo in estese aree dello spazio dei parametri, lontano dal min-
imo. Quando presente, questa circostanza rende l’addestramento di un VQA
computazionalmente proibitivo. Lo scopo di questa tesi è quello di mettere
in relazione l’insorgenza di questo fenomeno con le caratteristiche del circuito
quantistico utilizzato. Pur riferendosi allo stesso problema discusso in [Napp,
arXiv:2203.06174], questo lavoro propone un approccio alternativo. A tal fine,
si fa uso del gruppo di Pauli, ovvero il gruppo generato dalle matrici di Pauli
insieme all’identità, e del suo normalizzatore, il gruppo di Clifford. Studiamo il
problema, per un circuito ad n qubit, in due configurazioni distinte. Nella prima,
assumiamo che l’architettura del circuito, ovvero la posizione delle porte, non
sia fissata e che quindi, i siti su cui queste porte agiscono siano campionati ogni
volta dalla distribuzione uniforme sulle possibili coppie di siti. Studiamo questo
modello con le proprietà delle catene di Markov e ricaviamo un limite superiore
sulla norma attesa del gradiente della funzione di costo, che decade esponenzial-
mente con il numero di qubit nel circuito. Inoltre, dimostriamo numericamente
che questo limite non presenta decrescita esponenziale per circuiti poco pro-
fondi. Nella seconda configurazione invece, assumiamo che l’architettura del
circuito sia fissata e studiamo il problema come una passeggiata aleatoria. In
questo caso, ricaviamo un limite inferiore sulla norma attesa del gradiente, che
decade esponenzialmente con il numero minimo di porte che una traiettoria della
passeggiata stocastica deve attraversare.
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Chapter 1

Introduction

1.1 Quantum computing

The idea of creating a computer that exploits the laws of quantum mechanics to
perform computations was first introduced by Richard Feynman in 1981, during
a conference on the topic “Simulating Physics with Computers”. His talk was
later developed into an article [1]. In his speech, Feynman addressed the problem
of simulating quantum systems, highlighting that classical computers are inade-
quate for this task. Indeed, the space in which quantum systems are defined, the
Hilbert space, grows exponentially with the number of components in the sys-
tem, leading to prohibitively high computational complexity, unapproachable
for classical computers. The core of his argument can be summarized in the
famous final statement of the speech, which claims that since nature is not clas-
sical, any efficient simulation of it must be based on the principles of quantum
mechanics.

Feynman was not the only one concerned with the computational limits of clas-
sical computers. This conclusion was reached independently [2], and slightly
earlier, in 1980, by Yuri Manin. In his book [3] he discusses the exponential
cost of simulating a many-particle particle system with a classical computer
due to the higher complexity of quantum systems with respect to their classical
counterparts. A few years before, Paul Benioff proposed a quantum mechanical
model of the Turing machine1, in other words, he showed that for any Turing
machine Q, one can construct a Hamiltonian and a suitable class of initial states
such that the time evolution of these states under the Hamiltonian corresponds

1A Turing machine is a theoretical computational model consisting of an infinite tape
divided into cells, a tape head that can read and write symbols and move left or right, and
a finite set of internal states. It processes input according to a set of rules and serves as a
formal definition of algorithmic computation.
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CHAPTER 1

to the computation steps of Q [4]. These intuitions, helped give rise to the field
of quantum computing.

1.1.1 Proving quantum advantage

In the following decades, the field began to develop and quantum computers, as
devices that exploits the laws of quantum mechanics, started to be studied. The
model that describes how these machines perform calculations is the quantum
circuit. This consists of an ordered sequence of quantum gates, mathematically
represented as unitary operators, acting on qubits, the fundamental units of
information in a quantum computer. The notion of quantum circuit was for-
malized in 1985, by David Deutsch [5]. He also proposed, in the same paper, a
quantum generalization of the Church–Turing hypothesis. The Church-Turing
hypothesis states that

“Every function which would be naturally regarded as computable can can be
computed by the universal Turing machine 2.”

In other words, the thesis states that the class of computable functions coincides
with the class of functions that can be computed by a Turing machine. Deutsch
realized that, since any computation is inherently a physical process, it was
possible to deduce the CT hypothesis from the law of physics. The hypothesis,
revisited, states that every physical process can be simulated by a universal com-
puting device, and Deutsch himself found that quantum theory and the quantum
computer are compatible with the principle.

A few years later, in 1993, Umesh Vazirani and Ethan Bernstein formulated the
the Bernstein-Vazirani Algorithm [6], that proves a super-polynomial advantage
of quantum computing over classical computers3. Later in 1994, Daniel Simon
proved that a quantum computer guarantees an exponential speedup in solving
the Simon’s problem, an idealized version of the problem of finding the period
of function [7].

Simon’s algorithm later inspired Peter Shor, who developed a quantum algo-
rithm to efficiently solve the discrete logarithm problem, and subsequently for-
mulated the famous Shor’s algorithm for factoring large numbers. Both prob-
lems are believed to be hard for classical computers and belong to the class
of problems known as NP4. These results drew significant attention to quan-
tum computing due to their practical implications. Indeed, Shor’s algorithm [8]

2A universal Turing machine is a Turing machine that can simulate any other Turing
machine.

3With super-polynomial advantage of quantum computers we mean that a quantum com-
puter can solve a certain problem in polynomial time as a function of the input size, while a
classical computer requires a super-polynomial time to solve the same instance.

4NP (Nondeterministic Polynomial time) is the class of decision problems for which the
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1.1. QUANTUM COMPUTING

provides an exponential speedup over the best-known classical algorithms for
factoring, threatening the security of widely used encryption methods. Further
evidence of the power of quantum computers emerged in 1995, when Lov Grover
demonstrated that a quantum computer could achieve a quadratic speedup for
searching through an unstructured search space. This result became known as
Grover’s search algorithm [9] and can be applied to a wide range of problems.

These results demonstrated that quantum computers could, in principle, be used
to tackle problems that are believed to be intractable for classical computers,
as the problems in the NP class. This naturally raises the question of whether
all classically hard problems can be solved, or at least improved, using quantum
algorithms. Currently, it is believed that the class of problems that are effi-
ciently solvable by a quantum computer, BQP5, does not contain the class NP,
meaning that, apart from certain specific problems, quantum computers are not
expected to solve all computationally hard problems in polynomial time. In-
deed, Grover’s search algorithm, which can be applied to NP-complete problems
(those problems for which a solution would imply efficient solutions to all other
problems in the NP class) offers at most a quadratic speedup rather than an
exponential one. At the current state, what is guaranteed is that BQP contains
the class of problems solvable by probabilistic Turing machines, BPP6. This is
formalized by the inclusion BPP ⊆ BQP, proven in [6]. The result implies that
quantum computation generalizes probabilistic computation, offering at least
the same computational power and potentially more.

Underlying the belief in the superior power of quantum computing is the quan-
tum nature of the qubit, the analogous of the classical bit. Unlike bits, which
can be either 0 or 1, a qubit can exist in a superposition of both states simul-
taneously. Even more crucially, systems composed of multiple qubits can be
entangled, exhibiting correlations that have no classical counterpart. Superpo-
sition and entanglement allow quantum systems to process information in ways
that classical computers fundamentally cannot.

However, despite the growing enthusiasm, quantum computers are not yet prac-
tically useful. The algorithms we discussed, typically require a highly idealized
model of a quantum computer, where the quantum state evolves in a perfectly
closed and isolated system. If this is not the case, whenever the quantum sys-
tem interacts with its external environment, uncontrollable disturbances arise,
manifesting as noise within the quantum circuit. This phenomenon, known as
decoherence, implies that, in order to reliably store and process quantum infor-

problem instances, where the answer is yes, have proofs verifiable in polynomial time by a
deterministic Turing machine.

5BQP (Bounded-Error Quantum Polynomial time) is the class of decision problems solvable
by a quantum computer in polynomial time, with an error probability of at most 1/3 for all
instances.

6BPP (Bounded-Error Probabilistic Polynomial time) is the class of decision problems solv-
able by a probabilistic Turing machine in polynomial time with an error probability bounded
by 1/3 for all instances.
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Figure 1.1: Comparison between bits and qubits. Bits (on the left) can assume
a given value that can only be either 0 or 1. A qubit (on the right) instead, can assume
values that are superposition of the states |0⟩ and |1⟩, the quantum equivalents to 0
and 1.

mation, the system must remain nearly perfectly isolated. At the same time,
for a quantum computer to be useful, we must be able to control the system ex-
ternally and read out the qubits to extract the computational result. Satisfying
both conditions simultaneously makes building a functional quantum computer
an extremely challenging task.

Nevertheless, it is theoretically possible to mitigate the effects of noise without
compromising quantum information processing. This is achieved through the
use of quantum error correction (QEC) techniques, first introduced by Shor [10].
The idea behind QEC is to protect quantum information by encoding it into
highly entangled states of multiple physical qubits, such that the information
can be preserved and recovered even in the presence of errors affecting individ-
ual qubits. Unfortunately, such methods come at a high cost in terms of the
number of qubits required, and current quantum computers are not yet capable
of supporting such computational burden.

1.1.2 Variational Quantum Algorithms and the barren
plateau phenomenon

While fault-tolerant quantum computers are still years away, the pressing ques-
tion is how to make effective use of today’s noisy, intermediate-scale quantum
(NISQ) devices [11], which are constrained by both qubit count (ranging from
50 to a few thousands) and susceptibility to errors. In order to demonstrate a
real quantum advantage over classical computers, researchers have had to de-
velop algorithms capable of operating within the constraints imposed by NISQ
devices. In recent years, this effort has led to the emergence of Variational
Quantum Algorithms (VQAs) [12], a class of hybrid quantum-classical algo-
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rithms designed to make the most of current noisy hardware. Indeed, VQAs
make use of quantum circuits whose gates depend on a set of parameters and
whose output defines a parameter-dependent cost function. The optimization
of this function is then delegated to classical optimizers, a feature that helps
mitigate the effects of noise.

One of the main challenges limiting the applicability of variational quantum
circuits is the training of the circuit itself. It has been observed that, for many
circuit architectures, the optimization landscape tends to become flat in regions
far from the optimal solution. As a result, the gradient of the cost function
vanishes across large areas of the parameter space. This phenomenon, known
as barren plateau, makes the optimization process extremely slow, as identify-
ing a suitable direction for parameter updates would require exponentially high
precision. In recent years, the barren plateau phenomenon has been extensively
studied, and numerous papers have shown that it depends on the architectural
features of the quantum circuit [13], [14], [15], [16], as well as on other fac-
tors such as excessive entanglement [17], [18] and the presence of noise in the
circuits [19], [20]. More recently, Ref. [21] has argued that avoiding barren
plateaus would imply exploiting a simple underlying structure in the problem,
which could make the circuit classically simulable and thus nullify the quan-
tum advantage. A more in-depth analysis of the phenomenon is presented in
section 2.3.

1.2 Our results

The scope of our work is to use an approach based on the properties of Clifford
and Pauli operators to study the phenomenon of barren plateau for a model of
unstructured ansatz. The ansatz considered consists of parametrized unitaries
acting on 1 or 2 qubits; random entangling gates acting con 2 qubits sampled
independently and uniformly at random from the Haar measure over the unitary
group U(4); and random single qubit gates randomly sampled from the Haar
measure over U(2). In addition, we consider a local Pauli observable. As we
detail in chapter 4, to study the barren plateau we can consider the second
moment of the objective function, and thus we can replace the Haar measure on
U(4) used to sample the 2-qubits entangling gates, with the uniform measure
over the Clifford group C2. This is allowed because the Clifford group forms
a 2-design7, and thus the second moments of operators sampled from C2 are
equivalent to those obtained with operators drawn uniformly at random from
the Haar measure on U(4).

Our approach to the problem, consists in leveraging the properties of the action
7A t-design is a probability distribution over unitary operators which can duplicate prop-

erties of the probability distribution over the Haar measure for polynomials of degree t or less,
more on the topic is discussed in subsection 2.3.3.
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CHAPTER 1

of the n-qubit Clifford group on the operators of P∗
n, a subset of the Pauli

group, within the Heisenberg picture, a formulation of quantum mechanics in
which observables are time-dependent but the state of the system is independent
of time. We analyze the problem in two distinct configurations. In the first
configuration, we assume that the gates positions are stochastic and not fixed
in advance, the sites they act upon are sampled at each step from the uniform
distribution over the

(
n
2

)
couples of sites in the n-qubits circuit. This assumption

allows us to model the system as a relatively simple Markov chain. For this
process we prove analytically an upper bound on the expected magnitude of the
gradient of the cost function. The bound depends on both the number of qubits
in the circuit n and on the number of entangling gates p. The result obtained,
shows that, for a fixed number of qubits, the bound decays exponentially with
the number of entangling gates. Moreover, the numerical results show that
the decay of the expected gradient magnitude becomes slower as n increases
relative to p, which is consistent with numerical simulations indicating that the
relaxation time of the process grows almost linearly with the number of qubits.
If instead we fix the number of gates and let n grow, we observe, thanks to the
numerical results, that the gradient is no longer exponentially small in n when
n > p, an outcome that confirms previous results that show absence of barren
plateaus in sufficiently wide but shallow circuits.

The second configuration is the most important in real life applications, as it
assumes that the position of the gates is fixed (i.e., we fix the architecture of
the circuit) in advance. For this case, we can relate the BP to a random walk
over the strings of n symbols over a 2-letter alphabet. We determine a lower
bound on the expected magnitude of the gradient of the cost function that
vanishes exponentially with the minimum number of gates that a trajectory of
the random walk must pass trough.

1.3 Outline of the thesis

Chapter 2. In the second chapter, we introduce the fundamental principles and
properties of quantum computing that are necessary for the following chapters.
To this end, we present the postulates of quantum mechanics and highlight some
of their key consequences. We then define the fundamental building blocks
of quantum circuits: qubits and quantum gates. Subsequently, we formally
introduce and discuss Variational Quantum Algorithms (VQAs). In this section
we present the core components of VQAs, namely the cost function and the
ansatz, and introduce some of their most relevant applications. In particular,
we focus extensively on the barren plateau phenomenon, which hinders the
training of parameterized quantum circuits. We review the initial results on this
phenomenon and examine the underlying causes responsible for its emergence.

14



1.3. OUTLINE OF THE THESIS

Chapter 4. In the fourth chapter we define P∗
n, a restricted set of the n-qubits

Pauli group that contains all the Hermitian Pauli operators apart from the
identity. We then analyze the properties of the action of the n-qubit Clifford
group Cn on P∗

n, prove that it is transitive (Theorem 3.1) and then prove that
the conjugation of an element P ∈ P∗

n by a randomly chosen Clifford operator
yields a uniformly random element of P∗

n. This result is formalized and proved
in Theorem 3.2.

Chapter 5. In the fifth chapter, we address the central problem of the thesis:
the study of the barren plateau phenomenon in unstructured variational circuits.
After defining the ansatz setup, we recall Lemma 4.1 from Ref. [15], which allows
us to simplify the analysis of the gradient by relating the natural measure of
the flatness of the cost function EV EΘ∥fV (Θ)∥2 to the more accessible quantity
EV EΘfV (Θ). We first study the vanishing gradient under the assumption that
the position of the gates is not fixed in advance, a simplification that enables
us to model the problem as a simple Markov chain. In this setting we show an
analytical upper bound on the typical magnitude of the gradient that decays
exponentially with the number of entangling gates (Proposition 4.4). We also
numerically prove that when the number of qubits exceeds the number of non-
parametrized gates, the gradient does not vanish. Subsequently, we consider
the more realistic model with fixed gates positions and show (Proposition 4.5)
that the lower bound previously established in Ref. [15] also holds within our
framework.

Chapter 6 In the final chapter, we briefly summarize our results and discuss
potential directions for future research.
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Chapter 2

Quantum computing and
Variational Quantum
Algorithms

A quantum computer can be summarily defined as a computer that exploits
the laws of quantum mechanics, the theory developed and employed to explain
the behavior of physical objects at atomic and subatomic scale. As discussed in
the previous chapter, the idea of such a device was first introduced in the early
eighties, and has developed significantly since then.

In this chapter we aim at explaining the physical and mathematical foundations
of quantum computing as well as the current state and open questions of the
field. In section 2.1, we give a brief overview of the mathematical framework
developed to explain these phenomenological observations, focusing mainly on
the elements needed to understand the following chapters. Subsequently, in
section 2.2 we introduce the basic elements of quantum computing. Finally, in
section 2.3 we delve into the topic of Variational Quantum Algorithms, a highly
active area of research in recent years.

2.1 Mathematical foundations of quantum me-
chanics

In the beginning of the 20th century, quantum mechanics was developed in
order to overcome the limits of classical physics. The main phenomenological
evidences presented by quantum systems that classical mechanics is unable to

17
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explain, can be summarized in the following three properties:

i. Randomness of measurement outcomes: repeated measurements of the
same physical quantity (observable) A, in the same physical condition
(state) produce different results.

ii. Post-measurement state: let ψ represent the physical state of the consid-
ered quantum system and perform a measurement process on the system
to measure the observable A. If we obtain the outcome a, then the state
of the system after measurement changes to a new state ψa.

iii. Incompatible observables: there are observables that cannot be simultane-
ously measured by an experiment.

These evidences are justified by the postulates of quantum mechanics, which we
now proceed to discuss. The ones we recall here, are some well known results
for which we refer to [22] and [23] for a more detailed discussion and for the
proof of the propositions that we state.

The central structure of the mathematical formulation of quantum mechanics is
the Hilbert space (H, ⟨ | ⟩)1. Quantum systems are generally studied in separable
infinite-dimensional Hilbert spaces. However, since quantum computing does
not require infinite dimensions, we limit our discussion to finite-dimensional
Hilbert spaces. From now on, H always refers to a finite-dimensional Hilbert
space. We introduce some additional notation: the set of linear operators on H
is denoted by L(H), and the spectrum of an operator A ∈ L(H) is written as
σ(A). We now introduce the first postulate of quantum mechanics.

Postulate I

Any quantum system is associated to an Hilbert space H. The
state of the system is described by a positive semi-definite linear
operator ρ with trace 1 acting on H.

The operator ρ is called density operator, density matrix or quantum state. We
denote as D(H) the set of all density operators, that is

D(H) = {ρ ≥ 0| Tr(ρ) = 1}. (2.1)

We say that a quantum state ρ is pure if it is an orthogonal projector of rank
1, that is

ρ = |ψ⟩⟨ψ| for |ψ⟩ ∈ H, ⟨ψ|ψ⟩ = 1. (2.2)
1For vectors and inner and outer products we use the Dirac notation that is typical of

quantum mechanics and quantum computing.
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2.1. MATHEMATICAL FOUNDATIONS OF QUANTUM MECHANICS

Two vectors ψ, φ ∈ H with unit norm describe the same pure state if and only
if

∃α ∈ R such that |ψ⟩ = eiα|φ⟩. (2.3)

The term "pure state" refers to a quantum state that encodes the maximum
knowledge of the system’s physical conditions. When the information about the
system’s state is incomplete, the system is described by a mixed state:

ρ =
∑
i

λi|ψi⟩⟨ψi|, for |ψi⟩ ∈ H, λi ≥ 0 ∀i and
∑
i

λi = 1. (2.4)

Proposition 2.1. The space D(H) is convex and any quantum state can be
expressed as a convex combination of mutually orthogonal2 pure states.

A characteristic of quantum mechanics is that a quantum state can be a su-
perposition of more physical states. We can distinguish between two types of
superposition that we detail in the following definition.

Definition 2.1. Let {|ψi⟩}i∈I ⊂ H be a finite collection of pure states. The
pure state defined as the normalized linear combination of the states |ψi⟩

|ψ⟩ =
∑
i∈I ai|ψi⟩

∥
∑
i∈I ai|ψi⟩∥

for ai ∈ C∀ i ∈ I, (2.5)

is a quantum state called coherent superposition of {|ψi⟩}i∈I . Let {ρi}i∈I be a
collection of quantum states that can be pure or mixed, then the linear combi-
nation

ρ =
∑
i∈I

λiρi for λi ≥ 0 and
∑
i

λi = 1, (2.6)

is a quantum state called incoherent superposition of {ρi}i∈I .

The difference between the two lies in their relation with the classical frame-
work. A state defined as a coherent superposition of pure states does not have a
classical counterpart. Its existence is permitted by the mathematical structure
of Hilbert spaces, which allows the construction of new pure states from exist-
ing ones; therefore, its nature is intrinsically quantum. On the other hand, an
incoherent superposition corresponds to a classical ignorance about the state of
the system: it is a statistical mixture of states and is not directly related to the
quantum nature of the described system. If a system prepared in a coherent
superposition interacts with the external environment, it evolves into an inco-
herent superposition. The process is known as decoherence and corresponds to
an information loss of the initial state.

2Two pure states ρ1 = |ψ⟩⟨ψ| and ρ2 = |φ⟩⟨φ| are orthogonal, ρ1 ⊥ ρ2, if and only if
|ψ⟩ ⊥ |φ⟩.
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Postulate II

A quantum measurement M on a quantum system is described
by an outcome set X and a collection of measurement operators
{Ex|x ∈ X} ∈ L(H) that satisfy the completeness equation∑

x

E†
xEx = I, (2.7)

The index x refers to the measurement outcome that may occur
in the experiment.

If the state of the system before the measurement is ρ, then the probability that
the outcome x occurs is

P(x|ρ) = tr[ExρE†
x]. (2.8)

As we mentioned at the beginning of this chapter, performing a measurement on
a quantum system alters its state. In particular, we say that the state collapses.
If the outcome x occurs, then the state of the system after measurement is

Mx(ρ) =
ExρE

†
x

tr[ExρE
†
x]
. (2.9)

For a pure state ρ = |ψ⟩⟨ψ|, equations (2.8) and (2.9) simplify as follows

P(x|ρ) = ⟨ψ|E†
xEx|ψ⟩, Mx(ρ) =

Ex|ψ⟩ ⟨ψ|E†
x

⟨ψ|E†
xEx|ψ⟩

. (2.10)

Note that the completeness equation (2.7) reflects the requirement that proba-
bilities sum to one. ∑

x

⟨ψ|E†
xEx|ψ⟩ =

∑
x

P(x) = 1. (2.11)

We briefly introduce the positive operator-valued measure (POVM) formalism,
a mathematical framework well suited for studying the probabilities of measure-
ment outcomes. Define the operators

Mx = E†
xEx, (2.12)

then, for any measurement M , the following proposition holds:

Proposition 2.2. Let {Mx|x ∈ X} be a set of linear operators, then there exist
a measurement M with operators {Ex|x ∈ X} such that Mx = E†

xEx for all
x ∈ X if and only if Mx ≥ 0 and

∑
x∈XMx = I.

20



2.1. MATHEMATICAL FOUNDATIONS OF QUANTUM MECHANICS

The operators Mx are called the POVM elements associated with the measure-
ment and the complete set is known as a POVM. Given a POVM the probability
of outcome x is

P(x|ρ) = tr[ρMx], (2.13)

or, for a pure state
P(x|ρ) = ⟨ψ|Mx|ψ⟩. (2.14)

Thus, the set of operators Mx is sufficient to determine the probabilities of the
different measurement outcomes.

Suppose that the measurement operators described above also satisfy the con-
dition of being Hermitian and pairwise orthogonal ExEx′ = δxx′Ex. Then we
can call the measure a projective measure.

Definition 2.2. (Projective measurement) A measure M is a projective mea-
surement if each Ex is an orthogonal projector, that is supp(Ex) ⊥ supp(Ex′)
∀x ̸= x′, x, x′ ∈ X, with

H =

⊥⊕
x∈X

supp(Ex) ⇐⇒ ExEx′ = δxx′Ex and
∑
x∈X

Ex = I. (2.15)

In this case, the POVM elements are the measurement operators themselves
since Mx = E†

xEx = Ex. For a projective measurement we denote the measure-
ment operators Ex as Πx.

Let M be a projective measurement with outcome set X ⊂ R and projectors
{Πx|x ∈ X}. Then, we associate to the measurement an observable A which is
a self-adjoint3 operator on H with spectral decomposition

A =
∑
x∈X

xΠx. (2.16)

Therefore, from this characterization, we see that the outcome set corresponds to
the spectrum of the observable X = σ(A), and that supp(Πx) is the eigenspace
associated with the eigenvalue x. It is important to note that also the converse
is true.

Proposition 2.3. Given an observable A, there always exists a projective mea-
surement M associated with A.

When we measure an observable, what we are doing is applying the associated
projective measure. Then, for a pure state ρ = |ψ⟩⟨ψ| (but similarly for mixed
states) the outcome is a random eigenvalue whose probability is

P(x|ρ) = ⟨ψ|Πx|ψ⟩, (2.17)
3Let A ∈ L(H). The adjoint of A is the unique operator A† ∈ L(H) such that ⟨A†φ|ψ⟩ =

⟨φ|Aψ⟩ for any |φ⟩, |ψ⟩ ∈ H. The operator A is self-adjoint if A = A†.
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and, given that the outcome x has occurred, the post measurement state is

Πx|ψ⟩√
P(x|ρ)

. (2.18)

For a system with quantum state |ψ⟩ ∈ H the average value of the measure of
the observable A, is found very easily through some simple calculations

⟨A⟩ = E[A] =
∑

x∈σ(A)

xP(x||ψ⟩⟨ψ|) (2.19)

=
∑

x∈σ(A)

x⟨ψ|Πx|ψ⟩ (2.20)

=⟨ψ|

 ∑
x∈σ(A)

xΠx

 |ψ⟩ (2.21)

=⟨ψ|A|ψ⟩. (2.22)

We can now address the third phenomenological evidence that we introduced at
the beginning of this chapter, that is the existence of observables that cannot
be measured simultaneously. Let P(A = a and B = b) be the joint probability
of measuring the value a and b of the observables A and B respectively. If this
value is well defined we say that the two observables are compatible.

Proposition 2.4. Two observables A and B are compatible ⇐⇒ [A,B] :=
AB −BA = 0.

If this is not verified then the joint probability is not well-defined and A and B
cannot be measured simultaneously.

Postulate III

The state space of a composite physical system is the tensor prod-
uct of the state spaces of the component physical systems. Thus,
if we have systems numbered 1 through n and the system number
i is prepared in the state |ψi⟩ ∈ Hi, then the joint state of the
total system is |Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . .⊗ |ψn⟩ ∈ H =

⊗n
i=1Hi.

Therefore, composite systems exhibit an internal structure that enables the
distinction of two or more subsystems, which can be independently observed
through local measurements. The converse also holds: individual quantum sys-
tems can be combined to form composite systems.

We can now define what entangled states are.
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Definition 2.3. The pure state Ψ ∈ HA ⊗ HB is called separable if it can be
written in the product form

Ψ = ψA ⊗ ψB , for ψA ∈ HA, ψB ∈ HB . (2.23)

If this is not possible, then we say that the state is entangled.

Thus, the system is separable if the two subsystems are uncorrelated and each
of them presents a well defined state. If instead the system is entangled, the two
subsystems are subject to a correlation that is purely quantum and does not
have a classical counterpart. The definition can be extended to mixed states.
Given a density operator ρ ∈ D(HA ⊗HB), we say that it is separable if it can
be written as

ρ =
∑
i

λiρ
(A)
i ⊗ ρ(B)

i , for λi ≥ 0 and
∑
i

λi = 1, ∀i, (2.24)

where ρ(S)i ∈ D(HS), for S = A,B,. Otherwise, the state is entangled.

Postulate IV

The evolution of a closed quantum system is described by the
Schrödinger equation

iℏ
d

dt
ρ(t) = [H(t), ρ(t)], (2.25)

whereH(t) is a time-dependent self-adjoint linear operator acting
on H called Hamiltonian of the system and ℏ the Plank constant.

If the state of the system is a pure state Eq. (2.25) becomes

iℏ
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (2.26)

Analogously, the time evolution of the system can be described by a unitary
transformation, that is the state of the system at time t1 is related to the state
of the system at time t2 by a unitary operator U depending only on the times
t1 and t2,

ρ(t2) = Uρ(t1)U
†, (2.27)

or, equivalently, for pure states

|ψ(t2)⟩ = U |ψ(t1)⟩ . (2.28)

If H is time-independent the unitary describing the evolution is defined as

U = exp

(
−i (t2 − t1)

ℏ
H

)
. (2.29)
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2.2 Quantum computing

Quantum computing is a model of computation that describes information pro-
cessing with devices based on the laws of quantum physics. The fundamental
unit at the basis of quantum computers is the qubit, the quantum counterpart
of a classical bit. The framework for describing quantum computations is pro-
vided by quantum circuits, which are analogous to classical logic circuits. The
building blocks of a quantum circuits, along with qubits, are the gates. We now
describe the properties of qubits as well as the fundamental type of gates that
appear in quantum circuits. Subsequently, we formally define what a quantum
circuit is.

2.2.1 Qubits

The quantum counterparts of bits are qubits. The two possible states for a qubit
are the ones defined by the vectors |0⟩ and |1⟩, that correspond to the states
0 and 1 of classical bits. The difference, is that a qubit can also be in a state
other than the two mentioned above. Indeed, as a consequence of the properties
of quantum mechanics that we discussed in the previous section, a qubit’s state
can be any coherent superposition of |0⟩ and |1⟩

|ψ⟩ = α |0⟩+ β |1⟩ , (2.30)

where α, β ∈ C and |α|2 + |β|2 = 1 due to the normalization of the state.

The special states |0⟩ and |1⟩ are known as computational basis states, and form
an orthonormal basis for C2, the Hilbert space associated to the qubit.

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
, ⟨0 |0⟩ = ⟨1 |1⟩ = 1, ⟨1 |0⟩ = ⟨0 |1⟩ = 0. (2.31)

Consequently, any state of the type in Eq. (2.30), has vector representation

|ψ⟩ =
(
α
β

)
. (2.32)

Since we impose the normalization condition |α|2 + |β|2 = 1, Eq. (2.30) can be
written in the following form

|ψ⟩ = eiγ
(
cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩
)
, for θ, φ, γ ∈ R. (2.33)

By (2.3) the factor eiγ can be ignored and we can write

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ . (2.34)
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|0⟩
z

y

x

|1⟩

|ψ⟩

θ

φ

Figure 2.1: The Bloch sphere. The state is represented as a point on the surface
of the sphere. The point is defined by the angles θ and φ that respectively represent
the distance from the z and the x axis. The state |0⟩ corresponds to θ = 0, while the
state |1⟩ corresponds to θ = π.

We see that the numbers θ and φ define a point on the three-dimensional unit
sphere, called the Bloch sphere (see Figure 2.1). Thus, a quantum state can
be visualized as a three-dimensional vector pointing to the surface of the Bloch
sphere.

The framework we have described generalizes naturally to composite systems,
except for the Bloch sphere, which can only be drawn for single-qubit systems.
Consider a classical 2-bit system: the possible configurations are 00, 11, 10, 01.
Analogously, a 2-qubit system is described in the Hilbert space H = (C2)⊗2,
which has four computational basis states that are {|00⟩ , |11⟩ , |01⟩ , |10⟩}4. By
the first postulate of quantum mechanics, any pure state in D(H) is described
by the vector

|ψ⟩ = α0,0 |00⟩+ α1,1 |11⟩+ α0,1 |01⟩+ α1,0 |10⟩ , (2.35)

with the normalization condition
∑
i,j |αi,j |2 for i, j ∈ {0, 1}. The same ap-

proach applies for any n-qubit system with n ≥ 2, where the quantum system
is described by a state vector |ψ⟩ ∈ (C2)⊗n.

2.2.2 Gates

Definition 2.4. (Quantum gate) A k-qubit quantum gate is a unitary operator
acting on (C2)⊗k.

Thus, quantum gates can act on as many qubits as we want. We focus on single
4The notation |ab⟩ is equivalent to |a⟩ ⊗ |b⟩.
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and 2-qubit quantum gates as these are the type of gates that we use in the
following chapters.

The Pauli matrices

Before listing the most used quantum gates, it is useful to introduce the Pauli
matrices.

X = σ1 =

(
0 1
1 0

)
, Y = σ2 =

(
0 −i
i 0

)
, Z = σ3 =

(
1 0
0 −1

)
. (2.36)

The three operators are connected through the following relation:

σiσj = iεijkσk + δijI, (2.37)

where εijk is the Levi-Civita symbol and δij the Dirac delta.

The matrices X and Z, together with the identity I ≡ σ0, define the n-qubit
Pauli group Pn for n ≥ 1.

Definition 2.5. The n-qubit Pauli group Pn is defined as the subgroup of the
unitary group U(2n) consisting of all n-fold tensor products of n elements of

P ≡ P1 := ⟨X,Z, iI⟩. (2.38)

In the definition of P the operator Y is not needed since by (2.37) Y = iXZ.

The three Pauli matrices, in addition, are all self-adjoint and thus, are associated
with a quantum projective measurement

σ(X) = {+1,−1}, Π+1 = |+⟩ ⟨+| , Π−1 = |−⟩ ⟨−| . (2.39)

σ(Y ) = {+1,−1}, Π+1 = |i⟩ ⟨i| , Π−1 = |−i⟩ ⟨−i| . (2.40)

σ(Z) = {+1,−1}, Π+1 = |0⟩ ⟨0| , Π−1 = |1⟩ ⟨1| . (2.41)

Where the states |+⟩ , |−⟩ , |i⟩ , |−i⟩ take the following form when expressed in
the computational basis

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

, |i⟩ = |0⟩+ i |1⟩√
2

, |−i⟩ = |0⟩ − i |1⟩√
2

.

(2.42)
Moreover, the set {I, X, Y, Z} defines a basis for the self-adjoint 2× 2 matrices.
An important consequence of this is that any self-adjoint operator M , can be
written as a real linear combination of Pauli matrices

M =

3∑
i=0

λiσi for (λ0, λ1, λ2, λ3) ∈ R4. (2.43)
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Single qubit gates

Single-qubit gates are represented by 2× 2 unitary transformations that can be
written as matrices. Below, we list the most important ones.

i. Pauli X gate. The Pauli X gate acts as the quantum equivalent of the
classical NOT gate and is commonly referred to as the bit-flip gate because
its action on a quantum state swaps the states |0⟩ and |1⟩.

α |0⟩+ β |1⟩ X α |1⟩+ β |0⟩

ii. Pauli Z gate. The Pauli Z gate, also known as the phase-flip gate, leaves
the state |0⟩ unchanged while mapping |1⟩ to − |1⟩.

α |0⟩+ β |1⟩ Z α |0⟩ − β |1⟩

iii. Pauli Y gate. The Pauli Y gate acts as a combination, up to a phase, of
a Pauli X and Pauli Z gate due to (2.37).

α |0⟩+ β |1⟩ Y i(α |1⟩ − β |0⟩)

iv. Hadamard gate. The Hadamard gate is defined by the matrix

H =
1√
2

(
1 1
1 −1

)
. (2.44)

The gate acts on a quantum state transforming |0⟩ into |+⟩ and |1⟩ into
|−⟩ .

α |0⟩+ β |1⟩ H α|+⟩+ β|−⟩

v. Phase-shift gates. Phase-shift gates are a family of quantum gates, each
represented in matrix form as

P (φ) =

(
1 0
0 eiφ

)
, (2.45)

where φ is the phase-shift with period 2π. The action of the gate on a
quantum state is

α |0⟩+ β |1⟩ P (φ) α |0⟩+ eiφβ |1⟩
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Different values of φ define different gates. Some notable examples include
the T gate, where φ = π

4 , and the S gate (also known as phase gate) where
φ = π

2 . Moreover, that the Pauli Z gate is also a phase shift gate, with
φ = π.

vi. Pauli rotation gates. When exponentiated, the Pauli matrices give rise
to three useful classes of unitary operators: the rotation operators about
the x, y, and z axes of the Bloch sphere. The gates are defined by the
following equations

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin θ

2
X =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
(2.46)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin θ

2
Y =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
(2.47)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin θ

2
Z =

(
e−iθ/2 0

0 eiθ/2

)
(2.48)

Two qubit quantum gates

Two-qubit quantum gates are represented by 4 × 4 matrices that act on two
qubits. Below, we list some of the most important ones.

i. Controlled NOT gate. The CNOT gate acts on two qubits and, de-
pending on the state of the first qubit, either applies the NOT operation
to the second qubit or leaves it unchanged. For a, b ∈ {0, 1} we have

|a⟩ |a⟩

|b⟩ |b⊕ a⟩ = Xa|b⟩

What happens is that if a = 0 then b⊕a = b, if a = 1 then b⊕a = b. The
gate is represented in matrix form as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.49)

ii. Controlled U gate. The CU gate is a generalization of the CNOT gate.
Depending on the value of the first qubit, a unitary operator U is either
applied to the second qubit or not. For a, b ∈ {0, 1} we have
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|a⟩ |a⟩

|b⟩ U Ua|b⟩

In matrix form is represented as

CU =


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

 . (2.50)

where each uij is the coefficient in position i, j of the matrix U .

iii. Swap gate. The gate swaps the state of two qubits

|ψ1⟩ |ψ2⟩
|ψ2⟩ |ψ1⟩

In matrix form is represented as

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.51)

Measurement gates

Another important operation is the measurement in the canonical basis, which
we represent with the following symbol

Z|ψ⟩ x

where x ∈ {0, 1} is a classical output. The operation converts a single qubit
state into a probabilistic classical bit. The measurement is described by the
POVM {Π+1 = |0⟩ ⟨0| , Π−1 = |1⟩ ⟨1|}. The observable corresponding to the
computational basis measurement is the Pauli Z operator, whose eigenvalues
+1 and −1 are associated with the outcomes |0⟩ and |1⟩, respectively.

For a pre-measurement state |ψ⟩ = α |0⟩ + β |1⟩, the probability of obtaining
outcome 1 is

P(+1| |ψ⟩) = ⟨ψ|Π+1 |ψ⟩ = |α|2. (2.52)

Similarly, the probability of obtaining outcome −1 is

P(−1| |ψ⟩) = ⟨ψ|Π−1 |ψ⟩ = |β|2. (2.53)
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After a measurement with outcome 1, the system collapses into the state

Π+1 |ψ⟩√
⟨ψ|Π+1 |ψ⟩

= |0⟩ , (2.54)

while, if the outcome is −1

Π−1 |ψ⟩√
⟨ψ|Π−1 |ψ⟩

= |1⟩ . (2.55)

The {|0⟩ , |1⟩} basis is not the only one allowed for measurements, although it is
the most commonly used. For example another possible basis is {|+⟩ , |−⟩} and
the observable corresponding to this measurement is Pauli X.

We now detail a few more properties of quantum measurements. In a composite
system, a measurement can act on multiple qubits. A measurement is said to be
local if it acts non-trivially only on a small subset (typically one or a few qubits)
of the larger quantum system, and trivially (as the identity) on the remaining
qubits5. An example is the measurement associated with the following n-qubit
observable:

M = I⊗ I⊗ . . .⊗ Z ⊗ . . .⊗ I⊗ I. (2.56)

By the linearity of quantum mechanics, the expectation value of a composite
observable of the form (2.56) on a product state such as |0n⟩ factorizes as the
classical product of the expectation values on each individual qubit:

⟨0n|M |0n⟩ = ⟨0| I |0⟩ × . . .× ⟨0|Z |0⟩ × . . .× ⟨0| I |0⟩ (2.57)

As shown in equation (2.43), any single-qubit observable can be decomposed as
a linear combination of Pauli operators. For this reason, it is useful, particu-
larly for the upcoming chapters, to understand how the expectation value of a
sum of operators is computed. Given an observable M of the form (2.43), its
expectation value on the state ψ is equal to the sum of the expectation values
of each term in the decomposition:

⟨ψ|M |ψ⟩ =
3∑
i=0

λi ⟨ψ|σi |ψ⟩ . (2.58)

2.2.3 Quantum circuits

The concepts introduced above now enable us to outline the structure of a
quantum circuit.

5Eventually we may write that an observable is k-local to specify the number of qubits it
acts non trivially upon.
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Z|xm⟩
U

|0n⟩

Figure 2.2: Generic structure of an m+n-qubits quantum circuit. The figure
shows a possible generic structure for a quantum circuit. The gate U is any unitary
quantum gate acting on the circuit. The qubit |xm⟩ is a single qubit in the compu-
tational basis and |0n⟩ = |0 . . . 0⟩ are the ancillary qubits. The circuit performs a
measurement in the computational basis on each of the first m qubits.

Definition 2.6. An n-qubit quantum circuit consists of

i A suitable state space. The quantum circuit operates on the state space
is (C2)⊗n with computational basis |x1 . . . xn⟩ for xi = 1, 0.

ii Preparation of the starting state. The starting state is prepared in
the computational basis and it is assumed that this preparation can be done
in at most n steps.

iii Unitary quantum gates. Gates can be applied to any subset of the n
qubits.

iv Measurement. Measurements can be performed in the computational
basis or in any other basis, and may be applied to one or more qubits.

In addition, a quantum computer may require classical resources, as certain
tasks can be significantly simplified if parts of the computation are carried out
classically. It may also require the use of ancillary qubits, that are extra qubits
added to the quantum circuit to assist the computation and generally initialized
in a known state (generally |0⟩).

As an example, consider the 2-qubits circuit below where the 2-qubit separable
observable M = Z ⊗ Z is measured.

Z

Z

|1⟩

|0⟩ H

M1 20

31



CHAPTER 2

Let us see what happens to the state of the system after each gate

|ψ0⟩ = |10⟩ , (2.59)

|ψ1⟩ = H |ψ0⟩ = |1⟩ ⊗H |0⟩ = |1⟩ ⊗
(|0⟩+ |1⟩)√

2
=
|10⟩+ |11⟩√

2
, (2.60)

|ψ2⟩ = CNOT |ψ1⟩ = |1⟩ ⊗
(|1⟩+ |0⟩)√

2
=

1√
2
(|11⟩+ |10⟩). (2.61)

The expected value of the measurement of M is the product of the following
expectations:

⟨Z⟩1 = ⟨1|Z |1⟩ = ⟨1| (|0⟩ ⟨0| − |1⟩ ⟨1|) |1⟩ = −1, (2.62)

⟨Z⟩2 =
1

2
(⟨0|+ ⟨1|)Z(|0⟩+ |1⟩) = 1

2
(⟨0|+ ⟨1|)(|0⟩ ⟨0| − |1⟩ ⟨1|)(|0⟩+ |1⟩) = 0,

(2.63)
where ⟨Z⟩i is the expectation of the observable Z on the i-th subsystem. Then

⟨M⟩ = ⟨ψ2|M |ψ2⟩ = 0× (−1) = 0. (2.64)

2.2.4 The Haar measure

While not directly related to the physical structure of the circuit, it is worth
briefly discussing the Haar measure, as it formalizes the fundamental concept
of drawing unitary matrices uniformly at random. This is essential for our
purposes, since in the following chapters we require this type of sampling.

Definition 2.7. The Haar measure on the unitary group U(d) is the unique
probability measure µH that is both left and right invariant over the group U(d),
i.e., for all integrable functions f and for all V ∈ U(d), we have:∫

U(d)

f(U) dµH(U) =

∫
U(d)

f(UV ) dµH(U) =

∫
U(d)

f(V U) dµH(U). (2.65)

In addition, for every measurable subset S of U(d), the Haar measure satisfies
the following properties ∫

S

1 dµH(U) ≥ 0, (2.66)

and ∫
U(d)

1 dµH(U) = 1. (2.67)

Therefore, it represents a probability measure and we can denote the integral
of any function f(U) over the Haar measure as the expected value of f(U) with
respect to the probability measure µH ,

EU [f(U)] :=

∫
U(d)

f(U) dµH(U). (2.68)
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An in depth study of the properties and applications of the Haar measure is
beyond our scope and we refer to [24] for a more comprehensive study of the
topic.

2.3 Variational Quantum Algorithms

Quantum computers promise to bring significant benefit for a various number
of applications. As we discussed in the previous sections, this new technology
leads to an exponential speed up in many challenging problems for classical
computers.

Despite these encouraging premises, implementing quantum algorithms in prac-
tice is far from straightforward. The main obstacle lies in the very nature of
quantum mechanics: whenever a quantum system interacts with the external
environment, an uncontrollable disturbance in the system is produced, which
manifests as noise in the quantum circuit. To prevent errors from spreading, the
system must be perfectly isolated from the external environment. At the same
time, however, we need to control the qubits states through external agents.
Satisfying both requirements simultaneously, makes building a functional quan-
tum computer a challenging goal. Nevertheless, it is theoretically possible to
overcome the effect of noise without compromising the quantum information
process: this is done thanks to the use of quantum error correction techniques
(QEC). Unfortunately, the expenses of such methods in terms of the number of
qubits is, at the present day, still far from current experimental capabilities.

With the advent of fault-tolerant quantum computers still many years away,
the key question is how to make the best use of the current generation of quan-
tum devices, known as NISQ (Noisy Intermediate-Scale Quantum) computers
[11]. As the name suggests, these devices must deal with noise and are lim-
ited to a qubit count ranging from around 50 to a few thousands. A promising
approach to achieving quantum advantage in the NISQ era is the use of Vari-
ational Quantum Algorithms (VQAs). Such algorithms employ parametrized
quantum circuits to be run on a quantum computer and then outsource the
parameter optimization to classical optimizers. This hybrid approach satisfies
the constraints of NISQ devices, in particular it allows to keep the quantum
circuit depth shallow, a feature that helps mitigating the noise [12].

In this section, we firstly examine the key components of Variational Quantum
Algorithms, and study some significant applications. Subsequently, we focus
on the training processes of these algorithms and the challenges that arise,
with particular emphasis on the central topic of this thesis, the barren plateaus
phenomenon.
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Cost function
f(Θ)

Quantum computer
Classical optimizer

argminΘ f(Θ)

Figure 2.3: Diagram of the hybrid quantum-classical loop of a VQA: a quan-
tum computer estimates the cost function defined in Eq. (2.69). Subsequently, the
parameters are optimized using classical optimizers that employ methods such as gra-
dient descent to identify the optimal update direction.

2.3.1 The foundations of VQA: the ansatz and the cost
function

Variational Quantum Algorithms are parametrized algorithms, thus they de-
pend on a vector of trainable parameters Θ = {θ1, . . . , θm}. These parameters
may be continuous or discrete and are usually assumed independent from each
other. Another building block of a VQA is the ansatz U , which represents the
specifications for the arrangement and type of quantum gates in the circuit, and
how these depend on the set of parameters [25]. Finally, once the ansatz is fixed,
one defines the cost function f(Θ) that can be expressed as

f(Θ) = ⟨ψ0|U†(Θ)MU(Θ)|ψ0⟩, (2.69)

or in density matrix notation,

f(Θ) = tr{Mρ(Θ)}, (2.70)

where ρ(Θ) = U(Θ)†|ψ0⟩⟨ψ0|U(Θ). For a circuit with n qubits, U(Θ) ∈ U(2n)
is the unitary defined by the ansatz and the parameter vector, that acts on
the starting state ψ0, and M an observable. Sometimes f is also called loss
function [12], objective function [15] or, in the Quantum Machine Learning
context, model function6 [26].

Definition 2.8. The goal of a VQA is finding a solution to the optimization
problem

Θ∗ = argmin
Θ

f(Θ). (2.71)
6In QML applications, what is referred to as the model function coincides with our defini-

tion of the function f . However, it is important to note that this is not the function that is
generally minimized; nonetheless, the minimization problem depends on f .
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U
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U(2n)

U

Us

U(2n)

Figure 2.4: Expressibility of an ansatz: on the left we see an inexpressive ansatz,
it explores a small portion of the unitary group, and if not tailored for the specific
problem it may not reach the desired solution. On the right an expressive ansatz is
represented, it explores the unitary space uniformly and it is likely to reach a solution
for any given problem.

It is worth to spend a few more words on the ansatz, since the way it is built
determines the success of the routine.

Assumption 2.1. Without loss of generality, a parametrized ansatz U(Θ) can
be expressed as

U(Θ) =
∏
j

e−iθjAjTj , (2.72)

where Tj are fixed unitaries, and Aj an Hermitian operator such that (Aj)2 = I.

The choice of the appropriate ansatz is crucial for the cost function to be train-
able. Indeed, once the ansatz is fixed, each possible parameter vector Θ defines
a different unitary U(Θ) and, therefore, a different quantum circuit. The set
of all possible parameters {Θ(1),Θ(2), . . . ,Θ(k)} defines the corresponding set of
unitaries U = {U (1), U (2), . . . , U (k)} where U (i) = U(Θ(i)). The generated set U
is a subset of the unitary group U(2n), and the way it explores U(2n) has deep
consequences on the trainability and the success of the algorithm.

Borrowing the notation from [14] we name Us the set of unitaries that minimize
the cost function. This set may contain one or more elements depending on
the number of minima of f(Θ). A VQA finds a solution to the problem only if
Us∩U ̸= ∅ and an ansatz that satisfies this condition is said complete. Complete
ansätze are relatively easy to build if prior knowledge about the problem is
available. However, this is not always possible, and it may happen that we
have very limited information on where Us lies. Under these circumstances, our
ignorance on the expected solution makes building specific ansätze an impossible
task. Consequently, to increase the likelihood of identifying a valid solution,
the ansatz must be designed to explore the unitary space as extensively and
uniformly as possible: an ansatz that satisfies this requirement is said to be
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Figure 2.5: Alternating Layer Ansatz (ALT). The ALT is a problem-agnostic
ansatz whose entangling gates are restricted to entangle only local qubits in each
layer. It has been shown that for circuits with local observables it is possible to avoid
trainability issues if an ALT with depth O(log(n)) is used [16], while still maintaining
the typical expressibility of problem agnostic ansätze [27].

expressive. At first glance, it may seem convenient to design a highly expressive
ansatz that can be applied to a wide range of problems. However, to explore
the whole unitary group, an ansatz needs an exponential number of parameters.
Thus, this strategy presents significant challenges in terms of trainability as
demonstrated in Ref. [14].

Hardware efficient ansatz

Following the previous section’s discussion, ansätze can be grouped into two
main categories. The first includes those that are generally inexpressive but
complete, these are known as problem inspired ansätze and they are constructed
using specific knowledge about the problem. The second category is the one
of those ansätze that are employed when no relevant information about the
problem is available; these are referred to as problem agnostic ansätze. To
fulfill the scope of being adaptable to a wide range of problems, the latter must
be sufficiently expressive to ensure completeness.

The most famous problem-agnostic ansatz is the Hardware Efficient Ansatz
(HEA) [25]. The HEA is well-known for leveraging gates that are native to
the specific quantum hardware. Indeed, the ansatz employs unitaries Tj and
e−iθjAj drawn from a set of gates determined by the native connectivity of the
hardware being used. If non-native gates are used, the implementation of an
ansatz on real quantum hardware may require more gates than anticipated, since
the device might not directly support the gates assumed in the mathematical
formulation. By contrast, using a Hardware Efficient Ansatz ensures that the
model employs exactly the gates required for physical implementation, making
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it more representative of real-world performance. In addition to this, its high
expressibility makes this ansatz adaptable to a wide range of problems. However,
as we discussed previously, this characteristic, while being its main advantage,
is also its greatest weakness as it affects the trainability of the cost function.

2.3.2 Applications

VQAs provide a framework that can be used to address a wide array of tasks.
In this section we present the main applications of these architectures. It is
important to notice that the ones we present here do not exhaust all possible
uses of VQA. A more comprehensive list can be found in Ref. [12].

Finding the ground state: the Variational Quantum Eigensolver

The Variational quantum eigensolver (VQE) is arguably the most famous appli-
cation of VQAs. Indeed, variational quantum algorithms were initially proposed
as a tool for finding the ground state of quantum systems. The goal of such
algorithms is to find the eigenstate |ψ⟩ that minimizes the expectation of an
Hamiltonian H

⟨ψ|H|ψ⟩. (2.73)

The architecture of VQEs follows the structure we have defined in the previous
section: a parametrized ansatz U(Θ) acts on a starting state |ψ⟩. The cost func-
tion is the expectation of the Hamiltonian H in the state |ψ(Θ)⟩ = U(Θ)|ψ⟩.
This simple structure makes it possible to study the problem from a different
perspective: instead of directly finding the eigenstate |ψ∗⟩ that minimizes the
expectation of H, we look for the parameter vector Θ∗ that solves the mini-
mization problem

Θ∗ = argmin
Θ
⟨ψ(Θ)|H|ψ(Θ)⟩. (2.74)

An important challenge in VQEs is the implementation of the Hamiltonian as
an observable, which is not always straightforward. Fortunately, any observable
can be expressed as a linear combination of Pauli operators σj

H =
∑
j

cjσj . (2.75)

Even more conveniently, in many practical applications, the terms in this sum-
mation correspond to local observables (i.e., 1- or 2-qubit operators), which
allows for an efficient estimation of H.

37



CHAPTER 2

Optimization: Quantum Approximate Optimization Algorithm

Finding the ground state of a Hamiltonian is an inherently quantum task. Nev-
ertheless, the applications of VQAs extend beyond the purely quantum domain.
Indeed, another popular usage of such algorithms is to solve classical optimiza-
tion problems. The most famous optimization application of VQAs is the quan-
tum approximate optimization algorithm (QAOA); it has been proposed by
Farhi et al. [28] and it approximately solves combinatorial optimizations prob-
lems such as Constraint-Satisfaction7 and Max-Cut 8.

We briefly present the SAT problem9 discussed in the original paper by Farhi.
The formulation of the problem relies on two fundamental elements. The first
is the variables vector z = (z1, . . . , zn), zi ∈ {0, 1}. The second is the set
of constraints Cα(z), for α = 1, . . . , k. Each constraint Cα(z) depends on a
subset of the elements of the vector z and it is satisfied for certain assignments
of those variables and unsatisfied for others assignments [28]. In particular
whenever Cα(z) is satisfied, Cα(z) = 1, while contrarily, if unsatisfied Cα(z) = 0.
Therefore, the objective function of the problem is associated to the following
expression:

C(z) =

k∑
α=1

Cα(z). (2.76)

Equation (2.76) is represented by the expectation value of a quantum operator
C:

⟨ψ|C|ψ⟩. (2.77)

In matrix representation, C contains on its diagonal the number of statements
satisfied by a bit string z, while outside the diagonal, all elements are zero. The
optimization problem can be solved by first finding the state |ψ⟩ that maximizes
(2.77) and then sampling computational basis states from it, which represent
the solution bit strings to the problem. The starting state is generally a uniform
superposition |ψ⟩ = 1√

2n

∑
z |z⟩. The ansatz uses the operator C itself along

with a second operator, that we call B, that is a sum of Pauli X acting on all
qubits,

B =

n∑
i=1

σix. (2.78)

7A Constraint Satisfaction Problem (CSP) is a mathematical problem in which one or
more variables must be assigned values that satisfy a set of constraints. The goal is to find
an assignment that satisfies all the constraints.

8A Max-Cut problem is solved by finding the maximum cut of a graph, that is a partition
of the graph’s vertices into two complementary sets, such that the number of edges between
the two is as large as possible.

9A particular instance of CSPs is the Boolean Satisfiability Problem (SAT), where variables
are boolean and constraints are logical formulas.

38



2.3. VARIATIONAL QUANTUM ALGORITHMS

Figure 2.6: General structure of the QAOA: the starting state is prepared by
the Hadamard gates acting on each qubit. This generates the superposition |ψ⟩ =

1√
2n

∑
z |z⟩. Subsequently, the ansatz consists of an alternating sequence of unitaries

generated by the operators B and C.

The circuit architecture consists of an alternating sequence of the unitaries gen-
erated by the operators B and C:

U(B, βj) = e−iβjB , (2.79)

U(C, γj) = e−iγjC . (2.80)

For the parameters βj and γj , j = 1 . . .m. Then,

|ψ(Θ)⟩ = U(B, βm)U(C, γm) . . . U(B, β1)U(C, γ1)|ψ⟩. (2.81)

Let Θ∗ be the 2m-dimensional vector that satisfies the optimization problem

Θ∗ = argmax
Θ
⟨ψ(Θ)|C|ψ(Θ)⟩. (2.82)

Then, if the maximum is obtained, sampling computational basis states from
|ψ(Θ∗)⟩ provides good candidates for z.

Ref. [28] shows that, with the ansatz we just described, the maximum of (2.76)
is obtained for m→∞

lim
m→∞

max
Θ
⟨ψ(Θ)|C|ψ(Θ)⟩ = max

z
C(z). (2.83)

Finding the optimal values of βi and γi for i = 1 . . .m is a nonconvex problem
with many local optima, therefore finding a way to efficiently train the algorithm
still remains an active field.
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Quantum Machine Learning

Machine learning (ML) is a sub-branch of artificial intelligence that focuses
on identifying and learning patterns from a given dataset. This knowledge is
then used in order to generalize these patterns to unseen data, with the aim
of making accurate predictions. Unlike many other areas of scientific research,
machine learning is known for its typically empirical approach. Generally, when
an algorithm proves to be particularly effective, it is mostly the result of trial
and error than the direct application of a mathematical theory.

The introduction of quantum computing in machine learning follows from a
simple reasoning. Quantum mechanics is known for its ability to find counter-
intuitive patterns in data, therefore, we may hope that a quantum computer
is able to recognize patterns that are difficult to recognize classically [29], [30].
Clearly, quantum machine learning (QML) still faces all the problems arising
from near term quantum devices. It is therefore impossible to outsource the
entire machine learning pipeline to a quantum computer. The most used solu-
tion to circumvent the problem is to implement the machine learning model as
a quantum algorithm, and then train the model through a classical computer.
Obviously, the most suitable class of quantum algorithms for this purpose is the
class of VQAs [26].

A machine learning model is a function f : X → Y, where X is the set of input
datas and Y the set of output datas.

Definition 2.9. (Deterministic quantum model) Let X be the set of input data.
Let U(x,Θ) be a quantum circuit that depends on an input x ∈ X and on a
parameter vector Θ ∈ Rm. Let M be a quantum observable and |ψ0⟩ a starting
state. The function

f(x,Θ) = ⟨ψ0|U(x,Θ)†MU(x,Θ)|ψ0⟩ (2.84)

defines a deterministic variational quantum model.

The structure of the ansatz in a variational circuit for quantum machine learning
follows the general architecture of a VQA ansatz. What differs in this context is
the need to incorporate input data into the circuit. A typical choice for U(x,Θ)
consists of a data-embedding block, D(x), and a parameterized block, P (Θ) (see
Fig. 2.7). Clearly, both blocks can be further decomposed.

D(x) = Sl+1

l∏
k=1

e−ixkAkSk, (2.85)

P (Θ) = Tm+1

m∏
j=1

e−iθjAjTj , (2.86)
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Figure 2.7: General architecture of a VQA for quantum machine learning.
The ansatz U(x,Θ) consists of a block responsible for data encoding D(x), and a
block composed of parameterized gates P (Θ). While for convenience we represented
the two as separate, it is important to notice that the gates for data encoding and the
parametrized ones can also be mixed.

where, for all k = 1, . . . , l and j = 1, . . . ,m, Sk and Tj are fixed unitaries and
Ak, Aj are given Hermitian operator.

The probabilistic nature of quantum mechanics allows for the implementation of
probabilistic quantum models, which can be either supervised or unsupervised.
While the latter are particularly relevant for practical applications, we briefly
discuss both paradigms to highlight and understand their differences.

Definition 2.10. (Supervised probabilistic quantum model) Let X and Y be
respectively the input and output domains. Let U(x,Θ) be a quantum circuit
defined as above and |ψ0⟩ a starting state. Let M be an observable such that
each outcome of a measurement of M is associated with a possible output y ∈ Y,
that is M =

∑
y∈Y y|y⟩⟨y|. A supervised probabilistic quantum model for a

conditional distribution is defined by

pΘ(y|x) = |⟨y|ψ(x,Θ)⟩|2, (2.87)

where |ψ(x,Θ)⟩ = U(x,Θ)|ψ0⟩.

If the labels associated with the input data are not available, we need to imple-
ment an unsupervised model. In this case, data are not encoded with a circuit.
Here, the measurement outcomes are associated with data points x ∈ X instead
of the labels y ∈ Y.

Definition 2.11. (Unsupervised probabilistic quantum model) Let X be the in-
put domain, and P (Θ) be a parametrized unitary that defines the vector |ψ(Θ)⟩ =
P (Θ)|ψ0⟩ for a given starting state |ψ0⟩. Let M be a measurement with outcomes
that correspond to the inputs x, that is M =

∑
x∈X x|x⟩⟨x|. An unsupervised

probabilistic quantum model is defined by the distribution

pΘ(x) = |⟨x|ψ(Θ)⟩|2. (2.88)
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Figure 2.8: Supervised probabilistic quantum models: on the left a variational
quantum algorithm is used as a supervised QML model of a conditional distribution.
The circuit samples the values y ∈ Y from the probability distribution pΘ(y|x). In the
right image is represented a variational quantum algorithm used as an unsupervised
supervised QML model of a distribution. The circuit samples value x ∈ X from the
probability distribution pΘ(x).

The differences between the two paradigms can be visualized in Fig. 2.8.

A comprehensive review of QML is beyond the scope of this work, a more in-
depth analysis of the subject can be found in Ref. [31]. Instead, we briefly
explore some meaningful applications of these architectures.

Classifiers Classification is the most straightforward application of QML.
Consider a training dataset whose elements are the inputs/labels couples (x(i), y(i)).
Our goal is to train the algorithm to predict the label of each input and apply
this knowledge to new datasets as well. The cost function represents the differ-
ence between the true label and the expectation value of an easily measurable
observable:

f(x,Θ) =
∑
i

[y(i) − ⟨ψ0|U(x,Θ)†MU(x,Θ)|ψ0⟩]2. (2.89)

Generative models: Variational Generator A variational generator model
is an unsupervised probabilistic quantum model. These types of models are often
known with the name of Born machines, in analogy with the classical Boltzmann
machines [32]. The goal of a variational generator is learning a probability dis-
tribution that generates a given data set. Let {x(i)}di=1 be a dataset of size d
sampled from a probability distribution p(x) that is unknown. The probability
distribution is learned as the parametrized probability distribution

pΘ(x) = |⟨x|ψ(Θ)⟩|2, |ψ(Θ)⟩ = U(Θ)|ψ0⟩. (2.90)

The goal is to minimize the divergence between pΘ(x) and p(x). Since the latter
is not known, this is achieved by minimizing the negative log-likelihood, which
corresponds to minimizing the Kullback-Leibler divergence between the true
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Figure 2.9: Basic structure of a perceptron: the perceptron is the fundamental
unit of neural networks. It is a non-linear model defined by an activation function φ,
which takes as input the vector x and the weights, and computes the output y.

distribution and the model. Therefore, the cost function is defined as follows

f(Θ) = −1

d

d∑
i

d log(pΘ(x
(i))). (2.91)

Quantum Neural Networks Neural networks are a class of machine learn-
ing models whose architecture is inspired by the structure of biological brains.
Indeed, their basic building blocks are interconnected nodes, which are indeed
called neurons, and the connections among these nodes determine the perfor-
mance of the network. Let X = Rd and Y be, respectively, the input and
output space. The fundamental unit of a neural network is the perceptron (see
Fig. 2.9), a non linear model defined by the function

f : X → Y,
f(x,w) =φ(w · x),

where x ∈ X and w ∈ Rd are respectively the input datas and the weights
vector. In particular, φ : R → R is a non-linear function called activation
function. Many perceptrons can be combined into the more powerful structure
of a neural network.

It is widely believed that replicating the architecture of classical neural net-
works on quantum hardware could potentially lead to significant advancements.
In particular, quantum hardware offer opportunities such as submitting super-
positions of inputs and creating entanglement among neurons [23]. However,
implementing a quantum analogue of the perceptron presents substantial chal-
lenges. For instance, Schuld et al. proposed a model of quantum perceptron
that relies on the Quantum Fourier Transform (QFT) [33]. However the QFT
is currently unfeasible on NISQ devices. Therefore, different frameworks must
be explored.
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At present, the standard approach for constructing quantum neural networks
is through variational quantum algorithms. However, a fundamental challenge
arises from the fact that quantum mechanics is not a natural choice for neural
networks. Indeed, non-linearity is an essential characteristic of classical neural
network architectures, whereas quantum systems are governed by linear and
unitary dynamics. This discrepancy has led to one of the central research direc-
tions in the field: the development of a coherent framework capable of reconcil-
ing the non-linear behavior typical of classical neural networks with the linear
and unitary dynamics characteristic of quantum circuits [34]. In response to
this challenge, a growing body of research is currently focused on exploring new
strategies to introduce effective nonlinearities into quantum algorithms, with
the goal of overcoming this gap and improving the performance of quantum
neural networks[35].

2.3.3 Training a VQA

As discussed in the previous section, training a Variational Quantum Algorithm
means finding the parameter Θ that minimizes the cost function. Although
some gradient-free optimization methods have been proposed, gradient-based
methods are more commonly used since, for general cost functions, they are
more efficient if the gradient can be accessed directly [36]. In particular, the
most widely used strategy is the gradient descend method: at each iteration
the parameters are updated in the direction that minimizes gradient. Calcu-
lating the gradient means calculating the partial derivative of the cost function
with respect to each of the elements of Θ. A first straightforward approach to
approximate such partial derivatives is the finite-difference method

∂f(Θ)

∂θl
≈ f(Θ)− f(Θ +∆)

∥∆∥
, (2.92)

where (∆)j = δi,lϵ. However, such direct approach has some unavoidable draw-
backs, especially when the minimum has to be approached closely, when the
optimization landscape has many saddle point, and when the output of the
circuit has a high variance [26].

In such situations, having access to the analytical gradient would greatly im-
prove the likelihood of the routine’s success. In general, finding an analytical
expression for the gradient is not guaranteed. Indeed, if one computes the partial
derivative of f(Θ) the result is not an expectation value anymore [26]. Luckily,
there is a way to overcome this issue. In many situations, and especially in the
most relevant ones, it is possible to show that the gradient can be computed
analytically by measuring the outcome of the circuit multiple times with shifted
parameters. This method is defined as parameter-shift rule.

Definition 2.12. (Parameter-shift rule) Let f(Θ) = ⟨ψ0|U†(Θ)MU(Θ)|ψ0⟩,
and let Θ be a vector of classical parameters. The parameter-shift rule is the
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identity
∂f(Θ)

∂θl
=
∑
i

aif(Θ +∆(i)) (2.93)

where (∆(i))j = δl,jsi, and {ai} and {si} are real numbers.

One could argue that equation (2.93) reminds of the finite-difference method,
but this is not the case. A first difference is the fact that the shifts {si} are
not infinitesimal. This, by itself, is already a significant improvement to (2.92)
where, obtaining a meaningful result requires ϵ ≪ 1. Indeed, the usefulness of
such shifts is nullified by the noise in present-day quantum hardware. Moreover,
a quantum computer can only estimate the expectation value, therefore the
biggest difference between (2.93) and (2.92) is that the former computes the
estimate of the analytic gradient, while the latter outputs the estimate of the
approximate gradient.

An easy way to see the difference between the two methods is considering the
function f = sinx, whose first order derivative is f ′(x) = cosx. Making use of
the trigonometric identity 2 sin s cosx = sin (x+ s) − sin (x− s) we obtain the
parameter-shift rule that computes the exact derivative

cosx =
sin (x+ s)− sin (x− s)

2 sin s
. (2.94)

This can be compared to the finite-difference method which gives the result

cosx =
sinx− sin (x+ ϵ)

ϵ
+O(ϵ2). (2.95)

Even though in the following chapters we focus exclusively on the gradient,
is worth mentioning that a parameter-shift rule can also be applied to obtain
higher-order derivatives [37].

Barren Plateaus

Origins and definition All the information we have gathered up to this
moment suggests that VQAs may actually be able to demonstrate quantum
advantage in the near future. Despite these encouraging evidence, the search
for optimal solutions remains hindered by an additional challenge. Under given
circumstances, it may happen that the cost function results flat in wide intervals
in the parameters space, far from the minimum Θ∗. This flatness is due to the
fact that the gradient of the cost function is exponentially suppressed with the
number of qubits and layers, in regions that do not contain the solution, causing
gradient-based optimization methods to fail. Such phenomenon is called barren
plateau (BP), and it may nullify the advantages that VQAs are supposed to
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Figure 2.10: Parameter-shift rule. Graphical illustration of the computation of
a partial derivative of the cost function using the two-term parameter-shift rule. A
one-parameter ansatz is considered. The quantum circuit is evaluated twice, once for
each shifted parameter value, and the corresponding cost function values are measured.
The partial derivative is then obtained as a linear combination of the two expectation
values.

bring. Indeed, a vanishing gradient means that optimization is exponentially
slow since detecting the descent direction of the gradient would require high
precision measurement. Yet, as discussed in the previous section, high-precision
is not advisable for NISQ devices. What is even more interesting is that, con-
trary to what one would think, gradient-free optimization methods do not solve
the barren plateau problem [38].

Before diving into the meaning of such phenomenon we give a more rigorous
definition of the barren plateau: a cost function is said to exhibit a barren
plateau when its gradient concentrates exponentially in the number of qubits
around a zero mean value. It is possible to distinguish two types of concentration
of the partial derivatives [39]. The first is defined as follows.

Definition 2.13. (Probabilistic barren plateau) Let f(Θ) be the cost function
defined as in (2.69), and let the parameters Θ be sampled from the uniform
distribution over the parameter space. Then f(Θ) exhibits a probabilistic barren
plateau if

VarΘ[∂θlf(Θ)] ∈ O
(

1

bn

)
, (2.96)

for some b > 1 and for some θl ∈ Θ.

Notice that we do not need Eq. (2.96) to hold for all θl ∈ Θ. A straightforward
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θ
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Figure 2.11: Barren plateau phenomenon. The figure shows the landscape
of a cost function exhibiting probabilistic barren plateau. The landscape of the
cost function is mostly flat, and the minimum is located in a narrow region with
non vanishing gradient called narrow gorge.

consequence of Def. 2.13, is the following inequality

P(|∂θlf(Θ)− EΘ[∂θlf(Θ)]| ≥ δ) ∈ O
(

1

bn

)
, ∀ δ > 0. (2.97)

Thus, the probability that the partial derivatives of the cost functions deviates
from their means by more than δ is exponentially small.

Def. 2.13 is an average statement about the landscape of the cost function.
Hence, while being mostly flat, it may still contains limited regions with steep
gradients near certain minima. These areas are often referred to as fertile valleys
[40], or narrow gorges [41]. Figure 2.11 illustrates a one-dimensional example of
a typical cost function landscape influenced by probabilistic BP. A second type
of barren plateau can be identified which, unlike the first, does not allow for the
presence of narrow gorges and is known as deterministic BP.

Definition 2.14. (Deterministic barren plateau) Let f(Θ) be the cost function
defined as in (2.69), and let the parameters Θ be sampled from the uniform
distribution over the parameter space. Then f(Θ) exhibits a deterministic barren
plateau if

|∂θlf(Θ)− EΘ[∂θlf(Θ)] ∈ O
(

1

bn

)
, (2.98)

for some b > 1 and for all θl ∈ Θ.

Considering that the most common type of situation is the one described in Def.
2.13, we focus on probabilistic barren plateaus.
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While the presence of a barren plateau can be readily identified for a given
problem, predicting a priori whether a specific algorithm is susceptible to this
phenomenon remains a significant challenge. Thus, substantial research efforts
have been focused on understanding the conditions under which barren plateaus
emerge and the underlying reasons of such phenomenon. To understand better
the reasons behind the BP we need, in the first place, to understand what a
unitary t-design, or simply t-design, is.

Definition 2.15. A unitary t-design is a distribution {pk, Uk} over a set of
unitaries U ∈ U(d) with probabilities pk such that the average over polynomials
Pt(Uk) up to t-th degree in the elements of the unitary and its conjugate trans-
pose are equal to averages over the Haar measure µ(U) of the unitary group,∑

k

pkPt(Uk) =

∫
U(d)

Pt(U) dµ(U). (2.99)

In other words, a t-design is a probability distribution over U(d), such that
averaging a polynomial Pt on the distribution is equal to averaging the same
polynomial over the uniform distribution over the whole unitary group. The
usefulness of t-designs comes from the fact that, while sampling from the Haar
measure over the unitary group is computationally expensive, t-designs allow
us to evaluate complex expressions sampling from a subset of the whole group,
and therefore reducing the computational cost.

Barren plateau for deep variational ansätze Considering that we are
interested in the variance of the gradient of the cost function, we focus our
attentions on 2-designs. Random circuits are often proposed as initial guesses
for quantum algorithms, and it has been shown that such circuits generate
approximate unitary t-designs at a depth of O(nt5+o(1)) [42]. We say that a
given circuit U(Θ) is deep, if the number of layers is big enough to guarantee that
the distribution of unitaries corresponding to random parameter choices forms
an approximate 2-design [39]. The first article that highlighted the emergence
of the BP phenomenon [13], demonstrated that the latter arise for deep random
circuits. More formally Ref. [13] shows that the following Theorem holds.

Theorem 2.1. Consider a quantum circuit U(θ) with n qubits defined as

U(θ) = U−e
−iθHU+, (2.100)

where H is Hermitian. The circuits U− and U+ are independent and either one
of them or both are a 2-design. Then

Var[∂θf(θ)] = O(2−n). (2.101)

Where we used the formulation of Ref. [26]. Therefore, for expressive ansätze
such as the ones that forms 2-designs, the barren plateau cannot be avoided.
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A second result obtained in Ref. [14], links the BP to the expressibility of U(Θ).

Theorem 2.2. Let U be a subset of unitaries. Let

A(t)
U (·) :=

∫
U(2n)

V ⊗t(·)(V †)⊗tdµ(V )−
∫
U
U⊗t(·)(U†)⊗tdU, (2.102)

represent the distance of U from being a t-design. If AtU = 0 then U is a t-design.
Let the ansatz be a bipartite parametrized ansatz,

U(Θ) = U−(Θ)U+(Θ) (2.103)

where U−(Θ) and U+(Θ) are defined as in (2.72), and let U− and U+ be the
ensembles associated with the two. The quantities that capture the expressibility
of the circuit with respect to the starting state and the observable are

Eψ0

+ := ∥A(2)
U+

(ρ⊗2
0 )∥2, (2.104)

and
EM− := ∥A(2)

U−
(M⊗2)∥2, (2.105)

for ρ0 = |ψ0⟩ ⟨ψ0|. Then, for a cost function of the type (2.69):

Var[∂θlf(Θ)] ≤ O(2−n) + g(Eψ0

+ , EM− ), (2.106)

where we define

g(x, y) = 4xy +
2n+2(x∥M∥22 + y∥ρ0∥22)

22n − 1
. (2.107)

The norm ∥ · ∥2 denotes the Frobenius norm. The result gives us a measure
of the barren plateau depending on the distance U+ and U− are from being a
2-design. A similar result is found when we consider the distance from being a
2-design of only one of U±.

We can immediately understand the connection between barren plateaus and
circuit expressibility: the more an ansatz explores fully and uniformly the uni-
tary space the more the barren plateau is likely to arise. This connection is
clearly against what one would hope for, since the ideal situation would be to
have an expressive ansatz that is able to guarantee a solution for a wide range of
problems. However, if we think about it for a moment, the correlation is not so
improbable. In fact, Eq. (2.69) can be expressed in a Hilbert-Schmidt product
formulation

f(Θ) = Tr[MU(Θ)ψ0U(Θ)†] = ⟨M,U(Θ)ψ0U(Θ)†⟩HS , (2.108)

Thus, roughly speaking, minimizing the cost function means trying to anti-
align two vectors in an extremely large Hilbert space which is not an easy task.
Indeed, one can imagine that the starting state is sequentially rotated by some
random chosen rotations across all dimensions: any single step does not have
great effects on the overall final position [26].
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Barren plateau for unstructured variational ansatz The results pre-
sented above are limited to ansätze that are either exact or approximate 2-
designs. While the former is highly unrealistic, even the latter can be restric-
tive, as an ansatz does not necessarily need to form an approximate 2-design
to exhibit barren plateau. Together with these findings, it has been shown that
local observables can avoid the appearance of barren plateaus [16]. To address
and blend these results, we present a more general theorem from Napp [15],
which establishes a connection between the flatness of the loss landscape and
the architectural parameters of the circuit, such as the number of layers, the
regular connectivity10, the number of qubits, and the locality of the observable.

To present the results obtained by Napp, we first recall that any observable can
be decomposed as a sum of Pauli operators. The generalization of Eq. (2.43)
to n-qubit systems is the following:

M =
∑
x
cxMx, (2.109)

where each Mx is the tensor product of n single-qubit operators drawn from P

Mx = σx1 ⊗ . . .⊗ σxn , (2.110)

for x = (x1, . . . , xn) and xi ∈ {0, 1, 2, 3}. We assume without loss of generality
that c0 = 0 and we define |x| ad the number of non zero elements of x. Thus
|x| represents the locality of the operator.

Assumption 2.2. Consider a parametrized HEA U(Θ) with the following types
of gates:

i. Random entangling gates. They act non trivially on two, possibly non
adjacent, sites and are chosen independently and uniformly at random
from the Haar measure over U(4).

ii. Parametrized gates, of the form Wle
iθjAjWr where each Aj is Hermitian

and acts non trivially on at most two sites, θj is the j-th element of the
parameter vector Θ and W l

j and W r
j are arbitrary fixed gates acting on

the same sites as Aj.

Moreover, we assume the following constraints on the architecture:

i. Each qubit is acted upon by an entangling two-qubit gate at least once.

ii. Each entangling two-qubit gate acting on qubits i and j may be preceded
and succeeded by an arbitrary number of parameterized gates acting on one
or both of these sites, but parameterized gates which cannot be placed in
this way are not allowed.

10The regular connectivity defines the maximum number of layers of parallel gates that
must be applied before some gate acts between an arbitrary proper subset of qubits and its
complement.
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Finally, let Ũ be the circuit U(Θ) with the parametrized gates removed. We
define l and r as the depth and the regular connectivity of Ũ .

To study the barren plateau phenomenon in this unstructured setting, Napp
establishes a connection between the flatness of the loss landscape and a certain
family of random walks, which were also analyzed in [43].

Definition 2.16. For a variational circuit U(Θ) defined as in assumption 2.2
we define the associated random walk MŨ as follows:

i. Each site is initialized independently with label S with probability 1
3 and

with label I otherwise.

ii. Each entangling gate in Ũ "acts" on a pair of sites as follows:

(a) If the two sites are in the configuration (I, I) or (S, S), then the gate
leaves the configuration unchanged.

(b) If the two sites are in the configuration (I, S) or (S, I) then the gate
flips the sites to the configuration (S, S) with probability 1

5 and to
(I, I) otherwise.

For any realization V of the entangling gates, the quantity studied by Napp
to estimate the presence of barren plateaus is EV EΘfV (Θ)2, which serves as an
alternative to the more natural and commonly used measure of gradient flatness,
EV EΘ∥∇fV (Θ)∥2. As shown in [15], these two quantities are directly related,
making the former a more tractable way to analyze the latter. As proved in
[15], the expectation can be expressed as

EV EΘfV (Θ)2 =
∑
x

|cx|2gx, (2.111)

for gx = ⟨0n|U(Θ)†MxU(Θ) |0n⟩2. This finding is detailed and proved in [15].
Napp’s results are valid for qudits11 of dimension greater than or equal to 2.
However, since in chapter 4 we focus on the qubit case, we also present the
following theorem specialized to qubits.

Theorem 2.3. Consider an n qubit circuit with an ansatz U(Θ) defined as in
assumption 2.2, then

gx ≥ max

{(
1

3

)x(
1

5

)l|x|
,

(
1

3

)n}
, (2.112)

and

gx ≤
(
4

3

)n(
4

5

)⌊l/r⌋

2−|x| + (2n − 1)−1. (2.113)

11Qudits are a generalization of qubits. They are defined in a Hilbert space of dimension
d ≥ 2.
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The theorem sets a lower and an upper bound for the flatness of the landscape.
In particular the lower bound shows that the landscape is no flatter than an
exponential in the product of the depth and locality. The second term on the
right side of (2.112) refers to the case when the starting configuration of the
random walk is Sn. The upper bound instead, implies the following corollary.

Corollary 2.1. For x such that |x| ≥ n/2

gx ≤ 2−Θ(1)·n. (2.114)

While, for x ̸= 0 and for l > l∗ = Θ(1) · rn, Eq. (2.112) takes the following
form

gx ≤ 2−n + 2−Θ(1)·(l−l∗)/r−|x|. (2.115)

Equation (2.114) states that barren plateau is always obtained for global ob-
servables, simplifying the results of [16]. Equation (2.114) instead, shows that
the magnitude of the gradient decays exponentially fast to 2−n in the depth
once the latter exceeds O(r · n).

Is it possible to escape barren plateaus? Together with deep circuits
and global observables, other situations that are prone to induce BP in the
optimization problem are noisy circuits [19], [20] and excess of entanglement
[17], [18]. Ref. [39] argues that all these causes can ultimately be attributed
to what Ref. [21] named a “curse of dimensionality”, which refers to the fact
mentioned above: both the evolved state and the observable lay in an extremely
large Hilbert space.

Several strategies have been proposed to mitigate the causes of BP. A first
approach would be to use problem-inspired ansätze, but as we argued, it is not
always possible. Luckily, this is not the only strategy proposed, others rely on
embedding symmetries into the circuit’s architecture [44] or dynamics with small
Lie algebras [45]. Theorem 2.3 shows that the barren plateau can be avoided if
a local observable is used instead of a global one and the number of layer is kept
shallow. Thus, the barren plateau can be avoided if the observable is chosen with
care, a fact that restores the hope placed in VQAs. Another meaningful case is
the one of warm-starts [46]. These are smart initialization strategies whose scope
is initializing the state nearby the minimum in a region that corresponds to a
“patch” (namely, small region) with guaranteed gradients [47]. These regions,
correspond to the ones that we previously named narrow gorges but, as the study
argues, the name is misleading since the width of these regions vanishes at worst
polynomially in the number of trainable parameters and not exponentially as
it was initially believed. The hope behind these strategies lies in the fact that
smart initializations have been a well-known tool for avoiding gradient issues in
classical machine learning.

However, a question arises, and it is wether the absence of BP implies classical
simulability. Ref. [21] argues that the answer, in many cases, is yes. Cerezo
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et al. studied a wide range of situations in which the barren plateau has been
avoided by means of tricks that make use of some simple underlying structure
of the problem. The results shows that in many cases the same structure used
to avoid barren plateaus can be used to efficiently calculate the cost function
classically. Indeed, the strategies employed to avoid BP analyzed by Ref. [21],
all result in a restriction of the space explored by the ansatz. In particular
the latter gets reduced from an exponentially large space, the whole unitary
group, to a polinomially large subspace. This implies that the observable and
the evolved state are as well polynomially large objects in the given subset,
therefore classically simulable. More recently, these claims have been supported
by a paper by Angrisani et al., which presents a classical algorithm for estimating
the expectation values of arbitrary observables on most quantum circuits for
most values of the parameters, in any circuit architecture, where each circuit
layer is sampled according to a probability distribution that is invariant under
single-qubit rotations. This result shows that, for a large class of quantum
circuits, it is possible to classically compute the associated expectation values
to within a small additive error [48]. The properties of circuits in this class
are satisfied by a wide range of deep and shallow unstructured parameterized
quantum circuits of different topologies currently used by variational quantum
algorithms, including some that claim to avoid barren plateaus while escaping
classical simulability.

This does not imply that the work carried out to investigate the causes and
triggering factors of the barren plateau phenomenon should be disregarded.
Indeed, Ref. [21] and [48] do not cover all possible variational algorithms; more-
over, although rare, there are still cases where barren plateaus can be avoided
without falling into regimes of classical simulability, as shown in the same [21].
Additionally, it may happen that even when polynomial-time classical simula-
tion is possible, the associated computational cost may remain prohibitive, thus
allowing for potential polynomial quantum advantages.

In summary, the study of the barren plateau phenomenon remains relevant. Not
only do algorithms exist that can both avoid barren plateaus and remain hard
to simulate classically, but understanding the conditions under which BP can
be avoided may also help identify cases where quantum computation offers no
real advantage, allowing us to focus our efforts on regimes where a real quantum
speedup is possible.

In the following chapters, we focus on the architectural characteristics of an
ansatz that lead to a flat landscape. Our goal is the same of Ref. [15], which
is establishing a connection between the flatness of the loss and the circuit
architecture. While aiming at the same target, we approach the problem in
a different way, making use of the convenient properties of the Clifford group,
which we analyze in chapter 3.
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The Clifford group and its
action on the Pauli group

The n-qubit Clifford group Cn is defined as the normalizer of the Pauli group
Pn in U(2n):

Cn = {V ∈ U(2n)|V †PnV ⊆ Pn}/U(1). (3.1)

By definition, the Pauli group Pn is a normal subgroup of Cn. The importance
of the Clifford group lies in several factors. It has a wide range of applications
such as quantum error-correcting codes [49], and quantum data hiding [50].
Furthermore, operations within the Clifford group can be efficiently simulated
on a classical computer, a fact that makes tractable working with relatively
large Clifford group circuits [51]. Beside all that, the property that makes the
Clifford group fundamental for our work is the fact that it is a unitary 2-design.
In addition, it is also a 3-design [52] but fails to be a 4-design [53]. In this
chapter we discuss the action of the Clifford group over the Pauli group. These
results serve as a foundation for the next chapter.

3.1 The action of the Clifford group

The Clifford group acts on the n-qubit Pauli group Pn via conjugation. Since
the conjugation operation preserves the spectrum of the operator it acts upon,
the elements of the Clifford group map each non-identity hermitian operator
into another non-identity hermitian operator, while ±I can only be conjugated
into itself.

55



CHAPTER 3

Definition 3.1. P∗
n is the set of all the hermitian elements of the Pauli group

that are not proportional to the identity:

P∗
n = {P ∈ Pn|P = P †} \ {±I}. (3.2)

For our purpose it is necessary to show that the operator resulting from the
conjugation of P ∈ P∗

n through C ∈ Cn is sampled from the uniform distribution
on P∗

n. To do so, we need the following Theorem.

Theorem 3.1. There exists exactly one orbit of P∗
n under the action of Cn.

Proof. In the one-qubit case it is easy to show the existence of a single orbit.
Indeed, the following relations hold:

i. H†XH = Z,

ii. H†(−X)H = −Z,

iii. H†Y H = −Y ,

iv. S†XS = Y ,

v. S†Y S = −X,

vi. S†(−Y )S = −X.

Therefore, any operator of P∗
1 is conjugate to any other element of P∗

1 by means
of S and H, the phase and Hadamard gate, which are the generators of C1.

The same can be shown when n = 2. For this purpose it is necessary to introduce
the CNOT gate which, along with S and H, is one of the generators of Cn with
n ≥ 2. Moreover, to prove the Theorem when n ≥ 2, it is not important whether
a single-qubit operator within an element of P∗

n is a Pauli X, Y , or Z; what
matters is only whether it is equal to the identity or not. This is due to the fact
that the transitivity of the action for n = 1, guarantees that every element of P∗

1

is conjugate to every other element of the set by means, respectively, of a Clifford
operator of the type I ⊗ J , J ⊗ I or a product of both, where J = {H,S}. To
simplify the proof, it is convenient to consider any operator of P∗

1 as equivalent
and denote it generically by W . The equivalence relation induces a partition in
P∗
n, where each class contains all the n-fold tensor products acting non trivially

on the same qubits but using different single-qubit operators. P∗
2 is partitioned

into the following classes:

i. I⊗W ;

ii. W ⊗W ;
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iii. W ⊗ I;

To prove the existence of a single orbit it is necessary to show that it is possible
to conjugate at least one element from a given class to one in the previous class.
This can be done using the CNOT operator: it allows at least one tensor product
belonging to the first class to conjugate to a tensor product in the second class
and one in the second to conjugate to one in the third:

CNOT†(I⊗ Z)CNOT = Z ⊗ Z,

CNOT†(X ⊗X)CNOT = X ⊗ I.
It follows that any operator in P∗

2 is conjugate to any other operator in P∗
2 under

the action of some Clifford operator, proving the existence of a single conjugacy
class.

In order to generalize this approach to n-qubits, it is sufficient to show that,
given an element of P∗

n, there exists a path connecting it to any other element of
P∗
n by conjugation via Clifford operators. Since X, Y , and Z are equivalent and

represented as W , it is possible, in order to avoid the use of heavy notation, to
represent each n-fold tensor product of different equivalence classes of P∗

n as a
string of n bits: ’1’ represents W and ’0’ the identity operator. The positions of
the 1s and the 0s in the bit string indicate the sites acted upon by the operators
W s and the Is, respectively. Obviously, the all ’0’ string is not allowed since
it would represent the identity operator which is not an element of P∗

n. The
existence of a single orbit for n = 1 implies that all the bit strings of a given
class are conjugate. On the other hand, the case n = 2 implies that the bit
strings from two different classes are conjugate if they differ from each other by
no more than a pair of (not necessary neighboring) bits within the string, such
that, in both strings, at least one bit of this pair is ’1’.

The existence of a single orbit can be demonstrated showing that any given
string p is conjugate to the string with ’1’ in the first position and ’0’ everywhere
else trough a finite sequence of n-bit strings pl. To this scope let p be any of
the possible n-bit strings and suppose that p has k nonzero bits.

i. Let the i-th non-zero bit be the first bit in pl such that that is equal to
1 and preceded by a 0. If there is no such bit, pl already has the desired
structure.

ii. Consider the i-th non-zero bit and the zero bit at position i.

iii. Define the string pl+1 by swapping the positions of these two bits in pl.

iv. Repeat points 1 to 3 for every i = 1...k.

The second part generates the string with ’1’ in the first position followed by
n− 1 zeroes.
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i. Starting from i = k, consider the i-th and (i − 1)-th non zero bits in
position i and i− 1.

ii. Define the new string by changing the value of the i-th bit from ’1’ to ’0’.

iii. Repeat points 1 and 2 for every i = k...2.

This means that the element of P∗
n which acts non trivially only on the first

qubit is conjugate to any other element of the set, showing the existence of a
single orbit of P∗

n under the action of Cn.

We are now ready to present the main result.

Theorem 3.2. Let φ represent the action of Cn over P∗
n:

φ : C × P∗
n → P∗

n,

(C,P ) 7−→ C†PC,

and let C be sampled from the uniform distribution on Cn. Then, for any P ∈
P∗
n, φ(C,P ) is uniformly distributed over P∗

n.

Proof. A direct consequence of Theorem 3.1 is that the cardinality of this one
orbit is |P∗

n|. From the orbit-stabilizer Theorem, we have that for every P ∈ P∗
n

the following holds:

|orb(P )||stab(P )| = |Cn|, (3.3)

|P∗
n| =

|Cn|
|stab(P )|

,

|P∗
n| = [Cn : stab(P )], (3.4)

where [Cn : stab(P )] is the number of right cosets of stab(P ) in Cn. A right
coset of stab(P ) si defined as:

stab(P )C = {SC |S ∈ stab(P )}. (3.5)

Every element in stab(P )C acts on a given P ∈ P∗
n as follows:

(SC)†P (SC) = C†S†PSC = C†PC = P ′, (3.6)

where the second equality comes from the properties of the stabilizer. An el-
ement C ′ ∈ Cn belongs to the same right coset as C, namely stab(P )C, if
C ′ = SC for some S ∈ stab(P ). Hence, the following equality holds true:

(C ′)†PC ′ = (SC)†P (SC) = P ′. (3.7)
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Therefore, each right coset contains exactly all the elements of Cn that act on
P in the same way, that is, the elements of of the n-qubit Clifford group that
conjugate P into a fixed P ′ ∈ P∗

n. The result in equation (3.4) means that
for every P ∈ P∗

n the number of different elements of P∗
n in which it can be

conjugated is exactly |P∗
n|.

The cardinality of each right coset of stab(P ) is |stab(P )|. This means that, for
any P, P ′, the number of elements of Cn that map P in P ′ is a fixed number:

|{C ∈ Cn|C†PC = P ′}| = |stab(P )| = |Cn|
|P∗
n|
. (3.8)

This leads to the following relation which concludes the proof:

P(P ′ = C†PC) =
|{C ∈ Cn|C†PC = P ′}|

|Cn|
(3.9)

=
|Cn|/|P∗

n|
|Cn|

=
1

|P∗
n|
.

A direct consequence of Theorem 3.2 is the following corollary.

Corollary 3.1. Let C be sampled from the uniform distribution over Cn and
P be an element of P∗

n. Let P ′ = C†PC. Then each non-identity factor in
the tensor product defining P ′ is independently distributed over {X,Y, Z} with
uniform probability 1/3.

3.1.1 The action of the Clifford group over P∗
2

We briefly discuss the case where n = 2, since it is the one that matters the most
for our results. The set P∗

2 contains 30 elements; therefore, any element of P∗
2

acted upon by an operator C sampled uniformly from C2, is mapped uniformly
over those 30 elements.

Let W represents any non-identity Pauli matrix. The equivalence relation
among X, Y , and Z induces a partition in P∗

2 , where each class contains all
the 2-fold tensor products acting non trivially on the same qubits but using
different single-qubit Pauli operators. Then we can see that P∗

2 is partitioned
into the following classes:

i. ±I⊗W ;
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ii. ±W ⊗W ′;

iii. ±W ⊗ I.

Proposition 3.1. For any P ∈ P∗
2 , we have the following

P(C†PC ∈ [±I⊗W ]) =
1

5
; (3.10)

P(C†PC ∈ [±W ⊗W ′]) =
3

5
; (3.11)

P(C†PC ∈ [±W ⊗ I]) =
1

5
. (3.12)

In each of the above cases, W is uniformly distributed over the set of Pauli
operators {X,Y, Z}.

3.2 Application to quantum circuits

We now show how to exploit the results of the previous sections in a quantum
circuit. Assume that V is a quantum Clifford group circuit that acts on n qubits.
The starting state is assumed to be |0⟩⊗n. Let V = Vp . . . V1, where each Vt is
salmpled uniformly at random from C2 acts on two qubits. Note that the gates
are applied in the order Vp first, V1 last, that is, we index gates from the output
backwards. Let M , the observable, be an element of P∗

n. For any operator S
we briefly introduce the following notation:

◦ supp(S) = set of the sites S acts non trivially upon;

◦ |supp(S)|= is the cardinality of the set supp(S);

◦ Si...j= the restriction of S to the sites from i to j if S is an n-folds tensor
product of single-qubit operators.

The expected value of the measurement ofM at the end of circuit V is calculated
as follows:

⟨0n|V †MV |0n⟩ = ⟨0n|V †
p . . . V

†
1MV1 . . . Vp|0n⟩. (3.13)

Let us now proceed by evolving the observable rather than the state. If we look
at the operator product V †

1MV1 we can clearly see that this is a conjugation of
a P∗

n operator carried out by a Clifford operator and, depending on the sites V1
acts upon, we have two possible results:

60



3.2. APPLICATION TO QUANTUM CIRCUITS

Figure 3.1: Application to circuits of Theorem 3.2. We "absorb" the effect
of the gate V1 into the observable defining a new operator M (1). We represent the
observable with a measurement gate acting on each qubit separately. This can be done
because M is the tensor product of n single-qubit operators, therefore, the outcome
of its measurement is equal to the product of the outcome of the measurement of its
single-qubit operators, as explained in section 2.2.

V †
1MV1 =M (1) =

{
M if supp(M) ∩ supp(V1) = ∅,
M ′ if supp(M) ∩ supp(V1) ̸= ∅.

(3.14)

If we assume that the sites V1 acts upon are the sites i, i+ 1 for i = 1 . . . n, the
operator M ′ is defined by the following tensor product:

M ′ =M1...i−1 ⊗M ′
i,i+1 ⊗Mi+2...n (3.15)

By Theorem 3.2 the operator M ′
i,i+1 is drawn uniformly from P∗

2 . Then we can
write (3.13) as follows:

⟨0n|V †
p . . . V

†
2M

(1)V2 . . . Vp|0n⟩. (3.16)

The same process is done for M (1):

V †
2M

(1)V2 =M (2) =

{
M (1) if supp(M) ∩ supp(V2) = ∅,
M (1′) if supp(M) ∩ supp(V2) ̸= ∅.

(3.17)

Assuming again that V2 acts upon the sites i, i+1 for i = 1 . . . n, M (1′) is given
by the following tensor product

M (1′) =M
(1)
1...i−1 ⊗M

(1′)
i,i+1 ⊗M

(1)
i...2,n (3.18)

with M (1′)
i,i+1 drawn uniformly from P∗

2 .
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The same process is iterated for each Vt, and, after performing each conjugation
we obtain the following expression for (3.13):

⟨0n|V †MV |0n⟩ = ⟨0n|M (p)|0n⟩, (3.19)

where M (p) ∈ P∗
n and depends on the outcome of the previous p conjugations.

The procedure can be generalized for Vt acting on non-adjacent qubits. In the
following chapter we show how to exploit this property to derive an estimate of
the variance.
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Quantifying the barren
plateau phenomenon

As seen in section 2.3, the barren plateau phenomenon is a significant obstacle
to the development of practical quantum speedups in the near term. This is
especially true when considering highly unstructured, random-looking ansätze.
Our goal, in this chapter, is to develop a simple and straightforward method to
evaluate the magnitude of the gradient of the cost function for such an ansatz.
Our approach relies on the result obtained in chapter 3, in particular in sec-
tion 3.2. As motivated in the corresponding chapter, Theorem 3.2 enables us to
simplify the expression of the expected value of the measurement of an observ-
able M ∈ P∗

n. Looking back to section 3.2 we see that we obtain the following
equality:

⟨0n|V †MV |0n⟩ = ⟨0n|M (p)|0n⟩, (4.1)

for any circuit V = V1...Vp whose gates Vt are drawn uniformly at random from
the Clifford group.

As we argued in the previous chapter, M (p) ∈ P∗
n, and therefore is an n-fold

tensor product of single qubit Pauli operators where at least one of the n op-
erators differs from the identity, see Fig. 4.1 for an example. If any of these n
single-qubit Pauli operators is a Pauli-X or a Pauli-Y, then by the properties of
the aforementioned operators and by the properties of tensor products discussed
in chapter 2, the expectation value of M (p) for a system starting in the state
|0⟩⊗n is zero.

In this chapter we see how to use this nice property to estimate the magnitude
of the gradient of the cost function. Firstly we introduce a highly-unstructured
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Figure 4.1: Observable M (p). The measurement gate representing the observable
M (p) that results from (4.1), acts non trivially on one or more sites, since the operator
M (p) is an element of P∗

n.

HEAs, similar to the one described in [15], and we obtain the same expression
to estimate the barren plateau. Subsequently we focus on two different models:
in section 4.3 we assume a random placement of the gates and we quantify the
barren plateau with the properties of Markov chains; in section 4.4, instead,
we fix the architecture and derive a lower bound on the expected value of the
magnitude of ∥∇f(Θ)∥ using the results of section 4.2.

4.1 Setup and notation

We consider a parametrized circuit U(Θ) with parameter vector Θ = {θ1, . . . , θm},
acting on n qubits whose starting state is |0⟩⊗n.

Assumption 4.1. We assume that the gates in the parametrized circuit U(Θ)
are of the following two types:

i. Random entangling two-qubit gates: they act non trivially on two sites,
which can possibly be non adjacent, and are sampled independently and
uniformly at random from the Haar measure over U(4).

ii. Deterministic parametrized gates of the form W l
je

−iAjθjW r
j , where A is

Hermitian and acts non trivially on at most two qubits, θ ∈ R is the
parameter and W l

j and W r
j are arbitrary fixed gates acting on the same

sites as Aj.

Moreover, we assume that each Aj has spectrum in {−1, 1}.

The assumption on the spectrum of the Ajs guarantees that each e−iAjθj is
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Figure 4.2: Representation of the ansatz U(Θ) and Ũ . In green are represented
the unparameterized entangling gates. In blue the single and two qubits parametrized
gates. We note that, as required by assumption 4.2, each qubit of the circuit is acted
upon by at least one 2-qubits entangling gate. On the right is represented Ũ , as defined
in Def. 4.1.

periodic in θj with period 2π, a condition required to prove Lemma 4.11. We
additionally demand the model to satisfy some structural constraints.

Assumption 4.2. We require the model to satisfy the following constraints:

i. Each qubit is acted upon by an entangling two-qubit gate at least once.

ii. Each entangling two-qubit gate acting on qubits i and j may be preceded
and succeeded by an arbitrary number of parameterized gates acting on one
or both of these sites, but parameterized gates which cannot be placed in
this way are not allowed.

We now introduce the notation that we use throughout the following pages,
closely following the one adopted by Napp in [15].

Definition 4.1. For any variational circuit U(Θ), define Ũ as the same circuit
with all the parametrized gates are removed. V represents a particular realization
of the entangling gates in Ũ , p the total number of entangling gates, and l the
number of layers in Ũ .

If we consider the orthogonal basis of C2×2, namely P = {I, X, Y, Z}, any n-
qubit operator M can be decomposed as in Eq. (2.109). We consider the specific

1The condition is also non restrictive since any single quibt Hermitian gate A with spectrum
not in {−1, 1} can be rescaled to have its spectrum in {−1, 1}. On the other hand, in real-life
applications, the two-qubit Hermitian gates commonly considered are tensor products of Pauli
gates, and thus satisfy the requirement.

65



CHAPTER 4

Figure 4.3: Local Pauli observable. In the image, each measurement gate
represents a local n-qubit Pauli observable defined as in Def. 4.2, that acts non
trivially only on the sites on which it is represented.

observable whose decomposition such that each term of the summation acts non
trivially on one site only.

Definition 4.2. O is a local observable given by the sum of single qubit Pauli
observables:

O =

n∑
k=1

ckOk =c1(W1 ⊗ I⊗ ...⊗ I)+

+ c2(I⊗W2 ⊗ ...⊗ I)+
...

+ cn(I⊗ ...⊗ I⊗Wn),

(4.2)

where Wk ∈ {X,Y, Z}, ∀ k = 1...n and ck = 2−ntr(O†
kO).

4.2 A measure for barren plateaus

We now turn our attention to finding a way to estimate the flatness of the
landscape of the model function. Let fV (Θ) denote the cost function induced
by the realization V of the entangling gate:

fV (Θ) = ⟨0n|U(Θ)†OU(Θ)|0n⟩. (4.3)

A natural measure for the flatness of the landscape of the cost function, with
respect to both the random choice of the entangling gates and and uniformly
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over the parameter space, is the following:

EV EΘ∥∇fV (Θ)∥2. (4.4)

The next lemma, stated and proved in [15], shows that EV EΘfV (Θ)2 is a good
measure as well, by directly relating it to (4.4). To prove this result we assume
that the final gates applied to each qubit j consist of a sequence of parametrized
Pauli rotations of the form eiαjX/2eiβjZ/2. This request does not impose a
constraint on the circuit’s architecture as, by the definition of the Haar measure,
the sequence does not change the probability distribution of the entangling gates,
which allow us to incorporate the sequence of rotations in the last entangling
gate acting on the same site.

Lemma 4.1. Let fV (Θ) be as previously defined, then

EV EΘfV (Θ)2 ≤ EV EΘ∥∇fV (Θ)∥2 ≤ 4

(∑
i

∥Aj∥2
)
∥O∥

√
EV EΘfV (Θ)2.

(4.5)

The result allows us to focus on EV EΘf(Θ)2 which is easier to compute with
our approach.

We now replace the Haar measure on U(4) with the uniform measure over the
Clifford group C2. Since the Clifford group forms a 2-design, the second moments
of operators sampled from C2 are equivalent to those obtained with operators
drawn uniformly at random from the Haar measure on U(4). We notice that is
not necessary to evaluate the expectation over Θ, as the entangling gates form
unitary 2-designs, and the 2-design property is preserved under application of a
fixed unitary. Therefore the parameterized gates can be ignored, simplifying the
expression. Let V = Vp, . . . , V1 denote the p entangling gates, as in section 3.2
we invert the usual convention and thus Vt is the t-th gate from the end of the
circuit. Hence, we have the following result:

EV EΘfV (Θ)2 = EV EΘ⟨0n|U†(Θ)OU(Θ)|0n⟩2 (4.6)

= EV ⟨0n|V †OV |0n⟩2. (4.7)

If we take into account the definition 4.2 for the observable O, (4.7) becomes
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EV EΘfV (Θ)2 = EV
∑
k,k′

ckck′⟨0n|V †OkV |0n⟩⟨0n|V †O†
k′V |0

n⟩ (4.8)

= EV
n∑
k=1

c2k⟨0n|V †
p . . . V

†
1 OkV1 . . . Vp|0n⟩2 (4.9)

=

n∑
k=1

EV [c2k⟨0n|V †
p . . . V

†
1 OkV1 . . . Vp|0n⟩2]. (4.10)

The cross terms in (4.8) vanish because we can insert a layer of single-qubit
gates, sampled from the uniform measure over C1, acting on each qubit j after
all the two-qubit entangling unitaries. This does not change the global unitary
Ũ , as the effect of this final layer can be absorbed into the preceding two-
qubit entangling gates. Moreover, (4.9) follows from the fact that each Ok is
self-adjoint and that ck is always real being the trace of the product of two
self-adjoint operators.

Fix k ∈ {1, 2, . . . , n}, then the operator

V †
p . . . V

†
1 OkV1 . . . Vp, (4.11)

is a composition of p conjugations of Ok, operated by p 2-qubit Clifford opera-
tors. Following the results of section 3.2 we have that:

V †
p . . . V

†
1 OkV1 . . . Vp = O

(p)
k , (4.12)

where O(p)
k ∈ P∗

n and thus it is a tensor product of n self-adjoint operators of the
single-qubit Pauli group, with the constraint that it cannot be ±I⊗n. Therefore
(4.10) takes the following form

EV EΘfV (Θ)2 =

n∑
k=1

EV [c2k⟨0n|O
(p)
k |0

n⟩2]. (4.13)

We know that if even just one element of O(p)
k is either X or Y , then

⟨0n|O(p)
k |0

n⟩ = 0. (4.14)

On the other hand, if all the elements of O(p)
k are either I or Z, then

⟨0n|O(p)
k |0

n⟩ = ±1 (4.15)

By Corollary 3.1, the probability that each non identity element of O(p)
k is either

X, Y or Z is 1
3 . Thus, we evaluate the variance of the objective function as the
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expected value of the probability that O(p)
k is an n-fold tensor product of only

Z and I single-qubit operators:

n∑
k=1

EV [c2k⟨0n|O
(p)
k |0

n⟩2] =
n∑
k=1

c2k EV
[(

1

3

)|supp(O(p)
k )|]

. (4.16)

4.3 Randomly placed gates model

To obtain a first result on the flatness of the landscape of fV (Θ) we assume that
V is not fixed at the start.

Assumption 4.3. The two qubits acted upon by each entangling gate Vt are
sampled each time from the uniform distribution over all the

(
n
2

)
couples of

qubits, for every t = 1...p. Moreover, each layer t contains a single entangling
gate Vt, for t = 1 . . . l. We denote a particular realization of the entangling gates
in this model as V (R).

Notice that assumption 4.3 implies that l = p. This particular choice makes
calculating (4.16) much easier since the number of sites on which O(p)

k acts non
trivially, namely |supp(O(p)

k )|, can be studied with a particularly simple Markov
process.

Since the following results hold for every single Ok, we introduce a sequence of
random variables in order to describe compactly |supp(O(t)

k )| for all k = 1, . . . , n
and t = 1, . . . , p.

Definition 4.3. Let X0, X1, X2 . . . be the sequence of random variables such
that

Xt = |supp(O(t)
k )|, for t = 1...p, (4.17)

and
X0 = |supp(Ok)|, (4.18)

for all k = 1 . . . n.

We can state the following proposition.

Proposition 4.1. The sequence of random variables X0, X1, X2 . . ., defined on
the state space X = {1, 2, 3, ..., n}, is a Markov chain whose transition matrix
P is defined by the following coefficients:

Pij =


2
5
i(i−1)
n(n−1) if j = i− 1,

3
5
2i(n−i)
n(n−1) if j = i+ 1,

1− 2
5
i(i−1)
n(n−1) −

3
5
2i(n−i)
n(n−1) if j = i.

(4.19)
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Proof. The state space X represents the values the random variables can assume
through the process, indeed it must be at least 1 by definition 4.2 and it cannot
be greater than n. Each transition probability from a state i to a state j, where
i, j = 1 . . . n, is represented by the corresponding coefficient of the transition
matrix Pi,j . As in subsection 3.1.1 we denote by W any non identity element
of P.

Consider the action of the t-th entangling gate Vt for t = 1 . . . p, and let
supp(Vt) = {l, k} for l, k = 1, . . . , n, l ̸= k.

If j = i− 1, the transition probability from Xt−1 = i to Xt = j is given by the
product of two values:

Pi,i−1 = P
(
V †
t O

(t−1)
l,k Vt ∈ [±I⊗W ] ∪ [±W ⊗ I]

)
×P(supp(Vt) ⊆ supp(O(t−1))).

(4.20)
By Proposition 3.1 and by combinatorial results we obtain

Pi,i−1 =
2

5

i(i− 1)

n(n− 1)
. (4.21)

Similarly, if j = i + 1 the transition probability from Xt−1 = i to Xt = j is
given by

Pi,i−1 =P
(
V †
t O

(t−1)
l,k Vt ∈ [±W ⊗W ′]

)
× P

((
supp(Vt) ̸⊂ supp(O(t−1))

)
∩
(
supp(Vt) ∩ supp(O(t−1)) ̸= ∅

))
(4.22)

By Proposition 3.1 and by combinatorial results we obtain

Pi,i+1 =
3

5

2i(n− i)
n(n− 1)

. (4.23)

If j = i, then the transition probability from Xt−1 = i to Xt = j is

Pi,i =
(n− i)(n− i− 1)

n(n− 1)
+

3

5

i(i− 1)

n(n− 1)
+

2

5

2i(n− i)
n(n− 1)

. (4.24)

The first term is the probability that supp(Vt) ∩ supp(O(t−1)) = ∅. The second
is the product of the two probabilities

P
(
V †
t O

(t−1)
l,k Vt ∈ [±I⊗W ] ∪ [±W ⊗ I]

)
, (4.25)

and

P
((

supp(Vt) ̸⊂ supp(O(t−1))
)
∩
(
supp(Vt) ∩ supp(O(t−1)) ̸= ∅

))
. (4.26)
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The last term is the result of the product

P
(
V †
t O

(t−1)
l,k Vt ∈ [±W ⊗W ′]

)
× P(supp(Vt) ⊆ supp(O(t−1))). (4.27)

Case three of (4.19) can be shown to be equivalent to (4.24) but it provides a
more compact way of expressing the result.

All the entries outside the three principal diagonals are zero. This is due to the
fact that each Clifford gate acts on two qubits only and therefore, the number
of non-identity operators cannot increase/decrease by more than one unit at a
time.

The definition of transition matrix can be found in Appendix A. In the following
pages we analyze the results obtained through the study of this Markov process.

4.3.1 The stationary distribution

The process can be easily proved to be irreducible and aperiodic (both properties
are defined in Appendix A). Indeed, the tridiagonal structure of the matrix
clearly indicates that all states are reachable from any given state and that the
period of each state is 1. Therefore, there exists a unique stationary distribution
to which the system converges (see Appendix A). We call such probability
distribution π and we find that the following expression holds:

πi =
1

4n − 1

3in!

(n− i)!i!
, i = 1...n. (4.28)

The stationary distribution shows how the system behaves in the long time,
which, in our case, means after a large number of gates.

Observation 4.1. The expected value of Xt when the system is in the stationary
state is

E[Xt] =

(
3

4
n

)
4n

4n − 1
. (4.29)

Proof.

E[Xt] =

n∑
i=1

iπi =
1

4n − 1

n∑
i=1

3in!

(n− i)!(i− 1)!
(4.30)

=
3n

4n − 1

n−1∑
µ=0

3µ(n− 1)!

(n− 1− µ)!µ!

=
3n

4n − 1
4n−1,
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where we used the change of variable µ = i− 1.

Observation 4.1 means that if the circuit reaches the stationary state, the ex-
pected fraction of non identity elements in Ok for k = 1 . . . n is slightly more that
3
4 . This is due to the fact that each single qubit gate in Ok is sampled uniformly
at random from the Pauli group with the condition that, for all t = 1 . . . p, Ok
cannot be the identity element:

O
(t)
k ̸=

n⊗
I. (4.31)

In the following sections, the stationary distribution π is necessary to study
the expectation (4.16) for this model. Therefore, it is useful to determine how
long it takes for our system to reach the stationary state, in other words, the
relaxation time of the Markov chain (see Appendix A). We now prove a result
that is fundamental for studying the value trel.

Proposition 4.2. The probability distribution (4.28) satisfies the detailed bal-
ance equation:

πiPi,j = πjPj,i. (4.32)

Proof. The detailed balance equation is satisfied if we can prove that P is self-
adjoint with respect to the scalar product defined by the matrix

D = diag(π), (4.33)

that is
⟨Pv,w⟩π = ⟨v, Pw⟩π, (4.34)

for any n-dimensional vectors v, w. Indeed, Equation (4.34) takes the following
form

PTD = DP. (4.35)
Pj,iπj = πiPi,j (4.36)

The equality is immediately verified. Indeed, Pi,j and Pj,i are different from
zero if and only if

j =


i,

i− 1,

i+ 1.

(4.37)

For j = i the proof is trivial. Let j = i+ 1:

πi+1 =
1

4n − 1

3i+1n!

(n− i− 1)!(i+ 1)!
. (4.38)
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The corresponding elements of the transition matrix are

Pi,i+1 =
3

5

2i(n− i)
n(n− 1)

; (4.39)

Pi+1,i =
2

5

i(i+ 1)

n(n− 1)
. (4.40)

Therefore, the detailed balance equation is satisfied if

1

4n − 1

3i+1n!

(n− i− 1)!(i+ 1)!

2

5

i(i+ 1)

n(n− 1)
=

1

4n − 1

3in!

(n− i)!i!
3

5

2i(n− i)
n(n− 1)

. (4.41)

The identity can be verified through straightforward simplifications. The same
approach is used for j = i− 1.

4.3.2 Relaxation time of the Markov chain

For the properties of Markov chains we detail in Appendix A, Proposition 4.2
ensures that all the eigenvalues of the transition matrix are real. Therefore, it
is possible to arrange the eigenvalues of P in decreasing order:

1 = λ(1)n ≥ λ(2)n ≥ ...λ(n)n , (4.42)

where λ(1)n is the eigenvalue corresponding to the stationary distribution. We
study how the relaxation time trel, defined in Appendix A, varies with the
number of qubits.

Figure 4.4: Plot of the relaxation time as a function of n: the two plots show
how the relaxation time varies with the number of qubits in the circuit. The image
on the left shows the non linear behavior of the relaxing time for small values of n.
On the right we can see that trel has an asymptotic linear dependence on n. The
algorithm that has been used to obtain the results is shown in Appendix B
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The numerical results show that trel grows, almost linearly, with n. This means
that, as the number of qubits in the circuit increases, more entangling gates are
required for Xt to reach the stationary distribution. Figure 4.4 shows the result
obtained.

4.3.3 Expected magnitude of the gradient

The properties of Markov chains provide us with a useful expression to compute
the expected value of a function depending on the random variable. Let f be the
function defined over X such that f(i) =

(
1
3

)i, each term of (4.16) is obtained
as follows:

Eµ

[(
1

3

)Xp
]
= µP pf , (4.43)

where f is the n dimensional vector of elements f(i) = f(i) and µ the probability
distribution of the starting state. We firstly consider the case where the system
is already in the stationary state.

Proposition 4.3. Let µ = π, then

Eπ

[(
1

3

)Xp
]
=

1

2n + 1
. (4.44)

Proof.

Eπ

[(
1

3

)Xp
]
=

n∑
i=1

πi
1

3i
(4.45)

=
1

4n − 1

n∑
i=1

(
n

i

)
=

1

4n − 1
(2n − 1)

=
1

2n + 1

Therefore, if the starting distribution matches π, the expected magnitude of the
gradient of fV (R)(Θ) decays exponentially with the number of qubits. However,
the observable described in definition 4.2 is such that the initial distribution is
represented by the row vector that is 1 in the first component and zero every-
where else.
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Proposition 4.4. Consider the n-dimensional probability vector e1 = (1, 0, . . . , 0),
then:

Ee1

[(
1

3

)Xp
]
≤ 1

2n + 1
+

1

3

(
λ
(2)
n

)p
λ
(n)
n

. (4.46)

Proof. We decompose the vector e1 into the sum of two components: one pro-
portional to the stationary distribution π, and the other orthogonal to π with
respect to the inner product associated with π:

e1 = γπ + v = γπ + (e1 − γπ). (4.47)

The constant γ is chosen in such a way that ⟨π, v⟩π = 0:

γ =
⟨π, e1⟩π
⟨π, π⟩π

. (4.48)

Notice that γ is always less or equal than 1. Indeed, if we compute the scalar
products we obtain

⟨π, e1⟩π
⟨π, π⟩π

=
π2
1∑n

i=1 π
3
i

. (4.49)

However,
∑n
i=1 π

3
i = π3

n +
∑n−1
i=1 π

3
i and we can prove that π3

n > π2
1 , in fact by

(4.28) we have that
(3n)2

(4n − 1)2
<

(3n)3

(4n − 1)3
. (4.50)

Therefore,
∑n
i=1 π

3
i > π2

1 and γ < 1.

Let us now return to the main objective of this proof.

e1P
pf = γπP pf + vP pf (4.51)

= γ
1

2n + 1
+ vP pf . (4.52)

The last equality is a consequence of the result of Prop. 4.3.

Let us focus now on the second term of (4.52), in the following steps we use the
scalar product defined by the stationary distribution.

vP pf = (e1 − γπ)P pf (4.53)

= (e1 − γπ)P p(D−1D)f

= ⟨(e1 − γπ)P pD−1, f⟩π
≤ ∥(e1 − γπ)P pD−1∥π∥f∥π
≤ ∥(e1 − γπ)P p∥π∥D−1∥π→π∥f∥π (4.54)
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Let v1, v2, . . . , vn be the orthonormal basis of P with respect to the scalar prod-
uct ⟨·, ·⟩π, in particular v1 = π

∥π∥π
. Then we can write v as follows:

v =

n∑
i=2

αivi, (4.55)

Then, the first term of (4.54), takes the following form:

∥(e1 − γπ)P p∥π = ∥

(
n∑
i=2

αivi

)
P p∥π (4.56)

= ∥
n∑
i=2

αivi

(
λ(i)n

)p
∥π

=

√√√√⟨ n∑
i=2

αivi

(
λ
(i)
n

)p
,

n∑
j=2

αjvj

(
λ
(j)
n

)p
⟩π

=

√√√√ n∑
i=2

α2
i

(
λ
(i)
n

)2p

≤

√√√√(λ(2)n )2p n∑
i=2

α2
i

=
(
λ(2)n

)p
∥v∥π

≤
(
λ(2)n

)p
∥e1∥π

≤
(
λ(2)n

)p
,

where λ(2)n is the second largest eigenvalue of P . The last inequality is a con-
sequence of ∥e1∥π ≤ 1 for all n ≥ 1 by (4.28). Let’s take the second term of
(4.54)

∥D−1∥π→π = sup
x ̸=0

∥D−1x∥π
∥x∥π

(4.57)

=

√
sup
x ̸=0

(D−1x)TD(D−1x)

xTDx

=
√

sup
x ̸=0

R(D−1, D),

where R(D−1, D) is the generalized Rayleigh quotient. Therefore, by the prop-
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4.3. RANDOMLY PLACED GATES MODEL

Figure 4.5: Vanishing gradient for a fixed number of gates. The image shows
the numerical results of the decay rate of Ee1 [1/3

Xp ] with respect to the number of
qubits, when the starting distribution is the vector e1 and π respectively. We see
that as the number of qubits starts to grow with respect to the number of gates, the
variance is not vanishing anymore. The algorithm used to obtain the result is shown
in Appendix B.

erties of the Rayleigh quotient we have that

sup
x ̸=0

R(D−1, D) = max{λ | λ ∈ σ(D−1D−1)} = 1(
λ
(n)
n

)2 , (4.58)

where λ(n)n is the least eigenvalue of the matrix P . Thus we have

∥D−1∥π→π =
1

λ
(n)
n

. (4.59)

To conclude, we consider the last term in (4.54):

∥f∥π =
√
fTDf =

√√√√ n∑
i=1

1

32i
πi (4.60)

≤

√√√√ 1

32

n∑
i=1

πi

=
1

3
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Figure 4.6: Vanishing gradient for a fixed number of qubits. The image shows
how Ee1 [1/3

Xp ] converges to Eπ[1/3
Xp ] as p grows. Accordingly to the results of

subsection 4.3.2, we notice that for greater values of n, the convergence is slower. The
algorithm used to obtain the result is shown in Appendix B.

It follows that the expected value of
(
1
3

)Xp satisfies the following inequality:

e1P
pf ≤ 1

2n + 1
+

1

3

(
λ
(2)
n

)p
λ
(n)
n

, (4.61)

which proves (4.46).

The result of Prop. 4.4 tells us that for any realization V (R) of the entangling
gates the decay of the magnitude of the gradient depends on two values: the
number of qubits n, and the number of gates p. A first observation tells us
that, if we fix the number of qubits n, then the second term of Eq. (4.61)
vanishes with p → ∞, as one would expect, a consequence of the fact that
λ
(2)
n < 1. Hence, for large values of p the result matches the one of Prop. 4.3.

If we study the gradient magnitude numerically, accordingly to what obtained
in subsection 4.3.2 we notice that as n grows, the time required to reach the
stationary distribution grows as well. Thus the decay is slower thanks to the
effect of the second term but, eventually, the stationary state is reached at a
given point. If instead we fix the number of gates, the same result is shown from
a different and more interesting perspective. What we notice, once again trough
a numerical analysis, is that as n grows with respect to p, the expectation is not
vanishing anymore. Indeed, the second term of Eq. (4.61) vanishes for p≫ n
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Figure 4.7: Value of
(
λ
(2)
n

)p

/λ
(n)
n . The plot shows how the ratio

(
λ
(2)
n

)p

/λ
(n)
n

grows with n for fixed values of p. We observe that the function increases rapidly until
n ∼ p, after which the curve exhibits sublogarithmic growth. This shows that the
second term in (4.46) is what keeps the gradient from vanishing when n≫ p.

(
λ
(2)
n

)p
λ
(n)
n

−−−→
p≫n

0. (4.62)

On the other hand, if p≪ n the trend reverses. As figure 4.5 shows, for p≪ n,
the ratio between

(
λ
(2)
n

)p
and λ

(n)
n starts growing, fast in a first moment, and

then sublogarithmically.

4.4 Fixed gates model

We now turn our attention to a more suitable model for simulating real life
applications. We require that the architecture of the circuit (i.e. the position
of the gates) is determined and fixed at the beginning of the process, and we
denote a particular realization of the entangling gates in this model as V (F ). We
can slightly modify the assumption on the structure of the layers we required in
section 4.3, this makes the result more general.

Assumption 4.4. Each layer may be composed by one or eventually more
entangling gates acting on different qubit pairs.
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Figure 4.8: Different types of possible transitions. The figure illustrates which
transitions are counted by each quantity: flip(γ)+, flip(γ)↑−, and flip(γ)↓−, for a two-
qubit observable. The first term counts all conjugations performed by the entangling
gates that result in a non-identity–non-identity operator pair. The second counts those
that produce an observable of the form O

(j)
k =W ⊗ I, and the third counts those that

produce O(j)
k = I⊗W . The same classification holds for general n-qubit observables,

since the entangling gates always act on pairs of qubits.

Even though |supp(O(p)
k )| is still a Markov process, a straightforward study of

the problem through a Markov chain, is not possible anymore because of the
dependency of the chain on the position of the gates. Therefore a different
approach is required. Equation (4.16) can be written as follows

EV (F )

(1

3

)|supp(O(p)
k )|

 =

n∑
j=1

(
1

3

)j
P(|supp(O(p)

k )| = j), ∀ k = 1 . . . n.

(4.63)
The process is a random walk over the strings of n symbols from the alpha-
bet {I,W}. Borrowing the notation from [15], we express the probability
P(|supp(O(p)

k )| = j) as a sum over trajectories γ = (γ0, γ1, . . . , γp). Each γt
is the assignment of value I or W to each single-qubit operator of the n-fold
tensor product O(t)

k ; γ0 is the starting configuration. Similarly to what we
defined for operators, we indicate as |supp(γt)| the number of non-identity op-
erators of O(t)

k . Clearly, for a trajectory to be considered valid, γ must satisfy
the rules detailed in subsection 3.1.1. Given these, we define the probability of
a trajectory as follows

P(γ) =
(
3

5

)flip(γ)+ (1

5

)flip(γ)↓− (1

5

)flip(γ)↑−
. (4.64)
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4.4. FIXED GATES MODEL

Figure 4.9: Representation of a trajectory γ. As an example we consider a 3-qubit
circuit. The probability of the trajectory is defined by the probability of the results
of the conjugations operated by the entangling gates. For this particular example we
have: P(γ) = 3

5
× 1

5
× 3

5
× 1

5
= 9

625
.

The value flip(γ)+ is the number of times an entangling gate, conjugates the
operators it acts upon into a non-identity–non-identity pair. On the other hand,
the values flip(γ)↑− and flip(γ)↓− represent the opposite case, that is when the
result of the action of an entangling gate is an identity–non-identity pair of
operators. The former counts the gates whose output is W ⊗ I while the latter
counts the cases when the output is the opposite, namely I⊗W (see Fig. 4.8).
Clearly flip(γ)+ + flip(γ)↑− + flip(γ)↓− ≤ p. Thus, the probability in Eq. (4.63)
takes the following form

P(|supp(O(p)
k )| = j) =

∑
γ

P(γ)1|supp(γp)|=j . (4.65)

4.4.1 Lower bound

We find that for an unstructured ansatz as the one described in Assumption 4.4
the following lower bound on (4.16) holds.

Proposition 4.5. (Lower bound) Let L be the smallest number of 2-qubits en-
tangling gates that any possible trajectory γ must pass trough. Then we find

EV (F )

(1

3

)|supp(O(p)
k )|

 ≥ 1

3

(
1

5

)L
. (4.66)
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Proof.

EV (F )

(1

3

)|supp(O(p)
k )|

 =

n∑
j=1

(
1

3

)j
P(|supp(O(p)

k )| = j) (4.67)

≥ 1

3
P(|supp(O(p)

k )| = 1)

=
1

3

∑
γ

P(γ)1|supp(γp)|=1

≥ 1

3

(
1

5

)L
.

Where
(
1
5

)L is the probability of the trajectory where |supp(γt)| = 1 ∀t =
1 . . . p.
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Conclusions

The results of this thesis can be divided into two parts. The first is a purely
mathematical study of the effect of the Clifford group on the Pauli group (see
chapter 3). The second part concerns the application of the previously devel-
oped theory to the study of barren plateaus in variational quantum circuits (see
chapter 4).

We first established that the action of a random element from the n-qubit Clif-
ford group on an element of the restricted set P∗

n (see Definition 3.1), results
in a uniformly random element of the same set. This result is formally stated
in Theorem 3.2. The proof relies on demonstrating that the action of the Clif-
ford group Cn on P∗

n is transitive, as shown in Theorem 3.1. This transitivity
implies that any element of P∗

n can be mapped to any other element via some
Clifford transformation, ensuring uniformity under the random action. While
this property was already widely believed to hold [54], a rigorous and complete
proof had not previously been documented. Our result therefore fills this gap.

In chapter 4, we applied the results obtained for the Clifford group to investigate
the barren plateau phenomenon in unstructured parametrized quantum circuits
that satisfy the mild conditions specified in Assumptions 4.1 and 4.2. What we
found is that, for an n-qubit ansatz defined accordingly these assumptions, the
study of the barren plateau phenomenon reduces to analyzing a random walk
over strings of n symbols drawn from a two letters alphabet.

For the same circuit, we considered two possible models. In the first model, we
assumed that the pair of qubits acted upon by each entangling gate is sampled
independently at each layer from the uniform distribution over all

(
n
2

)
possible

qubit pairs. This framework is particularly convenient, as it allows us to study
the random walk as a remarkably simple Markov chain (see Proposition 4.1).
For this Markov chain, we showed, in Proposition 4.4, an upper bound on the
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magnitude of the gradient that depends on both the number of qubits in the
circuit n, and the number of entangling gates p. The proposition, implies that
for a fixed number of qubits, the expected magnitude of the gradient of the
loss decays exponentially with the number of entangling gates. This result is
in agreement with the fact that as the number of gates increases, the system
converges to the stationary distribution which, as shown in Proposition 4.3, is
associated with an exponentially vanishing gradient in the number of qubits.
Moreover, the numerical results show that the decay of the expected magnitude
of the gradient, becomes slower when n increases relative to p (see Figure 4.6).
This aligns with the numerical results obtained for the relaxation time of the
process, shown in Figure 4.5, that illustrate that trel grows almost linearly with
n.

The same result can be interpreted from a complementary perspective by fixing
the number of entangling gates and allowing the number of qubits to grow.
In this regime we observe, thanks to the numerical results, that the gradient
no longer vanishes when n > p (Figure 4.5), providing further evidence of the
absence of barren plateaus in sufficiently wide but shallow circuits. This is due to
the ratio, that appears in Equation (4.46), of the second and the last eigenvalue
of the stochastic matrix P associated with the Markov process:

(
λ
(2)
n

)p
/λ

(n)
n .

As shown in Figure 4.7, the factor grows with n for a fixed number of gates,
a result that could not be justified analytically as it was not possible to find
an expression for the eigenvalue of the stochastic matrix P . Thus, Proposition
4.4 confirms, through a more direct approach, what has already been observed
in previous works, namely that for shallow circuits with local observables, the
gradient does not vanish exponentially.

Subsequently, we considered a more practically relevant scenario in which the
architecture of the circuit is fixed. In this setting, we derive a lower bound on
the typical magnitude of the gradient, this is formalized in Proposition 4.5. Our
analysis confirms the lower bound previously obtained by [15] for the case of 1-
local observables. The difference we identify lies in the definition of the random
walk: while their approach relies on a random initialization of qubit labels, our
random walk framework does not require this assumption.

One limitation of our work is the absence of an upper bound for the expected
magnitude of the gradient in the fixed architecture model. Establishing such
bound seems challenging, the difficulty arises from the vast number of possi-
ble trajectories of the random walk and the absence of easily tractable fixed
points within its dynamics. This combinatorial complexity makes it challeng-
ing to apply standard techniques for bounding the gradient’s magnitude from
above. Moreover, although we focused on 1-local observables, our analysis can
be extended to the broader class of k-local Pauli observables. Future work may
build upon these results to establish such bound and further characterize the
behavior of gradients in unstructured parametrized ansätze for more general
Pauli observables.
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Appendix A

Markov chains

In this chapter, we provide a brief introduction to the fundamental concepts
of Markov chains necessary for our results. All propositions and theorems pre-
sented here are proven in Ref. [55]. A Markov chain (MC) is a process which
moves along the elements of a set X in the following way: when the system is
in the state i ∈ X , the next position is chosen according to a fixed probability
distribution Pi,· that only depends on the current state of the system. More
formally we have the following definition:

Definition A.1. (Markov chain) Let X be a discrete set, a Markov chain is a
sequence of random variables (Xt)t≥0 = X0, X1, . . . taking values in X with the
property that

P(Xt+1 = j|X0 = x0, . . . , Xt−1 = xt−1, Xt = i) = P(Xt+1 = j|Xt = i), (A.1)

for all x0, . . . , xt−1, i, j ∈ X , and t ≥ 0. The space X is the state space of the
Markov chain.

We always assume that X is finite, as this is the relevant case for our purposes.
Equation (A.1) is called the Markov property and it states that the probability
of transitioning from a state i at time t to a state j at time t + 1, does not
depend on the sequence of states that precedes i. The probability distribution
of the process at time t is arranged in a distribution vector µt. Moreover, since
the probabilities only depends on i and j they can be arranged in a stochastic
matrix P that takes the name of transition matrix.

Definition A.2. (Stochastic matrix) A stochastic matrix is a square matrix P ,
whose i-th row is the distribution Pi,·. Thus, it satisfies

i. Pi,j ≥ 0 for all i, j.
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ii. For each row i
∑
j Pi,j = 1.

Multiplying by P on the right updates the distribution by a step:

µt = µt−1P ∀ t ≥ 1. (A.2)

Thus, if we are given an initial distribution µ0, we can determine any distribution
at time t by the following equation

µt = µ0P
t ∀ t ≥ 1. (A.3)

In particular, for the element-wise formulation of (A.3), the probability of tran-
sitioning from state i to state j at time t ≥ 1 is given by (P t)i,j . We use the
notation Eµ to indicate expectations given that µ0 = µ.

Definition A.3. (Irreducibility) A chain (Xt)t≥0 with transition matrix P and
state space X is called irreducible if, for any two states i, j ∈ X there exist an
integer t such that (P t)i,j > 0.

In other words, this means that it is always possible to reach any state from any
other state.

We denote as T (i) = {t ≥ 1|(P t)i,j > 0} the set of times when it is possible for
the chain to return to the starting position i.

Definition A.4. (Period of a Markov chain) Consider a Markov chain with
state space X . The period of a state i ∈ X is the greatest common divisor of
T (i). If all states have period 1 then the chain is called aperiodic.

The following lemma implies that for an irreducible chain, if it is possible to
show that a state i is such that gdc{T (i)} = 1, then the chain is aperiodic.

Lemma A.1. If a Markov chain with state space X is irreducible, then gdc{T (i)} =
gdc{T (j)} for all i, j ∈ X .

Long-term behavior of a Markov chain

We are interested in understanding how the distribution behaves in the long
term. A fundamental element for the study of the long-term behavior of a MC
is the stationary distribution, which is a distribution π that satisfies

π = πP. (A.4)

Clearly, if the starting state is π then µt = π for all t ≥ 0. To show the existence
of such distribution, we firstly have to introduce a few more definitions and
properties of MCs.
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Definition A.5. (Hitting time) For i ∈ X we define the hitting time for i as

τi = min{t ≥ 1|Xt = i). (A.5)

When X0 = i, τi is also called the first return time.

The following lemma allows us to show that for irreducible chains, it is possible
to define the stationary distribution.

Lemma A.2. For any state i and j of an irreducible Markov chain, Ei(τj) <∞.

Corollary A.1. Let P be the transition matrix of an irreducible Markov chain.
Then there exists a unique probability distribution π satisfying π = πP . More-
over for all states z,

π(z) =
1

Ezτz
. (A.6)

Reversibility and time reversal

Consider a probability distribution π on X that satisfies

πiPi,j = πjPj,i for all i, j ∈ X . (A.7)

The equations (A.7) are called the detailed balance equations.

Proposition A.1. Let P be the transition matrix of a Markov chain with state
space X . Any distribution π satisfying the detailed balance equations (A.7) is
stationary for P .

In other words, if a chain (Xt)t≥0 satisfies (A.7) and has stationary initial distri-
bution, then the distribution of (X0, X1, . . . , Xn) is the same as the distribution
of (Xn, Xn−1, . . . , X0). For this reason, a chain with this property is called
reversible. Proving that a chain is reversible is equal to proving that the ma-
trix P is self-adjoint with respect to the inner product defined by the matrix
D = diag(π), that is

⟨Pv,w⟩π = ⟨v, Pw⟩π, (A.8)

for
⟨v, w⟩π = vTDw. (A.9)

We state the following lemma that proves an important property for the eigen-
values of a stochastic matrix of a reversible Markov chain.

Lemma A.3. Let P be reversible with respect to π. Then the inner product
space (RX , ⟨·, ·⟩π) has an orthonormal basis of real-valued eigenfunctions {fj}|X |

j=1

corresponding to real eigenvalues {λj}.
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Convergence to the stationary distribution and relaxation time

The following theorem states that irreducible, aperiodic MCs converge to their
respective stationary distribution.

Theorem A.1. (Convergence theorem) Suppose that (Xt)t≥0 is irreducible and
aperiodic with stationary distribution π. Then there exist a constant α ∈ (0, 1)
and C > 0 such that

max
i∈X
∥(P t)i,· − π∥TV ≤ Cαt (A.10)

Here we used the definition of the total variation distance, which measures the
distance between two probabilities µ and ν as the maximum difference between
the probabilities assigned to a single event by the two distributions:

∥µ− ν∥TV = max
A⊆X

|µ(A)− ν(A)|. (A.11)

We may wonder how long it takes for the system to reach the stationary dis-
tribution. The answer to this question is given by the relaxation time trel.
Define

λ∗ = max{|λ| : λ is an eigenvalue of P, λ ̸= 1}. (A.12)

We call the difference γ∗ = 1−λ∗ the spectral gap. For a Markov chain (Xt)t≥0

satisfying the detailed balance equation, by Lemma A.3 all the eigenvalues are
real. Thus, we can label the eigenvalues in a decreasing order

1 = λ1 > λ2 ≥ . . . ≥ λ|X |, (A.13)

where λ1 is the eigenvalue corresponding to the stationary distribution. For a
reversible chain the spectral gap is γ∗ = 1− λ2.

Definition A.6. The relaxation time of a reversible Markov chain is defined as

trel =
1

γ∗
=

1

1− λ2
. (A.14)

The spectral gap is a measure of how long it takes for the chain to converge
to the stationary distribution. If trel is small then the chain converges quickly.
Conversely, as trel grows the convergence becomes slower.

90



Appendix B

Codes

In this appendix we present the codes we used to obtain the numerical results
presented in the thesis.

Relaxation time

Algorithm 1 was used to study the relaxation time of the Markov chain defined
by Proposition 4.1. The core of the algorithm consists of a for loop that initialize
the stochastic matrix P as the parameter n, representing the number of qubits
in the circuit at each loop, varies from 2 to n_max. After the initialization of
the matrix, at each loop the algorithm extracts the second largest eigenvalue and
calculates the corresponding relaxation time. The result obtained is displayed
in Figure 4.4.

Algorithm 1 Relaxation time of the Markov chain
n_max← 1000
lambda_2← zero matrix of dimension 1× n_max
t_rel← zero matrix of dimension 1× n_max
for n= 2 to n_max do

P← zero matrix of dimension n×n
Construct the transition matrix P
lambda_2(n)← second largest eigenvalue of P
t_rel(n)← 1

1−lambda_2(n)
end for
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Analysis of the expected magnitude of the gradient

Algorithm 2 Fixed number of qubits
n_val ← [100, 300]
p_max ← 800
for n in n_val do

e ← [1, 0, . . . , 0] ▷ Row vector of length n
exp← zero 1× (p_max) matrix
f← n×1 matrix, with f(i)= 1/3i

P← zero n×n matrix
Construct the transition matrix P
for p= 1 to p_max do

exp(p)←e·Pp·f
end for

end for

Algorithm 2 is used to study how the decay of the expected magnitude of the
gradient, which occurs as p→∞ (a result verified analytically), slows down as
n increases. This result is depicted in Fig. 4.6. The algorithm considers two
different values of n represented in the vector n_max. For the two possible
values, the algorithm defines the stochastic matrix P (defined in Proposition
4.1), initialize the vector f that represents the vector defined in Equation 4.43
and computes, in a second loop, the expectation of the gradient when the initial
configuration is represented by the probability vector e, as defined in Proposition
4.4.

Algorithm 3 Fixed number of gates
p_vals ← [100, 600]
n_max ← 300
exp← zero 3× n_max matrix
i ← 0
for p in p_vals do

i←i+1
for n= 2 to n_max do

e ← [1, 0, . . . , 0] ▷ Row vector of length n
f← n×1 matrix, with f(i)= 1/3i

P← zero n×n matrix
Construct the transition matrix P
exp(i,n)←e·Pp·f

end for
end for

Algorithm 3 was used to study how the expected magnitude of the gradient
behaves when p is fixed and n varies. As shown in Fig. 4.5, that depicts the
results obtained with algorithm 3, the exponential decay of the latter does not
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occur for shallow circuits. The algorithm computes the expected value of the
gradient for two possible values of p, represented in the vector p_vals, and for
n ranging from 2 to 300. The results are represented in the matrix exp.

Algorithm 4 was used to study the ratio (λ(2)
n )

p

λ
(n)
n

for fixed valued of p. The
results obtained, shown in Fig. 4.7, help us understand what has been obtained
for shallow circuits. The algorithm computes the ratio for three possible values
of p, represented in the vector p_vals, and for n ranging from 2 to 600. After
the construction of the matrix P, we extract the second largest eigenvalue,

lambda_2, and the smallest one, lambda_n. The values obtained for (λ(2)
n )

p

λ
(n)
n

are stored in the matrix ratio.

Algorithm 4
p_vals ← [50, 100, 600]
n_max ← 400
ratio← zero 3× (n_max) matrix
i← 0
for p in p_vals do

i←i+1
for n= 2 to n_max do

P← zero n×n matrix
Construct the transition matrix P
lambda_2← second largest eigenvalue of P
lambda_n← smallest eigenvalue of P
ratio(i, n)← (lambda_2)p

lambda_n
end for

end for
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