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Abstract
The Standard Model Effective Field Theory (SMEFT) provides a powerful and sys-
tematic framework for studying physics beyond the Standard Model by incorporating
higher-dimensional operators that respect symmetries. Within SMEFT, the flavor struc-
ture of these operators plays a crucial role in understanding fundamental aspects such
as fermion masses, mixing, and possible new sources of flavor violation.

In this thesis, we analyze how the imposition of specific flavor symmetries, namely
U(3)5 and U(2)5 flavor symmetries, constrain the SMEFT operators number and affect
the flavor dynamics of the theory. The U(3)5 symmetry, which corresponds to treating
the three generations of fermions as indistinguishable at leading order, serves as a useful
baseline for minimal flavor violation. On the other hand, the U(2)5 distinguishes the
third generation from the first two, providing a framework that is well-motivated by the
hierarchical structure observed in fermion masses and mixing. The breaking patterns of
these symmetries provide a rationale for the classification of new physics contributions
to flavor observables.

A crucial aspect of our analysis involves renormalization group evolution , which
governs the scale dependence of the SMEFT operators. The implementation of flavor
symmetries in the SMEFT typically implies a truncation of the operator series in powers
of the symmetry-breaking parameters. Therefore, to determine the RG evolution of the
Wilson coefficients, it is necessary to derive RGEs that are truncated consistently at the
chosen order in the symmetry-breaking insertions. To facilitate this, we introduce the
"RunSMEFT" code.

The phenomenological implications of these flavor symmetries are then examined in
a few experimental scenarios, with a particular focus on top physics. The top quark
sector serves as a crucial testing ground for new physics effects.



Il modello efficace della teoria di campo del Modello Standard (SMEFT) fornisce un
quadro potente e sistematico per studiare la fisica oltre il Modello Standard, incorporando
operatori di dimensione superiore che rispettano le simmetrie. All’interno dello SMEFT,
la struttura di sapore di questi operatori gioca un ruolo cruciale nella comprensione di
aspetti fondamentali come le masse dei fermioni, la mescolanza e le possibili nuove fonti
di violazione di sapore.

In questa tesi, analizziamo come l’imposizione di specifiche simmetrie di sapore, in
particolare le simmetrie U(3)5 e U(2)5, vincoli il numero di operatori dello SMEFT e
influenzi la dinamica di sapore della teoria. La simmetria U(3)5, che corrisponde a
trattare le tre generazioni di fermioni come indistinguibili al primo ordine, serve da
riferimento utile per la violazione minima di sapore. D’altra parte, la simmetria U(2)5

distingue la terza generazione dalle prime due, fornendo un quadro ben motivato dalla
struttura gerarchica osservata nelle masse e nella mescolanza dei fermioni. I pattern di
rottura di queste simmetrie offrono una base per la classificazione dei contributi della
nuova fisica agli osservabili di sapore.

Un aspetto cruciale della nostra analisi riguarda l’evoluzione del gruppo di rinor-
malizzazione (RG), che governa la dipendenza in scala degli operatori dello SMEFT.
L’implementazione delle simmetrie di sapore nello SMEFT implica tipicamente un tron-
camento della serie di operatori in potenze dei parametri di rottura della simmetria. Per-
tanto, per determinare l’evoluzione RG dei coefficienti di Wilson, è necessario derivare
equazioni di evoluzione del gruppo di rinormalizzazione (RGE) troncate in modo coerente
all’ordine scelto nelle inserzioni di rottura di simmetria. Per facilitare questo processo,
introduciamo il codice "RunSMEFT".

Le implicazioni fenomenologiche di queste simmetrie di sapore vengono quindi esam-
inate in alcuni scenari sperimentali, con un’attenzione particolare alla fisica del top. Il
settore del quark top rappresenta infatti un banco di prova cruciale per gli effetti della
nuova fisica.
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Chapter 1

Introduction

Since its conception in the early 70s, the Standard Model (SM) has been regarded as the
low-energy limit of an extended theory that includes more degrees of freedom, around or
above the electroweak scale, addressing some of its open issues. After years of running
the Large Hardon Collider (LHC), we can state that there is a mass gap between the SM
spectrum and these hypothetical new particles. How large this mass gap is, is probably
the most interesting open question nowadays in high-energy physics.

The observation of a mass gap above the SM spectrum, and the need to describe
it in possible general terms of physics beyond the SM, has motivated the systematic
study under the Standard Model Effective Field Theory (SMEFT) [1–9]. Its formulation
employs the degrees of freedom and gauge symmetries of the SM and it is structured
as an infinite series of operators sorted by canonical dimension. At observables level, it
reproduces a series expansion in (E/Λ), E being the energy exchanged in a process and
Λ the mass or the cut-off scale that characterizes the Beyond Standard Model (BSM)
dynamics.

With the situation of mass gap, SMEFT analysis had become standard across differ-
ent sectors of high-pT phenomenology, including top quark [10–19], electroweak vector
bosons [18–27], Higgs [18–20, 28–31] and jets [32–35], aiming at finding small deviation
from the SM predictions.

The largest obstacle to such an analysis is the proliferation in the number of inde-
pendent operators in the SMEFT. For instance, there are 2499 independent baryon and
lepton number-conserving SMEFT operators that arise at the leading order (dimension
6) [6]. If the field content had only one single generation instead of three, this number
would have been 76.

In this thesis, we will address the flavor structures of the baryon and lepton num-
ber conserving dimension-6 operators in the SMEFT. In the case of an anarchic flavor
structure, where all real and imaginary coefficients are of order one, constraints from
charged lepton flavor violation, neutral meson oscillations, and electric dipole moments
push the new physics (NP) scale to many orders of magnitude above the TeV range. As
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a result, only a small subset of operators influencing these rare transitions would have
any significant impact on phenomenology, making it unlikely that new effects could be
observed in high-pT collider experiments.

Postulating a flavor symmetry and its breaking terms can help in reducing and order-
ing via an appropriate power counting such large number of independent operators. Also,
it allows us to lower the overall cut-off scale of the EFT, ameliorating the fine-tuning
problem of the Higgs mass.

The price to pay for this series of advantages is the choice of flavor symmetry. Im-
posing a flavor symmetry and its breaking pattern (via a set of spurions) means making
a hypothesis about the UV physics. A flavor spurion can be viewed as a non-dynamical
,spurious, field that transforms under a nontrivial representation of the flavor group and
whose background value breaks the flavor symmetry. In this thesis we will focus on two
main cases, the U(3)5 and U(2)5 flavor symmetries.

The U(3)5 flavor symmetry is the maximal symmetry allowed by the SM gauge group,
while U(2)5 is a subgroup from U(3)5 that distinguishes the third generation from the
first two generations. U(3)5 allows us to implement the minimal flavor violation (MFV)
hypothesis [36, 37], which is the most restrictive consistent hypothesis we can utilize in
the SMEFT to suppress non-standard contributions to flavor-violating observables [37].
U(2)5 is an excellent approximate symmetry of the SM [38–40], that allows us to have a
much richer structure as far as third-generation dynamics is concerned.

In SMEFT, Renormalization Group Equations (RGEs) describe how the Wilson co-
efficients of higher-dimensional operators evolve with energy. From refs. [4–6] all the
SMEFT RGEs were calculated. The RGEs are available and automated already, but
only in the version with generic flavor indices [9, 41, 42]. In this thesis, we will present
a truncation technique, to truncate the RGEs up to a specific order to remain consis-
tent with the flavor symmetries. To do so we introduce the "RunSMEFT" code1, that
introduces a function that truncates and finds all the contributions to a specific order.

The remainder of this thesis is structured as follows:

• Chapter 2 provides an overview of Standard Model Theory (SM), outlining the
theoretical framework and stating some of its struggles.

• Chapter 3 introduces Effective Field Theory (EFT), explaining its motivation, key
concepts and technical tools.

• Chapter 4 presents the Standard Model Effective Field Theory (SMEFT), ex-
plaining how to remove redundancies in order to have a minimal non-redundant
dimension-6 operator basis (Warsaw Basis), detailing the anomalous dimension
matrices in SMEFT.

1The code is available on https://github.com/Mhmdkassir/RunSMEFT
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• Chapter 5 is one of the core chapters in this thesis, where we implement flavor
in Warsaw Basis structures, finding 2499 independent baryon and lepton number-
conserving SMEFT operators.
Then, we analyse how U(3)5 and U(2)5 flavor symmetries act on SMEFT, providing
a reduction of the large number of dimension six operators involving fermion fields.
Moreover, we establish a correspondence between Wilson coefficients in U(3)5,
considering only the third-generation Yukawa couplings, and those in U(2)5 without
the need for spurions.

• Chapter 6 is the second core chapter, that provides a general discussion of SMEFT
RGEs, and the truncation techniques for both flavor symmetries up to a specific
order.
Then we introduce "Run SMEFT" code, that will calculate the truncated SMEFT
RGEs in both flavor symmetries, and we showed someof the obtained results.

• Chapter 7 focuses on phenomenological analysis for U(2) breaking. And shows that
the assumption of an approximate flavor symmetry helps lowering the bounds on
the new physics scale.

Additional useful material is provided in the Appendices: List of contributions from
Higgs self-coupling, Yukawa coupling and gauge couplings to the RGEs are respectively
in app.A, app.B and app.C.
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Chapter 2

Standard Model Theory

The Standard Model of particle physics is a quantum field theory that describes the
fundamental particles and their interactions. It successfully unifies the electromagnetic,
weak, and strong forces under a single framework [43–45].

The SM is based on a local symmetry:

GSM = SU(3)C × SU(2)L × U(1)Y , (2.1)

where each term represents the symmetry associated with the strong and electroweak
forces.

2.1 Gauge Symmetries and Fields
• SU(3)C : Quantum Chromodynamics:

The SU(3)C group describes the strong interaction between quarks mediated by
gluons. The quarks transform into triplets under SU(3)C . The gauge field is
denoted by GA

µ , µ is the spacetime index (µ=0,1,2,3) and a is the color index
(a=1,. . . ,8). The field strength tensor for the SU(3) is defined as:

GA
µν = ∂µG

A
ν − ∂νGA

µ − g3f
ABCGB

µG
C
ν (2.2)

where g3 is the strong coupling constant and fABC is the structure constant of
SU(3).

• SU(2)L × U(1)Y : Electroweak Theory
The SU(2)L × U(1)Y group defines the electroweak interaction. The gauge fields
are W I

µ (for SU(2)L) and Bµ (for U(1)Y ).
The field strength tensors are respectively :

W I
µν = ∂µW

I
ν − ∂νW I

µ − g2ϵ
IJKW J

µW
K
ν (2.3)
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Bµν = ∂µBν − ∂νBµ (2.4)
where g2 is the coupling constant for SU(2)L and ϵIJK are the structural constant of
SU(2). There are no non-linear terms in (2.4) because U(1)Y is an Abelian group.
SU(2)L indices are usually denoted as {i,j,k} and {I,J,K} in the fundamental and
adjoint representations respectiviely. The SU(3)C indices in the adjoint represen-
tation are instead denoted as {A,B,C}, each runs from {1. . . 8}.

2.2 Fermion Fields in SM
• Quarks are fundamental particles that carry a color charge under SU(3)C and enter

the weak interaction under SU(2)L, and U(1)Y .

qL, uR, dR (2.5)

• Leptons do not carry color charge, they enter the weak interaction under SU(2)L,
and U(1)Y

ℓL, eR (2.6)

There is no evidence that an independent νR field exists.
Each of the five previously mentioned fermions can be described by the following
representations, each consisting of three generations:

qL(3, 2)+1/6, uR(3, 1)+2/3, dR(3, 1)−1/3, ℓL(1, 2)−1/2, eR(1, 1)−1 (2.7)

In the weak basis, we have ui = {uR, cR, tR}, di = {dR, sR, bR}, and

q1 =
(
uL
d′
L

)
, q2 =

(
cL
s′
L

)
, q3 =

(
tL
b′
L

)
,

d
′
L

s′
L

b′
L

 = VCKM

dLsL
bL

 , (2.8)

where VCKM is the quark mixing matrix. We will discuss it later.
In the Leptonic sector, we have ei = {eR, µR, τR}, and

ℓ1 =
(
ν ′
eL

eL

)
, ℓ2 =

(
ν ′
µL

µL

)
, ℓ3

(
ν ′
τL

τL

)
,

ν
′
eL

ν ′
µL

ν ′
τL

 = UPMNS

νeLνµL
ντL

 (2.9)

where UPMNS is the neutrino mixing matrix.
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2.3 Scalar Field
The Standard Model contains one fundamental scalar field, the Higgs Field. This field
is responsible for the electroweak symmetry breaking:

SU(3)C × SU(2)L × U(1)Y −→ SU(3)C × U(1)EM (2.10)

The Higgs mechanism provides a way to generate masses for W and Z bosons and massless
photon (γ). The Higgs field is introduced as a scalar doublet:

H(1, 2)+1/2 (2.11)

2.4 The Standard Model Lagrangian
The full Lagrangian of the Standard Model is [46]:

LSM = LKinetic + LHiggs + Lψ + LYukawa. (2.12)

LGauge contains the kinetic terms for gauge fields, LHiggs gives the scalar potential, Lψ
gives fermion mass terms,and LYukawa describes the Yukawa interactions.

I will use the same notation of [4–6].

2.4.1 LKinetic

The Kinetic part is given by:

LKinetic =− 1
4G

µν
A GAµν −

1
4W

µν
I WIµν −

1
4B

µνBµν + iqL /DqL + iuR /DuR + idR /DdR

+ iℓL /DℓL + ieR /DeR + (DµH)†(DµH)
(2.13)

The covariant derivative is

Dµ = ∂µ + ig3G
A
µT

A + ig2W
I
µ tI + ig1yiBµ (2.14)

where TA = λA/2 are the SU(3)c generators, with normalization Tr(TATB) = 2δAB the
Gell-Mann Matrices taken to be
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λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (2.15)

tI = τ I/2 are the SU(2)L generators, and the Pauli matrices, taken to be

τ 1 =
(

0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
. (2.16)

and yi are the U(1)Y charges.
Forinstance H has hypercharge yH=1/2, it is SU(3)C singlet and a SU(2)L doublet

so that D acting on H is given by the matrix equation DµH = (∂µ + ig2t
IW I

µ + ig1Bµ/2)
LKinetic is flavor-universal and it conserves CP.

2.4.2 LH
The scalar part is defined by:

LH = −µ2H†H − λ(H†H)2 = −V (H) (2.17)

µ2 < 0 is the mass term, it indicates spontaneous symmetry breaking (SSB) creating a
Mexican hat. λ > 0 is the self-interaction coupling, it is needed in order to bound the
potential from below, and have a stable system. This part is also CP conserving.

V (H) is the Higgs potential which was postulated in 1964 by a group of physicists
independently developing the idea of the spontaneous symmetry breaking, one of them
is Peter Higgs [47–49].

Later Sheldon Glashow, Abdus Salam, and Steven Weinberg in 70s used the Higgs
potential to break the symmetry and give the masses to W and Z while keeping the
photon massless.

Without loss of generality, we can write 2.17:

LH = −λ
(
H†H − v2

2

)2

(2.18)
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v2 = −µ2

λ
.

The scalar field H acquires a VEV, |⟨H⟩| = v√
2 . There is an arbitrary choice of the

direction of |⟨H⟩|. Having the real direction of the down component

⟨H⟩ =
(

0
v/
√

2

)
(2.19)

The residual symmetry after spontaneous symmetry breaking U(1)EM has a generator
that is associated to the electric charge that annihilates the vacuum. It is T3+Y. The
unbroken subgroup is identified with U(1)EM , and then its generator Q, is identified as

Q = T3 + Y (2.20)

T3 is the third generator of the SU(2)L group (the weak isospin), Y is the hypercharge
of the field.

According to the non-Abelian spontaneous symmetry breaking and after introducing
the Goldstone bosons and one physical degree of freedom, Higgs field can be written as
the following:

H(x) = exp[ i2(σaθa(x)− Iθ3)]
1√
2

(
0

v + h(x)

)
(2.21)

The exponential represents the broken generators and their associated Goldstone bosons
θa(x). h(x) is the physical scalar field that remains after symmetry breaking. The local
SU(2)L × U(1)Y symmetry of the Lagrangian allows one to rotate away the explicit
dependence on the three θa(x). In this gauge, Higgs field has only one degree of freedom:

H(x) = 1√
2

(
0

v + h(x)

)
(2.22)

Higgs boson mass can be obtained by substituting 2.22 in 2.18, and is given by

m2
h = 2λv2 (2.23)

Experiment gives [50]
mh = 125.35± 0.15GeV. (2.24)

Via GF measurement in the muon decay

v ≈ 246GeV (2.25)

Defining an angle θW via
tan θW ≡

g′

g
(2.26)

10



Defining the following four boson gauge states [51]

W±
µ = 1√

2
(W1 ∓ iW2)µ, Z0

µ = cos θWW3µ − sin θWBµ, A0
µ = sin θWW3µ + cos θWBµ

(2.27)
W’s are charged under electromagnetism, while A0

µ and Z0
µ are neutral [52].

Having (DµH)†(DµH) in the following form

= 1
8
(
0 v

)( g2W3µ + g1Bµ g2(W1 − iW2)µ
g2(W1 + iW2)µ −g2W3µ + g1Bµ

)(
g2W

µ
3 + g1B

µ g2(W µ
1 − iW

µ
2 )

g2(W1 + iW2)µ −g2W
µ
3 + g1B

µ

)(
0
v

)
(2.28)

and substituting the four gauge boson states, the vector boson becomes:
1
4g

2
2v2W+µW−

µ + 1
8(g2

2 + g2
1)v2Z0µZ0

µ (2.29)

It is easy to see that this a mass terms with

m2
W = 1

4g
2
2v2, m2

Z = 1
4(g2

2 + g2
1)v2, m2

A = 0 (2.30)

Then the gauge boson associated with the unbroken U(1)EM symmetry, the photon Aµ,
remains massless.

From this vector boson, some relations can be defined:
m2
W

m2
Z

= g2
2

g2
2 + g2

1
(2.31)

This relation is testable. The masses can be derived from the measured spectrum, and
the other side from interaction rates. Using eq.2.26, relation 2.31 can be expressed in
terms of θW [53]:

ρ ≡ m2
W

m2
Z cos2 θW

= 1 (2.32)

This is a consequence of the way the symmetry is spontaneously broken through the
Higgs mechanism with a single SU(2) doublet. And it is true only at tree level.

Experimentally [54,55],
mW = 80.377± 0.012GeV, mZ = 91.1876± 0.0021GeV (2.33)

2.4.3 LΨ

• In the SM there is no Dirac mass terms. For a generic Dirac form:
Lmass,Dirac = −mΨΨ = −m(ΨLΨR + ΨRΨL) (2.34)

The left-handed and right-handed fermions belong to different representations.
Then the term ΨLΨR is not gauge invariant. No direct coupling with mass term
without the violation of gauge invariance.
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• In SM there are no Majorana mas terms. For a generic Majorana form:

Lmass,Majorana = −1
2mΨcΨ + h.c (2.35)

where Ψc = CΨT is the charge-conjugation of Ψ.
The condition for Majorana mass term to exist is that the fermion must be neutral
under U(1)Y so that Ψc has the same quantum numbers of Ψ. However, that is
not right since all the fermions have Y ̸= 0.

Thus,
LΨ = 0 (2.36)

2.4.4 LYukawa

The Yukawa part is given by:

LYukawa = −Y d
prdRpH

†jqr − Y u
pruRpH̃

†jqr − Y e
prℓeRp

H†jℓr + h.c (2.37)

with p,r are the flavor indices. where H̃ is defined by H̃j = ϵjkH
⋆k where the SU(2)L

invariant tensor ϵjk is defined by ϵ12 = 1 and ϵjk = −ϵkj, j, k = {1, 2}.
After symmetry breaking,

LYukawa = − v√
2
Y d
prdRpdLr −

v√
2
Y u
pruRpuLr −

v√
2
Y e
preRpeLr + h.c (2.38)

It seems as a mass term, but first some redundancy must be removed to get to the mass
basis. Doing that diagonalizing Yukawas is needed.

Defining Mu
pr = v√

2Y
u
pr ,Md

pr = v√
2Y

d
pr, and M e

pr = v√
2Y

e
pr, the mass matrices. Doing

field redefinition by performing unitary transformation:

eLp → UeLpweLw , eRp → UeRpweRw ,

uLp → UuLpwuLw , uRp → UuRpwuRw ,

dLp → UdLpwdLw , dRp → UdRpwdRw .

(2.39)

The mass matrices are diagonalized by:

M̂u = U †
uLMuUuR, M̂d = U †

dLMdUdR, M̂e = U †
eLMeUeR. (2.40)

The flavour indices are suppressed here. Equations 2.40 are diagonal matrices containing
the mass of the up-type, down-type quarks, and lepton, respectively.

Going back to the Kinetic terms it should be modified by these basis change. The
Gauge boson interactions do not mix families in the flavour basis, and its Lagrangian is

12



Lflavor-basis =
(
uL dL

)p [
i/∂ + γµ

(g1
6 Bµ + g

2W
3
µ

g2√
2W

+
µ

g2√
2W

−
µ

g1
6 Bµ − g2

2 W
3
µ

)](
uL
dL

)p

+ uR
p
(
i/∂ + g1

2
3
/B
)
upR + dR

p
(
i/∂ − g1

1
3
/B
)
dpR

− v√
2
[
dL

p
Md

prd
r
R + uL

pMu
pru

r
R + h.c

]
(2.41)

where p and r are the flavor indices. After field redefinition, there will be a part in the
following form,

e

sin θw

[
W+
µ uL

iγµ(U †
uLUdL)ijdjL +W−

µ dL
i
γµ(U †

dLU
ij
uL)ujL

]
(2.42)

If UuL = UdL then the following transitions are forbidden:
• K −→ π decay (s −→ u) [56].

• B-meson decay (b −→ u or b −→ c) [57].
This contradicts experimental evidence of flavor-changing weak decays.

Then UuL ̸= UdL. Therefore, all the interesting mixing effects are given by a single
matrix,

VCKM = U †
uLUdL =

V11 V12 V13
V21 V22 V23
V31 V32 V33

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (2.43)

known as Cabbibo-Kobayashi-Maskawa (CKM) matrix [58,59]. VCKM matrix is a unitary
matrix with 9 independent parameters. Unitarity reduces the paramters from 18 to 9,
leaving 3 angles and 6 phases. However, Yukawa interactions break the U(3)3 symmetry,
preserving a residual global U(1)6 symmetry that acts independently on each quark
flavor. Only one combination leaves physics invariant (it is the global phase, which is
related to the conservation of baryon number). Thus, 5 of the phases can be eliminated
leaving 1 phase, as a physical parameter. So, we remain with 3 angles and one phase.

Then the remaning are 3 angles, θ12, θ23, and θ13 correspond to rotations in the i-j
flavor planes, and the phase δ, corresponds to the CP-violation.

The most general VCKM can be written as1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

×
 cos θ13 0 sin θ13e

iδ

0 1 0
− sin θ13e

iδ 0 cos θ13

×
 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23− c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


(2.44)

13



where cij ≡ cos θij and sij ≡ sin θij. This has become the standard parametrization.
Experimentally [60],

θ12 = 13.02°±0.05°, θ23 = 2.41°±0.03°, θ13 = 0.20°±0.01°, δCKM = 66°±3° (2.45)

Since the Standard model does not allow for bare mass terms for fermions, their
masses can only arise from the Yukawa. After the SSB, the leptonic masses are,

me = yev√
2
, mµ =

yµv√
2
, mτ = yτv√

2
(2.46)

the up-type quark masses are,

mu = yuv√
2
, mc = ycv√

2
, mt = ytv√

2
(2.47)

the down-type quark masses are,

md = ydv√
2
, ms = ysv√

2
, mb = ybv√

2
(2.48)

While all the neutrinos remain massless:

mνe = mνµ = mντ = 0 (2.49)

Their masslessness is related to an accidental symmetry in the Standard Model.
Experimentally [61],

me = 0.510998946(3)MeV, mµ = 105.6583745(24)MeV,

mτ = 1776.86± 0.12MeV

mu = 2.2+0.6
−0.4, mc = 1.27± 0.03GeV,mt = 173.2± 0.09GeV

md = 4.7+0.5
−0.4MeV, ms = 96+8

−4MeV, mb = 4.18+0.04
−0.03GeV

(2.50)

where u-,d- and s-quark masses are given at scale µ = 2GeV , c- and b-quark masses are
the running masses in the MS scheme, and t-quark mass derived from direct measure-
ments.

Standard Model particles can be summed up by the following tables:

2.5 Standard Model Equations of Motion
It is important to focus on the SM equations (EOM) of motion since it will play a useful
role in the choice of basis in the SMEFT later.

• EOM for the Higgs field:

D2Hk − λv2Hk + 2λ(H†H)Hk + qjY †
uuϵjk + dYdqk + eYeℓk = 0 (2.51)
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Particle Spin Color Q Mass [v]
W± 1 (1) ±1 1

2g
Z0 1 (1) 0 1

2
√
g2 + g′2

A0 1 (1) 0 0
g 1 (8) 0 0
h 0 (1) 0

√
2λ

Table 2.1: Bosonic particles

Particle Spin Color Q Mass [v]
e, µ, τ 1

2 (1) -1 ye,µ,τ√
2

νe, νµ, ντ
1
2 (1) 0 0

u,c,t 1
2 (3) +2

3
yu,c,t√

2
d,s,b 1

2 (3) −1
3

yd,s,b√
2

Table 2.2: Fermionic particles

• EOM for the fermionic fields:

i /Dqj = Y †
uuH̃j + Y †

d dHj, i /Dd = YdqjH
†j, i /Du = YuqjH̃

†j,

i /Dℓj = Y †
e eHj, i /De = YeℓjH

†j.
(2.52)

• EOM for the gauge fields:

[Dα, Gαβ]A = g3j
A
β , [Dα,Wαβ] = g2j

I
β, DαBαβ = g1jβ, (2.53)

[Dα, Fαβ] is the covariant derivative in the adjoint representation.
And the gauge current are defined as:

jβ =
∑

ψ=u,d,Q,e,L
ψyiγβψ + 1

2H
†i
←→
D βH, jIβ = 1

2qτ
Iγβq + 1

2ℓτ
Iγβℓ+ 1

2H
†i
←→
D I

βH,

jAβ =
∑

ψ′=u,d,Q
ψTAγβψ

(2.54)
With

H†i
←→
D βH = iH†(DβH)−i(DβH)†H, H†i

←→
D I

βH = iH†τ I(DβH)−i(DβH)†τ IH (2.55)

τ are the Pauli matrices.
These equations of motion are not the final result which can be modified through

corrections from the higher-order effective Lagrangian parts.
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2.6 SM struggles
One of the greatest achievements of the Standard Model is being a renormalizable theory
with dimension d ≤ 4 for all operators. It unifies electromagnetism and weak interac-
tions under the name of electroweak (EW) and incorporates Quantum Chromodynamics
(QCD) for the description of strong interactions.

Beyond Standard Model Theories (BSM) emerged because SM lacks the description of
some aspects of nature. For instance, SM does not describe gravity. As Quantum Gravity
(QG) is non-renormalizable, when treating General Relativity as a quantum field theory,
it diverges at high energies requiring an infinite number of counterterms, each having
new parameters [62]. Moreover, SM describes only a little portion of the universe because
recent discoveries have found that the universe is full of Dark matter and Dark energy
that make ∼ 95% of the universe, while ordinary matter ∼ 5% [63–65]. Furthermore, SM
treats neutrino as being massless, due to accidental symmetries, but recent experiments
have found that there are neutrino oscillations [66–70], which indicates that they have
masses. One way of describing neutrino mass is by going to the operator d = 5 with
Majorana mass terms, described by the See-Saw mechanism [71–74]. SM holds CP
violation in the weak force, but it is not enough to explain matter-antimatter asymmetry
[75, 76]. Why is the universe matter dominant? How did the universe reach an out-of-
equilibrium state?

Additionally, the Higgs sector of the SM is full of problems:

• Hierarchy problem [77]:
In the presence of heavy BSM physics coupling to the Higgs, the Higgs boson
receives large quantum corrections from loop diagrams, and without fine-tuning
these corrections can drive the mass of the Higgs boson to be in the ultraviolet
scale (UV). Supersymmetry (SUSY) [78] can be a possible solution, also Composite
Higgs Models [79] can be a solution.

• Stability problem [80]:
Assuming that there is only SM (no BSM), the Higgs quartic coupling runs to
negative values at high energies, because of the running induced by the top loop.
This means that at very high energies the EW vacuum could be metastable or not
be a minimum at all.

• Triviality [81]:
Using renormalization group equations (RGE) the running of λ can be calculated.
Triviality implies that λ at some energy scale can approach zero making the theory
non-interacting or trivial.

Flavor Puzzle is also a problem in the SM. It refers to the unexplained existence of
three generations of quarks and leptons, as well as the pattern of their masses and mixing
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angles. SM describes the interactions of these particles successfully. However, it does
not provide an explanation why there are exactly three generations or even why there
is a several-orders-of-magnitude difference between their masses. Also, the CKM matrix
appears to be arbitrary, it requires experimental input rather than emerging from the
theory. The Yukawa couplings in SM that describe the masses and mixing are just free
parameters. Various theories tried to explain these patterns, such as Froggatt-Nielsen
mechanism [82], Grand unified theories (GUTs) [83], Pati-Salam model [84], Partial
Compositeness [85, 86], Modular Flavor Symmetries [87] developed recently.

While the Standard Model has successfully described known particle interactions,
several questions are still open. A powerful approach to explore such new physics while
achieving the consistency with known experimental data is the framework of Effective
Field Theories (EFTs). The next chapter will focus on the EFTs and their technicalities.
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Chapter 3

Effective Field Theory

3.1 Why EFT’s?
Effective Field Theory (EFT) is a very useful way to do calculations in multi-scale
problems [88,89]. Cases with separated scales are often in nature. We consider a system
with two well-separated mass scales: a heavy sector with mass M and a light sector
describing the observed degrees of freedom. Our focus is on describing physics at energies
E ≪ M , where the heavy states cannot be directly produced but induce low-energy
effects via an effective field theory (EFT).1.

In quantum field theory (QFT), only the degrees of freedom (DoF) relevant to the
energy scale of interest are needed for calculations. Heavy particles with masses far
above this scale do not disappear but instead influence low-energy physics indirectly
through virtual effects. These particles momentarily "pop in and out" in quantum loops,
modifying interaction strengths and other parameters. As a result, the operators de-
scribing physical observables involve only light degrees of freedom, while the effects of
heavy particles are encoded in corrections to coupling constants and higher-dimensional
operators. This leads to a scale-dependent description where interactions evolve with
energy, a concept formalized by the renormalization group.

In the case of the hydrogen atom, you would only need to consider the electron and
proton as dynamical degrees of freedom, since the top quark is decoupled at this scale.
Only light interactions (such as electromagnetic interactions) matter for calculating the
energy levels. In contrast, when measuring the muon g-2, the top quark’s indirect effects
(via loop corrections) must be included, but it doesn’t change the fact that the muon is
the primary dynamical degree of freedom in the system.

Moreover, as we will see later, it is sufficient to improve the accuracy of our prediction
by introducing more operators in the theory that are allowed by the symmetries in

1For great review of EFT’s see Refs. [90–96] . The original works that laid the groundwork for the
modern EFT’s include [97–103]
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the theory. Symmetries are the guide of building new operators. The structure and
coefficients in front of these operators, when fit to experimental data, might be able to
tell something related to the integrated heavy particles.

As a result, EFT’s are a very good tool to study new particles or new physics.

3.2 A theorem of Weinberg
Theorem 3.2.1 For any given order in perturbation theory and for a given set of asymp-
totic states, the most general possible Lagrangian containing all terms allowed by the
assumed symmetries will yield the most general S-matrix elements consistent with ana-
lyticity, perturbative unitarity, cluster decomposition, and assumed symmetry principles.

Initially, this theorem was written in the domain of pion physics. But nothing in
this theorem says that it is only applicable to this domain, and it is expected that this
theorem should work in any EFT.

According to Weinberg, to construct the most general S-matrix consistent with sym-
metries, we must write the most general Lagrangian that includes all possible operators
allowed by the symmetries, regardless of their dimension. However, this leads to an infi-
nite number of interaction terms, making the theory non-renormalizable, meaning that
an infinite number of counterterms would be required to absorb loop divergences. Renor-
malizable theories (with operators of dimension d≤4) are predictive because they allow
us to relate a finite number of Lagrangian parameters to physical observables. However,
they do not inherently tell us where they break down—e.g., QED is renormalizable, but
its behavior at ultra-high energies remains unknown without a collider of unimaginable
scale. The key to handling non-renormalizable interactions is Effective Field Theory
(EFT): the infinite set of higher-dimensional operators can be systematically organized
into a series by their increasing canonical dimension. Since higher-dimensional operators
are suppressed by powers of some large energy scale Λ, we can truncate the series at a
given order, making the theory predictive order by order in an expansion in 1/Λ. This
scale Λ represents the limit of validity of the EFT and signals the presence of new physics
beyond it. Thus, while renormalizable theories are simpler, EFT provides a controlled
way to include non-renormalizable effects while retaining predictivity.

Nonrenormalizable theories are more predictive theories. For example, Fermi theory
for weak interaction [104] is a non-renormalizable theory that tells you that at 300 GeV it
will loose unitarity and then break, then there is a UV-completion. For more discussion
see Refs [105,106] In addition, non-renormalizable theory are still renormalized.

3.3 Dimensional Analysis
In field theory of d dimensions, the action (S) can be expressed as:
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S =
∫

ddxL(x) (3.1)

In natural units (ℏ = c = 1) , the action is dimensionless. Coordinates have the
dimension [Length]=1/[Energy], therefore for d spacetime dimensions, the lagrangian
density has mass dimension d,

[L] = d (3.2)
Lagrangian density has the following structure,

L(x) =
∑
i

ciOi(x) (3.3)

Oi are Lorentz invariant operators with coefficients ci. Then the sum if there dimen-
sions is equal to d. Supposing, operator has the dimension of ζ, then its coefficient has
dimension d− ζ.

Doing this analysis for other lagrangian parts, we will find the following,

[ψ] = 1
2(d− 1) [H] = 1

2(d− 2)

[Dµ] = 1 [gAµ] = 1

[Aµ] = 1
2(d− 2) [g] = 1

2(4− d)

(3.4)

In d=4 spacetime dimensions,

[H] = 1, [ψ] = 3/2, [Aµ] = 1, [Dµ] = 1, [g] = 0 (3.5)

In d = 4− 2ϵ dimension [107], [g] = ϵ.2
Renormalizable interactions have coefficients with mass dimension≥0. Any operator

with dimension greater than 4 will be non-renormalizable and irrelevant. Operators with
dimension less than 4 are super-renormalizable and relevant. Marginal operators have
dimension equal to 4.

3.4 EFT Expansion
Following weinberg theorem in section (3.2), constructing the most general effective
lagrangian is constructed from the allowed operators, respecting the symmetries and

2In dimensional regularization, using MS subtraction scheme, by introducing n power of µ̂(4−d)/2 =
(µ
√
eγ/4π(4−d)/2 for each power of the coupling present defining the amplitude [8], so that the renor-

malized coupling remains dimensionless. γ ≈ 0.5772 is the Euler-Mascheroni constant. This constant
will always cancel in observable quantities [108]. This argument are formulated for a one loop example
but they generalize to higher loop orders directly.
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yielding the most general S-matrix elements, and has an expansion in powers of the
operator dimension

LEFT =
∑
ζ≥0,i

c
(ζ)
i O

(ζ)
i

Λζ−d =
∑
ζ≥0

Lζ
Λζ−d (3.6)

The main difference here that one does not stop at ζ = d, but include operators with
arbitrary high dimension. Λ is a short-distance scale at which new physics occur it is
introduced such that the coefficients c(ζ)

i are dimensionless.
In d=4,

LEFT = Lζ≤4 + L5

Λ + L6

Λ2 + . . . (3.7)

LEFT is an expansion in power of 1/Λ.

3.5 Power Counting and Renormalizability
By dimensional analysis, the dimension of a scattering amplitude for a single insertion
of an operator of dimension ζ with some typical momentum p,

M∼
(
p

Λ

)ζ−d
(3.8)

The insertion of a set of higher dimension operators in a tree graph leads to an
amplitude

M∼
(
p

Λ

)n
(3.9)

where
n =

∑
i

(ζi − d) (3.10)

summing over the inserted operators. This is known as the EFT power counting formula.
This formula holds for any graph, not just for tree graphs.

Looking back at 3.7, the first term is a renormalizable Lagrangian, and the the extra
terms violate the condition of reneormalizability. However, its amplitude is 3.9. Thus,
even though we require an infinite number of counterterms to get a finite results, we
need only a finite subset of operators to get an answer accurate to a given order in an
energy-momentum expansion. The higher terms are suppressed then we can truncate
the series at a specific accuracy level. For most physical problems, only a finite number
of terms are necessary, even if the theory requires an infinite set of operators.
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3.6 Renormalization Group Equations
Renormalization Group is a great idea that shaped much our understanding of todays
quantum field theory.

There are two versions of the renormalization group [109]3,

• The Wilsonian renormalization group:
In a finite theory with a UV cutoff Λ, the physics at energies E≪ Λ is independent
of the precise value of Λ. Changing Λ changes the couplings in the theory so that
observables remain the same.

• The continuum renormalization group:
Observables are independent of the renormalization conditions, in particular, of the
scales p0 at which we choose to define our renormalized quantities. This invariance
holds after the theory is renormalized and the cutoff is removed (Λ = ∞, d = 4).
In dimensional regularization with MS, the scales p0 are replaced by µ, and the
continuum renormalization group comes from µ independence

The two versions are closely related by technically different.

We will focus on the Continuum one, since for later SMEFT is designed for practical
applications to low-energy processes where the scale dependence of operators coefficients
matters. Also, it can be natural implemented using the MS scheme as we said.

Without going deep in calculations since it is not the point here.

• For a Wilsonian picture, the RGE will forces

Λ d

dΛCn = βn[(Cm),Λ] (3.11)

where βn are the beta function, and Cn are the Wilson coefficients of the operators.

• For continuum picture,
µ
d

dµ
Cn = γnmCm (3.12)

where γnm is called the anomalous dimension. It is an important quantity that tell
us about the deviation from the classical scaling behavior.

Any operator with dimension greater than 4 will be non-renormalizable and irrelevant.
Operators with dimension less than 4 are super-renormalizable and relevant. Marginal
operators have dimension equal to 4. However,if the If a marginal operator acquires an

3For further information about RG see Refs [110–116]
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anomalous dimension, it can shift slightly to marginally relevant or marginally irrelevant.
If it becomes marginally relevant, it behaves like a relevant operator. For marginally
irrelevant, it behaves like an irrelevant operator. From the Wilsonian point of view,
marginally relevant operators are the same as irrelevant ones – one cannot keep their
couplings fixed at low energy and remove the cutoff.

3.7 Integrating out a Field
“Integrating out a field" as nomenclature follows from the path integral approach to
defining an effective action as developed by Wilson [117,118]. Consider a physical system
with lagrangian LUV (L,H), L for light field and H for heavy one.

The full dynamics is inside LUV . For low energy scales ≪ the mass of the heavy, the
external states are the light ones and the heavy could only be virtual.

Considering the following generating function,

ZUV [JL, JH ] =
∫

[DL][DH]exp
[
i
∫
d4x(LUV (L,H) + JLL+ JHH)

]
(3.13)

All n-point correlation functions L’s and H’s can be obtained by differentiating ZUV
with respect to the current J:

(−i)n 1
Z[0]

∂nZ[J ]
∂J(x1) . . . ∂J(xn)

∣∣∣∣∣∣
J=0

= ⟨0|T{ϕ1ϕ2 . . . ϕn}|0⟩ (3.14)

In EFT we only need the correlators of L’s.
By eliminating H, meaning that JH = 0, we formally performed the integral:

ei
∫
d4xLEF T =

∫
DHei

∫
d4xLUV (3.15)

Then we get the following:

ZEFT[J ] = ZUV [JL, JH ]
∣∣∣
JH=0

=
∫

[DL]exp
[
i
∫
d4x(LEFT (L) + JLL)

]
(3.16)

LEFT here is a complicated object, it has local terms which can appear from the
expansion in local operators. Also, it could have local terms that emerge after integrating
out degrees of freedom.

In an EFT, the interactions must be local, meaning that the Lagrangian is written
as a sum of local operators involving fields and their derivatives at the same spacetime
point. This follows from the fact that integrating out heavy fields with mass M (where
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M≫p, with p being the relevant momentum scale) leads to a local expansion in powers
of p/M.

Non-local interactions, characterized by terms with derivatives in the denominator
(e.g., 1/2 or 1/(p2 −M2)), arise only when integrating out light or on-shell particles,
which is inconsistent with the EFT approach. In EFT, we take the opposite limit: p−→0,
not M−→0. This ensures that the non-local propagator structure collapses into a local
power series.

Let’s continue, the point is to find LEFT . The saddle-point approximation is useful
here. The equation of motion of H in the presence of JH and L at tree level is

δS

δH
= 0 −→ H = Hcl[L, JH ] (3.17)

Since H is heavy, thus having a large mass M, this can be solved perturbatively in
power of 1/M:

Hcl = f [L] +O(1/M) (3.18)
Then equation 3.17 becomes

δS

δH

∣∣∣∣∣
H=Hcl(L)

= 0 (3.19)

Then we get the following result:

ZUV [JL, 0] =
∫

[DL]exp[i
∫
d4x(LUV (L,Hcl(L)) + JLL)] (3.20)

Then at tree level,
LEFT (L) = LUV (L,Hcl(L)) (3.21)

H is no more an independent degree of freedom. The saddle point approximation
and the calculation done above are only valid on tree level. But integrating out with
functional methods could be done at any loop order.

3.8 Matching
An EFT describes particle inetactions without the need of all the details in the UV
completion. Since they both behave differently at high energies and they are treated
separately each with its own renormalization and counterterms.

As we have seen in section 3.7, we did approximations. Sometimes, EFT can accu-
rately reproduce the low-energy behavior of the UV theory, but to ensure the match,
their parameters need to match. This process called matching, determining the Wilson
coefficients that appears in the EFT as a function of the parameters in the UV model.
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If the UV theory is weakly coupled, matching can be done perturbatively. That will
include computing scattering amplitudes in both, then equating them in the low energy
limit. This determines the EFT parameters in terms of the UV parameters.

Matching is typically done at tree level but it can be done at higher orders in per-
turbation theory. While both the UV and IR divergences appear in calculations, they
cancel out when matching is done [106].

Matching is usually done at the energy cale of the heavy particles that were removed
in the EFT. While this isn’t required, but it makes the calculations more stable when
combined with the RGE since it helps reducing the large logarithmic corrections, which
track how parameters change with energy. Techniques like dimensional regularization
and minimal subrtraction (MS) simplify these calculations. For excellent examples about
matching see the Ref [119–128]

Defining the Effective Field Theory (EFT) framework, which allows us to describe
physics beyond the Standard Model in a model-independent way, we now focus on a
specific and well-motivated application: the Standard Model Effective Field Theory
(SMEFT). In EFT, new physics effects are encoded in higher-dimensional operators built
from SM fields, but without assuming a particular UV completion. SMEFT provides a
systematic approach to extend the Standard Model (SM) while preserving its gauge sym-
metries, allowing us to parametrize potential deviations from the SM predictions. In the
next chapter, we explore the construction of SMEFT, the classification of operators, and
the implications of redundancies and symmetries in this effective description.
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Chapter 4

The Standard Model Effective Field
Theory (SMEFT)

4.1 Operator bases in SMEFT
The standard model theory has been striking successful in its experimental predictions.
These experiments were successful and surprising as well. There were events that are
difficult to understand within the context of standard model. Numerous suggestions have
been made to understand the origin of such events, but we do not have enough evidence
proving that any of these models are realized in nature.

Due to lack of evidences, it would be useful to have a model independent parametriza-
tion of the new physics. This can be done from the effective operator point of view, in the
same spirit as the classification of baryon and lepton number violating processes [129,130].

If we assume that the standard model indeed describes physics well in the range up
to the electroweak mass, but above, take it to be an effective low energy theory in which
heavy particles are integrated out, then it is compelling to describe physics up to energies
of order of Λ by an effective Lagrangian, that consist of higher (>4) dimensional effective
operators which are scaled by appropriate inverse power of Λ. As we have said before
these terms must respect the symmetries in the theory. Involving the scalar, fermions
and gauge bosons of the standard model. The effective lagrangian is as follow:

LSMEFT = LSM + L(5) + L(6) + L(7) + . . . , L(d) =
nd∑
i=1

C(d)i

Λd−4Q
(d)
i (4.1)

There are no dimension five operators consistent with the three requirements.
For dimension six operator, the first work or expansion of operator was in 1986 by

Leung, Love and Rao [131]. They were able to find 120 operator, but it was full of redun-
dances. Then in the same year Buchmuller and Wyler [1]were able using the equations
of motion and Fierz identities to reduce the number of operators to 80. Furthermore,
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in 2010, a group of people in University of Warsaw were able to reduce the number
more, until 59 independent operator that respect all the three requirements. These non-
redundant operators and this work was named as Warsaw basis. We will not go for other
operators, since our work will focus on operators of dimension 6 1. The Warsaw basis
is widely used, but it is not the only possible option. Depending on the analysis done,
other bases could be suitable. A commonly adopted subset of dimension-6 operators in
phenomenological analysis is the so-called strongly interacting light Higgs (SILH) ba-
sis [2] is sometimes referred to as an operator basis in some literature,as is the HISZ
subset of operators [148].

4.2 Removing Redundancies
As it was mentioned the previous section, there was many redundancies. Operators are
redundant if they yield to the same contribution to all physical observables. To reduce
the redundant operators we will need some techniques, we will proceed in them. But
this discussion is not meant as a complete description for reducing a given operator set
to a basis, but instead it only highlights the most common mehtods used [149].

4.2.1 Integration by part
In quantum field theory, total derivative terms in the Lagrangian give no physical effects,
as long as the field configurations go to zero fast enough at infinity. Keeping the action
S unchanged under the integration by parts (IBP). Such property allows us to relate
different operators by rewriting them using the IBP. For example in the SM, the Higgs
kinetic term can be expressed in two equivalent forms:

(DµH)†(DµH) and −H†D2H (4.2)

Similarly, for SMEFT, IBP can be used in order to help simplifying the operator basis
and eliminate redundancies. For example:

(qγµDνq)Wµν (4.3)

After doing integration by parts, we will have∫
d4x(qγµDνq)Wµnu = −

∫
d4xqγµq(DνWµν) (4.4)

Now, using equation of motion for the gauge field:

DνWµν = g3jµ (4.5)
1For more details about higher dimensional operators see Ref [132–147]
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where jµ is the gauge current, after substituting∫
d4x(qγµDνq)Wµν = −g

∫
d4xqγµqjµ (4.6)

This means that operator in 4.3 is redundant and can be eliminated.

4.2.2 Field redefinitions
One of the most significant forms of equivalence among different effective operators arises
from field redefinitions. According to Lehmann-Symanzik-Zimmermann (LSZ) reduction
formula [150], we are free to choose any form for the interpolating quantum fields in our
theory, provided that the fields we use, can generate all the relevant states from the vac-
uum, without impacting physical observables. Such flexibility enables us to perform field
redefinitions in our effective lagrangian, which can modify the operators while keeping
the physical observables unchanged [151–153]. The important field redefinitions that are
useful for the SMEFT are perturbative transformations of the type

ϕ −→ ϕ̃(ϕ) = ϕ+ αG(ϕ) (4.7)

where the new field is given by the original field ϕ plus a small (α≪1) perturbation
G(ϕ) that can depend on the field ϕ itself and also on all the SM fields, and their
analytical derivatives. For the SMEFT the expansion parameter α is usually related to
a power n of the EFT expansion parameter (p/Λ)n, where p is the energy scale for the
process of interest.

Next we give a concrete example of how field redefinition that preserves the local
symmetries can eliminate the redundancy. According to [8], for the Bosonic field, we
have the following set of O(1/Λ2) field redefinitions that preserve GSM

H ′
j −→ Hj + h1

D2Hj

Λ2 + h2
eℓjYe
λ2 + h3

dqjYd
Λ2 + h4

(uϵqj)⋆Y ⋆
u

Λ2 + h5
H†HHj

Λ2 , (4.8)

B′
µ −→ Bµ + b1

ψγµψ

Λ2 + b2
H†i
←→
D µH

Λ2 + b3
DαBαµ

Λ2 + b4
H†HBµ

Λ2 , (4.9)

W I′

µ −→ W I
µ +w1

qσIγµq

Λ2 +w2
ℓσIγµℓ

Λ2 +w3
H†←→D µH

Λ2 +w4
[Dα,Wαµ]I

Λ2 +w5
H†HW I

µ

Λ2 (4.10)

GA′

µ −→ GA
µ + g1

qTAγµq

Λ2 + g2
dTAγµd

Λ2 + g3
uTAγµu

Λ2 + g4
[Dα, Gαµ]A

Λ2 + g5
H†HGA

µ

Λ2 (4.11)
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Field redefinitions of the right-handed fermion fields are

e′ −→ e+ e1
ℓi /DHY †

e

Λ2 + e2
ℓi
←−
/DHY †

e

Λ2 + e3
H†He

Λ2 + e4
D2e

Λ2 (4.12)

d′ −→ d+ d1
qi /DHY †

d

Λ2 + d2
qi
←−
/DHY †

d

Λ2 + d3
H†Hd

Λ2 + d4
D2d

Λ2 (4.13)

u′ −→ d+ d1
qi /DHY †

u

Λ2 + u2
qi
←−
/DH̃Y †

u

Λ2 + u3
H†Hu

Λ2 + u4
D2u

Λ2 (4.14)

Field redefinitions of the left-handed fermion fields are

q′
j −→ qj + q1

ui /DH̃jY
†
u

Λ2 + q2
qi
←−
/DH̃jY

†
u

Λ2 + q3
di /DHjY

†
d

Λ2 + q4
di
←−
/DHjY

†
d

Λ2 + q5
H†HQj

Λ2 + q6
D2Qj

Λ2
(4.15)

ℓ′
j −→ ℓ+ l1

ei /DHjY
†
e

Λ2 + l2
ei
←−
/DHjY

†
e

Λ2 + l3
H†HLj

Λ2 + l4
D2Lj

Λ2 (4.16)

Here {ha, ba, wa, ea, ua, da, qa, ℓa} are free variables. Performing field redefinitions with
only a single O(1/Λ2) term on the right hand side of each equation one can choose to
cancel an operator out of a full set of operators. For example, the Bµ dependent, flavor
symmetric terms in an overcomplete LSMEFT are

LB′ = −1
4B

′
µνB

′µν − g1yψψ /B
′ψ + (DµH)†(DµH) + CB(H†←→D µH)(DνBµν)

+ CBH(DµH)†(DνH)B′
µν + C

(1)
Hltt

Q
(1)
Hltt

+ CHettQHett + C
(1)
Hqtt

Q
(1)
Hqtt

+ CHuttQHutt

+ CHdttQHdtt + CHBQHB + cT (H†←→D µH)(H†←→D µH)
(4.17)

Performing the small field redefinition

B′
µ −→ Bµ + b2

H†i
←→
D µH

Λ2 (4.18)

yields the result LB − g1b2∆B where

∆B = ylQ
(1)
Hltt

+ yeQHett + yqQ
(1)
Hqtt

+ yuQHutt + ydQHdtt

+ yH(QH2 + 4QHD) + 1
g1
Bµν∂µ(H†i

←→
D νH).

(4.19)
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Choosing b2 to cancel one of the LB′ operators introduces a shift in the Wilson
coefficients of the remaining operators. Whne the full set of such field redefinitions has
been performed, this corresponds to choosing a non-redundant basis.

These way of field redefinition is equivalent to using equation of motions in section
2.5. But if we work at the subleading power, like including the dimension-8 operators
in the field redefinition. It is immediately clear that in this case the use of equations
of motion is no longer equivalent to applying field redefinitions, as the former do not
capture the subleading shift of the field . Then, when we have an effective lagrangian
with different powers we must not use the equations of motion to remove redundancies,
but it is more correct to apply field redefinitions to get correct results2.

4.2.3 Fierz Identities
Fierz identities are fundamental relations among fermionic bilinears that arise from the
algebra of gamma matrices in four-dimensional spacetime [156]. They allow for the re-
ordering of spinor contractions in four-fermion interactions but do not account for the
gauge structure of the Standard Model fermions, which carry additional SU(N) indices.
The completeness relations of SU(N) generators, on the other hand, describe how gauge
indices contract and must be treated separately from the Fierz transformation. While
Fierz identities reorganize the spinor structure of interactions, SU(N) completeness re-
lations ensure the proper handling of color and weak isospin indices. In effective field
theories, such as SMEFT, both must be considered when reducing operators to a min-
imal basis, ensuring consistency between Lorentz and gauge symmetries. Next we will
do the derivation following [157].

Without loss of generality, for any fundamental representation of SU(N) algebra {Ta}
satisfying Tr[TaTb]=Cδab, we have the completeness relation

1
C

(Ta)ij(Ta)kl + 1
N
δijδkl = δilδkj (4.20)

For example for SU(2)L this allows us to rewrite the Higgs operators as

(H†τ IH)(H†τ IH) = (H†H)2 (4.21)

For the O(N) groups there is no simple relation like 4.20 since the algebra is formed
by N ×N antisymmetric matrices.

Before starting the derivation, defining the following notation due to Takahashi [158],
where it replaces the matrices by parentheses () and brackets []. For example for equation
4.20 it reads

1
C

(Ta)[Tb] + 1
N

()[] = (][) (4.22)

2For more details about this topic see Ref [154,155]
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where the blank entry means the identity matrix.
Since electroweak is chiral, we need to derive the chiral Fierz identities.Defining PR/L

the chirality projector operators as PR/L = (1/2)(1± γ5) and treating chirally projected
combinations such as

(PRγµ)[PLγµ] (4.23)
It is more useful to derive the fierz identities in the chiral basis {Γn}

{Γn} = {PR, PL, PRγµ, PLγµ, σµν} (µ, ν = 0, 1, 2, 3) (4.24)
its respective dual basis

{Γ̃n} = {PR, PL, PLγµ, PRγµ,
1
2σµν} (4.25)

where µ < ν. σµν = (i/2)[γµ, γν ].
Due to the dual basis, the orthogonality condition

Tr[ΓnΓ̃m] = 2δnm (4.26)
is satisfied.

that implies the completeness relation

()[] = 1
2(Γ̃n][Γn)

= 1
2{(PR][PR) + (PL][PL) + (PRγµ][PLγµ) + (1

2σ
µν ][12σµν)}

(4.27)

That relation will directly leads to the chiral Fierz identities

(ΓA)[ΓB] = 1
4Tr[Γ

AΓCΓBΓD](ΓD][ΓC) (4.28)

Applying this on 4.23

(PRγµ)[PLγµ] = 1
4Tr[PRγ

µΓCPLγµΓD](ΓD][ΓC)

= 1
4Tr[PRγ

µPLPLγµPR](PR][PL) = 2(PR][PL)
(4.29)

where we used γµγµ = 4× 1, γµσαβγµ = 0 and the cyclic of the trace were all used.
When applying the identities to four-fermion operators we also anticommute two

spinors, thus acquiring an additional minus sign with respect to the equations. For
example, they will allow us to rewrite operator as

(ℓiγµqi)(dγµe) = −2(ℓie)(dqi) (4.30)
which has the quark and leptons in separate currents.

4.3 The Warsaw basis
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1 : X3

QG fABCGAνµ GBρν GCµρ

Q
G̃

fABCG̃Aνµ GBρν GCµρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH2 (H†H)2(H†H)

QHD
(
H†DµH

)∗ (
H†DµH

)
5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GAµνG
Aµν

Q
HG̃

H†H G̃AµνG
Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνB
µν

Q
HB̃

H†H B̃µνB
µν

QHWB H†τ IHW I
µνB

µν

Q
HW̃B

H†τ IH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τ IHW I
µν

QeB (l̄pσµνer)HBµν
QuG (q̄pσµνTAur)H̃ GAµν

QuW (q̄pσµνur)τ IH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GAµν

QdW (q̄pσµνdr)τ IHW I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q
(3)
Hl (H†i

←→
D I

µH)(l̄pτ Iγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q
(3)
Hq (H†i

←→
D I

µH)(q̄pτ Iγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q
(1)
qq (q̄pγµqr)(q̄sγµqt)

Q
(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt)

Q
(1)
lq (l̄pγµlr)(q̄sγµqt)

Q
(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q
(1)
ud (ūpγµur)(d̄sγµdt)

Q
(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q
(1)
qu (q̄pγµqr)(ūsγµut)

Q
(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγµdt)

Q
(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄jpur)ϵjk(q̄ksdt)

Q
(8)
quqd (q̄jpTAur)ϵjk(q̄ksTAdt)

Q
(1)
lequ (l̄jper)ϵjk(q̄ksut)

Q
(3)
lequ (l̄jpσµνer)ϵjk(q̄ksσµνut)
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Table 4.1: List of all baryon- and leptonic- number- conserving SMEFT operator at
dimension 6 in the Warsaw basis [3]. The division into classes 1-8 is taken from [6].

Warsaw basis represented in table 4.1 is the mostly used basis. It is a completely
reduced basis without any redundant operator. The way used to remove redundancies
and constructing the the Warsaw basis can be summarized as follow:

1. Use the IBP and equation of motion to remove operators with more derivatives.

2. Use Fierz identities .

The operators are divided into classes according to their field content and chirality
in the manner taken by [3] and [6].

The purely bosonic operators are built out of combinations of the field-strength ten-
sors Xµν ∈ {Gµν ,Wµν , Bµν}, the Higgs doublet H, and the covariant derivatives Dµ.
After removing the redundant operators, we are left with the following 4 classes:

• Four pure gauge operators containing three field-strength tensors (class 1:X3).

• One pure scalar operator with six Higgs doublets (class 2:H6).

• Two operators with four Higgs fields and two covariant derivatives (Class 3:H4D2).

• Eight mixed operators with two Higgs fields and two field-strength tensors (Class
4:X2H2).

Operators with two fermion fields. After removing the redundant operators, the remained
operators are classified as:

• Three non-Hermitian Yukawa-like operators with a scalar fermion current and three
Higgs fields (class 5:ψ2H3).

• Eight non-hermitian dipole operators with a tensor current, one Higgs field, and
one field-strength tensor (class 6:ψ2XH).

• Eight operators (all Hermitian except for QHud) with a vector current, two Higgs
fields, and a covariant derivative (class 7:ψ2H2D).

Last, we have 25 four-fermion operators in class 8 subdivided according to their chiral
structure (LL)(LL), (RR)(RR), (LL)(RR), (LR)(LR) and (LR)(RL).
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4.4 The Anomalous Dimension Matrix
The complete list of dimension-six operators is given in table 4.1. The operators are
divided into eight classes by field content and number of covariant derivatives. The
dimension-six Lagrangian is

L(6) =
∑
i

CiQi (4.31)

where Qi are the operators in table 4.1 and Ci are the Wilson coefficients that have
the dimension of 1/Λ2.

The SM at energies above the electroweak is a weakly coupled gauge theory, and SM
gauge boson interaction are proportional to the gauge boson coupling g. For this reason,
it is useful to use rescaled operators Q̂i with coefficients Ĉi. One can trivially convert
between the two conventions. If Q̂i = ηiQi, then the rescaled coefficients and anomalous
dimensions are

Ĉi = η−1
i Ci, γ̂ij = η−1

i γijηj. (4.32)
Where the anomalous dimension in the rescale basis has the form shown in table 4.2,

where there are the explicit operator rescaling.
The dimension-six lagrangian can be formed by the terms of the rescaled operators

and their corresponding coefficients,

L(6) =
∑
i

CiQi =
∑
i

ĈiQ̂i (4.33)

The RG equations for the rescaled operator cofficients are given by
˙̂
Ci = γ̂ijĈj (4.34)

The one-loop anomalous dimension matrix γij is defined by the RG equation of the
operator coefficients

Ċi ≡ 16π2µ
dCi
dµ

= γijCj (4.35)

γij represent the 8×8 block form of the anomalous dimension matrix where i,j=1,. . . ,8.
For example, γ15 is the 4×3 anomalous dimension submatrix which mixes the 3 indepen-
dent class 5 operators coefficients into the 4 independent class 1 operators coefficients.

The difficulty of dealing with a large number of operators leads to searching of sim-
plifying the calculation, or to look for a hidden structure in the anomalous dimension
matrix to more easily understand the physics of the one-loop RGE flow. It was shown
in [4] that the structure of the anomalous dimension matrix can be understood using
Naive Dimensional Analysis (NDA) [159].

Recognizing Table 4.2, it was calculated in ref. [4] that the anomalous dimension
matrix γ̂ for the rescaled operators has entries proportional to

γ̂ ∝
(

λ

16π2

)nλ
(

y2

16π2

)ny
(

g2

16π2

)ng

, N = nλ + ny + ng (4.36)
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g3X3 H6 H4D2 g2X2H2 yψ2H3 gyψ2XH ψ2H2D ψ4

1 2 3 4 5 6 7 8

g3X3 1 0 0 0 1 0 0 0 0

H6 2 g6λ 0 g2λ, λ2 λg4 λy2 0 λg2, λy2 0

H4D2 3 g6 0 g2 g4 0 g2y2 g2 0

g2X2H2 4 g4 0 0 0 0 0 0 0

yψ2H3 5 g6 0 g2, λ, y2 g4 y2 g2λ, g2y2 g2, λ, y2 λ, y2

gyψ2XH 6 g4 0 0 0 0 g2, y2 1 1

ψ2H2D 7 g6 0 g2 g4 0 g2y2 g2, y2 g2, y2

ψ4 8 g6 0 0 0 0 g2y2 g2, y2 g2, y2

g3X3 H6 H4D2 g2X2H2 yψ2H3 gyψ2XH ψ2H2D ψ4

1 2 3 4 5 6 7 8

g3X3 1 g2 0 0 1 0 0 0 0

H6 2 0 λ, g2 g4, g2λ, λ2 g6, g4λ y4 0 y4 0

H4D2 3 0 0 g2, λ g4 y2 0 y2 0

g2X2H2 4 g4 0 1 g2, λ 0 y2 1 0

yψ2H3 5 0 0 g2, y2 g4 g2, λ, y2 g2λ, g4, g2y2 g2, λ, y2 y2

gyψ2XH 6 g4 0 0 g2 1 g2, y2 1 1

ψ2H2D 7 0 0 y2 g4 y2 g2y2 g2, λ, y2 y2

ψ4 8 0 0 0 0 0 g2y2 y2 g2, y2

Table 4.2: presents the structure of the one-loop anomalous dimension matrix for the
Wilson coefficients of dimension-six operators in the rescaled basis. The table is divided
into two sections, with rows and columns corresponding to the eight operator classes.
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where N, the perturbative order of the anomalous dimension, is defined by the sum
of the number of factors nλ of the Higgs self-coupling λ, the number of factors ny of y2,
and the number of factors ng of g2. For the rescaled dimension-six operators, N ranges
from 0 to 4.

It was derived in ref. [7] a general formula for the perturbation order N of the anoma-
lous dimension matrix γ̂ij,

N = 1 + wi + wj (4.37)

where wi is the NDA weight of the operators Q̂i in the ith class [160]. The class 2 operator
Q̂H has NDA weight w2 = 2; the operator in classes {3,5,7,8} have NDA weight 1; the
operators in class {4,6} have NDA weight 0; and the class 1 operators have NDA weight
w1 = −1. Using eq. 4.37, the possible coupling constant dependences of γ̂ij are obtained.

As we have seen the anomalous dimension matrix is proportional to the Higgs self-
coupling, Yukawa and Gauge coupling. The explicit RG equations are given in Appendix
A, B and C as differential equations, rather as elements of the matrix γ.

Having established the SMEFT framework, including the structure of higher-dimensional
operators, redundancies, the Warsaw basis, and the anomalous dimension matrix, we
now turn our attention to one of its most crucial applications: flavor physics. In the
Standard Model, flavor is encoded in the Yukawa couplings, but SMEFT allows us to
systematically explore new sources of flavor violation beyond the SM. The renormaliza-
tion group evolution (RGE) of SMEFT operators can generate additional flavor effects
at low scales, making it essential to understand how SMEFT interacts with the flavor
sector. In the next chapter, we will examine how flavor symmetries can be incorporated
into SMEFT, their role in addressing the SM flavor puzzle, and the constraints imposed
by experimental data.
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Chapter 5

Adding Flavor to SMEFT

5.1 Flavor Assumptions
Standard Model is a great theory for understanding particle physics. It is a quantum
field theory with Poincare spacetime symmetry and SU(3)c×SU(2)L×U(1)Y gauge in-
variance. The field content includes five different gauge representations of Weyl fermions
each with three flavors and a single scalar field that condensates at the electroweak scale,
breaking the gauge symmetry down to SU(3)c × U(1)EM . Its lagrangian is a local one
consistence with the gauge symmetries up to mass dimension 4, know as a renormaliz-
able operators. Thus SM is a renormalizable theory. A better way to deal with some
struggles in SM, is to take it as a low energy property of an effective field theory.

The SM effective field theory is a framework that became so popular in recent years.
SMEFT is an extension of the SM, using the same field content to construct terms that
are also consistence with the gauge symmetry but with a mass dimension higher than 4.
It was understood that the next higher order is 5 with only one operator that violates
leptonic number, but it can give mass for neutrino. Then, the next higher order that
we are focusing on is dimension 6. Having the Warsaw basis in table 4.1, the number of
operators is 59 after removing all the redundancies.

One of the largest obstacles for doing analysis in SMEFT is after adding flavor.
For instance, as will seen later, there are 2499 independent baryon and lepton number-
conserving SMEFT operators that arise at leading order without having any flavor sym-
metries.

Postulating a flavor symmetry and its breaking pattern will help in decreasing the
number of independent operators and can be useful to make hypotheses about the UV
physics. In other words, we imagine that a UV theory will leave imprints on the flavor
structure in the low-energy effective theory.

In nature, we do not observe an exact symmetry pattern, particularly in the case
of flavor symmetries. The observed fermion masses and mixing angles in the Standard
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Model exhibit hierarchical structures and deviations that indicate symmetry breaking
effects. Consequently, a flavor symmetry serves as a guiding principle to approximate
the underlying flavor structure of the SM, but it cannot be exact. Instead, it must be
broken—either explicitly or spontaneously—to be consistent with experimental obser-
vations. This breaking accounts for the observed mass hierarchies and mixing patterns
among quarks and leptons.

The minimal flavor violation [37], which is a flavor structure based on U(3)5 Fla-
vor symmetry broken by the SM Yukawa couplings Yu, Yd and Ye promoted to spurions.
While U(3)5 flavor symmetry is the maximal flavor symmetry allowed by the SM gauge
symmetry and field content. A flavor spurion can be viewed as a non-dynamical (spuri-
ous) field that transforms under a nontrivial representation of the flavor group and whose
background value breaks the flavor symmetry.

Spurions act as "markers" of symmetry breaking in the sense that the symmetry is
broken if and only if a spurion is inserted. If the symmetry is a good approximation,
then the breaking effects-quantified by the spurions-must be small Y≤ 1. Given this, we
can assign numerical values to the Yukawa matrices from the measurements of fermion
masses and mixings (ignoring the neutrino ones). An important consequence of this
approach is that the flavor structure of the SMEFT can be systematically organized as a
series expansion in powers of the spurions. The leading order is the exact U(3)5 , while
the largest deviations corresonds to a single insertion of spurions. Higher-order terms
involve multiple insertions, leading to progressively smaller corrections.

A great competitor to MFV is the U(2) [39] flavor structures. U(2) is the corre-
sponding subgroup of U(3) obtained by turning on one Yukawa coupling, typically the
top quark Yukawa yt, which is the largest in the SM with yt ∼ 1. This approach is
motivated by the strong hierarchy in fermion masses, where the third generation are sig-
nificantly heavier than the first two generations. It was pointed in [161–163], the U(2)5

provides a very efficient EFT description of the recent flavor anomalies, which cannot be
accommodated within a MFV framework.

It should be clear that the U(3)5 and U(2)5 symmetries are not the only options to
efficiently suppress flavor-violating observables in the SMEFT 1. In this chapter, we will
start by adding flavor, then entering the flavor symmetries and doing the counting. We
will follow [6, 165–167] for the counting.

5.2 Why 2499?
Flavors can be incorporated in SMEFT operators in table 4.1 and can be counted using
refs. [6, 167] up to n generations.

Starting with each class of the 8 classes:
1For a detailed discussion see ref. [164]
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1. Bosonic Operators:
These classes are bosonic operators with no fermions in there structure, they will
not get affected, then they will remain 15 operator.

• Class 1:
Four structure, 4 real Wilson coefficients, there are 2 CP-even and 2 CP-odd.

• Class 2:
One CP-even coefficient.

• Class 3:
Two CP-even coefficients.

• Class 4:
Eight structures, 4 CP-even and 4 CP-odd.

2. Fermion Bilinear Operators:

• Class 5 & 6:
These two classes are non-Hermitian structures containing two fermions. The
coefficients are n × n complex matrix in the flavor space with n2 complex
entries, then for each n2 CP-even coefficients and n2 CP-odd. For class 5, 3n2

CP-even and 3n2 CP-odd. For class 6, 8n2 CP-even and 8n2 CP-odd.
• Class 7:

It consists of of 7 Hermitian structures and QHud non-Hermitian. QHud is the
same as class 5 and 6, having n2 complex entries.
We need to understand some properties of Hermitian matrix.
H is a 3× 3 Hermitian matrix defined as,

H =

 Real Complex Complex
Conjugate Real Complex
Comjugate Conjugate Real

 (5.1)

As we can see not all the entries are independent. The real entries are the
upper triangle with diagonal being the hypotenuse. As we can see it starts by
one entry at column 1 then 2 at second as so on. Then if we are dealing with
n × n matrix it the real entries will 1+2+3+. . .+n, which is the summation
of arithmetic series, the value will be n(n+1)

2 CP-even. For CP-odd, the same
but without the diagonal then we need to subtract n from the CP-even value,
giving n(n−1)

2 .
The total CP-even for class 7 is n2+7n(n+1)

2 =1
2n(9n+ 7), the total CP-odd is

1
2n(9n− 7).
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3. Four Fermions Operators:
We will not go in the known order as in table 4.1, but rather we will start with the
simplest.

• Class 8(LR)(LR) & (LR)(RL):
The structures in that subclasses are all non-Hermitian, but instead of matrix
it is now tensor. For a rank-4 n-dimension non hermitian tensor, we have n4

complex entries, n4 CP-even and n4 CP-even. For (LR)(LR) we have 4n4

CP-even and 4n4 CP-odd. And n4 CP-even, n4 CP-odd for (LR)(RL).
• Class 8(LL)(RR):

The structures in these subclass are Hermitian, but also here now we are
dealing with tensors rather than matrix. We need to calculate the number
of entries in the upper triangle in tensor, which is the sum of the following
arithmetic series 1 + 2 + · · ·+ n2, that gives us n2(n2+1)

2 CP-even, to calculate
the CP-odd it is the same as the CP-even minus n2, that gives n2(n2−1)

2 CP-
odd. The total for the whole subclass is 4n2(n2 + 1) CP-even and 4n2(n2− 1)
CP-odd.

• Class 8(LL)(LL):
The structures in this subclass are Hermitian divided into two categories,
different and identical current.
The count of the different current is the same as the Hermitian one above,
having n2(n2 + 1) CP-even and n2(n2 − 1) CP-odd.
The identical currents are more interesting, since all four flavor indices trans-
form under the same SU(n) flavor group. The structures transform as the
1+1+adj+adj+aa+ss where adj is the adjoint representation, aa is the rep-
resentation T

(ij)
[kl] antisymmetric in the upper and lower indices, and ss is the

representation T (ij)
(kl) symmetric in the upper and lower indices. These transfor-

mation can be understood from the Young tableaux point of view for 2-body
operators.
The singlet has one CP-even parameter, the adjoint has (n-1)(n+2)/2 CP-even
and n(n-1)/2 CP-odd parameters, aa has n(n-3)(n2+n+2)/8 CP-even and n(n-
3)(n-1)(n+2)/8 CP-odd parameters, and ss has n(n-1)(n+1)(n+2)/8 CP-even
and n(n-1)(n2+3n-2)/8 CP-odd parameters. After substituting these values
in the transformation we will have for the 3 operators of identical currents
3(n4+3n2)

4 CP-even parameters and 3(n4−n2)
4 .

Adding the values of the different currents and the identical currents, the
total CP-even for the whole subclass is 7n4+13n2

4 and the CP-odd is 7n2(n2−1)
4

parameters.
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Class Nop CP-even CP-odd
n 1 3 n 1 3

1 4 2 2 2 2 2 2
2 1 1 1 1 0 0 0
3 2 2 2 2 0 0 0
4 8 4 4 4 4 4 4
5 3 3n2 3 27 3n2 3 27
6 8 8n2 8 72 8n2 8 72
7 8 1

2n(9n+ 7) 8 51 1
2n(9n− 7) 1 30

8 : (LL)(LL) 5 1
4n

2(7n2 + 13) 5 171 7
4n

2(n− 1)(n+ 1) 0 126
8 : (RR)(RR) 7 1

8n(21n3 + 2n2 + 31n+ 2) 7 255 1
8n(21n+ 2)(n− 1)(n+ 1) 0 195

8 : (LL)(RR) 8 4n2(n2 + 1) 8 360 4n2(n− 1)(n+ 1) 0 288
8 : (LR)(RL) 1 n4 1 81 n4 1 81
8 : (LR)(LR) 4 4n4 4 324 4n4 4 324
8 : All 25 1

8n(107n3 + 2n2 + 89n+ 2) 25 1191 1
8ng(107n3 + 2n2 − 67n− 2) 5 1014

Total 59 1
8 (107n4 + 2n3 + 213n2 + 30n+ 72) 53 1350 1

8 (107n4 + 2n3 + 57n2 − 30n+ 48) 23 1149

Table 5.1: Number of CP-even and CP-odd coefficients in L(6) for n flavors. The total
number of coefficients is 1

4(107n4 + 2n3 + 135n2 + 60), which is 76 for n = 1 and 2499 for
n = 3.

• Class 8(RR)(RR):
Here we have 8 structures, 4 different currents, 2 identical current and one
special which is the Qee that transforms as 1+adj+ss.
After doing the whole calculation and adding the them all, the total CP-
even parameters for the whole subclass is n(21n3+2n2+31n+2)

8 parameters and
n(21n+2)(n−1)(n+1)

8 parameters.

The total CP-even and CP-odd coefficients for the whole basis is the sum of all the
values for every single class.

• Total CP-even coefficients: 107n4+2n3+213n2+30n+72
8

For n=1 −→ 53 coefficient.
For n=3 −→ 1350 coefficient.

• Total CP-odd coefficients:107n4+2n3+57n2−30n+48
8

For n=1−→ 23 coefficient.
For n=3 −→ 1149 Coefficient.

The total number of coefficients is 76 for n=1 and 2499 for n=3, as table 5.1.
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5.3 U(3)5 Symmetry and Minimal Flavor Violation
The largest group of flavor-symmetry transformation compatible with the kinetic terms
of the SM lagrangian is [36]:

Gflavor = U(3)5 = U(3)ℓ ⊗ U(3)q ⊗ U(3)e ⊗ U(3)u ⊗ U(3)d = SU(3)5 ⊗ U(1)5 (5.2)

Each field is assigned to a 3 representation of the associated group: denoting a generic
U(3)ψ transformation by Ωψ, the transformation rules are [6]

q −→ Ωqq, u −→ Ωuu, d −→ Ωdd, ℓ −→ Ωℓℓ, e −→ Ωee. (5.3)

Vector currents ψpγµψr are trivially made invariant by imposing δpr contraction, that
corresponds to the singlet composition of 3 and 3 representations. This is immediate to
see applying the field transformation and using ΩψΩ†

ψ = 1 = Ω†
ψΩψ:

ψγµψ −→ ψΩ†
ψγ

µΩψψ = ψγµψ, ψ = {q, u, d, ℓ, e}. (5.4)

5.3.1 Exact U(3)5 symmetry
Adopting the Warsaw basis in table 4.1, with the classification of classes as in [4], we
start the counting.

1. Bosonic Operators:
The structures of classes 1-4 do not contain fermions, then the counting is trivial:
9 independent CP-even coefficients and 6 CP-odd coefficients.

2. Fermion Bilinear Operators:

• Class 5 & 6:
The structure of these classes are forbidden in the exact U(3)5 limit, since
they contain a fermionic current of type LR.

• Class 7:
In this class, there are 4 hermitian (LL) fermionic current, 3 hermitian (RR)
fermionic current, that are allowed done as eq. 5.4 with each having CP-even
coefficient, and QHud non-hermitian and not allowed.

3. Four Fermion Operators:

• Class 8(LL)(LL):
In this subclass, there are 2 hermitian structures with different fermion cur-
rents, each has 2 CP-even coefficient. Also, there are 3 hermitian structures
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with identical currents, each having 2 independent operators, since we can
contract the flavor indices in two different ways. For example, for Q(1)

qq we
have

(qpγµqp)(qrγµqr) and (qpγµqr)(qrγµqp), (5.5)
where r and p denote the flavor indices. Each identical current has 2 CP-even
coefficients.

• Class 8(RR)(RR):
In this subclass, there are 4 hermitian structures with different fermion cur-
rents, and 3 identical currents, but Qee is special, since it corresponds to a
single independent structure due to fierz identity

(epγµer)(esγµet) = (esγµer)(epγµet). (5.6)

• Class 8(LL)(RR):
The structures here are divided in a quite different way as: Leptonic-Leptonic
current, Quark-Quark current, Leptonic-Quark current. They are all her-
mitian structures that are invariant under the exact U(3)5. Each having 1
CP-even.

• Class 8(LR)(RL)+h.c & 8(LR)(LR) +h.c:
The strucutre of these subclasses are not allowed.

5.3.2 Minimal Flavor Violation
The minimal flavor violation (MFV) is the assumption that the SM Yukawa couplings
are the only source of U(3)5 breaking [37]. The exact U(3)5 limit analyzed before is
equivalent to employing the MFV hypothesis and working to the zeroth order in the
symmetry breaking terms. To go beyond the leading order we promote the SM Yukawa
to U(3)5 spurion fields with the following transformation properties [166]:

Yd −→ ΩdYdΩ†
q, Yu −→ ΩuYuΩ†

q, Ye −→ ΩeYeΩ†
ℓ. (5.7)

In this way the (LR) structure

dYdq, uYuq, eYeℓ, (5.8)

are formally invariant. For two insertions of Yukawa

YuY
†
u −→ ΩuYuΩ†

qΩqY
†
uΩ†

u = ΩuYuY
†
uΩ†

u

YdY
†
d −→ ΩdYdΩ†

qΩqY
†
d Ω†

d = ΩdYdY
†
d Ω†

d

YeY
†
e −→ ΩeYeΩ†

ℓΩℓY
†
e Ω†

e = ΩeYeY
†
e Ω†

e

(5.9)
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In this way the (RR) structure

dYdY
†
d d, uYuY

†
uu, eYeY

†
e e. (5.10)

are invariant. We could also have different arrangement

Y †
uYu −→ Ω†

qY
†
uΩuΩuYuΩ†

q = ΩqY
†
uYuΩ†

q

Y †
d Yd −→ Ω†

qY
†
d ΩdΩdYdΩ†

q = ΩqY
†
d YdΩ†

q

Y †
e Ye −→ Ω†

ℓY
†
e ΩeΩeYeΩ†

ℓ = ΩℓY
†
e YeΩ

†
ℓ

(5.11)

Then (LL) structure

qY †
uYuq, qY †

d Ydq, ℓY †
e Yeℓ. (5.12)

are invariant. In principle, the spurions can appear with arbitrary powers both in
the dimension-6 effective operators. For example four insertions of Yukawa coupling will
transforms as

YuY
†
uYuY

†
u −→ ΩuYuΩ†

qΩqY
†
uΩ†

uΩuYuΩ†
qΩqY

†
uΩ†

u = ΩuYuY
†
uΩ†

u (5.13)
The same could happen for any combination of the Yukawa, they will remain trans-

forming well. So, that is a series expansion in powers of spurions (if Y<1 ,then δ > Y 2 >
Y 4 . . . ). However this series is finite, since there exist only a finite number of independent
covariants that can be constructed out of the Yukawa spurions due to Cayley-Hamilton
identity2

X3 = (TrX)X2 + 1
2(TrX2 − Tr2X)X + 1

6(2TrX3 − 3TrX2TrX + Tr3X)I3 (5.14)

with I3 the 3 × 3 identity matrix. This identity leads to many redundancy relations
among polynomials of 3× 3 matrices.

Typically people choose to truncate the series at a specific order, for us we will
truncate at O(Y 2). Let’s start with the counting of single and double insertions of
spurions.

1. Fermion Bilinear Operators:

• Class 5 & 6:
The structure is non-hermitian transforms the same as eqs.5.8 for one inser-
tion, each having one complex parameter, then 1 CP-even and 1 CP-odd.
For two insertions they are not invariant.

2A useful reference for finding the required decomposition from a Hilbert series perspective is [168],
though some further refinement is still needed.
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• Class 7:
For one insertion, the structures are not invariant.
For two insertions, all the strucures are invariant even the QHud. We obtain
a U(3)5 singlet contracting Y an Y † to form an octet of SU(3), and then
contracting this octet with the flavor indices

qpΓqr(Y
†
u/dYu/d)pr, upΓur(YuY †

u )pr, dpΓdr(YdY †
d )pr, upΓdr(YuY †

d )pr.
(5.15)

where Γ denote a generic combination of Dirac matrices, color and SU(2)L
generators, which play no role as far as the flavor structure is concerned.
These are the same of what happen in eqs. 5.10 and 5.12, this could be
generalized for the leptonic sector.
Then 6 CP-even for (LL) parameters, 3 CP-even for (RR) parameters, and 1
complex for QHud.

2. Four Fermion Operators:

• Class 8(LL)(LL):
As we have seen in section 5.3.1, the structures are divided into two main
categories: Identical- and different-currents.
For one insertion, all the structures are not invariant.
For two insertions, using eq.5.5 and 5.12 we will have 10 hermitian structures
with 10 CP-even for the identical-currents. The different-currents will have 6
structures with 6 CP-even.
In total we will have 16 CP-even parameter.

• Class 8(RR)(RR):
Here also the structures are divided into the same categories: different- and
identical-currents with a special operator Qee due to eq.5.6.
For one insertion, all the structures are not invariant.
For two insertions, using eq.5.5 and 5.10 we will have 5 hermitian structures
with 5 CP-even for all the identical-currents including Qee. The different-
currents are 8 hermitian structures with 8 CP-even.
In total we have 13 CP-even.

• Class 8(LL)(RR):
For one insertion of Yukawa, the strucutres are not invariant.
For two insertions, the leptonic-Leptonic-current can be contracted by three
contractions

(ℓpγµℓr)(esγµes)(Y †
e Ye)pr, (ℓsγµℓs)(epγµer)(YeY †

e )pr, (ℓpγµℓr)(esγµet)(Y †
e )pt(Ye)sr

(5.16)
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they are all hermitian, each has 1 CP-even.
The leptonic-Quark-currents are the same as the different-currents in the pre-
vious subclasses, they are 7 hermitian structures each with 1 CP-even.
The Quark-Quark-currents they can be contracted almost the same as the
Leptonic-leptonic-currents but with a small different that the (qq) can be
contracted by two combinations, the (Y †

uYu) and (Y †
d Yd). However, we will

have 16 hermitian structure each with 1 CP-even.
The total is 26 CP-even parameters.

• Class 8(LR)(RL)+h.c:
For single insertion, the structure is not invariant.
For two insertions, the structure here can be contracted as

(ℓjper)(dsqtj)(Y †
e )pr(Yd)st (5.17)

This is not hermitian with 1 complex parameter.
• Class 8(LR)(LR)+h.c:

For single insertion, the structures are not invariant.
For two insertions,Q(1,3)

lequ structures can be contracted as eq.5.17, have each 1
complex parameter.
Then we have Q1,8

quqd that can be contracted intwo different ways

(qjpur)ϵjk(qksdt)(Y †
u )pr(Y †

d )st, (qjpur)ϵjk(qksdt)(Y †
u )sr(Y †

d )pt. (5.18)

Then we will have 4 non-hermitian strucutres, each with 1 complex parameter.
In total we have 6 CP-even and 6 CP-odd.

The results thus obtained are reported in Table 5.2, the left (right) value in each
entry indicates the number of CP-even (CP-odd) coefficients. Number of operators is up
to O(Y 2) (summing O(Y 0)+O(Y 1)+O(Y 2).)

However, we have done a power counting for insertions of the Yukawa couplings
up to O(Y 2) for which it totally agrees with ref. [165]. Instead, sometimes it can be
chose to have the minimal insertions needed as done in ref. [166] to retain the leading
invariant structure for each operator, corresponding to no Yukawa insertions in classes
7, 8(LL)(LL), 8(RR)(RR), and 8(LL)(RR). One insertion in classes 5 & 6 and two
insertions in QHud and classes 8(LR)(RL), 8(LR)(LR). Their corresponding counting is
in Table 5.3.
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No symmetry U(3)5

Class Operators 3 Gen. 1 Gen. Exact O(Y 1) O(Y 2)
1–4 X3, H6, H4D2, X2H2 9 6 9 6 9 6 9 6 9 6
5 ψ2H3 27 27 3 3 – – 3 3 3 3
6 ψ2XH 72 72 8 8 – – 8 8 8 8
7 ψ2H2D 51 30 8 1 7 – 7 – 16 1

8

(L̄L)(L̄L) 171 126 5 – 8 – 8 – 24 –
(R̄R)(R̄R) 255 195 7 – 9 – 9 – 22 –
(L̄L)(R̄R) 360 288 8 – 8 – 8 – 34 –
(L̄R)(R̄L) 81 81 1 1 – – – – 1 1
(L̄R)(L̄R) 324 324 4 4 – – – – 6 6

total: 1350 1149 53 23 41 6 52 17 123 25

Table 5.2: Number of independent operators in U(3)5, MFV and without symmetry. In
each column the left (right) number corresponds to the number of CP-even (CP-odd)
coefficients. For the U(3)5, they are summing from left to right.

No symmetry Minimal Needed
Class Operators 3 Gen. 1 Gen. O(Y 0) O(Y 1) O(Y 2)
1–4 X3, H6, H4D2, X2H2 9 6 9 6 9 6 9 6 9 6
5 ψ2H3 27 27 3 3 – – 3 3 3 3
6 ψ2XH 72 72 8 8 – – 8 8 8 8
7 ψ2H2D 51 30 8 1 7 – 7 – 8 1

8

(L̄L)(L̄L) 171 126 5 – 8 – 8 – 8 –
(R̄R)(R̄R) 255 195 7 – 9 – 9 – 9 –
(L̄L)(R̄R) 360 288 8 – 8 – 8 – 8 –
(L̄R)(R̄L) 81 81 1 1 – – – – 1 1
(L̄R)(L̄R) 324 324 4 4 – – – – 6 6

total: 1350 1149 53 23 41 6 52 17 60 25

Table 5.3: Number of independent operators in the leading invariant structures. In
each column the left (right) number corresponds to the number of CP-even (CP-odd)
coefficients. For the minimal needed, they are summing from left to right.
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5.4 U(2)5 Symmetry
The U(2)5 symmetry is a subgroup of U(3)5, specifically designed to differentiate the
first two generations of fermions from the third one [38–40]. The U(2)5 symmetry refers
to five copies of the unitary group U(2), acting on the first two generations of fermions.
This means treating the first and second generations as a doublet under these symme-
tries while the third generation is treated separately. This symmetry helps explain the
smallness of first- and second-generation masses and why the third generation dominates
flavor-changing processes. The five independent flavor doublets are denoted q,ℓ,e,u,d in
addition to five independent singlets denoted by q3, u3, d3, e3, ℓ3 and the flavor symmetry
is decomposed as

U(2)5 = U(2)ℓ ⊗ U(2)q ⊗ U(2)e ⊗ U(2)u ⊗ U(2)d (5.19)

under which only the doublets transforms:

q −→ ξqq, u −→ ξuu, d −→ ξdd, ℓ −→ ξℓℓ, e −→ ξee,

q3 −→ q3, u3 −→ u3, d3 −→ d3, ℓ3 −→ ℓ3, e3 −→ e3.
(5.20)

Furthermore in analogy with the MFV case, we assume that this U(2)5 is broken by
spurions transforming as [39]

∆u −→ ξq∆uξ
†
u, ∆d −→ ξq∆dξ

†
d, ∆e −→ ξℓ∆eξ

†
e. (5.21)

In fact, if these bi-doublets were the only breaking terms, the third generation, made of
singlets under U(2)5, would not be able to communicate with the first two generations
at all. For this to happen, one needs two doublets. Inserting these two is a minimal
choice that allows to reinstate the mixing between the light and heavy generations, and
they transform as

Vq −→ ξqVq, Vℓ −→ ξℓVℓ. (5.22)
In terms of these spurions, we can express the Yukawa matrices as

Y †
e = yτ

(
∆e xτVℓ
0 1

)
, Y †

u = yt

(
∆u xtVq
0 1

)
, Y †

d = yb

(
∆d xbVq
0 1

)
. (5.23)

where yτ,t,b and xτ,t,b are free complex parameters expected to be of order O(1)3.
Using the residual U(2)5 invariance, we can transform the spurions to the following

explicit form

Vq(ℓ) = eiϕq(ℓ)

(
0
ϵq(ℓ)

)
, ∆e = OT

e

(
β′
e 0

0 βe

)
, ∆u = U †

u

(
β′
u 0

0 βu

)
, ∆d = U †

d

(
β′
d 0

0 βd

)
(5.24)

3According to [39], due to the holomorphicity of the Superpotential, in supersymmetric framework
we are not able to add term on the lower-left sector of the Yukawa matrices.
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Here O and U represent 2× 2 orthogonal and complex unitary matrices, respectively

Oe =
(
ce se
−se ce

)
, Uq =

(
cq sqe

iαq

−sqe−iαq cq

)
(5.25)

with si ≡ sin θi and ci ≡ cos θi. The ϵi and β
(′)
i are small position real parameters

controlling the overall size of the spurions. From the observed hierarchies of the Yukawa
couplings, we deduce

1≫ ϵi ≫ βi ≫ β′
i > 0 (5.26)

or, more precisely,

ϵi = O(10−1), βi = O(10−2), β′
i = O(10−3). (5.27)

As in MFV, spurions can appear with arbitrary powers in the lagrangian but still
transforms in a proper way. Due to eq.5.27, we can have a series expansion in power of
spurions. However this series is finite, since there exist only a finite number of indepen-
dent covariants that can be constructed out of the U(2) spurions due to Cayley-Hamilton
identity

X2 = Tr(X)X − det(X)I2 (5.28)
with I2 the 2× 2 identity matrix.

We will choose to truncate at O(V 3,∆V ). We will use alphabetic letters for real
coefficients and Greek letters for complex coefficients. Let’s start the counting.

1. Fermion Bilinears :
We will start the analysis from the operators of classes 5, 6 and 7, which contains
a fermion bilinear. We will terminate the expansion up to O(∆V ), we will divide
the analysis to 4 different categories, and we will discuss in detail the leptonic case
(the translation to the quark case being trivial).

• (LL) structure :
The terms generated up to O(∆V ) are

V 0 : [a1ℓℓ+ a2ℓ3ℓ3],
V 1 : [κ1ℓVℓℓ3 + h.c],
V 2 : [b1ℓVℓV

†
ℓ ℓ],

∆1,∆1V 1 : −

(5.29)

The results can be summarized as follows in terms of the flavor tensor ΛLL:

ℓpΓΛpr
LLℓr, ΛLL =

a1 0 0
0 a1 + b1ϵ

2
ℓ κ1ϵℓ

0 κ⋆1ϵℓ a2

+O(β2
e ). (5.30)
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ΛLL, in the absence of any flavor symmetry is parametrized by 6 real and 3
imaginary coefficients has only 4 real (a1,2, b1, Reκ1) and 1 imaginary (Imκ1)
coefficients.

• (RR) Structure:
The terms generated up to O(∆V ) are

V 0 : [a1ee+ a2e3e3],
V 1, V 2,∆1 : −,

∆1V 1 : [σ1e3V
†
ℓ ∆ee+ h.c].

(5.31)

The results can be summarized as follows in terms of the flavor tensor ΛRR:

epΓΛpr
RRer, ΛRR =

 a1 0 σ⋆1ϵℓseβ
′
e

0 a1 σ⋆1ϵℓβe
σ1ϵℓseβ

′
e σ1ϵℓβe a2

+O(β2
e ). (5.32)

ΛRR contains 3 real and 1 imaginary.
• QHud:

The terms generated up to O(∆V ) are

V 0 : [α1u3d3 + h.c],
V 1, V 2,∆1 : −,

∆1V 1 : [σ1u∆†
uVqd3 + σ2u3V

†
q ∆dd+ h.c].

(5.33)

In this case one finds 3 real 3 imaginary coefficients.
• (LR) strucutre:

The terms generated up to O(∆V ) are

V 0 : [α1ℓ3e3 + h.c],
V 1 : [κ1ℓVℓe3 + h.c],
V 2 : −
∆1 : [ρ1ℓ∆ee+ h.c],

∆1V 1 : [σ1ℓ3V
†
ℓ ∆ee+ h.c].

(5.34)

The results can be summarized as follows in terms of the flavor tensor ΛLR

ℓpΓΛpr
LRer, ΛLR =

 ρ1β
′
e −ρ1seβe 0

ρ1seβ
′
e ρ1βe κ1ϵℓ

σ1ϵℓseβ
′
e σ1ϵℓβe α1

+O(βeϵ2
ℓ). (5.35)

ΛLR contains 4 real and 4 imaginary coefficients.
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N. indep. U(2)5 breaking terms
Class structures V 0 V 1 V 2 ∆1 ∆1V 1

5 & 6:
(
L̄R

)
11 11 11 11 11 – – 11 11 11 11

7:
(
L̄L

)
4 8 – 4 4 4 – – – – –

7:
(
R̄R

)
3 6 – – – – – – – 3 3

7: QHud 1 1 1 – – – – – – 2 2
total: 19 26 12 15 15 4 – 11 11 16 16

Table 5.4: Number of independent operators with fermion bilinears in U(2)5. Notation
as in Table 5.2; however, here each column denotes the operators with a precise power
of spurions, as indicated in the first row.

The total number of CP-even and CP-odd coefficients for all the operators with
fermion bilinears constructed with spurions up to O(∆1V 1) are reported in Ta-
ble 5.4.

2. Four Fermion Operators

• (LL)(LL) structures:
For the identical currents:
The terms generated up to O(V 3) are

V 0 : [a1(ℓ
p
ℓp)(ℓrℓr) + a2(ℓ

p
ℓr)(ℓrℓp) + a3(ℓℓ)(ℓ3ℓ3) + a4(ℓℓ3)(ℓ3ℓ)

+ a5(ℓ3ℓ3)(ℓ3ℓ3)],
V 1 : [κ1(ℓ

p
V p
ℓ ℓ3)(ℓ

r
ℓr) + κ2(ℓVℓℓ3)(ℓ3ℓ3) + κ3(ℓ

p
V p
ℓ ℓ

r)(ℓrℓ3) + h.c],
V 2 : [b1(ℓ

p
V p
ℓ V

†r
ℓ ℓr)(ℓsℓs) + b2(ℓ

p
V p
ℓ V

†r
ℓ ℓr)(ℓ3ℓ3) + b3(ℓ

p
V p
ℓ ℓ3)(ℓ3V

†r
ℓ ℓr)

+ b4(ℓ
p
V p
ℓ ℓ

r)(ℓrV †sℓs) + (η1(ℓ
p
V p
ℓ ℓ3)(ℓ

r
V r
ℓ ℓ3) + h.c)],

V 3 : [ι1(ℓ
p
V p
ℓ V

†r
ℓ ℓr)(ℓsV s

ℓ ℓ3) + h.c].

(5.36)

For the different currents:
The terms generated up to O(V 3) are

V 0 : [a1(ℓℓ)(qq) + a2(ℓℓ)(q3q3) + a3(ℓ3ℓ3)(qq) + a4(ℓ3ℓ3)(q3)q3],
V 1 : [κ1(ℓVℓℓ3)(qq) + κ2(ℓVℓℓ3)(q3q3) + κ3(ℓℓ)(qVqq3) + κ4(ℓ3ℓ3)(qVqq3) + h.c],
V 2 : [b1(ℓ

p
V p
ℓ V

†r
ℓ ℓr)(qq) + b2(ℓ

p
V p
ℓ V

†r
ℓ ℓr)(q3q3) + b3(ℓℓ)(qpV p

q V
†r
q qr)

+ c4(ℓ3ℓ3)(qpV p
q V

†r
q qr) + (η1(ℓVℓℓ3)(qVqq3) + η2(ℓVℓℓ3)(q3V

†
q q) + h.c)].

(5.37)
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For the (LL)(LL) structure we find the following number of real and imaginary
coefficients at a given order in the spurion expansion

V 0 V 1 V 2 ∆1 ∆1V 1 V 3

Identical [Qℓℓ, Q
(1,3)
qq ] : 5 − 3 3 5 1 − − − − 1 1

Different [Q(1)
ℓq , Q

(3)
ℓq ] : 4 − 4 4 6 2 − − − − 2 2

• (RR)(RR) structure:
For the identical currents:
The terms generated up to O(V 3) are

V 0 : [a1(upup)(urur) + a2(upur)(urup) + a3(uu)(u3u3)
+ a4(uu3)(u3u) + a5(u3u3)(u3u3)],

∆1V 1 : [σ1(u3V
†s
q ∆sr

u u
r)(upup) + σ2(u3V

†
q ∆uu)(u3u3)

+ σ3(upV †s
q ∆sr

u u
r)(u3u

p) + h.c].

(5.38)

For the Qee structure:

V 0 : [a1(epep)(erer) + a2(ee)(e3e3) + a3(e3e3)(e3e3)],
∆1V 1 : [σ1(epep)(e3V

†t
ℓ ∆ts

e e
s) + σ2(e3e3)(e3V

†t
ℓ ∆tp

e e
p) + h.c].

(5.39)

For the different currents:

V 0 : [a1(ee)(uu) + a2(ee)(u3u3) + a3(e3e3)(uu) + a4(e3e3)(u3u3)],
∆1V 1 : [σ1(e3V

†
ℓ ∆ee)(uu) + σ2(e3V

†
ℓ ∆ee)(u3u3) + σ3(ee)(u3V

†
q ∆uu)

+ σ4(e3e3)(u3V
†
q ∆uu) + h.c].

(5.40)

For the (RR)(RR) structure, we find the following number of real and imag-
inary coefficients at a given order in the spurion expansion

V 0 V 1 V 2 ∆1 ∆1V 1 V 3

Identical [Quu(dd)] : 5 − − − − − − − 3 3 − −
Identical [Qee] : 3 − − − − − − − 2 2 − −
Different [Qeu, Qed, Q

(1,8)
ud ] : 4 − − − − − − − 4 4 − −

• (LL)(RR) structure:
Leptonic-Leptonic and Quark-Quark operators:
The terms generated up to O(V 3) are
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V 0 : [a1(ℓℓ)(ee) + a2(ℓℓ)(e3e3) + a3(ℓ3ℓ3)(ee) + a4(ℓ3ℓ3)(e3e3)],
V 1 : [κ1(ℓVℓℓ3)(ee) + κ2(ℓVℓℓ3)(e3e3) + h.c],
V 2 : [b1(ℓ

p
V p
ℓ V

†r
ℓ ℓr)(ee) + b1(ℓ

p
V p
ℓ V

†r
ℓ ℓr)(e3e3)],

∆1V 0 : [ρ1(ℓℓ3)∆e(e3e) + h.c],
∆1V 1 : [σ1(ℓ

p
V †r
ℓ ℓr)∆pt

e (e3e
t) + σ2(ℓ

p
ℓp)V †r

ℓ ∆rt
e (e3e

t)
+ σ3(ℓ3ℓ3)V †

ℓ ∆e(e3e) + h.c].

(5.41)

For the Leptonic-Quark structure:
The terms generated up to O(V 3) are

V 0 : [a1(ℓℓ)(uu) + a2(ℓℓ)(u3u3) + a3(ℓ3ℓ3)(uu) + a4(ℓ3ℓ3)(u3u3)],
V 1 : [κ1(ℓVℓℓ3)(uu) + κ2(ℓVℓℓ3)(u3u3) + h.c],
V 2 : [b1(ℓ

p
V p
ℓ V

†r
ℓ ℓr)(uu) + b2(ℓ

p
V p
ℓ V

†r
ℓ ℓr)(u3u3)],

∆1V 1 : [σ1(ℓℓ)V †
q ∆u(u3u) + σ2(ℓ3ℓ3)V †

q ∆u(u3u) + h.c].

(5.42)

For the (LL)(RR) strucutre, we find the following number of real and imagi-
nary coefficients at a given order in the spurion expansion

V 0 V 1 V 2 ∆1 ∆1V 1 V 3

L/Q− L/Q [Qle, Q
(1,8)
qu , Q

(1,8)
qd ] : 4 − 2 2 2 − 1 1 3 3 − −

L−Q [Qlu, Qld, Qqe] : 4 − 2 2 2 − − − 2 2 − −

• (LR)(RL)+h.c strucutre:
The single operatorQledq, for which the spurion decomposition up toO(V 3,∆1V 1):

V 0 : [α1(ℓ3e3)(d3q3) + h.c],
V 1 : [κ1(ℓVℓe3)(d3V

†
q q3) + κ2(ℓ3e3)(d3V

†
q q) + h.c],

V 2 : [η1(ℓVℓe3)(d3V
†
q q) + h.c],

∆1V 0 : [ι1(ℓ∆ee)(d3q3) + ι2(ℓ3e3)(d∆†
dq) + h.c],

∆1V 1 : [σ1(ℓ∆ee)(d3V
†
q q) + σ2(ℓ3V

†
ℓ ∆ee)(d3q3)

+ σ3(ℓVℓe3)(d∆†
dq) + σ4(ℓ3e3)(d∆†

dVqq3) + h.c]

(5.43)
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U(2)5 [terms summed up to different orders]
Operators Exact O(V 1) O(V 2) O(V 1,∆1) O(V 2,∆1) O(V 2,∆1V 1) O(V 3,∆1V 1)
Class 1–4 9 6 9 6 9 6 9 6 9 6 9 6 9 6
ψ2H3 3 3 6 6 6 6 9 9 9 9 12 12 12 12
ψ2XH 8 8 16 16 16 16 24 24 24 24 32 32 32 32
ψ2H2D 15 1 19 5 23 5 19 5 23 5 28 10 28 10
(L̄L)(L̄L) 23 – 40 17 67 24 40 17 67 24 67 24 74 31
(R̄R)(R̄R) 29 – 29 – 29 – 29 – 29 – 53 24 53 24
(L̄L)(R̄R) 32 – 48 16 64 16 53 21 69 21 90 42 90 42
(L̄R)(R̄L) 1 1 3 3 4 4 5 5 6 6 10 10 10 10
(L̄R)(L̄R) 4 4 12 12 16 16 24 24 28 28 48 48 48 48

total: 124 23 182 81 234 93 212 111 264 123 349 208 356 215

Table 5.5: Number of independent operators in the SMEFT assuming a minimally broken
U(2)5 symmetry, including breaking terms up to O(V 3,∆1V 1). Notations as in Table 5.2.

• (LR)(LR) structures:
Q

(1,3)
lequ have the same decomposition as for Qledq, while Q(1,8)

quqd decomposed as
follow

V 0 : [α1(q3u3)(q3d3) + h.c],
V 1 : [κ1(qVqu3)(q3d3) + κ2(q3u3)(qVqd) + h.c],

∆1V 0 : [ι1(q∆uu)(q3d3) + ι2(q3u3)(q∆dd)
+ ι3(q3∆uu)(qd3) + ι4(qu3)(q3∆dd) + h.c],

∆1V 1 : [σ1(q3V
†
q ∆uu)(q3d3) + σ2(qp∆pr

u u
r)(qsV s

q d3) + σ3(q3u3)(q3V
†
q ∆dd)

+ σ4(qpV p
q u3)(qr∆rs

d d
s) + σ5(qpV p

q u
r)∆sr

u (qsd3) + σ6(qpu3)∆pr
d (qsV s

q d
r) + h.c]

(5.44)

For the (LR)(RL) and (LR)(LR) strucutre, we find the following number of
real and imaginary coefficients at a given order in the spurion expansion

V 0 V 1 V 2 ∆1 ∆1V 1 V 3

l − q [Qledq, Q
(1,3)
lequ ] : 1 1 2 2 1 1 2 2 4 4 − −

q − q [Q(1,8)
quqd] : 1 1 2 2 1 1 4 4 6 6 − −
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The total number of counting is summarized in Table 5.5. Using the same notation
of Table 5.2. The counting is done up to O(V 3,∆1V 1) which is in total agreement
with [165].

5.5 Matching with Other Countings
Ref. [166] considers flavor symmetry scenarios based on U(3) and U(2) but with some
differences in the spurion power counting compared to what we have done in the thesis:
in particular it keeps the minimum spurion insertion required for each operator, and for
U(2) it neglects fermionic mixing, ie Vq = Vℓ = 0 and VCKM = 1. Also, for the leptons it
doesn’t use U(2) but either U(3) or U(1)3.

Let’s try to do the explicity check for the verion with U(2)3 for quarks and U(3)2 for
leptons :

1. Fermionic Bilinear Operators:

• Class 5:
For QeH , is a non-hermitian operator with 1 complex parameter.
For QuH and QdH taking the remaining in eq.5.34, that are 4: 2 real and 2
complex parameters.
For the whole classs we have 5 real and 5 imaginary coefficients.

• Class 6:
Same for class 5, that leads to total of 14 real and 14 imaginary coefficients.

• Class 7:
The operators that are (LL) will have 2 real coefficients each coming from
eq.5.29.
The operators that are (RR) will have 2 real coefficients each coming from
eq.5.31.
For QHud will has 1 real and 1 imaginary coefficients coming from eq.5.33.
Then, in total for class 7 we will have 12 real and 1 imaginary.

2. Four Fermion Operators:

• 8(LL)(LL) structures:
For the identical currents, we will have 5 real coefficient each, coming from
eq.5.36. And for the different currents we will have 4 real coefficeints each
coming from eq.5.37.
For the leptonic structure Qℓℓ, we will have 2 real coefficients coming from the
cross as in eq.5.5.
The total number for the whole subclass 8(L̄L)(L̄L) is 16 real coefficients.
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• 8(R̄R)(R̄R) structure:
For the identical currents , we will have 5 real coefficients each from eq.5.38.
And for the different currents we will have two subsets and referring to eq.5.40,
one with lepton-quark having 2 real coefficients each and the quark-quark
having 4 CP-even from O(V 0) and then we have interaction contracted in
the following form (ūpu3)∆†pt

u ∆ts
d (d̄3d

s) which has a complex parameter, we
have this contraction in Q

(1,8)
ud . For Qee due to eq.5.6, there is only one real

coefficient.
The total number for the whole subclass 8(R̄R)(R̄R) is 25 real and 2 imaginary
coefficients.

• 8(L̄L)(R̄R) structure:
For the Leptonic-Leptonic each has one real coefficient. For the Quark-Quark,
we have 5 real and 1 imaginary for each from eq.5.41. For the Leptonic-Quark
we have 2 real coefficient.
The total number for the whole subclass 8(L̄L)(R̄R) is 27 real and 4 imaginary
coefficients.

• 8(L̄R)(R̄L) structure:
From eq.5.43 we have 2 real and 2 imaginary coefficients.

• 8(L̄R)(L̄R) structure:
Q

(1,3)
lequ are the same as the Qleqd, then each has 2 real and 2 imaginary coeffi-

cients.
For the Q(1,8)

quqd we have 5 real and 5 imaginary coefficient for each from eq.5.44.
But we have also contraction in the following form (q̄∆uu)(q̄∆dd) should be
counted also. Such structure has 1 complex coefficient. The total number for
the subclass 8(L̄R)(L̄R) is 18 real and 18 imaginary coefficients.

The operators that we have counted here can be written explicitly in table 5.7 done
in ref. [166], using her own notations, we will not go through it and we will not use it,
but just a general overview.

We can have a different assumption in the leptonic sector, one can be to consider a
U(1)3

l+e = U(1)e × U(1)µ × U(1)τ symmetry under which the fields transform as

ℓ1 −→ eiαeℓ1, ℓ2 −→ eiαµℓ2, ℓ3 −→ eiατ ℓ3. (5.45)

e1 −→ eiαee1, e2 −→ eiαµe2, e3 −→ eiατ e3, (5.46)
Here we can do also the counting, based on the previous counting but in addition to

the leptonic sector.

1. Fermionic Bilinear Operators:
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U(3)5 up to
O(Y 2)

U(3)5

needed
U(2)5 U(2)3

without V
U(2)3 ×
U(1)3

l+e

all ��CP all ��CP all ��CP all ��CP all ��CP
L(1)

6 4 2 4 2 4 2 4 2 4 2
L(2,3)

6 3 - 3 - 3 - 3 - 3 -
L(4)

6 8 4 8 4 8 4 8 4 8 4
L(5)

6 6 3 6 3 24 12 14 7 10 5
L(6)

6 16 8 16 8 64 32 36 18 28 14
L(7)

6 17 1 9 1 38 10 21 2 15 2
L(8L̄L)(L̄L)

6 24 - 8 - 105 31 31 - 16 -
L8(R̄R)(R̄R)

6 22 - 9 - 77 24 40 2 27 2
L8(L̄L)(R̄R)

6 34 - 8 - 132 42 54 4 31 4
L8(L̄R)(R̄L)

6 2 1 1 1 20 10 64 32 40 20
L8(L̄R)(L̄R)

6 12 6 12 6 96 48 64 32 40 20
tot 148 25 85 25 571 215 275 71 182 53

Table 5.6: Number of independent real parameters in each class of dimension 6 operators,
for the 5 flavor structures done.

• Class 5:
QeH now has 3 real and 3 imaginary coefficients. Other remains as counted
before.
The total become 7 real and 7 imaginary coefficients.

• Class 6:
QeW and QeB each has 3 real and 3 imaginary coefficients. While all the
others remain the same.
The total become 18 real and 18 imaginary coefficients.

• Class 7:
QHe and Q

(1,3)
Hℓ are hermitian having 3 real coefficients each.

The total become 19 real and 2 imaginary coefficients.

2. Four Fermion Operators:

• 8(L̄L)(L̄L) structure:
Qℓℓ has 9 real coefficients.
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Q
(1,3)
ℓq each has 6 real coefficient.

The total become 31 real coefficient.
• 8(R̄R)(R̄R):
Qee has 6 real coefficients.
Qeu and Qed each has 6 coefficients.
The total become 38 real and 2 imaginary coefficients.

• 8(L̄L)(R̄R) strucutres:
Qℓe has 12 real coefficients.
Qℓu, Qℓd and Qqe each has 6 real coefficients.
The total become 50 real and 4 imaginary coefficients.

• 8(L̄R)(R̄L) strucutre:
Qleqd has now 6 real and 6 imaginary coefficients.

• 8(L̄R)(L̄R) strucutre:
Q

(1,3)
lequ each has 6 real and 6 imaginary coefficients.

The total become 26 real and 26 imaginary coefficients.

The final counting of all the flavor assumptions done so far is summarized in table
5.6.

5.6 Mapping between U(3)5 and U(2)5

From a symmetry point of view, the insertion of 3rd generation Yukawas breaks the
U(3)5 symmetry leaving a residual U(2)5. The conditions will be to turn off all the
Yukawas U(3)5 but keeping the third generation on (yt, yb and yτ ). And for U(2)5 we
will not have any spurion. So the two conditions should be the same, and therefore
the number of independent SMEFT parameters should be the same. We will need to
show this explicitly. To do this, we need to define the Wilson coefficient in each flavor
symmetric limit.

In the case of U(3)5 up to O(Y 2), the coefficients can be written as follow
Operators starts with O(Y 0):

C
(3)
Hq,pr = C

(3,0)
Hq δpr + C

(3,1)
Hq (Y †

uYu)pr + C
(3,2)
Hq (Y †

d Yd)pr (5.47)

C
(3)
qq,prst = C(3,0)

qq δprδst + C(3,1)
qq δptδsr + C(3,2)

qq (Y †
uYu)prδst + C(3,3)

qq (Y †
uYu)ptδsr

+ C(3,4)
qq (Y †

d Yd)prδst + C(3,5)
qq (Y †

d Yd)ptδsr
(5.48)

To break U(3)5 explicitly we need to make sure to include all the independent spurion
insertions. An insertion is independent if it breaks U(3) in a way that was not already
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L(5)
6 − ψ2H3

QuH (H†H)(q̄ Y †
u uH̃) QdH (H†H)(q̄ Y †

d dH) QeH (H†H)(l̄perH)

QtH (H†H)(Q̄H̃t) QbH (H†H)(Q̄Hb)

L(6)
6 − ψ2XH

QeW (l̄pσµνer)σiHW i
µν QuW (q̄ Y †

u σ
µνu)σiH̃W i

µν QuB (q̄ Y †
u σ

µνu)H̃Bµν QuG (q̄ Y †
u σ

µνT au)H̃Gaµν
QeB (l̄pσµνer)HBµν QtW (Q̄σµνt)σiH̃W i

µν QtB (Q̄σµνt)H̃Bµν QtG (Q̄σµνT at)H̃Gaµν
QdW (q̄ Y †

d σ
µνd)σiHW i

µν QdB (q̄ Y †
d σ

µνd)HBµν QdG (q̄ Y †
d σ

µνT ad)HGaµν
QbW (Q̄σµνb)σiHW i

µν QbB (Q̄σµνb)HBµν QbG (Q̄σµνT ab)HGaµν
L(7)

6 − ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγµlr) Q

(3)
Hl (H†i

←→
D i

µH)(l̄pσiγµlr) QHe (H†i
←→
D µH)(ēpγµer)

Q
(1)
Hq (H†i

←→
D µH)(q̄γµq) Q

(3)
Hq (H†i

←→
D i

µH)(q̄σiγµq) QHu (H†i
←→
D µH)(ūγµu) QHd (H†i

←→
D µH)(d̄γµd)

Q
(1)
HQ (H†i

←→
D µH)(Q̄γµQ) Q

(3)
HQ (H†i

←→
D i

µH)(Q̄σiγµQ) QHt (H†i
←→
D µH)(t̄γµt) QHb (H†i

←→
D µH)(b̄γµb)

QHud i(H̃†DµH)(ū YuY †
d γ

µd) QHtb i(H̃†DµH)(t̄γµb)

L(8a)
6 − (L̄L)(L̄L)

Q
(1)
lq (l̄pγµlr)(q̄γµq) Q

(3)
lq (l̄pσiγµlr)(q̄σiγµq) Qll (l̄pγµlr)(l̄sγµlt)

Q
(1)
lQ (l̄pγµlr)(Q̄γµQ) Q

(3)
lQ (l̄pσiγµlr)(Q̄σiγµQ) Q

(1)
QQ (Q̄γµQ)(Q̄γµQ) Q

(8)
QQ (Q̄T aγµQ)(Q̄T aγµQ)

Q
(1,1)
qq (q̄γµq)(q̄γµq) Q

(1,8)
qq (q̄T aγµq)(q̄T aγµq) Q

(3,1)
qq (q̄σiγµq)(q̄σiγµq) Q

(3,8)
qq (q̄σiT aγµq)(q̄σiT aγµq)

Q
(1,1)
Qq (Q̄γµQ)(q̄γµq) Q

(1,8)
Qq (Q̄T aγµQ)(q̄T aγµq) Q

(3,1)
Qq (Q̄σiγµQ)(q̄σiγµq) Q

(3,8)
Qq (Q̄σiT aγµQ)(q̄σiT aγµq)

L(8b)
6 − (R̄R)(R̄R)

Qeu (ēpγµer)(ūγµu) Qed (ēpγµer)(d̄γµd) Qee (ēpγµer)(ēsγµet)

Qet (ēpγµer)(t̄γµt) Qeb (ēpγµer)(b̄γµb) Qtt (t̄γµt)(t̄γµt) Qbb (b̄γµb)(b̄γµb)

Q
(1)
uu (ūγµu)(ūγµu) Q

(8)
uu (ūT aγµu)(ūT aγµu) Q

(1)
tu (t̄γµt)(ūγµu) Q

(8)
tu (t̄T aγµt)(ūT aγµu)

Q
(1)
dd (d̄γµd)(d̄γµd) Q

(8)
dd (d̄T aγµd)(d̄T aγµd) Q

(1)
bd (b̄γµb)(d̄γµd) Q

(8)
bd (b̄T aγµb)(d̄T aγµd)

Q
(1)
ud (ūγµu)(d̄γµd) Q

(8)
ud (ūT aγµu)(d̄T aγµd) Q

(1)
td (t̄γµt)(d̄γµd) Q

(8)
td (t̄T aγµt)(d̄T aγµd)

Q
(1)
ub (ūγµu)(b̄γµb) Q

(8)
ub (ūT aγµu)(b̄T aγµb) Q

(1)
tb (t̄γµt)(b̄γµb) Q

(8)
tb (t̄T aγµt)(b̄T aγµb)

Q
(1)
utbd (YuY †

d )pr(ūpγµt)(b̄γµdr) Q
(8)
utbd (YuY †

d )pr(ūpT aγµt)(b̄T aγµdr)

L(8c)
6 − (L̄L)(R̄R)

Qlu (l̄pγµlr)(ūγµu) Qld (l̄pγµlr)(d̄γµd) Qqe (q̄γµq)(ēpγµer) Qle (l̄pγµlr)(ēsγµet)

Qlt (l̄pγµlr)(t̄γµt) Qlb (l̄pγµlr)(b̄γµb) QQe (Q̄γµQ)(ēpγµer)

Q
(1)
qu (q̄γµq)(ūγµu) Q

(1)
Qu (Q̄γµQ)(ūγµu) Q

(1)
qt (q̄γµq)(t̄γµt) Q

(1)
Qt (Q̄γµQ)(t̄γµt)

Q
(8)
qu (q̄T aγµq)(ūT aγµu) Q

(8)
Qu (Q̄T aγµQ)(ūT aγµu) Q

(8)
qt (q̄T aγµq)(t̄T aγµt) Q

(8)
Qt (Q̄T aγµQ)(t̄T aγµt)

Q
(1)
qd (q̄γµq)(d̄γµd) Q

(1)
Qd (Q̄γµQ)(d̄γµd) Q

(1)
qb (q̄γµq)(b̄γµb) Q

(1)
Qb (Q̄γµQ)(b̄γµb)

Q
(8)
qd (q̄T aγµq)(d̄T aγµd) Q

(8)
Qd (Q̄T aγµQ)(d̄T aγµd) Q

(8)
qb (q̄T aγµq)(b̄T aγµb) Q

(8)
Qb (Q̄T aγµQ)(b̄T aγµb)

Q
(1)
qQtu (Y †

u )pr(q̄pγµQ)(t̄γµur) Q
(8)
qQtu (Y †

u )pr(q̄pT aγµQ)(t̄T aγµur) Q
(1)
qQbd (Y †

d )pr(q̄pγµQ)(b̄γµdr) Q
(8)
qQbd (Y †

d )pr(q̄pT aγµQ)(b̄T aγµdr)

L(8d)
6 − (L̄R)(R̄L), (L̄R)(L̄R)

Qledq (l̄jper)(d̄ Yd qj) QlebQ (l̄jper)(b̄Qj) Q
(1)
leQt (l̄jper)εjk(Q̄k t) Q

(3)
leQt (l̄jpσµνer)εjk(Q̄kσµνt)

Q
(1)
lequ (l̄jper)εjk(q̄k Y †

u u) Q
(3)
lequ (l̄jpσµνer)εjk(q̄k Y †

u σ
µνu) Q

(1)
QtQb (Q̄j t)εjk(Q̄k b) Q

(8)
QtQb (Q̄j T at)εjk(Q̄k T ab)

Q
(1)
quqd (q̄j Y †

u u)εjk(q̄k Y †
d d) Q

(8)
quqd (q̄j Y †

u T
au)εjk(q̄k Y †

d T
ad) Q

(1)′
quqd (Y †

u )sr(Y †
d )pt(q̄jp ur)εjk(q̄ks dt) Q

(8)′
quqd (Y †

u )sr(Y †
d )pt(q̄jp T aur)εjk(q̄ks T adt)

Q
(1)
Qtqd (Q̄j t)εjk(q̄k Y †

d d) Q
(8)
Qtqd (Q̄j T at)εjk(q̄k Y †

d T
ad) Q

(1)
quQb (q̄j Y †

u u)εjk(Q̄k b) Q
(8)
quQb (q̄j Y †

u T
au)εjk(Q̄k T ab)

Q
(1)
Quqb (Y †

u )pr (Q̄j ur)εjk(q̄kp b) Q
(8)
Quqb (Y †

u )pr (Q̄j T aur)εjk(q̄kp T ab) Q
(1)
qtQd (Y †

d )pr (q̄jp t)εjk(Q̄k dr) Q
(8)
qtQd (Y †

d )pr (q̄jp T at)εjk(Q̄k T adr)

Table 5.7: Basis of fermionic operators for U(2)3 flavor assumptions without V and
U(2)3 × U(1)3

l+e flavor assumptions. Here (q, u, d), Yu, Yd denote quarks of the first 2
generations and their 2 × 2 Yukawa matrices. Quark fields of the 3rd generation are
(Q, t, b). Flavor indices p, r, s, t run over {1, 2} for light quarks and {1, 2, 3} for leptons.
Whenever flavor indices are not specified, they are implicitly contracted within each
current. This table was done by ref. [166] notations and we will not use it, it just a
general overview in this flavor symmetry limit.



presented. So for the four fermion operators we will need to go up O(Y 4
u ) for Quark-

Quark currents, in order to have all the breakings. For the two fermions structures,
O(Y 4

t ) is not independent from the O(Y 1
t ) and O(Y 2

t ) insertions.
Then eq.5.47 can be modifed as follow:

C
(3)
Hq,pr = C

(3,0)
Hq δpr + C

(3,1)
Hq [(Y †

uYu)pr + (Y †
d Yd)pr] (5.49)

So eq.5.48 we will need to include the remaining

C
(3)
qq,prst = C(3,0)

qq δprδst + C(3,1)
qq δptδsr + C(3,2)

qq (Y †
uYu)prδst + C(3,3)

qq (Y †
uYu)ptδsr

+ C(3,4)
qq (Y †

d Yd)prδst + C(3,5)
qq (Y †

d Yd)ptδsr + C(3,6)
qq (Y †

uYu)pr(Y †
uYu)st

(5.50)

Operators starts with O(Y 1):

CuG,pr = C
(0)
uG(Y †

u )pr (5.51)
Operators starts with O(Y 2):

CHud,pr = C
(0)
Hud(YuY

†
d )pr (5.52)

These are some general examples of how the coefficients look like in U(3)5.
For U(2)5, this case has a different way of representation for the coefficients. We will

need to name the alphabetic letters and the complex letters used in section 5.4.
We will use our own notations depending on the inner fermionic structure, if we have

two q’s then the coefficient will be with 2 q’s, and in the case of 4 q’s, it will has 4 q’s
and so on. p,r,s & t runs over 1 and 2 here, for 1 it is the light and 2 is the heavy.They
will be denoted as in eq.5.20. ANd the higher upper indices the first will be from the
operator and the second is the number of contracting if there are more than one. For
example, C(3,1)

qq this is the first contraction of the light-light currents of C(3)
Hq.

For the case of (L̄L), from eq.5.29 the coefficients of C(3)
Hq will be:

a1 = C(3,1)
qq , a2 = C(3)

q3q3 , κ1 = C(3)
qq3 , b1 = C(3,2)

qq (5.53)

The coefficients denoted with Greek letters are complex and also have the h.c terms
will the alphabetic letters are real.

as we can see that a1 and b1 will contribute to the same block coefficient. They both
contribute to the light-light curents.

For the C(3)
qq,prst, from eq.5.36 we will have the following

a1 = C(3,1)
qqqq , a2 = C(3,2)

qqqq , a3 = C(3,1)
qqq3q3 , a4 = C(3,1)

qq3q3q,

a5 = C(3)
q3q3q3q3 , κ1 = C(3,1)

qqqq3 , κ2 = C(3)
qq3q3q3 , κ3 = C(3,2)

qqqq3 ,

b1 = C(3,3)
qqqq , b2 = C(3,3)

qqq3q3 , b3 = C(3,3)
qq3q3q,

b4 = C(3,6)
qqqq , η1 = C(3,1)

qq3qq3 , ι1 = C(3,4)
qqqq3 .

(5.54)
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Also we have the complex conjugate of each of the complex numbers.
For the case of (L̄R), from eq.5.34, the coefficients of CuG will be

α1 = Cq3u3 , κ1 = Cqu3 , ρ1 = Cqu, σ1 = Cq3u. (5.55)

For the case of QHud, form eq.5.33, we will have

α1 = Cu3d3 , σ1 = Cud3 , σ1 = Cu3d. (5.56)

We can do the same procedure for all the operators, and we have done that in our
program that will be linked later in the next chapter.

Now we have defined the Wilson coefficients in the symmetric SMEFT, we want to
do a mapping between the U(3)5 with only the third generation Yukawas and U(2)5

without spurions.
After imposing the conditions, let’s see the mapping.
Starting with Q

(3)
Hq, we will have:

C(3,1)
qq = C

(3,0)
Hq ,

C(3)
q3q3 = C

(3,0)
Hq + C

(3,1)
Hq y2

t + C
(3,2)
Hq y2

b .
(5.57)

But as we have said, the y2
b is redundant, then we can have the following:

C(3,1)
qq = C

(3,0)
Hq ,

C(3)
q3q3 = C

(3,0)
Hq + C

(3,1)
Hq (y2

t + y2
b ).

(5.58)

Then we have the same number of parameters, and it is solvable.
Now for Q(3)

qq , we will have:

C(3,1)
qqqq = C(3,0)

qq ,

C(3,2)
qqqq = C(3,1)

qq ,

C(3,1)
qqq3q3 = C(3,0)

qq + C(3,2)
qq (y2

t + y2
b ),

C(3,1)
qq3q3q = C(3,1)

qq + C(3,3)
qq (y2

t + y2
b ),

C(3)
q3q3q3q3 = C(3,0)

qq + C(3,1)
qq + C(3,2)

qq (y2
t + y2

b ) + C(3,3)
qq (y2

t + y2
b ) + C(3,6)

qq y4
t .

(5.59)

Here also number of parameters are the same, and it is solvable.
Now for QuG we will have the following

Cq3u3 = CuGyt (5.60)

For QHud we have
Cu3d3 = CHudytyb (5.61)
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And of course both are solvable.
We have done all the mapping for all the different structures in our program. Each in-

dependent Wilson coefficient in the SMEFT Lagrangian under U(3)5 finds a well-defined
counterpart in the U(2)5 framework, with clear relationships dictated by the Yukawa
structure. This means that any constraints or correlations found in a U(3)5-based
SMEFT analysis can be consistently translated into the U(2)5 language. In practical
applications, this is particularly relevant when analyzing collider data or indirect preci-
sion measurements, as it enables a meaningful comparison between different symmetry
assumptions.

The U(3)5 flavor symmetry is the maximal flavor symmetry allowed by the fermionic
field content of the Standard Model, while U(2)5 is the corresponding subgroup acting
only on the first two generations. The U(3)5 symmetry allows us to implement the
Minimal Flavor Violation hypothesis, which is the most restrictive consistent hypothesis
we can utilize in the SMEFT to suppress non-standard contributions to flavor-violating
observables. The U(2)5 symmetry with minimal breaking is quite interesting since it
retains most of the MFV virtues, but it allows us to have a much richer structure as
far as third-generation dynamics is concerned. We have seen in this chapter different
counting of these flavor symmetries. And we have done the mapping between the U(3)5

with only the Yukawa of the third generation (yt, yb and yτ ) and U(2)5 without any
spurions. In the next chapter we will take about the RGE’s of the Wilson coefficients in
these symmetries and introduce our code.
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Chapter 6

1-Loop RGE in Flavor-Symmetric
SMEFT

6.1 Introduction
In the Standard Model Effective Field Theory (SMEFT), Renormalization Group Equa-
tions (RGEs) describe how the Wilson coefficients of higher-dimensional operators evolve
with energy. As in section 4.4, these equations take the form

Ċi ≡ 16π2µ
dCi
dµ

= γijCj (6.1)

where γij is the anomalous dimension matrix that governs how different operators mix
under renormalization. At dimension-6, one-loop RGEs have been extensively studied,
revealing significant contributions from gauge couplings, Yukawa interactions (especially
the top quark), and operator mixing effects. This mixing means that even if certain
operators are absent at a high scale, they can be induced at lower scales through running.

From refs. [4–6] we had all the RGE’s calculated in the appendices A,B and C. We
will not work with all the the terms in these appendices, but we will focus on terms
with Yukawas. The RGEs are available and automated already, but only in the version
with generic flavor indices [9, 41, 42]. So, we want here to calculate the RGEs for the
symmetric SMEFT that were derived before. We will apply a truncation technique
to the RGEs to ensure a consistent treatment of the flavor symmetry. This technique
systematically removes terms beyond a specific order in the RGEs. In our case, we
will truncate the U(3)5 RGEs up to O(Y 2), retaining only terms up to second order in
the Yukawa couplings. After truncation, we will analyze the contributions from other
operators to determine their significance in the evolution of the Wilson coefficients.
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6.2 RunSMEFT
In this section, we will introduce the Mathematica code. We will talk about its usage
and its results.

RunSMEFT � is the code done by me to find the RGEs in the U(3)5 and in U(2)5.
We started the code with the U(2)5 symmetry, we defined the Yukawas as in eq.5.23,

but we assumed no mixing in the leptonic sector, the Vℓ = 0 and also inside the ∆e

we don’t have the mixing between the first two generations. However, we defined the
coefficients structures as in sections 5.4 and 5.6, for the Bosonic structures the coefficients
are simply a numerical values. In the Fermion Bilinear structure, splitting the light and
the heavy indices, the coefficients are presented as 2× 2 matrices since the indices (p,r)
run over 1 and 2 . Moreover, the four Fermion structure are defined as 2 × 2 × 2 × 2
tensor, and (p,r,s,t) indices runs over 1 and 2. We picked up all the terms the depend
explicitly on Yukawa couplings form the appendices A,B,C, and added them together to
have the most general Yukawa dependent RGEs. We defined a function that truncate
the series on a specific order since we are only looking up to O(V 3,∆1V 1) and calculated
the running of the coefficients with blocks.

For U(3)5, we defined the coefficients as in sections 5.3 and 5.6. Also, we had the
same general Yukawa RGEs. We did truncation up to O(Y 2) to this RGEs.

At the end, in the same code we did the correspondence between U(3)5 with only
the third generation Yukawa (yt, yb and yτ ) and U(2)5 without any spurions, in the same
way done in section 5.6.

By implementing these calculations, we derived a systematic framework for comput-
ing RGEs in different symmetry scenarios, facilitating a deeper understanding of their
behavior.

6.3 Truncated RGEs
The truncation of the RGEs is necessary to treat consistently the flavor symmetry.
Given that SMEFT operates as an effective field theory, higher-order terms in spurion
or Yukawa expansions often contribute subleading corrections, which may be negligible
within the precision of our analysis. In the U(2)5 framework, we truncate atO(V 3,∆1V 1)
since higher-order terms involve additional suppressions from small mixing parameters
and masses, making them less significant. Similarly, in the U(3)5 case, truncation at
O(Y 2) ensures that we capture the dominant Yukawa-dependent contributions while
avoiding excessive computational complexity. This approach balances accuracy and fea-
sibility, ensuring that our results remain analytically tractable and numerically efficient
while preserving the key physical insights of the SMEFT RGE evolution.
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6.3.1 U(3)5 truncated RGEs
Having in mind the following key points, Class 7 except QHud, 8(L̄L)(L̄L), 8(R̄R)(R̄R)
and 8(L̄L)(R̄R) starts contracting with no Yukawa insertion, Class 5 & 6 with one
insertion, QHud, 8(L̄R)(R̄L) and 8(L̄R)(L̄R) with two insertions. We will list some of
the truncated RGEs in the U(3)5 assumption up to O(Y 2).

Ċ
(3)
Hq,pr = −1

2(Y †
uYu + Y †

d Yd)prCH2 + 2Tr[NcY
†
uYu +NcY

†
d Yd + Y †

e Ye]C
(3)
Hq,pr

− (2NcC
(3)
qq,prst + 2NcC

(3)
qq,stpr + C

(1)
qq,ptsr + C

(1)
qq,srpt − C

(3)
qq,ptsr − C

(3)
qq,srpt)(Y †

d Yd + Y †
uYu)ts

− 2C(3)
lq,stpr(Y †

e Ye)ts + 3
2(Y †

d Yd − Y †
uYu)ptC

(1)
Hq,tr + 3

2C
(1)
Hq,pt(Y

†
d Yd − Y †

uYu)tr

+ 1
2(Y †

d Yd + Y †
uYu)ptC

(3)
Hq,tr + C

(3)
Hq,pt(Y

†
d Yd + Y †

uYu)tr + (Y †
uYu + Y †

d Yd)ptC
(3)
Hq,tr

(6.2)

Ċ
(3,0)
Hq = 2Tr[NcY

†
uYu +NcY

†
d Yd + Y †

e Ye]C
(3,0)
Hq − 2C(3,0)

lq Tr(Y †
e Ye) + 2(C(1,1)

qq

− C(3,1)
qq + 2NcC

(3,0)
qq )Tr(Y †

uYu + Y †
d Yd)

(6.3)

Ċ
(3,1)
Hq = −1

2CH2 + 2Tr[NcY
†
uYu +NcY

†
d Yd + Y †

e Ye]C
(3,1)
Hq

+ 2(C(1,0)
qq − C(3,0)

qq + 2NcC
(3,1)
qq )− 2C(3,2)

lq Tr(Y †
e Ye)−

3
2C

(1,0)
Hq + 5

2C
(3,0)
Hq

(6.4)

Ċ
(3,2)
Hq = −1

2CH2 + 2Tr[NcY
†
uYu +NcY

†
d Yd + Y †

e Ye]C
(3,2)
Hq

+ 2(C(1,0)
qq − C(3,0)

qq + 2NcC
(3,1)
qq )− 2C(3,3)

lq Tr(Y †
e Ye)−

3
2C

(1,0)
Hq + 5

2C
(3,0)
Hq

(6.5)

Now for CuG structure:

ĊuG,pr = Tr[NcY
†
uYu +NcY

†
d Yd + Y †

e Ye]CuG,pr − 4(Y †
u )prg3(CHG + iCHG̃)

− 3g2
3ca,3(Y †

u )pr(CG + iCG̃)
(6.6)

Ċ
(0)
uG = Tr[NcY

†
uYu +NcY

†
d Yd + Y †

e Ye]C
(0)
uG − g3(CHG + iCHG̃)

− 3g2
3ca,3(CG + iCG̃)

(6.7)
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Now for C(3)
qq structure:

Ċ
(3)
qq,prst = −1

2(Y †
uYu + Y †

d Yd)prC
(3)
Hq,st −

1
2(Y †

uYu + Y †
d Yd)stC

(3)
Hq,pr

− 1
8((Y †

u )pv(Yu)wtC(8)
qu,srvw + (Y †

u )sv(Yu)wrC(8)
qu,ptvw)

− 1
8((Y †

d )pv(Yd)wtC(8)
qd,srvw + (Y †

d )sv(Yd)wrC(8)
qd,ptvw)

+ 1
2(Y †

uYu + Y †
d Yd)pvC

(3)
qq,vrst + 1

2(Y †
uYu + Y †

d Yd)svC
(3)
qq,prvt

+ 1
2C

(3)
qq,pvst(Y †

uYu + Y †
d Yd)vr + 1

2C
(3)
qq,prsv(Y †

uYu + Y †
d Yd)vt

(6.8)

Ċ(3,0)
qq = 0 (6.9)

Ċ(3,2)
qq = 0 (6.10)

Ċ(3,2)
qq = 2C(3,0)

qq + C
(3,0)
Hq (6.11)

Ċ(3,3)
qq = 2C(3,0)

qq + C
(3,0)
Hq (6.12)

Ċ(3,4)
qq = 5

2C
(3,1)
qq − 1

4C
(8,0)
qu − 1

4C
(8,0)
qd (6.13)

Ċ(3,4)
qq = 5

2C
(3,1)
qq − 1

4C
(8,0)
qu − 1

4C
(8,0)
qd (6.14)

For CHud,pr

ĊHud,pr = (YuY †
d )pr(2CH2 − CHD) + 2Tr[NcYuY

†
u +NcY

†
d Yd + Y †

e Ye]CHud,pr
+ 4(C(1)

ud,ptsr + cf,3C
(8)
ud,ptsr)(YuY

†
d )ts − 2(YuY †

d )ptCHd,tr + 2CHu,pt(YuY †
d )

(6.15)

Ċ
(0)
Hud = 2CH2 − CHD + 2Tr[NcYuY

†
u +NcY

†
d Yd + Y †

e Ye]C
(0)
Hud

+ 4(C(1,0)
ud + cf,3C

(8,0)
ud )− 2C(0)

Hd + 2C(0)
Hu

(6.16)

where ca,3 = (N2
c −1)

2Nc
and cf,3 = Nc are SU(3) quadratic Casimirs in adjoint and

fundamental representation, respectively, and Nc is the number of colors.
The equations above only include contributions to the RGE that contain Yukawa

couplings. To obtain the complete expressions one would need to add all the terms that
are independent of the Yukawas, that are reported in the Appendices.
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6.3.2 U(2)5 truncated RGEs
We will list also the truncated RGEs in U(2)5. They will be in blocks, then we will give
an example of a block that was divided. Using our notations, we will have the following:

Starting with C
(3)
Hq structures:

Ċ(3)
qq = −2(C(1,1)

qq3q3q − C
(1,3)
qq3q3q + 2NcC

(1)
qqq3q3)(y2

b + y2
t ) + 3

2C
(1)
qq3VqV

†
q (xby2

b − xty2
t )

+ C(3)
qq3VqV

†
q (xby2

b + xty
2
t )− 2(C(1,1)

qqqq3 + C(1,2)
qqqq3 − C

(3,2)
qqqq3 + 2NcC

(3,2)
qqqq3

+ C(3,1)
qqqq3(−1 + 2Nc))VqV †

q (xby2
b + xty

2
t ) + 3C(1,1)

qq VqV
†
q (x2

by
2
b − x2

ty
2
t )

+ 2C(3,1)
qq VqV

†
q (x2

by
2
b + x2

ty
2
t )−

1
2CH2VqV

†
q (x2

by
2
b + x2

ty
2
t )

+ 2C(3,1)
qq NcVqV

†
q (x2

by
2
b + x2

ty
2
t )− 2(C(1,1)

qqqq + C(1,2)
qqqq − C(3,2)

qqqq + 2C(3,2)
qqqqNc

+ C(3,1)
qqqq (−1 + 2Nc))VqV †

q (x2
by

2
b + x2

ty
2
t )− 2C(3,1)

ℓ3ℓ3qqτ
2 + 2C(3,1)

qq (Nc(y2
b + y2

t ) + y2
τ )

+ 3
2VqV

†
q (xby2

b − xty2
t )C⋆(1)

qq3 − 2VqV †
q (xby2

b + xty
2
t )(C⋆(1,1)

qqqq3 + (−1 + 2Nc)C⋆(1,1)
qqqq3

+ C⋆(1,2)
qqqq3 − C

⋆(3,2)
qqqq3 + 2NcC

⋆(3,2)
qqqq3 ) + VqV

†
q (xby2

b + xty
2
t )C⋆(3)

qq3 − 2C(3,2)
ℓ3ℓ3qqy

2
τVqV

†
q

+ 2C(3,2)
qq (Nc(y2

b + y2
t ) + y2

τ )VqV †
q + (y2

b + y2
t )(−2C(1,2)

qq3q3q + 2C(3,2)
qq3q3q

− 4C(3,2)
qqq3q3NcVq.V

†
q )

(6.17)

Ċ(3)
qq3 = 1

2(3C(1)
qq3(y2

b − y2
t ) + 2C(3)

qq3(y2
b + y2

t )− 4(C(1)
qq3q3q3 + C(3)

qq3q3q3(−1 + 2Nc))(y2
b + y2

t )

+ 3C(1,1)
qq (xby2

b − xty2
t ) + 3C(1)

q3q3(xby2
b − xty2

t ) + 2C(3,1)
q3q3 (xby2

b + xty
2
t )

+ 2C(3)
q3q3(xby2

b + xty
2
t )− CH2(xby2

b + xty
2
t )− 4(C(1,1)

qqq3q3 − C
(3,1)
qqq3q3 + 2C(3,1)

qq3q3qNc)(xby2
b + xty

2
t )

+ 3C(1)
qq3VqV

†
q (x2
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2
b − x2

ty
2
t ) + 2C(3)

qq3VqV
†
q (x2
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2
b + x2

ty
2
t ) + 4C(3)

qq3NcVqV
†
q (x2

by
2
b + x2

ty
2
t )

+ 4(C(1,1)
qqqq3 + C(1,2)

qqqq3(−1 + 2Nc))VqV †
q (x2

by
2
b + x2

ty
2
t )− 4C(3,1)

ℓ3ℓ3qq3y
2
τ + 4C(3)

qq3(Nc(y2
b + y2

t ) + y2
τ )

− 4(C(1)
qq3qq3 + C(3)

qq3qq3(−1 + 2Nc))VqV †
q (xby2

b + xty
2
t ) + 3C(1,2)

qq (xby2
b − xty2

t )VqV †
q

+ C(3,2)
qq (xby2

b + xty
2
t )VqV †

q − 4(xby2
b + xty

2
t )(C(1,2)

qqq3q3 − C
(3,2)
qqq3q3 + 2C(3,2)

qq3q3qNc)VqV †
q )
(6.18)

Ċ(3)
q3q = Ċ⋆(3)

qq3 (6.19)
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Ċ(3)
q3q3 = 3C(1)

q3q3(y2
b − y2

t ) + 2C(3)
q3q3(y2

b + y2
t )−

1
2CH2(y2

b + y2
t )− 2(C(1)

q3q3q3q3 + C(3)
q3q3q3q3

(−1 + 2Nc))(y2
b + y2

t ) + 3
2C

(1)
qq3VqV

†
q (xbyb62− xty2

t ) + C(3)
qq3VqV

†
q (xby2

b + xty
2
t )

− 2(C(1)
qq3q3q3 + C(3)

qq3q3q3(−1 + 2Nc))VqV †
q (xby2

b + xty
2
t ) + 2C(3)

q3q3NcVqV
†
q (x2

by
2
b + x2

ty
2
t )

− 2(C(1,1)
qq3q3q − C

(3,1)
qq3q3q + 2C(3,1)

qqq3q3Nc)VqV †
q (xb62y2

b + x2
ty

2
t )− 2C(3)

ℓ3ℓ3q3q3y
2
τ

+ 2C(3)
q3q3(Nc(y2

b + y2
t ) + y2

τ ) + 3
2VqV

†
q (xby2

b − xty2
t )C⋆(1)

qq3 + VqV
†
q (xby2

b + xty
2
t )C⋆(3)

qq3

+ VqV
†
q (xby2

b + xty
2
t )(−2C⋆(1)

qq3q3q3 − 2(−1 + 2Nc)C⋆(3)
qq3q3q3)

(6.20)

Now for the C(3)
qq structure: Also here there are blocks,

Ċ(3)
qqqq = 1

8Vq(−2C(8,1)
qqd3d3V

†
q x

2
by

2
b − 2C(8,1)

qqu3u3V
†
q x

2
ty

2
t + 8(C(3,1)

qqqq3 + C(3,2)
qqqq3)V †

q (xby2
b + xty

2
t )

− 8C(3,1)
qq V †

q (x2
by

2
b + x2

ty
2
t ) + 16(C(3,1)

qqqq + C(3,2)
qqqq )V †

q (x2
by

2
b + x2

ty
2
t )

+ 8V †
q (xby2

b + xty
2
t )(C⋆(3,1)

qqqq3 + C⋆(3,2)
qqqq3 ))

(6.21)

Ċ(3)
qqqq3 = 1

16(−2C(8,1)
qqd3d3Vqxby

2
b − 2C(8,1)

qqu3u3Vqxty
2
t + 8(C(3,2)

qqqq3 + C(3,1)
qqqq3)Vq(y2

b + y2
t )

− 8C(3,1)
qq Vq(xby2

b + xty
2
t ) + 8C(3,1)

qq3q3qVq(xby
2
b + xty

2
t ) + 8C(3,1)

qqq3q3(xby2
b + xty

2
t )

+ 8(C(3,1)
qqqq + C(3,2)

qqqq )Vq(xby2
b + xty

2
t )− 8C(3)

qq3V
2
q V

†
q (x2

by
2
b + x2

ty
2
t )

+ 24(C(3,2)
qqqq3 + C(3,1)

qqqq3)V 2
q V

†
q (x2

by
2
b + x2

ty
2
t ) + 2V 2

q V
†
q xbxtybytC

⋆(1)
q3u3qd3

+ 2V 2
q V

†
q xbxtybytC

⋆(1)
qu3q3d3 + V 2

q V
†
q xbxtybytC

(8)
q3u3qd3 − V

2
q V

†
q xbxtybytC

⋆(8)
qu3q3d3

− 1
Nc

V 2
q V

†
q xbxtybyt(C

⋆(8)
q3u3qd3 + C

⋆(8)
qu3q3d3) + 2C(1)

qu3qd3V
†
q V

2
q xbybyt

− C(8)
qu3qd3V

†
q V

2
q xbybyt + 2C(1)

qu3qd3V
†
q V

2
q xtybyt − C

(8)
qu3qd3V

†
q V

2
q xtybyt

− 1
Nc

C
(8)
qu3qd3V

†
q V

2
q (xb + xt)ybyt + 8C(3)

qq3qq3V
†
q V

2
q (xby2

b + xty
2
t )

− 8C(3,2)
qq V 2

q V
†
q (x− by2

b + xty
2
t ) + 8C(3,2)

qqq3q3V
2
q V

†
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b + xty
2
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qqqq )V 1
q 2V †

q (xby2
b + xty

2
t ) + 2V 2

q V
†
q (C(8)

qq3d3d3xb + C(8,2)
qqu3u3)

+ 2V 2
q V

†
q (C(8)

qq3u3u3xt + C(8,2)
qqu3u3) + 8C(3,2)

qq3q3qV
2
q V

†
q (xby2

b + xty
2
t )

+ 8C(3,3)
qqqq3(y2
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t )V 2

q V
†
q )

(6.22)
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Ċ(3)
qqq3q = Ċ⋆(3)

qqqq3 (6.23)

Ċ(3)
qqq3q3 = 1

16(2C(1)
q3u3qd3VqV

†
q xbybyt − C

(8)
qu3q3d3VqV

†
q xbybyt + 2C(1)

qu3q3d3VqV
†
q xtybyt

− 1
Nc

VqV
†
q (C(8)

q3u3qd3xb + C
(8)
qu3q3d3ybyt)− 8C(3,1)

qq (y2
b + y2

t ) + 16C(3,1)
qqq3q3(y2

b + y2
t )

+ 8C(3)
qq3q3q3VqV

†
q (xby2

b + xty
2
t ) + 8(C(3,2)

qqqq3 + C(3,1)
qqqq3)VqV †
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b + xty

2
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+ 16C(3,1)
qqq3q3VqV

†
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2
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2
t )− 8C(3)

q3q3VqV
†
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2
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+ 8VqV †
q (xbyb62 + xty

2
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qqqq3 + C⋆(3,2)
qqqq3 )− 2VqV †
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2
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qq3d3d3 + C

⋆(8)
qq3d3d3)

+ 2VqV †
q xty

2
t (C(8)

qq3u3u3 + C⋆(8)
qq3u3u3) + 2VqV †

q xbybytC
⋆(1)
q3u3qd3 + 2VqV †

q xtybytC
(1)
qu3q3d3

− VqV †
q xtybytC

(8)
q3u3qd3 − VqV

†
q xtybytC

(8)
qu3q3d3 −

1
Nc

VqV
†
q ybyt(xbC

⋆(8)
q3u3qd3 + xtC

⋆(8)
qu3q3d3)

+ 8VqV †
q (xby2

b + xty
2
t ) + 8VqV †

q (xby2
b + xty

2
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qq3q3q3 − 8C(3,2)
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t )VqV †

q

+ 16C(3,2)
qqq3q3(y2

b + y2
t )VqV †

q )
(6.24)

Ċ(3)
qq3qq = Ċ(3)

qqqq3 (6.25)

Ċ(3)
qq3qq3 = 1

8(−2C(8)
qq3d3d3xby

2
b − 2C(8)

qq3u3u3xty
2
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qqqq3 + C(3,2)
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qq3q3q3(xby2
b + xty

2
t ) + 4(C(3,2)

qqqq3 + C(3,1)
qqqq3)(xby2

b + xty
2
t )

+ 2xbxtybytC⋆(1)
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qu3qd3ybyt

− C(8)
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1
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C
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qu3qd3yt + 8C(3)

qq3qq3(y2
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(6.26)
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Ċ(3)
qq3q3q = 1

16(−2C(8,1)
qqd3d3y
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qu3q3d3VqV
†
q xbybyt − C
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q3u3qd3VqV

†
q xbybyt
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q3u3qd3VqV

†
q xtybyt − C
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qu3q3d3VqV

†
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1
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VqV
†
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qu3q3d3xb
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(8)
q3u3qd3xt)ybyt − 2C(8,1)

qqu3u3y
2
t + 16C(3,1)

qq3q3q(y
2
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qqqq3
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qqqq3)VqV †
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b + xty

2
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qq3VqV
†
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2
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†
q (xby2

b
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2
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2
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b + xty
2
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qqqq3
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2
t )C(3)
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b + xty
2
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(8)
q3q3d3d3VqV

†
q x
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qqd3d3VqV

†
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t (C(8)
q3q3u3u3VqV

†
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2
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qqu3u3VqV
†
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(6.27)

Ċ(3)
qq3q3q3 = 1

16Nc

(−8C(3)
qq3Ncy

2
b + 24C(3)

qq3q3q3Ncy
2
b − 2C(8)

qq3d3d3Ncy
2
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qq3q3qNcxby
2
b

+ 8C(3,1)
qqq3q3Ncxby

2
b − 8C(3)

q3q3Ncxby
2
b − 8C(3)
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2
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2
b
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†
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2
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2
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q3u3qd3ybyt − C
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qu3q3d3ybyt + 2C(1)

q3u3qd3Ncybyt

+ 2C(1)
qu3q3d3Ncybyt − C(8)

q3u3qd3Ncybyt − C(8)
qu3q3d3Ncybyt + 8C(3)

qq3Ncy
2
t

+ 24C(3)
qq3q3q3Ncy

2
t + 2C(8)

qq3u3u3Ncy
2
t + 8C(3,1)

qq3q3qNcxty
2
t − 8C(3,1)
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2
t

− 8C(3)
q3q3Ncxty

2
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2
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2
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qq3q3q3NcVqv
†
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2
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2
t
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q3u3q3d3 − (1 +Nc)(xb + xt)ybytC⋆(8)
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t )

(6.28)

Ċ(3)
q3qqq = Ċ⋆(3)

qqqq3 (6.29)

Ċ(3)
q3qqq3 = Ċ(3)

qq3q3q (6.30)

Ċ(3)
q3qq3q = Ċ⋆(3)

qq3qq (6.31)

Ċ(3)
q3qq3q3 = Ċ(3)

qq3q3q3 (6.32)

Ċ(3)
q3q3qq = Ċ(3)

qqq3q3 (6.33)

Ċ(3)
q3q3qq3 = Ċ(3)

qq3q3q3 (6.34)
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Ċ(3)
q3q3q3q = Ċ⋆(3)

qq3q3q3 (6.35)

Ċ(3)
q3q3q3q3 = 1

8(−8C(3)
q3q3y

2
b + 16C(3)

q3q3q3q3y
2
b − 2C(8)

q3q3d3d3y
2
b + 8C(3)

qq3q3q3VqV
†
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2
b

+ 2C(1)
q3u3q3d3ybyt − C
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2
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2
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qq3q3q3 + 4VqV †

q xty
2
tC

⋆(3)
qq3q3q3)

(6.36)

Now for CuG structure:

ĊquG = −C(1)
q3uqd3g3yb + 1

Nc

C
(8)
q3uqd3g3yb − g3(4CHG + 4iCHG̃ + 3Ca,3(CG + iCG̃)g3)yt

+ CquG(Nc(y2
b + y2

t ) + y2
τ )

(6.37)

Ċqu3G = 1
2Nc

(2C(8)
q3u3qd3g3yb +Nc(−2C(1)

q3u3qd3g3yb − 3Cq3u3GxBy
2
b − 8CHGg3xtyt
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†
q xbxtybyt + 5Cq3u3Gxty

2
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2
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2
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†
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2
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2
b + y2
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†
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2
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2
t ) + 2y2

τ )) + 2g3(C(8)
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(6.38)

Ċq3uG = 1
2Nc

(2C(8)
quq3d3g3xbyb +Nc(−2C(1)
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2
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q3uq3d3g3Ncyb
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b + (5 + 2Nc)y2
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(6.39)

Ċq3u3G = −C(1)
q3u3q3d3g3yb + 1

Nc

C
(8)
q3u3q3d3 − C
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qu3q3d3g3VqV
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C
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†
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b + Cq3u3GNcV − qV †

q x
2
by

2
b
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†
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2
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2
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τ

(6.40)
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Now for CHud strucutre:

Ċud = 0 (6.41)

Ċud3 = yt(4C(1)
uud3d3xbyb − 2Cd3d3xbyb + 4C(8)

uud3d3cf,3xbyb + 2CH2xbyb − CHDxbyb
+ 2Cuuxbyb + 3Cu3d3xtyt) + Cud3(3 + 2Nc)y2

b + 2(2C(1)
uu3d3d3 + 2C(8)

uu3d3d3cf,3

+ Cuu3)ybyt + 2Cud3(Ncy
2
t + y2

τ )
(6.42)

Ċu3d = yb(3Cu3d3xbyb + (4C(1)
u3u3dd − 2Cdd + 4C(8)

u3u3ddcf,3 + 2CH2 − CHD + 2Cu3u3)xtyt)
+ 2Cu3dNcy

2
b + 3Cu3dy

2
t + 2Cu3dNcy

2
t + 2Cu3dy

2
τ + 4ybytC⋆(1)

u3u3dd3 + 4cf,3ybytC(8)
u3u3dd3

− 2ybytC⋆
dd3

(6.43)

Ċu3d3 = (4C(1)
u3u3d3d3 − 2Cd3d3 + 4C(8)

u3u3d3d3cf,3 + 2CH2 − CHD + 2Cu3u3)(1 + VqV
†
q xbxt)ybyt

+ Cu3d3((3 + 2Nc)(1 + VqV
†
q )x2

by
2
b + (3 + 2Nc)(1 + VqV

†
q x

2
t )y2

t + 2y2
τ )

(6.44)

All these calculations were done with blocks. However, for example eq.6.17, is the
running of two coefficients. In the code we did an example, and it was on this exact
block in order to separate them, and we were able to find the following results

Ċ(3,1)
qq = −2((C(1,1)

qq3q3q − C
(3,1)
qq3q3q + 2C(3,1)

qqq3q3Nc − C(3,1)
qq Nc)(y2

b + y2
t ) + (C(1,2)

qqqq3xby
2
b

− C(3,2)
qqqq3xby

2
b + 2C(3,1)

qqqq3Ncxby
2
b + C(1,2)

qqqq x
2
by

2
b − C(3,2)

qqqq x
2
by

2
b + 2C(3,1)

qqqqNcx
2
by

2
b

− C(3,1)
qq Ncx

2
by

2
b + C(1,2)

qqqq3xty
2
t + C(3,2)

qqqq3xty
2
t + 2C(3,1)

qqqq3Ncxty
2
t + C(1,2)

qqqq x
2
ty

2
t

− C(3,2)
qqqq x

2
ty

2
t + 2C(3,1)

qqqqNcx
2
ty

2
t − C(3,1)

qq Ncx
2
ty

2
t + 2Nc(xby2

b + xty
2
t )C⋆(3,1)

qqqq3

+ xby
2
bC

⋆(1,2)
qqqq3 + xty

2
tC

⋆(1,2)
qqqq3 − xby

2
bC

⋆(3,2)
qqqq3 − xty

2
tC

⋆(3,2)
qqqq3 )V †

q Vq)

(6.45)

Ċ3,2
qq = 1

2(4C(3,2)
qq (y2

b + y2
t )− 4(C(1,2)

qq3q3q − C
(3,2)
qq3q3q + 2C(3,2)

qqq3q3Nc)(y2
b + y2

t )

+ 3C(1)
qq3(xby2

b − xty2
t ) + 2C(3)

qq3(xby2
b + xty

2
t )− 4(C(1,1)

qqqq3 − C
(3,1)
qqqq3

+ 2C(3,2)
qqqq3Nc)(xby2

b + xty
2
t ) + 6C(1,1)

qq (x2
by

2
b − x2

ty
2
t )− CH2(x2

by
2
b + x2

ty
2
t )

+ 4C(3,1)
qq (x2

by
2
b + x2

ty
2
t )− 4(C(1,1)

qqqq − C(3,1)
qqqq + 2C(3,2)

qqqqNc)(x2
by

2
b + x2

ty
2
t )

− 4(xby2
b + xty

2
t )(C⋆(1,1)

qqqq3 − C
⋆(3,1)
qqqq3 + 2NcC

⋆(3,2)
qqqq3 ) + 3(xby2

b − xty2
t )C⋆(1)

qq3 + 2(xby2
b + xty

2
T )C⋆(3)

qq3 )
(6.46)

72



These are just some examples of our work, we have done the calculation of all the
Wilson coefficients of all classes truncated to a some orders.

The analysis of the U(3)5 and U(2)5 symmetry and symmetry-breaking in the flavor
sector are quite clear. However, it is worth to stress that the flavor symmetry is useful to
simplify and organise analysis of hightpT observables at the LHC. In the next chapter,
we will discuss some phenomenological application of what we have already did so far.
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Chapter 7

Phenomenology in the domain of
Flavor symmetric SMEFT

7.1 Introduction
The flavor symmetries and the spurion series expansion give a rationale for phenomenol-
ogy because they tell us which effects are expected to be larger compared to others,
based on the known fermion masses and mixings. Concretely, the yukawa of the top is
the largest spurion yt ∼ 1, and it breaks U(3) to U(2), which is the main motivation to
use U(2) instead of U(3).

U(2) is currently used in state-of-the-art LHC searches for SMEFT signals, especially
in top quark processes, but also in global fits. Many of the Monte Carlo codes that
allow to simulate SMEFT signals at LHC implement a U(2) symmetry (e.g. SMEFTsim
[166], SMEFT@NLO [169]). It’s also used in global analyses, by the ATLAS/CMS
experiments [170] and by theorists [171]. These tools implement an exact U(2) symmetry
in the quark sector, simplifying the treatment of flavor (or quark type) interactions.
However, this simplification can overlook important flavor-dependent effects that arise
during the Renormalization Group Equation (RGE) evolution of the theory and could
become relevant, for instance, in the context of a combined analysis of high-pT data and
low-energy flavor observables.

To enhance the accuracy of these simulations, it is crucial to account for the flavor
structure of the RG equations, ensuring that flavor-changing interactions are appropri-
ately accounted for [9,41]. By doing so, one can capture the complete set of flavor effects,
leading to more precise predictions for LHC observables.

U(2) is used in all the examples above as an exact symmetry, ie. typically neglect-
ing all spurions. So, by asking what is the largest flavor effect neglected, we expect
the next breaking in the flavor symmetry hierarchy typically to come from from the
insertion of the Vq spurion, whose size is mainly determined by the Cabibbo-Kobayashi-
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Maskawa (VCKM) matrix element Vcb, which is associated with the second-generation
quarks (specifically the b- and c-quark). The magnitude of Vcb is approximately O(10−2),
much smaller than yt. This hierarchy in the magnitudes of the flavor parameters is im-
portant because it sets the scale for which effects are expected to be subleading in new
physics models.

At this stage, we can identify operators that involve only one instance of the spurion
Vq, and no other spurions. These operators can be constructed by contracting flavor
indices in a way that ensures they are invariant under the U(2) symmetry and that
no additional spurions contribute. For example, one such operator would be the cur-
rent (q̄Vqq3), where the quark fields q and q3 belong to the first and third generations,
respectively.

7.2 Operators of Interest
Using what we did in section 5.4, and having the notations used in section 5.6. These
are the list of contractions with single Vq:

• Class 5:

Cqu3HVq, Cqd3HVq. (7.1)

• Class 6:

Cqu3GVq, Cqu3WVq, Cqu3BVq, Cqd3GVq, Cqd3WVq, Cqd3BVq. (7.2)

• Class 7:

C(1)
qq3Vq, C(3)

qq3Vq. (7.3)

• Class 8(L̄L)(L̄L):

C(1,1)
qqqq3Vq, C(1,2)

qqqq3Vq, C(1)
qq3q3q3Vq, C(3,1)

qqqq3Vq, C(3,2)
qqqq3Vq, C(3)

qq3q3q3Vq

C
(1)
ℓℓqq3Vq, C

(1)
ℓ3ℓ3qq3Vq, C

(3)
ℓℓqq3Vq, C

(3)
ℓ3ℓ3qq3Vq

(7.4)

• Class 8(L̄L)(R̄R):

Cqq3eeVq, Cqq3e3e3Vq, C(1)
qq3uuVq, C(1)

qq3u3u3Vq, C(8)
qq3uuVq, C(8)

qq3u3u3Vq,

C
(1)
qq3ddVq, C

(1)
qq3d3d3Vq, C

(8)
qq3ddVq, C

(8)
qq3d3d3Vq,

(7.5)
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• Class 8(L̄R)(R̄L):

Cℓ3e3d3qV
†
q (7.6)

• Class 8(L̄R)(L̄R):

C
(1)
qu3q3d3Vq, C

(1)
q3u3qd3Vq, C

(8)
qu3q3d3Vq, C

(8)
q3u3qd3Vq, C

(1)
ℓ3e3qu3Vq, C

(3)
ℓ3e3qu3V

.
q

(7.7)

These operators could induce many interactions that are flavor changing interactions,
∆F = 1. Since q and q3 are doublets, and some operators have Pauli matrices inside,
then we could have t̄cX, t̄sX, b̄sX and b̄cX where X are outgoing particles.

We will focus on interactions with top quark. Using ref. [172] we can know the
induced interactions.

Using unitary gauge, and up to 4-point interactions we have the follow:

t̄cg, t̄cγ, t̄cZ, t̄ch, t̄cgh, t̄cγh, t̄cZh, t̄chh, t̄cW+W−, t̄cgg, t̄cψ̄ψ,

t̄sW+, t̄sW+h, t̄sψ̄ψ′

(7.8)

were ψ̄ψ is a generic fermion-antifermion pair of any flavor, while ψ̄ψ′ is a flavor-
conserving fermion pair with positive electric charge (eg ūd, e+νe).

Identifying the list of leading breakings of U(2) that can be relevant for LHC processes
(especially involving the top quark) and also provided the RGEs, we can produce such
effects via running. For instance, from eq.6.18 we have the truncated RGEs for the C(3)

qq3

up to O(V 3). To do thing more consistent here, we will need to do a truncation by hand
up to O(V 1):

Ċ(3)
qq3 = 1

2(3C(1)
qq3(y2

b − y2
t ) + 2C(3)

qq3(y2
b + y2

t )− 4(C(1)
qq3q3q3 + C(3)

qq3q3q3(−1 + 2Nc))(y2
b + y2

t )

+ 3C(1,1)
qq (xby2

b − xty2
t ) + 3C(1)

q3q3(xby2
b − xty2

t ) + 2C(3,1)
q3q3 (xby2

b + xty
2
t )

+ 2C(3)
q3q3(xby2

b + xty
2
t )− CH2(xby2

b + xty
2
t )− 4(C(1,1)

qqq3q3 − C
(3,1)
qqq3q3 + 2C(3,1)

qq3q3qNc)(xby2
b + xty

2
t )

− 4C(3,1)
ℓ3ℓ3qq3y

2
τ + 4C(3)

qq3(Nc(y2
b + y2

t ) + y2
τ )

(7.9)

The operators found in eq.7.9 generate C(3)
qq3 via the running at high energy scales.

There are exact symmetry terms showing in the running, then even if we sart from flavor-
preseving operators (C(1,1)

qq and C(1)
q3q3) they generate flavor-violating operators. Flavor-

violating operators produces interaction as t̄cZ, t̄cZh, t̄sW+ and t̄sW+h. The running of
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these operators at higher scales modifies the strength of the interaction, which is essential
for understanding the behavior of the system at these energy levels. This running effect
allows for the operators to influence low-energy observables, linking high-energy physics
with phenomena observable at lower scales.

7.3 Possible phenomenological consequences of U(2)
breaking

Top quark decay refers to the process by which a top quark, the heaviest known funda-
mental particle, decays into other particles. The top quark is unstable and decays almost
immediately after it is produced. Its dominant decay mode is through the weak interac-
tion, where it decays into a W boson and a bottom quark (b quark), typically represented
as t −→ W + b. The W boson itself quickly decays into various lighter particles, such
as a quark-antiquark pair or a lepton and neutrino. The relatively short lifetime of the
top quark means that it does not hadronize like lighter quarks, and its decay products
provide valuable insight into the fundamental forces and particle interactions.

In section 7.2, we have listed some of the interactions of O(V 1) which is the next
highest breaking in size. And we have the following 2-body decays that can be induced:

t −→ cZ, t −→ ch,

t −→ cg, t −→ cγ.
(7.10)

In eq. 7.10, we have the most important flavor changing-neutral current (FCNC)
processes. If U(2)is broken hierarchically, it can lead to controlled flavor mixing while
still preserving the smallness of FCNCs. Then eq.7.10 can be observed when U(2) is
softly broken.

Based on refs. [173–177], we can have the following branching ratio:

BR(t −→ ch) < 3.7× 10−4, BR(t −→ cZ) < 1.3× 10−4,

BR(t −→ cg) < 3.7× 10−4, BR(t −→ cγ) < 4.2× 10−5.
(7.11)

These bounds on the branching ratio, can impose bound on the Wilson coefficients.
We will Follow ref. [178] for such derivation1.

The tree-level prediction for the leading decay mode t −→ bW+:

Γ(t −→ bW+) = α

16s2
w

|Vtb|2
m3
W

m2
w

[
1− 3m

2
W

m2
t

+ 2m
6
w

m6
t

]
(7.12)

The partial widths for FCNC decays are given by
1Reference [178] uses different notations in the lagrangian that need to be careful while dealing with
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Γ(t −→ cZ)γ = α

32s2
wc

2
w

|C(3)
qq3Vq

v2

Λ2 |
2 m

3
t

m2
Z

[
1− m2

Z

m2
t

]2 [
1 + 2m

2
Z

m2
t

]
(7.13)

Γ(t −→ cZ)σ = α

16s2
wc

2
w

|Re(Cqu3W )Vq
2
√

2vc2
wmt

gΛ2 |2mt

[
1− m2

Z

m2
t

]2 [
2 + m2

Z

m2
t

]
(7.14)

Γ(t −→ cγ) = α

2 |Re(Cqu3W )Vq
√

2vswmt

eΛ2 |2mt (7.15)

Γ(t −→ cg) = 2αs
3 |Re(Cqu3G)Vq

√
2vmt

g3Λ2 |
2mt (7.16)

Γ(t −→ ch) = α

32s2
w

|Re(Cqu3H)Vq
3v2s2

w

gΛ2 |
2mt

[
1− m2

h

m2
t

]2

(7.17)

We will consider one SMEFT operator at a time. Assuming that each of them
introduces only one exotic decay channel, we can calculate the corresponding branching
ratio as:

BR(t −→ cX) = ΓX
ΓX + Γ(t −→ bW+) (7.18)

With Vtb=1,mh = 125.35Gev, mt = 173.2GeV , mZ = 91.1876GeV , mW = 90.377GeV ,
sw =

√
0.2229, cw =

√
1− 0.2229, v = 246.22GeV , Vq=0.04182, e = 0.302, g = 0.652,

αs(mZ) = 0.118, α = 1/137, g3(mZ) = 1.22 and 1GeV = 10−3TeV
Having an upper bounds on the branching ratio from eq.7.11, and having the theo-

retical eq.7.18, an upper bound on the Wilson coefficients in the above decay width can
be found.

From eq.7.13, we can find a bound on C(3)
qq3 as

C(3)
qq3 < 6.62477 Λ2

TeV 2 (7.19)

From eq.7.14, we can have a bound on Re(Cqu3W ) as

Re(Cqu3W ) < 3.0999 Λ2

TeV 2 (7.20)

From eq.7.15, we can have a more restricitve upper bound than eq.7.20 on Re(Cqu3W ),

Re(Cqu3W ) < 2.48931 Λ2

TeV 2 (7.21)

From eq.7.17, we can have an upper bound for Re(Cqu3H) as
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Re(Cqu3H) < 9.90495 Λ2

TeV 2 (7.22)

From eq.7.16, e can have an upper bound for Re(Cqu3G) as

Re(Cqu3G) < 3.03573 Λ2

TeV 2 (7.23)

In conclusion, the bounds on the Wilson coefficients are not particularly stringent.
The constraints are significantly milder—roughly by a factor of Vq ∼0.04 compared to a
scenario where no flavor symmetry is assumed.

This leaves room for some flavor-violating contributions being detected by future ex-
periments. Detecting FCNC decays of the top quark would provide compelling evidence
for physics beyond the Standard Model. Such observations could shed light on the un-
derlying mechanisms of flavor symmetry breaking and offer insights into the structure of
the fundamental interactions. Therefore, continued searches and precise measurements
at the LHC are crucial for exploring these potential signals of new physics.

u

b

d

t

W

Figure 7.1: U(2) preserving diagram, representing C(3)
q3q3 contribution to the single top

production. The box is the SMEFT vertix while the other is the SM vertix.

u

s

d

t

W

Figure 7.2: U(2) breaking diagram, representing C(3)
qq3 contribution to the single top

production. The box is the SMEFT vertix while the other is the SM vertix.

Another example process where U(2) breaking operators could potentially be relevant
is single top production at the LHC. Diagram 7.1, represent a U(2) preserving (usual)
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diagram with the relevant operator entering can be C(3)
Hq , while diagram 7.2 represent a

U(2) breaking diagram which is suppressed by Vq. But diagram 7.2 has a strange quark
in the initial state instead of bottom, which have larger proton pdfs. It would take a
dedicated study to quantify the impact of the U(2)-breaking operator or determine the
sensitivity of single-top measurements to it, but for sure they will benefit from some
enhancement, that could potentially make them non-negligible.

In conclusion, the phenomenological analysis conducted in this chapter has provided
valuable insights into the constraints on new physics within the SMEFT framework.
While the bounds on the Wilson coefficients are milder than initially expected, they still
contribute to narrowing down the parameter space and enhancing our understanding of
possible deviations from the Standard Model. These more moderate constraints [179],
though not yet restrictive enough to rule out certain new physics scenarios, offer guidance
for future experiments and theoretical developments. Further refinements in both ex-
perimental measurements and theoretical calculations could potentially lead to stronger
constraints or even uncover new signals of beyond-the-Standard-Model physics. As such,
while the findings may not immediately imply dramatic new discoveries, they represent
an important step toward a more comprehensive understanding of the fundamental in-
teractions in the universe.
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Conclusion

In this thesis, we have systematically explored the Standard Model Effective Field Theory
(SMEFT) within the context of flavor symmetries, particularly focusing on the U(3)5 and
U(2)5 groups. By implementing flavor structures in the Warsaw Basis, we identified 2,499
independent baryon and lepton number-conserving SMEFT operators. Our analysis of
the action of U(3)5 and U(2)5 flavor symmetries on these operators facilitated a reduction
in their number, enhancing the theoretical framework’s predictive power. Furthermore,
we established a correspondence between Wilson coefficients in U(3)5, considering only
the third-generation Yukawa couplings, and those in U(2)5, eliminating the need for
spurions.

In our examination of SMEFT Renormalization Group Equations (RGEs) and the
truncation technique within both flavor symmetries, we introduced the "RunSMEFT"
code. This computational tool calculates truncated SMEFT RGEs,enabling a consistent
treatment of RG equations for the SMEFT lagrangians implementing approximate flavor
symmetries. The truncated RGEs could be interfaced for instance with existing Monte
Carlo tools for SMEFT simulations at the LHC, which typically assume a U(3)5 or U(2)5

symmetric flavor structure.
The phenomenological analysis of U(2) breaking presented in Chapter 7 offers an

understanding of flavor dynamics and their implications for top-quark observables. We
identified flavor-changing top decays and single-top productions as observables which
could be sensitive to U(2)-breaking phenomena. For the former processes, we have also
shown that the assumption of an approximate flavor symmetry helps lowering the bounds
on the new physics scale.

Collectively, the methodologies and findings discussed in this thesis contribute to
refining the SMEFT as a tool for probing new physics. The comprehensive operator
list, insights into flavor symmetries, and the development of computational tools like
"RunSMEFT" enhance our capability to analyze and predict phenomena that may reveal
the presence of new physics beyond the Standard Model.
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Appendix A

The Higgs self-coupling
contributions to the one loop RGE

We list here the full one-loop contributions to the SM RGE from L(6) [4]. These terms
are in addition to the usual SM anomalous dimensions.

µ
d

dµλ = m2
H

16π2

[
12CH +

(
−32λ+ 10

3 g
2
2

)
CH2 +

(
12λ− 3

2g
2
2 + 6g2

1y2
H

)
CHD

+ 2η1 + 2η2 + 12g2
2cF,2CHW + 12g2

1y2
HCHB + 6g1g2yHCHWB + 4

3g
2
2C

(3)
Hl
tt

+ 4
3g

2
2NcC

(3)
Hq
tt

]
(A.1)

µ
d

dµm
2
H = m4

H

16π2 [−4CH2 + 2CHD] (A.2)

µ
d

dµ [Yu]rs = m2
H

16π2
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3C∗
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sr
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2CHD[Yu]rs − [Yu]rt
(
C

(1)
Hq
ts

− 3C(3)
Hq
ts

)
+ CHu

rt
[Yu]ts

− CHud
rt

[Yd]ts − 2
(
C

(1)
qu
psrt

+ cF,3C
(8)
qu
psrt

)
[Yu]tp − C(1)∗

lequ
ptsr

[Y †
e ]pt +NcC

(1)∗
quqd
srpt

[Y †
d ]pt

+ 1
2

(
C

(1)∗
quqd
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+ cF,3C
(8)∗
quqd
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)
[Y †
d ]pt

]
(A.3)
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µ
d

dµ [Yd]rs = m2
H

16π2

[
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sr
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16π2
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where
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2NcCuH
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2CeHrs [Ye]sr
)
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η2 = −2NcC
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∗
Hud
rs

[YuY †
d ]rs

− 2C(3)
Hl
rs

[Y †
e Ye]sr ,

(A.7)

and Nc = 3 is the number of colors, cF,3 = 4/3, and cA,2 = 2.

Class H6:

µ
d

dµCH = 1
16π2

[
108λCH − 160λ2 CH2 + 48λ2 CHD

]
+ 8λ

16π2η1 + 8λ
16π2η2 (A.8)

Class X2H2 :
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µ
d

dµCHG = 12λ
16π2 CHG , µ

d
dµCHG̃ = 12λ

16π2 CHG̃ ,

µ
d

dµCHW = 12λ
16π2 CHW , µ

d
dµCHW̃ = 12λ

16π2 CHW̃ ,

µ
d

dµCHB = 12λ
16π2 CHB , µ

d
dµCHB̃ = 12λ

16π2 CHB̃ ,

µ
d

dµCHWB = 4λ
16π2 CHWB , µ

d
dµCHW̃B

= 4λ
16π2 CHW̃B

, (A.9)

Class H4D2 :

µ
d

dµCH2 = 24λ
16π2 CH2 , µ

d
dµCHD = 12λ

16π2 CHD , (A.10)

Class ψ2H4:

µ
d

dµCuHrs = λ

16π2

[
24CuH

rs
− 4C(1)

Hq
rt

[Y †
u ]ts + 12C(3)

Hq
rt

[Y †
u ]ts + 4[Y †

u ]rtCHu
ts
− 4[Y †

d ]rtC∗
Hud
st

− 4 [Y †
u ]rsCH2 + 2[Y †

u ]rsCHD − 8C(1)
qu
rpts

[Y †
u ]pt − 8cF,3C(8)

qu
rpts

[Y †
u ]pt − 4C(1)

lequ
ptrs

[Ye]tp

+ 4NcC
(1)
quqd
rspt

[Yd]tp + 2C(1)
quqd
psrt

[Yd]tp + 2cF,3C(8)
quqd
psrt

[Yd]tp
]
,

µ
d

dµCdHrs = λ

16π2

[
24CdH

rs
+ 4C(1)

Hq
rt

[Y †
d ]ts + 12C(3)

Hq
rt

[Y †
d ]ts − 4[Y †

d ]rtCHd
ts
− 4[Y †

u ]rtCHud
ts

− 4 [Y †
d ]rsCH2 + 2[Y †

d ]rsCHD − 8C(1)
qd
rpts

[Y †
d ]pt − 8cF,3C(8)

qd
rpts

[Y †
d ]pt + 4C∗

ledq
ptsr

[Y †
e ]pt

+ 4NcC
(1)
quqd
ptrs

[Yu]tp + 2C(1)
quqd
rtps

[Yu]tp + 2cF,3C(8)
quqd
rtps

[Yu]tp
]
,

µ
d

dµCeHrs = λ

16π2

[
24CeH

rs
+ 4C(1)

Hl
rt

[Y †
e ]ts + 12C(3)

Hl
rt

[Y †
e ]ts − 4[Y †

e ]rtCHe
ts

− 4 [Y †
e ]rsCH2 + 2[Y †

e ]rsCHD − 8C le
rpts

[Y †
e ]pt + 4NcCledq

rspt
[Y †
d ]tp − 4NcC

(1)
lequ
rspt

[Yu]tp
]
,

(A.11)

There are no other one-loop λ, λ2 and λy2 terms.
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Appendix B

The Yukawa contributions to the
one loop RGE

The invariants cF,3 = (N2
c − 1)/(2Nc) and cA,3 = Nc are the SU(3) quadratic Casimirs

in the fundamental and adjoint representation, respectively; Nc = 3 is the number of
colors, and yq,l,u,d,e denotes the U(1) hypercharges of the fermions. We use the notation

Ċ ≡ 16π2µ
d

dµC (B.1)

in the renormalization group equations given below. The wavefunction renormalization
contributions proportional to Yukawa couplings are written in terms of

γ
(Y )
l
rs

= 1
2[Y †

e Ye]rs, γ
(Y )
e
rs

= [YeY †
e ]rs, γ

(Y )
H = Tr

[
NcY

†
uYu +NcY

†
d Yd + Y †

e Ye
]
,

γ
(Y )
q
rs

= 1
2[Y †

uYu + Y †
d Yd]rs, γ

(Y )
u
rs

= [YuY †
u ]rs, γ

(Y )
d
rs

= [YdY †
d ]rs, (B.2)

which are 16π2 times the field anomalous dimensions. The gauge contributions to wave-
function renormalization will be included with the gauge terms for the anomalous di-
mension matrix, since only the total combination is gauge invariant.

To simplify later expressions, it is useful to define the constants η1−5 and ξe,d,u. η1,2
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η1 =1
2NcCdH

rs
[Yd]sr + 1

2NcC
∗
dH
rs

[Y †
d ]rs + 1

2NcCuH
rs

[Yu]sr + 1
2NcC

∗
uH
rs

[Y †
u ]rs + 1

2CeHrs [Ye]sr

+ 1
2C

∗
eH
rs

[Y †
e ]rs ,

η2 =− 2NcC
(3)
Hq
rs

[Y †
uYu + Y †

d Yd]sr +NcCHud
rs

[YdY †
u ]sr +NcC

∗
Hud
sr

[YuY †
d ]sr − 2C(3)

Hl
rs

[Y †
e Ye]sr ,

η3 =NcC
(1)
Hq
rs

[Y †
d Yd − Y †

uYu]sr + 3NcC
(3)
Hq
rs

[Y †
d Yd + Y †

uYu]sr +NcCHu
rs

[YuY †
u ]sr

−NcCHd
rs

[YdY †
d ]sr −NcCHud

rs
[YdY †

u ]sr −NcC
∗
Hud
sr

[YuY †
d ]sr +

(
3C(3)

Hl
rs

+ C
(1)
Hl
rs

)
[Y †
e Ye]sr

− CHe
rs

[YeY †
e ]sr

η4 =4NcC
(1)
Hq
rs

[Y †
d Yd − Y †

uYu]sr + 4NcCHu
rs

[YuY †
u ]sr − 4NcCHd

rs
[YdY †

d ]sr + 2NcCHud
rs

[YdY †
u ]sr

+ 2NcC
∗
Hud
sr

[YuY †
d ]sr + 4C(1)

Hl
rs

[Y †
e Ye]sr − 4CHe

rs
[YeY †

e ]sr

η5 =− 1
2iNcCdH

rs
[Yd]sr + 1

2iNcC
∗
dH
rs

[Y †
d ]rs + 1

2iNcCuH
rs

[Yu]sr −
1
2iNcC

∗
uH
rs

[Y †
u ]rs

− 1
2iCeHrs [Ye]sr + 1

2iC
∗
eH
rs

[Y †
e ]rs

(B.3)

ξ e
pt

= 2C le
prst

[Y †
e ]rs −NcCledq

ptsr
[Y †
d ]rs + C

(1)
lequ
ptsr

Nc[Yu]rs

ξ d
pt

= 2
(
C

(1)
qd
prst

+ cF,3C
(8)
qd
prst

)
[Y †
d ]rs −

(
NcC

(1)
quqd
srpt

+ 1
2C

(1)
quqd
prst

+ 1
2cF,3C

(8)
quqd
prst

)
[Yu]rs − C∗

ledq
srtp

[Y †
e ]sr

ξu
pt

= 2
(
C

(1)
qu
prst

+ cF,3C
(8)
qu
prst

)
[Y †
u ]rs −

(
NcC

(1)
quqd
ptsr

+ 1
2C

(1)
quqd
stpr

+ 1
2cF,3C

(8)
quqd
stpr

)
[Yd]rs + C

(1)
lequ
srpt

[Ye]rs

(B.4)
The Yukawa contributions to the one-loop renormalization group equations of the

59 dimension-six operator coefficients are listed by operator class in the following eight
subsections [5].

Class X3 :

ĊG = 0, Ċ
G̃

= 0, ĊW = 0, Ċ
W̃

= 0 . (B.5)

Class H6 :
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ĊH = −4NcCuH
rs

[YuY †
uYu]sr − 4NcC

∗
uH
rs

[Y †
uYuY

†
u ]rs − 4NcCdH

rs
[YdY †

d Yd]sr

− 4NcC
∗
dH
rs

[Y †
d YdY

†
d ]rs − 4CeH

rs
[YeY †

e Ye]sr − 4C∗
eH
rs

[Y †
e YeY

†
e ]rs + 6γ(Y )

H CH (B.6)

Class H4D2 :

ĊH2 = −2η3 + 4γ(Y )
H CH2 ĊHD = −2η4 + 4γ(Y )

H CHD (B.7)

Class X2H2:

ĊHG = −2g3(CuG
rs

[Yu]sr + [Y †
u ]rsC∗

uG
rs

)− 2g3(CdG
rs

[Yd]sr + [Y †
d ]rsC∗

dG
rs

) + 2γ(Y )
H CHG (B.8)

Ċ
HG̃

= 2g3(iCuG
rs

[Yu]sr − i[Y †
u ]rsC∗

uG
rs

) + 2g3(iCdG
rs

[Yd]sr − i[Y †
d ]rsC∗

dG
rs

) + 2γ(Y )
H C

HG̃
(B.9)

ĊHW = −g2(CeW
rs

[Ye]sr + [Y †
e ]rsC∗

eW
rs

)− g2Nc(CuW
rs

[Yu]sr + [Y †
u ]rsC∗

uW
rs

)

− g2Nc(CdW
rs

[Yd]sr + [Y †
d ]rsC∗

dW
rs

) + 2γ(Y )
H CHW (B.10)

Ċ
HW̃

= g2(iCeW
rs

[Ye]sr − i[Y †
e ]rsC∗

eW
rs

) + g2Nc(iCuW
rs

[Yu]sr − i[Y †
u ]rsC∗

uW
rs

)

+ g2Nc(iCdW
rs

[Yd]sr − i[Y †
d ]rsC∗

dW
rs

) + 2γ(Y )
H C

HW̃
(B.11)

ĊHB = −2g1(yl + ye)(CeB
rs

[Ye]sr + [Y †
e ]rsC∗

eB
rs

)− 2g1Nc(yq + yu)(CuB
rs

[Yu]sr + [Y †
u ]rsC∗

uB
rs

)

− 2g1Nc(yq + yd)(CdB
rs

[Yd]sr + [Y †
d ]rsC∗

dB
rs

) + 2γ(Y )
H CHB (B.12)

Ċ
HB̃

= 2g1(yl + ye)(iCeB
rs

[Ye]sr − i[Y †
e ]rsC∗

eB
rs

) + 2g1Nc(yq + yu)(iCuB
rs

[Yu]sr − i[Y †
u ]rsC∗

uB
rs

)

+ 2g1Nc(yq + yd)(iCdB
rs

[Yd]sr − i[Y †
d ]rsC∗

dB
rs

) + 2γ(Y )
H C

HB̃
(B.13)
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ĊHWB = −g2(CeB
rs

[Ye]sr + [Y †
e ]rsC∗

eB
rs

) + g2Nc(CuB
rs

[Yu]sr + [Y †
u ]rsC∗

uB
rs

)− g2Nc(CdB
rs

[Yd]sr

+ [Y †
d ]rsC∗

dB
rs

)− 2g1(yl + ye)(CeW
rs

[Ye]sr + [Y †
e ]rsC∗

eW
rs

) + 2g1Nc(yq + yu)(CuW
rs

[Yu]sr

+ [Y †
u ]rsC∗

uW
rs

)− 2g1Nc(yq + yd)(CdW
rs

[Yd]sr + [Y †
d ]rsC∗

dW
rs

) + 2γ(Y )
H CHWB (B.14)

Ċ
HW̃B

= g2(iCeB
rs

[Ye]sr − i[Y †
e ]rsC∗

eB
rs

)− g2Nc(iCuB
rs

[Yu]sr

− i[Y †
u ]rsC∗

uB
rs

) + g2Nc(iCdB
rs

[Yd]sr − i[Y †
d ]rsC∗

dB
rs

) + 2g1(yl + ye)(iCeW
rs

[Ye]sr

− i[Y †
e ]rsC∗

eW
rs

)− 2g1Nc(yq + yu)(iCuW
rs

[Yu]sr − i[Y †
u ]rsC∗

uW
rs

) + 2g1Nc(yq + yd)

(iCdW
rs

[Yd]sr − i[Y †
d ]rsC∗

dW
rs

) + 2γ(Y )
H C

HW̃B
(B.15)

Class ψ2H3 :

ĊuH
rs

= 2(η1 + η2 − iη5)[Y †
u ]rs + [Y †

uYuY
†
u ]rs(CHD − 6CH2)− 2C(1)

Hq
rt

[Y †
uYuY

†
u ]ts

+ 6C(3)
Hq
rt

[Y †
d YdY

†
u ]ts + 2[Y †

uYuY
†
u ]rtCHu

ts
− 2[Y †

d YdY
†
d ]rtC∗

Hud
st

+ 8
(
C

(1)
qu
rpts

+ cF,3C
(8)
qu
rpts

)
[Y †
uYuY

†
u ]pt − 2

(
2NcC

(1)
quqd
rstp

+ C
(1)
quqd
tsrp

+ cF,3C
(8)
quqd
tsrp

)
[YdY †

d Yd]pt + 4C(1)
lequ
tprs

[YeY †
e Ye]pt

+ 4CuH
rt

[YuY †
u ]ts + 5[Y †

uYu]rtCuH
ts
− 2[Y †

d ]rtC∗
dH
ut

[Y †
u ]us − CdH

rt
[YdY †

u ]ts − 2[Y †
d Yd]rtCuH

ts

+ 3γ(Y )
H CuH

rs
+ γ

(Y )
q
rv
CuH
vs

+ CuH
rv
γ

(Y )
u
vs

(B.16)

ĊdH
rs

= 2(η1 + η2 + iη5)[Y †
d ]rs + [Y †

d YdY
†
d ]rs(CHD − 6CH2) + 2C(1)

Hq
rt

[Y †
d YdY

†
d ]ts

+ 6C(3)
Hq
rt

[Y †
uYuY

†
d ]ts − 2[Y †

d YdY
†
d ]rtCHd

ts
− 2[Y †

uYuY
†
u ]rtCHud

ts
+ 8

(
C

(1)
qd
rpts

+ cF,3C
(8)
qd
rpts

)
[Y †
d YdY

†
d ]pt − 4C∗

ledq
ptsr

[Y †
e YeY

†
e ]pt − 2

(
2NcC

(1)
quqd
tprs

+ C
(1)
quqd
rpts

+ cF,3C
(8)
quqd
rpts

)
[YuY †

uYu]pt

+ 4CdH
rt

[YdY †
d ]ts + 5[Y †

d Yd]rtCdH
ts
− 2[Y †

u ]rtC∗
uH
ut

[Y †
d ]us − CuH

rt
[YuY †

d ]ts − 2[Y †
uYu]rtCdH

ts

+ 3γ(Y )
H CdH

rs
+ γ

(Y )
q
rv
CdH
vs

+ CdH
rv
γ

(Y )
d
vs

(B.17)
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ĊeH
rs

= 2(η1 + η2 + iη5)[Y †
e ]rs + [Y †

e YeY
†
e ]rs(CHD − 6CH2) + 2C(1)

Hl
rt

[Y †
e YeY

†
e ]ts

− 2[Y †
e YeY

†
e ]rtCHe

ts
+ 8C le

rpts
[Y †
e YeY

†
e ]pt − 4Cledq

rspt
Nc[Y †

d YdY
†
d ]tp

+ 4C(1)
lequ
rstp

Nc[YuY †
uYu]pt + 4CeH

rt
[YeY †

e ]ts + 5[Y †
e Ye]rtCeH

ts
+ 3γ(Y )

H CeH
rs

+ γ
(Y )
l
rv
CeH
vs

+ CeH
rv
γ

(Y )
e
vs

(B.18)

Class ψ2XH :

ĊeW
rs

= −2g2NcC
(3)
lequ
rspt

[Yu]tp + CeW
rt

[YeY †
e ]ts + γ

(Y )
H CeW

rs
+ γ

(Y )
l
rv
CeW
vs

+ CeW
rv
γ

(Y )
e
vs

(B.19)

ĊeB
rs

= 4g1Nc(yu + yq)C(3)
lequ
rspt

[Yu]tp + CeB
rt

[YeY †
e ]ts + 2[Y †

e Ye]rtCeB
ts

+ γ
(Y )
H CeB

rs
+ γ

(Y )
l
rv
CeB
vs

+ CeB
rv
γ

(Y )
e
vs

(B.20)

ĊuG
rs

= −g3

(
C

(1)
quqd
psrt

− 1
2Nc

C
(8)
quqd
psrt

)
[Yd]tp + 2[Y †

uYu − Y
†
d Yd]rtCuG

ts
− CdG

rt
[YdY †

u ]ts

+ CuG
rt

[YuY †
u ]ts + γ

(Y )
H CuG

rs
+ γ

(Y )
q
rv
CuG
vs

+ CuG
rv
γ

(Y )
u
vs

(B.21)

ĊuW
rs

= −2g2C
(3)
lequ
ptrs

[Ye]tp + 1
4g2

(
C

(1)
quqd
psrt

+ cF,3C
(8)
quqd
psrt

)
[Yd]tp + 2[Y †

d Yd]rtCuW
ts
− CdW

rt
[YdY †

u ]ts

+ CuW
rt

[YuY †
u ]ts + γ

(Y )
H CuW

rs
+ γ

(Y )
q
rv
CuW

vs
+ CuW

rv
γ

(Y )
u
vs

(B.22)

ĊuB
rs

= 4g1(ye + yl)C(3)
lequ
ptrs

[Ye]tp −
1
2g1 (yd + yq)

(
C

(1)
quqd
psrt

+ cF,3C
(8)
quqd
psrt

)
[Yd]tp + 2[Y †

uYu

− Y †
d Yd]rtCuB

ts
− CdB

rt
[YdY †

u ]ts + CuB
rt

[YuY †
u ]ts + γ

(Y )
H CuB

rs
+ γ

(Y )
q
rv
CuB
vs

+ CuB
rv
γ

(Y )
u
vs

(B.23)

ĊdG
rs

= −g3

(
C

(1)
quqd
rtps

− 1
2Nc

C
(8)
quqd
rtps

)
[Yu]tp − 2[Y †

uYu − Y
†
d Yd]rtCdG

ts
− CuG

rt
[YuY †

d ]ts

+ CdG
rt

[YdY †
d ]ts + γ

(Y )
H CdG

rs
+ γ

(Y )
q
rv
CdG
vs

+ CdG
rv
γ

(Y )
d
vs

(B.24)
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ĊdW
rs

= 2[Y †
uYu]rtCdW

ts
+ 1

4g2

(
C

(1)
quqd
rtps

+ cF,3C
(8)
quqd
rtps

)
[Yu]tp − CuW

rt
[YuY †

d ]ts + CdW
rt

[YdY †
d ]ts

+ γ
(Y )
H CdW

rs
+ γ

(Y )
q
rv
CdW
vs

+ CdW
rv
γ

(Y )
d
vs

(B.25)

ĊdB
rs

= −1
2g1 (yu + yq)

(
C

(1)
quqd
rtps

+ cF,3C
(8)
quqd
rtps

)
[Yu]tp − 2[Y †

uYu − Y
†
d Yd]rtCdB

ts
− CuB

rt
[YuY †

d ]ts

+ CdB
rt

[YdY †
d ]ts + γ

(Y )
H CdB

rs
+ γ

(Y )
q
rv
CdB
vs

+ CdB
rv
γ

(Y )
d
vs

(B.26)

Class ψ2H2D

Ċ
(1)
Hq
pr

= 1
2[Y †

uYu − Y
†
d Yd]pr (CH2 + CHD)− [Y †

u ]psCHu
st

[Yu]tr − [Y †
d ]psCHd

st
[Yd]tr

+ 2C qe
prst

[YeY †
e ]ts2C(1)

lq
stpr

[Ye†Ye]ts + 3
2[Y †

d Yd + Y †
uYu]ptC

(1)
Hq
tr

+ 3
2C

(1)
Hq
pt

[Y †
d Yd + Y †

uYu]tr

+ 9
2[Y †

d Yd − Y †
uYu]ptC

(3)
Hq
tr

+ 9
2C

(3)
Hq
pt

[Y †
d Yd − Y †

uYu]tr −
(
2NcC

(1)
qq
prst

+ 2NcC
(1)
qq
stpr

+ C
(1)
qq
ptsr

+ C
(1)
qq
srpt

+ 3C(3)
qq
ptsr

+ 3C(3)
qq
srpt

)
[Yd†Yd − Yu†Yu]ts − 2NcC

(1)
qu
prst

[YuYu†]ts + 2NcC
(1)
qd
prst

[YdYd†]ts

+ 2γ(Y )
H C

(1)
Hq
pr

+ γ
(Y )
q
pt
C

(1)
Hq
tr

+ C
(1)
Hq
pt

γ
(Y )
q
tr

(B.27)

Ċ
(3)
Hq
pr

= −1
2[Y †

uYu + Y †
d Yd]prCH2 + 3

2[Y †
d Yd − Y †

uYu]ptC
(1)
Hq
tr

+ 3
2C

(1)
Hq
pt

[Y †
d Yd − Y †

uYu]tr

+ 1
2[Y †

d Yd + Y †
uYu]ptC

(3)
Hq
tr

+ 1
2C

(3)
Hq
pt

[Y †
d Yd + Y †

uYu]tr

−
(
2NcC

(3)
qq
prst

+ 2NcC
(3)
qq
stpr

+ C
(1)
qq
ptsr

+ C
(1)
qq
srpt
− C(3)

qq
ptsr
− C(3)

qq
srpt

)
[Yd†Yd + Yu

†Yu]ts

− 2C(3)
lq
stpr

[Y †
e Ye]ts + 2γ(Y )

H C
(3)
Hq
pr

+ γ
(Y )
q
pt
C

(3)
Hq
tr

+ C
(3)
Hq
pt

γ
(Y )
q
tr

(B.28)

ĊHd
pr

= [YdY †
d ]pr (CH2 + CHD)− 2[Yd]psC(1)

Hq
st

[Y †
d ]tr + 3[YdY †

d ]ptCHd
tr

+ 3CHd
pt

[YdY †
d ]tr

− [YdY †
u ]ptCHud

tr
− C∗

Hud
tp

[YuY †
d ]tr + 2

(
NcC dd

prst
+NcC dd

stpr
+ C dd

ptsr
+ C dd

srpt

)
[YdYd†]ts

+ 2C ed
stpr

[YeYe†]ts − 2C ld
stpr

[Y †
e Ye]ts − 2NcC

(1)
ud
stpr

[YuYu†]ts − 2NcC
(1)
qd
stpr

[Yd†Yd − Yu†Yu]ts

+ 2γ(Y )
H CHd

pr
+ γ

(Y )
d
pt
CHd
tr

+ CHd
pt
γ

(Y )
d
tr

(B.29)
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ĊHu
pr

= −[YuY †
u ]pr (CH2 + CHD)− 2[Yu]psC(1)

Hq
st

[Y †
u ]tr + 3[YuY †

u ]ptCHu
tr

+ 3CHu
pt

[YuY †
u ]tr

+ [YuY †
d ]ptC∗

Hud
rt

+ CHud
pt

[YdY †
u ]tr − 2

(
NcC uu

prst
+NcC uu

stpr
+ C uu

ptsr
+ C uu

srpt

)
[YuYu†]ts

+ 2C eu
stpr

[YeYe†]ts − 2C lu
stpr

[Y †
e Ye]ts + 2NcC

(1)
ud
prst

[YdYd†]ts − 2NcC
(1)
qu
stpr

[Yd†Yd − Yu†Yu]ts

+ 2γ(Y )
H CHu

pr
+ γ

(Y )
u
pt
CHu
tr

+ CHu
pt
γ

(Y )
u
tr

(B.30)

ĊHud
pr

= [YuY †
d ]pr (2CH2 − CHD)− 2[YuY †

d ]ptCHd
tr

+ 2CHu
pt

[YuY †
d ]tr

+ 4
(
C

(1)
ud
ptsr

+ cF,3C
(8)
ud
ptsr

)
[YuYd†]ts + 2[YuY †

u ]ptCHud
tr

+ 2CHud
pt

[YdY †
d ]tr

+ 2γ(Y )
H CHud

pr
+ γ

(Y )
u
pt
CHud

tr
+ CHud

pt
γ

(Y )
d
tr

(B.31)

Ċ
(1)
Hl
pr

= −1
2[Y †

e Ye]pr (CH2 + CHD)− [Y †
e ]psCHe

st
[Ye]tr + 3

2[Y †
e Ye]pt

(
C

(1)
Hl
tr

+ 3C(3)
Hl
tr

)
+ 3

2
(
C

(1)
Hl
pt

+ 3C(3)
Hl
pt

)
[Y †
e Ye]tr + 2C le

prst
[YeY †

e ]ts +
(
−2C ll

prst
− 2C ll

stpr
− C ll

ptsr
− C ll

srpt

)
[Ye†Ye]ts − 2NcC

(1)
lq
prst

[Yd†Yd − Yu†Yu]ts − 2NcC lu
prst

[YuYu†]ts + 2NcC ld
prst

[YdYd†]ts

+ 2γ(Y )
H C

(1)
Hl
pr

+ γ
(Y )
l
pt
C

(1)
Hl
tr

+ C
(1)
Hl
pt
γ

(Y )
l
tr

(B.32)

Ċ
(3)
Hl
pr

= −1
2[Y †

e Ye]prCH2 + 1
2[Y †

e Ye]pt
(
3C(1)

Hl
tr

+ C
(3)
Hl
tr

)
+ 1

2
(
3C(1)

Hl
pt

+ C
(3)
Hl
pt

)
[Y †
e Ye]tr

−
(
C ll
ptsr

+ C ll
srpt

)
[Ye†Ye]ts − 2NcC

(3)
lq
prst

[Y †
d Yd + Y †

uYu]ts + 2γ(Y )
H C

(3)
Hl
pr

+ γ
(Y )
l
pt
C

(3)
Hl
tr

+ C
(3)
Hl
pt
γ

(Y )
l
tr

(B.33)

ĊHe
pr

= [YeY †
e ]pr (CH2 + CHD)− 2[Ye]psC(1)

Hl
st

[Y †
e ]tr + 3[YeY †

e ]ptCHe
tr

+ 3CHe
pt

[YeY †
e ]tr

− 2C le
stpr

[Ye†Ye]ts + 2
(
C ee
prst

+ C ee
stpr

+ C ee
ptsr

+ C ee
srpt

)
[YeYe†]ts − 2NcC eu

prst
[YuYu†]ts

+ 2NcC ed
prst

[YdYd†]ts − 2NcC qe
stpr

[Yd†Yd − Yu†Yu]ts + 2γ(Y )
H CHe

pr
+ γ

(Y )
e
pt
CHe
tr

+ CHe
pt
γ

(Y )
e
tr

(B.34)
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Class ψ4 (LL)(LL) :

Ċ ll
prst

= −1
2[Y †

e Ye]prC
(1)
Hl
st
− 1

2[Y †
e Ye]stC

(1)
Hl
pr

+ 1
2[Y †

e Ye]prC
(3)
Hl
st

+ 1
2[Y †

e Ye]stC
(3)
Hl
pr

− [Y †
e Ye]srC

(3)
Hl
pt
− [Y †

e Ye]ptC
(3)
Hl
sr
− 1

2 [Y †
e ]sv [Ye]wtC le

prvw
− 1

2 [Y †
e ]pv [Ye]wr C le

stvw

+ γ
(Y )
l
pv
C ll
vrst

+ γ
(Y )
l
sv
C ll
prvt

+ C ll
pvst

γ
(Y )
l
vr

+ C ll
prsv

γ
(Y )
l
vt

(B.35)

Ċ
(1)
qq
prst

= 1
2[Y †

uYu − Y
†
d Yd]prC

(1)
Hq
st

+ 1
2[Y †

uYu − Y
†
d Yd]stC

(1)
Hq
pr

+ 1
4Nc

(
[Y †
u ]pv [Yu]wr C(8)

qu
stvw

+ [Y †
u ]sv [Yu]wtC(8)

qu
prvw

)
+ 1

4Nc

(
[Y †
d ]pv [Yd]wr C(8)

qd
stvw

+[Y †
d ]sv [Yd]wtC(8)

qd
prvw

)
− 1

8

(
[Y †
u ]pv [Yu]wtC(8)

qu
srvw

+ [Y †
u ]sv [Yu]wr C(8)

qu
ptvw

)

− 1
8

(
[Y †
d ]pv [Yd]wtC(8)

qd
srvw

+ [Y †
d ]sv [Yd]wr C(8)

qd
ptvw

)
+ 1

16Nc

(
[Yd]wt [Yu]vr C(8)

quqd
pvsw

+[Yd]wr [Yu]vtC(8)
quqd
svpw

)
+ 1

16Nc

(
[Y †
d ]sw [Y †

u ]pv C(8)∗
quqd
rvtw

+ [Y †
d ]pw [Y †

u ]sv C(8)∗
quqd
tvrw

)

+ 1
16

(
[Yd]wt [Yu]vr C(8)

quqd
svpw

+ [Yd]wr [Yu]vtC(8)
quqd
pvsw

)
+ 1

16

(
[Y †
d ]sw [Y †

u ]pv C(8)∗
quqd
tvrw

+[Y †
d ]pw [Y †

u ]sv C(8)∗
quqd
rvtw

)
− 1

2[Y †
u ]pv [Yu]wr C(1)

qu
stvw
− 1

2 [Y †
d ]pv [Yd]wr C(1)

qd
stvw

− 1
2[Y †

u ]sv [Yu]wtC(1)
qu
prvw
− 1

2 [Y †
d ]sv [Yd]wtC(1)

qd
prvw
− 1

8[Yd]wt [Yu]vr C(1)
quqd
pvsw

− 1
8[Y †

d ]sw [Y †
u ]pv C(1)∗

quqd
rvtw

− 1
8[Yd]wr [Yu]vtC(1)

quqd
svpw
− 1

8[Y †
d ]pw [Y †

u ]sv C(1)∗
quqd
tvrw

+ γ
(Y )
q
pv
C

(1)
qq
vrst

+ γ
(Y )
q
sv
C

(1)
qq
prvt

+ C
(1)
qq
pvst

γ
(Y )
q
vr

+ C
(1)
qq
prsv

γ
(Y )
q
vt

(B.36)
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Ċ
(3)
qq
prst

= −1
2[Y †

uYu + Y †
d Yd]prC

(3)
Hq
st

− 1
2[Y †

uYu + Y †
d Yd]stC

(3)
Hq
pr

− 1
8

(
[Y †
u ]pv [Yu]wtC(8)

qu
srvw

+ [Y †
u ]sv [Yu]wr C(8)

qu
ptvw

)
− 1

8

(
[Y †
d ]pv [Yd]wtC(8)

qd
srvw

+[Y †
d ]sv [Yd]wr C(8)

qd
ptvw

)
− 1

16Nc

(
[Yd]wt [Yu]vr C(8)

quqd
pvsw

+ [Yd]wr [Yu]vtC(8)
quqd
svpw

)

− 1
16Nc

(
[Y †
d ]sw [Y †

u ]pv C(8)∗
quqd
rvtw

+ [Y †
d ]pw [Y †

u ]sv C(8)∗
quqd
tvrw

)

− 1
16

(
[Yd]wt [Yu]vr C(8)

quqd
svpw

+ [Yd]wr [Yu]vtC(8)
quqd
pvsw

)
− 1

16

(
[Y †
d ]sw [Y †

u ]pv C(8)∗
quqd
tvrw

+[Y †
d ]pw [Y †

u ]sv C(8)∗
quqd
rvtw

)
+ 1

8[Yd]wt [Yu]vr C(1)
quqd
pvsw

+ 1
8[Y †

d ]sw [Y †
u ]pv C(1)∗

quqd
rvtw

+ 1
8[Yd]wr [Yu]vtC(1)

quqd
svpw

+ 1
8[Y †

d ]pw [Y †
u ]sv C(1)∗

quqd
tvrw

+ γ
(Y )
q
pv
C

(3)
qq
vrst

+ γ
(Y )
q
sv
C

(3)
qq
prvt

+ C
(3)
qq
pvst

γ
(Y )
q
vr

+ C
(3)
qq
prsv

γ
(Y )
q
vt

(B.37)

Ċ
(1)
lq
prst

= −[Y †
e Ye]prC

(1)
Hq
st

+ [Y †
uYu − Y

†
d Yd]stC

(1)
Hl
pr

+ 1
4 [Yu]wt [Ye]vr C(1)

lequ
pvsw

+ 1
4 [Y †

u ]sw [Y †
e ]pv C(1)∗

lequ
rvtw

− [Y †
u ]sv [Yu]wtC lu

prvw
− [Y †

d ]sv [Yd]wtC ld
prvw

− [Y †
e ]pv [Ye]wr C qe

stvw
+ 1

4

(
[Y †
d ]sw [Ye]vr C ledq

pvwt
+ [Y †

e ]pv [Yd]wtC∗
ledq
rvws

)

− 3
(

[Ye]vr [Yu]wtC(3)
lequ
pvsw

+ [Y †
e ]pv [Y †

u ]sw C(3)∗
lequ
rvtw

)
+ γ

(Y )
l
pv
C

(1)
lq
vrst

+ γ
(Y )
q
sv
C

(1)
lq
prvt

+ C
(1)
lq
pvst

γ
(Y )
l
vr

+ C
(1)
lq
prsv

γ
(Y )
q
vt

(B.38)

Ċ
(3)
lq
prst

= −[Y †
e Ye]prC

(3)
Hq
st

− [Y †
uYu + Y †

d Yd]stC
(3)
Hl
pr
− 1

4 [Yu]wt [Ye]vr C(1)
lequ
pvsw

− 1
4 [Y †

u ]sw [Y †
e ]pv C(1)∗

lequ
rvtw

+ 1
4

(
[Y †
d ]sw [Ye]vr C ledq

pvwt
+ [Y †

e ]pv [Yd]wtC∗
ledq
rvws

)

+ 3
(

[Ye]vr [Yu]wtC(3)
lequ
pvsw

+ [Y †
e ]pv [Y †

u ]sw C(3)∗
lequ
rvtw

)
+ γ

(Y )
l
pv
C

(3)
lq
vrst

+ γ
(Y )
q
sv
C

(3)
lq
prvt

+ C
(3)
lq
pvst

γ
(Y )
l
vr

+ C
(3)
lq
prsv

γ
(Y )
q
vt

(B.39)
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(RR)(RR):

Ċ ee
prst

= [YeY †
e ]prCHe

st
+ [YeY †

e ]stCHe
pr
− [Y †

e ]wr [Ye]pv C le
vwst
− [Y †

e ]wt [Ye]sv C le
vwpr

+ γ
(Y )
e
pv
C ee
vrst

+ γ
(Y )
e
sv
C ee
prvt

+ C ee
pvst

γ
(Y )
e
vr

+ C ee
prsv

γ
(Y )
e
vt

(B.40)

Ċ uu
prst

= −[YuY †
u ]prCHu

st
− [YuY †

u ]stCHu
pr
− [Y †

u ]wr [Yu]pv C(1)
qu
vwst
− [Y †

u ]wt [Yu]sv C(1)
qu
vwpr

+ 1
2Nc

[Yu]pv [Y †
u ]wr C(8)

qu
vwst

+ 1
2Nc

[Yu]sv [Y †
u ]wtC(8)

qu
vwpr
− 1

2[Y †
u ]wr [Yu]sv C(8)

qu
vwpt

− 1
2[Y †

u ]wt [Yu]pv C(8)
qu
vwsr

+ γ
(Y )
u
pv
C uu
vrst

+ γ
(Y )
u
sv
C uu
prvt

+ C uu
pvst

γ
(Y )
u
vr

+ C uu
prsv

γ
(Y )
u
vt

(B.41)

Ċ dd
prst

= [YdY †
d ]prCHd

st
+ [YdY †

d ]stCHd
pr
− [Y †

d ]wr [Yd]pv C(1)
qd
vwst

− [Y †
d ]wt [Yd]sv C(1)

qd
vwpr

+ 1
2Nc

[Yd]pv [Y †
d ]wr C(8)

qd
vwst

+ 1
2Nc

[Yd]sv [Y †
d ]wtC(8)

qd
vwpr
− 1

2[Y †
d ]wr [Yd]sv C(8)

qd
vwpt

− 1
2[Y †

d ]wt [Yd]pv C(8)
qd
vwsr

+ γ
(Y )
d
pv
C dd
vrst

+ γ
(Y )
d
sv
C dd
prvt

+ C dd
pvst

γ
(Y )
d
vr

+ C dd
prsv

γ
(Y )
d
vt

(B.42)

Ċ eu
prst

= 2[YeY †
e ]prCHu

st
− 2[YuY †

u ]stCHe
pr

+
(

[Ye]pv [Yu]sw C(1)
lequ
vrwt

+ [Y †
e ]vr [Y †

u ]wtC(1)∗
lequ
vpws

)

− 2 [Ye]pv [Y †
e ]wr C lu

vwst
− 12

(
[Ye]pv [Yu]sw C(3)

lequ
vrwt

+ [Y †
e ]vr [Y †

u ]wtC(3)∗
lequ
vpws

)
− 2 [Yu]sv [Y †

u ]wtC qe
vwpr

+ γ
(Y )
e
pv
C eu
vrst

+ γ
(Y )
u
sv
C eu
prvt

+ C eu
pvst

γ
(Y )
e
vr

+ C eu
prsv

γ
(Y )
u
vt

(B.43)

Ċ ed
prst

= 2[YeY †
e ]prCHd

st
+ 2[YdY †

d ]stCHe
pr
− 2[Ye]pv [Y †

e ]wr C ld
vwst
− 2[Yd]sv [Y †

d ]wtC qe
vwpr

+ [Ye]pv [Y †
d ]wtC ledq

vrsw
+ [Y †

e ]vr [Yd]sw C∗
ledq
vptw

+ γ
(Y )
e
pv
C ed
vrst

+ γ
(Y )
d
sv
C ed
prvt

+ C ed
pvst

γ
(Y )
e
vr

+ C ed
prsv

γ
(Y )
d
vt

(B.44)
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Ċ
(1)
ud
prst

= −2[YuY †
u ]prCHd

st
+ 2[YdY †

d ]stCHu
pr

+ 2
Nc

[YdY †
u ]srCHud

pt
+ 2
Nc

[YuY †
d ]ptC∗

Hud
rs

+ 1
Nc

(
[Yd]sv [Yu]pw C(1)

quqd
vrwt

+ [Y †
d ]vt [Y †

u ]wr C(1)∗
quqd
vpws

)
− [Yd]sw [Yu]pv C(1)

quqd
vrwt

− [Y †
d ]wt [Y †

u ]vr C(1)∗
quqd
vpws

+ N2
c − 1
2N2

c

(
[Yd]sv [Yu]pw C(8)

quqd
vrwt

+ [Y †
d ]vt [Y †

u ]wr C(8)∗
quqd
vpws

)
− 2[Yu]pv [Y †

u ]wr C(1)
qd
vwst

− 2[Yd]sv [Y †
d ]wtC(1)

qu
vwpr

+ γ
(Y )
u
pv
C

(1)
ud
vrst

+ γ
(Y )
d
sv
C

(1)
ud
prvt

+ C
(1)
ud
pvst

γ
(Y )
u
vr

+ C
(1)
ud
prsv

γ
(Y )
d
vt

(B.45)

Ċ
(8)
ud
prst

= 4[YdY †
u ]srCHud

pt
+ 4[YuY †

d ]ptC∗
Hud
rs

+ 2
(

[Yd]sv [Yu]pw C(1)
quqd
vrwt

+ [Y †
d ]vt [Y †

u ]wr C(1)∗
quqd
vpws

)

− 2[Yu]pv [Y †
u ]wr C(8)

qd
vwst

− 2[Yd]sv [Y †
d ]wtC(8)

qu
vwpr
− 1
Nc

(
[Yd]sv [Yu]pw C(8)

quqd
vrwt

+[Y †
d ]vt [Y †

u ]wr C(8)∗
quqd
vpws

)
−
(

[Yd]sw [Yu]pv C(8)
quqd
vrwt

+ [Y †
d ]wt [Y †

u ]vr C(8)∗
quqd
vpws

)
+ γ

(Y )
u
pv
C

(8)
ud
vrst

+ γ
(Y )
d
sv
C

(8)
ud
prvt

+ C
(8)
ud
pvst

γ
(Y )
u
vr

+ C
(8)
ud
prsv

γ
(Y )
d
vt

(B.46)

(LL)(RR) :

Ċ le
prst

= [Ye]srξ e
pt

+ [Y †
e ]ptξ∗

e
rs
− [Y †

e Ye]prCHe
st

+ 2[YeY †
e ]stC(1)

Hl
pr
− [Y †

e ]pv [Ye]wr C ee
vtsw

− [Y †
e ]pw [Ye]vr C ee

wtsv
− 2[Y †

e ]pv [Ye]wr C ee
vwst

+ [Y †
e ]pw [Ye]sv C le

vrwt
− [Y †

e ]wt [Ye]sv C ll
pwvr

− [Y †
e ]vt [Ye]sw C ll

pvwr
− 4[Y †

e ]wt [Ye]sv C ll
prvw

+ [Y †
e ]vt [Ye]wr C le

pvsw
+ γ

(Y )
l
pv
C le
vrst

+ γ
(Y )
e
sv
C le
prvt

+ C le
pvst

γ
(Y )
l
vr

+ C le
prsv

γ
(Y )
e
vt

(B.47)

Ċ lu
prst

= −[Y †
e Ye]prCHu

st
− 2[YuY †

u ]stC(1)
Hl
pr
− 1

2

(
[Ye]vr [Yu]sw C(1)

lequ
pvwt

+ [Y †
e ]pv [Y †

u ]wtC(1)∗
lequ
rvws

)

− 2 [Yu]sv [Y †
u ]wtC(1)

lq
prvw
− 6

(
[Ye]vr [Yu]sw C(3)

lequ
pvwt

+ [Y †
e ]pv [Y †

u ]wtC(3)∗
lequ
rvws

)
− [Ye]wr [Y †

e ]pv C eu
vwst

+ γ
(Y )
l
pv
C lu
vrst

+ γ
(Y )
u
sv
C lu
prvt

+ C lu
pvst

γ
(Y )
l
vr

+ C lu
prsv

γ
(Y )
u
vt

(B.48)
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Ċ ld
prst

= −[Y †
e Ye]prCHd

st
+ 2[YdY †

d ]stC(1)
Hl
pr
− 1

2

(
[Ye]vr [Y †

d ]wtC ledq
pvsw

+ [Y †
e ]pv [Yd]sw C∗

ledq
rvtw

)
− 2 [Yd]sv [Y †

d ]wtC(1)
lq

prvw
− [Ye]wr [Y †

e ]pv C ed
vwst

+ γ
(Y )
l
pv
C ld
vrst

+ γ
(Y )
d
sv
C ld
prvt

+ C ld
pvst

γ
(Y )
l
vr

+ C ld
prsv

γ
(Y )
d
vt

(B.49)

Ċ qe
prst

= [Y †
uYu − Y

†
d Yd]prCHe

st
+ 2[YeY †

e ]stC(1)
Hq
pr
− 1

2

(
[Y †
d ]pw [Ye]sv C ledq

vtwr

+[Y †
e ]vt [Yd]wr C∗

ledq
vswp

)
− 2 [Ye]sv [Y †

e ]wtC(1)
lq

vwpr
− 1

2

(
[Yu]wr [Ye]sv C(1)

lequ
vtpw

+[Y †
e ]vt [Y †

u ]pw C(1)∗
lequ
vsrw

)
− [Yd]wr [Y †

d ]pv C ed
stvw

− 6
(

[Ye]sv [Yu]wr C(3)
lequ
vtpw

+ [Y †
e ]vt [Y †

u ]pw C(3)∗
lequ
vsrw

)
− [Yu]wr [Y †

u ]pv C eu
stvw

+ γ
(Y )
q
pv
C qe
vrst

+ γ
(Y )
e
sv
C qe
prvt

+ C qe
pvst

γ
(Y )
q
vr

+ C qe
prsv

γ
(Y )
e
vt

(B.50)

Ċ
(1)
qu
prst

= 1
Nc

[Yu]srξu
pt

+ 1
Nc

[Y †
u ]ptξ∗

u
rs

+ [Y †
uYu − Y

†
d Yd]prCHu

st
− 2[YuY †

u ]stC(1)
Hq
pr

+ 1
Nc

(
[Y †
u ]pw [Yu]sv C(1)

qu
vrwt

+ [Y †
u ]vt [Yu]wr C(1)

qu
pvsw

+ [Yd]wr [Yu]sv C(1)
quqd
ptvw

+[Y †
d ]pw [Y †

u ]vtC(1)∗
quqd
rsvw

)
− 1

2N2
c

(
[Y †
u ]pw [Yu]sv C(8)

qu
vrwt

+ [Y †
u ]vt [Yu]wr C(8)

qu
pvsw

+[Yd]wr [Yu]sv C(8)
quqd
ptvw

+ [Y †
d ]pw [Y †

u ]vtC(8)∗
quqd
rsvw

)

− 2
Nc

(
[Y †
u ]vt [Yu]sw C(1)

qq
pvwr

+ [Y †
u ]pv [Yu]wr C uu

vtsw

)
− 6
Nc

[Y †
u ]vt [Yu]sw C(3)

qq
pvwr

+ 1
2

(
[Y †
u ]pw [Yu]sv C(8)

qu
vrwt

+ [Y †
u ]vt [Yu]wr C(8)

qu
pvsw

)
+ 1

2

(
[Yu]sv [Yd]wr C(1)

quqd
vtpw

+ [Y †
d ]pw [Y †

u ]vtC(1)∗
quqd
vsrw

+ [Yu]sv [Yd]wr C(8)
quqd
ptvw

+[Y †
d ]pw [Y †

u ]vtC(8)∗
quqd
rsvw

)
− 4[Y †

u ]wt [Yu]sv C(1)
qq
prvw
− 2[Y †

u ]pv [Yu]wr C uu
vwst

− [Y †
d ]pv [Yd]wr C(1)

ud
stvw

+ γ
(Y )
q
pv
C

(1)
qu
vrst

+ γ
(Y )
u
sv
C

(1)
qu
prvt

+ C
(1)
qu
pvst

γ
(Y )
q
vr

+ C
(1)
qu
prsv

γ
(Y )
u
vt

(B.51)
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Ċ
(1)
qd
prst

= 1
Nc

[Yd]srξ d
pt

+ 1
Nc

[Y †
d ]ptξ∗

d
rs

+ [Y †
uYu − Y

†
d Yd]prCHd

st
+ 2[YdY †

d ]stC(1)
Hq
pr

+ 1
Nc

(
[Y †
d ]pw [Yd]sv C(1)

qd
vrwt

+ [Y †
d ]vt [Yd]wr C(1)

qd
pvsw

+ [Yu]wr [Yd]sv C(1)
quqd
vwpt

+[Y †
u ]pw [Y †

d ]vtC(1)∗
quqd
vwrs

)
− 1

2N2
c

(
[Y †
d ]pw [Yd]sv C(8)

qd
vrwt

+ [Y †
d ]vt [Yd]wr C(8)

qd
pvsw

+ [Yu]wr [Yd]sv C(8)
quqd
vwpt

+[Y †
u ]pw [Y †

d ]vtC(8)∗
quqd
vwrs

)
− 2
Nc

(
[Y †
d ]vt [Yd]sw C(1)

qq
pvwr

+ [Y †
d ]pv [Yd]wr C dd

vtsw

)
− 6
Nc

[Y †
d ]vt [Yd]sw C(3)

qq
pvwr

+ 1
2

(
[Y †
d ]pw [Yd]sv C(8)

qd
vrwt

+ [Y †
d ]vt [Yd]wr C(8)

qd
pvsw

)

+ 1
2

(
[Yd]sw [Yu]vr C(1)

quqd
pvwt

+ [Y †
u ]pv [Y †

d ]wtC(1)∗
quqd
rvws

+ [Yd]sv [Yu]wr C(8)
quqd
vwpt

+[Y †
u ]pw [Y †

d ]vtC(8)∗
quqd
vwrs

)
− 4[Y †

d ]wt [Yd]sv C(1)
qq
prvw
− 2[Y †

d ]pv [Yd]wr C dd
vwst

− [Y †
u ]pv [Yu]wr C(1)

ud
vwst

+ γ
(Y )
q
pv
C

(1)
qd
vrst

+ γ
(Y )
d
sv
C

(1)
qd
prvt

+ C
(1)
qd
pvst

γ
(Y )
q
vr

+ C
(1)
qd
prsv

γ
(Y )
d
vt

(B.52)

Ċ
(8)
qu
prst

= 2[Yu]srξu
pt

+ 2[Y †
u ]ptξ∗

u
rs

− 1
Nc

(
[Y †
u ]pw [Yu]sv C(8)

qu
vrwt

+ [Y †
u ]vt [Yu]wr C(8)

qu
pvsw

+ [Yd]wr [Yu]sv C(8)
quqd
ptvw

+[Y †
d ]pw [Y †

u ]vtC(8)∗
quqd
rsvw

)
+ 2

(
[Yu]sv [Yd]wr C(1)

quqd
ptvw

+ [Y †
u ]vt [Y †

d ]pw C(1)∗
quqd
rsvw

+ 1
4 [Yu]sv [Yd]wr C(8)

quqd
vtpw

+1
4 [Y †

u ]vt [Y †
d ]pw C(8)∗

quqd
vsrw

)
− 2

(
2[Y †

u ]vt [Yu]sw C(1)
qq
pvwr
− [Y †

u ]pw [Yu]sv C(1)
qu
vrwt
− [Y †

u ]vt [Yu]wr C(1)
qu
pvsw

)
− 4[Y †

u ]pv [Yu]wr C uu
vtsw
− 12[Y †

u ]vt [Yu]sw C(3)
qq
pvwr

− [Y †
d ]pv [Yd]wr C(8)

ud
stvw

+ γ
(Y )
q
pv
C

(8)
qu
vrst

+ γ
(Y )
u
sv
C

(8)
qu
prvt

+ C
(8)
qu
pvst

γ
(Y )
q
vr

+ C
(8)
qu
prsv

γ
(Y )
u
vt

(B.53)
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Ċ
(8)
qd
prst

= 2[Yd]srξ d
pt

+ 2[Y †
d ]ptξ∗

d
rs

− 1
Nc

(
[Y †
d ]pw [Yd]sv C(8)

qd
vrwt

+ [Y †
d ]vt [Yd]wr C(8)

qd
pvsw

+ [Yu]wr [Yd]sv C(8)
quqd
vwpt

+[Y †
u ]pw [Y †

d ]vtC(8)∗
quqd
vwrs

)
+ 2

(
[Yd]sv [Yu]wr C(1)

quqd
vwpt

+ [Y †
d ]vt [Y †

u ]pw C(1)∗
quqd
vwrs

+ 1
4 [Yu]vr [Yd]sw C(8)

quqd
pvwt

+1
4 [Y †

u ]pv [Y †
d ]wtC(8)∗

quqd
rvws

)
− 2

(
2[Y †

d ]vt [Yd]sw C(1)
qq
pvwr
− [Y †

d ]pw [Yd]sv C(1)
qd
vrwt

− [Y †
d ]vt [Yd]wr C(1)

qd
pvsw

)
− 4[Y †

d ]pv [Yd]wr C dd
vtsw
− 12[Y †

d ]vt [Yd]sw C(3)
qq
pvwr

− [Y †
u ]pv [Yu]wr C(8)

ud
vwst

+ γ
(Y )
q
pv
C

(8)
qd
vrst

+ γ
(Y )
d
sv
C

(8)
qd
prvt

+ C
(8)
qd
pvst

γ
(Y )
q
vr

+ C
(8)
qd
prsv

γ
(Y )
d
vt

(B.54)

(LR)(RL)

Ċledq
prst

= −2[Yd]stξ e
pr
− 2[Y †

e ]prξ∗
d
ts

+ 2[Y †
e ]pv [Yd]wtC ed

vrsw
− 2[Y †

e ]vr [Yd]wtC ld
pvsw

+ 2[Y †
e ]vr [Yd]sw C(1)

lq
pvwt

+ 6[Y †
e ]vr [Yd]sw C(3)

lq
pvwt

− 2[Y †
e ]pw [Yd]sv C qe

vtwr

+ 2[Yd]sv [Yu]wtC(1)
lequ
prvw

+ γ
(Y )
l
pv
Cledq
vrst

+ γ
(Y )
d
sv
Cledq
prvt

+ Cledq
pvst

γ
(Y )
e
vr

+ C ledq
prsv

γ
(Y )
q
vt

(B.55)

(LR)(LR) :

Ċ
(1)
lequ
prst

= 2[Y †
u ]stξ e

pr
+ 2[Y †

e ]prξu
st

+ 2[Y †
d ]sv [Y †

u ]wtC ledq
prvw

+ 2[Y †
e ]pv [Y †

u ]sw C eu
vrwt

+ 2[Y †
e ]vr [Y †

u ]wtC(1)
lq

pvsw
− 6[Y †

e ]vr [Y †
u ]wtC(3)

lq
pvsw
− 2[Y †

e ]vr [Y †
u ]sw C lu

pvwt

− 2[Y †
e ]pw [Y †

u ]vtC qe
svwr

+ γ
(Y )
l
pv
C

(1)
lequ
vrst

+ γ
(Y )
q
sv
C

(1)
lequ
prvt

+ C
(1)
lequ
pvst

γ
(Y )
e
vr

+ C
(1)
lequ
prsv

γ
(Y )
u
vt

(B.56)

Ċ
(3)
lequ
prst

= −1
2[Y †

u ]sw [Y †
e ]pv C eu

vrwt
− 1

2[Y †
e ]vr [Y †

u ]wtC(1)
lq

pvsw
+ 3

2[Y †
e ]vr [Y †

u ]wtC(3)
lq

pvsw

− 1
2[Y †

e ]vr [Y †
u ]sw C lu

pvwt
− 1

2[Y †
e ]pw [Y †

u ]vtC qe
svwr

+ γ
(Y )
l
pv
C

(3)
lequ
vrst

+ γ
(Y )
q
sv
C

(3)
lequ
prvt

+ C
(3)
lequ
pvst

γ
(Y )
e
vr

+ C
(3)
lequ
prsv

γ
(Y )
u
vt

(B.57)

99



Ċ
(1)
quqd
prst

= −2[Y †
u ]prξ d

st
− 2[Y †

d ]stξ u
pr

− 2
N2
c

(
[Y †
u ]vr [Y †

d ]pw C(8)
qd
svwt

+ [Y †
d ]vt [Y †

u ]sw C(8)
qu
pvwr

+ [Y †
d ]pw [Y †

u ]sv C(8)
ud
vrwt

)

+ 4
Nc

(
[Y †
d ]wt [Y †

u ]vr C(1)
qq
svpw

+ [Y †
d ]vt [Y †

u ]wr C(1)
qq
pvsw
− 3[Y †

d ]wt [Y †
u ]vr C(3)

qq
svpw

−3[Y †
d ]vt [Y †

u ]wr C(3)
qq
pvsw

)
+ 4
Nc

(
[Y †
d ]pw [Y †

u ]vr C(1)
qd
svwt

+ [Y †
d ]vt [Y †

u ]sw C(1)
qu
pvwr

+ [Y †
d ]pw [Y †

u ]sv C(1)
ud
vrwt

)

− 4
(

[Y †
d ]wt [Y †

u ]vr C(1)
qq
pvsw

+ [Y †
d ]vt [Y †

u ]wr C(1)
qq
svpw

)
+ 12

(
[Y †
d ]wt [Y †

u ]vr C(3)
qq
pvsw

+[Y †
d ]vt [Y †

u ]wr C(3)
qq
svpw

)
+ 2

(
[Y †
d ]pw [Y †

u ]vr C(8)
qd
svwt

+ [Y †
d ]vt [Y †

u ]sw C(8)
qu
pvwr

+ [Y †
d ]pw [Y †

u ]sv C(8)
ud
vrwt

)
− 4[Y †

d ]sw [Y †
u ]pv C(1)

ud
vrwt

+ γ
(Y )
q
pv
C

(1)
quqd
vrst

+ γ
(Y )
q
sv
C

(1)
quqd
prvt

+ C
(1)
quqd
pvst

γ
(Y )
u
vr

+ C
(1)
quqd
prsv

γ
(Y )
d
vt

(B.58)

Ċ
(8)
quqd
prst

= − 4
Nc

(
[Y †
d ]pw [Y †

u ]vr C(8)
qd
svwt

+ [Y †
d ]vt [Y †

u ]sw C(8)
qu
pvwr

+ [Y †
d ]pw [Y †

u ]sv C(8)
ud
vrwt

)

+ 8
(

[Y †
d ]wt [Y †

u ]vr C(1)
qq
svpw

+[Y †
d ]vt [Y †

u ]wr C(1)
qq
pvsw

)
− 24

(
[Y †
d ]wt [Y †

u ]vr C(3)
qq
svpw

+ [Y †
d ]vt [Y †

u ]wr C(3)
qq
pvsw

)
+ 8

(
[Y †
d ]pw [Y †

u ]vr C(1)
qd
svwt

+ [Y †
d ]vt [Y †

u ]sw C(1)
qu
pvwr

+ [Y †
d ]pw [Y †

u ]sv C(1)
ud
vrwt

)
− 4[Y †

d ]sw [Y †
u ]pv C(8)

ud
vrwt

+ γ
(Y )
q
pv
C

(8)
quqd
vrst

+ γ
(Y )
q
sv
C

(8)
quqd
prvt

+ C
(8)
quqd
pvst

γ
(Y )
u
vr

+ C
(8)
quqd
prsv

γ
(Y )
d
vt

(B.59)
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Appendix C

The Gauge Coupling contributions
to one loop RGE

The parameters η1−5 are defined . Some equations use ξB, defined by

ξB = 4
3yh (CH2 + CHD) + 8

3

[
2ylC(1)

Hl
tt

+ 2yqNcC
(1)
Hq
tt

+ yeCHe
tt

+ yuNcCHu
tt

+ ydNcCHd
tt

]
(C.1)

The other parameters are cA,2 = 2, cF,2 = 3/4, cA,3 = Nc, cF,3 = (N2
c − 1)/(2Nc) with

Nc = 3, b0,1 = −1/6− 20ng/9, b0,2 = 43/6− 4ng/3 and b0,3 = 11− 4ng/3.
The gauge contributions to the one-loop renormalization group equations of the 59

dimension-six operator coefficients are listed by operator class in the following eight
subsections [6].

Class X3 :

ĊG = (12cA,3 − 3b0,3) g2
3CG Ċ

G̃
= (12cA,3 − 3b0,3) g2

3CG̃
ĊW = (12cA,2 − 3b0,2) g2

2CW Ċ
W̃

= (12cA,2 − 3b0,2) g2
2CW̃ (C.2)

Class H6 :
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ĊH =
(
−27

2 g
2
2 −

9
2g

2
1

)
CH + λ

[40
3 g

2
2CH2 +

(
−6g2

2 + 24g2
1y2
h

)
CHD

]
− 3

4
(
4y2

hg
2
1 + g2

2

)2
CHD + 12λ

(
3g2

2CHW + 4g2
1y2
hCHB + 2g1g2yhCHWB

)
−
(
12g2

1g
2
2y2
h + 9g4

2

)
CHW −

(
48g4

1y4
h + 12g2

1g
2
2y2
h

)
CHB −

(
24g3

1g2y3
h + 6g1g

3
2yh

)
CHWB

+ 16
3 λg

2
2

(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)
(C.3)

Class H4D2 :

ĊH2 = −
(

4g2
2 + 16

3 g
2
1y2
h

)
CH2 + 20

3 g
2
1y2
hCHD + 2g2

2

(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)

+ 4
3g

2
1yh

(
NcyuCHu

tt
+NcydCHd

tt
+ yeCHe

tt
+ 2NcyqC(1)

Hq
tt

+ 2ylC(1)
Hl
tt

)
(C.4)

ĊHD = 80
3 g

2
1y2
hCH2 +

(9
2g

2
2 −

10
3 g

2
1y2
h

)
CHD

+ 16
3 g

2
1yh

(
NcyuCHu

tt
+NcydCHd

tt
+ yeCHe

tt
+ 2NcyqC(1)

Hq
tt

+ 2ylC(1)
Hl
tt

)
(C.5)

Class X2H2 :

ĊHG =
(
−6y2

hg
2
1 −

9
2g

2
2 − 2b0,3g

2
3

)
CHG (C.6)

ĊHB =
(
2y2

hg
2
1 −

9
2g

2
2 − 2b0,1g

2
1

)
CHB + 6g1g2yhCHWB (C.7)

ĊHW = −15g3
2CW +

(
−6y2

hg
2
1 −

5
2g

2
2 − 2b0,2g

2
2

)
CHW + 2g1g2yhCHWB (C.8)
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ĊHWB = 6g1g
2
2yhCW +

(
−2y2

hg
2
1 + 9

2g
2
2 − b0,1g

2
1 − b0,2g

2
2

)
CHWB + 4g1g2yhCHB

+ 4g1g2yhCHW (C.9)

Ċ
HG̃

=
(
−6y2

hg
2
1 −

9
2g

2
2 − 2b0,3g

2
3

)
C
HG̃

(C.10)

Ċ
HB̃

=
(
2y2

hg
2
1 −

9
2g

2
2 − 2b0,1g

2
1

)
C
HB̃

+ 6g1g2yhCHW̃B
(C.11)

Ċ
HW̃

= −15g3
2CW̃ +

(
−6y2

hg
2
1 −

5
2g

2
2 − 2b0,2g

2
2

)
C
HW̃

+ 2g1g2yhCHW̃B
(C.12)

Ċ
HW̃B

= 6g1g
2
2yhCW̃ +

(
−2y2

hg
2
1 + 9

2g
2
2 − b0,1g

2
1 − b0,2g

2
2

)
C
HW̃B

+ 4g1g2yhCHB̃
+ 4g1g2yhCHW̃ (C.13)

Class ψ2H3 :

ĊeH
rs

= [Y †
e ]rs

[10
3 g

2
2CH2 +

(
−3

2g
2
2 + 6g2

1y2
h

)
CHD

]
−
[
3(3y2

l + 3y2
e − 4ylye)g2

1 + 27
4 g

2
2

]
CeH
rs

+ 3[Y †
e ]rs

(
3g2

2(CHW + iC
HW̃

)

+ 4(y2
h + 2ylye)g2

1(CHB + iC
HB̃

) + 2g1g2yl(CHWB + iC
HW̃B

)
)

− 3
(
3g1yeCeB

rt
+ g2CeW

rt

)
[YeY †

e ]ts − 3[Y †
e Ye]rv

(
2g1(yl + ye)CeB

vs
− g2CeW

vs

)
− 6

(
4g3

1y2
hye + 4g3

1y2
hyl + g2

2g1yh
)
CeB
rs

− 3
(
4g2

1g2yhye + 4g2
1g2yhyl + 3g3

2

)
CeW
rs

+
(
3g2

2 + 12g2
1ylyh

)
[Y †
e ]rtCHe

ts

+ 12g2
1yeyhC(1)

Hl
rt

[Y †
e ]ts + 12g2

1yeyhC(3)
Hl
rt

[Y †
e ]ts + 4

3g
2
2[Y †

e ]rs
(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)
(C.14)
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ĊuH
rs

= [Y †
u ]rs

[10
3 g

2
2CH2 +

(
−3

2g
2
2 + 6g2

1y2
h

)
CHD

]
−
[
3(3y2

q + 3y2
u − 4yqyu)g2

1 + 27
4 g

2
2 + 6cF,3g2

3

]
CuH
rs

+ 3[Y †
u ]rs

(
8g2

3cF,3(CHG + iC
HG̃

) + 3g2
2(CHW + iC

HW̃
)

+ 4(y2
h + 2yqyu)g2

1(CHB + iC
HB̃

)− 2yqg1g2(CHWB + iC
HW̃B

)
)

− 12[Y †
d Yd]rtg2CuW

ts
− 6g2CdW

rt
[YdY †

u ]ts − 3
(
4g3cF,3CuG

rt
+ g2CuW

rt

+ (3yu + yd)g1CuB
rt

)
[YuY †

u ]ts − 3[Y †
uYu]rv

(
4cF,3g3CuG

vs
− g2CuW

vs
+ 2(yq + yu)g1CuB

vs

)
− 6

(
4g3

1y2
hyu + 4g3

1y2
hyq − g2

2g1yh
)
CuB
rs

+ 3
(
4g2

1g2yhyu + 4g2
1g2yhyq − 3g3

2

)
CuW

rs

−
(
3g2

2 − 12g2
1yqyh

)
[Y †
u ]rtCHu

ts
+ 3g2

2[Y †
d ]rtC∗

Hud
st

+ 12g2
1yuyhC(1)

Hq
rt

[Y †
u ]ts

− 12g2
1yuyhC(3)

Hq
rt

[Y †
u ]ts + 4

3g
2
2[Y †

u ]rs
(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)
(C.15)

ĊdH
rs

= [Y †
d ]rs

[10
3 g

2
2CH2 +

(
−3

2g
2
2 + 6g2

1y2
h

)
CHD

]
−
[
3(3y2

q + 3y2
d − 4yqyd)g2

1 + 27
4 g

2
2 + 6cF,3g2

3

]
CdH
rs

+ 3[Y †
d ]rs

(
8cF,3g2

3(CHG + iC
HG̃

) + 3g2
2(CHW + iC

HW̃
)

+ 4(y2
h + 2yqyd)g2

1(CHB + iC
HB̃

) + 2yqg1g2(CHWB + iC
HW̃B

)
)
− 12[Y †

uYu]rtg2CdW
ts

− 6g2CuW
rt

[YuY †
d ]ts − 3

(
4cF,3g3CdG

rt
+ g2CdW

rt
+ (3yd + yu)g1CdB

rt

)
[YdY †

d ]ts

− 3[Y †
d Yd]rt

(
4cF,3g3CdG

ts
− g2CdW

ts
+ 2 (yq + yd) g1CdB

ts

)
− 6

(
4g3

1y2
hyd + 4g3

1y2
hyq + g2

2g1yh
)
CdB
rs
− 3

(
4g2

1g2yhyd + 4g2
1g2yhyq + 3g3

2

)
CdW

rs

+
(
3g2

2 + 12g2
1yqyh

)
[Y †
d ]rtCHd

ts
+ 3g2

2[Y †
u ]rtCHud

ts
+ 12g2

1ydyhC(1)
Hq
rt

[Y †
d ]ts

+ 12g2
1ydyhC(3)

Hq
rt

[Y †
d ]ts + 4

3g
2
2[Y †

d ]rs
(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)
(C.16)

Class ψ2XH:
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ĊeW
rs

=
[
(3cF,2 − b0,2) g2

2 +
(
−3y2

e + 8yeyl − 3y2
l

)
g2

1

]
CeW
rs

+ g1g2(3yl − ye)CeB
rs

− [Y †
e ]rs

(
g2(CHW + iC

HW̃
) + g1(yl + ye)(CHWB + iC

HW̃B
)
)

(C.17)

ĊeB
rs

=
[
−3cF,2g2

2 +
(
3y2

e + 4yeyl + 3y2
l − b0,1

)
g2

1

]
CeB
rs
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Ċ
(1)
lequ
prst

= −
(

6
(
y2
e + ye (yu − yq) + yqyu

)
g2

1 + 3
(
Nc −

1
Nc

)
g2

3

)
C

(1)
lequ
prst

−
(
24 (yq + yu) (2ye − yq + yu) g2

1 − 18g2
2

)
C

(3)
lequ
prst

(C.56)

Ċ
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