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Sede di Cesena
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Abstract

Sudden cardiac death due to ventricular arrhythmia is one of the leading

causes of mortality in the world. In the last decades, it has proven that

anti-arrhythmic drugs, which prolong the refractory period by means of pro-

longation of the cardiac action potential duration (APD), play a good role

in preventing of relevant human arrhythmias. However, it has long been ob-

served that the “class III antiarrhythmic effect” diminish at faster heart rates

and that this phenomenon represent a big weakness, since it is the precise

situation when arrhythmias are most prone to occur.

It is well known that mathematical modeling is a useful tool for investigating

cardiac cell behavior. In the last 60 years, a multitude of cardiac models

has been created; from the pioneering work of Hodgkin and Huxley (1952),

who first described the ionic currents of the squid giant axon quantitatively,

mathematical modeling has made great strides. The O’Hara model, that I

employed in this research work, is one of the modern computational models

of ventricular myocyte, a new generation began in 1991 with ventricular cell

model by Noble et al [31][49]. Successful of these models is that you can

generate novel predictions, suggest experiments and provide a quantitative

understanding of underlying mechanism. Obviously, the drawback is that

they remain simple models, they don’t represent the real system.

The overall goal of this research is to give an additional tool, through math-

ematical modeling, to understand the behavior of the main ionic currents

involved during the action potential (AP), especially underlining the differ-

ences between slower and faster heart rates. In particular to evaluate the
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rate-dependence role on the action potential duration, to implement a new

method for interpreting ionic currents behavior after a perturbation effect

and to verify the validity of the work proposed by Antonio Zaza using an

injected current as a perturbing effect.

Keywords: action potential duration, arrhythmia, computational model-

ing, multivariable regression, reverse rate-dependence.



Riassunto

L’elettrofisiologia cardiaca è una disciplina che si è sviluppata nei primi

anni 50 e che successivamente ha acquisito grande rilievo a livello di ricerca

sperimentale. Grazie all’accoppiamento con la modellizzazione matematica

è stato possibile raggiungere una comprensione quantitativa delle relazioni

tra la funzione molecolare e il comportamento delle cellule miocardiche. A

partire dal primo modello descritto da Hodgkin e Huxley (1952) sull’assone

gigante di calamaro, la modellistica cardiaca ha fatto passi enormi, tanto che

si parla di modelli di I e II generazione. Attraverso l’uso di questi modelli

è stato possibile indagare più a fondo le aritmie cardiache, una tra le prin-

cipali cause di morte nel mondo. Negli ultimi decenni è stato ampiamente

verificato che l’azione dei farmaci anti-aritmici di classe III, i quali hanno il

compito di prolungare la durata del potenziale d’azione cardiaco, presentano

un grave effetto collaterale a frequenze cardiache più elevate, cioè proprio

quando il loro effetto dovrebbe essere benefico. Questo problema prende il

nome di reverse rate-dependence.

L’obiettivo che mi sono posto di raggiungere con questo lavoro di ricerca è

stato quello di fornire ulteriori strumenti per approfondire il ruolo delle cor-

renti ioniche che portano alla generazione del potenziale d’azione, in maniera

tale da valutarne con maggior obiettività i differenti comportamenti a fre-

quenze cardiache diverse.

A tal scopo ho utilizzato il modello matematico di cellula miocita ventrico-

lare umana proposto da O’Hara et al. (2011). Per mezzo di questo modello

è stato possibile: valutare l’efficacia dell’analisi di regressione multivariabile
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sulla sensibilità dei parametri a una determinata uscita; valutare il ruolo della

reverse rate-dependence sulla durata del potenziale d’azione; implementare

un nuovo metodo per interpretare il comportamento delle correnti ioniche

dopo l’effetto di una perturbazione; verificare la validità del lavoro proposto

da Antonio Zaza sull’impiego di una corrente iniettata come effetto pertur-

bante.
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Chapter 1

Background

1.1 The cardiac action potential (AP)

Cardiac muscle tissue is formed from individual muscle cells, myocytes,

bound to each other. For the contraction of a single myocyte, the chemical

energy available in the myocyte in the form of adenosine triphosphate (ATP)

has to be transformed into mechanical work to produce cell shortening. To

produce coordinated forceful contraction of the whole tissue, this transforma-

tion must occur simultaneously in each myocyte of the tissue. The electrical

signal is recruited as a rapidly deviating signal, which triggers the transfor-

mation of chemical energy into mechanical energy simultaneously throughout

the whole tissue. The electrical signal propagates in cardiac tissue via gap

junctions between cardiac myocytes. In each myocyte, the electrical signal

initiates a process referred to as action potential. This signal may be recorded

by means of microelectrodes. A typical action potential from a ventricular

cell is diagrammed in Fig. 1.1.
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18 1. Background

Figure 1.1: Typical action potential from a ventricular myocardial cell.

A cardiac action potential, once started in a cell, propagates by local

current spread as in other excitable cells. A typical resting potential in a

ventricular muscle fiber is -80 to -90 millivolts with respect to surrounding

extracellular fluid.

1.2 Processes underlying the cardiac AP

To understand the basic mechanisms of ventricular arrhythmias and the

single myocyte AP, we need to further deepen at the level of ion channel

currents.

Currents that are actually responsible for the cardiac AP are basically two

[7][9]:

(a) inward currents, that include voltage-gated Na+ current (INa) respon-

sible for the phase 0 depolarization and L-type Ca2+ current (ICaL) re-

sponsible for maintaining plateau (phase 2) of the action potential; the

inward component of electrogenic Na+-Ca2+ exchanger may also con-

tribute to the phase 2 of the AP.
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(b) outward currents, that are mainly carried by different K+ channels in

human cardiac myocytes. They contribute to repolarization of different

phases of the AP. These K+ currents include the inward rectifier K+

current IK1, the transient outward K+ current Ito1, the ultra-rapidly ac-

tivating delayed rectifier K+ current IKur, the rapidly and slowly activat-

ing delayed rectifier K+ currents (IKr and IKs), acetylcholine-regulated

K+ current (IKACh), and ATP-sensitive K+ current (IKATP ).

The AP is determined by a balance of both types as a sequential activation

and inactivation. An example of this balance is shown in Fig.1.2

Figure 1.2: Time course of different ionic current contribution to human

atrial and ventricular action potentials. The major ionic currents contribute

to the AP shape at different phases. Downward plots represent the contribu-

tion to the AP of depolarizing inward currents; upward plots are the contri-

bution of repolarizing outward currents.
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The cardiac action potential duration (APD) may be 200-300 milliseconds

(in contrast to 1 or 2 milliseconds for nerve and skeletal muscle), and it

consists of 5 distinct phases (Fig. 1.1):

phase 0 – Depolarization The ionic mechanism underlying phase 0 depo-

larization in most cardiac muscle cells is a rapid (and transient) regenerative

increase in sodium conductance GNa. This permits the membrane potential

to shift toward the sodium equilibrium potential (+40 mV). The fact that

the action potential never reaches sodium potential (VNa) reflects the residual

permeability of the membrane to potassium. It has been shown that phase

0 is also accompanied by a fall in potassium conductance, with much slower

kinetics.

It has been demonstrated that there is a second important inward (depolariz-

ing) current which is activated by depolarization of the cell, the “slow inward

current”. This current is not sensitive to variations in extracellular sodium

concentration, but is very sensitive to extracellular calcium concentration.

phase 1 – Repolarization Phase 1 repolarization is due primarily to a

fall in sodium conductance.

phase 2 – Plateau The plateau (phase 2) is the most distinctive feature of

the cardiac AP. During the plateau there is an approximate balance between

inward-going calcium current and outward-going potassium current, and the

membrane conductance is relatively low. The slow calcium current is the

principal inward current during the plateau.

phase 3 – Repolarization Repolarization (phase 3) is a complex process

which is not completely understood. Several mechanisms seem to be impor-

tant. First, the potassium conductance increases, tending to repolarize the

cell via a potassium-mediated outward current. The opening of these potas-

sium channels is both time and voltage dependent: the potassium current
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increases with time after the peak of the action potential even if Vm is held

constant.

phase 4 – Resting potentials The resting potential (phase 4) in non-

pacemaker cardiac cells is established by the same mechanisms as for other

excitable cells. In the resting state the cell membrane is much more perme-

able to potassium than to the other ions. As a result, the resting potential

is close to K+ potential, typically -80 to -90 mV in ventricular myocardial

cells.

1.3 Arrhythmias

The term “arrhythmia” usually describes an abnormal heart rhythm. Ar-

rhythmias are called all conditions in which the origin, the regularity and

the frequency of this electrical activity are altered (Fig.1.3). Abnormal au-

tomaticity is believed to be the result of reduced (more positive) resting

membrane potential bringing it closer to the threshold potential. Ischemia

and electrolyte imbalances are two causes of reduced membrane potential

that may result in abnormal automaticity.

Figure 1.3: On the left, illustration of the relation between the AP propagation

and the QRS-T at baseline; on the right, example of normal heartbeat and

simple arrhythmias.
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Heart’s electrical system To understand arrhythmias, it helps to com-

prehend the heart’s electrical system. The heart performs its pumping func-

tion by contracting rhythmically with a frequency of about 60-90 beats per

minute. At the base of the contraction there is an electrical stimulation of the

cardiac cells. This is determined by a real electric current that runs through

the heart with each beat, stimulating the contraction. This stream originates

from a well-defined center of the heart, located in the right atrium and called

the sinoatrial node, and has a course equally well defined. In fact, it active

before the atria and, subsequently, through a series of structures that form

a single conduction pathway, activates the ventricles (Fig. 1.4).

Figure 1.4: Examples of the various action potential waveforms throughout

the cardiac conduction and contractile systems. (Nerbonne, 2000)

Arrhythmias classification There are several ways to classify arrhyth-

mias, nevertheless the first and most important distinction can be made

between:

1. tachyarrhythmias, characterized by a frequency of the pulses increased;

2. bradyarrhythmias, characterized by a reduced frequency of the pulses.

The most serious ventricular arrhythmia is the ventricular fibrillation that

causes the death of more than 400,000 people in the USA annually. The most
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common arrhythmia, instead, is the atrial fibrillation, that is indirectly a life

threatening disease [13].

Arrhythmias can recognize many causes. Sometimes they are secondary to

structural heart disease, other times it may be due to extra-cardiac diseases.

Nevertheless, many arrhythmias can occur in an apparently healthy heart

and in the absence of other pathologies.

Drug side effects Many drugs are used in the treatment of tachyarrhyth-

mias. In many cases they allow effective prevention of recurrence; however,

these drugs may be burdened by important side effects. Spontaneous depolar-

izations requiring a preceding impulse (a triggering beat) are called afterde-

polarizations (or triggered activity). If afterdepolarizations originate during

phase 2 or 3 of the monophasic AP they are classified as early afterdepolariza-

tions (EADs) (Fig. 1.5). A consequence of early afterdepolarization (EAD)

is drug induced Torsade de Pointe (TdP), a polymorphic form of ventricular

tachycardia that is a potentially lethal complication of anti arrhythmic and

other drugs that prolong the QT-interval. Afterdepolarizations originating

from phase 4 of the AP are classified as delayed afterdepolarization (DAD)

(Fig. 1.6).

Among the currents illustrated above, cardiac K+ channels play a crucial

role in the AP regulation, as important targets of antiarrhythmic drugs. The

most important functions of these currents are essentially three: regulate the

resting membrane potential, participate in the repolarization and determine

the AP shape and the APD. A malfunction of them causes an alteration of

the electrical balance of depolarization and repolarization, and therefore an

alteration of the balance between inward and outward currents.

The delayed rectifier K+ current (IK), a key outward current for cardiac re-

polarization (as described above), is comprised of rapid (IKr) and slow (IKs)

components with distinct rectification characteristics, kinetics and drug sen-

sitivities. IKr block has been the major target for most class III antiar-
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Figure 1.5: Torsade de pointe, a potentially lethal polymorphic ventricular

arrhythmia, is a consequence of EAD; it may be precipitated by potassium

channel blockers.

Figure 1.6: Triggered activity originating from phase 4 of the AP. This is

known as delayed afterdepolarization (DAD)

rhythmic agents (e.g. dofetilide, sotalol, E-4031), which exert their effects

by prolonging cardiac action potential duration (APD) and refractoriness.

However, the usefulness of these agents is limited by their undesirable re-

verse rate-dependent profile: excessive drug effects at slow heart rate or long
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diastolic interval, but loss of efficacy at fast heart rate [15]-[19].

1.4 The reverse rate-dependence (RRD)

The loss of class III effect with increasing cardiac frequency has been

termed “reverse rate-dependence”. The RRD is the inverse proportionality

between drug-induced APD modulation and heart rate. Electrophysiologic

studies have demonstrated that sensitivity of APD to perturbations and mod-

ulating factors is larger at slow rates or, more in general, when repolarization

is initially slow [3].

1.5 Why is reverse rate-dependence bad?

The RRD is undesirable because it minimizes drug effects on repolar-

ization during tachyarrhythmias. Class III anti-arrhythmic agents action is

usually caused by blockade of one or more potassium channels [2][9]. Several

hypotheses are explained by the following issues:

• the significant accumulation of IKs may occur due to the incomplete

deactivation of the current at fast heart rates, which would greatly

attenuate the APD lengthening effect of IKr blockade;

• the effect of IKr blockers is reduced (and consequently the drug-induced

prolongation of APD becomes diminished) at fast heart rates due to

the potassium accumulation in the sarcolemmal clefts;

• the rate-dependence of drug-channel interaction;

• IKr and IK1 interact with rate-dependent changes in repolarization in

a way potentially contributing to RRD.
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Nevertheless an effect on inward currents or ion pump mechanism can not be

entirely excluded. Thus, It is evident that the exact mechanism of the RRD

is still unclear, especially with the multitude of concerned ionic currents.

1.6 Zaza’s hypothesis for RRD

Assuming that the complexity of the mutual interplay between membrane

potential course and the ionic currents can still hold secrets, in a recent pub-

lication Zaza studied this interplay from two viewpoints: how membrane

current sets membrane potential course and how membrane potential course

may, in turn, affect individual channel activity.

In particular he studied the role of membrane potential velocity in deter-

mining reverse rate dependency of drug effects on APD and in exposing

“non-equilibrium” phenomena in channel gating [3]. His results are shown in

Fig.1.7, where the calculated APD prolongation caused by adding a constant

Im is remarkably larger for the AP recorded at the slower pacing rate.
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Figure 1.7: Results of Zaza’s experiments. Numerical reconstruction of RRD

of APD prolongation induced by a change in Im. Zaza injected a constant

current Ii=-0.05pA/pF at pacing cycle lengths of 0.3 (left) and 5 s (right).

(A) dV m/dt and corresponding Im traces. (B) Repolarization time courses

in control (ctrl) and during Ii injection (+Ii) back-calculated by numerical in-

tegration from the original and modified dV m/dt traces respectively. ∆APD

is APD prolongation (at 90% repolarization) induced by Ii. Cm = 100 pF

used for all conversions between dV m/dt and Im.

He showed that RRD of APD prolongation does not require RRD of

changes in membrane current Im. In other words, his idea of “intrinsic reverse

rate-dependence” is that shorter APs (at fast rates) will have faster rates

of repolarization, and therefore if you try to extend this, for instance by

injecting a current, this will have a smaller effect at a faster rate compared

with that of a slower rate.
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1.7 Mathematical modeling

Using ionic models it is possible to simulate the dynamics of wave prop-

agation in human ventricular tissue and studying the stability of reentrant

waves and their relation to arrhythmias. In addition it is important to re-

produce key characteristics such as the rate-dependence of action potential

duration (APD) and also tissue-level characteristics that are important for

describing correct wave propagation and dynamics. Through these models

it is possible to reproduce action potential (AP) morphologies accurately in

tissue because it is known that electrotonic currents modify the APs pro-

duced by isolated cells, potentially altering the AP amplitude and affecting

the relationships among the transmembrane currents.

1.7.1 Mathematical modeling purpose

The primary purpose of mathematical modeling and computer simula-

tions of mathematical models is to explain how the studied systems work.

Using mathematics it is possible to integrate experimental data from the

studied system and previous theories into a single context, which explains

how the system works (Fig. 1.8). With modeling it is also possible to ex-

trapolate how the system would function in a different environment and with

different features. Part of the real life experiments can thus be replaced with

model simulations of the studied system. Parameters and interrelationships,

which are hard or impossible to measure from the studied system, can also

be estimated with modeling. Modeling becomes very useful especially when

the complexity of the system increases beyond our capability to understand

it directly.
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Figure 1.8: Mathematical modeling diagram. Mathematical modeling is used

to explain and describe how systems work.

The downside of mathematical modeling, clearly, is that it is only a model,

not the real system; moreover models include approximations and guesses.

Thus, use of these models to predict alterations of AP repolarization due

to drugs or diseases should be made with caution. Nevertheless, with the

introduction of many of these models in their original form, new informa-

tion regarding human myocytes electrophysiology has become available. In

biology and physiology and furthermore in excitation-contraction coupling

(ECC) studies, mathematical modeling has become an essential part of the

research methodology with an increasing trend [37][30][31].

1.7.2 Mathematical modeling of cardiac cells

To study cellular cardiac electrophysiology in a range of disease states,

in the past years several mathematical models were created [31]. The goal

of these models has been to achieve a quantitative understanding of the

relationships between molecular function and the integrated behavior of the
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cardiac myocyte in health and disease. The most important issues of these

models were:

• to quantify the importance of individual K+ currents for AP repolar-

ization;

• to understand the role of the rate-dependence of AP prolongation upon

K+ channel block;

• to find the cause of APD shortening at faster heart rates.

1.7.3 History of mathematical modeling

The first step towards mathematical modeling of cardiac ECC was made

in the area of AP modeling, when Hodgkin and Huxley presented the math-

ematical description of ion currents generating APs in the squid giant axon

[32]. This model-based description of the sodium, potassium, and leakage

(chloride) ion channels in a squid axon used first-order kinetics (with voltage-

dependent rate constants) for the time-dependent gates controlling the flow

of ions across the cell membrane. The Hodgkin-Huxley (H-H) equations were

later introduced to the field of cardiac APs [33], and the H-H formalism is

still used as a part of nowadays AP modeling [34][30][35][36]. In addition to

AP modeling, the work of Hodgkin and Huxley stands out in biology as one

of the most successful combinations of experiment and theory [37].

Since that time, the number of different cell models has grown rapidly as

more has become known about the different subcellular mechanisms respon-

sible for the functioning of the cell. The role of intracellular Ca2+ and its

underlying mechanisms began to be revealed in the 1970s and 1980s [30][38].

In 1975, McAllister et al. published a cardiac action potential model of Purk-

inje fiber composed of nine ionic channels [50]. This model described for the

first time the role of Ca2+ during the generation of action potential. The

model consists of a rapid inward Na+ current (INa), a secondary inward cur-

rent (ICa), a transient chloride current (ICl), a time-independent K+ cur-

rent (IK1), a transient K+ current (IK2), and the fast (IX1) and slow (IX2)



1.8 Multivariable regression analysis 31

components of a new current. However, modeling did not change completely

from AP modeling to ECC modeling. In addition to complete ECC models,

sole AP models with no or very simplified intracellular Ca2+ dynamics are

still used nowadays.

After the mid-1990s, modeling moved from general models towards species-

dependent models, which is reasonable due to the large differences in ECC

between different species [34][30]. Single cell ECC modeling has also been

used as a sub-model in generating tissue-level phenomena [35]. On the other

hand, local-control theory introduced a completely new accuracy scale to the

modeling and understanding of intracellular mechanisms in ECC [41]. Some

of the better-known models include the DiFrancesco-Noble model [40] of the

Purkinje fiber cell, the Beeler-Reuter ventricular cell model [39], the Luo-

Rudy mammalian ventricular cell models [42][43], and the Noble model [44]

of the guinea pig ventricular cell.

1.8 Multivariable regression analysis

Parameter sensitivity analysis is the process of determining the sensitivity

of responses to the change of parameter values [51]. It has been introduced

as a powerful tool for systems biological approaches due to its practical appli-

cability to model building and evaluation, understanding system dynamics,

evaluating the confidence of a model under uncertainties, and experimen-

tal design [52][53]. However, often the choice of parameters appears to be

critical: different parameters configurations could produce virtually identical

outputs morphology. An example is shown in Fig.1.9.

Based on this problem, multivariable regression has been introduced as a

powerful tool to systematically analyze mathematical models of heart cells

due to its practical applicability to model building and evaluation, under-

standing system dynamics, evaluating the confidence of a model under un-

certainties, and experimental design.

The multivariable regression technique, used in this research, refers to partial
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Figure 1.9: Parameter variation effects on model output. Different combi-

nations of parameters (e.g. conductances) produce nearly identical outputs

morphology: (A) action potential and (B) intracellular calcium Ca2+ tran-

sient.

least square (PLS) regression, particularly useful when we need to predict a

set of dependent variables from a (very) large set of independent variables

(i.e., predictors)[14]. The goal of PLS regression is to predict Y from X and

to describe their common structure. If Y is a vector and X is a full rank

matrix, this goal could be accomplished using ordinary multiple regression.

When the number of predictors is large compared to the number of obser-

vations, X is likely to be singular and the regression approach is no longer

feasible.

Each input matrix X has dimensions n × p, where n is the number of sets

of random parameters, and p is the number of model parameters varied.

Each output matrix Y has dimensions n × m, where m is the number of

outputs. PLS regression produces a matrix BPLS of regression coefficients

(p×m). This procedure generates a simple empirical model that can predict

the outputs resulting from a new set of input parameters through the formula
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Ypredicted = X × BPLS (Fig.1.10). The regression coefficients in the matrix

Figure 1.10: Schematic of input (X), output (Y), and PLS regression matrix

(BPLS) structures.

BPLS indicate how changes in input parameters lead to changes in outputs,

with each column reflecting the effects on a particular output. Examining

these coefficients allows for an assessment of the relative contributions of the

various parameters.

In the results presented here, parameters were varied independently, and nu-

merous trials were run to obtain an accurate estimate of BPLS. All matrices

used for regression therefore had full rank. Because of this, the results ob-

tained using the PLS regression were identical to those that would have been

obtained using more traditional multivariable linear regression. For instance,

B can be computed from the formula B = (XT ×X)−1×XT ×Y , where the

superscript T denotes the matrix transpose, and the superscript −1 indicates

the inverse of a square matrix. PLS regression, rather than standard mul-

tivariable regression, was used because this technique can be applied even

when the number of variables is much greater than the number of samples

(i.e., p > n). In such a situation, the standard regression formula could not

be used because the matrix XT ×X would be singular.
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Chapter 2

Aims of the Research

Mathematical modeling has proven its usability in studying excitation-

contraction coupling in cardiac muscle cells. However, behaviors of specific

ionic currents after a perturbation is not understood quantitatively, espe-

cially when we talk about issues of the drug-induced prolongation of the

electrocardiographic QT interval.

The purpose of the present research is to give an additional tool in un-

derstanding the rate-dependence role in the O’Hara model and to study how

a perturbation can influence ionic currents and action potential shape and

if this influence could be forward rate-dependent, reverse rate-dependent, or

rate-independent. The specific issues are:

1. to test and confirm the efficiency and usability of multivariable regres-

sion with the O’Hara model;

2. to find a method that can help to understand what currents combina-

tions are responsible for cardiac arrhythmias;

3. to test and confirm Zaza’s hypothesis.

35





Chapter 3

Materials and Methods

Simulations were performed with the O’Hara model, which was used to

describe cellular electrophysiology mechanisms specific to human ventricular

myocytes [24].

3.1 O’Hara model

The model is essentially based on data from human ventricular myocyte

experiments and simulates the major ionic currents and fluxes, based either

directly or indirectly on undiseased or non-failing human experimental data.

It is able to reproduce heterogeneity in human epicardial, endocardial and

myocardial cell action potentials. The endocardial myocyte was considered

the baseline model in the simulations. It was proposed by O’Hara et al. for

understanding the basic mechanisms of ventricular arrhythmias at the level

of ion channel currents and the single myocyte AP. It is referred to the ORd

(OHara-Rudy dynamic) model.

To keep the ORd model computationally efficient and parameters well

constrained, the Hodgkin-Huxley formalism was used in formulating current

equations. This choice was made as a design principal with the thought that

interested users can modularly replace any current or flux with more detailed

Markov formulations of mutation or drug effects as desired (e.g.[25][26]). Sim-

37
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ilarly, intracellular Ca2+ handling can be modified (e.g. more spatial detail,

Markov ryanodine receptor implementation), or various signaling pathways

and related effects on ion channels can be added [27][28][29]. The basic ORd

model has 41 state variables (Tab. A.1, A.2, A.3). In the absence of CaMK

(Ca2+/calmodulin-dependent protein kinase II) and its effects on target cur-

rents and fluxes, the number of state variables is 31. Fig.3.1 illustrates a

schematic diagram of the O’Hara model.

Figure 3.1: Schematic diagram describing ionic currents, pumps, and ex-

changers that are captured in the of O’Hara human ventricular myocyte

model.

This mathematical model consists of four compartments:

(1) bulk myoplasm (MYO);

(2) junctional sarcoplasmic reticulum (JSR);

(3) network sarcoplasmic reticulum (NSR);

(4) subspace (SS), the space near the T-tubules.
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ORd equations are all smoothly varying functions, free of singularities and

if conditionals. Thus, the model can readily be implemented in any of a

variety of automated numerical integrators, such as Matlab. Currents into

the myoplasm are:

• Na+ current (INa), representing both fast and late components;

• transient outward K+ current (It0);

• rapid delayed rectifier K+ current (IKr);

• slow delayed rectifier K+ current (IKs);

• inward rectifier K+ current (IK1);

• 80% of Na+/Ca2+ exchange current (INaCa,i);

• Na+/K+ pump current (INaK);

• background currents (INab, ICab and IKb)

• sarcolemmal Ca2+ pump current (IpCa).

Currents into subspace are:

• L-type Ca2+ current (ICaL, with Na+ and K+ components ICaNa,

ICaK);

• 20% of Na+/Ca2+ exchange curent (INaCa,ss).

Ionic fluxes are:

• Ca2+ through ryanodine receptor (Jrel);

• NSR to JSR Ca2+ translocation (Jtr);

• Ca2+ uptake into NSR via SERCA2a/PLB (Jup; PLB-phosspholamban);

• diffusion fluxes from SS to myoplasm (Jdiff,Na, Jdiff,Ca and Jdiff,K).

Ca2+ Buffers:
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• calmodulin (CMDN);

• troponin (TRPN);

• calsequestrin (CSQN);

• anionic SR binding sites for Ca2+ (BSR);

• anionic sarcolemmal binding sites for Ca2+ (BSL).

Initial Conditions used during simulations are:

V=-87 mV; Nai=7 mM; Nass = Nai; Ki=145 mM; Kss = Ki; Cai=1.0e-4

mM; Cass = Cai; Cansr=1.2 mM; Cajsr = Cansr; m=0; hf=1; hs=1; j=1;

hsp=1; jp=1; mL=0; hL=1; hLp=1; a=0; iF=1; iS=1; ap=0; iFp=1; iSp=1;

d=0; ff=1; fs=1; fcaf=1; fcas=1; jca=1; nca=0; ffp=1; fcafp=1;

xrf=0; xrs=0; xs1=0; xs2=0; xk1=1; Jrelnp=0 mM/ms; Jrelp=0 mM/ms;

CaMKt=0;

3.2 Regression analysis

At the beginning, I changed the O’Hara model from the original MATLAB

code to a new version, similar to the one generally used at Sobie laboratory

(Mount Sinai School of Medicine, New York, NY, USA). These changes are:

• to create two MATLAB files .m, dydt ohara and ohara ode (main file).

In the dydt ohara function all the currents are defined and the Action

Potential is calculated; ohara ode is the main file where the differen-

tial equations of the dydt ohara are solved by the ordinary differential

equations (ODEs), in particular ode15s of MATLAB numerical inte-

gration;

• to define all constants global at the beginning of the ohara ode file;

• to set the initial conditions;

• to define the simulation, the stimulus and recording parameters;
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• to plot the last AP and all the currents.

Stimulus The stimulus was the result of three times (Appendix ??):

1. time of delay before the stimulus;

2. time during the stimulus;

3. time after the stimulus.

Parameter randomization In regards to the parameters, I set up a loop

that randomizes them:

Gscaling = eσ×randn(nGx)

where σ = 0.1823 and nGx is number of the conductances to vary.

Multivariable regression Therefore I computed the multivariable regres-

sion. The baseline parameters were randomly varied hundreds of trials in

order to generate an ”input” matrix X. Using this input data set, simula-

tions were performed under identical conditions to measure the APD and the

calcium transient. These two quantities were collected in the ”output” or Y

matrix for each of the trials. The multivariable regression was then used

to compute a matrix B whose elements indicate how changes in input pa-

rameters, namely maximal ionic conductances (Tab.A.2), kinetic parameters

(p-values, Tab.A.1) and the voltage dependences of activation and inactiva-

tion (V-shifts, Tab.A.3), affect the model outputs. Fig.3.2 shows a schematic

representation of multivariable regression.
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Figure 3.2: Schematic representation of multivariable regression. Model pa-

rameters (X), simulation results (Y), and parameters sensitivities (B) are

collected in matrices with the indicated structures and relationships. Values

in matrices are represented using the indicated color table.

Outputs of the model Initially, I studied four outputs: the action po-

tential duration (APD), the resting membrane potential (Vrest), peak volt-

age during the AP (Vpeak) and the calcium handling (∆[Ca2+]i). The APD

was defined as the time from the maximum upstroke velocity (dV/dtmax)

to the -60mV crossing; the Ca2+ was calculated as the transient amplitude

(∆[Ca2+]i), defined as peak intracellular Ca2+ minus the level immediately

before the AP.

The input matrix X was generated by randomly varying 42 parameters com-

prising 14 conductances (Gs), 18 p-values that multiply the gating variable

time constants and 10 V-shifts values that change the voltage dependence of

activation or inactivation. Random scale factors for conductances and time

constants were chosen from a log-normal distribution with a median value of

1 so that the probability that a conductance was doubled equaled the prob-

ability that its value was halved. This was done to eliminate the possibility

of being left with non physiological conditions of a negative conductance or
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negative time. The standard deviation (σ) of log-trasformed variables con-

trolled extent to with parameters varied and was set to 0.1823 in the case of

both the conductances and the p-values. This means that an increase of 20%

represents one standard deviation away from the control value (e0.1823 = 1.2).

Shifts of the gating variable infinity curves along the voltage axis could be

positive or negative. These random variables were normally rather than log-

normally distributed and the values of σ was set to 2 mV.

A total of 300 trials random sets of parameters were generated such that

X had dimensions 300 × 42. To compute the output matrix Y, simulations

were performed with each of the 300 models defined by a given parameter

set. The four outputs constitute the four columns of the 300 × 4 Y ma-

trix (Fig.3.3). The first column of Y contains the APD measured as the

time from the upstroke to the -60 mV crossing and computed after applying

100 stimuli at 2 Hz; the second contains Vpeak; the third contains Vrest; the

last one corresponds to ∆[Ca2+]i, maximum [Ca2+]i minus minimum [Ca2+]i.

Figure 3.3: Multivariable regression. Model parameters (X) and simulation

results (Y) are collected in matrices with the indicated structures. Blue is

positive value, red is negative value. These two matrix are related by the

matrix of parameters B, where each row represents the contributions of each

of the conductances to a particular output.
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Since X and Y contained quantities in different units, these values were

converted into unit-less z-scores, i.e. each column was mean-centered and

normalized by its standard deviation. Finally, multivariable regression was

performed in order to build a linear model relating the input and output

matrices as per the relation X × B = Ŷ , where B is a matrix of regression

coefficients and Ŷ is a close approximation of Y.

An example of matrix B and how a change in the input parameters causes a

change in two outputs (APD and [Ca2+]i) is shown in Fig.3.4.

Figure 3.4: Example of regression matrix B, where each row represents the

contributions of the conductances to a particular output. The bar graphs

corresponding to the two outputs APD and diastolic [Ca2+].

As described above, the input and output matrices are mean-centered

and normalized by their standard deviations, which are computed for each

column. Thus each element of B is defined relative to the relevant standard

deviations. It is also important to note that conductances (Gs), changes

in time constants (ps), and the two outputs are log-transformed prior to

performing the regression. Thus, an increase by one standard deviation rep-

resents a 20% increase in the parameter. Shifts in the voltage dependence

of activation or inactivation (Vs) can be either positive or negative and are

therefore not log-transformed before regression. For these parameters one

standard deviation represents a shift of 2 mV.

All simulations were performed using software written in the scientific com-

puting language Matlab (The Mathworks, Natick, MA).
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3.3 Rate-dependence

After results of multivariable regression, I studied the rate-dependence.

Simulations were performed with 100 stimuli to achieve steady state and

the duration of the last AP was collected for regression analysis. As the

standard deviation of the log-trasformed APDs was different at two BCLs,

respectively 0.154 and 0.122 for APD and ∆[Ca2+]i, the regression coefficients

corresponding to fast rate were scaled by the factor 0.122/0.154 for display.

This scaling ensures that the two bar graphs are equivalent in terms the

percentage change in APD caused by a given increase or decrease in an ionic

conductance. Same for ∆[Ca2+]i scaled by the factor 0.594/0.488.

To compare parameters variation at slower rate and faster rate, I plotted the

results in the same figure. An example is shown in Fig.3.5.
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Figure 3.5: Example of regression coefficients at slow and fast rate.

To fully understand the rate-dependence, a matrix B was calculated as

the difference between slow and fast rate by the subtraction:

B = |Bslow| − |Bfast|

where Bslow is the BPLS matrix at slow rate and Bfast is the BPLS matrix at

fast rate. Every row of matrix B represents the contribution of each param-

eter to a particular output. Positive values indicate a RRD of parameters

in relation to the respective output, negative values indicate a FRD. In fact,

RRD occurs when I have a bigger effect of parameter at slow rate than at

fast rate, whereas FRD occurs when there is a bigger effect of parameter at

fast rate than at slow rate. An example is shown in figure Fig.3.6.
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Figure 3.6: Example of rate-dependence of regression coefficients respect to

a single output. Each bar is the result of |Bslow| − |Bfast| and represents

the contributions of each parameter to the output. Positive values indicate

a RRD of parameters in relation to the respective output, negative values

indicate a FRD.

3.4 Test of the rate-dependence

The second stage of the computational experiment aimed to understand

if the prediction of rate-dependence was correct and to determine why partic-
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ular perturbations might be RRD or FRD in terms of ionic currents changes.

Two conductances were studied: the conductance of rapid delayed rectifier

K+ current (Gkr) for the RRD and the conductance of Na+/K+ ATPase

current for the FRD (Pnak). The choice of these two was because they

were the ones which varied more. Simulations were performed with a train

of 100 stimuli delivered at two BCL: 5000 ms and 500 ms. The response to

the last stimulus in the series was saved. Gkr was changed by a logarithmic

scale factor from 0 to 0.25 by a step of 0.05, while Pnak was changed by a

logarithmic scale factor from 0 to 3 with a step of 0.25.

3.4.1 A new method: matrix ∆∆Q

To fully understand the perturbation effect to the other currents, these

currents were integrated with the “trapezoid rule” to calculate total “fluxes”

through each pathway. A new matrix Q was created where each column

represents an integrated current. Simulations were performed at slow and

fast rate and matrices Qslow and Qfast were created. In Fig.3.7 each current is

plotted at fast rate (dotted line) and at slow rate (solid line) during parameter

variation (i.e. GKr).
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Figure 3.7: Example of integrated outward currents changed after perturba-

tion of Gkr. Dotted lines represent each column of matrix Qfast at fast rate,

whereas solid line represent each column of matrix Qslow at slow rate.

To investigate more these results, an additional matrix ∆∆Q was calcu-

lated by the following equation:

∆∆Q = ((Qperturbation,fast−Qcontrol,fast)− (Qperturbation,slow −Qcontrol,slow)) =

= (∆Qfast −∆Qslow) (3.1)

where Qperturbation is the Q matrix calculated with the maximum variation of

parameter G and Qcontrol is the Q matrix calculated without the variation of

the parameter.

Fig. 3.8 explains the equation 3.1 for the single current IKr. At first, maxi-

mum perturbation value at fast rate (Fmax) was subtracted from the con-

trol value (Fctrl) to create the ∆Qfast matrix; then maximum perturbation
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value at slow rate (Smax) was subtracted from the control value (Sctrl)

to create the ∆Qslow matrix. Matrix ∆∆Q was created by the equation

∆Qfast −∆Qslow.

Figure 3.8: Example of calculation of ∆∆Q matrix. Matrix ∆Qfast is the

result of Fctrl − Fmax, where Fctrl is the integrated current value in control

and Fmax is the integrated current value at maximum “logscalefactor” value;

matrix ∆Qslow is the result of Sctrl−Smax, where Sctrl is the integrated current

value in control, whereas Smax is the integrated current value at maximum

“logscalefactor” value. Matrix ∆∆Q is created by the equation ∆Qfast −
∆Qslow.

Subsequently, each column of matrix ∆∆Q was plotted in a bar graph.

An example is shown in Fig.3.9, obtained for Gkr.
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Figure 3.9: Matrix ∆∆Q computed by equation 3.1 after Gkr perturbation.

Positive value contributes to RRD, negative value contributes to FRD.

Equation 3.1 (and consequently Fig. 3.9) is a good method to explain

the influence of perturbation to the other currents and, in particular, the

rate-dependence of each one. The rules are the following:

• a positive value of ∆∆Q contributes to reverse rate-dependence (RRD).

• a negative value of ∆∆Q contributes to forward rate-dependence (FRD).

Current contributions can be explaind by the following principles:

1. Perturbation induces a large current variation only at slow rate (∆Qfast <

∆Qslow):

∆∆Q < 0 =⇒ Less prolongation at slow, FRD.

2. Perturbation induces a large current variation only at fast rate (∆Qfast >

∆Qslow):

∆∆Q > 0 =⇒ Less prolongation at fast, RRD.

3. Effects of perturbation are identical at fast and slow rates (∆Qfast =

∆Qslow):

Equivalent AP prolongation, ∆∆Q = 0.
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3.4.2 Perturbations effect

Next step was to clarify which was the effect of the disturbance to the

other currents and if this influence could be forward rate-dependent, reverse

rate-dependent or rate independent. To achieve this goal I followed two

approaches:

(1) Simulations with different end-time of repolarization at both rates (Fig.3.10(a)).

(2) Simulations with same end-time of repolarization at fast and slow rate

(Fig.3.10(b)).

(a) Different end-time (b) Same end-time

Figure 3.10: Different end-times to study the influence of parameters pertur-

bation. At same end-time (b), delayed rectifier currents should be smaller at

slow rate than at fast rate. At different end-time (a), currents can be studied

in all their behavior.

To implement these approaches, I run a first simulation with a logarithmic

scale-factor varied from 0 to 1.4 by a step of 0.2 for both parameters. Because

Pnak value, from rate-dependence result, was smaller thanGkr value (Fig.4.6),

two new scale factors were obtained from this simulation: one for Pnak (1.4)

and one for Gkr (0.1241). Using these new scale factors, I run a second

simulation with the goal to obtain the results explained above:

1. AP shapes of two parameters compared to AP shape of control, at fast

and slow rate;
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2. change in integrated currents at fast and slow rate, to have a critical

view of rate-dependence;

3. rate-dependence of integrated currents.

4. to plot the currents of grater interest and show the difference between

fast and slow rate.

Results are shown in the following chapter.





Chapter 4

Results

4.1 Regression analysis results in the O’Hara

model

Fig.4.1 shows sample action potential shapes and the calcium transient

shapes obtained with randomly-varying parameters at fast rate with the

O’Hara model. The plot is made of 300 APs and 300 Ca2+ transients. The

figure shows the last AP and the last Ca2+ transient in sequence of 100

stimulated at 500 ms.

55
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(a) Action potential

(b) Intracellular calcium

Figure 4.1: Action potentials (a) and calcium transients (b) in the O’Hara

model. The plot is made of 300 APs and 300 Ca2+ transients.

Fig.4.2 and Fig.4.3 illustrate how parameter changes in affect outputs

steady-state. Bar graphs represent parameter sensitivities for selected out-

puts. Each bar is a row of the regression matrix BPLS and constitutes the

contribution of each of the parameters to a particular output. At the be-

ginning four outputs were studied: from top to bottom, respectively, APD,

Vrest, Vpeak and calcium transient.
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Figure 4.2: Results of the regression analysis at slow rate. The graph indi-

cates how changes in parameters affect four outputs (2 Hz pacing) at slow

rate. Regression performed with 300 simples. The parameters controlling

variability (σ) were set to 0.1823 for conductances and p variables, 2 mV for

voltage shift variables.
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Figure 4.3: Results of the regression analysis at fast rate. The graph indicates

how changes in parameters affect four outputs (2 Hz pacing) at fast rate.

Regression performed with 300 trials. The parameters controlling variability

(σ) were set to 0.1823 for conductances and p variables, 2 mV for voltage

shift variables.
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Fig.4.4 demonstrates the accuracy of regression analysis method at fast

and slow rates for the O’Hara model. For the four outputs, scatter plots

show the “actual” values, generated by randomizing the baseline parameters

in the model, versus the “predicted” values, calculated with the regression

model. The large values of R2 (> 0.9) indicate that the prediction of the

regression method are quite accurate.

(a) Prediction at slow rate (b) Prediction at fast rate

Figure 4.4: Scatter plots show the R2 > 0.9 of the regression analysis pre-

dictions for four outputs in the O’Hara model at slow (a) and fast (b) rate.

The empirical regression model generates accurate predictions, even when

non-linear parameters are included in the analysis. R2 = 0.9934 for APD,

R2 = 0.9894 for ∆[Ca2+]i.
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4.2 Rate-dependence results in the O’Hara

model

Fig.4.5 shows parameters variation obtained at slower and faster rate with

the O’Hara model, respectively for APD and ∆[Ca2+]i.

Figure 4.5: Regression coefficients obtained with the O’Hara model. The

model cell was paced at two basic cycle length (BCL), 5000 ms and 500

ms. In both cases, parameters were randomized and 100 stimuli were ap-

plied to achieve steady state. Two outputs were studied: APD and ∆[Ca2+]i.

Since the standard deviation of the log-trasformed APDs was different at

BCL=5000ms (0.154) than at BCL=500ms (0.122),the regression coefficients

corresponding to BCL=500ms were scaled by the factor 0.122/0.154 for dis-

play. This scaling ensures that the two bar graphs are equivalent in terms of

percentage change in APD caused by a given increase or decrease in a ionic

conductance. ∆[Ca2+]i, instead, was scaled by the factor 0.594/0.488.

From previous results, the difference between slow and fast rate was calcu-

lated by the subtraction |Bslow| − |Bfast|, where Bslow is the BPLS matrix

at slow rate and Bfast is the BPLS matrix at fast rate. Results are displayed
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in Fig.4.6 and Fig.4.7, respectively, for APD and calcium transient, where

positive values represent RRD, whereas negative values represent FRD.

Figure 4.6: Rate-dependence of regression coefficients for APD. The graph

shows the result of |Bslow| − |Bfast|. B is the regression matrix where each

row represents the contributions of each of parameters to a particular output.

Positive values represent a RRD, whereas negative values represent FRD.
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Figure 4.7: Rate-dependence of regression coefficients for ∆[Ca2+i ]. The

graph shows the result of |Bslow| − |Bfast|. B is the regression matrix where

each row represents the contributions of each of the parameters to a particular

output. Positive values represent a RRD, whereas negative values represent

FRD.

Figure 4.8 displays the distributions of APD and ∆[Ca2+]i during the
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simulations. Short APs were randomly removed from the data set to keep

the median APD and ∆[Ca2+]i roughly constant.

(a) APD (b) ∆Ca2+i

Figure 4.8: Distributions from a set of 300 trials of APD (a) and ∆[Ca2+]i

(b) performed with the O’Hara model at slow rate (top graph) and at fast rate

(bottom graph). Short APs were randomly removed from the data set to keep

the median APD and ∆[Ca2+]i roughly constant.

As clinical evidence, in the last period, has suggested that anti-arrhythmic

drugs which prolong the refractory period by means of prolongation of the

cardiac action potential duration (APD) are beneficial in preventing the re-

currence of clinically relevant human arrhythmias, I decided to study only

APD as output of the model.

Fig.4.6 and 4.7 show that conductances which change more for the RRD are

Gkr (the first one) and Gncx (the third one), while the conductances which

change more for the FRD are Pnak (the last one) and GKs (the second last).

To fully understand how a perturbation can influence ionic currents and if

this influence could be forward rate-dependent, reverse rate-dependent, or
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rate-independent in the O’Hara model, I decided to perturb two parameters:

GKr for the RRD and Pnak for the FRD. Results are shown in the following

paragraphs.

4.2.1 Perturbation of Gkr

Gkr was perturbed by a scale factor ex, where x is a vector varied from 0

to -0.25 by a step of 0.05. Fig.4.9 shows the last AP shape of each variation

at slow rate (a) and fast rate (b).

To confirm regression model prediction (Fig.4.9) and rate-dependence

result (Fig.4.6), Fig.4.10 illustrates the normalized change of APD after the

variation of Gkr. This change has a bigger effect at slow rate (solid line) than

at fast rate (dotted line).

Figure 4.10: Effect of the variation of Gkr on APD normalized. This plot

confirms the result of Fig.4.9. The change at slower rate (solid line) has a

bigger effect than at faster rate (dotted line).
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(a) Slow rate

(b) Fast rate

Figure 4.9: Influence of Gkr after the variation of a scale factor ex, where

x is a vector varied from 0 to -0.25 by a step of 0.05. As Gkr is reverse

rate-dependent, it has a smaller influence at faster rate (b) than at slower

rate (a).

To understand which was the perturbation effect to the other currents,

I applied a new method to display the results. Initially, ionic currents were

integrated with the trapezoid rule to obtain the quantity of ionic charge

through the respective conductance. Then, these “fluxes” were separated

between inward and outward and two new matrices were calculated, QinTot
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and QoutTot respectively, where each column represents a “flux” through the

respective conductance. Simulations were performed at slow and fast rate

and matrices Qslow and Qfast were created. Fig.4.11 and Fig.4.12 show the

integrated inward and outward currents during the variation of Gkr at fast

rate (dotted line) and slow rate (solid line).

Figure 4.11: Integrated inward currents changed after perturbation of Gkr.

Dotted lines represent each column of matrix Qfast at fast rate, whereas solid

line represent each column of matrix Qslow at slow rate.
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Figure 4.12: Integrated outward currents changed after perturbation of Gkr.

Dotted lines represent each column of matrix Qfast at fast rate, whereas solid

line represent each column of matrix Qslow at slow rate.

To investigate more on the difference between fast and slow rate, an

additional matrix ∆∆Q was calculated by the equation 3.1. Fig.4.13 shows

the influence of Gkr to the other currents, where each bar is a column of

matrix ∆∆Q. Positive values contributes to RRD, whereas negative values

contributes to FRD.
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Figure 4.13: Rate-dependence of integrated currents after Gkr perturbation.

Positive value contributes to RRD, negative value contributes to FRD. Larger

values mean a greater influence of the parameter.

4.2.2 Perturbation of Pnak

Pnak was perturbed by a scale factor ex, where x is a vector varied from

0 to -2 by a step of 0.25. Fig.4.14 shows the variations of AP shape during

the perturbation at slow rate (a) and at fast rate (b).
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(a) Slow rate

(b) Fast rate

Figure 4.14: Influence of Pnak after a variation of a scale factor of ex where

x is vector from 0 to -2 by a step of 0.25. As Pnak is forward rate-dependent,

it has a smaller influence at fast rate (b) than at slow rate (a).

Fig.4.15 shows the FRD of Pnak. The effect at slow rate (solid line) is

smaller than at fast rate (dotted line).
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Figure 4.15: Effect of Pnak variations on APD normalized. The plot confirms

the result of Fig. 4.14. The change at slow rate (solid line) has a smaller

effect than at fast rate (dotted line).

Fig.4.16 shows the result for the inward currents, whereas Fig.4.17 shows

the result for the outward currents. Each current is plotted at fast rate

(dotted line) and at slow rate (solid line).
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Figure 4.16: Integrated inward currents changed after perturbation of Pnak.

Dotted lines represent each column of matrix Qfast at fast rate, whereas solid

line represent each column of matrix Qslow at slow rate.
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Figure 4.17: Integrated outward currents changed after perturbation of Pnak.

Dotted lines represent each column of matrix Qfast at fast rate, whereas solid

line represent each column of matrix Qslow at slow rate.

Fig.4.18 shows the result of matrix ∆∆Q for Pnak.
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Figure 4.18: Rate-dependence of integrated currents after Pnak perturbation.

Positive value contributes to RRD, negative value contributes to FRD.

4.3 Perturbations effect to the other currents

To clarify the effect of the disturbance to the other currents and to investi-

gate if this influence could be forward rate-dependent, reverse rate-dependent

or rate-independent, two approaches were followed:

1. Simulations with different end-time of repolarization at both rates

(Fig.3.10(a)).

2. Simulations with same end-time of repolarization at fast and slow rate

(Fig.3.10(b)).

4.3.1 Results with different end-time of repolarization

Fig.4.19 shows the last AP shapes computed with different end-time of

repolarization in control (black line), after maximum Pnak variation (green
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line) and after maximum Gkr variation (red line) at both rates. The fig-

ure shows a significant change in Pnak from slow to fast rate, whereas no

significant change due to Gkr.

(a) Slow rate

(b) Fast rate

Figure 4.19: AP shapes computed with different end-time of repolarization at

slow (a) and fast (b) rate. There is a significant change in Pnak from slow to

fast rate, whereas no significant change due to Gkr.

Fig.4.20 shows the rate-dependence of integrated currents using a different

end-time of repolarization. Each bar is a column of ∆∆Q matrix calculated

by equation 3.1 for Gkr (blue) and Pnak (red). It is evident that perturbation
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of Pnak has a grater effect than Gkr.

Figure 4.20: Rate-dependence of integrated currents at different end-time of

repolarization. At different end-time, the AP is totally finished even at slow

rate and the sum of forward and reverse currents must be equal to zero (equi-

librium at steady-state). Pnak induces an evident forward rate-dependence

to INaK current that is mostly compensated by IKr current, whereas INaL,

forward rate-dependent current, is compensated by IKb.

Fig.4.21 shows the rate-dependence at slow (top) and fast (bottom) rate.

These plots explain better what happens in Fig.4.20. For instance, IKr after

Pnak variations has a different behavior at two rates: at fast rate is forward

rate-dependent, whereas at slow rate is reverse rate-dependent; however, both

behaviors lead to a RRD as shown in figure 4.20.
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Figure 4.21: Change in currents with different end-time of repolarization at

slow (top) and fast (bottom) rate. This plot explain more what happens in

Fig.4.20.

Fig.4.22 shows what practically happens to the ionic currents calculated in

the previous figures. Here, ionic currents are presented in control (black line),

after maximum Gkr perturbation (red) and after maximum Pnak perturbation

(blue).
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(a) Slow rate

(b) Fast rate

Figure 4.22: Differences in currents at slow (a) and fast (b) rate with different

end-time of repolarization. Black line is the current of control, red line is

after maximum Gkr variation and blue line is after maximum Pnak variation.
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4.3.2 Results with same end-time of repolarization

The same procedure was performed using the same repolarization end-

time.

Fig.4.23 illustrates the last AP shapes in control (black line), after maximum

Pnak variation (green line) and after maximumGkr variation (red line) at both

rates. Shapes are practically equal to the different repolarization end-time

shapes.

(a) Slow rate

(b) Fast rate

Figure 4.23: AP shapes computed with same end-time of repolarization at

slow (a) and fast (b) rate.
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Fig.4.24 shows the rate-dependence of integrated currents. Each bar is a

column of ∆∆Q matrix calculated by equation 3.1 for Gkr (blue) and Pnak

(red). Here I can not have a balance of all currents, because the AP is not

completely finished.

Figure 4.24: Rate-dependence of integrated currents with same end-time of

repolarization. Pnak (red bars) induces a specific forward rate-dependence

to INaK and IK1 currents which is partially compensated by the revers rate-

dependent IKr and IKb currents. GKr (blue bars) induces a substantial reverse

rate-dependence that is marked in IK1, IKr and ICaL currents.

Fig.4.25 shows the rate-dependence at slow (top) and fast (bottom) rate.

These plots explain better what happens in Fig.4.24.
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Figure 4.25: Change in current at slow (top) and fast (bottom) rates with

same end-time of repolarization. Looking at both graphs, IKr, IK1 and INaK

are the currents that change more. The first two due to variations in GKr,

the other one due to variations in Pnak.

Fig.4.26 shows what practically happens to the ionic currents calculated in

the previous figures. Here, ionic currents are presented in control (black line),

after maximum Gkr perturbation (red) and after maximum Pnak perturbation

(blue).
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(a) Slow rate

(b) Fast rate

Figure 4.26: Differences in currents at slow (a) and fast (b) rate with same

end-time of repolarization.
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4.4 Zaza’s hypothesis

Initially, a first simulation was run with an arbitrary constant current

varied from 0 to 0.5 pA/pF by a step of 0.1. The influence in the AP shape

is shown in Fig.4.27.

(a) Slow rate

(b) Fast rate

Figure 4.27: Current injected influence after variations from 0 to 0.5 pA/pF

at slow rate (a) and fast rate (b).

The effect of injected current at fast and slow rates is shown in Fig. 4.28.
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Figure 4.28: Current injection effect on APD normalized at first simulation.

Plot confirms that at slow rate has a smaller effect than at fast rate (dotted

line).

Integrated currents were also calculated in this simulation and results are

shown in Fig. 4.29 and Fig. 4.30.
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Figure 4.29: Integrated inward currents changed by current injected at first

simulation. Dotted lines represent each column of matrix Qfast at fast rate,

whereas solid line represent each column of matrix Qslow at slow rate.
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Figure 4.30: Integrated outward currents changed by current injected at first

simulation. Dotted lines represent each column of matrix Qfast at fast rate,

whereas solid line represent each column of matrix Qslow at slow rate.

Fig.4.31 shows the rate-dependence of integrated currents. Each bar is a

column of ∆∆Q matrix calculated by equation 3.1.
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Figure 4.31: Rate-dependence of integrated currents influenced by current

injected at first simulation.

Based on results such as shown in Fig.4.27, I reduced the current injected

from 0 to 0.2 pA/pF by a step of 0.04, as shown in Fig.4.32.
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(a) Slow rate

(b) Fast rate

Figure 4.32: Current injected influence after variations from 0 to 0.2 pA/pF

at slow rate (a) and fast rate (b).

Fig.4.33 confirms a greater effect at slower rate than at faster rate.
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Figure 4.33: Effect of the current injection modified on APD normalized.

Plot confirms that at slow rate has a smaller effect than at fast rate (dotted

line).

After current injection modification integrated currents were calculated

and the influence of the injected current is shown in Fig. 4.34 and Fig. 4.35.



4.4 Zaza’s hypothesis 89

Figure 4.34: Integrated inward currents changed by current injected. Dotted

lines represent each column of matrix Qfast at fast rate, whereas solid line

represent each column of matrix Qslow at slow rate.
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Figure 4.35: Integrated outward currents changed by current injected. Dotted

lines represent each column of matrix Qfast at fast rate, whereas solid line

represent each column of matrix Qslow at slow rate.

Fig.4.36 shows the rate-dependence of integrated currents. Each bar is a

column of ∆∆Q matrix calculated by equation 3.1.
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Figure 4.36: Rate-dependence of integrated currents influenced by current

injected modified.





Chapter 5

Conclusions

Mathematical modeling is a powerful tool to investigate into biological

systems, specially in physiology. In the last 50 years cardiac electrophysiology

has become a fundamental discipline in the study of cardiac cells coupled

with integrative modeling. Therefore, the aim of this research was to employ

mathematical modeling for study how a perturbation of some conductance

could influence ionic currents and AP shape and if this influence could be

forward rate-dependent, reverse rate-dependent, or rate-independent.

To achieve this goal I used the O’Hara model, a modern mathematical model

employed for understanding the basic mechanisms of ventricular arrhythmias

at the level of ion channel currents and the single myocyte AP. Multivariable

regression analysis was applied to study parameters sensitivity of the model

and to evaluate their rate-dependence. Thereafter, regression analysis results

were tested with two most varied parameters: one for the RRD (GKr) and

one for the FRD (PNaK ). Perturbing the model with these conductances,

a new method was applied to analyze how this perturbation influenced the

other ionic currents. Through this new method, where a new matrix ∆∆Q

was created, it was possible to figure out if the ionic currents were forward-

dependent, reverse-dependent or rate-independent.

To clarify these disturbances effect, I considered two repolarization end-time

of currents integration, first with different end-time and than with same end-

93
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time. The idea was to investigate on ionic currents behavior during all the

AP or without the total repolarization.

In the last stage, the Zaza’s hypothesis was tested. His idea of “intrinsic

reverse rate-dependence” was that shorter APs (at fast rates) will have faster

rates of repolarization, and therefore, by injecting a current, this will have a

smaller effect at a faster rate compared with that of a slower rate.

In conclusion, regression analysis has proven to be an excellent method to

predict parameters model. Given the nonlinearities in the electrophysiology

models, linear regression models can have strong predictive power. In previ-

ous works other models (e.g. Lou & Rudy1, Fox et al. and Kurata models

[20]) were studied producing great results; here I confirmed its usefulness in

the O’Hara model.

Test of two conductances confirmed the regression analysis prediction: GKr

is reverse rate-dependent, whereas PNaK is forward rate-dependent.

The idea of using a different end-time of repolarization has not delivered the

desired results. There are no substantial differences in the AP shapes; only

some ionic currents show small variations (INaK , INaL and IK1).

Matrix ∆∆Q is a new method to evaluate the dynamic interplay between

action potential and ionic currents after a specific perturbation. Through

this new way, it is easier to understand if the influence of ionic currents and

AP shape is forward rate-dependent, reverse rate-dependent, or rate inde-

pendent and, subsequently, to plot them.

Zaza’s hypothesis is largely confirmed: at slower rate, if I inject a current,

there is a bigger influence in the APD than at faster rate. Nevertheless, I

have not made much progress on this point.

Future Developments In this study I investigated only the O’Hara model

behavior. As the regression analysis result could be different between differ-

ent models, it would be of great interest if other mathematical models were

tested.

The description of the electrophysiological effects of a perturbation by the
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new matrix ∆∆Q is a great method to investigate the rate-dependence of

each ionic current; however, in this work, there is no distinction between

inward and outward current. Since it is well known that their behavior de-

termines completely opposite effects, it should be improved considering this

distinction.

Further, it is well known that intracellular Ca2+ dynamics of cardiac my-

ocytes are regulated by complex mechanisms of a variety of ion channels,

transporters, and exchangers. Alterations of these Ca2+ regulatory compo-

nents might lead to development of cardiac diseases. It should be interesting

to investigate the regulatory mechanisms and hidden Ca2+ dynamics using

regression analysis and, especially, matrix ∆∆Q, evaluating the effect of an

eventual perturbation.
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Appendix A

ORd Human Model Basic

Parameters

Table A.1: Model kinetic parameters varied in O’Hara model

Parameter Definition

pm Na+ current activation time constant

phFast Na+ current fast inactivation time constant

phSlow Na+ current slow inactivation time constant

pj Na+ current fast inactivation time constant

phL Na+ current late activation time constant

pa Ito current activation time constant

piFast Ito current fast inactivation time constant

piSlow Ito current slow inactivation time constant

pfFast ICaL current fast voltage dependent inactivation time constant

pfSlow ICaL current slow voltage dependent inactivation time constant

pfCaFast ICaL current fast development of Ca2+ dependent inactivation time constant

pfCaSlow ICaL current slow development of Ca2+ dependent inactivation time constant

pjCa ICaL current recovery from Ca2+ dependent inactivation time constant

pxrFast IKr current fast activation/deactivation time constant

pxrSlow IKr current slow activation/deactivation time constant

pxS1 IKs current activation time constant

pxS2 IKs current deactivation time constant

pxK1 IK1 current inactivation time constant
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Table A.2: Model maximal ionic conductances varied in O’Hara model

Parameter Definition

Gna Maximal Na+ conductance

GNaL Maximal Ca2+ conductance through the L-type Ca2+ channel

Gto Maximal transient outward K+ conductance

Gkr Maximal rapid delayed rectifier K+ conductance

Gks Maximal slow delayed rectifier K+ conductance

GK1 Maximal inward rectifier K+ conductance

Gncx Maximal total Na+/Ca+ exchange conductance

Gkb Maximal K+ background conductance

GpCa Maximal sarcolemmal Ca2+ pump conductance

Pca Maximal permeability to ion Ca2+

Pnak Maximal Na+/Ca2+ exchange conductance

Pnab Maximal Na+ background conductance

Pcab Maximal Ca2+ background conductance
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Table A.3: Model voltage dependences of activation and inactivation varied

in O’Hara model.

Parameter Definition

V shiftm Na+ current activation

V shifth Na+ current fast inactivation

V shiftmL Late Na+ current activation

V shifthL Late Na+ current inactivation

V shifta Ito current activation

V shiftd L-type Ca2+ current activation

V shiftf L-type Ca2+ current voltage-dependent inactivation

V shiftxr Rapid delayed rectifier K+ current activation

V shiftxs1 Slow delayed rectifier K+ current activation

V shiftk1 Inward rectifier K+ current voltage-dependent block/rectification



Appendix B

APs comparison at different

basic cycle length

In order to give a look to the behavior of the O’Hara model, the AP shape

was plotted at 7 different BCL. From 300 ms to 5000 ms. Result is shown in

Fig. B.1.

Figure B.1: APs comparison at different basic cycle length obtained with the

O’Hara model.
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Appendix C

GKs perturbation results

Gks was perturbed by a scale factor ex, where x is a vector varied from 0

to -2 by a step of 0.25. Fig.C.1 shows the FRD of GKs. The effect at slow

rate (solid line) is smaller than at fast rate (dotted line).
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Figure C.1: Effect of GKs modified on APD normalized. Plot confirms that

at slow rate (solid line) has a smaller effect than at fast rate (dotted line).

GKs is FRD.

Fig.C.2 shows the result for the inward currents, whereas Fig.C.3 shows

the result for the outward currents. Each current is plotted at fast rate

(dotted line) and at slow rate (solid line).
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Figure C.2: Integrated inward currents changed by GKs. Dotted lines rep-

resent each column of matrix Qfast at fast rate, whereas solid line represent

each column of matrix Qslow at slow rate.
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Figure C.3: Integrated outward currents changed by GKs. Dotted lines rep-

resent each column of matrix Qfast at fast rate, whereas solid line represent

each column of matrix Qslow at slow rate.

Fig. C.4 shows the rate-dependence of integrated currents. Each bar is a

column of ∆∆Q matrix calculated by equation 3.1.
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Figure C.4: Rate-dependence of integrated currents influenced by Gks.


