
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Natural Language Processing

ENHANCING THE SOFTWARE
DEVELOPMENT LIFE CYCLEWITH
CONVERSATIONAL AI: LLM-DRIVEN

DOCUMENTATION Q&A AND AUTOMATED
MODEL EVALUATION

CANDIDATE SUPERVISOR

Shola Oshodi Prof. Paolo Torroni

CO-SUPERVISOR

Dott. Ing. Francesco Saracco

Academic year 2023-2024

Session 5th

to my loved ones, I owe you everything

ii

Contents

1 Introduction 1

1.1 Content Overview . 2

2 Background 4

2.1 Software Development Life cycle 4

2.2 Generative AI . 6

2.3 LLM . 7

2.4 RAG . 9

2.5 RepoAgent . 10

3 Methodology 12

3.1 Automated Documentation Generation 12

3.2 Summary Generation . 13

3.3 Question Answering System 15

3.3.1 Models . 17

3.3.2 LLM Generation . 21

3.3.3 System Interface . 22

3.4 Evaluation Approach . 22

3.4.1 Dataset . 24

3.4.2 Classification Model Metrics 25

3.4.3 Summary Evaluation Approach 25

3.4.4 Q&A Evaluation Approach 27

iii

4 Results 33

4.1 Classification Model . 33

4.2 Summary Evaluation Results 34

4.2.1 Quantitative Evaluation Results 34

4.2.2 Qualitative Evaluation Results 36

4.2.3 Error Analysis . 39

4.3 Q&A Evaluation Results . 40

4.3.1 Quantitative Evaluation Results 40

4.3.2 Qualitative Evaluation Results 41

4.3.3 Error Analysis . 42

5 Conclusion 45

5.0.1 Future Work . 46

Acknowledgements 47

Bibliography 48

A Qualitative Evaluation of Summary: Prompt Example 54

B Classification Model Prompt 56

C Multi-Agent System Conversation 58

iv

List of Figures

2.1 Description of two architectures of Retrieval AugmentedGen-

eration (RAG): Naive RAG and Advanced RAG. [14] 10

2.2 Overview of the RepoAgent framework, illustrating theGlobal

StructureAnalysis, DocumentationGeneration, andDocumen-

tation Update phases. [15] 11

3.1 Map-Reduce approach for multi-threads text summarisation. . 14

3.2 Architecture of Question Answering System. 16

3.3 Self-Querying Architecture. The query is processed, struc-

tured with filters, and translated for efficient search in a vector

store [24] . 21

3.4 Overview of the multi-agent system’s iterative analysis and

evaluation process. 31

v

List of Tables

3.1 Details on test case dimensions, sizes, and the number of files 25

4.1 Precision and Recall in classifying specific and general queries. 33

4.2 Summary generation execution time 34

4.3 ROUGE evaluation scores for GPT-3.5-Turbo and GPT-4.0-

Turbo summaries on Skillner Project. For each reference sum-

mary (A,B,C) the Table presents precision, recall and F1 scores

for ROUGE-1, ROUGE-2, ROUGE-L, with and without ac-

cess to the project’s README. 35

4.4 ROUGE evaluation scores for GPT-3.5-Turbo and GPT-4.0-

Turbo summaries on Repoagent Project. For each reference

summary (A,B,C) the Table presents precision, recall and F1

scores for ROUGE-1, ROUGE-2, ROUGE-L, with and with-

out access to the project’s README. 35

4.5 Qualitative Evaluation of GPT Models for Repoagent Sum-

marization assessing consistency(1-5), coherence(1-5), relevance(1-

5) and fluency (1-3) . 37

4.6 Qualitative Evaluation of GPT Models for Skillner Summa-

rization assessing consistency(1-5), coherence(1-5), relevance(1-

5) and fluency (1-3) . 37

4.7 Question answering quantitative evaluation 40

4.8 Examples for error analysis of general questions and answers. 43

4.9 Examples for error analysis of specific questions and answers . 44

vi

Abstract

In software development, navigating code documentation is a time-consuming

and cognitively demanding task. This research, investigates the potential of

Large LanguageModels (LLMs) to improve documentation consultation, aim-

ing to reduce developer efforts while increasing their understanding. The

study introduces a novel system that integrates an existing LLM-based docu-

mentation generator with an advanced question-answering system. This sys-

tem, composed of different Retrieval-Augmented Generation (RAG) models,

is designed to understand the contextual needs of user queries and intelli-

gently route them to the most appropriate RAG within the proposed architec-

ture. This approach proved to effectively handle both fine-grained and coarse-

grained questions, obtaining high Context Precision (0.955) and Answer Rele-

vancy (0.900) according to the RAGAsmetrics. The research also investigates

automated project summarisation and automated evaluation strategies for nat-

ural language systems, proposing procedures to reduce human effort while

ensuring reliable results.

Overall, this study highlights the potential of LLMs and Generative AI to

streamline software development workflows, reducing time and cost associ-

ated with code understanding and LLM evaluation. It contributes to the grow-

ing field of AI-driven software engineering tools, laying a foundation for fu-

ture research and applications in documentation management and intelligent

systems design. This thesis is the result of practical research conducted in

collaboration with DATA Reply.

Chapter 1

Introduction

A significant portion of the time spent by software developers (from 50 to

70%) is dedicated to code comprehension, making it one of the most time-

consuming tasks of their daily work [1][2]. This, in turn, has a consistent

impact on software development costs, as developers must spend time under-

standing the code before being able to implement changes.

For these reasons, effective communication of knowledge is a key activity

within the Software Development Life Cycle (SDLC).

One of the primary means to explain and instruct users about systems or code

is documentation, which however, often presents various usability challenges

in real-world scenarios: the resulting difficulties in navigating and locating

relevant information can lead to significant cognitive overload for software

engineers, impacting both efficiency and productivity.

To address these challenges, this thesis examined the potential of Large Lan-

guage Models (LLMs) in enhancing the effectiveness of documentation con-

sultation through an interactive question-answering system composed of mul-

tiple Retrieval-Augmented Generation (RAG) models. The strength of the de-

veloped system lies in its intelligent routing mechanism, which directs queries

to the most appropriate RAG model based on their specificity and contextual

1.1 Content Overview 2

requirements. The designed project starts from an existing code-level docu-

mentation generator used to obtain an informative knowledge base about the

software functionalities.

Additionally, this research explored tasks as multi-document summarisation

and natural language generation evaluation proposing automated strategies to

minimise human effort.

The work discussed contributes to the domain of software development by re-

ducing the cognitive load required for effective documentation understanding.

This has direct implications on time and cost, while also indirectly improving

the quality of code. By providing developers with a deep understanding of

the project, it supports more informed decisions and reduces errors caused by

misunderstanding or unclear information.

The entire process was driven by the following research questions:

1. Q1: How can LLMs be applied to improve the understanding of docu-

mentation?

2. Q2: How can Conversational AI systems be designed to handle differ-

ent types of queries with varying complexity and information require-

ments?

3. Q3: Is it possible to reduce human dependency on evaluation while

providing useful insights?

4. Q4: What are the key differences in performance and output quality

between different LLMs on specific tasks?

1.1 Content Overview

The thesis is structured as follows:

• Chapter 1 - Introduction

1.1 Content Overview 3

• Chapter 2 - Background: Introduces key concepts and provides foun-

dational knowledge necessary for project understanding.

• Chapter 3 - Methodology: Describes the developed system, focusing

on the adopted methodologies and the criteria defined for its evaluation.

• Chapter 4 - Results: Presents and analyse the obtained results.

• Chapter 5 - Conclusion: Summarises the key contributions and out-

lines potential future research directions.

Chapter 2

Background

To fully understand the significance and scope of this research, it is essential

to first explore the underlying concepts and theories that form the basis of this

study. This chapter provides a comprehensive overview of the key principles.

2.1 Software Development Life cycle

In the fast evolution of the field of software development, it became necessary

to establish a standardized structured process that guided the entire develop-

ment through its phases. The Software Development Life Cycle (SDLC) de-

fines different stages ensuring better organization and higher code quality[3].

It usually consists in various phases where the principal are:

1. Planning: Project goals, requirements and timelines are defined.

2. Feasibility Analysis: Technical requirements, cost, and risk are as-

sessed in order to measure the project’s feasibility and its technical and

financial limitations.

3. System Design: Focuses on creating software architecture and design.

4. Implementation: This phase focuses on development, where functional

applications are implemented based on the project’s design.

2.1 Software Development Life cycle 5

5. Testing identification and bug fixing: Comprises both automated and

manual testing methods to identify bugs and vulnerabilities. If any bug

is present, it is addressed during this phase.

6. Deployment: In this phase, the software is implemented in a real envi-

ronment, configured and made available to end users.

7. Maintenance: Once the software is developed, it should be continu-

ously updated to fix bugs and improve functionalities. Its main goal is

to ensure that the system remains stable, secure, and performs well over

time.

These phases can interact with each other in various ways, forming different

development models. The most frequently used areWaterfall, Iterative, Agile,

V-Model and DevOps.

• Waterfall: Each phase begins when the previous one is completed and

error-free. It is typically used in small projects.

• Iterative: It starts with the implementation of just a part of the require-

ments and proceeds iteratively to complete the project. Each implemen-

tation phase is combined with testing and feedback.

• Agile: This model focuses on strong collaboration, continuous feed-

back and frequent updates to satisfy new requirements. Development is

divided into small parts called ”sprint”, which are implemented incre-

mentally and iteratively.

• V-Model: Each stage, except for the implementation phase, consists of

two parts: validation and verification. Each development stage is linked

to its verification phase.

• DevOps: It bridges the traditional gap between development and op-

erations by managing the application life cycle through a seamless and

2.2 Generative AI 6

continuous flow of testing, development, and deployment activities. It

focuses on streamlining processes through a high degree of automation.

While each model is suited to specific contexts, certain general requirements

remain fundamental across all models, highlighting the benefits of documen-

tation management system presented in this thesis:

• Clear communication among team members;

• Traceability of design choices;

• Deep understanding of the codebase to facilitate testing, debugging and

maintainability.

2.2 Generative AI

In the past, it was commonly believed that innovation and creativity—writing,

coding, designing, or drawing—were the exclusive domain of humans. How-

ever, recent advancements have demonstrated that Artificial Intelligence can

play an active role in innovation, contributing with new ideas and solutions

by combining and transforming existing knowledge. This emerging field is

known as Generative AI.

Specifically, Generative AI refers to computational techniques capable of

generating new, meaningful content (e.g. text, image, or audio) based on train-

ing data [4]. Mathematically, this is achieved through generative models that

aim to infer statistical data distributions: these models can estimate the distri-

bution of the label Y or the joint distribution of observing the label Y given

the data X . This ability allows the models to generate new synthetic samples,

either by creating new pairs of observations (X, Y), or by producing new ob-

servations X based on a target value Y [5].

The potential of Generative AI has led to increasing interest in applying it

2.3 LLM 7

across various contexts and tasks. In relation to this thesis project, novel ap-

proaches include its integration into the field of Software Development tomin-

imise team members’ workloads [6] [7]. Specifically, this research explores

the effectiveness of Generative AI in this domain, focusing on its natural lan-

guage interaction capabilities.

2.3 LLM

Large LanguageModels (LLMs) are advancedmodels trained on vast amounts

of data, designed to generate and process text and solve natural language-

related tasks. These capabilities are acquired by learning the statistical rela-

tionships and patterns that occur in the data during the self-supervised and

semi-supervised training process.

This thesis examines one of the most widely used models in industry and re-

search: GPT (Generative Pre-trained Transformer) by OpenAI.

GPT is a deep learning model pre-trained on large corpora of text data, which

can be fine-tuned to perform better on specific tasks.

The architecture of GPT is based on the Transformer model [8], which

employs a self-attention mechanism to consider the context of the entire input

sequence while generating the new words.

There are different versions of GPT, each built upon advancements in pre-

training, fine-tuning, and architectural design. Specifically, this work focuses

on GPT-3.5-Turbo and GPT-4.0-Turbo.

GPT-3.5-Turbo

Launched in November 2022, it has been specifically optimised for chat-based

interactions, making it particularly effective in conversational contexts. Its

design enables comprehension and generation of both natural language and

code.

2.3 LLM 8

GPT-4.0-Turbo

GPT-4.0-Turbo is a large multi-modal model capable of processing both text

and images. It achieves one of the highest level of accuracy in solving complex

problems among OpenAI’s models, thanks to its broader general knowledge,

extended context window, and more advanced reasoning capabilities. The

differences between GPT-4.0-Turbo and GPT-3.5-turbo become particularly

evident in complex task scenarios, where GPT-4.0-Turbo outperforms GPT-

3.5-Turbo. [9]

Both models have been enhanced by OpenAI through a specific training

process involving Reinforcement Learning from Human Feedback (RLHF)

[10] . This approach begins with pre-training the model on a large corpus of

text in a self-supervised manner and proceeds with human evaluators ranking

generated responses to create a reward model. Finally, the model is further

optimized using Proximal Policy Optimization (PPO), a reinforcement learn-

ing algorithm that fine-tunes the model by iteratively adjusting its parame-

ters to maximize cumulative rewards [11]. OpenAI has not provided exten-

sive details about the training process of GPT-4.0-Turbo models, but it has

mentioned the introduction of an additional reward model called Rule-Based-

Reward Model (RBRM) [12], designed to enforce alignment of generation

with predefined rules.

Although the exact number of parameters is not publicly available, the GPT-

4.0-Turbo family is estimated to be about 10 times larger than GPT-3.5-Turbo,

with about 1 trillion parameters compared to the 175 billion used in the previ-

ous version [13].

Limitations

GPT models are subject to certain limitations that can be summarised as fol-

lows:

• They tend to generate plausible-sounding but incorrect answers.

2.4 RAG 9

• Models are sensitive to how questions are phrased or rephrased,

and may produce different answers when the same question is asked

multiple times with slight variations.

• Models often handle ambiguous questions poorly, attempting to pro-

vide an answer rather than asking for clarification.

• The models tend to be verbose and redundant in their responses.

• Despite the implementation of a moderation system, the models can

still produce unsafe or inappropriate responses.

2.4 RAG

As underlined in the previous section, one of the key limitations of LLMs is

their tendency to hallucinate, which leads to inaccurate, outdated, and not veri-

fied responses. Additionally, the difficulty in tracing the source of the model’s

answer makes it even harder to discern whether the generated information is

based on reliable data. A promising solution is Retrieval-Augmented Gen-

eration (RAG)[14], which approach can be summarised in three main phases:

• Indexing: The input text is divided into chunks, encoded into vector

representations, and stored in a vector database.

• Retrieval: The user’s query is also embedded as a vector, and its simi-

larity to stored document chunks is computed. The system retrieves the

most relevant chunks based on similarity scores.

• Generation: The provided query, along with the selected chunks, is

integrated into the prompt and passed to the LLM model for response

generation.

RAG model, to be considered effective, should accurately recognize rele-

vant information while filtering out irrelevant data to enhance the generation

2.5 RepoAgent 10

Figure 2.1: Description of two architectures of Retrieval Augmented Genera-
tion (RAG): Naive RAG and Advanced RAG. [14]

process. To further improve performance, Advanced RAG methods have

been introduced. These employ a refined indexing strategy and the incorpora-

tion of pre-retrieval and post-retrieval steps, such as re-ranking, query trans-

formation or query expansion. A visual comparison of these two models is

provided in Figure 2.1.

2.5 RepoAgent

One of the primary objectives of this thesis, as extensively highlighted in the

previous chapter, was to develop a highly automated tool to explain doc-

umentation. To achieve this, the open-source framework Repoagent [15]

was utilised for generating documentation. Repoagent enables the genera-

tion, maintenance, and automation of markdown documents, synchronizing

them with project repositories. To generate detailed code-level documenta-

tion, the project pipeline begins with a global analysis of the Python files.

2.5 RepoAgent 11

Their code structure is parsed, function and classes extracted, and reference re-

lationship mapped. This information, along with Abstract Syntax Tree, meta-

data, file paths, and past documentation, is provided to the LLM. The resulting

documentation includes code details such as functionality, parameters, code

descriptions, notes, and examples. Finally, the system automatically tracks

repository updates triggering documentation generation upon each commit.

A more in-depth description of the entire process is provided in Figure 2.2.

Figure 2.2: Overview of the RepoAgent framework, illustrating the Global
Structure Analysis, Documentation Generation, and Documentation Update
phases. [15]

The integration of this advanced tool with the developed system resulted

in a fully automated and highly customizable pipeline.

Chapter 3

Methodology

This chapter outlines the methodological approach followed in this thesis and

introduces the various automated evaluation methods implemented to assess

system performance. The goal of these evaluations is to reduce human de-

pendency, reduce time and effort, and ensure reliable and consistent analysis

results.

3.1 Automated Documentation Generation

As highlighted in the Background chapter, documentation generationwasmade

possible through Repoagent, a public repository that managed the generation

process and the integration with Github for automated updates.

Considering the final objective of providing a clear understanding of the project,

leveraging this existing framework, several minor refinements and bug fixes

were made.

In particular, the generated documentation lacked a general overview file that

briefly explained the project’s main purpose: the documentation was highly

technical and code-centered, limiting users seeking a quick, general under-

standing of the project. To address this, a summary documentation file gen-

eration was implemented. Additionally, to prevent unnecessary computational

3.2 Summary Generation 13

overhead, the documentation update process was modified, allowing users to

disable automatic updates with each commit if desired.

3.2 Summary Generation

The creation of the summary proved to be fundamental in supporting the question-

answering component of the system, as will be discussed in detail in the Gen-

eral Model section. To ensure a good alignment with the project information,

the summary generated relied directly on the Markdown files produced by

Repoagent. Given the necessity of processing a large number of files, we

considered summarisation techniques that could balance both efficiency and

accuracy. Among the methods reviewed in the literature, we chose MapRe-

duce [16] [17] , a popular programming model that provides scalability for

handling large text collections in summarisation tasks. This approach effec-

tively addresses the challenges of multi-document summarisation, obtaining

meaningful results and computational efficiency even with large number of

documents.

In this approach, each document is first summarised individually in the

Map step, where the key points and essential information are extracted from

each file, then, in the Reduce step, the individual summaries are combined

into an overall structured summary. This process ensures that all the impor-

tant information from all the documents is considered and synthesized into a

unified text.

Initially, we implemented the process using LangChain’sMapReduce chain,

but this didn’t take full advantage of the scalability properties of this strategy,

resulting in a computationally intensive process. To address this, we manually

implement the summarisation by parallelizing the Map step across multiple

threads.

3.2 Summary Generation 14

prompt
summary

prompt
summary

prompt
summary

final
summary

m
ul
ti

th
re
ad
s

MAP

REDUCE

prompt
summary

Figure 3.1: Map-Reduce approach for multi-threads text summarisation.

The resulting summarisation workflow, as shown in Figure 3.1, is defined

as follows:

• Each document was summarised using LangChain’s Stuff chain and ex-

ecuted simultaneously by a pool of threads.

• The individual summaries were then combined using a custom prompt

designed to merge them into an overall summary. The model was in-

structed to write the summary as a project description, providing a gen-

eral overview without focusing on implementation details. Not all the

methods had to be mentioned, only the most important ones. The model

was asked to avoid naming specific features and going into deep tech-

nical detail. The generated summary had to be 15-20 lines long.

A key factor that significantly influenced both the performance and accuracy

of the models was the chunk size used in processing documents. Since the

optimal chunk size can vary depending on the nature and structure of the docu-

ments being considered, an additional feature was implemented to allow users

to manually test and select the most suitable chunk size for their specific use

3.3 Question Answering System 15

case. It is important to note that smaller chunks size can considerably slow

down the process: in the considered study the optimal size was determined to

be 5000 tokens.

3.3 Question Answering System

In order to investigate the potential of LLMs in enhancing code understand-

ability, a newly created question-answering system was integrated into the

existing Repoagent project. The primary objective of the system was to lever-

age large pre-trained language models to provide near-instantaneous, precise,

and fact-verified answers. While LLMs have demonstrated notable abilities

in conversational and question-answering tasks [18][19], they have been ob-

served to struggle with expanding or updating their memory, providing clear

insights into their predictions, and being prone to generating ”hallucinations”.[20]

To address this issue, a Retrieval AugmentedGeneration approachwas adopted,

combining the strengths of information retrieval and language generation, it

enabled the LLM to directly access relevant data information from a specific

knowledge base. By retrieving pertinent information, the likelihood of gen-

erating hallucinated or incorrect statements is reduced. The use of a knowl-

edge base also helps the LLM better understand queries and domain-specific

requests. The RAG architectures were implemented using the LangChain li-

brary, whose modularity allows for the adjustment of implementation details

(e.g. switching the LLM model) without modifying the entire codebase: it

ensures the system remains easily customizable and adaptable to different re-

quirements and use cases.

As illustrated in Figure 3.2 the question answering complete pipeline com-

prises three different models (their detailed explanation will be provided in

3.3 Question Answering System 16

QUERY REFINMENT AND
CONTEXTUALIZATION

ANSWERANSWER

PARALLEL SUMMARIZATION

SUMMARY

PROJECT
DOCUMENTATION

CLASSIFICATION
MODEL

GENERAL
MODEL

stores answer
in history

consults consults

HISTORY

contextualizes
considering

history

SPECIFIC
MODEL

Figure 3.2: Architecture of Question Answering System.

the subsequent section). The reason behind this structure arises from the limi-

tations of LLMs in processing long-context text, in particular, retrieval-based

techniques have showed significant advantages for answering short questions,

with minimal effect on the comprehension of longer contexts [21]. This as-

pect posed a challenge in the initial version of the systemwhere a single model

was used: the model could answer very specific questions, but lacked an un-

derstanding of the general functionalities and purpose of the analysed project.

This limitation significantly impacted the system’s potential, making it less

useful for users who needed concise project information rather than detailed

implementation specifics.

The proposed solution aims to identify questions that require a larger con-

text to classify and redirect them to a General LLM model, which uses the

generated project summary as knowledge base. Specific question, on the other

hand, are redirected to the Specific RAG Model, which considers all the doc-

umentation files.

3.3 Question Answering System 17

In order to ensure an effective navigation of the documentation and di-

minishing the developers’ struggles, a smooth and consistent conversation is

crucial. To this extent, the history of past messages has to be taken into ac-

count. In this case, the partitioning of the pipeline in three different models

introduced an additional level of complexity in handling and synchronizing

the conversation history, which made necessary the introduction of a shared

history, updated by both the General and Specific models after each interac-

tion.

As for human beings, LLMs also have their own mental frames, processing

and responding to inputs based on their training and inherent biases. This can

sometimes lead to differences between human and LLMs interpretations of

the same prompt. Since it can be challenging for humans to properly assess

and refine the clarity of their own question, in our study the Rephrase and

Respond strategy has been employed [22]. This method involves LLMs to

rephrase sentences, while integrating all the historical information necessary

to contextualise the query into a single prompt.

The contextualised questions are then passed to the Classifier model, which

determines whether to assign the task to the Specific or the General model.

3.3.1 Models

Both the Specific and General models have been designed to process Mark-

down documentation files; therefore, the same pre-processing steps were ap-

plied to their knowledge base texts. Before feeding the text into the LLM, it

was necessary to divide it into manageable chunks. To this end, LangChain’s

MarkdownTextSplitter was employed to segment the text based on header

tags, and the RecursiveTextSplitter was then utilised to further break down

3.3 Question Answering System 18

the remaining text into smaller sections. Through experimentation, the op-

timal chunk size was determined to be 250 tokens with an overlap of 30 to-

kens. The overlaps helped capture context more efficiently across consecutive

chunks.

Classifier

This model was introduced to differentiate between broad questions about the

project’s purpose and functionalities (general) and questions about code func-

tions and implementation details (specific). To build a reliable classifier, we

had to leverage some prompt engineering techniques to maximize the classi-

fication accuracy. Initially, a simple prompt describing the characteristics of

general and specific question was used: this approach turned out to be largely

inaccurate, as the model struggled to consistently assign the correct class.

To enhance performance, the few-shot learning strategy was explored, a

prompting techniques in which the model is provided with several examples to

help its understanding of the task. The efficiency of few-shot learning derives

from its imitation of a common natural language pattern: the repetition of sim-

ilar structures with varying parameters. By providing a few examples, GPT

models-in contrast to earlier models-can successfully recognise these patterns

and generalise to new input, even when examples are presented in isolated

contexts. [23]

For the case under consideration, initially a series of examples was defined

for both general and specific questions, each example being associated with

its respective class label. This led to better performance, but also revealed

that misclassification affects conversational models in different ways. When

a specific question wasmisclassified as general, the model relied on high-level

summaries, resulting in incomplete or inaccurate responses. However, when

a general question was misclassified as specific, the model could still some-

times deliver a reasonable response.

3.3 Question Answering System 19

To emphasize this disparity, we refined the prompt (see Appendix B) in-

cluding exclusively examples of general questions, instructing the model to

classify any query that did not match these examples as specific. This ap-

proach encouraged the model to be more cautious, classifying uncertain cases

as specific, reducing the risk of critical misclassification.

General Model

As explained in the Background chapter, the acronym RAG stands for Re-

trieval, Augmentation and Generation, which are the three key components

of this technique. Generation is highly dependent on the other phases, partic-

ularly Retrieval, which significantly impacts the overall performance of the

model.

In our system, the General Model, designed to answer user queries by con-

sulting a generated summary, relies on aVectorStore Retriever, which trans-

forms each chunk of text into embeddings (numerical vector representations

that encode the semantic meaning of the text). In this high-dimensional vector

space, semantically similar texts are positioned closer to one another, enabling

more effective retrieval based on meaning rather than relying on simple key-

word matching.

When a user submits a query, this is converted into an embedding, and a sim-

ilarity search is conducted between the query and the stored text embeddings

by evaluating their proximity in the vector space. This approach ensures that

the most relevant documents are retrieved, directly influencing the accuracy

and relevance of the final response.

The decision to use this specific retriever arises from its scalability and

efficiency, making it highly suitable for real-time applications like the devel-

oped chat system, where fast, accurate retrieval is crucial. Once the relevant

results are retrieved, they are combined with the user’s query and passed to

3.3 Question Answering System 20

the LLM which generates the final answer.

Specific Model

The grater the model is able to explain the documentation to the programmers,

the easier it will be for them the code understanding. In order to facilitate the

processing of complex queries and the refinement of results based on certain

criteria, for the specific model, it was necessary to implement amore advanced

retrieval method.

For example, in the context of the project, it is likely that users will request

information also by specifying a file name in order to gain deeper insights or

explanations. Therefore, the file source has to be considered as an important

metadata information: unlike General Model —which relies solely on seman-

tic similarity for document retrieval— this model requires the ability to apply

filters based on metadata.

To achieve this, the Langchains’s SelfQueryRetriever was implemented: this

retriever performs searches on the vector store applying dynamic filters con-

sidering metadata. Specifically, given a natural language query, the retriever

uses a query-constructing LLM to generate both a structured query and rele-

vant metadata filters. These are then passed to a query translator to convert

them to the correct format for query execution. The translator adapts the out-

put to fit the Chroma DB format [24]. The entire process is summarised in

Figure 3.3.

The SelfQueryRetriever enhances search accuracy by giving importance both

to context and metadata. Additionally, it makes the search process more ef-

ficient both in computation and time, as the number of chunks on which the

similarity function is computed is reduced through the application of filters

beforehand.

3.3 Question Answering System 21

Figure 3.3: Self-Querying Architecture. The query is processed, structured
with filters, and translated for efficient search in a vector store [24]

3.3.2 LLM Generation

When selecting the appropriate large language model for our system, we con-

sidered various factors such as performance, accuracy, versatility, and scal-

ability. In particular, while the OpenAI models exhibited state-of-the-art ca-

pabilities in understanding and emulating human natural language, they also

have demonstrated the ability to reach or even surpass human performance

levels in a variety of language tasks. [25]

For these reasons, in order to ensure a comprehensive evaluation, two distinct

models from OpenAI were utilised: GPT-4.0-Turbo and GPT-3.5-Turbo.

GPT-4.0-Turbo

GPT-4.0-Turbo, one of the OpenAI’s most advanced models, was selected to

guarantee that the analysis included an high-performing system capable of

providing a comprehensive understanding of LLMs’ potential capabilities in

the field. From a practical perspective, GPT-4.0-Turbo’s near-human response

times make it particularly well-suited for conversational question-answering.

Furthermore, its deep contextual understanding potentially offers significant

advantages for both advanced reasoning and precise information retrieval.

3.4 Evaluation Approach 22

GPT-3.5-Turbo

In our evaluation, we recognized the need for a balanced use of the LLMs.

For secondary tasks (such as project summarisation) we were interested in ex-

ploring less powerful (but more cost-effective) models like GPT-3.5-Turbo.

This decision allowed us to assess whether reserving the robust capabilities of

GPT-4.0-Turbo exclusively for the question-answering system would be ben-

eficial.

This explorative approach was driven by two main considerations. First, since

question-answering represents the core functionality of our system, we were

more interested in prioritizing its robustness and reliability. Second, as one of

the primary goals of this dissertation was to explore the full potential of LLMs

in enhancing documentation understanding, we required for the task a model

capable of demonstrating the highest level of comprehension and analytical

ability.

If GPT-3.5-Turbo delivers results comparable to GPT-4.0-Turbo for secondary

tasks, then we will be able to optimize resource consumption and cost effi-

ciency without compromising the performance of our primary objective.

3.3.3 System Interface

The developed chat was designed as a tool for programmers to better under-

stand code projects. To facilitate this, we opted for a command line interface

(CLI), which enables fast and practical interaction with no need to switch to

a different tab or application. It is seamlessly integrated with the CLI of the

Repoagent project, allowing for centralised shell commands.

3.4 Evaluation Approach

Evaluation is a crucial part of every research task, especially in complex sys-

tems. It is essential to carefully examine each component and establish the

3.4 Evaluation Approach 23

most relevant criteria to accurately reflect the system’s overall performance.

In this thesis project, to understand the quality of the developed solution, we

focus on evaluating three key elements to assess the system:

• The accuracy of the classification model.

• The quality of the generated summary.

• The performance of both the specific and general models in generating

answers.

While the evaluation of classification tasks is relatively straightforward, as-

sessing the quality of generated natural language poses several challenges,

making it a complex and ongoing research area as shown in [26]. This diffi-

culty arises from the presence of multiple valid responses, with their correct-

ness depending on factors such as context, clarity, reliability and fluency.

As can be easily understood, these challenges also extend to the summary

evaluation, where in addition, there is a need to balance the completeness of

the information with its conciseness. [27]

The most common approaches in natural language generation tasks evalua-

tion involve the use of automatic metrics (e.g. ROUGE, METEOR, BLEU)

which offer objective, quick, and easily comparable evaluation methods based

on lexical matching with a gold standard human-provided text. [28]

The metrics’ dependence on N-gram overlap often leads to poor alignment

with human judgments, as they fail to accurately score correct sentences that

differ syntactically or semantically from the reference text [29]

For this reason, they should not be considered the sole indicators of quality,

alongside with this quantitative evaluation it is a good practice to include a

qualitative human assessment to gain more reliable insights into system per-

formance.

3.4 Evaluation Approach 24

Unfortunately, human evaluation presents additional challenges: it requires

a technically competent group of evaluators who can invest time and effort in

the assessment process. This is not always feasible in practice, which is prob-

lematic, since the quality of the evaluation depends heavily on their expertise

and the time they can dedicate to the task.

One of the research interests of this thesis was also to propose a methodol-

ogy to address this problem while aligning with the principle of automating

processes. To mitigate the bottleneck caused by human evaluation, the use of

LLMs was explored as a replacement for human assessments to streamline the

process and reduce manual effort.

The following subsections of this chapter present amore detailed overview

of the evaluations of each component.

3.4.1 Dataset

In order to evaluate the system, it was necessary to select projects for gener-

ating the documentation and test the system’s summarisation and question-

answering capabilities. Two projects of different sizes were chosen to as-

sess the system’s performance across varying levels of complexity. The first

project, Skillner [30], focuses on the automated extraction of soft skills from

text, and we used it as a test case for a smaller-scale project.

For the second case, the documentation generated on this thesis project itself

was used. The objectives were to test performance on a larger project and to

leverage the extensive knowledge we had about the system for a more accurate

analysis of its responses. Additionally,using the project’s own documentation

as a test case contributed to enhance the clarity of the result discussion. Table

3.1 provides details on the dataset’s dimensions.

3.4 Evaluation Approach 25

Project Size Number of Files
Skillner 22.98MB 169
Repoagent + Developed System 0.98GB 30,078

Table 3.1: Details on test case dimensions, sizes, and the number of files

3.4.2 Classification Model Metrics

To evaluate the performance of the classificationmodel,the following standard

metrics were used:

• Precision: Indicates the proportion of true positives among all positive

predictions, highlighting the model’s ability to avoid false positives.

• Recall: Reflects the proportion of true positives correctly identified out

of all actual positives, emphasizes themodel’s ability to capture relevant

instances and avoid false negatives.

3.4.3 Summary Evaluation Approach

Quantitative Evaluation

The assessment of the quality of an automated summary is typically performed

using ROUGE metrics [31], which represent the standard de facto approach.

Consequently, these metrics were used in order to obtain a unified measure-

ment. There exist different versions of ROUGE, each designed to evaluate the

overlap of N-grams between the generated and reference summaries, with N

as a variable parameter.

The general formula is provided below, where N represents the length of the

N-gram:

ROUGE − N =
∑

S∈{Gold Standard Summaries}
∑

gramn∈S Countmatch(gramn)∑
S∈{Gold Standard Summaries}

∑
gramn∈S Count(gramn)

In particular, we usedROUGE-1, ROUGE-2 andROUGE-L,with ROUGE-

L being a specific version that measures the longest common subsequence be-

tween the generated and reference summaries. While ROUGE 1 and 2 are

3.4 Evaluation Approach 26

useful to check simple overlap, ROUGE-L is needed to verify whether the

generated summary follows the reference summary structure. These utility of

these scores is mainly based on their ability to provide a statistically informa-

tive comparison between the generated summaries and the gold standard. In

fact, several research (e.g. [32][33]) have shown that the ROUGE score may

have low alignment with human evaluation, and in some cases, even poor

summaries can achieve high ROUGE scores. For this reason, it should be

considered as an indicative, partially reliable measure.

Qualitative Evaluation

Human assessment plays a crucial role in evaluating the quality of generated

summaries since it takes into account factors that automated metrics often

miss. These factors can vary depending on the specific use case but usually

include aspects such as relevance, clarity, fluency, and overall coherency. If

competent external evaluators are not available, the risk of developers assess-

ing their own project is the potential of providing biased feedback. To address

this gap and obtain informative opinions without involving additional human

resources, we drew inspiration from G-Eval, a study conducted by the Mi-

crosoft Cognitive Services Research team [25] which uses GPT-4 as evaluator.

According to the cited approach, GPT-4 successfully outperformed other sum-

marisation metrics, demonstrating the best alignment with human evaluations.

The LLM was asked to score each of the following aspects:

• Coherence (1-5): Measures the logical flow and the quality of integra-

tion of sentences within the summary.

• Consistency (1-5): Measures the factual alignment with the source doc-

uments. Summaries with hallucinated or unsupported facts were penal-

ized.

• Relevance (1-5): Measures how accurate is the selection of important

content from the source. Summaries with redundancies or unnecessary

3.4 Evaluation Approach 27

information were penalized.

• Fluency (1-3): Measures the quality of the summary in terms of gram-

mar, spelling, punctuation, word choice, and sentence structure.

The twomain factors that contributed toG-Eval’s improved evaluationmethod

were the score normalization and the Chain of Thought [34] technique. The

score normalization remained unchanged in our implementationwhile the prompt-

ing approach was refined by introducing an intermediate step focused on the

extraction of key points before the score assignment.

The key points were automatically extracted via LLM and then provided to

the evaluators along with the generated summaries.

This approach preserved the structure of the Chain-of-Thought reasoningwhile

ensuring that the process remained within the LLM’s token limits.

This method also improved the assessment of consistency and relevance by

verifying that the extracted key points were accurately reflected in the text

and that all summaries were factually aligned with these key points. This re-

duced the chance of evaluators focusing on unnecessary details.

Additionally, to enhance clarity in the scoring, evaluators were asked to in-

clude a brief explanation of the motivation behind each evaluation. A prompt

example of our approach is reported in Appendix A

3.4.4 Q&A Evaluation Approach

The evaluation of RAG models presents the same challenges traditionally as-

sociated with natural language generation models that were mentioned in the

previous section. Moreover, they introduce further complexities that require

additional evaluation criteria due to their combination of generation and ex-

ternal information retrieval.

3.4 Evaluation Approach 28

Given the aim of this study of exploring low-human-intervention evalu-

ation methods, the principal challenges in evaluating the question-answering

systems pertain to the effort required to:

• Understand every detail of the project.

• Generate suitable test questions.

• Define the ground truth responses for quantitative evaluation.

• Provide feedback on the given responses.

As can be easily understood, this process is highly time-consuming.

Quantitative Evaluation

Considering the factors involved, after extensive research, we decided to use

RAGAs (Retrieval AugmentedGenerationAssessment) a recently implemented

reference-free framework specifically designed to evaluate RAG pipelines

[es2023RAGAsautomatedevaluationretrieval]. RAGAs evaluates all the

key dimensions of RAG: the ability to retrieve the correct information and

passages, the LLM’s capacity to process this information, and the quality of

the generated response. Additionally, it has shown close alignment with hu-

man evaluation and does not require the formulation of a ground truth answer.

RAGAs evaluation focuses on the following aspects:

• Faithfulness: Measures how well it is possible to infer the claims made

in the answer from the provided context.

• Answer Relevance: Measures how directly the generated answer ad-

dresses the provided question.

• Context Precision: Measures how much relevant information is re-

trieved.

3.4 Evaluation Approach 29

• Context Recall: Measures how much of the retrieved information is

useful.

• Answer Correctness: Evaluates the factual accuracy of the retrieved

answer.

The other crucial aspect for a reliable evaluation is the selection of test

questions, as their quality significantly impact the accuracy of the assess-

ment. This task can be particularly challenging as it requires expertise, domain

knowledge, and effort. Poorly formulated questions can lead to misleading

scores or feedback. The RAGAs framework introduces a method for gener-

ating synthetic test sets, which we implemented to build a question-answer

dataset.

This approach offered two key advantages:

1. Automated Pipeline Creation: It enabled the creation of a fully auto-

mated pipeline, streamlining the dataset generation process. This allows

for greater scalability compared to manual assessment.

2. Generation of Queries with Different Levels of Complexity: It al-

lowed for the in-depth examination of various query types to properly

evaluate the system’s ability to respond. In particular, it tested the sys-

tem’s ability to handle simple queries, reasoning-based queries, and

multi-context queries.

Utilising RAGAs a set of 70 specific documentation-related questions was

generated, ensuring an equal distribution across the three query types described

above. In addition, another set of 70 specific questions was manually defined

to be compared with the automatically generated one. While the system’s

performance remained stable across both sets, the RAGAs queries provided

unbiased and more informative examples. As a result, they were selected to

be used for the evaluation. This decision was also motivated by the desire to

3.4 Evaluation Approach 30

propose an approach for generating test sets in the absence of competent tech-

nical support.

The definition of general question was less time consuming since it required

multiple formulation of the same type of question (e.g. inquiries about project’s

purpose). For this reason, and to ensure the questions would focus on the

project from a high-level perspective, 30 general questions were manually de-

fined.

Qualitative Evaluation

Apart from this quantitative evaluation, wewere interested in providing a qual-

itative evaluation by domain experts whilemaintaining an automated approach

that ensured low human involvement. Our idea was inspired by ChatEval [35]

where a multi-agent system was used to evaluate answers generated by dif-

ferent models and select the one with the best performance. This inspired

us to explore the use of specific role agents for conversational evaluation of

answers: this approach allowed us to obtain detailed feedback and identify

potential areas for improvement.

As for ChatEval, our implementation used the AgenteVerse [36] library to

facilitate the definition of agents and their interactions; we defined the role and

the task that each agent was required to do. Every agent had different expertise

in order to catch different aspects of the quality of the model responses, in

particular, we decided to consider the opinion of 4 different agents:

• A software engineer with expertise in Natural Language Processing

and Machine Learning to improve the quality of the answers generated

by the system.

• A data scientist with experience in information retrieval and database

management to assess and improve the efficiency of the retrieved infor-

mation.

3.4 Evaluation Approach 31

• A technical writer with a background in software development to en-

sure the clarity, accuracy, and understandability of the system’s responses.

• A project manager with a deep understanding of software develop-

ment processes to provide insights from a high-level perspective on the

usefulness of the retrieved information.

software
engineer

ANALYSIS

technical
writer

DEBATE..

project
manager

data
scientist

After an
extensive
debate we
conclude
that...

Figure 3.4: Overview of the multi-agent system’s iterative analysis and eval-
uation process.

The communication strategy adopted (summarised in Figure 3.4), began

with the drafting of a comprehensive analysis by the software engineer, who

examined the responses generated by the system, highlighting their strengths,

weaknesses, and areas for potential improvements. The other agents then

acted as reviewers, providing their critical and technical opinions on the soft-

ware engineer’s analysis (openly expressing any disagreements when neces-

sary). The analysis was refined iteratively until all agents reached a consensus

on the observations made. Once a compromise was achieved, each agent was

3.4 Evaluation Approach 32

asked to score the responses on a scale from 1 to 10 evaluating their: Consis-

tency, Coherence, Fluency and Relevance.

To enhance the interpretability of the scores provided by the multi-agent sys-

tem, each agent was also required to propose brief suggestions for improving

the question-answering model.

In order to verify the robustness of this evaluation and ensure that the multi-

agent system analysis was not biased by reliance on the same GPT model,

an additional experiment was conducted. Specifically, the same multi-agent

system approach was applied with the Meta LLaMA2-70B model. The ex-

periment’s grading and feedback aligned with those from the GPT-4.0-Turbo

model, confirming the reliability of our approach.

The possibility of consulting the entire conversation of the agents, along

with their scores and suggestions, made it possible to highlight aspects of the

model that did not emerge during the quantitative evaluation. In scenarios

where a competent technical team is not available, without the multi-agent

system all these insights would have been lost.

Chapter 4

Results

In this chapter, an extensive discussion of the obtained results is provided.

For clarity, the organization of the chapter will follow a structure similar to

the previous one.

4.1 Classification Model

Metric Specific General Overall
Precision 0.883 0.913 0.898
Recall 0.971 0.700 0.836

Table 4.1: Precision and Recall in classifying specific and general queries.

Observing Table 4.1 is evident that the model achieved satisfactory results

in classifying the questions. In particular, it exhibits optimal results in specific

questions both for precision and recall. The lower recall for the general ques-

tion is a partially expected behaviour since, as previously mentioned, while

training through few-shot learning the model was asked to classify as specific

any question not matching the provided examples. As the recall highlights,

the model misses some general question examples, however, since it is prefer-

able to misclassify a general question as specific rather than the contrary, this

trade-off is acceptable.

4.2 Summary Evaluation Results 34

4.2 Summary Evaluation Results

In consideration of the project’s objective of reducing developers’ time ex-

penditure, one of the aspects considered was execution speed in generating

the summarisation. Table 4.2 reports the times recorded during development.

For this evaluation the larger project test set was used.

Chunksize Strategy Time
1500 base 8.38min
5000 base 3.59min
5000 map reduce 2.26min
5000 parallel map + reduce 12sec

Table 4.2: Summary generation execution time

As mentioned previously, the size of the chunk significantly affects execu-

tion time, enabling a speed-up of 2.33x. Additionally, parallelization results

in an even more substantial reduction, saving 97.61% of the time.

4.2.1 Quantitative Evaluation Results

The Tables 4.4 and 4.3 evaluate the performance across the two test sets by ex-

amining the differences achieved between GPT3.5-Turbo and GPT-4.0-Turbo.

The evaluation considered the inclusion or exclusion of the README file as a

source of information and focused on several metrics. For each project, three

different summaries (A,B,C) were written and used as references.

From the reported results, the following observations can be made:

• GPT-3.5-Turbo consistently achieved higher precision and F1 scores

than GPT-4.0-Turbo, suggesting that the model is more likely to select

relevant words, although it occasionally misses terms present in the ref-

erence summaries. In contrast, GPT-4.0-Turbo, with its higher recall,

captures a broader range of words, some of which may not be relevant.

4.2 Summary Evaluation Results 35

SKILLNER ROUGE-1 ROUGE-2 ROUGE-L
Reference
Summary Model README Precision Recall F1 Precision Recall F1 Precision Recall F1

A gpt-3.5-turbo no 0.521 0.455 0.485 0.042 0.037 0.039 0.260 0.226 0.243
B gpt-3.5-turbo no 0.447 0.350 0.393 0.063 0.049 0.055 0.229 0.178 0.201
C gpt-3.5-turbo no 0.438 0.393 0.414 0.095 0.085 0.090 0.281 0.252 0.266
A gpt-4.0-turbo no 0.295 0.600 0.395 0.036 0.073 0.048 0.133 0.273 0.180
B gpt-4.0-turbo no 0.290 0.528 0.374 0.036 0.066 0.046 0.143 0.260 0.184
C gpt-4.0-turbo no 0.295 0.610 0.398 0.036 0.075 0.049 0.152 0.318 0.205
A gpt-3.5-turbo yes 0.543 0.455 0.495 0.032 0.028 0.030 0.228 0.190 0.208
B gpt-3.5-turbo yes 0.457 0.341 0.391 0.044 0.033 0.038 0.217 0.163 0.186
C gpt-3.5-turbo yes 0.467 0.402 0.432 0.054 0.047 0.051 0.250 0.214 0.231
A gpt-4.0-turbo yes 0.270 0.591 0.370 0.046 0.100 0.063 0.129 0.282 0.176
B gpt-4.0-turbo yes 0.290 0.569 0.385 0.058 0.114 0.077 0.137 0.268 0.181
C gpt-4.0-turbo yes 0.274 0.617 0.379 0.050 0.113 0.069 0.116 0.261 0.161

Table 4.3: ROUGE evaluation scores for GPT-3.5-Turbo and GPT-4.0-Turbo
summaries on Skillner Project. For each reference summary (A,B,C) the Table
presents precision, recall and F1 scores for ROUGE-1, ROUGE-2, ROUGE-
L, with and without access to the project’s README.

REPOAGENT ROUGE-1 ROUGE-2 ROUGE-L
reference
summary model README precision recall F1 precision recall F1 precision recall F1

A gpt-3.5-turbo no 0.350 0.390 0.371 0.070 0.080 0.070 0.237 0.238 0.228
B gpt-3.5-turbo no 0.425 0.377 0.400 0.081 0.072 0.076 0.264 0.234 0.249
C gpt-3.5-turbo no 0.410 0.450 0.431 0.046 0.050 0.048 0.195 0.212 0.200
A gpt-4.0-turbo no 0.210 0.590 0.311 0.058 0.164 0.087 0.135 0.375 0.198
B gpt-4.0-turbo no 0.256 0.580 0.360 0.050 0.110 0.070 0.130 0.276 0.170
C gpt-4.0-turbo no 0.220 0.610 0.320 0.036 0.100 0.053 0.090 0.263 0.130
A gpt-3.5-turbo yes 0.350 0.487 0.408 0.100 0.139 0.116 0.210 0.287 0.241
B gpt-3.5-turbo yes 0.420 0.479 0.450 0.090 0.103 0.097 0.216 0.244 0.230
C gpt-3.5-turbo yes 0.378 0.525 0.440 0.063 0.089 0.074 0.171 0.238 0.200
A gpt-4.0-turbo yes 0.205 0.525 0.296 0.019 0.051 0.028 0.122 0.313 0.176
B gpt-4.0-turbo yes 0.270 0.561 0.364 0.025 0.052 0.033 0.132 0.276 0.178
C gpt-4.0-turbo yes 0.230 0.587 0.331 0.029 0.076 0.043 0.112 0.287 0.161

Table 4.4: ROUGE evaluation scores for GPT-3.5-Turbo and GPT-4.0-Turbo
summaries on Repoagent Project. For each reference summary (A,B,C) the
Table presents precision, recall and F1 scores for ROUGE-1, ROUGE-2,
ROUGE-L, with and without access to the project’s README.

4.2 Summary Evaluation Results 36

This difference is likely due to GPT-3.5-Turbo being more conserva-

tive and concise compared to GPT-4.0-Turbo which tends to be more

verbose and detailed.

• According to the ROUGEmetric, the models capture a significant num-

ber of unigrams (ROUGE-1) from the reference summaries, demon-

strating their ability to use relevant vocabulary. The lower ROUGE-

2 score, however, suggests that the models struggle to capture correct

pairs of consecutive words: they have more difficulty in generating spe-

cific word combinations. To conclude, the higher ROUGE-L score in-

dicates that, while there is still room for improvement in aligning more

closely with the reference, the model is better at maintaining the flow

of information and preserving the overall structure of the summary.

• The inclusion of the README generally results in lower precision and

higher recall, indicating that while additional context provided is bene-

ficial, it may also introduce some confusion for the model.

In the Error Analysis subsection, we will observe in more detail how, as

discussed in the Evaluation chapter, these metrics—while informative

about the model’s behaviour—are not necessarily accurate in assessing

the quality of the solution.

4.2.2 Qualitative Evaluation Results

In this use case, the quantitative evaluation discussed earlier has limited sig-

nificance, the primary evaluation criterion is the summary’s effectiveness in

capturing and clearly conveying the project’s core functionality. For this pur-

pose, it is crucial to rely on qualitative evaluation.

4.2 Summary Evaluation Results 37

Model Cons. Consistency Coh. Coherence Rel. Relevance Flu. Fluency
(1-5) Feedback (1-5) Feedback (1-5) Feedback (1-3) Feedback

GPT-3.5-
turbo 5

Factually consistent,
reflecting automation,
AI tools, and external

services.

3

Coherent overview,
missing detailed

coverage of several
components. Logical
but lacks specifics.

3

Lacks key details like
ChromaDB management

and function roles.
Incomplete relevance.

3 Clear, coherent, and
error-free writing.

GPT-4.0-
Turbo.0 5

Factually consistent,
covers core

functionalities without
errors or hallucinations.

4

Coherent overview but
lacks detail on some

components.
Well-structured and

organized.

3
Captures goals but omits
roles and introduces
irrelevant details.

3 Clear and readable with
no errors.

GPT-3.5-
turbo +
Readme

5

Consistent, reflects
automation, README
creation, and change

detection.

2

Lacks coherence in
detailing roles of classes
and functions. Missing

details.

2

Mentions related
functionalities but lacks

key details on
classes/functions.

3
Well-written, no

grammar or spelling
errors.

Model-4.0 +
Readme 5

Consistent, covers
Markdown handling,

change detection, and UI
management.

3

General overview, lacks
clear structure and
specific details.

Coherent but lacks
explicit connections.

3

Captures goals but
misses some key

components and details.
Introduces irrelevant

elements.

3

Well-written with no
errors, clear and

effective
communication.

Table 4.5: Qualitative Evaluation of GPT Models for Repoagent Summariza-
tion assessing consistency(1-5), coherence(1-5), relevance(1-5) and fluency
(1-3)

Model Cons. Consistency Coh. Coherence Rel. Relevance Flu. Fluency
(1-5) Feedback (1-5) Feedback (1-5) Feedback (1-3) Feedback

GPT-3.5-
turbo 5

Captures text
processing, skill
extraction, and

visualization without
unsupported facts

5

Well-organized, outlines
skill extraction, text
cleaning, and matcher

management.

5
Adheres closely to

source texts, covering
key aspects accurately.

3
Well-written, no

grammar or spelling
errors.

GPT-4.0-
Turbo 5

Accurately reflects skill
extraction, text
processing, and

visualization without
factual errors.

5

Well-structured,
presents objectives,
functionalities, and
capabilities logically.

5

Captures key aspects
like text cleaning and
skill extraction using
NLP while avoiding
irrelevant details.

3
Well-written, no

grammar or spelling
errors.

GPT-3.5-t
with

README
5

Reflects text cleaning,
processing, skill

extraction, and matcher
creation without errors.

5

Logically structured,
progressing from text

preparation to
visualization.

5

Focuses on skill
extraction and

processing without
unnecessary details.

3
Well-written, no

grammar or spelling
errors.

GPT-4.0-
Turbo with
README

5

Factually consistent,
covering NLP-based
skill extraction,
visualization, and
conflict resolution.

5

Well-structured,
presenting key

functionalities like text
cleaning, preprocessing,

and annotation
coherently

5

Covers NLP for skill
recognition,

visualization, resume
parsing, and talent
management.

3

Well-written with no
errors, clear and

effective
communication.

Table 4.6: Qualitative Evaluation of GPT Models for Skillner Summarization
assessing consistency(1-5), coherence(1-5), relevance(1-5) and fluency (1-3)

4.2 Summary Evaluation Results 38

As illustrated in Table 4.5, the LLM’s evaluation scored the generated

summaries of the Skillner project as optimal. As the size of the project in-

creased (Table 4.6), the evaluator was able to identify greater disparity be-

tween the approaches, which in some cases, led to lower scores as well. Con-

sistency remained optimal, indicating that the generated output didn’t contain

hallucinations. In regards to relevance and coherence, the GPT-3.5-Turbo en-

countered difficulties in presenting the information in a coherent manner. For

this reason, it was criticised by the evaluator for unclear textual organization

and for failing to mention all the key points.

4.2 Summary Evaluation Results 39

4.2.3 Error Analysis

GPT-4.0-Turbo summary

This project is an advanced system designed to automate the genera-

tion, updating, and management of documentation for software repos-

itories. At its core, the system facilitates the transfer and organization

of Markdown documents, ensuring that README files are appropri-

ately created and maintained within a project’s directory structure. It

leverages natural language processing and machine learning models to

summarize documents, generate responses to user queries, and produce

structured documentation that aligns with the codebase.

The system is adept at detecting changes within a Git repository, iden-

tifying modifications to Python files, and staging files based on pre-

defined conditions. It also includes functionality for handling tempo-

rary files during the documentation process, ensuring a cleanworkspace

post-generation.

A key feature of the system is its ability to interact with users through

a chat interface, providing explanations and answers based on the

project’s documentation. This interactive component is supported by

models that classify user questions and retrieve relevant information

from the repository.

Additionally, the system manages configurations and settings, allow-

ing for dynamic adjustments to project parameters. It integrates with

external databases and services for storing document embeddings and

utilizes a user interface for enhanced interaction.

Overall, the project streamlines the documentation workflow for de-

velopers, making it easier to keep documentation synchronized with

code changes, manage project configurations, and engage with reposi-

tory content through an AI-powered chat system.

4.3 Q&A Evaluation Results 40

GPT-3.5-Turbo summary

Repoagent is a project that automates the generation of documentation

for code repositories by utilizing AI models and tools to analyze text,

extract keywords, and provide answers to user queries. It integrates

with external services like OpenAI, TextAnalysisTool, and Chroma-

Manager to enhance the documentation process. The system interacts

with users through a chat interface, generating responses based on user

messages and retrieved information. The project aims to streamline

documentation tasks, improve search capabilities, and facilitate effi-

cient communication between users and the code repository.

Analysing both texts,is it possible to observe that the models provide a

correct overview of the system’s purpose. GPT-3.5’s explanation is concise,

yet it includes all the important details. On the other hand, GPT-4.0-Turbo is

more verbose and offers a more comprehensive view of the project’s details

and functionalities. In a real-life context, GPT-4.0-Turbo’s summaries would

likely be more useful for developers looking for a deep-level understanding

while GPT-3.5’s explanation is better suited for audience looking for a quick

overview.

4.3 Q&A Evaluation Results

4.3.1 Quantitative Evaluation Results

In order to analyse the performance of the question answering task, in Table

4.7 the metrics computed on the two models are reported.

Category Faithfulness Answer Relevancy Context Recall Context Precision Answer Correctness
General 0.757 0.778 0.603 0.954 0.655
Specific 0.801 0.913 0.804 0.953 0.715
Overall 0.741 0.900 0.703 0.955 0.685

Table 4.7: Question answering quantitative evaluation

In terms of retrieval performance, the specificmodel demonstrates stronger

4.3 Q&A Evaluation Results 41

context recall, making it more precise and less likely to lose important infor-

mation. In contrast, the general model may synthesize too much of its broader

project vision, potentially missing some key points.

However, both models exhibits high context precision indicating their ef-

fectiveness in filtering out irrelevant data once provided with context. This

is a positive sign, as it suggests that the models, when used as a development

support tool, are unlikely to introduce noisy information. In addition, as re-

flected in the faithfulnessmetric, they are less prone to hallucinations, mean-

ing they tend to provide reliable responses and accurately define the context

from which the information is drawn.

The metrics for answer correctness show higher performances for the

specific model, this may be due to the fact that with a broader context (as in

the general question case), the model struggles more to precisely identify the

information to be returned.

4.3.2 Qualitative Evaluation Results

The quality of the generated responses, as discussed in the previous chap-

ter, was assessed using a multi-agent system, which has the key advantage of

delivering tailored responses and suggestions by leveraging the expertise of

different agents.

The full agent discussion is available in the Appendix C and highlights that,

according to each expert, the system demonstrates a strong ability to provide

accurate and well-structured responses to technical queries.

Although the system is able to deliver relevant and coherent answers, feed-

back also indicated a tendency to produce overly detailed responses, which

could make it difficult for users to extract essential information efficiently. In

4.3 Q&A Evaluation Results 42

this respect, the agent discussion made it possible to consider different per-

spectives in order to obtain a more complete vision of the problem.

In fact, through their conversation, the agents understood that verbosity isn’t

always a drawback. While providing too much information could be over-

whelming, in a technical context it also allows for a comprehensive explana-

tion and a full understanding of the answer.

Finally experts noted that prioritizing the most pertinent information at the be-

ginning of the sentence would improve readability and accessibility.

To ensure robustness of this evaluation, the score assignment was repeated

multiple times, showing that coherence and consistency always scored 8 out

of 10 while fluency and relevance ranged between 8 and 9. The feedback

remained consistent with the previously discusses observations.

4.3.3 Error Analysis

General Questions

A complete and informative assessment is possible by examining some exam-

ples. In the following table (4.9), we considered three different formulations

of general questions and their responses.

The examples show that in all cases the system correctly understands the

question and provides a clear and informative response. However, one pos-

sible reason for the lower evaluation of the general-purpose responses is that

they are not always complete. For instance, the first response correctly ex-

plains that the project focuses on documentation generation but fails to men-

tion the chat interface and the system’s integration with GitHub repositories.

This is probably a consequence of the model further summarizing the infor-

mation in its knowledge base, which in this case is already essential.

4.3 Q&A Evaluation Results 43

Q1 What is the core mission of this project?
The core mission of this project is to streamline the management
of software documentation, ensuring it is automatically generated,
updated, and synchronized with code changes.

Q2 Can you provide an overview of this project?
This project is focused on automating the documentation process for
software repositories. It monitors Git repositories for changes, up-
dates documentation accordingly, organizes it in a standardized for-
mat, and provides an AI-powered chat interface for user interaction
with the documentation.

Q3 Explain Repoagent
Repoagent is a system designed to automate the management of soft-
ware documentation. It generates and maintains Markdown docu-
ments, detects changes within Git repositories, and provides an in-
teractive chat feature for users to query documentation. The system
utilizes natural language processing, machine learning, and a user
interface to enhance the documentation process.

Table 4.8: Examples for error analysis of general questions and answers.

Specific Questions

As highlighted by the results, the specific model demonstrated superior per-

formance in providing appropriate answers; however, it was still possible to

identify examples that effectively represent some model’s vulnerabilities ob-

served during the exploration of the results.

The majority of the model’s responses were accurate and clear, as demon-

strated in the third example. However, the first and second examples indicate

that while the model effectively provides adequate information, it may expe-

rience difficulties with clarity. As in Q2, responses were occasionally exces-

sively verbose, making the answer unnecessarily complex. Additionally, (as

in Q1), the model exhibits difficulties with readability due to redundancy and

out-of-context words, such as ”yes”, at the beginning of the sentence.

The inspection of the result proved to be particularly useful, contributing

to obtaining a comprehensive perspective on the system’s capabilities. This, in

turn, facilitated the conclusion reaching which is outlined in the next chapter.

4.3 Q&A Evaluation Results 44

Q1 What happens to the ChatMessageHistory object if the old mes-
sages are more than twice the max_messages limit and how
many old messages are kept?
Yes, if the old messages in the ChatMessageHistory object exceed
twice the max_messages limit, the object will keep only the most
recent messages up to the max_messages limit. The ChatMessage-
History object will retain the latest messages within the specified
limit while discarding the older messages that surpass the thresh-
old.

Q2 What does the convert_to_markdown_file function do?
The convert_to_markdown_file function’s purpose is to read a
project hierarchy JSON file to retrieve information about a speci-
fied file path. It then processes the file structure data and generates
markdown content based on the structure of the file. This function
facilitates the conversion of file content into markdown format for
documentation and presentation purposes.

Q3 How does the get_map_reduce_chain function combine and re-
duce mapped documents using two LLMChain instances and a
chain of processes?
The get_map_reduce_chain function initializes two LLMChain in-
stances, one for mapping and one for reducing documents, to han-
dle the different stages of the MapReduce process efficiently. By
setting up a chain of processes, it iteratively combines and reduces
the mapped documents, streamlining the overall MapReduceDocu-
mentsChain operation effectively.

Table 4.9: Examples for error analysis of specific questions and answers

Chapter 5

Conclusion

The conducted study provides valuable insights into the potential of Large

Language Models in improving the understanding of technical projects. It

introduces an intelligent query routing system capable of dynamically direct-

ing fine-grained and coarse-grained queries to suitable Retrieval-Augmented

Generation (RAG)models, based on their complexity and information require-

ments. This strategy, combined with optimized prompt and summarisation

techniques, significantly contributed to obtaining reliable results. The RA-

GAs metrics retrieved high Context Precision (0.955) and Answer Relevancy

(0.900) scores indicating the system’s effectiveness in retrieving relevant in-

formation and providing pertinent answers.

Furthermore, the research underlined the different characteristics of GPT-4.0-

Turbo and GPT-3.5-turbo in handling natural language generation tasks, with

GPT-4.0-Turbo producing more detailed and comprehensive responses, some-

times at the cost of excessive verbosity. To conclude, the study proposed

strategies to evaluate natural language generated texts with limited human in-

tervention, using LLMs and multi-agent systems as evaluators. While human

feedback remains invaluable, this investigation reduces human effort and im-

proves the scalability of evaluations.

A fully automated pipeline that generates, explains, and evaluates itself us-

ing LLMs is indeed possible and can offer several benefits to the domain of

Conclusion 46

Software Development Life Cycle.

5.0.1 Future Work

Despite promising results, the system exhibits some limitations and necessi-

ties for further investigation, defining interesting research directions for future

work.

In particular:

• Enhancing response quality: Exploring fine-tuning or advanced prompt

engineering techniques to improve clarity and conciseness of model re-

sponses.

• Improving knowledge base comprehension: Exploring whether in-

corporating additional information sources, such as additional project

descriptors (e.g. UML, diagrams, etc.), logs, or repositories informa-

tion, would enhance the model’s understanding of the project.

• Evaluating human-LLM alignment and quantifying real-scenario

improvements: Comparison of human feedback with the evaluations

provided by LLM evaluators and estimation of concrete Key Perfor-

mance Indicators (KPIs) to quantify the impact of the proposed system

on development workflows.

The findings presented here demonstrate the potential of LLMs to transform

software development practices. Further exploration of these research direc-

tions would be crucial to assess the full potential of LLMs and enable a more

robust integration into Software Development workflow. This would lead to

more efficient development processes, reduced cognitive load for developers,

and improved code quality, while optimising time and cost management.

Acknowledgements

I would like to express my deep gratitude to everyone who contributed to the

completion of this thesis. In particular, I sincerely thank DATA Reply for pro-

viding me with the opportunity to pursue this research within their inspiring

environment and for equipping me with the necessary tools.

A special mention goes to my co-supervisor, Francesco Saracco, for his kind-

ness and unwavering support throughout every stage of this study.

My deepest thanks are reserved for my supervisor, Paolo Torroni, whose avail-

ability, insightful feedback, and expertise have significantly shaped this dis-

sertation.

Bibliography

[1] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring

program comprehension: a large-scale field study with professionals.

IEEE Transactions on Software Engineering, PP:1–1, July 2017. DOI:

10.1109/TSE.2017.2734091.

[2] R. Minelli, A. Mocci, and M. Lanza. I know what you did last summer

- an investigation of how developers spend their time. In 2015 IEEE

23rd International Conference on Program Comprehension, pages 25–

35, 2015. DOI: 10.1109/ICPC.2015.12.

[3] Atlassian. Software development life cycle (sdlc), 2025. URL: https:

//www.atlassian.com/agile/software- development/sdlc.

Accessed: 2025-03-01.

[4] S. Feuerriegel, J. Hartmann, C. Janiesch, et al. Generative ai. Busi-

ness & Information Systems Engineering, 66:111–126, 2024. DOI: 10.

1007/s12599-023-00834-7.

[5] C. M. Bishop. Pattern Recognition and Machine Learning, volume 1.

Springer, New York, NY, USA, 2006, page 740.

[6] A. S. Pothukuchi, L. V. Kota, and V. Mallikarjunaradhya. Impact of

generative ai on the software development lifecycle (sdlc). Interna-

tional Journal of Creative Research Thoughts, 11(8), August 2023. URL:

https://ssrn.com/abstract=4536700. Available at SSRN.

[7] Z. Cui, M. Demirer, S. Jaffe, L. Musolff, S. Peng, and T. Salz. The

effects of generative ai on high-skilled work: evidence from three field

experiments with software developers. Available at SSRN: https://

ssrn.com/abstract=4945566 or http://dx.doi.org/10.2139/

ssrn.4945566, February 2025. SSRN: 4945566.

[8] A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.Gomez,

L. Kaiser, and I. Polosukhin. Attention is all you need, 2023. arXiv:

1706 . 03762 [cs.CL]. URL: https : / / arxiv . org / abs / 1706 .

03762.

[9] OpenAI. Gpt-4 research, 2025. URL: https://openai.com/index/

gpt-4-research/. Accessed: 2025-03-16.

[10] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,

C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F.

Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,

J. Leike, and R. Lowe. Training language models to follow instruc-

tions with human feedback, 2022. arXiv: 2203.02155 [cs.CL]. URL:

https://arxiv.org/abs/2203.02155.

[11] J. Schulman, F.Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proxi-

mal policy optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

URL: https://arxiv.org/abs/1707.06347.

[12] T. Mu, A. Helyar, J. Heidecke, J. Achiam, A. Vallone, I. Kivlichan, M.

Lin, A. Beutel, J. Schulman, and L. Weng. Rule based rewards for lan-

guage model safety, 2024. arXiv: 2411.01111 [cs.AI]. URL: https:

//arxiv.org/abs/2411.01111.

[13] A. Koubaa. Gpt-4 vs. gpt-3.5: a concise showdown. TechRxiv, April

2023. DOI: 10.36227/techrxiv.22312330.v2.

[14] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M.Wang,

and H. Wang. Retrieval-augmented generation for large language mod-

els: a survey, 2024. arXiv: 2312.10997 [cs.CL]. URL: https://

arxiv.org/abs/2312.10997.

[15] Q. Luo, Y. Ye, S. Liang, Z. Zhang, Y. Qin, Y. Lu, Y. Wu, X. Cong,

Y. Lin, Y. Zhang, X. Che, Z. Liu, and M. Sun. Repoagent: an llm-

powered open-source framework for repository-level code documen-

tation generation, 2024. arXiv: 2402.16667 [cs.CL]. URL: https:

//arxiv.org/abs/2402.16667.

[16] N. K. Nagwani. Summarizing large text collection using topicmodeling

and clustering based on mapreduce framework. Journal of Big Data,

2(1):6, June 2015.

[17] V. Priya andK.Umamaheswari.Aspect-based text summarization using

mapreduce optimization. In Computational Intelligence and Sustain-

able Systems: Intelligence and Sustainable Computing. H. Anandaku-

mar, R. Arulmurugan, and C. C. Onn, editors. Springer International

Publishing, Cham, 2019, pages 131–139.

[18] T. B. Brown, B. Mann, N. Ryder, et al. Language models are few-

shot learners. arXiv preprint arXiv:2005.14165, 2020. URL: https:

//arxiv.org/abs/2005.14165.

[19] J. Devlin,M.-W. Chang, K. Lee, et al. Bert: pre-training of deep bidirec-

tional transformers for language understanding. arXiv preprint arXiv:1810.04805,

2019. URL: https://arxiv.org/abs/1810.04805.

[20] G. Marcus. The next decade in ai: four steps towards robust artificial

intelligence. arXiv preprint arXiv:2002.06177, 2020. URL: https://

arxiv.org/abs/2002.06177.

[21] T. Li, G. Zhang, Q. D. Do, X. Yue, andW. Chen. Longiclbenc: a bench-

mark for long-range image captioningwith large contexts. arXiv preprint

arXiv:2404.02060. URL: https://arxiv.org/pdf/2404.02060.

[22] Y. Deng,W. Zhang, Z. Chen, andQ. Gu. Rephrase and respond: let large

language models ask better questions for themselves. arXiv preprint,

arXiv:2311.04205, 2024. URL: https://arxiv.org/pdf/2311.

04205.

[23] L. Yan, Y. Zheng, and J. Cao. Few-shot learning for short text classifica-

tion. Multimedia Tools and Applications, 77(27):29799–29810, 2018.

DOI: 10.1007/s11042-018-5772-4.

[24] LangChain. Self-querying retrieval, 2025. URL: https://python.

langchain.com/docs/how_to/self_query/. Accessed: 2025-02-

17.

[25] L. Bojic, P. Kovacevic, and M. Cabarkapa. Gpt-4 surpassing human

performance in linguistic pragmatics. arXiv preprint arXiv:2312.09545,

2023. URL: https://arxiv.org/abs/2312.09545.

[26] C. van der Lee, A. Gatt, E. van Miltenburg, and E. Krahmer. Human

evaluation of automatically generated text: current trends and best prac-

tice guidelines.Computer Speech Language:101151, 2021. URL: https:

//www.sciencedirect.com/science/article/pii/S088523082030084X.

[27] E. Lloret, L. Plaza, and A. Aker. The challenging task of summary eval-

uation: an overview. Language Resources and Evaluation, 52(1), 2018.

ISSN: 1574-0218. URL: https://doi.org/10.1007/s10579-017-

9399-2.

[28] E. Reiter and A. Belz. An investigation into the validity of some met-

rics for automatically evaluating natural language generation systems.

Computational Linguistics, 35(4), December 2009. URL: https://

aclanthology.org/J09-4008/.

[29] J. Sjöbergh. Older versions of the rougeeval summarization evaluation

system were easier to fool. Inf. Process. Manage., 43(6):1500–1505,

November 2007. ISSN: 0306-4573. DOI: 10.1016/j.ipm.2007.01.

014. URL: https://doi.org/10.1016/j.ipm.2007.01.014.

[30] S. Fareri, N.Melluso, F. Chiarello, and G. Fantoni. Skillner: mining and

mapping soft skills from any text. Expert Systems with Applications,

184:115544, December 2021. ISSN: 0957-4174. DOI: 10.1016/j.

eswa.2021.115544. URL: http://dx.doi.org/10.1016/j.

eswa.2021.115544.

[31] C.-Y. Lin. ROUGE: a package for automatic evaluation of summaries.

In Text Summarization Branches Out, pages 74–81, Barcelona, Spain.

Association for Computational Linguistics, July 2004. URL: https:

//aclanthology.org/W04-1013/.

[32] F. Liu and Y. Liu. Exploring correlation between rouge and human eval-

uation on meeting summaries. IEEE Transactions on Audio, Speech,

and Language Processing, 18(1):187–196, 2010. DOI: 10.1109/TASL.

2009.2025096.

[33] W. Tay, A. Joshi, X. Zhang, S. Karimi, and S.Wan. Red-faced ROUGE:

examining the suitability of ROUGE for opinion summary evaluation.

In M. Mistica, M. Piccardi, and A. MacKinlay, editors, Proceedings

of the 17th Annual Workshop of the Australasian Language Technol-

ogy Association, Sydney, Australia. Australasian Language Technol-

ogy Association, 2019. URL: https://aclanthology.org/U19-

1008/.

[34] J.Wei, X.Wang, D. Schuurmans,M. Bosma, B. Ichter, F. Xia, E. Chi, Q.

Le, and D. Zhou. Chain-of-thought prompting elicits reasoning in large

language models, 2023. arXiv: 2201.11903 [cs.CL]. URL: https:

//arxiv.org/abs/2201.11903.

[35] C.-M. Chan, W. Chen, Y. Su, J. Yu, W. Xue, S. Zhang, J. Fu, and Z.

Liu. Chateval: towards better llm-based evaluators through multi-agent

debate, 2023. arXiv: 2308.07201 [cs.CL]. URL: https://arxiv.

org/abs/2308.07201.

[36] W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C.-M. Chan, H. Yu, Y. Lu,

Y.-H. Hung, C. Qian, Y. Qin, X. Cong, R. Xie, Z. Liu, M. Sun, and

J. Zhou. Agentverse: facilitating multi-agent collaboration and explor-

ing emergent behaviors, 2023. arXiv: 2308 . 10848 [cs.CL]. URL:

https://arxiv.org/abs/2308.10848.

Appendix A

Qualitative Evaluation of

Summary: Prompt Example

”You will be given the main point of a project documentation.

You will then be given the summary written on this documenta-

tions.

Your task is to rate the multi document summarization on one

metric.

Please make sure you read and understand these instructions care-

fully. Please keep this document open while reviewing, and refer

to it as needed.

Evaluation Criteria:

Relevance (1-5) - selection of important content from the main

point. The summary should include only important information

from the main point. Annotators were instructed to penalize sum-

maries which contained redundancies and excess information.

Evaluation Steps:

1. Read the identified main features and key points.

2. Compare the summary to the main points and identify the main

features.

3. Assess how well the summary covers the defined main points,

and how much irrelevant or redundant information the summary

contains.

4. Assign a relevance score from 1 to 5.

Input data:

Main Point to be Compared: {main_point}

Summary to be Evaluated: {summary}

Evaluation Form (scores ONLY):

- Relevance: then a brief explanation of the evaluation criteria

you followed.”

Appendix B

Classification Model Prompt

”You are a classifier that identifies general question in text. If the

text matches the general examples, classify it as ’general’. If it

doesn’t match, classify it as ’specific’.

A question is ’general’ if it asks about broad or high-level infor-

mation about the project, such as its purpose, function, or overall

description.

So If a question is trying to understand how the project works,

what it does, or what its main goal is, it is considered ’general’.

Examples:

general: ”Explain me what the repository is about”

general: ”Explain what the project is about”

general: ”What is this program doing?”

general: ”How does the project work?”

general: ”What is the project about?”

general: ”What is the purpose of this repository?”

general: ”What is the main goal of the project?”

general: ”How is this tool working?”

general: ”What is the main functionality of the project?”

general: ”What is the project’s main function?”

Classify the following text:

Text: ”{text}”

Classification:

Please output just ”general” or ”specific”without quotes andwith-

out any additional information.”

Appendix C

Multi-Agent System Conversation

Initial Plan by Software Developer

Based on the given examples, I believe the question-answer sys-

tem has performed commendably. It is able to provide detailed

and correct answers to the posed questions, demonstrating a deep

understanding of the topic. The system seems to excel at inter-

preting technical questions and returning precise answers, which

is crucial in this context.

For example, the system’s responses to questions about specific

functions such as ’build_path_tree’ and ’add_parent_references’

were spot on, demonstrating its ability to accurately interpret and

answer complex technical questions. Its answers to broader queries

about processes like ’identifying file changes since the last com-

mit’ and ’generating search queries’ were also comprehensive and

accurate, showing its ability to handle a range of question types.

However, there are areas for potential improvement. The sys-

tem could work on making its answers more concise and straight-

forward without losing the essential details. Some responses are

quite verbose, which can be overwhelming and might make it dif-

ficult for the user to find the specific information they’re looking

for.

In conclusion, the question-answer system demonstrates a high

level of competency, providing accurate and detailed responses to

a range of questions. With some minor improvements in concise-

ness and clarity, it could prove to be an excellent tool for users.

Reviews

[Data scientist]: While I agree with most of your points, I be-

lieve the verbosity of the responses is not necessarily a drawback.

In technical contexts, detailed responses can help ensure that the

user fully understands the answer. However, the system could

benefit from improvements in the relevance of search results to

enhance the efficiency and accuracy of information retrieval.

[Projectmanager]: While Imostly agreewith the feedback given,

I would like to add that the system’s ability to provide context-

specific answers is crucial. The length of the answers, while

might seem verbose, can be actually beneficial for users looking

for comprehensive explanations. On the other hand, improving

the system’s ability to understand the user’s context and provide

answers of appropriate length and detail according to that context

would be a valuable enhancement.

[Technical writer]: While the system provides detailed responses,

it lacks a level of clarity and simplicity essential for effective tech-

nical communication.

Updated Plan

Based on the analysis of the given responses and the input from

my teammates, I believe the question-answer system performed

well in providing detailed and accurate responses. It demonstrated

a solid understanding of various technical topics, from specific

functions to broader processes, which is highly commendable.

However, there’s a notable room for improvement in the areas of

response clarity, conciseness, and context-awareness. While the

detailed responses can be beneficial for users seeking in-depth

explanations, they can also be overwhelming for those who prefer

straightforward answers. The system’s ability to adapt the detail

and complexity of its responses based on the user’s context and

preference would be a significant enhancement.

Moreover, the relevance and efficiency of information retrieval

in response to search queries can be improved. The system could

focus on providing the most relevant information first, enhancing

the user experience by quickly delivering the desired information.

In conclusion, the system shows promising capabilities and, with

a few adjustments, could enhance its performance significantly.

The key lies in balancing detailed explanations with clear, concise

communication while ensuring context-awareness and efficient

information retrieval.

Reviews

[Data scientist]: The system’s performance can be improved by

optimizing the relevance and efficiency of information retrieval in

response to search queries. It could focus on extracting the most

relevant information first, which would enhance the user expe-

rience by quickly delivering the desired information. Addition-

ally, considering the scalability aspect, the system should be de-

signed to handle a massive amount of data without compromising

the retrieval speed and accuracy, which is crucial in a real-world

scenario. The system also needs to incorporate advanced tech-

niques such as query expansion and semantic understanding for

better interpretation of user queries and delivering more accurate

responses.

[Project manager]: I have nothing to add.

[TechnicalWriter]: While the system provides detailed answers,

it’s crucial to enhance the clarity and simplicity of the responses

to ensure they are easily understandable to a wide range of users.

It’s not about reducing the detail, but about presenting complex

information in a more digestible manner.

Updated Plan

Based on the evaluation of the responses, the question-answer

system appears to have a strong understanding of various techni-

cal topics and is capable of providing detailed and accurate an-

swers. This level of comprehension and detail can be particularly

beneficial for users seeking comprehensive explanations.

However, there are several areas where the system could improve.

For one, while the detail provided in the responses can be ben-

eficial, it could potentially be overwhelming for users who are

seeking more straightforward answers. In this regard, the system

could benefit from beingmore adaptable, adjusting the length and

detail of its responses based on the user’s needs and the context

of the question.

Additionally, while the system is able to generate relevant search

queries and retrieve information efficiently, there could be im-

provements made in the way this information is presented. Prior-

itizing the most relevant information and presenting it first could

improve the user experience by providing the desired information

more quickly.

In terms of clarity and simplicity, the system could work on pre-

senting complex information in amore digestiblemanner, making

the responses easier to understand for a wider range of users.

Finally, advanced techniques such as query expansion and seman-

tic understanding could be incorporated to improve the interpre-

tation of user queries and the accuracy of responses.

In conclusion, while the question-answer system is performing

well in many areas, there are several improvements that could

be made to enhance its performance and user experience. With

these adjustments, the system could provide even more accurate,

efficient, and user-friendly service.

Reviews:

[Data scientist]: I agree.

[Technical writer]: I agree.

[Project manager]: I agree.

Final Plan

Based on the evaluation of the responses, the question-answer

system appears to have a strong understanding of various techni-

cal topics and is capable of providing detailed and accurate an-

swers. This level of comprehension and detail can be particularly

beneficial for users seeking comprehensive explanations.

However, there are several areas where the system could improve.

For one, while the detail provided in the responses can be ben-

eficial, it could potentially be overwhelming for users who are

seeking more straightforward answers. In this regard, the system

could benefit from beingmore adaptable, adjusting the length and

detail of its responses based on the user’s needs and the context

of the question.

Additionally, while the system is able to generate relevant search

queries and retrieve information efficiently, there could be im-

provements made in the way this information is presented. Prior-

itizing the most relevant information and presenting it first could

improve the user experience by providing the desired information

more quickly.

In terms of clarity and simplicity, the system could work on pre-

senting complex information in amore digestiblemanner, making

the responses easier to understand for a wider range of users.

Finally, advanced techniques such as query expansion and seman-

tic understanding could be incorporated to improve the interpre-

tation of user queries and the accuracy of responses.

In conclusion, while the question-answer system is performing

well in many areas, there are several improvements that could

be made to enhance its performance and user experience. With

these adjustments, the system could provide even more accurate,

efficient, and user-friendly service.

Scoring

• Consistency: 8

• Coherence: 8

• Fluency: 9

• Relevance: 8

• Advice: While the responses are technically sound and de-

tailed, it would be beneficial to aim for conciseness without

compromising the completeness of the answer. Some re-

sponses may be overwhelming for the reader due to their

length.

Retrying ...

• Consistency: 8

• Coherence: 8

• Fluency: 8

• Relevance: 9

• Advice: The answers are overall detailed, relevant, andwell-

structured, with minor room for improvement in terms of

conciseness. The writer could consider reducing some re-

dundancy and unnecessary details to make the responses

more concise and to the point.

Retrying...

• Consistency: 8

• Coherence: 8

• Fluency: 8

• Relevance: 9

• Advice: The answers are overall detailed, relevant, andwell-

structured, with minor room for improvement in terms of

conciseness. The writer could consider reducing some re-

dundancy and unnecessary details to make the responses

more concise and to the point.

