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Abstract

Renewable electricity generation is projected to grow significantly as the transition to
sustainable energy sources accelerates in response to climate change. While the environ-
mental benefits of this shift are clear, the increasing reliance on intermittent renewable
resources poses new challenges to their efficient integration into the power grid. The en-
ergy output of solar panels and wind turbines, leading renewable technologies globally,
is entirely dependent on weather conditions, which are inherently variable and difficult
to predict. This uncertainty complicates the accurate forecasting of renewable energy
profiles, making it challenging for energy traders to optimally place their bids on the mar-
ket. As a result, grid stability becomes harder to maintain, and suppliers risk financial
penalties for failing to meet supply commitments. Currently, Numerical Weather Pre-
diction (NWP) models, particularly the Integrated Forecasting System (IFS) operated by
the European Centre for Medium-Range Weather Forecasts (ECMWF), are considered
the gold standard in weather simulation. However, in recent years, the field of Machine
Learning Weather Prediction (MLWP) has emerged as a promising area of research due
to its potential for improving prediction accuracy and efficiency. This thesis evaluates
GraphCast, a machine learning-based forecasting tool developed by Google DeepMind,
against ECMWF’s IFS. The research specifically focuses on predicting wind speed and
temperature—key factors influencing wind and solar energy outputs—by deploying one
of GraphCast’s publicly available pre-trained model versions. The performance of both
models is assessed by comparing six months of forecasts with actual measurements from
six SYNOP stations across Italy. Results show that GraphCast generally achieves accu-
racy comparable to IFS, demonstrating greater stability over time, with less degradation
in predictive performance for extended forecasts. These findings highlight the potential
of MLWP to complement or even enhance traditional numerical models in specific appli-
cations, particularly in long term forecasting. As weather prediction plays a pivotal role
in optimizing renewable energy trading, the continued advancement of ML-based fore-
casting systems such as GraphCast is critical to shaping a cleaner, more resilient energy

landscape aligned with global climate goals.



Chapter 1

Introduction

1.1 Renewable Energy Transition: A Strategic and Ur-
gent Response to Climate Change

The transition from fossil fuels to sustainable energy sources is gaining momentum as part
of global efforts to reduce greenhouse gas emissions and prevent severe climate change.
As shown in Figure[I.1] electricity and heat generation represent the largest contributors
to global greenhouse gas emissions, followed by transport, manufacturing, construction
(mainly cement and similar materials), and agriculture [1]. In 2023, global energy-related
C'O emissions reached a record 37.4 billion metric tons [2], underscoring the urgent need
for decarbonization in this sector to achieve climate goals. According to the International
Energy Agency’s (IEA) report "C'O, Emissions in 2023” [2], energy-related emissions
increased by 1.1% compared to 2022. However, the growth of clean energy technologies

has played a critical role in mitigating what could have been a more substantial rise [2].



Greenhouse gas emissions by sector, World

Greenhouse gas emissions* are measured in tonnes of carbon dioxide-equivalents® over a 100-year timescale.
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1. Greenhouse gas emissions: A greenhouse gas (GHG) is a gas that causes the atmosphere to warm by absorbing and emitting radiant energy.
Greenhouse gases absorb radiation that is radiated by Earth, preventing this heat from escaping to space. Carbon dioxide (CO,) is the most
well-known greenhouse gas, but there are others including methane, nitrous oxide, and in fact, water vapor. Human-made emissions of greenhouse
gases from fossil fuels, industry, and agriculture are the leading cause of global climate change. Greenhouse gas emissions measure the total
amount of all greenhouse gases that are emitted. These are often quantified in carbon dioxide equivalents (CO,eq) which take account of the
amount of warming that each molecule of different gases creates.

2. Carbon dioxide equivalents (CO,eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse

gas emissions, researchers express them in “carbon dioxide equivalents” (CO,eq). This takes all greenhouse gases into account, not just CO,. To
express all greenhouse gases in carbon dioxide equivalents (CO,eq), each one is weighted by its global warming potential (GWP) value. GWP
measures the amount of warming a gas creates compared to CO,. CO, is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of
that gas would generate ten times the warming effect as one kilogram of CO,. Carbon dioxide equivalents are calculated for each gas by multiplying
the mass of emissions of a specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO,eq
over 100 years, we'd multiply each gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions - measured in CO,eq -
are then calculated by summing each gas’ CO,eq value.

Figure 1.1: Greenhouse gas emissions by sector, World [1]]

The IEA outlines these challenges and solutions in its report ”"Net Zero Roadmap: A
Global Pathway to Keep the 1.5 °C Goal in Reach” [3]. This report translates the Paris
Agreement’s critical goal of limiting global warming to 1.5 degrees Celsius (°C) into a
concrete road map for the global energy sector. In [3]], the IEA identifies the tripling of
renewable energy capacity as the single largest driver of emissions reductions by 2030
in the Net Zero Emissions (NZE) by 2050 scenario. As shown in Figure [I.2] which
illustrates C'O5 emissions reductions by mitigation measures in the NZE by 2050 scenario,
the largest cumulative emissions savings come from wind and solar photovoltaic (PV),

followed by advancements in energy efficiency and electrification.
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Figure 1.2: CO, emissions reductions by mitigation measure in the Net Zero Emissions
by 2050 Scenario, 2022-2050 [3]. Activity = energy services demand changes from economic
and population growth, CCUS = Carbon Capture, Utilization and Storage.

In addition to the urgent environmental drivers, the economic case for renewables is
now stronger than ever. As renewable technologies become increasingly cost-effective,
they accelerate the transition to cleaner energy sources. In its report "Renewable Power
Generation Costs in 2023” [4], the International Renewable Energy Agency (IRENA)
states that "renewable power generation has become the default source of least-cost new
power generation”. The global weighted average cost per unit of electricity from new
solar PV and onshore and offshore wind power plants has fallen steadily year on year and
is now significantly lower than that of fossil fuel-fired power plants. This cost evolution
is shown in Figure [I.3] which illustrates the change in global weighted average Levelized
Cost of Energy (LCOEﬂ for solar and wind compared to fossil fuels from 2010 to 2023.
In 2023, the LCOE for new utility-scale solar PV installations was 56% lower than the
weighted average of fossil fuel alternatives, having been 414% more expensive in 2010.
For new onshore wind projects, the LCOE was even lower - 67% below the fossil fuel

equivalent.

Levelized cost of energy (LCOE) is a measure of the average net present cost of electricity generation
for a power plant over its lifetime.
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Figure 1.3: Change in global weighted average LCOE for solar and wind compared to
fossil fuels, 2010-2023 [4]. RE = Renewable Energy, Concentrated solar power = mirrors or
lenses to concentrate sunlight, generating heat for electricity production.

To fully understand the impact of these cost reductions, consider that ”new renewable
capacity added since 2000 is estimated to have reduced electricity sector fuel costs by at
least $409 billion in 2023 alone” [4]. IRENA’s 2023 report highlights the growing com-
petitiveness of renewable energy technologies compared to carbon-based ones, despite
fossil fuel prices returning to historical cost levels.

The urgent need to address climate change and the growing economic advantage
of power generation from renewable energy sources are accelerating the transition to a
renewable-based electricity sector. As a result, renewable power generation is poised for
significant growth, paving the way for a cleaner, more resilient energy landscape that
aligns with global climate objectives.

1.2 Forecasting Uncertainty in Renewable Energy Out-
puts: The Challenge of Weather Prediction

The efficient integration of solar PV and wind is critical to the NZE by 2050 scenario, as
their share in total power generation in most regions reaches levels in 2030 seen only in a
few countries today [3]. As shown in Figure (1.4} according to the NZE by 2050 scenario,
solar PV and wind will lead the decarbonization of the electricity sector, becoming the

largest sources of power by 2030.
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Figure 1.4: Total installed capacity and electricity generation by source in the Net Zero
Emissions by 2050 scenario, 2010-2050 [3]. GW = GigaWatts, TWh = TeraWatts hours.

However, despite the clear environmental and economic benefits, integrating this in-
creased installed capacity into existing electrical systems and markets presents significant
challenges. These arise primarily due to the inherent uncertainty of predicted renewable
energy outputs, as production from renewable energy systems can be difficult to forecast
accurately. One of the key advantages of traditional coal and gas power plants is their reli-
ability, as they provide a highly flexible supply of electricity around the clock. In contrast,
the energy output of solar panels and wind turbines, leading renewable systems globally,
entirely depends on weather conditions, which are inherently variable and challenging to
predict [5].

The challenge of weather forecasting itself has deep historical roots, dating back to an-
cient civilizations, evolving gradually from simple observation of natural signs to a more
scientific approach. The formalization of weather prediction as an initial value problem
can be traced back to the early 20th century, when meteorologist Vilhelm Bjerknes [6]
made significant strides in understanding the dynamics behind weather systems, laying
the foundation for modern meteorology. The first step in any weather forecast is to gather
a large amount of data from various sources to create the most accurate possible repre-
sentation of the current state of Earth’s atmosphere and surface (land and oceans) weather
conditions. Real-time atmospheric, ocean and land-surface data are gathered from a coor-
dinated network of individual surface- and space-based observing systems. This network
includes radiosondes, satellites, buoys, radars, SYNOPE| stations, as well as aircraft and
ships, all designed to measure temperature, humidity, pressure, precipitation, wind, solar

radiation, and other variables (see Figure @ However, despite this advanced network

2SYNOP stands for SYNOPtic observations, a global network of ground-based meteorological stations
that provide standardized weather reports at regular intervals.



of meteorological observation stations, the data collected is always limited—spatially and
temporally—due to the vastness of the Earth’s atmosphere and the unpredictability of

weather patterns.

CAPTURING THE WEATHER

To predict the future, we observe the present. Every day, we absorb 800 million
observations to create a detailed snapshot of Earth’s weather.
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Figure 1.5: ECMWF Data Collection Network. Visualization of the extensive observational
network used by the European Centre for Medium-Range Weather Forecasts (ECMWF), one of
the leading organizations in global weather prediction. Credit: Andrea Montani, ECMWE.

According to Bjerknes [7], accurate weather prediction relies on two key elements:
1. Initial conditions must be characterized as accurately as possible.

2. The intrinsic laws governing atmospheric dynamics, which dictate how subsequent

states evolve from previous ones, must be known.

Final forecasts of future atmospheric states are obtained by feeding the initial data
into a model that approximates atmospheric dynamics [8]. This stands as the core chal-
lenge to accurate weather forecasting, as the atmosphere ranks among the most complex
physical systems on Earth [9]]. Building a model that can simulate the physical processes
governing Earth’s weather is a complex task that remains the focus of active research. As
a result, weather forecasts are inherently uncertain, never reaching 100% accuracy due
to the current inability to precisely translate the chaotic nature of the atmosphere into a
model simulation, along with the limits of data availability.

One of the main obstacles to the efficient integration of renewables as a major source
of electricity generation lies in this uncertainty, which directly affects the accuracy of
predicted renewable energy profiles. Inaccurate forecasts of energy production hinder

the ability of traders to participate effectively in the market, which in turn complicates



network management and increases the risk of financial penalties. The following section

delves further into these dynamics and their impact on market operations.

1.3 The Role of Accurate Forecasting in Managing Grid
Stability and Energy Trading Operations

In the wholesale electricity market, producers submit bids to sell electricity based on their
anticipated output, and consumers submit bids to buy electricity based on their expected

needs. These bids are matched, and transactions are settled at a market price (Figure [L.6)).

{ Wholesale Electricity Market }
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Figure 1.6: Flowchart of Wholesale Electricity Market Transaction Process

However, actual electricity production and consumption may differ from the fore-
casted amounts bought and sold on the market. When forecasts are inaccurate, grid
management, a task performed by the Transmission System Operator (TSO), becomes
increasingly complex. This added complexity can lead to penalties for producers who fail
to meet their declared energy output, as imbalances—whether from under- or overpro-
duction—affect system operational efficiency.

The electrical grid is an intricate network of power plants, transmission lines, sub-
stations, and distribution systems that deliver electricity from producers to consumers.
For the grid to function reliably, it must remain in balance — meaning the amount of
electricity generated must match the amount consumed at any given moment. Any imbal-
ance, whether due to excess supply or demand, can lead to instability, potentially causing
blackouts or equipment damage. Maintaining this balance is crucial, and it requires real-

time adjustments to keep the frequency and voltage within safe limits, a task managed by



the TSO. If a producer generates less electricity than forecasted, they must purchase the
shortfall from the TSO on the balancing market, where the imbalance price may be higher
or lower than the market price for which they were originally paid.

When the system is subject to an energy surplus (i.e. long on energy), the imbalance
price is typically lower than the market price, allowing the producer to buy the missing
energy at a lower cost and make a profit. Conversely, if the system is experiencing an
energy deficit (i.e. short on energy), the imbalance price will be higher than the market
price, leading to a loss, as the producer must buy the shortfall at a higher price than what
he was originally paid.

On the other hand, if the producer generates more electricity than forecasted, the TSO
buys the surplus at the imbalance price, which also fluctuates based on the system’s bal-
ance. When the system is long, the imbalance price is lower than the market price, causing
the producer to sell their excess energy at a loss. If the system is short, the imbalance price
is higher, leading to a profit for the producer, as they are paid more than they would have
been on the market. These imbalance scenarios, along with the associated losses and

profits for electricity producers, are summarized in Figure
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Figure 1.7: Imbalance Scenarios: Losses and Profits for Electricity Producers

Essentially, producers benefit financially when their output helps the TSO balance the
grid — generating extra energy when the system is short, or producing less during sur-
plus conditions. Conversely, they face penalties when their production complicates the
TSO’s balancing job, such as producing less in deficit conditions or generating excess
energy in a surplus. Thus, improving the accuracy of forecasted energy profiles is cru-
cial as electricity generation incrementally relies on renewable energy sources. Increased

prediction reliability would allow suppliers to position themselves more effectively in the

10



market, assisting the TSO in maintaining grid stability and better managing the risks and

opportunities in renewable energy trading [JS].

1.4 Investigation Scope

This thesis evaluates the accuracy of weather forecasts generated using a pre-trained ver-
sion of the GraphCast model, outsourced by DeepMind, and compares them against
ECMWF’s IFS forecasts. The focus is on predicting wind speed—a critical parameter
for predicting wind energy production—and temperature, which directly influences the
energy output of both wind turbines and solar panels. Model deployment was carried
out during an internship at a renewable energy trading company, where accurate weather
forecasts are crucial for predicting energy outputs on which market bids are based. By
leveraging open-source data, pre-trained models, and publicly available code, this study
aims to showcase a cost-effective and replicable implementation of GraphCast within an
operational framework. Ultimately, this work seeks to assess GraphCast’s performance
and demonstrate its practical application in generating accurate weather predictions under
real-world constraints for industries reliant on renewable energy.

Chapter 2 explores the two major approaches to medium-range weather forecasting,
which involves predicting atmospheric variables up to 10 days in advance. This chapter
starts with the foundational principles of Numerical Weather Prediction (NWP) and a gen-
eral description of ECMWEF’s Integrated Forecasting System (IFS), which currently serves
as the benchmark for traditional NWP. It then introduces Machine Learning Weather Pre-
diction (MLWP) placing special emphasis on GraphCast, a global medium-range weather
forecasting system developed by Google DeepMind in 2023 that leverages machine learn-
ing. This last section provides an overview of GraphCast’s key features, including its
autoregressive forecast generation process and innovative Graph Neural Network (GNN)
architecture, and the detailed training process behind the system.

Chapter 3 provides an account of the methodology used to implement the selected
pre-trained version of the GraphCast model, including the forecast generation process. It
outlines the collection of initialization data and the key modifications made to the publicly
available demonstration code to enable long-range operational forecasting.

Chapter 4 presents a comparative evaluation of six months of forecasts from both
GraphCast and IFS, benchmarked against observational data from six SYNOP stations
across Italy—covering various geographic regions. To assess the performance of both
models, statistical metrics such as Pearson’s correlation coefficient, Root Mean Square
Error (RMSE), and Mean Absolute Percentage Error (MAPE) are employed.

Chapter 5 concludes with a discussion of the findings and insights drawn from this

analysis.
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Chapter 2

Evolution of Weather Forecasting:

From Numerical Models to GraphCast

The following chapter begins by illustrating Numerical Weather Prediction (NWP), the
traditional approach to weather forecasting, with a focus on its most advanced practi-
cal application: ECMWEF’s Integrated Forecasting System (IFS), currently considered
the leading model in the field. It then explores Machine Learning Weather Predic-
tion (MLWP), an area of growing research with significant potential. The last section
delves into GraphCast, a machine learning-based weather forecasting system developed
by Google DeepMind in 2023, which was used to obtain the forecasts center of this re-

search.

2.1 Numerical Weather Prediction and the Integrated

Forecasting System

Numerical Weather Prediction (NWP) models are based on systems of Partial Differen-
tial Equations (PDEs) that govern the evolution of the atmosphere [6]. These equations
describe fluid dynamics [[11]], which are derived from the fundamental conservation laws
of momentum, mass, and energy. Specifically, they illustrate how fluid substances, in-
cluding air, respond to changes in factors such as pressure, temperature, and density. As
a result, they serve as a fundamental tool for simulating wind patterns, precipitation, and
other weather phenomena. The set of universal equations for NWP, commonly known as

the primitive equations, includes [6]:

1. Newton’s second law of motion or conservation of momentum, corresponding to

fluid velocity in the z, y, and z directions (u, v, and w componentsﬂ collectively

Y, v, and w represent the velocity components along the x (east-west), y (north-south), and z (vertical)

directions, respectively, with units of m s~ L.
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known as the Navier-Stokes equations,

—

d . . ~ N
7¥:_M@—v¢+F—va @.1)

where V = (u,v,w) is the velocity vector (m s™1), ¢ is time (s), « is the specific
volume (m3 kg~1), p is the pressure (Pa), ® is the geopotential height (m? s~2), F is
the friction force per unit mass (m s~2), and () is the Earth’s angular velocity vector

(s7).
2. The continuity equation or conservation of mass,

dp = o
5 =V (V) (2.2)

where p is the air density (kg m~3).

3. The equation of state for ideal gases,
pa = RT 2.3)

where R is the gas constant (for dry air Ry ~ 287.05 J kg=! K™1) and T is the

temperature (K).

4. The first law of thermodynamics or conservation of energy,

Q=C - _ v (2.4)

var Yt
where () is heating per unit mass (J kg™'), and C, is the specific heat capacity at
constant pressure’| (= 1004 J kg~! K~ for dry air).

5. A conservation equation for water mass,

o "
==V (pVa) + (B - C) 25)

where ¢ is the water vapor mixing ratio (kg kg™!), and F and C' represent evapora-

tion and condensation rates respectively (kg m~—3 s~ 1).

While these primitive equations form the universal foundation for all NWP models,
each model applies a unique combination or adaptation of these equations. These cus-

tomizations account for the specific requirements of the model, such as spatial resolution,

sz represents the amount of heat required to raise the temperature of a unit mass of a substance by one
degree while keeping the pressure constant.
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geographic focus, or the inclusion of particular physical processes. This results in varia-
tions in how the equations are implemented and combined, making each model uniquely
suited to its intended application.

To predict future atmospheric states, these PDEs must be solved using initial condi-
tions derived from previous states [6]], a task performed by supercomputers. Since these
equations describe the dynamics of fluids, they involve derivatives representing infinites-
imally small changes in space and time. While computers excel at arithmetic (addition,
subtraction, multiplication, etc.), they cannot directly perform calculus, which is needed
to solve continuous equations [[11]. To overcome this, the PDEs are discretized [6]], and so
translated into discrete form that computers can process. Discretization involves dividing
the atmosphere, or more generally any space-time domain, into a grid, where both space
and time are divided into intervals. This process approximates the continuous derivatives
by calculating the differences between adjacent grid points. After discretization, numer-
ical methods are employed to solve these equations. These methods enable the com-
puter to handle the problem by performing arithmetic operations on the discrete points
of the grid. Enhancing NWP models is a complex, resource-intensive process led by
highly trained experts developing increasingly accurate physical equations and leverag-
ing increased computational power [9]. Developing these models requires expertise in
atmospheric physics and a deep understanding of fluid dynamics and thermodynamics.
Additionally, as models become more precise and detailed, they require increasingly so-
phisticated calculations, hence the need to invest in greater High-Performance Computing
(HPC Y| hardware.

The leading NWP-based system for medium-range weather forecasting is the Inte-
grated Forecasting System (IFS), operated by the European Centre for Medium-range
Weather Forecasts (ECMWF). The IFS combines both deterministic and probabilistic ap-
proaches to deliver some of the most accurate weather forecasts available today. The
system generates a set of 50 possible future weather scenarios (ensemble members) by
introducing small perturbations to both initial conditions and the original model config-
uration, to account for uncertainties in observations and model physics [12]. Together,
the ensemble members form a probabilistic distribution of possible weather outcomes, as
illustrated in Figure

3High-Performance Computing (HPC) refers to the use of supercomputers and parallel processing tech-
niques for solving complex computational problems.
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Figure 2.1: ECMWF Ensemble Prediction Process. The IFS generates 50 ensemble mem-
bers by perturbing initial conditions and model configurations, providing a probabilistic distribu-
tion of forecasts with associated confidence levels. Credit: Andrea Montani, ECMWF.

Alongside these perturbed members, the system includes an unaltered model run,
known as the “ensemble control”, which serves as a deterministic forecastE] [12]]. This
combination within the IFS allows users to access single-value forecasts as well as prob-
abilistic ranges with associated confidence levels. Ensemble forecasts are typically visu-
alized in time series plots (meteograms), which display key percentiles (e.g., 10th, 25th,
median, 75th, and 90th). Figure @ shows an ensemble meteogram of ECMWF’s IFS
forecasts for Bologna (44.46°N, 11.32°E — 54m altitude). The meteogram displays the
control member forecast (High Resolution Forecastf] and the distribution of predictions
from the 50 ensemble members (ENS Distribution) from Thursday, May 23, 2024, to
Sunday, June 2, 2024, based on the 12 UTC ﬂrun times.

“The term “deterministic” refers to a forecast generated from a single set of initial conditions and model
configuration, as opposed to ensemble forecasts which are derived from multiple sets of initial conditions
and modifications to the model configuration, with small variations introduced to account for uncertainty.

3The graph shows forecasts from an ECMWF IFS version prior to Cy49r1 (forecast cycle 49 revision
1), implemented after autumn 2024. In that version, the control member (High Resolution Forecast) had a
9 km resolution, while ensemble members had 18 km. As of Cy49rl, both now feature a 9 km resolution,
thus the control member is no longer referred to as High Resolution Forecast.

Coordinated Universal Time (UTC) is the primary time standard by which the world regulates clocks
and time. It is consistent worldwide and does not observe daylight saving time.

15
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Figure 2.2: Ensemble meteogram for Bologna (44.46°N, 11.32°E — 54m altitude) from
Thursday, May 23, 2024, to Sunday, June 2, 2024, based on 12 UTC run times. Pre-
dictions include Total Cloud Cover (okats: eighths of the sky covered by clouds), Total Precipi-
tation (mm/6h), 10m Wind Speed (m/s), 2m Temperature (C°), with temperature values adjusted
to Bologna’s grid point elevation (54m) which is different from the nearest ENS model land grid
point (101m). The blue line follows the control member single-value predictions while the vertical
bars display the percentiles of the forecast distribution from the 50 ensemble members. Credit:
Andrea Montani, ECMWE.

These visualizations enable users to interpret both deterministic forecasts and prob-
abilistic ranges, providing insights into the likelihood of specific weather events. The
ensemble control typically demonstrates higher average skill compared to individual per-
turbed members when performance is evaluated over many forecasts. However, in certain

cases, a perturbed member can outperform the control, highlighting the value of the en-
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semble in capturing a wide spectrum of possibilities [12].

The IFS produces forecasts up to 15 days ahead, with initialization times at 00 UTC
and 12 UTC for both the ensemble control and the ensemble members. Additionally,
shorter-term forecasts are produced at 06 UTC and 18 UTC, with the ensemble reaching
up to 6 days and the control providing predictions for up to 3.5 days [12]]. Both the ensem-
ble and control forecasts of IFS share a horizontal resolution of approximately 9 km [[12].
This means each weather state is represented by a grid cell with a spatial resolution of 0.1°
latitude by 0.1° longitude. Additionally, both systems incorporate a vertical resolution of
37 levels [12], enabling the prediction of atmospheric variables across 37 distinct pressure
levels, each corresponding to a specific height in the atmosphere (see Section 2.3.1 for a

more detailed explanation of horizontal and vertical resolution).

2.2 Machine Learning Weather Prediction: Paving a

New Way in Forecasting

Machine Learning-based Weather Prediction (MLWP) offers a different approach com-
pared to traditional NWP: using data instead of physical equations to develop forecasting
models. MLWP models are trained on decades of historical weather data to detect and
learn the relationships that drive the evolution of weather systems from present to future
states [9]. This data-driven approach has the potential to improve forecast accuracy by
capturing complex patterns and scales in the data that may be difficult to represent in
explicit equations [9]].

Tom Mitchell, in his book "Machine Learning” [13]], defined ML as follows: ”A com-
puter program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P, im-
proves with experience E” [[13]. In the context of machine learning for weather predic-
tion, computer programs learn from past atmospheric observations (E), to predict future
weather states (T), and their accuracy (P) continuously improves as they are exposed to
higher-quality information. Unlike traditional programming, where input data is pro-
cessed by a program explicitly designed based on knowledge of a specific phenomenon
to produce results, ML-based systems are not programmed with predefined rules for a
particular task. Instead, they learn automatically from data and have the ability to evolve
and improve as more comprehensive records become available—an especially valuable
feature in an era of changing climate, where weather patterns are continuously shifting.
Additionally, this enables faster and more cost-effective model improvements, as adjust-
ments are based on data rather than physical laws and increased computational power.
Past weather observations have been collected for decades in extensive archives such as
ECMWEF’s Meteorological Archive System (MARS) and combined with NWP models to
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“fill in the blanks’ where data is incomplete. This process enables the accurate reconstruc-
tion of a rich record of global historical weather data, known as reanalysis data such as
ECMWF’s ERAS dataset. ERAS is a state-of-the-art global reanalysis product offering
atmospheric, surface, and oceanic variables spanning decades [14]. The dataset is freely
available through the Copernicus Climate Data Store, making it an invaluable resource
for scientists and researchers seeking to analyze historical weather patterns or validate
models. The goal of machine learning is to identify relationships between input features
and target outputs, which are then approximated into a model. In the context of MLWP,
during training, models learn patterns and dependencies within reanalysis data, such as
the relationships between variables defining initial states (e.g., temperature gradients) and
target outputs (e.g., wind movements), in order to approximate the underlying physical
processes. A machine learning model is "trained” by feeding historical data into an opti-
mization algorithm. This algorithm aims to minimize a loss function, which quantifies the
error between the model’s predictions and the actual values, thereby measuring how well
the model fits the data. The objective is to build a model that reduces this error as much
as possible. Once trained, the model can be used for inference to generate predictions on
new, unseen data, leveraging the learned relationships to approximate future outcomes.
ML-based methods also offer opportunities for increased efficiency, as they operate
on modern deep learning hardware rather than traditional supercomputers. This hardware
includes specialized processors like Graphics Processing Units (GPUs) and Tensor Pro-
cessing Units (TPUs), designed to handle the complex computations required for training
and executing machine learning models more effectively. Generating a ML-based 10-day
forecast takes less than a minute on a single GPU or TPU machine and consumes only a
fraction of the energy needed for a conventional approach, such as IFS, which typically
requires an hour of computation on a supercomputer that involves hundreds of machines

simultaneously [10].

2.3 GraphCast Model Overview

In a recent paper [9], Google DeepMind introduced GraphCast, a new global medium-
range deterministic weather forecasting system based on machine learning. The paper
presents a comprehensive performance evaluation of GraphCast against ECMWEF’s High-
RESolution (HRES) system, widely regarded as the most accurate operational determin-
istic weather simulation tool.

For clarity, it is important to note that with effect from Cy49r1, implemented after au-
tumn 2024, IFS ensemble control member is no longer referred to as High-RESolution
(HRES). Previously, IFS control member had a 9 km resolution (0.1 degree latitude-
longitude), while ensemble members had a coarser resolution of 18 km (approximately
0.162 degrees latitude-longitude near the equator). Thus HRES is now known as the
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ensemble control member of IFS whose output is equivalent to that of ex-HRES [12].
However, to align with the terminology used in the research paper by DeepMind [9], this
chapter will continue to refer to the IFS control member as HRES.

According to [9]], 1380 combinations of forecasts—spanning various meteorological
variables, at different atmospheric pressure levels, and prediction lead times—were used
to systematically evaluate the accuracy of HRES versus GraphCast, with GraphCast out-
performing HRES on 90% of these verification targets. Two different baseline datasets
were used to evaluate HRES and GraphCast forecasts: HRES-fcO served as the ground
truth for evaluating HRES forecasts, while ERAS was used when assessing GraphCast.
HRES-fcO ("HRES forecast at step 0”) is a ground truth dataset constructed by Google
DeepMind researchers to evaluate the skill of HRES in the research paper [9]]. This dataset
comprises the initial time step of each HRES forecast, at initialization times 00z, 06z, 12z,
and 18z |Z| (see Figure . For HRES-fc0 data, each time step corresponds to the HRES

forecast at lead-time 0, essentially providing an “initialization” from HRES.

Lead time
=
Oh 6h 12h18h ... ... 10d
0000 0000
G.h B-h 1éh18h . 3.75d
0ooo Ooooo
: 0;1 E»Ih 12h18h ... 10d

0ooo OO0

Oh 6h 12h18h ... ...3.75d

Dooo - Dooo

>

U - 4
R R

Validity time
[J HRES-fco O HRes

Figure 2.3: Schematic of HRES-fcO [9]. Each horizontal line represents a forecast made by
HRES, initialized at a different time (grey axis). In versions previous to Cy49r] HRES forecasts
initialized from 00z and 12z made predictions up to 10 days lead-time (blue axis), while HRES
forecasts initialized from 06z and 18z made predictions up to 3.75 days ahead. Each square repre-
sents a state predicted by HRES, in 6 hour increments (states in the middle of a forecast trajectory
are omitted from the schematic). Red squares represent the forecast at time O for each HRES fore-
cast and define the data points included in HRES-fc0. The brown axis represents the validity time
and allows visualizing the alignment of predictions from different initialization times.

7Zulu time (Z) is used to refer to UTC time. The notation 00z/06z/12z/18z indicates forecasts initialized
at 00:00/06:00/12:00/18:00 UTC respectively.
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Figure [2.4] shows GraphCast’s RMSE skill and skill score versus HRES for the year
2018, as presented in the DeepMind research paper [9]. The absolute RMSE represents
the raw error magnitude in predicting outcomes, where lower values indicate higher ac-
curacy. In contrast, the RMSE skill score normalizes the RMSE difference between the
two models, offering a relative measure of performance. Together, these metrics provide

a comprehensive view of GraphCast’s forecasting accuracy relative to HRES.

r) Skill (RMSE): 2t (K) s) Skill (RMSE): 10u (m/s)

2 4 6 8 10 2 4 6 8 10

v) Skill score (RMSE): 2t w) Skill score (RMSE): 10u
0.0 - .

0.00

—0.05 A

—0.10 A

Lead time (days) Lead time (days)
—— GraphCast —— HRES

Figure 2.4: Root Mean Square Error (RMSE) skill and skill score (y-axis) for GraphCast
(blue) and HRES (black) as a function of lead time for 2-meter temperature (2t) and 10-
meter u wind component (10u). ERA5 and HRES-fcO data from 2018 were used as ground
truth for GraphCast and HRES, respectively. Lower values indicate better performance. [9]].

The first row of Figure [2.4]displays the absolute RMSE values (y-axis) for GraphCast
(blue line) and HRES (black line) calculated using Equation 2.6 The plots also include
95% confidence interval error bars, which indicate the range within which the true RMSE
or RMSE skill score is expected to lie with 95% probability. The second row displays the
RMSE skill score (y-axis), derived as the normalized RMSE difference between Graph-
Cast and HRES using Equation [2.7). These graphs also include 95% confidence interval
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error bars for clarity. The x-axis in all graphs corresponds to forecast lead times, mea-
sured in 12-hour intervals over a 10-day period. Across all four graphs, the data indicates
that GraphCast consistently outperforms HRES. The absolute RMSE for GraphCast (blue
line) is lower than that of HRES across all lead times. Furthermore, the negative skill

score confirms that GraphCast demonstrates superior performance compared to HRES.

n

1
RMSEmo el — — i,model — Yi,baseline 2 2.6
del - Z(x smodel — Yibascline) (2.6)

i=1

Where:
* n: Total number of grid cells in the latitude-longitude grid.

* Yibaseline: Actual observed weather value from the baseline dataset: ERAS for
GraphCast or HRES-fcO for HRES, at the ¢-th grid cell.

* Z;model: Predicted weather value from the forecasting model (GC or HRES) for the

same 7-th grid cell.

RMSE. — RMSE
Skill Score = Go ARES (2.7)
RMSEpnRres

A vertical dashed line at 3.5 days marks the transition from HRES forecasts initial-

ized at 06z/18z to those initialized at 00z/12z, which explains the discontinuity observed
in GraphCast’s skill score curves. Skill scores up to 3.5 days are computed between
GraphCast (initialized at 06z/18z) and HRES’s 06z/18z initialization, while after 3.5 days
skill scores are computed with respect to HRES’s 00z/12z initialization. Each set of ini-
tial conditions (06z/18z vs. 00z/12z) comes from a slightly different observational dataset
and assimilation process. This can cause subtle differences in forecast accuracy. Since
the RMSE skill score is a normalized difference between GraphCast’s RMSE and HRES’s
RMSE, any significant change in HRES’s RMSE after the transition can cause a notice-
able discontinuity in the skill score curve.

The following paragraphs provide an in-depth description of the GraphCast model,

detailing its architecture and forecasting process.

2.3.1 Autoregressive Forecast Generation, Grid State Representa-
tion and Modeled Weather Variables
GraphCast predicts global weather conditions up to 10 days in advance in under one

minute employing a single Google Cloud TPU v4 device [°| [9]. To generate forecasts,

GraphCast requires input from the two most recent states of Earth’s weather—the current

8 A Google Cloud TPU v4 is a specialized type of Tensor Processing Unit (TPU) developed by Google.
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state and the state from six hours prior. Based on these consecutive inputs, GraphCast
predicts the next weather state, six hours ahead [9]. Like traditional NWP-based systems,
GraphCast employs an autoregressive forecast generation process: its prediction cycle
can be repeated iteratively, using each newly predicted state as the “current” weather
state and the previous prediction as the state from six hours earlier. By feeding its own
forecasts back in as input, a process known as “autoregressive roll-out” (Figure [2.5c),
GraphCast can produce a 10-day sequence of weather states, with updates provided in 6-
hour increments [9]. A single weather state, both as input (Figure [2.5p) and as forecasted
output (Figure [2.5p), is represented by a cell with a spatial resolution of 0.25° latitude
by 0.25° longitude. This resolution creates a global grid comprising 721 cells along the
latitude axis and 1440 cells along the longitude axis, resulting in a total of 721 x 1440 =
1,038, 240 grid points that span the entire Earth’s surface [9]. At the equator, each grid
cell covers an area of approximately 28 x 28 square kilometers. However, due to the
Earth’s curvature, the distance covered by each degree of longitude decreases as latitude
increases. As a result, each 0.25° x 0.25° grid cell represents a progressively smaller
area (in square kilometers) as you move from the equator toward the poles. Each cell on
the grid represents a vertical slice of the atmosphere, 0.25 degrees wide in latitude and
longitude, to which a specific set of surface and atmospheric variables (listed in Table

is associated [9]].
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a) Input weather state b) Predict the next state c) Roll out a forecast

@ @
Figure 2.5: GraphCast Model Schematic [9]]. (a) Input grid constituted of single input weather
states on 0.25° latitude-longitude cells comprising a total of 721 x 1440 = 1, 038, 240 grid points.
Yellow layers in the close-up window represent the 5 surface variables. Blue layers represent the 6
atmospheric variables, repeated at 37 pressure levels (546 x 37 = 227 variables per point in total),
resulting in a global weather state representation of 235, 680, 480 values used as starting point to
generate the forecasts. (b) GraphCast predicts the next state of the weather on the grid 6 hours into
the future. (c) Autoregressive generation of a forecast (roll-out): GraphCast is iteratively applied
to the previous forecast and the state before to predict the new state. (d) The Encoder maps
two consecutive regions from the latitude-longitude grid to a node representation on the multi-
mesh. (e) The Processor performs message-passing on the multi-mesh, enabling simultaneous
local and large-scale information propagation. (f) The Decoder maps the learned features back
to the grid, providing a prediction for the next time step as a residual update. (g) The multi-
mesh is derived from a regular icosahedron dividing each triangular face recursively into 4 smaller
triangles. Starting with the base mesh (M), with 12 nodes, the process ends with the final mesh
(M), which consists of 40,962 nodes. This creates a flat hierarchy with varying edge lengths

across resolution levels, allowing simultaneous message-passing across multiple resolutions while
maintaining a consistent structure.

The yellow square in the close-up window in Figure [2.5] a) represents the 5 surface

variables modeled by GraphCast, while the blue squares denote the six atmospheric vari-
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ables, repeated across 37 different pressure levels. These values provide a comprehensive

view of weather states, both at the Earth’s surface and throughout the atmosphere at var-
ious altitudes. With a total of 5 + 6 x 37 = 227 values per cell, this yields a global
representation of Earth’s weather state comprising 227 x 1,038, 240 = 235, 680, 480 val-

ues [9]. Table [2.1] synthesizes all the weather variables and pressure levels modeled by

GraphCast, which are also listed and briefly detailed below.

Surface Variables:

1.

2-meter temperature (2t) — Air temperature measured at a height of 2 meters above
the ground (K).

10-meter u wind component (10u) — The horizontal wind component in the east-
west direction at 10 meters above the ground (m s™1), positive u for winds from the

east, negative u for winds from the west.

10-meter v wind component (10v) — The horizontal wind component in the north-

south direction at 10 meters above the ground (m s~!).
Mean sea-level pressure (msl) — The atmospheric pressure at sea level (hPa).

Total precipitation (tp) — The accumulated precipitation (rainfall or snowfall) over

6 hours (m).

Atmospheric Variables:

1.

2.

Temperature (T) — Air temperature at each atmospheric pressure level (K).

U component of wind (U) — The east-west component of wind at different pressure

levels (m s~ 1).

.V component of wind (V) — The north-south component of wind at different pres-

sure levels (m s™1).

Geopotential (z) — Gravitational potential energy per unit mass at a given pressure

level (m? s—2).

. Specific humidity (q) — The amount of water vapor per unit mass of air at a given

pressure level (kg kg™1).

Vertical wind speed (w) — The speed of vertical air movement at each pressure
level (m s=1). Vertical wind speed indicates whether air is rising (positive w) or

sinking (negative w).
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Pressure Levels:

Each pressure level represents a specific value of atmospheric pressure in hPa (hectoPas-
cals), which corresponds to a certain height. These heights are not fixed, as atmospheric
pressure varies depending on factors such as temperature and density. For instance, the
1000 hPa level represents the altitude at which the atmospheric pressure is 1000 hPa in
that particular forecast.

¢ 1000 hPa to 850 hPa — Near-surface levels
¢ 800 hPa to 500 hPa — Mid-levels
* 450 hPa to 200 hPa — Upper levels

* 150 hPa to 1 hPa — Very high levels

Surface Variables (5) Atmospheric Variables (6) | Pressure Levels (37)

2-meter temperature (2t) Temperature (T) 1,2,3,5,7,10, 20, 30, 50, 70,
10-meter u wind component (10u) | U component of wind (U) 100, 125, 150, 175, 200, 225,
10-meter v wind component (10v) | V component of wind (V) 250, 300, 350, 400, 450, 500,
Mean sea-level pressure (msl) Geopotential (z) 550, 600, 650, 700, 750, 775,
Total precipitation (tp) Specific humidity (q) 800, 825, 850, 875, 900, 925,
Vertical wind speed (w) 950, 975, 1000

Table 2.1: Weather variables and pressure levels modeled by GraphCast [9]. Pressure levels
are expressed in hPa (hectoPascal).

2.3.2 Graph Neural Network Architecture

GraphCast model architecture is implemented as a Graph Neural Network (GNN) which
follows an “encode-process-decode” sequence to generate forecasts [9]. GNNs are partic-
ularly effective in modeling data with spatial dependencies, as they can capture arbitrary
sparse patterns of spatial interactions. This makes them especially suitable for modeling
weather dynamics, which are characterized by intricate interdependencies across differ-
ent regions of the Earth [9]. In GNNs, data is structured as a graph, where each region
of interest (point on the grid) is represented as a node. The interactions between these
regions—such as how one region’s weather affects another—are represented as edges
connecting these nodes [9]. The internal “multi-mesh” graph representation (Figure [2.5g)
allows capturing dependencies between nodes (regions) that span large distances within
a few message-passing steps [9]. This enables the model to learn the underlying weather
state without being computationally expensive. A critical distinction of the multi-mesh
representation is its homogeneous spatial resolution, meaning it provides a consistent

level of detail across the entire globe [9]. This stands in contrast to the latitude-longitude
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grid, which suffers from a non-uniform distribution of grid points. In a latitude-longitude
grid, as one moves toward the poles, the grid cells shrink, resulting in higher resolution
and more computationally expensive processing in polar regions. GraphCast’s multi-mesh
representation, by contrast, avoids this issue, as it maintains a uniform resolution across
the globe and does not suffer from the disproportionate computational load at higher lat-
itudes. In addition, the traditional latitude-longitude grid tends to constrain interactions
with adjacent regions, in contrast, GraphCast can model arbitrary sparse interactions,
meaning that weather dependencies between regions that are not directly adjacent can
still be modeled.

The multi-mesh graph used in GraphCast is derived from a regular icosahedron, a
geometric shape with 12 nodes, 20 faces, and 30 edges. To create the final multi-mesh
structure, each triangular face of the icosahedron is recursively subdivided into 4 smaller
triangles [9]. Each refinement step is repeated six times and increases the number of faces
and edges by four while maintaining the overall structure. Starting with the base mesh
(denoted as MY), which contains 12 nodes, the process culminates with the final mesh
(M), which consists of 40,962 nodes (Figure ) [9]. The refinement process results
in a series of meshes with increasingly higher resolution, preserving all the edges of each
intermediate mesh from MY to M° [9]. This creates a flat hierarchy of edges, where the
edges at each level have varying lengths depending on the mesh resolution, but the overall
structure remains consistent across all levels. The hierarchical nature of the multi-mesh
structure enables message-passing over edges that span multiple levels of resolution [9].
During the message-passing process, information flows from node to node through the
edges, and all edges are treated as bi-directional, meaning each edge is counted twice,
once for each direction. The learned message-passing occurs simultaneously across all
mesh levels (Figure [2.5fg) [9]. As a result, each node is updated based on information
from all of its incoming edges, regardless of which mesh level those edges belong to.
This allows the model to learn from high-resolution and low-resolution interactions at the
same time, leveraging both fine-grained local details and coarse global patterns. The table
below provides the number of nodes, faces, and edges (including multilevel edges) for the

multi-mesh structure at each refinement level from level 0 (M) to level 6 (M©).
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Refinement Level | Num Nodes | Num Faces | Num Edges | Num Multilevel Edges
0 12 20 60 60
1 42 80 240 300
2 162 320 960 1,260
3 642 1,280 3,840 5,100
4 2,562 5,120 15,360 20,460
5 10,242 20,480 61,440 81,900
6 40,962 81,920 245,760 327,660

Table 2.2: Multi-mesh refinement statistics [9)]. Number of nodes, faces, edges, and multilevel
edges for each refinement level, from the base mesh (level 0) to the final mesh (level 6) used in
GraphCast. The multi-mesh structure undergoes recursive refinement, resulting in progressively
higher resolution and more complex connections between nodes at each level.

GraphCast architecture is characterized by an “encode-process-decode” configuration:

* The Encoder (Figure [2.5] point d, and Figure [2.6] point a) component maps two

consecutive input regions on the latitude-longitude grid (green boxes), to a node
representation on the multi-mesh internal graph (green, upward arrows which ter-

minate in the green-blue node).

This component uses a single GNN layelﬂ which transforms the input data (surface

and atmospheric variables) in node attributes on the multi-mesh.

The Processor (Figure point e, and Figure point b) performs learned
message-passing on the multi-mesh (heavy blue arrows that terminate at a node)

using 16 unshared GNN layers.

Unlike hierarchical approaches, the processor does not require explicit hierarchy
between higher and lower resolution edges, thus enabling simultaneous local and

large-scale information propagation with few message-passing steps.

The Decoder (Figure [2.5] point f, and Figure [2.6] point c) component maps the
learned features on the multi-mesh (purple nodes) back onto the grid representation

(red, downward arrows which terminate at a red box).

The output is presented as a prediction for the next time step, expressed as a residual

update to the most recent input state.

This component uses a single GNN layer, similar to the encoder, to translate the

processed features into a forecasted state.

°A layer in a Graph Neural Network (GNN) applies graph-specific operations resulting in feature trans-
formations, such as message passing or mapping features from the latitude-longitude grid to the multi-mesh

representation and back

27



a) Encoder b) Processor ¢) Decoder

g
e
= |

ZATIEEE, AR
Gﬂam THY

4

Figure 2.6: Close-up on Encoder, Processor, Decoder, and simultaneous multi-mesh
message-passing [15]. (a) The Encoder maps pairs of adjacent latitude-longitude regions to
node representations on the multi-mesh. (b) The Processor enables simultaneous local and large-
scale information propagation via message-passing. (c¢) The Decoder transforms learned features
back to the grid, predicting the next time step as a residual update. (d) The multi-mesh, de-
rived from an icosahedron, recursively subdivides each triangular face into four, progressing from
a 12-node base mesh (M?) to a 40,962-node final mesh (M%). This structure enables efficient
multi-resolution message-passing while maintaining consistency.

2.3.3 Training Process and Details

GraphCast was trained to minimize the Mean Squared Error (MSE) between its pre-
dicted weather state and the corresponding weather state from ECMWEF’s ERAS reanaly-
sis dataset which served as ground truth (see Equation [2.8]). DeepMind researchers split
ERAS data from 1979 to 2021 into two sets: a “development set” used for training, which
included 39 years of historical weather observations from 1979 to 2017, and a “test set”
covering the years 2018-2021, used to evaluate the model’s performance [9)]. The only
difference between the two datasets is that the development set comprises only dates ear-
lier than those in the test set. To prevent bias, neither the researchers nor the training
software were allowed to access data from the test set until the development phase was
completed [9]. This ensured that all decisions made regarding the model’s architecture
and training process could not use any future information, preserving the integrity of the

evaluation.

n

L
MSE = ~ > (@i — ) (2.8)

=1
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Where:

* n: Total number of grid cells in the latitude-longitude grid.

* 9, Actual observed weather value from the ERAS reanalysis for the ¢-th grid cell.
* z;: Predicted weather value from the GraphCast model for the same i-th grid cell.

To account for the varying importance of different pressure levels, the MSE, also
known as the objective or loss function, was averaged and weighted by vertical level
[9]. For each atmospheric variable measured at multiple pressure levels, the MSE was
calculated by taking into account the weight of each pressure level, using a weighted
average. Heavier weights were assigned to levels closer to the surface, while lighter
weights were given to higher levels (as shown in Figure[2.7). This approach ensured that
levels closer to the ground had a greater influence on the final error calculation. The lower
atmosphere is denser, concentrating more mass and energy, and most weather events, such
as storms and rain, occur near the surface. Therefore, variables predicted at lower (in
terms of height) pressure levels (like 850 to 1000 hPa) are more relevant for day-to-day

weather forecasting.
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Figure 2.7: Loss weights used during model training [9]. (a) Vertical loss weights for atmo-
spheric variables, prioritizing lower pressure levels near the surface. (b) Loss weights for surface
variables, with 2-meter temperature (2t) assigned the highest weight (1.0) due to its importance,
while other variables (10u, 10v, msl, tp) were weighted at 0.1 for balanced training.

Additionally, specific weights were assigned to each surface variable to reflect their
relative importance in the error calculation process. During model training, the loss
weights for surface variables were adjusted to ensure that no single variable dispropor-
tionately influenced the model’s overall performance [9]. 2-meter temperature (2t), being
directly measurable and highly influential on weather conditions that affect daily life, was

assigned a higher weight (1.0). In contrast, smaller weights (0.1) were assigned to the
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other atmospheric variables: 10-meter u wind component (10u), 10-meter v wind compo-
nent (10v), mean sea-level pressure (msl), and total precipitation (tp) (Figure 2.7). This
weight adjustment ensured a balanced and fair training process, allowing the model to
give appropriate attention to all variables [9].

As GraphCast’s final model was designed to predict weather variables over multiple
forecasting steps, an autoregressive training regime was employed [9]. In this regime, the
model’s predicted state for a given time step was used as input to predict the subsequent
time step, creating a feedback loop. The number of autoregressive steps was increased
incrementally from 1 to 12 (i.e., six hours to three days) throughout training [9]]. The error
between GraphCast’s predicted state and the corresponding ERAS state was computed
for each of the 12 autoregressive steps. The gradients of these errors with respect to
the model parameters were then backpropagated through the entire sequence of model
iterations using a technique known as Backpropagation Through Time (BPTT) [9].

Backpropagation is a fundamental technique for training artificial neural networks
[16]. It involves the backward adjustment of model parameters, such as the weights as-
signed to edges connecting neurons, to minimize the cost function (see Figure [2.8)) [16].
In the context of GraphCast’s GNN architecture, the weights influencing the output of
each node were iteratively updated through the network for each of the 12 steps in the

forecasting sequence [9].

Input Hidden Layer(s) Output
Layer Layer

Difference in
desired values

Backprop output layer

Figure 2.8: Illustration of the backpropagation process in a neural network [17]. The error,
calculated as the difference between the desired and predicted values, is propagated backward to
update the weights (I¥) in the previous layers.

Backward error propagation works hand-in-hand with gradient descent, a standard

optimization algorithm in machine learning that directs the search for parameter values
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to minimize the cost function. It uses the gradient, a mathematical measure of the slope
or steepness of the cost function, to guide updates to the model’s parameters [[16]. The
gradient indicates the direction of the steepest ascent of the function, while the negative

gradient points in the direction of the steepest descent [[16].
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Figure 2.9: Visualization of gradient descent optimization [18]]. Starting from the initial
weights, the algorithm uses the gradient (%) to iteratively adjust the weights, moving step by
step towards the global minimum of the cost function (loss function). Each step minimizes the
cost, guiding the model parameters closer to the optimal solution.

During each training iteration, the partial derivative (gradient) of the loss function
with respect to each weight is computed. Subsequently, the weights are adjusted by sub-
tracting a multiple of the gradient. This multiple is determined by a learning rate, a
hyperparameter that controls the magnitude of the updates. The updates ensure that each
parameter is modified in proportion to its contribution to the total error, gradually moving
the model towards a local or global minimum of the loss [16]. In GraphCast’s GNN ar-
chitecture, weight adjustments occur across all 18 layers starting at the last layer (output
layer), the one employed by the decoder to map input variables to node attributes on the
“multi-mesh”. It then moves through all the 16 processor layers, which are responsible
for message-passing within the multi-mesh representation. Then, it reaches the encoder’s
first layer (input layer), which is closest to the input lat-lon grid [9]]. Through this itera-
tive refinement, the model progressively enhances its predictive accuracy, minimizing the
discrepancy between its outputs and the target values.

To facilitate research and practical applications, DeepMind has open-sourced three
pre-trained versions of the GraphCast deterministic model, along with demonstration
code for their implementation, available in their (GitHub repository. These pre-trained

models—GraphCast, GraphCas_small, and GraphCast_operational—vary in resolution,
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pressure levels, and training data, catering to different computational and operational
needs (Table [2.3)). In this study, the provided code was adapted and used to implement a
selected pre-trained model and generate forecasts. The predictions obtained were subse-
quently compared to the IFS ensemble control forecasts to assess performance. A detailed
evaluation of these forecasts is presented in Chapter 4, while Chapter 3 (Methodology)
outlines the modifications made to the original implementation to optimize it for opera-
tional forecasting. Below is an overview of the available pre-trained GraphCast models,
highlighting their key differences and intended use cases.

Graphcast pre-trained model versions are available for loading from the Google Cloud
Bucket and include GraphCast, GraphCast_small, and GraphCast_operational, which are
summarized in Table [2.3] GraphCast is the full-scale version of the model, featuring
a high resolution of 0.25 degrees and 37 pressure levels. It utilizes a six-times refined
icosahedral mesh and was trained on ERAS data from 1979 to 2017. This is the version
introduced in the DeepMind paper on GraphCast [9], where it has been evaluated on data
from 2018 onward. GraphCast_small is a more compact variant designed for environ-
ments with limited computational resources, such as free Colab notebooks. It operates
at a lower resolution of 1 degree with 13 pressure levels and a five-times refined mesh.
Trained on ERAS data from 1979 to 2015, it has a smaller memory footprint but lower
performance compared to the full-scale version. GraphCast_operational is tailored for
real-world forecasting applications. It maintains the high resolution of 0.25 degrees and
operates with 13 pressure levels, utilizing the same six-times refined icosahedral mesh
as the full-scale version. The model was trained on ERAS data from 1979 to 2017 and
further fine-tuned on HRES-fc0 data from 2016 to 2021. Unlike the other versions, which
require ERAS data as input, this model must be initialized directly from HRES-fcO data

and can be evaluated on data from 2022 onward.

Model Resolution | Pressure Levels | Mesh Refinement Level | Training Data

GraphCast 0.25° 37 6 ERAS5 (1979-2017)

GraphCast_small 1° 13 5 ERAS5 (1979-2015)

GraphCast_operational | 0.25° 13 6 ERAS5 (1979-2017) - HRES-fc0 (2016-2021)

Table 2.3: Summary of Pre-trained GraphCast Model Versions. Differences in reso-
lution, pressure levels, mesh refinement, and training data. GraphCast is the standard high-
resolution model, GraphCast_small is optimized for lower computational resources, and Graph-
Cast_operational is fine-tuned for real-world forecasting, maintaining high resolution while in-
corporating additional fine-tuning on HRES-fcO data for improved performance in operational
settings.
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Chapter 3

Methodology

The primary objective of this thesis was to evaluate the capabilities of GraphCast in its
publicly available form for operational forecasting in the context of energy trading. In
particular, forecasts of wind speed and temperature were generated up to 48 hours into the
future, a critical time window for energy production estimates used in trading strategies.
By relying solely on open-source data, pre-trained models, and publicly available code,
this study aims to provide a cost-effective and replicable demonstration of GraphCast
implementation subject to real-world operational constraints.

Among the open-sourced pre-trained versions described in Chapter 2 (Table [2.3),
GraphCast_operational was selected as it is optimized for real-world applications. Un-
like other GraphCast versions, which rely on historical data (ERAS) for training and ini-
tialization, GraphCast_operational initializes forecasts using HRES-fc0 (see Figure[3.1]in
Chapter 2), a dataset derived from ECMWF IFS initialization data (forecast outputs at
lead-time 0). This data is made available in near real-time through the ECMWF Produc-
tion Data Store (ECPDS). Additionally, GraphCast_operational retains the high resolution
of the full-scale version (0.25° spatial resolution, 13 pressure levels), aligning with the
resolution of ECMWF’s publicly available IFS operational deterministic forecasts, which
enables a meaningful and direct evaluation.

This chapter provides an overview of the methodology adopted to implement Graph-
Cast_operational and generate the forecasts analyzed in Chapter 4. The modifications to
the publicly available demonstration code primarily focused on two key aspects: (1) inte-
grating custom input datasets, and (2) producing forecasts up to 10 days ahead, starting
with an input dataset containing only two time steps—a capability not supported by the

demo.
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3.1 Starting Point: GraphCast Repository

The starting point for this work was the GraphCast GitHub repository provided by Google
DeepMind. This repository includes a demonstration codebase that can be executed in
Colaboratory| to run and train GraphCast.

The demo illustrates examples of:

* Loading example input datasets.

Loading three different pre-trained model versions (Table[2.3) and associated model

weights.

Loading normalization data.

Generating predictions based on these configurations.

Training the model.

Several example datasets are available for loading through the demo, collected from
two different sources: ERAS and HRES[| operational forecasts archive stored in the
ECMWEF Production Data Store (ECPDS). These datasets come with different resolu-
tions (0.25° and 1°) and pressure levels (13 and 37), and cover a varying number of time
steps. The resolution and number of pressure levels of the model version must match
those of the input data. Therefore, not all combinations of models and input datasets are
available. GraphCast and GraphCast_small, models 1 and 2 of Table[2.3] are designed to
be initialized with ERAS data, and thus require precipitation as input. All models pre-
dict precipitation, however, the ERAS dataset includes the total_precipitation_6hr variable
(cumulative precipitation over a 6-hour period), while the HRES data does not. Graph-
Cast_operational (model 3) does not depend on precipitation, as it is specifically trained
to use HRES-fcO data as input, which does not include this variable.

In GraphCast, the input variables on the latitude-longitude grid are normalized to have
zero mean and unit variance. The learned features on the multi-mesh are also normalized
when mapped back to the grid as a residual update to the previous state, ensuring unit
variance on the residuals. Zero mean normalization shifts the data’s average to zero by
subtracting the mean from each value. This prevents a skewed central tendency, which
could introduce bias in the model’s predictions. By centering the data, the model can
focus more on the relationships between variables, rather than any specific offset or base-

line. Unit variance scaling standardizes the data by dividing each value by its standard

To maintain consistency with the original terminology, we will continue to refer to IFS’s control mem-
ber as HRES. However, as previously mentioned, starting from Cycle 49r1, IFS’s control member is no
longer referred to as "High-RESolution”. It is now known simply as the ensemble control member of IFS,
with output equivalent to that of the former HRES.
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deviation, ensuring all features have the same scale. This promotes uniformity in the mag-
nitude of features, making the optimization process more stable during training. Without
consistent variance, some features could dominate the learning process, making it harder
for the model to learn the relationships between all variables. By scaling the data to unit
variance, the model can learn from all features equally, improving the convergence of the
gradient descent algorithm.

GraphCast normalization statistics include specific datasets that can be loaded along

with the pre-trained model weights and example inputs from the Google Cloud Bucket:

* diffs_stddev_by_level: standard deviations of the differences at each pressure level.
* mean_by_level: mean values at each level.

* stddev_by _level: standard deviations at each level.

3.2 Code Modifications

The key modifications made to the publicly available demonstration code for deploying
the GraphCast_operational model were implemented to extend the forecast capabilities
of the demo. The original example implementation is limited in its ability to generate
forecasts for multiple time steps in the future, as it requires input datasets containing all
the required time steps for a given forecasting horizon. To obtain a prediction for just
one time step ahead (6 hours) the demo needs an input dataset containing at least three
consecutive time steps (e.g., 00z, 06z, 12z). The first two time steps are used as model
inputs, while the third time step is included only to maintain the correct structure to store
the final forecasts. Additionally, higher-resolution example input datasets are only avail-
able for fewer time steps due to the memory requirements of loading them, making it
practically impossible to obtain high-resolution forecasts for multiple time steps in the
future using the Colab-based implementation. When run in Colab, the demo code allows
predictions using the small GraphCast model on 1-degree resolution data for up to 4 steps
ahead. Forecasts using the other higher-resolution models are available for shorter time
steps, a limitation inherent to the Colab environment’s constraints. In an operational set-
ting, this approach would result in significant data redundancy and inefficiencies. For
instance, to generate forecasts up to 48 hours ahead (8 time steps), the would demo re-
quire an input dataset covering at least 10 time steps, which is impractical in real-world
forecasting environments.

To overcome these constraints, custom logic was developed to enable GraphCast to
generate long-range forecasts (up to 10 days) while requiring only two time steps of in-
put data. Instead of relying on pre-existing datasets with multiple time steps, the code

developed in this research dynamically expands the input data, maintaining GraphCast’s
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expected initialization structure while reducing unnecessary storage and computational
overhead. The solution consists of creating future time steps dynamically, using null
placeholders. The last available time step from the input dataset is identified, and future
timestamps are generated in 6-hour increments to match the forecast horizon. A new
dataset is initialized with the same variable structure as the original input, but with miss-
ing values for the additional time steps. All relevant meteorological variables, such as
wind speed and temperature, are replicated in this extended data structure, which is then
concatenated with the original input along the time dimension, preserving the expected
initialization structure while minimizing the required input data. The resulting dataset is
then passed to GraphCast’s autoregressive inference process, where the model iteratively
replaces the null placeholders with predicted values during the forecast rollout. This im-
plementation brings several advantages. First, it reduces input data requirements, making
it possible to generate forecasts up to 10 days ahead with only a two time steps initializa-
tion dataset. Second, it minimizes storage and computational requirements, significantly

improving GraphCast’s usability for real-world applications.
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Figure 3.1: Global 2-meter temperature prediction obtained by running the Graph-
Cast_small model on Colab. The image shows: (up) target 2-meter temperature values in
Kelvins (K) from the ERAS dataset at 1-degree resolution for 2022-01-01 at 06z, (center) Graph-
Cast forecasts for the same time, day, and resolution, and (down) the difference between the two.

The HRES-fcO dataset needed for initialization was replicated by retrieving HRES
operational forecasts at O-hour lead-time for each initialization time 00z, 06z, 12z, and
18z from the ECPDS for the period from the 8th of March, 2024, at 00z to the 29th of
August, 2024, at 00z. The final implementation of the GraphCast_operational pre-trained
model was executed using custom HRES-fc( datasets as initialization data. Each forecast

sequence extended 48 hours into the future, covering 8 time steps (6 hours per step x 8
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= 48h = 2 days). For each initialization time (00z, 06z, 12z, and 18z), a corresponding
HRES-fc0 dataset was used, containing initial conditions from both the current run-time
and 6 hours prior. Forecasts were generated for the entire globe, covering all variables and
pressure levels modeled by GraphCast. These forecasts extended 48 hours ahead, with
outputs provided at 6-hour intervals (00z, 06z, 12z, and 18z). The resulting dataset spans
from March 8, 2024 (06z), to August 29, 2024 (18z), covering a period of approximately
six months (175 days).
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Chapter 4

Comparative Evaluation of GraphCast
and IFS Forecasts

4.1 Data Collection and Preprocessing

To enable a fair comparison between the outputs of GraphCast and ECMWEF’s IFS models
against observational data, a structured approach was followed for data collection, prepro-
cessing, and standardization. Forecasts and observations were aligned in terms of period
(8 March 2024, 00z to 29 August 2024, 00z), temporal resolution (6-hour intervals at
00z, 06z, 12z, and 18z), geographical coordinates, and key evaluation variables: 2-meter

temperature (2t) and wind speed expressed through 10-meter wind components (u and v).

Data Sources

Three primary datasets were used for evaluation:

* GraphCast forecasts: Predictions generated using the GraphCast operational

model.
* IFS forecasts: Operational forecasts retrieved from ECMWF’s ECPDS archive.

* Observational data: Ground truth measurements from six SYNOP stations in Italy.

Observational Data

The observational dataset, serving as the baseline for evaluating GraphCast against IFS
forecasts, consisted of daily 2-meter temperature (2t) and wind speed measurements
recorded at 6-hour intervals from six SYNOP stations across Italy (summarized in Ta-
ble . These observations, spanning from 8 March 2024, 00z to 29 August 2024, 00z,
were obtained from Meteomanz, an online platform providing access to historical meteo-

rological data.
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Region Station WMO Index | Latitude | Longitude
Piemonte Torino Caselle 16059 45.191847 | 7.650664
Emilia-Romagna Cervia 16148 44.223256 | 12.305817
Puglia Bari/Palese 16270 41.133014 | 16.750081
Sicilia Palermo Punta Raisi 16405 38.180594 | 13.096353
Sardegna Cagliari Elmas 16560 39.243372 | 9.060217
Calabria Lamezia Terme 16362 38.908303 | 16.253581

Table 4.1: SYNOP meteorological stations in Italy. The table lists the SYNOP stations
from which ground truth measurements of 2-meter temperature (2t) and wind speed were
retrieved. It includes their geographical coordinates and corresponding WMO (World Me-
teorological Organization) Index, a unique identifier used for standardized global weather
data reporting.

The selected SYNOP stations are geographically distributed across different regions
of Italy, ensuring coverage of various climatic conditions. Torino Caselle (Piemonte)
represents northern Italy, while Cervia (Emilia-Romagna) is located along the northern-
central Adriatic coast, experiencing a transitional climate influenced by both continental
and maritime conditions. The remaining four stations—Bari/Palese (Puglia), Palermo
Punta Raisi (Sicilia), Cagliari Elmas (Sardegna), and Lamezia Terme (Calabria)—are sit-
uated in southern Italy and along the major Mediterranean islands, where most of the
country’s wind farms are concentrated. According to the wind energy report by GSE (Ge-
store dei Servizi Energetici) [19], 97% of Italy’s wind capacity is located in the southern
regions, with Puglia alone accounting for a quarter of the national total, followed by Si-
cilia (18%), Campania (14%), Basilicata (13%), Calabria and Sardegna each contributing
10%. This geographic distribution makes these areas particularly relevant for studying
and optimizing meteorological forecasts for renewable energy production.

To ensure comparability with the forecast datasets, the observational data underwent
preprocessing to align its structure and temporal resolution with the model outputs. First,
temperature was converted from Celsius to Kelvin and wind speed from km/h to m/s, then
since the original dataset contained hourly measurements, it was filtered to include only
records corresponding to the forecasting time steps (00z, 06z, 12z, and 18z), ensuring
direct comparability. Additionally, latitude and longitude coordinates were appended to
each record based on the respective station’s location, preserving the geospatial consis-

tency required for the analysis.

IF'S Forecasts

IFS deterministic forecasts were retrieved from the IFS operational forecasts archive on
the ECPDS! To ensure consistency with GraphCast predictions, only the first 8 forecast

time steps were selected for each initialization time (00z, 06z, 12z, and 18z), covering the
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period from 8 March 2024, 00z to 29 August 2024, 00z. The variables of interest 2t (K),
10u (m/s), and 10v (m/s) were extracted and the u and v components used to compute
wind speed (m/s) following equation 4.1] The dataset was then filtered to match the lo-
cations of selected SYNOP stations, ensuring alignment with ground truth measurements

for evaluation.

GraphCast Forecasts

A similar procedure was applied to GraphCast forecasts, initially obtained at a global
scale for all modeled variables and pressure levels. The required fields—2t (K), 10u
(m/s), and 10v (m/s)—were extracted, and wind speed (m/s) was computed from the u
and v components used using Equation The data was then refined to align with the
locations of the SYNOP stations for consistency in evaluation.

Wind Speedmodel = \/uimodel + Ui%model [m/S] (41)
Where:

®* Ujmoder [M/s]: 10-meter u wind component (10u) value forecasted by the forecast-
ing model (GC or IFS).

* Ui model [M/s]: 10-meter v wind component (10v) value forecasted by the forecasting
model (GC or IFS).
Forecast Filtering to Avoid Overlap

To ensure a non-overlapping and structured evaluation of forecast performance, only fore-
casts initialized at midnight (00z) were selected for both GraphCast and IFS. The forecasts

were then filtered into two distinct 24-hour periods:

* Day 1 Forecasts (0-24h): The first four prediction time steps were retained: 06z,
12z, 18z, and 1 day 00z.

* Day 2 Forecasts (24—48h): The following four time steps were selected: 1 day 06z,
1 day 12z, 1 day 18z, and 2 days 00z.

This filtering approach ensures that forecasts do not overlap while allowing for a struc-
tured assessment of model performance at two key forecasting horizons: within the first
24 hours and from 24 to 48 hours.

Calculation of Metrics

Various statistical indicators were computed to assess the accuracy of the predictions pro-

vided by GraphCast and IFS. The Pearson correlation coefficient (r) was used to measure
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the linear relationship between predicted and observed values. This coefficient ranges
from -1 to 1, where values close to 1 indicate a strong positive correlation, while values
near 0 suggest little to no linear relationship. The correlation was computed using the

formula:

Y- 9)
VE@ - D - 0

where x; and y; represent the forecasted and observed values, respectively, and 7,

4.2)

r

y denote their respective means. To directly compare GraphCast and IFS, the correla-
tion between their predictions was also computed for both wind speed and temperature.
This analysis provided insights into the level of agreement between the two forecasting
methodologies, highlighting any systematic differences in their predictive patterns.

In addition to correlation, two key error metrics were calculated to quantify discrep-
ancies between predictions and actual observations: the Root Mean Square Error (RMSE)
and the Mean Absolute Percentage Error (MAPE). The RMSE provides a measure of the
average deviation between forecasted and observed values, expressed in the same units as

the analyzed variable:

1
RMSE = \/E > (@i — ) (4.3)

Where n is the total number of observations.
On the other hand, MAPE expresses the forecast error as a percentage relative to the
actual values, enabling a normalized evaluation of prediction accuracy:
100
MAPE = — >

n

Ty —Y;
Yi

These metrics were computed separately for wind speed and 2-meter temperature,

4.4)

allowing for an assessment of each model’s performance across both meteorological vari-

ables.

4.2 Results of the Comparative Evaluation

This section presents a comparative analysis of the performance of GraphCast and IFS
forecasts, leveraging statistical correlation measures and error metrics to assess predictive
accuracy. The evaluation covers a six-month period (March 8, 2024 — August 29, 2024),
encompassing a seasonally diverse timeframe that includes both spring and summer. This
period is particularly relevant for assessing wind speed forecasts, as it spans some of the
windiest months of the year (March to May) in several regions of Italy.

The following subsections detail the correlation and error analysis for 2-meter tem-

perature and wind speed forecasts, highlighting differences in model performance, spatial
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variations and the relative strengths of each forecasting system over short-term (0-24h)
and extended (24-48h) horizons.

4.2.1 Correlation Analysis

The accuracy of GraphCast and IFS forecasts was evaluated by computing the Pear-
son correlation coefficient (r), which quantifies the linear relationship between predicted
values and ground truth observations. Correlation values close to 1 indicate a strong
agreement between the forecast and the actual measurements, while lower values suggest
weaker predictive performance.

Two key aspects were analyzed:

* Model-to-observations correlation — Evaluating how closely GraphCast and IFS

forecasts align with ground truth data.

* Model-to-model correlation — Direct comparison between GraphCast and IFS,

assessing how similar their predictions are to each other.

The following tables present the Pearson correlation coefficients for 2-meter temper-
ature and wind speed forecasts, comparing GraphCast and IFS against ground truth and
highlighting their differences. They also show how the relative performance of the two
models evolves over time, with positive values indicating GraphCast’s increasing advan-

tage at longer lead times.
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2-Meter Temperature Forecasts

Station | Forecasting | Ground Truth | Ground Truth | GraphCast
Horizon & GraphCast & IFS & IFS
Torino 0-24h 0.983 0.973 0.988
24h-48h 0.982 0.971 0.989
Lamezia 0-24h 0.959 0.961 0.981
24h-48h 0.956 0.960 0.978
Cervia 0-24h 0.974 0.980 0.979
24h-48h 0.974 0.978 0.978
Bari 0-24h 0.942 0.917 0.990
24h-48h 0.946 0.914 0.986
Cagliari 0-24h 0.970 0.981 0.989
24h-48h 0.969 0.979 0.987
Palermo 0-24h 0.955 0.945 0.994
24h-48h 0.958 0.945 0.991

Table 4.2: Pearson correlation coefficients for 2-meter temperature forecasts. Com-
paring GraphCast and IFS against ground truth observations, and against each other,
across different forecasting horizons (0-24h and 24-48h). Higher values indicate a
stronger relationship between the predictions and actual measurements, reflecting bet-
ter forecast accuracy.

Station | Difference (GC - IFS, 24h) | Difference (GC - IFS, 48h) | Change in Difference (48h - 24h)
Torino +0.010 +0.011 +0.001
Lamezia -0.002 -0.004 -0.002
Cervia -0.006 -0.004 +0.002
Bari +0.025 +0.032 +0.007
Cagliari -0.011 -0.010 +0.001
Palermo +0.010 +0.013 +0.003

Table 4.3: Differences in Pearson correlation coefficients for 2-meter temperature
forecasts.. The first column shows the difference between GraphCast and IFS correlation
values with ground truth at the 24-hour forecast horizon, while the second shows the same
difference at the 48-hour. The third column indicates how this difference evolves over
time (48h - 24h). Positive values suggest a better performance by GraphCast, whereas
negative values favor IFS.

At first glance, the differences in correlation values between GraphCast (GC) and IFS at
the 24-hour and 48-hour forecast horizons suggest a balanced performance between the
two models. GraphCast shows higher correlation than IFS in Torino, Bari, and Palermo,

while IFS outperforms GC in Lamezia, Cervia, and Cagliari. This might indicate that
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both models perform similarly overall, each excelling in certain regions. However, the
true advantage of GraphCast becomes evident when examining how the relative differ-
ence between GC and IFS evolves over time. The "Change in Difference (48h - 24h)”
column provides valuable insight into how the predictive accuracy of each model de-
teriorates as the forecasting horizon increases. GraphCast demonstrates a more stable
predictive accuracy across all stations except Lamezia, as evidenced by the trends in cor-
relation differences. When GraphCast initially outperforms IFS (i.e., positive values in the
24h column), its advantage grows further at 48h. This pattern is seen in Torino (+0.010
— +0.011), Bari (+0.025 — +0.032), and Palermo (+0.010 — +0.013), indicating that
GraphCast either loses less correlation over time (Torino) or even improves while IFS de-
clines or stays the same (Bari and Palermo). Conversely, when IFS initially has a higher
correlation (i.e., negative values in the 24h column), the gap between the two models nar-
rows at 48h. In Cervia (-0.006 — -0.004) and Cagliari (-0.011 — -0.010), GraphCast’s
correlation remains stable (Cervia) or declines at a slower rate than IFS (Cagliari). This
means that even in cases where IFS starts with a higher correlation, its forecasts dete-
riorate more over time relative to GraphCast, favoring GraphCast over longer periods.
Lamezia is the only exception, where GraphCast’s correlation declines slightly more than
IFS’s over time (-0.002 — -0.004). Despite this, the broader trend remains consistent:
GraphCast demonstrates greater resilience in preserving predictive accuracy.

However, the extremely high correlation between GraphCast and IFS predictions in-
dicates that the two models follow similar predictive patterns, capturing comparable me-

teorological trends.
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Wind Speed Forecasts

Station | Forecasting | Ground Truth | Ground Truth | GraphCast
Horizon & GraphCast & IFS & IFS
Torino 0-24h 0.437 0.360 0.276
24h-48h 0.419 0.313 0.269
Lamezia 0-24h 0.813 0.821 0.894
24h-48h 0.818 0.800 0.884
Cervia 0-24h 0.585 0.609 0.720
24h-48h 0.563 0.613 0.668
Bari 0-24h 0.550 0.624 0.801
24h-48h 0.538 0.600 0.749
Cagliari 0-24h 0.696 0.773 0.797
24h-48h 0.679 0.751 0.754
Palermo 0-24h 0.657 0.673 0.875
24h-48h 0.658 0.638 0.817

Table 4.4: Pearson correlation coefficients for wind speed forecasts. Correlation coeffi-
cients for wind speed forecasts between ground truth, GraphCast, and IFS across different
stations and forecasting horizons.

Station | Difference (GC - IFS, 24h) | Difference (GC - IFS, 48h) | Change in Difference (48h - 24h)
Torino +0.077 +0.106 +0.029
Lamezia -0.008 +0.018 +0.026
Cervia -0.024 -0.050 -0.026
Bari -0.074 -0.062 +0.012
Cagliari -0.077 -0.072 +0.005
Palermo -0.016 +0.020 +0.036

Table 4.5: Differences in Pearson correlation coefficients for wind speed forecasts.
Variation in correlation between GraphCast and IFS relative to observed values across
different forecasting horizons.

As observed in temperature forecasts, the relative difference between GraphCast and IFS

wind speed correlation values shifts in favor of GC at longer forecasting horizons. While

IFS generally provides better predictions up to 24 hours ahead, for forecasts extending

from 24 to 48 hours, the performance becomes more balanced: GraphCast surpasses IFS

in Torino, Lamezia, and Palermo, while IFS maintains an advantage in Cervia, Bari, and

Cagliari. The Change in Difference (48h - 24h) column once again highlights a key

insight: while IFS may be more accurate in short-term wind speed predictions, GraphCast

is better at preserving its accuracy over longer timeframes. In Lamezia, for example,
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GraphCast starts slightly behind IFS at 24h (-0.008), however, over the next 24 hours,
GraphCast’s correlation increases by 0.005, while IFS declines by 0.021. As a result, by
48h, the difference reverses to +0.018 in favor of GraphCast. In Cervia, Bari, and Cagliari,
IFS maintains a stronger correlation at both 24h and 48h, however, even in these locations
(except for Cervia), IFS loses slightly more accuracy over time compared to GraphCast,
reducing its initial advantage.

The correlation values between GraphCast (GC) and IFS forecasts remain consis-
tently high but are notably lower for wind speed compared to temperature, indicating that
while both models generally capture similar predictive patterns for wind, greater discrep-
ancies emerge relative to temperature forecasts. This distinction is evident in Figure §.1]
where temperature correlations (red lines) remain stable and high across all stations, re-
flecting the smoother spatial and temporal variability of temperature. In contrast, wind
speed correlations (blue lines) exhibit pronounced spatial variability, with overall lower
values. Among the analyzed stations, Torino stands out with significantly lower wind
speed correlations. This can be attributed to topographical influences, local meteorolog-
ical variability, and the challenges models face in accurately resolving wind dynamics in

mountainous terrain.
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Figure 4.1: Comparison of correlation coefficients for wind speed and 2m temper-
ature forecasts across different stations and forecasting horizons. The figure shows
Pearson correlation values for GraphCast and IFS forecasts over 0—24h (top) and 24—48h
(bottom). Temperature correlations (red) remain high and stable, while wind speed cor-
relations (blue) vary more due to local turbulence and topographical effects. Solid lines
represent model-to-model correlations, while dashed lines indicate model-to-observation
correlations.

This difference likely arises from the greater complexity involved in predicting wind
speed, which is inherently more variable due to local turbulence, rapid fluctuations, and
finer-scale meteorological processes that are not fully resolved at the model’s spatial res-
olution. One key factor contributing to this discrepancy is the difference in resolution
between ground truth observations and model forecasts. SYNOP stations provide high-
resolution point measurements at specific locations, while GraphCast and IFS predictions
analyzed in this study are generated at a spatial resolution of 0.25° (around 28 km grid

cells). This means that when retrieving a forecast for a specific station, such as Torino
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Caselle (WMO 16059, 45.191847, 7.650664), the 10-meter u and v wind components,
from which wind speed is derived, represent an approximation over a 28 km area, rather
than an exact match to the point where the SYNOP station is located. As wind speed
is highly dependent on local topography and small-scale atmospheric disturbances, the
discrepancy between point-based ground truth measurements and grid-based forecasts is
likely larger than for temperature, which tends to vary more smoothly over larger areas.
Including temperature in the analysis serves as a valuable control variable, providing a
clearer understanding of the forecasting models’ performance and helping to contextual-
ize the lower correlation values observed for wind speed.

To further illustrate the correlation patterns discussed in this section, Figures §.2] to
present a selection of scatter plots comparing forecasted and observed values between
GraphCast and IFS for Cagliari and Lamezia. While Figures to show inter-model
correlations for Cervia, Bari and Cagliari. To maintain clarity and conciseness in this
section, only a subset of correlation plots has been included in the main text. A more
comprehensive set of scatter plots, covering the other analyzed SYNOP stations, is pro-

vided in the appendix for reference.
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Station: Cagliari Elmas - Wind Speed Correlation: 0.70 Station: Cagliari Elmas - 2m Temperature Correlation: 0.97
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Figure 4.2: Scatter plots of forecasted vs. observed wind speed and 2m temperature
values for Cagliari and Lamezia (0-24h). GraphCast (first and third row) and IFS (second
and fourth) predictions vs. observed ground truth values for Cagliari (first two rows) and Lamezia
(bottom rows). Wind speed (left, blue) and 2m temperature (right, red) are forecasted for 0-24h.
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Station: Cagliari Elmas - Wind Speed Correlation: 0.68 Station: Cagliari Elmas - 2m Temperature Correlation: 0.97
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Figure 4.3: Scatter plots of forecasted vs. observed wind speed and 2m temperature
values for Cagliari and Lamezia (24-48h). GraphCast (first and third row) and IFS (second
and fourth) predictions vs. observed ground truth values for Cagliari (first two rows) and Lamezia
(bottom rows). Wind speed (left, blue) and 2m temperature (right, red) are forecasted for 24-48h.
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Station: Cervia - Wind Speed Correlation: 0.72 Station: Cervia - 2m Temperature Correlation: 0.98
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Figure 4.4: Scatter plots of GraphCast vs. IFS forecasted wind speed and 2m tem-
perature values for Cervia, Bari and Cagliari (0-24h). Each subplot compares GraphCast
and IFS predictions against each other for Torino, Lamezia and Palermo, evaluating the agreement
between the two models. Wind speed is displayed in the left panels (blue) and 2m temperature in
the right panels (red), covering a forecasting horizon of 0-24h.
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Station: Cervia - Wind Speed Correlation: 0.67 Station: Cervia - 2m Temperature Correlation: 0.98
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Figure 4.5: Scatter plots of GraphCast vs. IFS forecasted wind speed and 2m temper-
ature values for Cervia, Bari and Cagliari (24-48h). Each subplot compares GraphCast
and IFS predictions against each other for Torino, Lamezia and Palermo, evaluating the agreement
between the two models. Wind speed is displayed in the left panels (blue) and 2m temperature in
the right panels (red), covering a forecasting horizon of 24-48h.

4.2.2 RMSE and MAPE Analysis

The evaluation of GraphCast and IFS forecasts using Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE) provides a detailed assessment of their pre-
dictive performance for 2-meter temperature and wind speed. RMSE measures absolute
deviations from observed values, while MAPE represents the relative percentage error.

Lower values for both metrics indicate better forecasting accuracy.
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2-Meter Temperature Forecasts

Table 4.6] and Figure 4.6 summarize the RMSE and MAPE values for 2m temperature

predictions across all stations and forecasting horizons.

Station | Forecasting Model MAPE (%) | RMSE (K)
Torino 0-24h GraphCast 0.46 1.63
IFS 0.52 1.97
24-48h GraphCast 0.46 1.63
IFS 0.55 2.04
Lamezia 0-24h GraphCast 0.90 3.02
IFS 0.90 3.04
24-48h GraphCast 0.85 2.86
IFS 0.91 3.07
Cervia 0-24h GraphCast 0.44 1.60
IFS 0.38 1.49
24-48h GraphCast 0.45 1.65
IFS 0.41 1.57
Bari 0-24h GraphCast 0.65 2.41
IFS 0.75 2.76
24-48h GraphCast 0.63 2.31
IFS 0.75 2.78
Cagliari 0-24h GraphCast 0.43 1.59
IFS 0.32 1.22
24-48h GraphCast 0.47 1.70
IFS 0.33 1.28
Palermo 0-24h GraphCast 0.41 1.69
IFS 0.46 1.84
24-48h GraphCast 0.43 1.70
IFS 0.46 1.84

Table 4.6: RMSE and MAPE for 2m temperature forecasts. RMSE and MAPE values
for GraphCast and IFS 2t predictions across different stations and forecasting horizons
(0-24h and 24-48h).
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Figure 4.6: Comparison of RMSE and MAPE for 2-meter temperature forecasts.
The figure illustrates the RMSE (left) and MAPE (right) for GraphCast (red) and IFS
(dark red) across multiple stations, highlighting differences in error trends between short-
term (0-24h) and extended (24-48h) forecasts.

Looking at short-term forecasts (0-24h), GraphCast generally exhibits slightly lower
RMSE and MAPE values than IFS, indicating a smaller deviation from actual observa-
tions. The most significant differences appear in Bari, where GraphCast records an RMSE
of 2.41 K and a MAPE of 0.65%, compared to IFS with 2.76 K and 0.75%, and Cagliari
where GraphCast records an RMSE of 2.41 K and a MAPE of 0.65%, compared to IFS
with 2.76 K and 0.75%. In Cagliari and Cervia, IFS outperforms GraphCast with lower
error values, making it the more accurate model in these regions. In Lamezia, for 0-24
both models perform similarly with nearly identical RMSE and MAPE values; however,
it is notable that this station consistently exhibits higher error values than other stations.
This could be attributed to local meteorological conditions or geographical factors that in-
crease forecast uncertainty. Over longer forecast horizons (24—48 hours), the trend shifts
slightly. In several locations—Bari, Cervia, Lamezia, and Torino—the relative differ-
ences between MAPE and RMSE values between GraphCast and IFS shift in favor of GC

over the longer horizon. Specifically, in Bari, Lamezia, and Torino, where GC already
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outperforms IFS in the short term, the advantage increases at 24—48h. This improvement
stems from either stable (Torino) or decreasing (Bari, Lamezia) GC errors, while IFS
errors increase. In Cervia, although IFS maintains a lower MAPE and RMSE, the gap
narrows (from +0.06 to +0.04) as GC’s error grows more slowly than IFS’s. Conversely,
in Cagliari and Palermo, IFS’s advantage widens over time due to GC’s more pronounced
error growth. Overall, these results confirm that while IFS may have a slight edge in cer-
tain locations, GraphCast demonstrates greater stability over time, with less degradation

in predictive accuracy for extended forecasts.

Wind Speed Forecasts

Table |4.7|and Figure |4.7|display the RMSE and MAPE values for wind speed predictions
across all stations and forecasting horizons. Unlike temperature forecasts, wind speed
predictions exhibit higher errors overall, with notable differences between forecasted and
observed values for both GraphCast and IFS.
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Station | Forecasting Model MAPE (%) | RMSE (m/s)
Torino 0-24h GraphCast 56.1 1.34
IFS 474 1.18
24-48h GraphCast 55.8 1.33
IFS 49.0 1.21
Lamezia 0-24h GraphCast 52.7 2.51
IFS 53.9 2.55
24-48h GraphCast 52.5 247
IFS 54.7 2.56
Cervia 0-24h GraphCast 40.2 1.60
IFS 37.2 1.50
24-48h GraphCast 41.1 1.64
IFS 374 1.50
Bari 0-24h GraphCast 53.3 1.91
IFS 63.9 2.34
24-48h GraphCast 47.5 1.73
IFS 62.7 2.30
Cagliari 0-24h GraphCast 44.0 2.08
IFS 28.2 1.44
24-48h GraphCast 44.9 2.13
IFS 29.6 1.52
Palermo 0-24h GraphCast 42.8 2.13
IFS 42.2 2.17
24-48h GraphCast 434 2.15
IFS 43.8 2.26

Table 4.7: RMSE and MAPE for wind speed forecasts. Comparison of GraphCast and
IFS across different stations and forecasting horizons (0-24h and 24-48h).
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Figure 4.7: Comparison of RMSE and MAPE for wind speed forecasts. The figure
presents the RMSE (left) and MAPE (right) for GraphCast (blue) and IFS (dark blue)
across different SYNOP stations and forecasting horizons (0-24h and 24h-48h). Lower
RMSE values indicate better predictive accuracy, while lower MAPE percentages reflect
reduced relative error.

In the short-term forecasts (0-24h), IFS generally outperforms GraphCast in most
stations with lower RMSE and MAPE values, reflecting better absolute and relative pre-
dictive accuracy. For instance, in Cagliari, IFS significantly surpasses GraphCast, with a
notably lower RMSE (1.44 m/s vs. 2.08 m/s) and MAPE (28.2% vs. 44.0%). Bari is a
key exception, where GraphCast performs better, recording an RMSE of 1.91 m/s and a
MAPE of 53.3%, whereas IFS shows higher errors (2.34 m/s and 63.9%).

Over the extended forecast horizon (24—48h), the trends balance out, with IFS main-
taining lower RMSE and MAPE values in Torino, Cervia, and Cagliari, while GraphCast
performs better in Lamezia, Bari, and Palermo. GraphCast generally exhibits less degra-
dation in predictive accuracy across all stations except for Cervia. In Torino and Lamezia,
GraphCast’s errors decrease while IFS’s increase, allowing GC to extend its advantage
over time. In Bari, both models show improved accuracy, but GC’s reduction in errors
is more pronounced, further widening the gap in its favor. Conversely, in Cagliari and

Palermo, errors increase for both models, yet IFS’s error growth is more substantial. For
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instance, in Palermo, GraphCast’s RMSE rises only slightly from 2.13 m/s to 2.15 m/s,
while IFS’s increases more noticeably from 2.17 m/s to 2.26 m/s, resulting in GC overtak-
ing IFS over the longer horizon. These patterns highlight GraphCast’s superior stability
in predictive accuracy over extended forecasts, despite IFS retaining an edge in certain
locations.

A key observation is the larger discrepancy between MAPE values in wind speed fore-
casts compared to temperature. High MAPE percentages—often exceeding 50%—high-
light significant relative errors, particularly when observed wind speeds are low, making
percentage-based metrics more sensitive. In contrast, RMSE offers a more stable measure
of absolute error, with differences between the two models generally narrower. However,
it’s important to note that despite the percentage-based sensitivity, RMSE values for wind
speed remain comparatively high relative to temperature. While temperature RMSE val-
ues typically range around 1-3 K—where a 2 K error represents a small fraction of the
temperature magnitude—wind speed RMSE values often reach around 2.5 m/s, which
constitutes a substantial portion of typical wind speeds (often ranging between 0-10
m/s). This underscores that, beyond the influence of small observed magnitudes inflat-
ing MAPE, wind speed forecasts inherently carry larger absolute errors. This difference
can be partly attributed to the greater complexity and variability of wind dynamics, which
are more influenced by local topography, turbulence, and small-scale atmospheric distur-
bances. As with the correlation analysis, the discrepancy between point-based ground
truth measurements and grid-based forecasts is more pronounced for wind speed than
temperature. Temperature tends to vary more smoothly over larger areas, making it eas-
ier to predict with higher consistency, whereas wind speed’s local variability and rapid

fluctuations challenge the models’ ability to capture precise values at the station scale.
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Chapter 5
Conclusions

The global energy landscape is undergoing a profound transformation, driven by the ur-
gent need to address climate change, enhance energy security, and leverage the economic
advantages of renewable energy sources. However, the large-scale integration of these
intermittent power sources presents significant challenges due to their dependence on
meteorological conditions. Accurate weather forecasts are crucial for reliable renewable
energy production estimates, as errors can disrupt market bids, complicate grid manage-
ment, and expose suppliers to financial penalties.

Weather prediction is inherently complex, requiring the modeling of chaotic atmo-
spheric dynamics with limited data availability. Despite advancements, uncertainty per-
sists, with perhaps its most significant impact on renewable energy forecasting. This un-
derscores the need for continuous research to improve the accuracy of forecasting method-
ologies, thus supporting the integration of renewable energy into power systems.

Traditionally, weather forecasts have been generated using physics-based models,
known as Numerical Weather Prediction (NWP) systems. Among them, the Integrated
Forecasting System (IFS), developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF), represents the benchmark in operational meteorology. However,
producing these forecasts comes at a high computational cost, as NWP models rely on
solving complex physical equations through high-performance computing, which de-
mands significant computational resources. Moreover, improving these models is an
increasingly resource-intensive process, requiring highly trained experts with extensive
knowledge of atmospheric physics, developing increasingly accurate equations and lever-
aging increased computing power.

In recent years, an alternative approach has emerged with the development of Ma-
chine Learning Weather Prediction (MLWP) models, employing data-driven techniques
to generate forecasts without relying explicitly on physical equations. This methodology
enables MLWP models to capture non-linear meteorological relationships in the data that
may be difficult to represent in explicit equations, and to improve performance more ef-

ficiently by retraining on increasingly comprehensive historical records. This capability
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is particularly valuable in an era of changing climate, where shifting weather patterns
challenge traditional forecasting methods. Additionally, MLWP models offer significant
efficiency gains, operating on modern deep learning hardware rather than traditional su-
percomputers. The potential of such systems led to growing interest in their accuracy
evaluation against numerical-based methods.

This thesis aims to contribute to this area of research by assessing the capabilities of
a freely available pre-trained version of GraphCast, a global weather forecasting model
developed by Google DeepMind in 2023. GraphCast is one of the most promising MLWP
systems introduced to date, demonstrating high accuracy and efficiency in medium-range
forecasting. Among the available pre-trained model versions outsourced by DeepMind
GraphCast_operational was implemented for operational forecasting and used to gener-
ate forecasts at 0.25° resolution for wind speed (m/s) and 2-meter temperature (K), two
key variables in estimating wind and solar energy production. These predictions were
then evaluated against IFS operational forecasts at the same resolution and for the same
variables to assess their relative accuracy over a six-month period, using observational
data from six SYNOP meteorological stations across Italy as baseline. The assessment,
conducted through statistical metrics—including Pearson’s correlation coefficient, Root
Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE)—provides
valuable insights into how GraphCast compares to IFS at two key forecasting horizons
crucial for energy production estimates in trading strategies: 1 day forecasting (0-24
hours) and 2 day forecasting (24-48 hours).

Key Findings

The comparison between GraphCast and IFS forecasts against ground truth data for both
2-meter temperature and wind speed highlights key differences in their predictive perfor-
mance, particularly in how their accuracy degrades over longer forecasting horizons.

For temperature forecasts, both models exhibit high correlation values, consistently
exceeding 0.9, indicating their strong ability to capture temperature variations. However,
their predictive accuracy evolves differently over time. While IFS correlation values re-
main stable at best, GraphCast demonstrates a notable advantage in preserving, and in
some cases even improving, its correlation with observations over the extended 24-48h
forecast horizon. A similar trend is observed in RMSE and MAPE: although GraphCast
already shows slightly lower errors in the short term (0-24h), its advantage becomes even
more pronounced over 24-48h. While IFS errors tend to increase consistently, GraphCast
exhibits a slower degradation in predictive accuracy, and in some cases, RMSE and MAPE
even decrease, suggesting an improvement in relative accuracy over time. Additionally,
the correlation between GraphCast and IFS temperature forecasts remains exceptionally
high across all stations and lead times, reinforcing the fact that both models capture simi-

lar large-scale temperature patterns with only minor deviations.
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For wind speed forecasts, IFS generally holds an advantage in correlation, RMSE, and
MAPE across most locations in the short-term (0-24h), indicating better initial predictive
accuracy. However, as with temperature, GraphCast demonstrates superior long-term
stability. Over the 24-48h period, IFS correlation values decrease more significantly,
whereas GraphCast’s correlation either declines less sharply or even improves relative to
observations. Similarly, GraphCast’s RMSE and MAPE degrade at a slower rate than
IFS’s, reinforcing its ability to sustain predictive accuracy over longer periods.

A key distinction between temperature and wind speed forecasts lies in the overall
accuracy levels for both models. Temperature forecasts maintain high correlation values,
low errors, and relatively stable performance across all stations. In contrast, wind speed
predictions exhibit significantly lower correlations, higher RMSE and MAPE, and much
greater spatial variability. This is due to the inherent complexity of wind dynamics—wind
speed is highly variable due to local turbulence, rapid fluctuations, and finer-scale meteo-
rological processes that models struggle to capture at their spatial resolution. As a result,
when compared to point-based SYNOP observations, the coarser grid-based forecasts
show larger discrepancies, leading to lower correlations and higher errors and a greater
range of variations in accuracy across different geographical areas in wind speed predic-
tions.

Overall, these findings indicate that GraphCast holds significant promise, particu-
larly for longer-range forecasts where its predictive skill appears to degrade more slowly
than IFS. While further analysis at higher spatial resolutions would be necessary to fully
evaluate wind speed performance, the results for temperature—a more stable and well-
represented variable—strongly suggest that GraphCast demonstrates performance that is

equal to or superior to IFS in many aspects, particularly for longer forecast horizons.

Final Remarks

This research provides valuable insights into the performance of GraphCast for short-term
operational weather forecasting. However, several limitations must be acknowledged.
First, the study focused on a relatively short forecast horizon (0—48h), whereas the full
potential of MLWP models, particularly in medium- to long-range forecasting (up to 10
days), remains an area for further investigation. Second, the evaluation was limited to
a specific set of stations in Italy, meaning the results may not fully generalize to other
geographical regions with different climatic conditions. Expanding the study to a broader
range of locations and meteorological settings could provide a more comprehensive un-
derstanding of the model’s capabilities.

By demonstrating the feasibility of implementing a freely available version of Graph-
Cast for operational forecasting, this study highlights the potential of MLWP models in
practical meteorology applied to energy markets. The results are highly promising, show-

ing that GraphCast can perform at a level comparable to, and in some cases even superior
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to, IFS, particularly in maintaining predictive accuracy over longer time horizons. If
ML-based models like GraphCast can consistently match the performance of traditional
NWP models—such as IFS, which is considered among the most precise forecasting sys-
tems—then their efficiency advantages make them an extremely valuable resource, espe-
cially in operational applications. However, beyond efficiency, MLWP models also intro-
duce a key advantage: their flexibility and scalability. ML models provide the opportunity
for customization by allowing companies to train them on specialized datasets that reflect
their operational requirements, market conditions, or geographical areas of interest. This
makes them not only highly adaptable but also easily scalable—a crucial feature for op-
erational activities reliant on weather forecasting, such as energy trading, where precise
and continuously improving forecasts enhance decision-making and overall performance.
As computational methods evolve and more high-quality observational data become
available, MLWP models are likely to play an increasingly significant role in weather
forecasting. Their ability to provide fast, accurate, and cost-effective predictions will
have direct benefits for renewable energy trading activities, grid stability, and ultimately
renewable energy integration. However, this does not imply that ML models can replace
traditional NWP systems. Numerical weather prediction remains fundamental, as the his-
torical datasets used to train ML models rely on NWP-generated reanalysis data. Instead
of serving as a direct substitute, GraphCast can complement NWP models like IFS, im-
proving forecasting efficiency and potentially enhancing accuracy in specific scenarios.
Future research should focus on optimizing the integration of GraphCast with NWP
systems to leverage the strengths of both approaches, with a particular emphasis on im-
proving spatial resolution. While GraphCast has demonstrated strong performance for
2m temperature at its current resolution (0.25°), achieving higher-resolution forecasts
is crucial for its practical application in operational forecasting, especially for weather
predictions related to renewable energy, such as wind speed forecasts. Moreover, IFS
currently operates at a higher resolution (0.1°) than the 0.25° (approximately 28 x 28
square kilometers) used in this study, which corresponds to the publicly available opera-
tional forecasts. In reality, IFS’s internal resolution is even finer (9km x 9km), providing
it with a significant advantage in capturing small-scale atmospheric phenomena. To be-
come truly competitive with IFS, GraphCast must improve its spatial resolution, which
would enhance the precision of its forecasts and, consequently, the accuracy of energy

production estimates.
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Appendix A

Supplementary Correlation Plots

This appendix provides an extended collection of scatter plots comparing forecasted vs.
observed values as well as forecasted vs. forecasted values for wind speed and 2m temper-
ature across the SYNOP stations not analyzed in Chapter 4. These visualizations illustrate

the correlation strength between:

* Model predictions and actual measurements, evaluating how well each forecasting
system (GraphCast and IFS) aligns with observed ground truth data.

» GraphCast and IFS forecasts, assessing the consistency and agreement between the

two models.
The analysis covers two key forecasting horizons:

* 0-24h: Forecasts initialized at 00:00 UTC with lead times covering the first 24
hours, i.e., predictions for 06:00, 12:00, 18:00, and 00:00 of the following day.

* 24-48h: Forecasts initialized at 00:00 UTC with lead times covering the subsequent
24-hour period, i.e., predictions for 06:00, 12:00, 18:00, and 00:00 of the second
forecast day.

Each subplot consists of:

Left panels (blue): Wind speed forecasts vs. ground truth.

Right panels (red): 2m temperature forecasts vs. ground truth.

The dashed diagonal line represents the ideal 1:1 relationship (perfect accuracy).

Correlation coefficients in the titles quantify how closely forecasts align with ob-

servations, with values closer to 1 indicating stronger agreement. These additional
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While Chapter 4 includes a select set of comparisons focusing on specific stations
to highlight key trends, this appendix offers an extended view, allowing for a station-
by-station evaluation of model performance. The figures below present results for both
GraphCast and IFS, facilitating a detailed comparison of each model’s accuracy, their
respective deviations from ground truth, and the alignment between the two forecasting

systems across the different meteorological conditions analyzed in this study.
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Figure A.1: Scatter plots of forecasted vs. observed wind speed and 2m temperature
values for Bari and Cervia (0-24h). GraphCast (first and third row) and IFS (second and
fourth) predictions vs. observed ground truth values for Bari (first two rows) and Cervia (bottom
rows). Wind speed (left, blue) and 2m temperature (right, red) are forecasted for 0-24h.
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Figure A.2: Scatter plots of forecasted vs. observed wind speed and 2m temperature
values for Bari and Cervia (24-48h). GraphCast (first and third row) and IFS (second and
fourth) predictions vs. observed ground truth values for Bari (first two rows) and Cervia (bottom
rows). Wind speed (left, blue) and 2m temperature (right, red) are forecasted for 24-48h.
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Figure A.3: Scatter plots of forecasted vs. observed wind speed and 2m temperature
values for Palermo and Torino (0-24h). GraphCast (first and third row) and IFS (second
and fourth) predictions vs. observed ground truth values for Palermo (first two rows) and Torino
(bottom rows). Wind speed (left, blue) and 2m temperature (right, red) are forecasted for 0-24h.
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Figure A.4: Scatter plots of forecasted vs. observed wind speed and 2m temperature
values for Palermo and Torino (24-48h). GraphCast (first and third row) and IFS (second
and fourth) predictions vs. observed ground truth values for Palermo (first two rows) and Torino
(bottom rows). Wind speed (left, blue) and 2m temperature (right, red) are forecasted for 24-48h.
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Station: Torino Caselle - Wind Speed Correlation: 0.27 Station: Torino Caselle - 2m Temperature Correlation: 0.99
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Figure A.5: Scatter plots of GraphCast vs. IFS forecasted wind speed and 2m tem-
perature values for Torino, Lamezia and Palermo (0-24h). Each subplot compares
GraphCast and IFS predictions against each other for Torino, Lamezia and Palermo, evaluating
the agreement between the two models. Wind speed is displayed in the left panels (blue) and 2m
temperature in the right panels (red), covering a forecasting horizon of 0-24h.
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Station: Torino Caselle - Wind Speed Correlation: 0.27 Station: Torino Caselle - 2m Temperature Correlation: 0.99
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Figure A.6: Scatter plots of GraphCast vs. IFS forecasted wind speed and 2m tem-
perature values for Torino, Lamezia and Palermo (24-48h). Each subplot compares
GraphCast and IFS predictions against each other for Torino, Lamezia and Palermo, evaluating
the agreement between the two models. Wind speed is displayed in the left panels (blue) and 2m
temperature in the right panels (red), covering a forecasting horizon of 24-48h.
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