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Introduction

Matroid theory originated in 1935, with the article written by Hassler Whitney On
the abstract properties of linear independence [Whi35], and with the first of three papers
dealing with similar ideas by Takeo Nakasawa [Nak35]. The objective of Whitney and
Nakasawa, that introduced this theory independently, was to construct a combinatorial
object that captured the abstract properties of dependence that are common to linear
algebra and graph theory.
The concept of the characteristic polynomial of a matroid originates directly from graph
theory. Specifically, the chromatic polynomial of a graph is a polynomial that encodes
the number of proper q-colorings for every integer q. The characteristic polynomial of a
matroid constitutes a natural generalization of the chromatic polynomial of a graph. Fur-
thermore, the characteristic polynomial of a matroid shares a profound connection with
the Poincaré polynomial associated to a hyperplane arrangement - a polynomial which
captures essential cohomological information about the complement space. The charac-
terization of polynomials that occur as characteristic polynomials of matroids remains an
open problem, motivating numerous conjectures about their properties. Namely, in the
1970s Heron and Rota conjectured that the absolute values of the coefficients of the char-
acteristic polynomial of a matroid (the so-called Whitney’s numbers of the first kind)
are unimodal [Rot71], [Her72], and Welsh later conjectured that they are log-concave
[Wel76]. The conjecture asserting the log-concavity and unimodality of the Whitney’s
numbers of the first kind for any matroid is known as the Heron-Rota-Welsh conjecture.
This conjecture was proved for matroids realizable over C and then for matroids realiz-
able over any field by June Huh in 2012 [Huh12]. After that article, it was realized that
the key for the proof of the conjecture was the validity of the combinatorial analogues of
the hard Lefschetz theorem and of the Hodge-Riemann bilinear relations for the so-called
Chow ring associated to a matroid.
The notion of the Chow ring for matroids originates in the work of De Concini and
Procesi [CP96] in 1996. In their article, they introduced the wonderful model associated
to a projective arrangement A of complex linear subspaces. This model consists of a
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ii INTRODUZIONE

smooth projective variety YA containing the arrangement complement M = P(V ) \ A,
with the property that YA \M forms a divisor with simple normal crossings. Further-
more, De Concini and Procesi provided a complete description of the cohomology ring
of these wonderful models. In their 2004 works [FK04], [FY04], Feichtner, Koslov, and
Yuzvinsky discussed a generalization of the wonderful model for an atomic lattice, using
the concepts of building sets, nested sets and combinatorial blowups. Moreover, they
introduced the definition of the Chow ring of a lattice with respect to a building set
G, which serves as the combinatorial analogue of the cohomology ring of the wonderful
model. In particular, for a simple matroid, its Chow ring is defined as the Chow ring of
the associated geometric lattice of flats endowed with the maximal building set.
The Heron-Rota-Welsh conjecture was fully solved in 2018 by Adiprasito, Huh and Katz
[AHK18]. In that article, the proof of the hard Lefschetz theorem and the Hodge-
Riemann relations for general matroids was inspired by an inductive proof of analogous
facts for simple polytopes given by McMullen [McM93].

The aim of this thesis is to prove the Heron-Rota-Welsh conjecture in the case of
matroids representable over C. The structure of the thesis is the following.
In the first chapter we introduce some preliminary definitions concerning log-concave and
unimodal sequences, posets, and lattices. The central focus of this chapter is the intro-
duction of matroids. Namely, we state some of the equivalent axioms that characterize
this construction, and develop several aspects of matroid theory, including the notions of
rank, closure, flats, and realizability. Moreover, we define the characteristic polynomial
and the reduced polynomial of a matroid, and state the Heron-Rota-Welsh conjecture.

The aim of the second chapter is to describe the De Concini-Procesi wonderful model,
its generalization by Feichtner, and to define the Chow ring of a lattice and of a matroid.
In particular, we first introduce the concept of blowing up a variety along a subvariety,
define the wonderful model and state some of its properties. We then study the combi-
natorial data of the model, giving the combinatorial definitions of building sets, nested
sets and combinatorial blowups, and stating some theorems that link these combinato-
rial definitions to the wonderful model. Furthermore, we define the Chow ring for both
finite atomic lattices and simple matroids. In the case of a matroid representable over
C, we claim that this construction coincides with the integral cohomology algebra of the
associated wonderful model.

In the third chapter, we present the two fundamental theorems required to prove
the Heron-Rota-Welsh conjecture: the Hard Lefschetz theorem (HL) and the Hodge-
Riemann bilinear relations (HR). We first formulate these theorems in the setting of
a Euclidean vector space endowed with a compatible almost complex structure, and
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subsequently in the context of Kähler manifolds. This chapter focuses on the essential
aspects of Hodge theory necessary to prove HL and HR for the cohomology ring of a
smooth projective variety. As a consequence, we deduce the validity of these theorems
for the cohomology ring of the wonderful model, which is isomorphic to the Chow ring
of a matroid representable over C.

Finally, the purpose of the last chapter is to prove the Heron-Rota-Welsh conjecture
for a matroid M representable over C, following the proof in [AHK18]. In particular, we
link the coefficients of the reduced polynomial of M to the degree of certain elements
in the Chow ring of M . The validity of the Hard Lefschetz theorem (HL) and Hodge-
Riemann relations (HR) for this ring serves as the crucial ingredient in our argument.
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Chapter 1

Preliminary notions

The aim of this chapter is to introduce fundamental concepts and definitions that will
serve as the foundation for our subsequent discussion. Specifically, we present log-concave
and unimodal sequences, discuss key definitions related to partially ordered sets (posets)
and lattices, and, most importantly, develop the fundamental concepts of matroid theory.

1.1 Log-concave sequences

In this section, we present the definition of log-concave sequences, a class of sequences
that arise naturally in combinatorics, algebra, probability, and statistics.

Definition 1.1. A sequence of real numbers a0, . . . , an is log-concave if

ai−1ai+1 ≤ a2i , for any 0 < i < n.

Definition 1.2. A sequence of real numbers a0, . . . , an is unimodal if there exists 0 ≤
k ≤ n such that

a0 ≤ a1 ≤ · · · ≤ ak−1 ≥ ak+1 ≥ · · · ≥ an.

Remark 1.3. It is simple to see that a log-concave sequence of positive real numbers is
also unimodal if it does not have any internal zeros, that is, if ai ̸= 0 for 0 < i < n.

Remark 1.4. The sequence a0, . . . an, with ai > 0 for all i = 1 . . . n, is log-concave if and

only if for all k = 2 . . . n− 1, the matrix Ak =

(
ak−1 ak

ak ak+1

)
has signature (1,1,0) or is

degenerate.

Example 1.5 ([HLP11], p.104). A classical result states that any polynomial with posi-
tive real coefficients and only real zeros must have log-concave coefficients. This property
directly implies the log-concavity of both binomial coefficients and Stirling numbers.
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2 1. Preliminary notions

We now want to prove that the property of log-concavity is preserved under the
operation of convolution of sequences. Given two sequences (an)n≥0 and (bn)n≥0, their

convolution is the sequence (cn)n≥0 defined by cn =
n∑

k=0

akbn−k, for all n ≥ 0.

Proposition 1.6 (Proposition 2, [Sta06]). If A = a0, . . . , an and B = b0, . . . , bn are log-
concave sequences with non-negative elements and no internal zeros, then the convolution
A ∗B is also log-concave.

Proof. Let X =


a0 a1 · · · an

a0 · · · an−1

. . . ...
a0

 Y =


b0 b1 · · · bn

b0 · · · bn−1

. . . ...
b0

 .

We note that XY =



a0b0 a0b1 + a1b0 · · ·
∑

i+j=n

aibj

a0b0 · · ·
∑

i+j=n−1

aibj

. . . ...
a0b0


.

In particular, for every a = 0, . . . , n, (XY )k,k+a =
∑

i+j=a

aibj = (A∗B)a, for k = 1, . . . , n+

1 − a. Since A and B are log-concave sequences, for every k = 2, . . . , n − 1 we have
a2k ≥ ak−1ak+1 and b2k ≥ bk−1bk+1. Equivalently, the 2× 2 minors(

Xi−1,j Xi−1,j+1

Xi,j Xi,j+1

)
and

(
Yi−1,j Yi−1,j+1

Yi,j Yi,j+1

)
,

with i = n+2−k
2

and j = n+2+k
2

, are non-negative for k =
[
n
2

]
,
[
n
2

]
+ 2 . . . , n − 4, n − 2.

The Cauchy-Binet theorem establishes that the same is true for the matrix XY , that is,
(A ∗B)2k ≥ (A ∗B)k−1(A ∗B)k+1 for k = 2, . . . , n− 1.

1.2 Posets and lattices

This section presents the fundamental definitions and terminology concerning par-
tially ordered sets (posets) and lattices.

Definition 1.7. A poset (partially ordered set) is a set endowed with a partial order,
a relation that is reflexive, antisymmetric and transitive. If every pair of elements is
comparable, the order is said to be total.

To any partially ordered set P , one may associate an order complex ∆(P ), which is an
abstract simplicial complex whose vertices correspond to the elements of P , and whose
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faces are precisely the finite totally ordered subsets, the chains, of P . Furthermore,
starting from a simplicial complex ∆, we recover a poset structure through its face poset
P (∆), consisting of the nonempty faces ordered by inclusion.

Definition 1.8. A lattice L is a poset in which every pair of elements has a unique
supremum, the least upper bound x∨y, and a unique infimum, the greatest lower bound
x∧y. A meet semilattice is a poset in which every pair of elements has a unique infimum,
also called meet.

Furthermore, in a poset with least element 0̂, an element a is said to be an atom if
a > 0̂ and there is no x such that 0̂ < x < a. A poset is then called atomistic if for every
b > 0̂ there is an atom a such that b ≥ a > 0̂.

We also say that an element y of a poset covers another element x, if y > x and there is
no z such that y > z > x.

To every partially ordered set P , one may associate the so-called rank function r, a
function that maps to every element x of P an integer r(x), such that

• r is compatible with the ordering, namely, if x < y, then r(x) < r(y).

• If y covers x, then r(y) = r(x) + 1.

A poset that can be equipped with a rank function r is called graded. A graded poset is
said to be semimodular if this function obeys the identity r(x)+r(y) ≥ r(x∨y)+r(x∧y).

Definition 1.9. A geometric lattice is a graded finite atomistic and semimodular lattice.

Example 1.10 (Partition lattice). The partition lattice of rank n, denoted by Πn, is
defined as the set of set partitions of {1, . . . , n} ordered by reversed refinement.

We note that the partition lattice Πn is a geometric lattice.

123

12|3 23|1 13|2

1|2|3

Figure 1.1: The Hasse diagram of Π3.

123 12|313|2

23|1

1|2|3

Figure 1.2: The order complex of Π3.
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1.3 Matroids

In this section, we present some definitions and results of matroid theory, mostly
following [Oxl11].

We first provide the definition of a matroid in terms of independent sets.

Definition 1.11. A matroid M is a pair (E, I), with E a nonempty finite set, and
I ⊆ P(E) such that:

(I1) ∅ ∈ I.
(I2) If J ∈ I and I ⊂ J , then I ∈ I.
(I3) If I, J ∈ I and |I| < |J |, then there exists an element j in J\I such that I∪{j} ∈ I.

The elements of I are called the independent sets of M, and E is said to be the ground
set of M. Moreover, (I3) is called the exchange property.

Definition 1.12. A base of a matroid M = (E, I) is a maximal independent set. We
note that the third axiom of Definition 1.11 guarantees that any two bases of a matroid
must contain the same number of elements. The cardinality of a base is called the rank
r(M) of M.

Proposition 1.13 (Proposition 1.1.1 in [Oxl11]). Let E be the set of column labels of
a m × n matrix over a field K, and let I be the collection of subsets X of E for which
the multiset of columns labeled by X is a linearly independent set over K. Then I is the
collection of independent sets of a matroid on E.

The matroid (E, I) defined in the last proposition is called vector matroid.

Definition 1.14. We say that a matroid M = (E, I) is representable (or realizable) over
a field K if M is isomorphic to a vector matroid on K, that is, if there exists a K-vector
space V and a map ϕ : E → V such that I belongs to I if and only if ϕ(I) is linearly
independent in V . We call ϕ(E) a realization of M .

Some estimates by Knuth in 1974 [Knu74] and then by Nelson in 2018 [Nel18] con-
cerning the cardinality of representable matroids, demonstrate that these constitute a
vanishingly small fraction of all matroids. In particular, in [Knu74] Knuth established
that the number of non-isomorphic matroid with ground set of cardinality n is at least
1
n!
2

1
n ( n

n/2)−n logn ∼ 22
n
, while Nelson in [Nel18] proved that there are at most 2n

3/4 rep-
resentable matroids with ground set of cardinality n, for n ≥ 12. It follows that, as n
grows, the proportion of representable matroids among all matroids on a ground set E
of n elements tends asymptotically to zero.
We now give an example of a matroid that is not representable over any field.
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Example 1.15 (Non-Pappus matroid). Let M=(E, I) be a matroid, where E = {1, . . . 9},
and the bases are the subsets of 3 elements that do not lie on the same line in Figure 1.3.
If M were representable over a field, Pappus’s theorem states that the points {7,8,9}
have to lie on the same line (Theorem 4.41, pg.38 in [Cox87]). The points then have
to be linearly dependent, but this is not true for M. Therefore, the matroid M is not
representable over any field.

1 2 3

4 5 6

7
8

9

Figure 1.3: A non-Pappus Matroid.

We now provide an example of a representable matroid over C: the rank 4 wheel
matroid M(W4). We first define the class of matroids to which M(W4) belongs: the
class of graphic matroids.

Proposition 1.16. Let G be a graph and E its the set of edges. If we denote by I the
collection of edge sets that do not contain any cycles (called the forests of the graph G),
then M = (E, I) is a matroid, called the cycle matroid of G, and it is denoted by M(G).

Proof. To prove that M = (E, I) is a matroid, we show that it satisfies Definition 1.11,
that is, I satisfies the axioms (I1), (I2) and (I3). The axioms (I1) and (I2) are simple to
verify: the empty set does not contain any cycle, and the subsets of an acyclic subgraph
are acyclic. We now have to verify the exchange property (I3). Let G be a graph, V
its set of vertices and E its set of edges. Moreover, let I, J be two forests such that
|I| < |J |, and let V (I), V (J) be their sets of vertices. We denote by I1, . . . , Ik1 and
J1, . . . , Jk2 the connected components respectively of I and J . Since these components
are acyclic and connected, they are trees of the graph G, and so the number of edges of
each component is equal to the number of vertices of the component minus one. We then
have |I| = |V (I)|−k1 and |J | = |V (J)|−k2. Since |I| < |J |, then k2−k1 < V (J)−V (I).

If V (J) ⊆ V (I), then V (J) ≤ V (I) and k2 < k1. Since J has fewer components than I

but more edges, some component of J , that we denote by Jk, intersects with at least two
components of I, that we denote by I1 and I2. Then, Jk contains an edge e = (u, v) /∈ I

between I1 and I2. Adding e to I does not create a cycle, since u and v were disconnected
in I. If V (J) ⊈ V (I), there exists a vertex u ∈ V (J)\V (I). If we pick an edge e = (u, v),
adding it to I does not create a cycle: before adding e, u was not connected to any vertex
in I.



6 1. Preliminary notions

A matroid that is isomorphic to the cycle matroid of a graph is called graphic.

Definition 1.17. A wheel graph of rank n (denoted by Wn) is a graph formed by a cycle
of n vertices (whose edges are called rims), and a single vertex connecting to each vertex
of the cycle through edges called spikes.

r1r4

r3 r2
s3

s4

s2

s1

Figure 1.4: The rank 4 wheel graph W4.

We call wheel matroid the cycle matroid associated to a wheel graph. We note that
this matroid is representable over every field. In fact, all cycle matroids associated to a
graph G are representable over any field (Proposition 5.1.2 in [Oxl11]).

We now define the concept of flats of a matroid, which serve as the analogue of the
linear subspaces generated by sets of vectors in a vector space. Let M = (E, I) be a
matroid, we first define the closure operator cl : P(E) → P(E) as

cl(X) = {x ∈ E : r(X ∪ x) = r(X)}.

It is simple to show that r(X) = r(cl(X)) (Lemma 1.4.2. pg.26 [Oxl11]).

Lemma 1.18 (Lemma 1.4.3., 1.4.5 in [Oxl11]). The closure operator cl of a matroid on
a set E has the following properties:

(CL1) If X ⊆ E, then X ⊆ cl(X).

(CL2) If X ⊆ Y ⊆ E, then cl(X) ⊆ cl(Y ).

(CL3) If X ⊆ E, then cl(cl(X)) = cl(X).

(CL4) If X ⊆ E, x ∈ E, and y ∈ cl(X ∪ x)\cl(X), then x ∈ cl(X ∪ y). This property is
called the closure exchange property.

Moreover, we can consider (CL1)-(CL4) to be an equivalent set of axioms as (I1)-(I3)
defined in Definition 1.11. In fact, let E be a set, cl a function from 2E to 2E satisfying
(CL1)-(CL4), and let

I = {X ⊆ E : x /∈ cl(X\x) for all x in X}.

Then, (E, I) is a matroid with closure operator cl.
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Definition 1.19. Let M = (E, I) be a matroid. A subset F ∈ P(E) is a flat if
cl(F ) = F , or equivalently, for any x ∈ E\F

r(F ∪ x) = r(F ) + 1.

If F ⊊ G, with F and G flats, we say that G covers F if there is no flat X such that
F ⊊ X ⊊ G.

Remark 1.20. It is straightforward to verify that the flats of a matroid M constitute a
lattice L(M), called the lattice of flats, ordered by inclusion. We have X ∧ Y = X ∩ Y
and X ∨ Y = cl(X ∪ Y ).

We can now provide an equivalent definition of a matroid M using flats instead of
independent sets.

Definition 1.21. A matroid M is a pair M=(E, F), with E a finite set and F ⊆ P(E)

the family of flats, such that:

(F1) E ∈ F .
(F2) If F,G ∈ F , then F ∩G ∈ F .
(F3) If F ∈ F , every element in E\F belongs to one and only one G ∈ F that covers F.

In the case of graphic matroids, for example, the flats are all sets of edges such that,
adding to the set a generic edge in the graph, the rank of the set grows.

Example 1.22. We describe the lattice of flats of the cycle matroid M associated to
the following graph.

ad

c bf

e

Figure 1.5: The graph W4 without the edges s4 and s3.

We note that the rank of M is four, since an independent set (a set that does not
contain any cycle) has cardinality at most four. Trivially, the empty set, the six sets
consisting of an edge alone, and the ground set E are flats. Moreover, all the sets of
two edges are flats: having removed the edges s3 and s4, if we add to any pair of edges
another generic edge, we do not obtain to a cycle, and so the rank of the set rises. The
flats of rank 2 are then

(
6
2

)
= 15. Additionally, the flats of rank 3 are of two types: those

composed of three edges that do not belong to the same cycle (they are
(
6
3

)
− 4 · 3 = 8),

and the three cycles abfe, efcd and abcd. There are then eleven flats of rank three, and
so in total the flats are 34 (of which 32 are proper).



8 1. Preliminary notions

0̂

a b c d e f

ab ac ad ae af bc bd be bf cd ce cf de df ef

abcd abef ace acf ade adf bce bcf bde bdf cdef

abcdef

Figure 1.6: The lattice of flats of M .

We now prove that Definition 1.11 and Definition 1.21 are, in fact, equivalent. From
Lemma 1.18, it follows that the closure axioms (CL1)-(CL4) given in Definition 1.21
are equivalent to the independent sets axioms (I1)-(I4) from Definition 1.11. Hence,
establishing the equivalence between (F1)-(F3) and (CL1)-(CL4) completes the proof.

We first define the flats of a matroid through the axioms (F1)-(F3) and fix the closure
operator of X ⊆ E as cl(X) :=

⋂
{F flat | X ⊆ F}, which is the smallest flat containing

X. We then prove that the operator we just defined satisfies (CL1)-(CL4):

(CL1) A ⊆ cl(A) : the intersection of flats containing A also contains A.
(CL2) If X ⊆ Y ⊆ E, then cl(X) ⊆ cl(Y ) : cl(Y ) is a flat for (F2) and contains X since

X ⊆ Y
(CL1)

⊆ cl(Y ). We then have cl(X) ⊆ cl(Y ) for minimality of cl(X).

(CL3) cl(cl(A)) = cl(A) : the smallest flat containing cl(A) is cl(A) itself.
(CL4) To prove that if X ⊆ E, x ∈ E, and y ∈ cl(X ∪ x)\cl(X), then x ∈ cl(X ∪ y), we

first state an equivalent way to express (F3). Let A be a flat and z /∈ A, then the
smallest flat containing A ∪ {z} covers A (this flat is exactly cl(A ∪ {z})).
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We now fix F = cl(X ∪ x) and G = cl(X ∪ y). We note that G is the minimal flat

containing cl(X) and y since G
(CL1)

⊆ cl(cl(X) ∪ {y}). However, F also contains
cl(X) and y, so G ⊆ F. We then have cl(X) ⊊ G ⊆ F since y ∈ G and y /∈ cl(X).

We also note that x /∈ cl(X) : if x ∈ cl(X), then F ⊆ cl(X), that is absurd because
y ∈ F but y /∈ cl(X). By (F3), F covers cl(X) (x /∈ cl(X) and F = cl(X ∪ {x}) =
cl(cl(X) ∪ {x})), then G = F and x ∈ G.

Assuming conditions (CL1)-(CL4) hold and given the definition of flats in Definition 1.19,
we now prove the validity of properties (F1)-(F3):

(F1) E ∈ F : E
(CL1)

⊆ cl(E) ⊆ E, then E = cl(E).

(F2) If F,G flats, then F∩G ∈ F : we have that F∩G
(CL1)

⊆ cl(F∩G)
(CL2)

⊆ cl(F )∩cl(G) =
F ∩G. Then F ∩G = cl(F ∩G).

(F3) We first prove the existence of a flat G that covers F flat and contains x /∈ F .
We consider G = cl(F ∪ {x}) and show that G covers F. If there exists a flat
H such that F ⊊ H ⊊ G, we find that there exists an element y ∈ H\F. By the
exchange property, since y ∈ cl(F ∪{x})\cl(F ), then x ∈ cl(F ∪{y}) ⊆ cl(H) = H.

Then H ⊊ G is a flat that contains both F and x, contradicting the minimality of
G = cl(X ∪ {x}).
We then prove the uniqueness of such G. Let G and H be two flats that both cover
F flat and both contain x /∈ F. By (F2) G ∩H is a flat, and we also know that it
contains both F and x. Then, since x /∈ F and x ∈ G∩H, we get F ⊊ G∩H ⊆ G.

Since G covers F , this implies G ∩H = G = H.

Definition 1.23. An element x in a matroid M is a loop if {x} is a dependent set in M ,
namely, if x is not contained in any independent set. A matroid M is said to be loopless
if it does not contain any loops.
Two elements x, y in a matroid M are called parallel elements if x and y are not loops
but {x, y} is a dependent set in M. Moreover, a matroid M is said to be simple if it
does not contain any loops or parallel elements, that is, if every subset with at most
two elements is independent. For example, the matroid M we introduced as the cycle
matroid of the graph in Figure 1.5 is simple, since there does not exist any cycle made
of one or two edges in this graph.

Theorem 1.24 (Theorem 1.7.5 in[Oxl11]). A lattice L is geometric if and only if it is
the lattice of flats of a matroid. This correspondence is a bijection between the family of
finite geometric lattices and the family of simple matroids.
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1.3.1 The characteristic polynomial

In this section, we introduce a key invariant of a matroid M : its characteristic poly-
nomial XM . Throughout this section, M = (E, I) denotes a loopless matroid of rank
r + 1.

Definition 1.25. The characteristic polynomial of M is

XM(t) =
∑
A⊆E

(−1)|A| t r(M)−r(A).

The characteristic polynomial XM admits an equivalent formulation through the lat-
tice of flats L(M). Let P be a finite poset, we define recursively the Möbius function
associated to P as the map µP : P × P → Z such that

µP (F,G) =


0 if F ⊊ G

1 if F = G

−
∑

F⊆A⊊G µ(F,A) otherwise.

(1.1)

We can now reformulate Definition 1.25 in terms of the Möbius function µ := µL(M)

associated to the lattice of flats L(M) ([Kat16] Theorem 7.12), resulting in

XM(t) =
∑

F∈L(M)

µ(∅, F ) tr(M)−r(F ). (1.2)

Moreover, from Lemma 7.11 in [Kat16], it follows that, for any i ∈ F ,

µ(∅, F ) = −
∑

i/∈G⋖F

µ(∅, G), (1.3)

where G⋖F means that G ⊊ F and r(G) = r(F )− 1. Using (1.3) and induction on the
rank of F , we have that

(−1)r(F )µ(∅, F ) > 0. (1.4)

In fact

(−1)r(F )µ(∅, F ) = (−1)r(F )+1
∑

i/∈G⋖F

µ(∅, G) =
∑

i/∈G⋖F

(−1)r(G)µ(∅, G) > 0.

We now evaluate (1.2) in −t, and get

XM(−t) =
∑

F∈L(M)

µ(∅, F )(−t)r(M)−r(F ) =
∑

F∈L(M)

µ(∅, F )(−1)r(F )(−1)r(M) tr(M)−r(F )

(−1)r(M)XM(−t) =
∑

F∈L(M)

(−1)r(F )µ(∅, F ) tr(M)−r(F ).
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We fix
wk :=

∑
r(F )=k

(−1)r(F )µ(∅, F ) > 0 (1.5)

for Equation (1.4). The absolute values of the coefficients of the characteristic polynomial
w0, . . . , wr+1 are known as the Whitney’s numbers of the first kind. We then get

(−1)r(M)XM(−t) = w0t
r+1 + w1t

r + · · ·+ wr,

XM(t) = w0t
r+1 − w1t

r + . . . (−1)r+1wr+1. (1.6)

Example 1.26. We now compute the characteristic polynomial of the matroid M which
we defined as the cycle matroid of the graph in Figure 1.5. We recall that, by Equa-
tion (1.2), XM(t) =

∑
F∈L(M) µ(∅, F ) tr(M)−r(F ). We then have to compute µ(∅, F )

for each flat F , using Equation (1.1). For each flat of rank one we have µ(∅, F ) =

−µ(∅, ∅) = −1. Moreover, each flat F of rank two contains exactly two flats of rank one,
so µ(∅, F ) = −(1−2) = 1. We now compute µ(∅, F ) when the rank of F is three. If F is
made of three edges, it contains three flats of rank one and three flats of rank two, thus
µ(∅, F ) = −(1−3+3) = −1. If F is instead one of the three cycles, it contains four flats
of rank one and six flats of rank two, so µ(∅, F ) = −(1 − 4 + 6) = −3. The coefficients
of the characteristic polynomial are given by the expression ar =

∑
r(F )=r µ(∅, F ), with

r = 0, . . . , 4. We then get a0 = 1, a1 = −6, a2 = 15, a3 = −8 − 3 · 3 = −17, and
a4 = −(1− 6 + 15− 17) = 7. Then, XM(t) = t4 − 6t3 + 15t2 − 17t+ 7.

To obtain the sequence of Whitney’s numbers of the first kind, we take the absolute
values of a0, . . . , a4 and get {1, 6, 15, 17, 7}. We notice that this sequence is log-concave
and unimodal.

This is a general fact, as stated in the following conjecture.

Conjecture 1.27 ([Rot71],[Her72],[Wel76]). The Whitney’s numbers of the first kind of
a matroid M are log-concave and unimodal.

We now divide (1.2) by t− 1, since XM(1) =
∑

A⊆E(−1)|A| = 0, as the subsets of E
are exactly 2E. We have

X̃M(t) =
XM(t)

t− 1
=

r∑
k=0

(−1)kµk(M) tr−k, (1.7)

which is called the reduced polynomial of a matroid.
We want to study the sequence of integers µ0(M), µ1(M), . . . µr(M).

Remark 1.28. The first number in this sequence is 1, the last number is (−1)r+1µ(∅, E),
and in general µk(M) is the alternating number of the Whitney’s numbers of the first
kind:

µk(M) = wk − wk−1 + · · ·+ (−1)kw0.
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If we prove that the sequence of the coefficients µ0(M), . . . µr(M) of the reduced poly-
nomial is log-concave, we get Conjecture 1.27, since the convolution of two log-concave
sequences is log-concave by Proposition 1.6.

Example 1.29. The reduced polynomial of the matroid M , which we defined as the
cycle matroid associated to the graph in Figure 1.5, is X̃M(t) = t3 − 5t2 +10t− 7. Then,
µ0(M) = 1, µ1(M) = 5, µ2(M) = 10, and µ4(M) = 7. We note that this sequence is
again log-concave and unimodal.

We now define the truncation of a matroid M , a construction particularly useful for
inductive arguments.

Definition 1.30. Let M = (E, I) be a matroid of rank r + 1. The truncation of M ,
denoted by tr(M), is the matroid on E whose lattice of flats is obtained from the lattice
of flats of M by removing all the flats of rank r. The truncation tr(M) has rank function
given by rktr(M)(X) := min(rkM(X), r), for all X ⊆ E. Consequently, tr(M) has rank r.

(a) Geometric representation of W4 over R,

pg. 651 in [Oxl11].

(b) Geometric representation of tr(W4) over

R.

Remark 1.31. The coefficients of the reduced characteristic polynomials of M and of
tr(M) satisfy the equality:

µk(M) = µk(tr(M)),

for 0 ≤ k < r.

Indeed, if w1, . . . , wk are the Whitney’s numbers of the first kind of M and w′
1, . . . w

′
n

the Whitney’s numbers of the first kind of tr(M), we get that wk = w′
k for k < r. In

fact, by Equation (1.5),

wk =
∑

r(F )=k

(−1)r(F )µ(∅, F ) = w′
k

for k < r, since the flats of M and of tr(M) coincide if their rank is not r. The assertion
then follows from Remark 1.28.



1.3 Matroids 13

Example 1.32. We consider again the matroid M which we defined as the cycle matroid
associated to the graph in Figure 1.5. We get that the characteristic polynomial of tr(M)

is t3 − 6t2 + 15t − 10, and its reduced polynomial is t2 − 5t + 10. We observe that the
Whitney’s numbers of the first kind of M indeed coincide with the Whitney’s numbers
of the first kind of tr(M) for k = 0, 1, 2, and also that µk(M) = µk(tr(M)) for k = 0, 1, 2.
Moreover, we see that these sequences are again log-concave and unimodal.



Chapter 2

De Concini-Procesi wonderful model

In this chapter, we present an important construction in the study of arrangements of
linear subspaces: the De Concini-Procesi wonderful model, introduced in 1995 in [CP96].
We also examine the combinatorial structure of the model, present a combinatorial gen-
eralization, and introduce the Chow ring associated with a lattice.

2.1 Arrangements

Definition 2.1. An arrangement A = {U1, . . . Un} is a finite family of linear subspaces
in a vector space V. Given an arrangement A, we want to study the complement of A in
the ambient space: M(A) = V \A. When V is a real vector space, the study of M(A) is
less intricate, as the complement simply decomposes into a collection of open polyhedral
cones. However, when V is endowed with a complex structure, the topology of M(A)

becomes significantly more challenging to characterize.

Definition 2.2. The intersection lattice L(A) associated to an arrangement A is the
set of intersections of subspaces in A ordered by reverse inclusion. It is straightforward
to see that this is a lattice, with least element V (denoted by 0̂) and maximum element
∅ (denoted by 1̂). Moreover, the elements of L(A) are often labeled by the codimension
of the corresponding intersection.

Example 2.3 (Braid arrangements). The braid arrangement of rank n− 1, denoted by
An−1, is given by the hyperplanes

Hij : xi = xj , for 1 ≤ i < j ≤ n.

The intersection lattice of An−1 is the partition lattice Πn, as defined in Example 1.10.
Indeed, there is a bijection between the elements of Πn and the elements of L(An−1): the
blocks of a partition in Πn correspond to the sets of coordinates with identical entries in
L(An−1).

14
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H12

H13
H23

x
y

z

Figure 2.1: The rank 2 braid arrangement A2.

123

12 13 23

0̂

Figure 2.2: The intersection lattice of A2.

Definition 2.4. A (Cartier) divisor with normal crossings is a collection of varieties
that can locally be defined by one equation, and locally intersect like hyperplanes.

A divisor with simple normal crossings is a divisor with normal crossings in which the
varieties intersect like coordinate hyperplanes (in codimension k, at most k hyperplanes
can intersect).

To better understand arrangements of hyperplanes and their complements, we intro-
duce arrangement models, that is, we alter the ambient space preserving the complement
and replacing the arrangement by a divisor with simple normal crossings.

2.2 Blowups

To construct the wonderful model, we employ a fundamental operation: the blowup.
This technique allows us to transform an arrangement of linear subspaces into a divisor
with simple normal crossings. In this section, we follow [Smi+00].
We begin by defining the blowup of the affine space at a point. The idea of blowing up
the affine space An at a point p is to leave An unaltered except at the point p, which is
replaced by the set of all lines through p.

Definition 2.5. Let us choose a coordinate system for An such that p can be assumed
to be the origin. Let B = {(x, l) ∈ An × Pn−1 | x ∈ l} ∈ An × Pn−1. The blowing up
morphism of An at p is the natural projection

B
π−→ An

(x, l) 7−→ x.

We observe that the fiber of π over any point other than the origin is the single point
(x, l), where l is the only line through x and the origin; however, the fiber over the origin
is a copy of Pn−1. We define the blowup of An over p the variety B together with the
blowing up morphism, and we denote B by BlpAn.
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There is an equivalent way to define the blowup up along a point p. We introduce
the map

An\{0} ℓ−→ Pn−1

x = (x1, . . . , xn) 7−→ ℓ(x) = [x1 : · · · : xn],

that attaches to each point x ∈ An\{0} the line through 0 and x. The blowup of An

along p is the Zariski closure of the graph of the function ℓ in An × Pn−1 :

BlpAn = {(x, ℓ(x)) ∈ An × Pn−1}.

We can now define the blowup of an arbitrary affine algebraic variety.

Definition 2.6. Let V ⊂ An be an affine algebraic variety and p a point of V. The
blowup of V at p is the Zariski closure of the preimage π−1(V \{p}) in the variety B

obtained by blowing up p in An, together with the natural projection π to V. We denote
the blowup of V at p by Blp(V ).

Since Blp(An)
π→ An is an isomorphism when restricted to Blp(An)\π−1(p), the re-

striction of π to Blp(V )\π−1(p) is an isomorphism onto V \{p}.
We now define the blowup of an algebraic affine variety X along an irreducible subvariety
Y.

Definition 2.7. Let F1, . . . , Fr be functions on the coordinate ring C[X] of an irreducible
affine algebraic variety X, and let I be the ideal they generate. We assume that I is
a proper non-zero ideal of C[X]. The blowup of the variety X along the ideal I is the
graph B of the rational map

X
F
99K Pr−1

x 7→ [F1(x) : · · · : Fr(x)],

together with the natural projection map B ⊂ X × Pr−1 π−→ X. The blowing up of X
along I is denoted by BlI(X). We see that the projection π defines an isomorphism of
quasi-projective varieties between the open sets

BlI(X)\π−1(Y ) → X\Y,

with Y the closed set in X defined by the vanishing of F1, . . . Fr. Indeed, the rational
map

X 99K BI(X)

x 7→ (x, [F (x)]),

is an inverse of the blowing up map, proving that X and BlI(X) are birationally equiv-
alent varieties. The isomorphism class of the blowup does not depend on the choice of
the generators but only on the ideal I ([Gat02], Chapter 9, Lemma 9.16).
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Definition 2.8. Let Y be an irreducible algebraic subvariety of an affine algebraic variety
X. The blowup of X along the subvariety Y is the blowup along the radical ideal I(Y ).

We denote this by BlY (X).

The restriction to affine varieties made in the above definitions is not necessary. In-
deed, these definitions extend naturally to the case of quasi-projective variety X ⊆ Pn.

Moreover, it is possible to blowup along any subvariety Y in any variety X ([Har77],
Chapter II, Section 7). The fundamental idea involves replacing X by all directions
normal to it.
We now consider B = BlYX with the blowing up morphism π. We define the excep-
tional divisor as π−1(Y ), the total transform of a subspace Z as π−1(Z), and the proper
transform of Z as π−1(Z\Y ).

2.3 The construction of the model

In this and in the following section we will mostly follow [Fei04].
The De Concini-Procesi wonderful model admits two equivalent definitions.

Definition 2.9. Let A be an arrangement of linear subspaces in a real or complex vector
space V . We define the De Concini-Procesi wonderful model for A, and we denote it by
YA, the closure of the image of the open embedding

Ψ : M(A) −→ V ×
∏

X∈L(A)>0̂

P(V \X)

x 7−→ (x, (⟨x,X⟩/X)X∈L(A)>0̂
).

(2.1)

Definition 2.10. Let A be an arrangement of linear subspaces in a real or complex vector
space V . We consider X1, . . . Xt a linear extension of the opposite order on L(A)>0̂, that
is, a total order that extends the partial order preserving the already existing order
relations. The De Concini-Procesi wonderful model for A is obtained successively by
blowing up the subspaces X1, . . . Xt, respectively their proper transforms.

Theorem 2.11 (Thm. 3.1, Thm. 3.2. in [CP96]).

1. The arrangement model YA is a smooth variety with a natural projection map
π : YA −→ V , which is bijective on M(A).

2. The complement of π−1(M(A)) in YA is a divisor with simple normal crossings,
and its irreducible components DX are the proper transforms of elements X in
L(A).

3. The irreducible components DX for X ∈ S ⊂ L>0̂ intersect if and only if S is a
linearly ordered subset in L>0̂.
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Example 2.12 (The wonderful model YA2).

H12

H13
H23

x
y

z

D123

D12 D23 D13 D12

12’ 23’ 13’

Figure 2.3: Wonderful model of A2.

We observe that in this example, to obtain the wonderful model it is sufficient to
blowup in {0}.

Example 2.13 (Wonderful model of a simple hyperplane arrangement). Let ℓ and r be
two distinct lines in C3 that intersect in 0. While two lines that intersect in a point in C2

give rise to a simple normal crossing divisor, two lines in C3 have codimension two, hence
they do not form a divisor. We then have to blowup in order to obtain the wonderful
model of this arrangement. We first blowup C3 along the line ℓ and get

Y1 := BlℓC3 = { (x, P ) | P ⊇ ⟨x, ℓ⟩} ⊆ C3 × P1,

together with the blowing up morphism π1 : BlℓC3 −→ C3, π1(x, P ) = x. In the equa-
tion above, we have identified P1 with all the planes of C3 containing the line ℓ. The
exceptional divisor is E1 ≃ π−1

1 (ℓ) = ℓ× P1, the proper transform of r is

r̃ = π−1
1 (r\ℓ) = {(x, P ) | x ∈ r\{0}; P ⊇ ⟨ℓ, x⟩} ∪ {(0, P ) | P = ⟨ℓ, r⟩},

and the total transform of r is π−1(r) ≃ r × P1. We now blowup Y1 along r̃ and get

Y2 := Blr̃(BlℓC3) =

(x, P,Q)

∣∣∣∣∣∣ l ⊂ P, x ∈ P,

r ⊂ Q, x ∈ Q

 ,

with the blowing up morphism π2 : Blr̃Y1 → Y1, π2(x, P,Q) = (x, P ). The exceptional
divisor is

E2 = π−1
2 (r̃) = { (x, P,Q) ∈ Y2 | x ∈ r} ≃ r̃ × P1,

and the proper transform of E1 is

Ẽ1 := π−1
2 (E1/r̃) = { (x, P,Q) ∈ Y2 | x ∈ ℓ, ℓ ⊂ Q}.

We then get
Ẽ1 ∩ E2 = { (0, P,Q) | ℓ ⊂ P ; r, ℓ ⊂ Q} ≃ P1.

We obtain that Ẽ1 and E2 form a divisor in Y2 and that they locally intersect as two
hyperplanes: Y2 is the wonderful model of this arrangement.
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P1
E2

Ẽ1

Figure 2.4: A local picture of the wonderful model of two
lines in C3.

2.4 The combinatorial data

We now present the combinatorial definitions of building sets, nested sets and combi-
natorial blowups for a finite lattice L. Using these constructions, we establish a combi-
natorial generalization of the De Concini-Procesi wonderful model and define the graded
algebra D(L,G).

Definition 2.14. Let L be a finite meet-semilattice. A combinatorial building set G is
a subset G ⊆ L>0̂ such that, for any X ∈ L>0̂ and maxG≤X = {G1, . . . Gn}, there is an
isomorphism of posets

φX :
n∏

j=1

[0̂, Gj] −→ [0̂, X], (2.2)

with φX(0̂, . . . , Gj, . . . , 0̂) = Gj for j = 1, . . . , n, and G≤X the set of factors of X in G:
the elements in G there are less than or equal to X.
The building sets represent the subsets to be blown up in the construction of the won-
derful model.

We now relate this definition to the context of the De Concini-Procesi wonderful
model, introducing the notion of geometric building set.

Definition 2.15. Let L be the intersection lattice of an arrangement of subspaces in
a vector space V , and cd: L → N the function assigning to every element of L the
codimension of the corresponding subspace. A subset G in L is a geometric building set
if it is a combinatorial building set such that, for any X ∈ L, the codimension of X is
equal to the sum of the codimensions of its factors: cd(X) =

n∑
j=1

cd(Gj).

Example 2.16 (Boolean lattice). We define the boolean lattice (or boolean algebra) on
three elements as the following lattice.
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Figure 2.5: The boolean lattice on 3 elements.

We note that the atoms form the minimal combinatorial building set Gmin. We see
that, if we consider the arrangement of hyperplanes A : x1 = 0, B : x2 = 0 and C : x3 = 0

in R3, the boolean lattice is the intersection lattice of this arrangement. Moreover, if we
consider the arrangement of hyperplanes in R4 A : x1 = 0, B : x2 = x3 = 0 and C : x3 =

x4 = 0, the boolean lattice is also the intersection lattice of this arrangement. We now
label each vertex of the lattice with the codimension of the corresponding intersection of
hyperplanes.

We see that in the first case, Gmin is also a geometric building set, while in the second
arrangement of hyperplanes, Gmin is not a geometric building set, since the codimension
of B ∩C is not the sum of the codimensions of B and C. In fact, the minimal geometric
building set in this case is Gmin ∪ (B ∩ C) ∪ 1̂.

0̂
0

A 1 B 1 C 1

A ∩B
2

A ∩ C 2 B ∩ C2

1̂
3

0̂
0

A 1 B 2 C 2

A ∩B
3

A ∩ C 3 B ∩ C3

1̂
4

Figure 2.6: Intersection lattices of two arrangements.

Moreover, every building set G gives rise to a family of nested sets, that in the context
of the construction of the wonderful model represent the non-empty intersections of
irreducible divisors components.

Definition 2.17. Let L be a finite meet-semilattice and G a combinatorial building set.
A subset S in G is nested if, for any set {X1, . . . Xk} of incomparable elements in S with
cardinality at least two, X1 ∨ · · · ∨Xk exists and does not belong to G. The nested sets
in G form an abstract simplicial complex N (L,G) on the vertex set G, called the nested
set complex.

Example 2.18 (Partition lattice). It is easy to see that the minimal building set Gmin

of the partition lattice Πn is given by the partitions with one block consisting of more
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than one element: they are all the elements X of Πn that do not allow for a product
decomposition of [0̂, X]. A subset of such partitions is nested if, for any pair of elements,
either they are disjoint (incomparable and their join does not belong to G) or one is
contained in the other (they are comparable). In fact, if two elements intersect non-
trivially, they do not belong to any Gmin-nested set (they are incomparable but their join
belongs to Gmin).

12|313|2

23|1

123

Figure 2.7: The nested set complex N (L(A2),G).

We observe that the nested set complex N (L(A2),G) corresponds exactly to the order
complex of L(A2)>0̂.

Let us now consider a less trivial example: the nested set complex N (L,G), with L
the intersection lattice of A3 and G = Gmin.

12 34
24

13

134123

234 124

23 14

(a) The base of the complex N (L(A3),Gmin).

12|34

12 34
24

13

134123

234 124

23 14
23|14

13|24

(b) The base of the complex ∆(L(A3)>0̂).

Figure 2.8: Comparison between the bases of N (L(A3),Gmin)

and of ∆(L(A3)>0̂).

We note that the nested set complex N (L(A3),Gmin) and the order complex of
L(A3)>0̂ are two cones with 1̂ as the vertex and with the bases depicted in Figure 2.8. We
observe that also in this example, the nested set complex N (L,G) is homotopy equivalent
to the order complex of L>0̂. This is a general fact, as stated in the following theorem.

Theorem 2.19 (Prop 3.3 in [FM05]). Let L be a finite meet-semilattice and G a building
set. The nested set complex N (L,G) is homotopy equivalent to the order complex of L>0̂

N (L,G) ≃ ∆(L>0̂).
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We can also give a combinatorial definition of the blowup of a semilattice L along an
element X.

Definition 2.20. Let L be a semilattice and X an element in L>0̂. The combinatorial
blowup (BlXL,≺) is a poset (in fact again a semilattice) such that

BlXL = {Y |Y ∈ L, Y ≱ X} ∪ {Y ′|Y ′ ∈ L, Y ′ ≱ X, and Y ′ ∨X exists in L}.

The order relation ≺ is defined as

Y ≺ Z, for Y < Z in L,

Y ′ ≺ Z ′, for Y < Z in L,

Y ≺ Z ′, for Y < Z in L.

123

12 23 13

0̂

12 2313

0̂

0̂’

12’ 23’13’

Figure 2.9: The combinatorial blowup of Π3 in 123.

Comparing this result with Example 2.12, we observe that Bl123Π3 is the face poset
of YA2 = Bl{0}V. Moreover, we note that also the combinatorial blowup of the arrange-
ment introduced in Example 2.13 coincides with the face poset of the geometric blowup
(Figure 2.4).

ℓ 2 r2

0̂
0

1̂
3

(a) Intersection lattice.

3

r̃2

0̂
0

E1

1

(b) Blowup along ℓ.

P1
2

E21

0̂
0

Ẽ1

1

(c) Blowup along r̃.

Figure 2.10: Combinatorial blowup of two lines in C3.

We note that ℓ and r form a combinatorial (but not geometric) building set in the
intersection lattice in Figure 2.10a. The fact that the combinatorial blowup coincides
with the face poset of the geometric blowup is a general result, as stated in the following
theorem.
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Theorem 2.21 (Prop. 4.7 (1) in [FK04]). Let A be a complex subspace arrangement,
G a geometric building set in L(A), and G1, . . . Gi a non-increasing linear order on G.
We call Li the face poset of Bli(A), obtained by blowing up G1, . . . Gi. We have that Li

coincides with the combinatorial blowups of L in G1, . . . Gi.

Li = BlGi
(. . . (BlG2(BlG1L)) . . . ).

The definitions introduced above (building sets, nested sets and combinatorial blowups)
naturally induce a combinatorial generalization of the De Concini-Procesi wonderful
model, as established by the following theorem.

Theorem 2.22 (Thm. 3.4 in [FK04]). Let L be a semilattice, G a combinatorial building
set and G1 . . . Gt a non-increasing linear order on G. The face poset of the nested set
complex N (L,G) coincides with blowing up the semilattice in G1 . . . Gt.

BlGi
(. . . (BlG2(BlG1L)) . . . ) = F(N (L,G)).

Since the combinatorial blowup coincides with the face poset of the geometric blowup
by Theorem 2.21, the face poset of the wonderful model coincides with the face poset
of N (L,G). Indeed, we note that the face poset of Figure 2.7 corresponds exactly to
Figure 2.9.

2.5 Chow ring of a lattice

Using the notions introduced above, we can now define a graded commutative algebra
for any finite atomic lattice L.

Definition 2.23. Let L be a finite atomic lattice, U(L) its set of atoms, and G a building
set in L. The Chow ring D(L,G) of L with respect to G is defined as

D(L,G) := Z[{xG}G∈G]/I,

where I is generated by
t∏

i=1

xGi
for {G1, . . . , Gt} /∈ N (L,G),∑

G≥H

xG for H ∈ U(L).
(2.3)

For the projective wonderful model of a complex hyperplane arrangement, this algebra
admits a surprising geometric interpretation: it is isomorphic to the integral cohomology
algebra of the projective arrangement.
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Let A be an arrangement of linear subspaces. If we replace the ambient space V by
its projectivization PV in the constructions Definition 2.9 and Definition 2.10, we get a
wonderful model for PA. We denote by Y PA,G the wonderful model for PA with respect
to a geometric building set G in L(A).

Theorem 2.24 ([CP96][FY04]). Let L = L(A) be the intersection lattice of an essential
arrangement of complex hyperplanes A. We recall that an arrangement is called essential
if the overall intersection is {0}. Let G be a building set in L that contains the total
intersection of A. Then, the algebra D(L,G) is isomorphic to the integral cohomology
algebra of the projective arrangement model Y PA,G.

D(L,G) ∼= H∗(Y PA,G,Z).

For instance, we can see the interpretation of the first relations in (2.3). We have that
Y PA,G\ M(A) =

⋃
G∈G DG, and we map [DG] ∈ H2(Y PA,G) to xG ∈ D(L,G). If D and

D′ intersect transversely, the cup product is [D] · [D′] = [D ∩ D′]. A subset S ∈ G is
G-nested if and only if

⋂
G∈SDG ̸= ∅ ⊆ Y PA,G. We then get, if S is not G-nested, that∏

G∈S[DG] = [
⋂

G∈S DG] = 0.

We are now ready to give the definition of the Chow ring of a matroid M . We
begin by defining this ring for a representable matroid M over C, and then extend this
definition by introducing the Chow ring of a generic matroid.
Let M=(E, I) be a representable matroid over C. E can be then considered to be a
finite set of non-null vectors, that span a complex vector space U , and I the collection of
linearly independent subsets of E. We can now define an arrangement A of hyperplanes
in P(U∗): every vector can be seen as a linear form on U∗, and so defines a hyperplane
P(e⊥) ⊂ P(U∗), with

e⊥ = {ϕ ∈ U∗|⟨e, ϕ⟩ = 0}.

The flat F corresponds to the element

F⊥ = {ϕ ∈ U∗|⟨e, ϕ⟩ = 0 ∀e ∈ F}

of the partition lattice L(A). We consider the wonderful model Y PA,Gmax
of this arrange-

ment. The Chow ring of the matroid M is then defined as the Chow ring of the intersec-
tion lattice L(A). By Theorem 2.24, this ring is isomorphic to the integral cohomology
ring of Y PA,Gmax

, since the arrangement is essential.
Moreover, in Definition 2.23 we introduced the Chow ring of an arbitrary finite atomic
lattice. Using the correspondence between simple matroids and geometric lattices stated
in Theorem 1.24, we define the Chow ring of a generic matroid M precisely as in Defi-
nition 2.23.
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In the following chapter we will use an equivalent definition:

Definition 2.25. Let M = (E, I) be a simple matroid. The Chow ring of M is

A∗(M) := SM/(IM + JM),

where SM := Z[xF | F is a nonempty proper flat of M ]. Furthermore, IM is the ideal
generated by xFxG, with F and G two incomparable nonempty proper flats of M , and
JM is the ideal generated by

∑
i1∈F

xF −
∑
i2∈F

xF , with i1 and i2 distinct elements of E.

We now prove that this definition is equivalent to Definition 2.23.
If we consider G as the maximum building set Gmax, the Gmax−nested sets are exactly

the flags of flats: the join of any set of elements always exists and belongs to Gmax,

so a Gmax-nested set cannot contain incomparable elements. Moreover, the relations∏t
i=1 xGi

, for {G1, . . . , Gt} /∈ N (L,G), are overabundant: it is sufficient to consider the
relations xFxG, with F and G incomparable flats. Furthermore, we have to prove that the
relations

∑
G≥H xG for H ∈ U(L), are equivalent to the relations

∑
i1∈F xF −

∑
i2∈F xF ,

with i1 and i2 distinct elements of E. We find that if the matroid M is simple, then
the atoms of L(M) are exactly the elements of the ground set of E. We then define
a homomorphism φ from D(L(M),Gmax) (Definition 2.23), to A∗(M) (Definition 2.25).
We note that in Definition 2.23 we consider xF with F ∈ L>0̂, while in Definition 2.25
F has to be a proper flat, so F ∈ L\{0̂, 1̂}. We then define the map

φ(xF ) :=

xF if F is a proper flat.

−
∑

i∈F xF if F = 1̂.

We see that the map φ is well-defined, since φ(x1̂) does not depend on i ∈ E, and since

φ

(∑
F≥i

xF

)
= φ

(∑
i∈F

xF

)
+ φ(x1̂) =

∑
i∈F

xF −
∑
i∈F

xF = 0.

Moreover, we can also define an homomorphism ψ from A∗(M) to D(L(M),Gmax), and
prove that it is well-defined and the inverse of φ. We fix ψ : xF 7−→ xF , and note that

ψ

(∑
i∈F

xF −
∑
j∈F

xF

)
=
∑
i∈F

xF + x1̂ − x1̂ −
∑
j∈F

xF =
∑
F≥i

xF −
∑
F≥j

xF = 0.

We now show that ψ is the inverse of φ on the generators. If we consider xF with F a
proper flat, the maps are both the identity, and so the assertion is trivial. If F = 1̂, we
have that

ψ(φ(x1̂)) = −
∑
i∈F

xF − x1̂ + x1̂ = −
∑
F≥i

xF + x1̂ = x1̂.
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Example 2.26. We now describe the Chow ring A∗(M) of the matroid M which we
defined as the cycle matroid associated with the graph in Figure 1.5.
We recall that an element xF1 · · ·xFk

in A∗(M) is zero if the flats F1, · · · , Fk do not form
a Gmax-nested set, that is, if two of them are not comparable. Thus, if xF1 · · ·xFk

is
non-zero, then the flats F1, · · · , Fk form a flag. Moreover, for each i, j in E, we have that∑

i∈F xF =
∑

j∈F xF . We also recall that A∗(M) is a graded ring of dimension r(M)− 1,
and so, A∗(M) =

∑3
k=0A

k(M), since we already showed that the rank of M is four.
First of all, we give an ordering to the ground set E of M.

03

2 15

4

Figure 2.11: M with an ordering on the ground set E.

We now compute Ak(M) for each k = 0, . . . , 3. We have that A0(M) is trivially Z, while
A1(M) is generated by elements of the form xF , with F a nonempty proper flat of M.

We showed that the non empty proper flats of this matroid are exactly 32, but between
these elements there are exactly five relations given by

∑
0∈F xF =

∑
i∈F xF for each i

in {1, · · · , 5}. A base of A1(M) has then cardinality 32− 5 = 27 and so A1(M) ∼= Z27.

We now compute A2(M), whose elements are of the form xF1xF2 , with F1 ⊊ F2. The
more efficient way to compute this, is to use Corollary 1 of Theorem 1 in [FY04]. This
corollary states that the monomials xa1F1

· · ·xakFk
, where F1 ⊊ · · · ⊊ Fk, Fi ∈ L>0̂, and ai <

rk(Fi)− rk(Fi−1) for i = 1, . . . , k, form a basis of A∗(M). We see that, using this basis,
we get the same dimension of A1(M) we computed before. In fact, a basis of A1(M),
according to this theorem, is made of all the elements of the form xF , with r(F ) > 2 :

they are 15 + 8+ 3+ 1 = 27. Moreover, we can now compute more easily the dimension
of A2(M). A basis for A2(M) is given by elements of the form x2F , with r(F ) > 2, and
elements of the form xFxG, with F ⊊ G, rk(F ) > 1, and rk(G) > rk(F ) + 1. The
elements of the first form are 8+3+1 = 12, while the elements of the second form are 15
(since r(F ) = 2 and r(G) = 4). In total they are 27, and so A2(M) ∼= Z27. Lastly, a basis
of A3(M) is made of just elements of the form x3F , with r(F ) > 3, since the existence of
elements of the form xFx

2
G, x

2
FxG or xFxGxH would imply that M contains flats of rank

greater than four. There is just one element in this basis, x1̂, and so A3(M) ∼= Z. In
conclusion, we get A0(M) ∼= Z, A1(M) ∼= Z27, A2(M) ∼= Z27 and A3(M) ∼= Z.



Chapter 3

The Kähler package on Kähler

manifolds

The aim of this chapter is to prove the hard Lefschetz theorem and the Hodge-
Riemann bilinear relations first for an euclidean vector space of dimension 2n with a
compatible almost complex structure, and then for a compact Kähler manifold. We will
see how this result implies the validity of the two theorems for the De Concini-Procesi
wonderful model. In this chapter, we will mostly follow [Huy05].

3.1 Complex and hermitian structures

We begin by studying complex and hermitian structures on a real vector space V. In
this section, V will be a finite-dimensional real vector space.

Definition 3.1. An endomorphism I : V → V with I2 = −id is called an almost complex
structure on V.

Lemma 3.2 (Lemma 1.2.2 in [Huy05]). If I is an almost complex structure on a real
vector space V, then V admits in a natural way the structure of a complex vector space.

Corollary 3.3 (Corollary 1.2.3 in [Huy05]). Any almost complex structure on V induces
a natural orientation on V.

For a real vector space V , the complex vector space V ⊗R C is denoted by VC.

Definition 3.4. Let I be an almost complex structure on a real vector space V and let
I : VC → VC be its linear extension. Then, the ±i eigenspaces are respectively denoted
by V 1,0 and V 0,1.

27
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Lemma 3.5 (Lemma 1.2.5 in [Huy05]). Let V be a real vector space. Then, VC =

V 1,0 ⊕ V 0,1.

If V is a real vector space of dimension d, the natural decomposition of its exterior
algebra is ∧∗

V =
d⊕

k=0

∧k
V.

The complex vector space
∧∗ VC decomposes analogously.

Definition 3.6. We now define
∧p,q V as∧p,q
V :=

∧p
V 1,0 ⊗C

∧q
V 0,1.

Proposition 3.7 (Proposition 1.2.8 in [Huy05]). We have that∧k
VC =

⊕
p+q=k

∧p,q
VC.

With respect to the above decomposition, we consider the natural projection Πp,q :∧∗ VC →
∧p,q V. Furthermore, we define I:

∧∗ VC →
∧∗ VC as the linear operator that

acts on
∧p,q V as

I =
∑
p,q

ip−q · Πp,q.

We note that I is the multiplicative extension of I on VC. We also denote by I the
corresponding operator on

∧∗ V ∗
C .

Let now ⟨, ⟩ be a scalar product on V .

Definition 3.8. An almost complex structure I on V is compatible with the scalar
product ⟨, ⟩ if ⟨I(v), I(w)⟩ = ⟨v, w⟩ for all v, w ∈ V.

From now on, (V, ⟨, ⟩, I) will be a real vector space endowed with a scalar product
⟨, ⟩ and a compatible almost complex structure I.

Definition 3.9. The fundamental form associated to (V, ⟨, ⟩, I) is the form

w := −⟨(), I()⟩ = ⟨I(), ()⟩.

Lemma 3.10. The fundamental form w associated to (V, ⟨, ⟩, I) is real and of type (1,1).

Proof. We have that for all v, w ∈ V

⟨v, I(w)⟩ = ⟨I(v), I(I(w))⟩ = −⟨I(v), w⟩ = −⟨w, I(v)⟩.

Then, the form w is alternating: w ∈
∧2 V ∗. Moreover w ∈

∧1,1 V ∗
C , since

(Iw)(v, w) = w(I(v), I(w)) = ⟨I(I(v)), I(w)⟩ = w(v, w).
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We can also consider the extension of the scalar product ⟨, ⟩ to a positive definite
hermitian form on VC defined by ⟨v ⊗ λ,w ⊗ µ⟩C := (λµ) · ⟨v, w⟩.

Definition 3.11. Let w be the fundamental form associated to (V, ⟨, ⟩, I). The Lefschetz
operator L :

∧∗ VC →
∧∗ VC is given by a 7→ w ∧ a.

Remark 3.12. It is easy to verify that the Lefschetz operator is of bidegree (1,1):

L
(∧p,q

V ∗
)
⊂
∧p+1,q+1

V ∗.

Moreover, let now (V, ⟨, ⟩) be an oriented euclidean vector space of dimension d, such
as an euclidean vector space endowed with an almost complex structure. Then, ⟨, ⟩
defines scalar products on all exterior powers

∧k V.

Definition 3.13. Let e1, . . . , ed ∈ V be an orthonormal basis of V , and vol ∈ V the
orientation of V given by vol = e1∧· · ·∧ed. Then, the Hodge operator ∗ :

∧k V →
∧d−k V

is defined by
α ∧ ∗β = ⟨α, β⟩ · vol,

for every 0 ≤ k ≤ d and for every α, β ∈
∧∗ V.

Proposition 3.14 (Proposition 1.2.20 in [Huy05]). Let (V, ⟨, ⟩) be an oriented euclidean
vector space of dimension d. Let e1, . . . , ed ∈ V be an orthonormal basis of V and vol ∈ V

the orientation of V given by vol = e1 ∧ · · · ∧ ed. Then, the Hodge ∗-operator has the
following properties:

1. For every 0 ≤ k ≤ d, if {i1, . . . , ik, j1, . . . , jd−k} = {1, . . . , n}, then

∗(ei1 ∧ · · · ∧ eik) = ε · ej1 ∧ · · · ∧ ejk ,

where ε = sgn(i1, . . . , ik, j1, . . . , jd−k). In particular, ∗1 = vol.
2. The operator is self-adjoint up to sign: for α, β ∈

∧k V, for every 0 ≤ k ≤ d

⟨α, ∗β⟩ = (−1)k(d−k)⟨∗α, β⟩.

3. The operator is involutive up to sign: for every 0 ≤ k ≤ d

(∗|∧k V )
2 = (−1)k(d−k).

4. The operator is an isometry on (
∧∗ V, ⟨, ⟩): for α, β ∈

∧k V , for every 0 ≤ k ≤ d

⟨α, β⟩ = ⟨∗α, ∗β⟩.

Remark 3.15. We can extend ⟨, ⟩C to a positive definite hermitian form on
∧∗ V ∗

C and
extend C−linearly the Hodge operator.
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From now on, we will consider d = 2n and ⟨, ⟩ in
∧∗ V ∗.

Definition 3.16. The dual Lefschetz operator Λ is the operator Λ :
∧∗ V ∗ →

∧∗ V ∗

that is adjoint to L with respect to ⟨, ⟩:

⟨Λα, β⟩ = ⟨α,Lβ⟩ for all α, β ∈
∧∗

V ∗.

We denote by Λ also the linear extension
∧∗ V ∗

C →
∧∗ V ∗

C of the dual Lefschetz
operator.

Remark 3.17. We have that Λ = ∗−1 ◦L ◦ ∗, and that Λ is of bidegree (−1,−1) (Lemma
1.2.23, Lemma 1.2.24 in [Huy05]).

Definition 3.18. The counting operator H :=
∧∗ V ∗ →

∧∗ V ∗ is defined by H|∧k V ∗ =

(k − n) · id, where dimR V
∗ = 2n.

Proposition 3.19 (Proposition 1.2.26 in [Huy05]). If we consider on
∧∗ V ∗ the Lefschetz

operator L, its dual Λ and the counting operator H, they satisfy:

[H,L] = 2L,1. [H,Λ] = −2Λ,2. [L,Λ] = H.3.

Corollary 3.20. The action of L,Λ, and H defines a natural sl(2)−representation on∧∗ V ∗.

Proof. We recall that sl(2) is the Lie algebra of all 2× 2-matrices of trace zero. A base
of sl(2) is given by X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, and B =

(
1 0
0 −1

)
. It is easy to see that

they satisfy [B,X] = 2X, [B, Y ] = 2Y, and [X, Y ] = B. Now, mapping X 7→ L, Y 7→
Λ, and B 7→ H, we get a Lie algebra homomorphism sl(2) −→ End(

∧∗ V ∗). Tensorizing
with C , we also obtain the sl(2,C)-representation.

Corollary 3.21. [Li,Λ](α) = i(k − n+ i− 1)Li−1(α) for all α ∈
∧k V ∗.

Proof. We use induction on i. If i = 1, we have 3) of Proposition 3.19. If i > 1, we use
3) of Proposition 3.19 and the induction hypotesis, and get

[Li,Λ] = LiΛα− ΛLiα

= L(Li−1Λα− ΛLi−1α) + LΛLi−1α− ΛLLi−1α

= L[Li−1,Λ](α) + [L,Λ](Li−1α)

= (i− 1)(k − n+ (i− 1)− 1)Li−1(α) + (2i− 2 + k − n)Li−1(α)

= i(k − n+ i− 1)Li−1(α).
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Definition 3.22. An element α ∈
∧k V ∗ is called primitive if Λα = 0. The linear

subspace of all primitive elements α ∈
∧k V ∗ is denoted by Pk ⊂

∧k V ∗. Accordingly, an
element α ∈

∧k V ∗
C is called primitive if Λα = 0.

Theorem 3.23 (Hard Lefschetz). Let (V, ⟨, ⟩, I) be an euclidean vector space of dimen-
sion 2n with a compatible almost complex structure, and let L and Λ be the Lefschetz
operators.

1. There exists a direct sum decomposition, called the Lefschetz decomposition:∧k
V ∗ =

⊕
i≥0

Li(P k−2i). (3.1)

Moreover, 3.1 is orthogonal with respect to ⟨, ⟩.
2. If k > n, then P k = 0.

3. The map Ln−k : P k →
∧2n−k V ∗ is injective for k ≤ n.

4. The map Ln−k :
∧k V ∗ →

∧2n−k V ∗ is bijective for k ≤ n.

5. If k ≤ n, then P k = {α ∈
∧k V ∗ | Ln−k+1α = 0}.

Proof. 1) From representation theory, we know that the sl(2)-representations are com-
pletely reducible, and so they can be decomposed as the direct sum of their irreducibile
subrepresentations. Moreover, we know that each heighest weight vector (a vector v such
that Λv = 0) determines an irreducible representation of sl(2), with basis {v, Lv, . . . , Lrv},
where Lr+1v = 0. We also know that every irreducible representation is of this form.
In our setting, the heighest weight vectors correspond to the elements of the primitive
subspaces. Then,

∧k V ∗ is an sl(2)-representation by Corollary 3.20, and its irreducible
representation are of the form Li(P k−2i). Moreover, this decomposition is orthogonal
with respect to ⟨, ⟩: let v ∈ P k−2r(X) and w ∈ P k−2s(X), then

⟨Lrv, Lsw⟩ = ⟨v,ΛrLsV ⟩ = c⟨v, Ls−rw⟩.

Indeed, applying repeatedly 3.21, we get ΛrLsw = c · Ls−rw, with c =
∏r−1

j=0(s− j)(k −
n + s − 1 − j). If r > s the product is 0, while if r < s we obtain that c is a nonzero
constant. Then, if r > s it follows that ⟨Lrv, Lsw⟩ = 0, while if r < s we get

⟨Lrv, Lsw⟩ = c⟨v, Ls−rw⟩ = c⟨Λs−rv, w⟩ = 0,

since v is primitive.

2) If α ∈ P k, with k > n, we consider i ≥ 0 minimal such that Liα = 0. By
Corollary 3.21, we get 0 = [Li,Λ](α) = i(k − n+ i− 1)Li−1α. Then, i = 0 and α = 0.

3) Let 0 ̸= α ∈ P k, k ≤ n, and i > 0 minimal such that Liα = 0. Again by
Corollary 3.21, we have that 0 = [Li,Λ](α) = i(k − n + i − 1)Li−1α and, therefore,
k − n+ i− 1 = 0. In particular, Ln−kα ̸= 0 and Ln−k+1α = 0.
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We note that, from the injectivity of P n−k on Lk, it follows that Lr : P i → LrP i is an
isomorphism for all i ≤ n− r. This implies dim(P i) = dim(LrP i) for all i ≤ n− r.

4) We now prove that Lk−n :
∧k V ∗ −→

∧2n−k V ∗ is bijective. We already know from
3) that the map is injective, thus if we show that

∧k V ∗ and
∧2n−k V ∗ have the same

dimension, then Ln−k is also bijective. Thanks to 1) and 2), if we fix s = r+ (n− k), we
have that∧k

V ∗ =
⊕
r≥0

Lr(P k−2r), and
∧2n−k

V ∗ =
⊕

s≥n−k
2

Ls(P 2n−k−2s) =
⊕
r≥0

Ln−k+rP k−2r.

We then get, again for 3), that dim
∧k V ∗ =

∑
r dimP k−2r and dim

∧2n−k V ∗ =
∑

r dimP k−2r.

5) We have seen in 3) that P k ⊆ Ker(Ln−k+1). Conversely, if α ∈
∧k V ∗, with

Ln−k+1α = 0, then by Corollary 3.21 we have [Ln−k+2,Λ](α) = Ln−k+2Λα = (n − k +

2)Ln−k−1α = 0. Since Ln−k+2 is injective on
∧k−2 V ∗, then Λα = 0.

Remark 3.24. Since L,Λ and H are of pure type (1, 1), (−1,−1), and (0, 0) respectively,
the Lefschetz decomposition is compatible with the bidegree decomposition. Indeed,
P k
C =

⊕
p+q=k P

p,q, with P p,q := P k
C ∩

∧p,q V ∗.

Proposition 3.25. For all α ∈ P k,

∗Ljα = (−1)
k(k+1)

2
j!

(n− k − j)!
· Ln−k−jI(α).

Proof. Proposition 1.2.31 on [Huy05].

Definition 3.26. Let (V, ⟨, ⟩, I) be as before, we introduce∫
V

:
∧2n

V ∗ −→ R, c · vol
∫
V7−→ c.

Definition 3.27. Let w be the fundamental form associated to (V, ⟨, ⟩, I). The Hodge-
Riemann pairing is the bilinear form

Q :
∧k

V ∗ ×
∧k

V ∗ −→ R, (α, β) 7−→ (−1)
k(k−1)

2

∫
V

α ∧ β ∧ wn−k.

We will also denote by Q the C-linear extension of the Hodge-Riemann pairing to
∧∗ V ∗

C .

Theorem 3.28 (Hodge-Riemann bilinear relations). We have that

ip−qQ(α, α) = (n− (p+ q))! · ⟨α, α⟩C,

for 0 ̸= α ∈ P p,q, with p+ q ≤ n. In particular, ip−qQ(α, α) is definite positive on P p,q.
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Proof. We fix k = p+ q and β ∈
∧k V ∗ such that ∗β = Ln−kα. By definition we get

(−1)
k(k−1)

2 α ∧ α ∧ wn−k = (−1)
k(k−1)

2 α ∧ Ln−kα = (−1)
k(k−1)

2 ⟨α, β⟩C · vol.

We then have (−1)
k(k−1)

2

∫
V
α ∧ β ∧ wn−k = (−1)

k(k−1)
2 ⟨α, β⟩C. We now recall that, by

Proposition 3.14, ∗2β = (−1)kβ. We also have

∗2β = ∗Ln−kα = (−1)
k(k+1)

2 (n− k)! · ip−q · α

by Proposition 3.25. Thus, β = (−1)k+
k(k+1)

2 (n− k)! · iq−p · α and

Q(α, α) = (−1)k+
k(k+1)

2
+

k(k−1)
2 (n− k)! · iq−p · ⟨α, α⟩C.

This implies
ip−qQ(α, α) = (n− k)! · ⟨α, α⟩C > 0.

Remark 3.29. Since the hard Lefschetz decomposition is orthogonal with respect to ⟨, ⟩,
then it is also orthogonal with respect to Q.

Remark 3.30. If k = 2j, then ip−qQ(α, α) = (−1)jQ(α, α).

3.2 Kähler manifolds

We begin by stating the Poincaré duality, a fundamental theorem applicable to all
compact oriented manifolds..

Theorem 3.31 (Poincaré duality, Theorem 3.30 in [Hat02]). If M is a compact oriented
manifold of dimension n, there is an isomorphism between the cohomology groups

Hk(M) ∼= Hn−k(M)∗,

for 0 ≤ k ≤ n.

Now, let M be a differentiable manifold, and let TM denote its tangent bundle.

Definition 3.32. A holomorphic atlas on a differentiable manifold is an atlas {(Ui, φi)}
of the form φi : Ui ≃ φi(Ui) ⊆ Cn, such that the transition functions φ := φi ◦ φ−1

j :

φj(Ui ∩ Uj) → φi(Ui ∩ Uj) are holomorphic. Two holomorphic atlases {(Ui, φi)} and
{(U ′

i , φ
′
i)} are called equivalent if all maps φi ◦ φ′−1

j : φ′
j(Ui ∩ U ′

j) → φi(Ui ∩ U ′
j) are

holomorphic.
A complex manifold X of dimension n is a (real) differentiable manifold of dimension 2n

endowed with an equivalence class of holomorphic atlases.
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Definition 3.33. An almost complex manifold is a differentiable manifold X together
with a vector bundle endomorphism

I : TX −→ TX, with I2 = −id.

Proposition 3.34 (Proposition 2.6.2 in [Huy05]). Any complex manifold X admits a
natural almost complex structure.

Definition 3.35. Let X be an almost complex manifold. We denote by TCX the com-
plexification of TX, that is TCX = TX⊗C, and we introduce the complex vector bundles∧k

(TCX)∗ and
∧p

(T 1,0X)∗ ⊗C
∧q

(T 0,1X)∗.

Their sheaves of sections are denoted by Ak(X) and Ap,q(X).

Let now X be a complex manifold of dimension n and I the induced almost complex
structure.

Definition 3.36. A Riemannian metric g on X is an hermitian structure on X if for
any point x ∈ X the scalar product gx on TxX is compatible with the almost complex
structure Ix. The induced real (1, 1)-form w := g(I(), ()) is called the fundamental form.
The complex manifold X endowed with an hermitian structure g is called an hermitian
manifold.

Moreover, we define on
∧k(TCX)∗ the Lefschetz operator, the Hodge ∗-operator and

the dual Lefschetz operator as we did in the previous section.

Definition 3.37. Let (X, g) be an hermitian manifold. We define the adjoint operator
d∗ as

d∗ = ∗ ◦ d ◦ ∗ : Ak(X) −→ Ak−1(X),

and the Laplace operator as ∆ = d∗d+ dd∗.

Definition 3.38. A Kähler structure is an hermitian structure g for which the funda-
mental form w is closed, that is, dw = 0. In this case, w is called the Kähler form. A
complex manifold endowed with a Kähler structure is called a Kähler manifold.

Proposition 3.39. Let X be a Kähler manifold. Then ∆ commutes with L and Λ.

Proof. Proposition 3.1.12 in [Huy05].

Definition 3.40. Let (X, g) be a Riemannian manifold. A form α ∈ Ak(X) or α ∈
Ap,q(X) is called d-harmonic if ∆(α) = 0. Moreover, we denote by Hk(X, g) the space of
d-harmonic k-forms and by Hp,q(X, g) the space of d-harmonic (p, q)-forms.
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Proposition 3.41. Let (X, g) be a Riemannian manifold. Then, every de Rham coho-
mology class [α] ∈ Hk(X) contains a unique harmonic representative α. Thus, the natural
map Hk(M, g) → Hk(M, g) that associates to each harmonic form its cohomology class
is bijective.

Proof. Theorem 6.11 in [War83].

Definition 3.42. Let X be a compact Kähler manifold. The Kähler class associated to
a Kähler structure on X is the cohomology class [w] ∈ H1,1(X) of its Kähler form. The
Kähler cone

KX ⊆ H1,1(X) ∩H2(X,R)

is the set of all Kähler classes associated to any Kähler structure on X.

Definition 3.43. Let (X, g) be a compact Kähler manifold. Then the primitive coho-
mology is defined as

Hk(X,R)p := Ker
(
Λ : Hk(X,R) −→ Hk−2(X,R)

)
.

Moreover, we define on X the Hodge-Riemann pairing

Q : Hk(X)×Hk(X) −→ R (α, β) 7−→ (−1)
k(k−1)

2

∫
X

α ∧ β ∧ [w]n−k,

with [w] the Kähler class.

Theorem 3.44 (Hard Lefschetz). Let (X, g) be a compact Kähler manifold of dimension
n. Then, for k ≤ n

Ln−k : Hk(X,R) ∼= H2n−k(X,R),

and

Hk(X,R) =
⊕
i≥0

LiHk−2i(X,R)p.

Proof. From Theorem 3.23, it follows that Ln−k : Ak(X) → A2n−k(X) is bijective.
Moreover, by Proposition 3.39 we know that [L,∆] = 0 and [Λ,∆] = 0, so L and Λ map
harmonic forms to harmonic forms. We then find that Ln−k : Hk(X) → H2n−k(X) is
bijective. Then, the first assertion follows from Proposition 3.41. The second assertion
is a consequence of the decomposition proved in Theorem 3.23, the fact that L and Λ

respect harmonicity, and Proposition 3.41.

Remark 3.45. We note that the primitive cohomology does not depend on the chosen
Kähler structure, but only on the Kähler class. Once a Kähler structure is chosen, any
class in Hk(X)p can be realized by an harmonic form that is primitive at every point.
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Indeed, if α ∈ Hk(X)p is harmonic, then also Λα is harmonic, since [Λ,∆] = 0 by
Proposition 3.39. Thus, if α ∈ Hk(X)p is harmonic and primitive in cohomology ([Λα] =
0), then Λα = 0 pointwise, since by Proposition 3.41 there is a unique harmonic form in
the zero cohomology class: the 0 form.

Theorem 3.46 (Hodge-Riemann bilinear relations). Let (X, g) be a compact Kähler
manifold of dimension n with Kähler class [w]. Then, the Hodge-Riemann pairing mul-
tiplied by ip−q is definite positive on the primite cohomology, that is, if α ̸= 0 ∈ Hk(X)p,
then

(−1)
k(k−1)

2 · ip−q

∫
X

α ∧ β ∧ [w]n−k > 0.

Furthermore, the Lefschetz decomposition is orthogonal with respect to Q.

Proof. By Remark 3.45, any α ∈ Hk(X)p can be represented by an harmonic form
α ∈ Hk(X)p which is primitive at any point x ∈ X. The assertion then follows from
Theorem 3.28.

3.2.1 Projective varieties

We want to establish the validity of the Kähler package for the projective wonderful
model (a smooth projective variety).

We recall that a differentiable submanifold Y of real dimension 2k of a complex
manifold X is a complex submanifold if there exists a holomorphic atlas {(Ui, φi)} of X
such that φi : Ui ∩ Y ∼= φi(Ui) ∩ Ck. Moreover, a complex manifold X is projective if it
is isomorphic to a closed complex submanifold of some projective space Pn.

Proposition 3.47. A smooth projective variety is a projective Kähler manifold.

Proof. We know that Pn is a complex manifold (pg.56 in [Huy05]) and that a smooth
projective variety X is a projective complex manifold. Indeed, we can consider X ∩ Ui

to be an atlas covering X, where Ui are the standard charts of Pn. By the holomorphic
implicit function theorem (Proposition 1.1.11 in [Huy05]), which we can apply since
the variety is smooth, X ∩ Ui is locally biholomorphic to Cn−k, with k = n − dim(X).
Furthermore, on Ui ∩ Uj the transition maps are given by rational functions, and the
restrictions of these maps to X are holomorphic (where defined).

We also know that Pn admits a canonical Kähler structure induced by the Fubini-
Study metric (Example 3.1.9 in [Huy05]). Moreover, the complex submanifolds of a
Kähler manifold are also Kähler (Proposition 3.1.10 in [Huy05]). It then follows that
any projective complex manifold is Kähler, and so is any smooth projective variety.
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Definition 3.48. Let L be a line bundle on a complex manifold X. The line bundle is
called very ample if for some linear system in H0(X,L) (a subspace of H0(X,L)), and
for s0, . . . , sN ∈ H0(X,L) a base of the linear system, the map

φ : X\BS(L) −→ Pn, x 7−→ (s0(x), · · · , sN(x))

is an embedding.

We recall that BS(L) is the set of all base points of L, namely, the points x ∈ X such
that s(x) = 0 for all s ∈ H0(X,L).

Moreover, a line bundle is called ample if for some k > 0, Lk is a very ample line bundle.

By definition, a compact complex manifold is projective if and only if it admits an
ample line bundle: the tautological line bundle OPn(1) on Pn is very ample, and ifX ⊆ Pn

is a projective manifold, then the restriction OPn(1)|X is very ample on X.
We recall that the first Chern class of a holomorphic line bundle L ∈ Pic(X) is the image
of L under the boundary map

c1 : Pic(X) ∼= H1(X,O∗
X) −→ H2(X,Z).

The boundary map arises from the long exact cohomology sequence induced by the
exponential sequence on the complex manidold X.

Definition 3.49. A line bundle L is called positive if its first Chern class c1(L) ∈
H2(X,R) can be represented by a closed positive (1,1)-form.

We note that a compact complex manifold X that admits a positive line bundle
L is Kähler: the closed positive real (1, 1)-form w representing c1(L) defines a Kähler
structure on X.

Theorem 3.50 (Kodaira embedding theorem). Let X be a compact Kähler manifold.
A line bundle L on X is positive if and only if it is ample. In this case, the manifold is
projective.

Proof. Proposition 5.3.1 in [Huy05].

The wonderful model X, being a smooth projective variety over C, naturally carries
the structure of a projective Kähler manifold. An ample line bundle L on X, which exists
since X is projective, determines a Kähler structure through its first Chern class c1(L).
Thus, the standard results of Hodge theory hold for X. In particular, the cohomology
ring of X satisfies the hard Lefschetz theorem and the Hodge-Riemann bilinear relations
with respect to c1(L).

We now characterize ampleness for line bundles in terms of intersection numbers.
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Theorem 3.51 (Nakai-Moishezon criterion). Let X be a compact complex manifold and
let L be a holomorphic line bundle on X. Then, L is ample if and only if

∫
Y
c1(L)

dim(Y ) >

0 for every analytic subvariety Y ⊆ X. Moreover,
∫
Y
c1(L)

dim(Y ) are called intersection
numbers.

Proof. Theorem 1.2.23 pg.33 [Laz04].

We recall that an analytic subvariety Y of a complex manifold X is a closed subset
Y ⊆ X such that, for any point x ∈ X, there exists an open neighborhood x ∈ U ⊆ X

such that Y ∩ U is the zero set of finitely many holomorphic functions.
Moreover, by Serre’s GAGA principle ([Ser56]), if X is a projective algebraic variety,

every closed analytic subvariety of Xan (the complex analytic space obtained by equip-
ping X with the Euclidean topology) is algebraic, and every smooth algebraic subvariety
of X is a smooth analytic subvariety of Xan. Thus, Theorem 3.51 naturally extends to
smooth projective varieties X, and their algebraic smooth subvarieties Y .



Chapter 4

Proof of the conjecture

The key ingredient of the proof of Conjecture 1.27 for a matroid M is the validity
of Hodge theory, specifically of the Hodge-Riemann bilinear relations, for the Chow ring
of M . In this chapter, we establish the conjecture when M is a representable matroid
over C. The general case was resolved in 2018 [AHK18] by Adiprasito, Huh, and Katz,
who demonstrated that the Chow ring of an arbitrary matroid M satisfies the Poincaré
duality, the hard Lefschetz theorem and the Hodge-Riemann bilinear relations, therefore
proving Conjecture 1.27 in full generality.
In this chapter, M will be a matroid of rank r + 1, with an ordering on the ground set
E = {0, 1, . . . , n}, and lattice of flats F .

4.1 The Kähler package

In this section, we characterize what it means for a graded algebra to satisfy the
Kähler package (Poincaré duality, hard Lefschetz theorem, and Hodge-Riemann bilinear
relations). We note that this package holds for the Chow ring of any representable
matroid over C, as established in the previous chapter.

Let A∗ a graded algebra. We fix an isomorphism called the degree map, of the form:

deg : Ar → R.

Definition 4.1. A graded algebra A∗ satisfies the Poincaré duality of dimension r if

• There are isomorphism A0 ≃ R and Ar ≃ R.
• Aq = 0 for every integer q > r.

• For q ≤ r, we have an isomorphism

Ar−q → HomR(A
q, Ar), x 7→ (y 7→ deg(x · y)).

In this case we say that A∗ is a Poincaré duality algebra of dimension r.

39
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From now on, A∗ will be a Poincaré duality algebra of dimension r.

Definition 4.2. Let ℓ be an element of A1, and 0 ≤ q ≤ r
2
.

1. The Lefschetz operator on Aq associated to ℓ is the linear map

Lq
ℓ : A

q → Ar−q, a 7→ ℓr−2qa.

2. The Hodge-Riemann form on Aq associated to ℓ is the symmetric bilinear form

Qq
ℓ : A

q × Aq → R, (a1, a2) 7→ (−1)q deg(a1 · Lq
ℓ(a2)).

3. The primitive subspace of Aq associated to ℓ is

P q
ℓ := {a ∈ Aq | ℓ · Lq

ℓ(a) = 0} ⊆ Aq.

The definitions introduced here are consistent with those of the previous chapter,
where X is a smooth projective variety, Aq = H2q(X), and deg =

∫
X
.

Definition 4.3. We say that

1. A∗ satisfies the hard Lefschetz property (HL(ℓ)) if the Lefschetz operator Lq
ℓ is an

isomorphism on Aq for 0 ≤ q ≤ r
2
.

2. A∗ satisfies the Hodge-Riemann bilinear relations (HR(ℓ)) if the Hodge-Riemann
form Qq

ℓ is positive definite on P q
ℓ for 0 ≤ q ≤ r

2
.

Remark 4.4. If the Lefschetz operator Lq
ℓ is an isomorphism, there is a decomposition

Aq+1 = P q+1
ℓ ⊕ ℓAq.

We then have, if A∗ satisfies HL(ℓ), the Lefschetz decomposition of Aq for q ≤ r
2
:

Aq = P q
ℓ ⊕ ℓP q−1

ℓ ⊕ · · · ⊕ ℓqP 0
ℓ .

We also know that the Lefschetz decomposition of Aq is orthogonal with respect to the
Hodge-Riemann bilinear form Qq

ℓ .

We now consider A∗ to be the Chow ring of a matroid M. In Theorem 2.24, we stated
that if M is a representable matroid over C, then the Chow ring of M is isomorphic to
the integral cohomology ring of a smooth projective variety Y PA .
Moreover, in the previous chapter we showed that if Y is a smooth projective variety,
then the cohomology ring H∗(Y ) is a Poincaré duality algebra that satisfies HL(ℓ) and
HR(ℓ), with ℓ an ample class. Then, it follows that the Chow ring of any matroid M

representable over C is a Poincaré duality algebra of dimension r(M)− 1, that satisfies
the hard Lefschetz theorem and the Hodge-Riemann bilinear relations. By Theorem 8.8
of [AHK18], this result extends fully to the Chow ring of an arbitrary matroid M .

Example 4.5. We recall that the Chow ring of the matroid M which we defined as the

cycle matroid associated with the graph in Figure 1.5, is of the form
3⊕

k=0

Ak(M), with

A0(M) ∼= Z, A1(M) ∼= Z27, A2(M) ∼= Z27, and A3(M) ∼= Z. We then note that in this
example the Chow ring of M satisfies the Poincaré duality.
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4.2 The proof

In this section, we present one of the main results of [AHK18], following a mini-course
held by Corrado de Concini "Hodge theory for matroids" at the fourth edition of the win-
ter school "Geometry, Algebra and Combinatorics of Moduli Spaces and Configurations"
in 2020 in Dobbiaco (IT).

From now on we will denote by A∗(M) the Chow ring of a matroid M with rank
r + 1.

Definition 4.6. A class ℓ ∈ A1(M) is ample if for any flag of flats F1 ⊊ F2 ⊊ · · · ⊊ Fs,

there exists a representative
∑
G∈F

aGxG of ℓ such that

• aFi
= 0 for i = 1, . . . , s.

• If G is comparable to every Fi, but G ̸= Fi, then aG > 0.

If in the second part of the definition we have aG ≥ 0 instead of aG > 0, the ample class
is said to be nef.

We see that this definition of an ample class is analogous to the characterization of
ample line bundles stated in Theorem 3.51. Indeed, in the context of the wonderful
model, each stratum (smooth subvariety) is an intersection of {DFi

}i, which corresponds
to a flag of flats. Then, if ℓ is ample according to Definition 4.6, it intersects positively
with all strata, due to the condition aGi

> 0. This condition is analogous to the ampleness
criterion stated in Theorem 3.51.

Definition 4.7. We define two linear forms

αM,i :=
∑
i∈F

xF , βM,i :=
∑
i/∈F

xF ,

for every i in E. It is simple to see that their classes in A∗(M) are independent from
i, and we denote them by αM and βM . In particular, the independence of αM,i from i

follows directly from Definition 2.25, while the independence of βM,i from i follows from:

βM,i − βM,j =
∑
i/∈F

xF −
∑
j /∈F

xF =
∑

i/∈F,j∈F

xF −
∑

j /∈F,i∈F

xF =
∑
j∈F

xF −
∑
i∈F

xF = 0.

Lemma 4.8. The set of all ample classes has the structure of a convex cone, called the
ample cone. Moreover, the ample cone is non-empty. In fact, there exists ε > 0 such
that, if 0 < τF < ε, then ℓ = αM −

∑
F∈F τFxF is ample.

Lemma 4.9. The element βM ∈ A1(M) is nef.

Proof. Let F1 ⊊ F2 ⊊ · · · ⊊ Fs be a flag of flats, and j ∈ F1. If we write βM =
∑
j /∈G

xG,

the definition of nef is easily satisfied.
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Proposition 4.10. Let F1 ⊊ F2 ⊊ · · · ⊊ Fk be a flag of non-empty proper flats of M.

1. If the rank of Fi is not i for some i ≤ k, then

xF1xF2 · · ·xFk
αr−k
M = 0 ∈ Ar(M).

2. If the rank of Fi is i for every i ≤ k, then

xF1xF2 · · · xFk
αr−k
M = αr

M ∈ Ar(M).

Before proving the theorem, we state a useful general observation.

Remark 4.11. For any i not in F (a non-empty proper flat),

xFαM = xF

(∑
i∈G

xG

)
= xF

( ∑
i∈G,F⊂G

xG

)
∈ A∗(M).

The flats G that contain {i} but not F are not comparable with F , hence xFxG = 0. It
follows that the sum on the right-hand side is over all proper flats that contain F and
{i}. We note that if the rank of F is r, there do not exist proper flats that contain F

and {i}: in this case xFαM is zero.

Proof. We prove the first assertion by descending induction on k < r. If k = r − 1,

the rank or Fk has to be r, hence the product xFk
αM is zero by Remark 4.11. We now

consider k < r − 1 and i not in Fk. We have

xF1xF2 · · ·xFk
αr−k
M = xF1xF2 · · ·xFk

(∑
i∈G

xG

)
αr−k−1
M =

∑
i∈G

xF1xF2 · · ·xFk
xGα

r−(k+1)
M ,

where the sum is all over the proper flatsG containing Fk and {i} (again by Remark 4.11).
We apply the induction hypothesis for k+ 1 to every term of the sum on the right-hand
side of the equation, which then is zero.
We prove the second part of the proposition by ascending induction on k. When k = 1,

considering i in F1, we get αr
M =

(∑
i∈G

xG

)
αr−1
M . By the first assertion for k = 1, xGαr−1

M

is nonzero if and only if the rank of G is one, so αr
M = xF1α

r−1
M , with F1 = {i}.

We now consider k > 1 and i in Fk\Fk−1. Using first the induction hypothesis and then
Remark 4.11, we get

αr
M = xF1 · · ·xFk−1

α
r−(k−1)
M = xF1 · · ·xFk−1

(∑
i∈G

xG

)
αr−k
M =

∑
i∈G

xF1 · · ·xFk−1
xGα

r−k
M ,

where the sum is over all proper flats G containing Fk−1 and {i}. It follows from the first
assertion that the only non zero term of the sum on the right-hand side is the one in
which the rank of G is k,. We then obtain

αr
M = xF1xF2 · · ·xFk−1

xFk
αr−k
M .
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Definition 4.12. Let F = { F1 ⊊ F2 ⊊ · · · ⊊ Fk} be a k-step flag of non-empty proper
flats of M. The flag F is

1. Initial if r(Fi) = i for all i = 1, . . . , k.

2. Descending if min(F1) > min(F2) > · · · > min(Fk) > 0.

The fixed ordering of the ground set E ensures that min(F ) is well-defined for any flat
F of the matroid. We denote by Dk(M) the set of initial descending k-step flags of
non-empty proper flags of M.

Example 4.13. We show that Proposition 4.10 holds for the matroid M , the cycle
matroid associated with the graph in Figure 1.5. We fix α := αM , β := βM , αi := αM,i,

and βi := βM,i. We want to obtain, for each k = 0, . . . , 3, that xFα
3−k = α3 if F is

an initial k-step flag, and that xGα
3−k = 0 if G is a non-initial k-step flag. We first

consider the case k = 1. If F = 0123, then xFα
2 = (x0123α4)α = 0, since there does

not exist any proper flat that contains 4 and is comparable with 0123. If F = 12, then
xFα

2 = (x12α3)α = (x12x0123)α4 = 0. If F = 1, we get

xFα
2 = (x1α2)α = x1x12α3 + x1x124α3 + x1x125α3 + x1x0123α4.

Since the only non-zero term on the right-hand side of the equation is the first one, we
get x1α2 = x1x12α3 = x1x12x0123. We obtain that x1α2 coincides with α3, since

α3 = α1α
2 =

= x1α
2 + x12α0α4 + x13α0α4 + x14α0α2 + x15α0α2 + x01α2α4+

+ (x0123α4 + x0145α2 + x124α0 + x125α0 + x143α0 + x153α0)α =

= x1α
2 = x1x12x0123.

We now consider k = 2. We get that if F = 1 ⊊ 0123, then xFα = x1x0123α4 = 0;

and if F = 12 ⊊ 0123, then xFα = x12x0123α4 = 0. However, if F = 1 ⊊ 12, then
xFα = x1x12α3 = x1x12x0123 = α3.

We now define the map deg analogously to the construction in the preceding section,
namely as an isomorphism deg: Ar(M) → Z. We fix that the isomorphism deg maps αr

M

to 1, since by Proposition 4.10 αr
M generates Ar(M).

Our goal now is to demonstrate that µk(M), the k-th coefficient of the reduced
polynomial ofM , coincides with the degree of αr−k

M βk
M , where αM and βM are the elements

defined in Definition 4.7. The proof requires two preliminary lemmas.
Let F be a flat of a matroid M = (E, I). We introduce the matroid MF as the

matroid with F as ground set, and IF = {I ∈ I| I ⊂ F} as the collection of independent
sets.
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Lemma 4.14. For every k ≤ r, we have

µk(M) = |Dk(M)|.

Proof. We consider the truncation of the matroid M as defined in Definition 1.30, and
we use descending induction on the rank of the matroid. As we noted in Remark 1.31,
µk(M) = µk(tr(M)) for k < r; so if we use the induction hypothesis on tr(M) (that by
definition has rank r), we get |Dk(M)| = |Dk(tr(M))| = µk(tr(M)) = µk(M) for k < r.

We now have to prove the assert for k = r. From Remark 1.28, it follows that
µr(M) = (−1)r+1µ(∅, E), and from Equation (1.3)

µ(∅, E) = −
∑

0/∈F⋖E

µ(∅, F ) = −
∑

0/∈F,r(F )=r

µ(∅, F ). (4.1)

We now use the induction hypothesis on the flats F of rank r and get (−1)rµ(∅, F ) =
|Dr−1(M

F )|. We call Dr(M,F ) the set of initial descending r-step flags of non-empty
proper flats, with Fr = F. It is easy to see that there is a bijection between Dr−1(M

F )

and Dr(M,F ), given by the map

(F1 ⊊ F2 ⊊ · · · ⊊ Fr−1) 7−→ (F1 ⊊ F2 ⊊ · · · ⊊ Fr−1 ⊊ F ).

Another simple remark is that Dr(M) =
.⋃

0∈F,r(F )=r

Dr(M,F ). Using Equation (4.1), then

the induction hypothesis and finally these remarks, we get

µr(M) = (−1)r+1µ(∅, E) 4.1
=

∑
0/∈F,r(F )=r

(−1)rµ(∅, F ) =
∑

0/∈F,r(F )=r

|Dr−1(M
F )|

=
∑

0/∈F,r(F )=r

|Dr(M,F )| = |Dr(M)|.

Example 4.15. We prove the validity of Lemma 4.14 for the matroid M which we
defined as the cycle matroid associated with the graph in Figure 1.5. We recall that
µ0(M) = 1, µ1(M) = 5, µ2(M) = 10, and µ3(M) = 7. We have:

D1(W4) = {1, 2, 3, 4, 5}.

D2(W4) = {2 ⊊ 21, 3 ⊊ 31, 3 ⊊ 32, 4 ⊊ 41, 4 ⊊ 42, 4 ⊊ 43, 5 ⊊ 51, 5 ⊊ 52, 5 ⊊ 53, 5 ⊊ 54}.

D3(W4) = {4 ⊊ 43 ⊊ 431, 4 ⊊ 42 ⊊ 421, 5 ⊊ 54 ⊊ 5432, 5 ⊊ 54 ⊊ 541, 5 ⊊ 53 ⊊ 5432,

5 ⊊ 53 ⊊ 5231, 5 ⊊ 52 ⊊ 521}.

We then get |D0(M)| = 1 trivially, |D1(M)| = 5, |D2(M)| = 10, and |D3(M)| = 7.
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Lemma 4.16. For every 0 < k ≤ r, we have

βk
M =

∑
F

xF ∈ A∗(M),

where the sum is over all descending k-step flags of non empty proper flats of M.

Proof. We use ascending induction on k. When k = 1, the only initial descending 1-step
flags of proper flats are the single flats F , with 0 /∈ F. We then get

βM = βM,0 =
∑
0/∈F

xF =
∑
F

xF ∈ A∗(M).

For k > 1, we use the induction hypothesis and obtain βk+1
M =

∑
F

βMxF , where the sum

is over all descending k-step flags of non empty proper flats of M. For each of these flags
F = {F1 ⊊ F2 ⊊ · · · ⊊ Fk}, we take iF := min(F1) and

∑
iF /∈F

xF as representative of

βM . We then have

βk+1
M =

∑
F

βMxF =

∑
iF /∈F

xF

xF =
∑

G

xG .

The sum on the right-hand side is over all descending flags of non-empty proper flats of
M of the form G = {F ⊊ F1 ⊊ · · · ⊊ Fk}, since we chose iF to be min(F1).

Example 4.17. We prove that matroid M which we defined as the cycle matroid of the
graph in Figure 1.5 satisfies this lemma. We have β =

∑
0/∈F xF for the definition of β.

Moreover,

β2 = β1

 ∑
0/∈F, 1∈F

xF

+ β2

 ∑
0,1/∈F, 2∈F

xF

+ · · ·+ β4

 ∑
0,1,2,3/∈F, 4∈F

xF

 .

The first term of the sum represents the descending flags xFxG with min(G) = 1, the
second term the descending flags xFxG with min(G) = 2, and so on. We now compute
β3 as β3 = ββ2, with β2 the sum of all descending 2-step flags xFxG, with F ⊊ G.

β3 = β2

 ∑
0,1/∈F, 2∈F

xFxG

+ · · ·+ β4

 ∑
0,1,2,3/∈F, 4∈F

xFxG

 .

The first term represents the 3-step descending flags xFxGxH with min(H) = 1, the
second term the 3-step descending flags xFxGxH with min(H) = 2, and so on.

We now have all the elements to prove the following proposition.
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Proposition 4.18. For every 0 ≤ k ≤ r, we have

µk(M) = deg(αr−k
M βk

M).

Proof. By Lemma 4.16 we know that βk
M =

∑
F xF ∈ A∗(M), where the sum is over all

descending k-steps flags of non empty proper flats of M.

We then have
αr−k
M βk

M =
∑
F

αr−k
M xF .

By Proposition 4.10, if F is an initial descending flag, then xFα
r−k
M = αr

M ; if F is not
initial, then xFα

r−k
M = 0. Then,

deg(αr−k
M βk

M) = deg

 ∑
F∈Dk(M)

αr
M

 =
∑

F∈Dk(M)

deg(αr
M) = |Dk(M)|.

Since deg(αr
M) = 1, the assertion then follows from Lemma 4.14.

Example 4.19. We prove that the cycle matroid M of the graph in Figure 1.5 satisfies
this proposition. For each k = 0, . . . , 3, we want to show that deg(α3−kβk) = |Dk(M)|.
We just saw that β3 is the sum of 3-step (so initial) descending flags: deg(β3) = |D3(M)|.
Moreover, we also recall that β2 is the sum of all descending 2-step flags, it then follows
that αβ2 = α0

∑
xFxG =

∑
xixcl(ij)xcl(ij0). The terms of this sum are in bijection with

the 2-step initial descending flags (xixcl(ij)xcl(ij0) 7→ xixcl(ij)), hence deg(αβ2) = |D2(M)|.
Furthermore, we write α2β as α0(α0β0). We have that α0β0 =

∑
xixcl(i0)+

∑
xixcl(ij0)+∑

xcl(ij)xcl(ij0). We multiply again by α0 the last two sums, and each element of the first
sum by αk (with k /∈ cl(i0)). We get that just

∑
xixcl(i0)αk =

∑
xixcl(i0)xcl(i0k) is not

zero, and that the terms of this sum are in bijection with the 1-step descending initial
flags: xixcl(i0)xcl(i0k) 7→ xi. We then get deg(α2β) = |D1(M)|. Lastly, deg(α3) = 1 for
the definition of deg.

We now show how the validity of the hard Lefschetz theorem and of the Hodge-
Riemann bilinear relations for A∗(M) is the key of the proof of Conjecture 1.27.

Proposition 4.20. Let M be a matroid realizable over C, and ℓ1 and ℓ2 be two elements
of A1(M). If ℓ2 is nef, we get

deg(ℓ1ℓ1ℓr−2
2 )deg(ℓ2ℓ2ℓr−2

2 ) ≤ deg(ℓ1ℓ2ℓr−2
2 )2.

Proof. We first consider ℓ2 ample. We recall the definition of the Hodge-Riemann bilinear
form associated to ℓ2:

Q1
ℓ2
: A1(M)× A1(M) −→ R (a1, a2) 7−→ −deg(a1ℓr−2

2 a2).



4.2 The proof 47

Since M is a representable matroid over C, A∗(M) satisfies HL(ℓ2) and HR(ℓ2). It then
follows that the Lefschetz decomposition of A1(M) is valid :

A1(M) = ⟨ℓ2⟩ ⊕ P 1
ℓ2
(M).

From HR(ℓ2), it follows that Q1
ℓ2

positive definite on P 1
ℓ2
(M) and negative definite on

⟨ℓ2⟩. Indeed, Q1
ℓ2
(cℓ2, cℓ2) = −c2 deg(ℓ2) < 0, since deg(ℓ2) > 0 because ℓ2 is ample. We

now want to compute the signature of Q1
ℓ2

restricted to the subspace ⟨ℓ1, ℓ2⟩.
Since Q1

ℓ2
restricted to ⟨ℓ2⟩ is negative definite, the signature is (1, 1, 0) or (0, 1, 1). Hence,

the determinant of the matrix

(
Q1

ℓ2
(ℓ1, ℓ1) Q1

ℓ2
(ℓ1, ℓ2)

Q1
ℓ2
(ℓ2, ℓ1) Q1

ℓ2
(ℓ2, ℓ2)

)
is minor or equal to zero. Then,

Q1
ℓ2
(ℓ1, ℓ1)Q

1
ℓ2
(ℓ2, ℓ2) ≤ Q1

ℓ2
(ℓ1, ℓ2)

2.

Replacing Q1
ℓ2

with −deg(a1ℓr−2
2 a2), we obtain

deg(ℓ1ℓ1ℓr−2
2 )deg(ℓ2ℓ2ℓr−2

2 ) ≤ deg(ℓ1ℓ2ℓr−2
2 )2.

We now prove the statement when ℓ2 is nef. Since the ample cone is non-empty by
Lemma 4.8, we can choose ℓ an ample class. It is easy to see that, if ℓ2 is nef and ℓ is
ample, then ℓ2(t) := l2 + tℓ is ample for any t positive real number. For the first part of
the proof we have

deg(ℓ1ℓ1ℓ2(t)r−2) deg(ℓ2(t)ℓ2(t)ℓ2(t)r−2) ≤ deg(ℓ1ℓ2(t)ℓ2(t)r−2)2.

We obtain the statement by taking the limit t→ 0.

Theorem 4.21 (Theorem 8.8 in [AHK18]). The Chow ring of a generic matroid M

satisfies the hard Lefschetz theorem and the Hodge-Riemann bilinear relations.

Proof. The proof involves a delicate double induction argument, which we omit here as
it falls beyond the scope of this thesis.

From Theorem 4.21, it follows that Proposition 4.20 holds also for a generic matroid
M . We are now ready to prove Conjecture 1.27.

Theorem 4.22. Let M be a matroid of rank r+1. For every integer 0 < k < r, we have

µk−1(M)µk+1(M) ≤ µk(M)2.

Proof. We use descending induction on r(M). If k < r − 1, we apply the induction
hypothesis on the truncation of M , and conclude using µk(tr(M)) = µk(M) for k < r−1

(Remark 1.31). When k = r − 1, by Proposition 4.18 the statement is equivalent to

deg(α2
Mβ

r−2
M ) deg(β2

Mβ
r−2
M ) ≤ deg(α1

Mβ
r−1
M )2.

This inequality follows from Proposition 4.20 with ℓ2 = βM , which is nef by Lemma 4.9.
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Corollary 4.23 (Conjecture 1.27). Let M be a matroid of rank r + 1. We denote by
w0, . . . , wr+1 the Whitney’s numbers of the first kind of M . For every positive integer
k ≤ r, we have

wk−1wk+1 ≤ w2
k.

Proof. The assertion follows from Theorem 4.22 and Remark 1.28.
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