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Abstract

The theory of inflation assumes that the early Universe underwent a period of rapid
expansion, giving rise to the initial density perturbations that eventually led to the
formation of the large-scale structures that we observe today (Guth & Pi, 1982).
Among the most promising observational signatures for inflation are primordial non-
Gaussianities (PNG), as nearly all inflationary models predict their existence. The
term PNG refers to deviations from a Gaussian in the distribution of primordial
perturbations, typically quantified by the parameter fX

NL, where “X” indicates dif-
ferent shapes corresponding to various inflationary scenarios, each imprinting dis-
tinct features on the primordial bispectrum (Takahashi, 2014). Local-type PNG
— quantified by the parameter f loc

NL — has attracted particular attention because
single-field slow-roll inflation models predict very small values for it, and detecting
a significantly larger value would rule out these models.

Local-type PNG is expected to influence the abundance of dark matter halos
(or, alternatively, galaxy clusters), and various theoretical models have been devel-
oped over the past decades to predict its effect on the halo mass function (see e.g.
Matarrese et al., 2000; LoVerde et al., 2008; D’Amico et al., 2011a). Furthermore,
local-type PNG modifies the mass tracer bias, making it scale dependent and causing
deviations from the Gaussian case, particularly on large scales (Dalal et al., 2008).
Both of these statistical properties of dark matter halos offer a crucial observational
tool for detecting deviations from the standard Λ cold dark matter (ΛCDM) model.

In this work, we focus in particular on the impact of local-type PNG on halo
number counts. We measure the halo mass function in a large set of cosmological
N-body simulations with different values of the f loc

NL parameter and show that current
theoretical models fail to adequately describe the non-Gaussian halo mass function,
with discrepancies from the measurements increasing as the density threshold for
halo identification rises. We explain how these discrepancies are related to variations
in the density profile of dark matter halos, finding that the internal profile steep-
ness (i.e. the compactness) of halos depends on the value of f loc

NL. Specifically, we
demonstrate that positive (negative) values of f loc

NL lead to halos with higher (lower)
internal densities compared to the standard ΛCDM model, affecting the mass value
associated to dark matter halos for different thresholds.

To address these discrepancies, we introduce a correction factor κ that modifies
the linear density threshold for collapse, δc(z), according to the density threshold
used to identify halos, ∆b(z). The latter is defined with respect to the background
density of the Universe, but other definitions can be applied using specific conver-
sions (see e.g. Tinker et al., 2008). We model the function κ(∆b) using a second-
degree polynomial, performing a Bayesian analysis to determine the polynomial
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coefficients. Notably, we verify that these coefficients are independent of both the
sign and magnitude of f loc

NL.
Finally, we demonstrate that this re-parametrization is not affected by resolu-

tion effects and avoids biased constraints on f loc
NL, correcting for significant system-

atic errors, particularly for halos identified with high overdensity thresholds. This
improvement is crucial for deriving accurate cosmological constraints from the non-
Gaussian halo mass function using real data, as surveys such as Euclid (Euclid
Collaboration et al., 2024) and the Dark Energy Spectroscopic Instrument (DESI
Collaboration et al., 2016) may provide galaxy cluster catalogs with different mass
definitions depending on the observation strategy.

All the research conducted for this Thesis has been summarized in Fiorino et al.
(2024), a scientific paper available on the arXiv platform, and currently under review
at the Journal of Cosmology and Astroparticle Physics.
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Chapter 1

Cosmological Framework

In the opening chapter, we lay the groundwork for understanding the various topics
discussed throughout this Thesis by exploring the cosmological framework. Specifi-
cally, we start with a brief overview of the Theory of General Relativity (GR), the
foundation upon which modern cosmology is constructed. We then introduce the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, which is crucial for describ-
ing the spacetime of a Universe that is homogeneous and isotropic. Following this,
we discuss the Hubble-Lemâıtre law, we define the cosmological redshift, and we
derive the Friedmann equations through the solution of Einstein’s field equations.
Finally, we outline the primary features of the ΛCDM, the standard cosmological
model currently in use, and address its associated tensions.

1.1 Elements of General Relativity

In the context of Cosmology, the force of gravity plays a pivotal role in shaping
the interactions between the various constituents of the Universe. The theory of
GR, introduced by Albert Einstein (Einstein, 1915), stands as the cornerstone for
understanding these gravitational interactions. This theory, which extends the prin-
ciples of Special Relativity to incorporate gravity, posits that spacetime is warped
by the presence of mass and energy. Consequently, gravity is not perceived as a
force in the traditional sense but as the manifestation of the curvature of spacetime.
Mathematically, the spacetime is described as a 4-dimensional differentiable mani-
fold in which a point is promoted to an event characterized by four coordinates (one
time-like and three space-like). The geometrical properties of the spacetime are de-
lineated by the metric tensor gµν , which formally defines the distance ds2 between
two infinitesimally close events through the following relation:

ds2 =
3∑

µ, ν=0

gµνdx
µdxν ≡ gµνdx

µdxν , (1.1)

where xµ = (ct, x, y, z) and xν = xµ + dxµ = (c(t + dt), x + dx, y + dy, z + dz),
with c representing the speed of light in vacuum. The first index pertains to the
time-like coordinate (x0 = ct) while the last three correspond to spatial coordinates.
Exploiting the symmetry of the metric tensor and setting henceforth c = 1, the

1



infinitesimal displacement can be expanded as:

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
idxj , (1.2)

where g00dt
2 is the time-time component, gijdx

idxj are the space-space components
and 2g0idtdx

i the mixed ones.
In the context of GR, we define a geodesic as the shortest curve connecting

two events of spacetime. It generalizes the concept of straight lines in the well-
known flat Minkowskian space. The equation describing a geodesic can be derived
by minimising the length L[γ] of a curve γ defined on the spacetime

δL[γ] = δ

∫
ds = δ

∫ √
gµν ẋµẋνdλ = 0 , (1.3)

where λ is the scalar (e.g. the proper time) which parameterises the curve γ, and
ẋµ denotes the derivative with respect to λ. This path is followed by any particle
in the absence of any force apart from gravity, and it is obtained from Eq. 1.3 by
solving the geodesic equation:

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 . (1.4)

The symbol Γµ
αβ represents the Christoffel’s symbols, which are fully determined by

the metric tensor through the expression

Γµ
αβ =

gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

]
, (1.5)

where gµν is the inverse of gµν , so that gµνgαν = δµα is the Kronecker delta, which is
equal to unity if µ = α and 0 otherwise.

At this juncture, we present another fundamental aspect of GR: the stress or
energy-momentum tensor Tµν . In essence, it characterizes the density, the flux
energy, and the momentum of a generic fluid pervading the Universe. Assuming
isotropy, the tensor can be succinctly expressed in terms of pressure (p) and energy
density (ρ) as follows:

T µ
ν =




−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 . (1.6)

Within GR, the laws of energy and momentum conservation can be derived by
enforcing the nullity of the covariant derivative

∇µT
µ
ν =

∂T µ
ν

∂xµ
+ Γµ

αµT
α
ν − Γα

νµT
µ
α = 0 . (1.7)

Building upon the Christoffel’s symbols, we proceed to define the Riemann curvature
tensor

Rλ
µνρ =

∂Γλ
νρ

∂xµ
− ∂Γλ

µρ

∂xν
+ Γλ

µσΓ
σ
νρ − Γλ

νσΓ
σ
µρ , (1.8)
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which inherently depends on the first and second derivatives of the metric tensor.
Subsequently, the Riemann tensor is contracted to obtain the Ricci tensor Rµν and
the Ricci scalar R:

Rµν = Rα
µαν , (1.9)

R ≡ Rµ
µ = gµνRµν . (1.10)

From these definitions Einstein formulated his own tensor

Gµν ≡ Rµν −
1

2
gµνR . (1.11)

We now possess all the requisite components to establish a connection between the
metric and the constituents of the Universe. This relationship is encapsulated within
the Einstein field equations, which correlate the Einstein tensor describing the ge-
ometry to the energy-momentum tensor. These set of equations can be summarized
as the following tensor equality

Gµν + Λgµν = 8πGTµν , (1.12)

where G is the Newtonian gravitational constant and Λ is the cosmological constant.
The term 8πG ensures the recovery of Newtonian gravitational theory in the weak
gravitation field limit. These equations hold paramount significance as they dictate
both the evolution of the Universe and the formation of structures within it.

Regarding the cosmological constant, there is no impediment to relocating the
Λ term to the right-hand side of Eq. 1.12, as it only involves the metric tensor. We
can formally define the cosmological constant contribution to the energy-momentum
tensor:

T µ
(Λ)ν = − Λ

8πG
δµν =




−ρΛ 0 0 0
0 −ρΛ 0 0
0 0 −ρΛ 0
0 0 0 −ρΛ


 , where ρΛ =

Λ

8πG
(1.13)

is the effective energy density of the cosmological constant. The concept of a cos-
mological constant as an additional energy component, referred to as dark energy
(DE), gained prominence because of its repulsive effect. This concept aims to eluci-
date the current accelerated expansion witnessed in the Universe, as evidenced by
observations of the flux of distant type Ia supernovae (SNIa) (Riess et al., 1998;
Perlmutter et al., 1999).

1.2 Friedmann-Lemâıtre-Robertson-Walker Met-

ric

Most of the prevailing modern cosmological models are constructed upon the cosmo-
logical principle (CP), which posits the homogeneity and isotropy of the Universe on
sufficiently large scale1. Additionally, there exists compelling evidence supporting

1Nowadays, hundreds of Mpc, where 1 Mpc ≃ 3.09 · 1024 cm.
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the notion that the Universe is undergoing expansion. This indicates that in the
early stages of its history, the distance between us and distant galaxies was smaller
than it is at present. The effect of this expansion is taken into account by introduc-
ing the scale factor a(t), whose present value is set to unity by convention. Assuming
the validity of the CP, the metric tensor describing the expanding Universe takes
the form:

gµν =




−1 0 0 0

0
a2(t)

1− κr2
0 0

0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 θ




, (1.14)

where κ is the adimensional curvature parameter. Any event of the Universe is
described by three spatial polar coordinates (r, θ, φ), known as comoving coordinates,
and one temporal coordinate t, referred as proper or cosmic time, which are defined
in a reference system at rest with the Universe expansion. By substituting the
expression for the metric tensor into Eq. 1.2, we derive the general form of the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (1.15)

To comprehend the history of the universe, it is imperative to ascertain the evo-
lution of the scale factor a with cosmic time t. This derivation stems from the
Einstein’s field equations, provided the energy momentum tensor and the geometry
of the universe are known. In the standard simply connected topology, the latter is
determined by the value of the curvature parameter:

• κ = −1 → Hyperbolic geometry: space is open and infinite;

• κ = 0 → Flat geometry: space is Euclidean and infinite;

• κ = +1 → Spherical geometry: space is closed and unbounded.

1.3 The Hubble-Lemâıtre Law and the Cosmolog-

ical Redshift

Measuring distances in an expanding Universe presents challenges. The comoving
distance remains fixed as the Universe expands because it is tied solely to the co-
ordinate grid. Consider the comoving distance between a light source and us: in a
small time interval dt, light travels a comoving distance dχ = dt/a(t), resulting in
the total comoving distance traveled by light given by

χ =

∫ r

0

dr′√
1− κr′2

=

∫ t0

t

dt′

a(t′)
, (1.16)

where we have considered the FLRW metric and the fact that photons move along
null geodesics (ds2 = 0). On the other hand, the proper distance d(t) is defined as
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the physical distance between two points, which varies with time due to the scale
factor a(t), and it is expressed as

d(t) = a(t)χ = a(t)

∫ r

0

dr′√
1− κr′2

. (1.17)

From this definition, it is evident that the comoving and proper distances coincide
today (a(t0) = 1, by convention).

The expansion of the Universe leads to a continuous increase in physical separa-
tion between two arbitrary points in space. The radial velocity between these points
can be computed as the derivative of the proper distance d(t) with respect to cosmic
time

vr =
d

dt
d(t) =

d

dt
[a(t)χ] = ȧ(t)χ+ a(t)χ̇ . (1.18)

In the absence of any comoving motion, the second term vanishes, simplifying the
radial velocity to

vr = ȧ(t)χ =
ȧ(t)

a(t)
d = H(t)d , (1.19)

which represents the well-known Hubble-Lemâıtre law. The function H(t), known
as the Hubble parameter, is defined as H(t) = ȧ(t)/a(t) and is suppose to have
the same value across the Universe at any given cosmic time, provided sufficiently
large scales are considered. Its value at the present time H(t0) = H0 is termed the
Hubble constant and describes the expansion rate of the Universe. Conventionally,
the Hubble constant is written in terms of a dimensionless parameter h as follows

H0 ≡ 100h km s−1 Mpc−1 . (1.20)

Current measurements yield h ≃ 0.7 but the determination of the Hubble con-
stant remains a subject of debate within the scientific community due to discrepan-
cies arising from different probes. For example: H0 = 67.4±0.5 km s−1 Mpc−1 from
the CMB angular spectrum (Planck Collaboration et al., 2020a), H0 = 67.7+4.3

−0.42 km
s−1 Mpc−1 from the analysis of gravitational waves (Mukherjee et al., 2020) and
H0 = 74.03 ± 1.42 km s−1 Mpc−1 by using distance ladders as Cepheids or SNIa
(Riess et al., 2019). Given that H0 is expressed in units of s−1, it can offer a rough
estimate of the age of the Universe, assuming a constant expansion rate.

The global motion of objects in the Universe relative to each other is referred
to as the Hubble Flow. Its main implication is the reddening of observed spectra
of astrophysical objects, known as the cosmological redshift. This reddening effect,
similar to the Doppler effect, results in observed wavelengths being shifted towards
longer wavelengths. Let λem represent the wavelength of the light emitted by a source
in its reference system, and λobs denote the shifted wavelength of light received by
an observer. The relative difference between the two electromagnetic radiations can
be expressed as

z ≡ λobs − λem

λem

. (1.21)

In principle, this value can be less than zero if the source is approaching (blueshift),
or greater than zero if the source is receding (redshift).
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Let us consider a scenario in which a source located at (r, 0, 0) emits a light signal
at t = tem, which is then received at some time t = tobs by an observer located at
the origin of the reference system. By considering the FLRW metric we have

∫ tobs

tem

dt

a(t)
=

∫ r

0

dr′√
1− κr′2

. (1.22)

Now, suppose that another signal is emitted at t = tem + δtem and observed at
t = tobs+δtobs. Since the right-hand side of Eq. 1.22 is independent on the expansion
of the Universe, the difference in terms of photon paths is determined solely by time

∫ tobs+δtobs

tem+δtem

dt

a(t)
=

∫ r

0

dr′√
1− κr′2

=

∫ tobs

tem

dt

a(t)
. (1.23)

Therefore, if the time intervals δtem and δtobs are sufficiently small, a(t) can be
considered constant, and the equivalence reported in Eq. 1.23 leads to

δtobs
a(tobs)

=
δtem
a(tem)

. (1.24)

Recalling that δt = 1/ν, the relationship between wavelength and frequency, and
the definition of z in Eq. 1.21, we find

1 + z =
a(tobs)

a(tem)
=

1

a(tem)
, (1.25)

assuming that the light signal is observed today. This relation enables the use of
redshift measurements (utilizing spectroscopic or photometric techniques) to esti-
mate the distance of extragalactic sources. However, it is important to note that
the wavelength of light could also be influenced by interaction with other particles
and other relativistic effects.

1.4 The Friedmann Equations

Assuming the validity of the CP and adopting an energy-momentum tensor as out-
lined in Eq. 1.6, we can utilize the FLRW metric to resolve the Einstein’s field
equations. This yields a pair of equations derived from the time-time and space-
space components of the field equations, known as the first and second Friedmann
equation respectively. These equations elucidate the temporal evolution of the scale
factor a(t) and are expressed as follows:

(
ȧ

a

)2

+
κ

a2
=

8πG

3
ρ , (1.26)

ä

a
= −4πG

3
(ρ+ 3p) . (1.27)

Here, the energy density ρ and the pressure p must encompass all the diverse com-
ponents of the Universe, such as non-relativistic matter and radiation (photons and
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relativistic particles). Referring to Eq. 1.26, it becomes evident that to reconstruct
the evolution of a(t), we require an understanding of how the density ρ changes over
cosmic time. This comprehension can be attained by examining the conservation
law of energy and momentum (Eq. 1.7), considering ν = 0 and the FLRW metric:

∂T µ
0

∂xµ
+ Γµ

αµT
α
0 − Γα

0µT
µ
α = 0 =⇒ ∂ρ

∂t
+ 3

ȧ

a
(ρ+ p) = 0 . (1.28)

Non-relativistic matter has effectively zero pressure, implying that the energy den-
sity of matter follows ρm ∝ a−3. This behaviour arises because particle mass remains
constant while the number density scales inversely with volume. In contrast, radia-
tion is characterized by pr = ρr/3, which implies that the energy density of radiation
ρr ∝ a−4. This scaling accounts for the decrease in energy per particle as the Uni-
verse expands. We can summarize the cases of matter and radiation, and generalize
the evolution results to other constituents, by defining the equation of state (EoS)
parameter ws

ws ≡
ps
ρs

, (1.29)

where the subscript “s” stands for any constituent of the Universe. For matter,
wm = 0, for radiation, wr = 1/3, and for the cosmological constant, from Eq. 1.13,
wΛ = −1. However, the EoS parameter is not necessarily constant over cosmic time.
By integrating Eq. 1.28, the temporal evolution of any component of the Universe
with a time-varying EoS parameter can be described as follows

ρs ∝ exp

{
−3

∫ a da′

a′
[1 + ws(a

′)]

}
ws=const∝ a−3(1+ws) ∝ (1 + z)3(1+ws) . (1.30)

The second proportionality holds if ws is independent on time. As a result of the pre-
ceding relation, it can be affirmed that various components have exerted dominance
over each other across the cosmic epochs.

Starting from the first Friedmann equation, we can rearrange the terms to derive
an equation for the curvature parameter

κ

a2
= H2(t)

(
8πGρ(t)

3H2(t)
− 1

)
= H2(t)

(
ρ(t)

ρcrit(t)
− 1

)
, (1.31)

where we introduce the critical density parameter as

ρcrit(t) ≡
3H2(t)

8πG
. (1.32)

From Eq. 1.31, it is apparent that the critical density represents the density required
for a flat geometry (κ = 0). If the Universe’s density is less than the critical den-
sity (ρ < ρcrit), we observe an open geometry characterized by perpetual expansion.
Conversely, if the density exceeds the critical density (ρ > ρcrit), a closed geome-
try ensues, leading to expansion followed by contraction. The present-day critical
density depends on the Hubble constant H0 and its value is given by

ρ0,crit ≡ ρcrit(t0) =
3H2

0

8πG
≃ 1.9× 10−29 h2 g cm−3 . (1.33)
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By virtue of the definition of the critical density, we can introduce for each compo-
nent a dimensionless parameter Ω, denoted as the density parameter, and defined as
follow:

Ωs(t) ≡
ρs(t)

ρcrit(t)
. (1.34)

According to this definition, the total density parameter is simply the summation of
all individual density parameters

Ωtot(t) ≡
∑

s

Ωs(t) . (1.35)

Hence, in a scenario of a flat Universe, it is straightforward to deduce that Ωtot =
1, whereas in the case of an open and closed Universe. Ωtot < 1 and Ωtot > 1,
respectively.

With the introduction of the newly defined Ωtot we can reformulate Eq. 1.31 in
the following manner

Ωtot(t)− 1 =
κ

a2(t)H2(t)
. (1.36)

The sign of the right-hand side of this equation is entirely determined by the value
of κ and remains invariant throughout cosmic time. Consequently, the sign of the
left-hand side also remains unchanged. Therefore, a Universe described by the
Friedmann equations cannot alter its geometry as it evolves.

The first Friedmann equation can be conveniently reformulated in terms of H,
Ω and z, which offer a more representative characterization of the observable Uni-
verse. By utilizing the definitions of the density parameter (Eq. 1.34) and redshift
(Eq. 1.21), the expression can be rewritten as follows

H2(z) = H2
0 (1 + z)2

(
Ω0,κ +

∑

s

Ω0,s(1 + z)1+3ws

)
≡ H2

0E
2(z) . (1.37)

Here, Ω0,s denotes the present value of the density parameter, and Ω0,κ ≡ 1−∑s Ω0,s

represents the so-called curvature density parameter.
Now, let us examine the second Friedmann equation for a Universe consisting of

a single component characterized by an EoS parameter ws. The equation reduces to

ä = −4πG

3
ρs(1 + 3ws)a . (1.38)

From this relation, it is evident that for typical cosmological components such as
matter (wm = 0) and radiation (wr = 1/3), the corresponding mono-component
Universe undergoes decelerated expansion, as ä < 0. Additionally, due to the ex-
pansion, the scale factor a(t) increases monotonically in time. Consequently, going
back in time, there exists a moment at which a approaches zero, marking a point
where temperature, density, and expansion rate diverge:

lim
t→0

ρs(a) ∝ lim
t→0

a(t)−3(1+ws) = ∞ . (1.39)

This event is called Big Bang (BB) and is a characteristics of all the cosmological
models assuming a single component with −1/3 < ws < 1. However, the precise
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Figure 1.1: Trends with time of the three main Universe’s components: radiation, matter
and DE. As the Universe expands, different components start to predominate on the others
because of the relative change in energy density.

physical conditions at the time of BB remain unknown because quantum corrections
to gravity must be considered for times t < tP , where tP ≃ 10−43 s denotes the
Planck time. Currently, a universally accepted treatment of quantum gravity has
not yet been established.

1.5 Single-Component Universe

This model is based on the hypothesis that the Universe is permeated by a single
component and has a flat geometry (κ = 0 or, equivalently, Ωtot = Ω = 1). If this
component is matter (wm = 0) the model reduces to the well-known Einstein-de
Sitter model (EdS). With these assumptions, Eq. 1.37 simplifies to:

H(z) = H0(1 + z)
3(1+w)

2 . (1.40)

The densities of the various components of the Universe (matter, radiation and
cosmological constant) evolve according to Eq. 1.30. This equation reveals that
each component undergoes a period of dominance during specific cosmic epochs.
Consequently, it is plausible to consider our Universe as predominantly consisting
of a single component at any given time. Hence, it is common-use to delineate the
history of the Universe into epochs based on the prevailing dominant component,
as shown in Fig. 1.1. In particular, during the early times, radiation emerges as the
dominant component, marking the radiation-dominated era, while at later times,
the matter component assumes greater significance, defining the matter-dominated
era. In particular, the density of DE remains constant throughout cosmic time and
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Generic ws Matter wm = 0 Radiation wr = 1/3

a(t) =

(
t

t0

) 2
3(1+ws)

a(t) =

(
t

t0

) 2
3

a(t) =

(
t

t0

) 1
2

t = t0 (1 + z)−
3(1+ws)

2 t = t0 (1 + z)−
3
2 t = t0 (1 + z)−2

H(t) =
2

3(1 + ws)t
H(t) =

2

3t
H(t) =

1

2t

t0 =
2

3(1 + ws)H0

t0 =
2

3H0

t0 =
1

2H0

ρs =
1

6πG(1 + ws)2t2
ρm =

1

6πGt2
ρr =

3

32πGt2

Table 1.1: Dependencies obtained for the single-component Universe in the case of a a
generic component (first column), for a matter-dominated Universe (second column), and
for a radiation-dominated Universe (third column).

only becomes prominent at very recent times, delineating the DE-dominated era.
It is noteworthy to mention that the single-component approximation accurately
applies only during periods far from the moments of equivalence, i.e. the transitions
at which one component starts to prevail on the others. Throughout the history of
the universe, we can delineate two equivalences:

• matter-radiation equivalence → By definition, it is the moment at which the
density of matter and radiation are equal. From this definition, we can deter-
mine the redshift zeq of matter-radiation equivalence as follows

ρ0,m(1 + zeq)
3 = ρ0,r(1 + zeq)

4 =⇒ zeq =
ρ0,m
ρ0,r

− 1 ≃ 3× 104 ; (1.41)

• DE-matter equivalence → By definition, it is the moment at which the density
of matter and DE are the same. Therefore, we can determine the redshift zeq,Λ
of DE-matter equivalence as follows

ρ0,m(1 + zeq,Λ)
3 = ρΛ =⇒ zeq,Λ =

(
ρΛ
ρ0,m

)1/3

− 1 ≃ 0.3 . (1.42)

Finally, in Table 1.1 we present a compilation of useful relationships derived un-
der the assumption of the single-component model, describing the behavior of key
quantities characterizing this type of Universe. These dependencies are initially ex-
pressed for a generic component with the EoS parameter ws, and subsequently com-
puted for both the matter-dominated epoch (wm = 0) and the radiation-dominated
epoch (wr = 1/3).
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1.6 The Standard Cosmological Model

As highlighted in Sect. 1.5, the contemporary Universe is primarily governed by DE,
yet matter maintains a significant role in terms of its contribution to energy density.
Thus, relying solely on a single-model component proves insufficient for accurately
depicting contemporary phenomena. Since the early 21st century, the ΛCDM model
has become widely recognized as the standard cosmological model, serving as a fun-
damental framework for comprehending our Universe. This designation stems from
its extensive support by observational evidence and its ability to provide a solid
foundation for understanding the formation of cosmic structures. It portrays the
Universe as nearly flat, adhering to the CP, and its evolution is governed by the
Friedmann Equations and, therefore, by GR.

The evolution of the Universe, as described by the ΛCDM model, is intricately
tied to its temperature. Initially, the temperature was significantly higher than it is
today, with photons currently maintaining a temperature of T = 2.7255± 0.0006 K
(Planck Collaboration et al., 2020a), constituting the cosmic microwave background
(CMB) radiation. The CMB represents a relic from the last scattering surface,
occurring approximately 3.8 × 105 years after the BB (zLS ≃ 1100). Preceding
this scattering event, the Universe was populated by a hot plasma of fully ionized
protons and electrons, wherein electromagnetic radiation interacted continuously
with baryonic matter, maintaining the Universe opaque and in a condition of thermal
equilibrium. However, as the Universe expanded, around z ≃ 1500, the temperature
dropped sufficiently for protons and electrons to recombine, leading to the decoupling
of the two cosmological components and enabling photons to propagate freely. The
redshift zLS ≃ 1100 of the last scattering marks the peak probability for a photon
to undergo its final scattering by the primordial plasma. This moment heralds the
emergence of the CMB radiation, observable today, though heavily redshifted due
to the Universe’s expansion.

The ΛCDM model derives its name from the two principal constituents charac-
terizing the current state of the Universe: DE, linked to a cosmological constant
and possessing a density parameter Ω0,Λ ≃ 0.7, and CDM, a non-collisional, non-
relativistic matter element with a density parameter Ω0,cdm ≃ 0.25. Additionally,
there exist a minor contribution from baryonic matter (i.e. composed by baryons)
with Ω0,b ≃ 0.05, and from radiation with Ω0,r ≃ 10−5. These energy density values
align with the condition of flatness, as evidenced by Ω0,tot ≃ 1.

A robust characterisation of this model involves the definition of six fundamental
parameters (Planck Collaboration et al., 2020a):

• Ω0,m → Total matter density parameter (Ω0,mh
2 = 0.143± 0.001);

• Ω0,b → Baryonic matter density parameter (Ω0,bh
2 = 0.0224± 0.0001);

• H0 → Hubble constant (H0 = 67.4± 0.5 km s−1 Mpc−1);

• As → Primordial power spectrum amplitude (ln (1010As) = 3.04± 0.01);

• ns → Spectral index of the primordial power spectrum (ns = 0.965± 0.004);
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• τ → Re-ionisation optical depth (τ = 0.054± 0.007).

Currently, the ΛCDM model is widely accepted, yet certain aspects of its theo-
retical framework remain enigmatic. Notably, the fundamental essence of its princi-
pal constituents, dark matter (DM) and DE, remains beyond complete comprehen-
sion. While DE serves as a convenient concept to explain the Universe’s accelerated
expansion, it lacks a definitive and universally agreed-upon physical description.
Moreover, it defies association with any know form of energy, exhibiting an excep-
tionally low density compared to other components. Similarly, DM remains elusive
in terms of its composition and detectability, as it interacts solely through gravity,
without engaging with radiation. However, its existence finds validation in vari-
ous observational phenomena, including gravitational lensing by galaxy clusters and
redshift-space distortions in large-scale mass distributions. DM can be categorized
into two primary types:

• hot dark matter (HDM) consists of low-mass relativistic particles, with massive
neutrinos emerging as the most promising candidates;

• cold dark matter comprises massive non-relativistic particles, with the cur-
rent focus on weakly interacting massive particles (WIMPs) as the leading
contenders.

However, models of structure formation and evolution strongly suggest that the
predominant portion of the DM component must exhibit characteristics of coldness.

1.7 Tensions in the ΛCDM

Regarding observational challenges, the enhanced precision of contemporary cos-
mological and astrophysical measurements, alongside more refined data modeling
techniques, have led to notable tensions in the derived cosmological parameter val-
ues from different probes. These tensions are particularly pronounced when con-
sidering probes that encompass distinct ranges of redshift: those focused on local
measurements (referred to as late or low-redshift probes) and those centered on the
measurement of CMB anisotropies (referred to as early or high-redshift probes). The
most perplexing tensions observed today (see Di Valentino et al., 2021a,b,c, for a
detailed review) include:

• Hubble tension → As discussed in Sect. 1.3, this tension emerges from local
direct measurements of H0 employing the distance ladder approach (see e.g.
Riess et al., 2016; Freedman et al., 2019), which are roughly 4.4σ divergent
from the value obtained through CMB indirect measurements (Planck Collab-
oration et al., 2020a).

• Growth of structures tension → It arises when direct measurements of the
growth rate of cosmological perturbations, derived from weak lensing and clus-
tering techniques (Erben et al., 2013; Abbott et al., 2018; Troxel et al., 2018;
Hildebrandt et al., 2020), indicate a slower growth rate compared to that in-
ferred from the Planck data, with a discrepancy at 2−3σ. This tension is often
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quantified using the parameter S8 ≡ σ8

√
Ωm/0.3, where σ8 will be defined in

Sect. 3.4.

• Curvature tension → Planck data indicate a preference at 3.4σ for a closed
Universe (Planck Collaboration et al., 2020a; Di Valentino et al., 2020; Han-
dley, 2021), contradicting the ΛCDM scenario, which assumes a flat space
geometry. This discrepancy with the predictions of the flat ΛCDM model
is linked to the anomalously higher lensing contribution in the CMB power
spectrum, characterized by the AL parameter (Calabrese et al., 2008; Planck
Collaboration et al., 2020a), which exhibits strong degeneracy with Ω0,κ.

• Age of the Universe tension → The age of the Universe derived from local
measurements using ancient objects, such as the first stars in the Milky Way or
populations of stars in globular clusters (see e.g., Bond et al., 2013; Schlaufman
et al., 2018; Jimenez et al., 2019; Valcin et al., 2020), seems slightly greater
than the age determined from CMB Planck data within the framework of the
ΛCDM cosmology (Planck Collaboration et al., 2020a).

The emergence of these tensions within the ΛCDM model suggests a potential de-
parture from the assumed standard scenario and raises the possibility of undiscov-
ered physics. Consequently, in recent years, numerous alternatives to the standard
cosmological model have been proposed to reconcile theoretical frameworks with
observational data. These alternative models generally fall into two main categories
used to describe accelerating cosmologies: dark energy models and modified gravity
models (for comprehensive reviews, see Yoo & Watanabe, 2012; Joyce et al., 2016).
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Chapter 2

Inflation and Primordial
non-Gaussianities

In order to properly understand how cosmic structures form, we need to know the
initial conditions that characterize the primordial Universe. This quest for initial
conditions leads to an entirely new realm of physics, the theory of inflation (Guth,
1981; Linde, 1982; Starobinsky, 1982; Albrecht & Steinhardt, 1982). Inflation was
initially introduced to explain how regions that could not have been in causal contact
have the same temperature — in other words — why the Universe is so homogeneous
on large scales. It was soon realized that the very mechanism that explains the
uniformity of the temperature can also account for the origin of perturbations in the
Universe.

2.1 The Horizon Problem and the Inflationary

Solution

When the Universe was approximately 3.8× 105 years old, it displayed exceptional
uniformity, with CMB temperature fluctuations of only 1 part in 105. At this time,
photons and baryons were almost in thermal equilibrium. However, given an ar-
bitrary initial distribution of matter and radiation, one would expect significant
inhomogeneities.

A natural explanation for this uniformity is thermalization: in a highly inhomo-
geneous Universe, regions in thermal contact should eventually reach equilibrium.
However, regions observed in the CMB were too distant from each other at recom-
bination to be in causal contact, making thermalization unlikely. To quantify this,
we define the comoving horizon (or conformal time) as

η(t) =

∫ t

0

dt′

a(t′)
. (2.1)

At recombination, η∗ represents the comoving distance light could travel from η = 0
to η∗, which can be compared to the comoving distance between two regions observed
on the CMB sky today. In the standard cosmological model, assuming the Universe
was filled with only matter and radiation, the comoving horizon at recombination
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Figure 2.1: The evolution of the comoving Hubble radius (aH)−1 as a function of the
scale factor a. Very early on during inflation, all scales of interest were smaller than the
Hubble radius and, therefore, within causal contact. Based on Nandi (2017).

is η∗ = η(a∗) ≈ 281 Mpc. For small angular separations θ, the comoving distance
between patches on the CMB today is given by

χ(θ) ≈ χ∗θ = (η0 − η∗)θ , (2.2)

where η0 ≈ 14200 Mpc. Consequently, two CMB regions separated by an angle

θ ≥ η∗
η0 − η∗

≈ 1.2◦ (2.3)

could not have been in thermal contact at recombination.
The comoving horizon η can also be expressed as an integral over the scale factor:

η(a) =

∫ a

0

1

a′H(a′)
d ln a′ . (2.4)

Thus, the comoving horizon is the logarithmic integral of the comoving Hubble ra-
dius (aH)−1, which approximates the distance light can travel in one expansion
time. In the presence of matter or radiation, the comoving Hubble radius always
increases, meaning causally disconnected regions could not have interacted. A po-
tential solution is an early phase in which the comoving Hubble radius decreased,
allowing a much larger region to come into thermal contact. Such phase requires
accelerated expansion (ä > 0) and is referred to as inflation. As shown in Fig. 2.1,
during inflation the comoving Hubble radius shrinks, ensuring all scales of interest
were once causally connected.

Assuming a substance exists that keeps the Hubble rate H = Hinf nearly con-
stant, the scale factor evolves as

a(t) = aee
Hinf(t−te) (t < te) , (2.5)

where te is the time when inflation ends. As inflation proceeds, the Universe be-
comes dominated by the smooth substance driving the acceleration, transforming
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a chaotic and inhomogeneous region into a much larger, homogeneous, and empty
space. During this process, everything within the patch become irrelevant due to
dilution, and spacetime perturbations are rapidly smoothed out.

To solve the horizon problem, the comoving Hubble radius before inflation must
have been larger than the current comoving radius H−1

0 . At the end of inflation,
the comoving Hubble radius was 1/aeHe, where He ≡ H(te). To estimate this
magnitude, we assume the temperature after inflation was Te = 1014 GeV and we
use the relations for radiation domination (see Table 1.1). Thus, the ratio of the
comoving Hubble radius at the end of inflation to today is

a0H0

aeHe

=
ae
a0

T∝1/a≃ T0

1014 GeV
≃ 10−27 . (2.6)

This implies that the comoving Hubble radius at the end of inflation was 27
orders of magnitude smaller than it is today. Therefore, the scale factor had to
increase by a factor of 1027 ≃ e62 during inflation for the current comoving Hubble
radius to be smaller than it was at the start of inflation. If the Hubble rate remained
constant, this exponential growth implies a period of inflation lasting approximately
60 e-folds.

2.2 Single-field Slow-roll Inflation

We know from Eq. 1.38 that accelerated expansion implies that the quantity ρ+3p
must be negative. However, both non-relativistic matter and radiation are charac-
terized by null and positive pressure, respectively. Thus, whatever drives inflation
is not ordinary matter or radiation and cannot be a cosmological constant either: a
cosmological constant would lead to perpetual rapid inflation, while we need infla-
tion to end and transition to the radiation- and then matter-dominated phases.

The simplest way to generate such a transitory epoch of accelerated expansion is
through the potential energy of a scalar field ϕ(x, t), known as inflaton. Sometimes
several fields may be used to drive inflation, and consequently the corresponding
models are referred to as multi-field (Byrnes & Wands, 2006; Gong, 2017). The
energy momentum tensor of a canonical scalar field with potential V (ϕ) is

Tα
β = gαν

∂ϕ

∂xν

∂ϕ

∂xβ
− δαβ

[
1

2
gµν

∂ϕ

∂xµ

∂ϕ

∂xν
+ V (ϕ)

]
. (2.7)

Let us assume that the field is homogeneous to zeroth-order, meaning that ϕ =
ϕ(x). In this case, by evaluating the components T 0

0 and T i
i (with i = 1, 2, 3) we

obtain the energy density and the pressure associated to the scalar field:

ρϕ =
1

2
ϕ̇2 + V (ϕ) and pϕ =

1

2
ϕ̇2 − V (ϕ) , (2.8)

with ϕ̇2/2 being the kinetic energy density of the field. A configuration with negative
pressure is therefore one with more potential energy than kinetic. This is equivalent
to have an equation of state

w =
pϕ
ρϕ

=
ϕ̇2/2− V (ϕ)

ϕ̇2/2 + V (ϕ)
(2.9)
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Figure 2.2: The scalar field ϕ slowly rolling down a potential V (ϕ). Thanks to the
condition of slow-rolling, potential energy dominates over kinetic one, leading to negative
pressure and accelerated expansion. The inflationary epoch ends once the field has reached
the minimum of the potential. Based on Dodelson & Schmidt (2020).

that is close to −1.
One of the most popular scenario of inflation assumes that the scalar field slowly

rolls toward its true ground state (Linde, 1982; Albrecht & Steinhardt, 1982). The
potential energy of such a field is very close to constant so it quickly comes to domi-
nate over the kinetic energy. Inflation ends once the field has reached the minimum
of the potential, where it oscillates and decays into lighter particles (Fig. 2.2).

To determine the evolution of the inflaton ϕ for a general potential, consider the
conservation law of energy and momentum (Eq. 1.7)

∂ρϕ
∂t

+ 3H(ρϕ + pϕ) = 0 . (2.10)

Applying this to the density and pressure obtained above yields

ϕ̈+ 3Hϕ̇+ V,ϕ(ϕ) = 0 , (2.11)

where V,ϕ ≡ dV/dϕ. We can then use the conformal time η as time variable given
that dη = dt/a. It is straightforward to show that

ϕ′′ + 2aHϕ′ + a2V,ϕ = 0 (2.12)

where the superscript “ ′ ” indicates the derivative with respect to the conformal
time.

Most models of inflation are slow-roll models, in which the zeroth-order field,
and hence the Hubble rate, vary slowly. Therefore, a simple relation between the
conformal time η and the expansion rate holds. In particular, during inflation

η =

∫ a

ae

1

a′H
d ln a′ =

∫ a

ae

da′

H(a′)2
≃ 1

H

∫ a

ae

da′

(a′)2
≃ − 1

aH
, (2.13)

where the second equality holds because H in nearly constant, and the second due
to the fact that the scale factor at the end of inflation is much larger than that in
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the middle. To quantify slow-roll, it is common to define two variables known as
slow-roll parameters :

ϵsr =
d

dt

(
1

H

)
= − H ′

aH2
, (2.14)

δsr =
1

H

ϕ̈

ϕ̇
= − 1

aHϕ′ (aHϕ′ − ϕ′′) = − 1

aHϕ′
(
3aHϕ′ + a2V,ϕ

)
, (2.15)

which assume values that are typically very small during inflation.
The slow-roll phase cannot last indefinitely, since inflation must end at some

point. This point is reached when the scalar field reaches the minimum of the
potential. At that point, the field is no longer slowly rolling, but has significant
kinetic energy, so it starts oscillating around the minimum. Then, the equation of
state (Eq. 2.9) is no longer close to −1, but close to zero, so that the Universe has
transitioned to an epoch characterized by a decelerated expansion. Then, finally, the
inflaton ϕ decays into lighter particles, leading to an almost completely homogeneous
and radiation-dominated Universe. This transition period is also known as reheating.

2.3 Cosmological Perturbations

Inflationary models have the merit that they do not only explain the homogeneity
of the Universe on large scales, but also provide a theory for explaining the observed
level of anisotropy. During the inflationary period, quantum fluctuations of the field
were driven to scales much larger than the Hubble horizon. Then, in this process,
the fluctuations were frozen and turned into metric perturbations (Mukhanov &
Chibisov, 1981). The metric perturbations created during inflation can be described
in two terms. The scalar, or curvature, perturbations are coupled with matter
in the Universe and form the initial seeds of structure observed in galaxies today.
Instead, the tensor perturbations do not couple to matter, they are associated to
the generation of primordial gravitational waves. These perturbations are seen as
important components to the CMB anisotropy (Hu & Dodelson, 2002).

Let us consider a homogeneous scalar field that is perturbed, so that the general
expression for ϕ(x, t) becomes

ϕ(x, t) = ϕ̄(t) + δϕ(x, t) . (2.16)

The equation governing the behavior of δϕ in an unperturbed and expanding Uni-
verse is obtained starting from the energy and momentum conservation law (Eq. 1.7)
with ν = 0. In Fourier space and considering first-order terms, it is possible to derive
the equation

δϕ′′ + 2aHδϕ′ + k2δϕ = 0 . (2.17)

This equation can be written as an harmonic oscillator equation. Moving to the
quantum world, it is possible to quantify the amplitude of the perturbations by
introducing the so called power spectrum, defined by the relation

⟨δϕ(k, t)δϕ∗(k′, t)⟩ = (2π)3Pδϕδ
(3)
D (k − k′) , (2.18)
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where k is the wavevector associated to the perturbation, δϕ∗ is the complex conju-
gate and δ

(3)
D is the 3D Dirac delta function. It is possible to demonstrate that the

power spectrum of fluctuations in δϕ is equal to

Pδϕ =
H2

2k3
. (2.19)

Until now, we have neglected perturbations to the metric that however become
important on super-horizon scales, where the wavenumber of the perturbations is
k ≲ aH. In Newtonian conformal gauge, we can write the perturbed FLRW metric
as

ds2 = −(1 + 2Ψ)dt2 + a2(t)δij (1 + 2Φ) dxidxj , (2.20)

where Ψ and Φ are called the scalar gravitational potential. When the anisotropic
stresses of both photons and neutrinos are not important (as during matter dom-
ination), the two potentials are related by Ψ ≃ −Φ. Typically, primordial scalar
fluctuations are expressed in terms of the curvature perturbation R, that is a con-
served quantity on super-horizon scales. During inflation, it is related to the scalar
field ϕ by the relation

R = −aH

ϕ̄′ δϕ . (2.21)

After inflation ends, during the radiation-dominated era, the curvature perturbation
simply becomes

R = −3

2
Ψ =

3

2
Φ . (2.22)

Thus, we can relate the post-inflation power spectrum of Ψ (or, equivalently, of Φ)
to the spectrum of δϕ derived in Eq. 2.19 at horizon crossing

PΨ(k) = PΦ(k) =
4

9

(
aH

ϕ̄′

)2

Pδϕ

∣∣∣∣
k=aH

=
8πG

9k3

H2

ϵsr

∣∣∣∣
k=aH

. (2.23)

The scalar perturbations generated during inflation are nowadays most com-
monly parametrized in terms of the power spectrum of the curvature perturbation
R. From Eqs. 2.21 and 2.23, we have

PR(k) =
9

4
PΦ(k) =

2πGH2

ϵsrk3

∣∣∣∣
k=aH

≡ 2π2Ask
−3

(
k

kp

)ns−1

, (2.24)

where As is the variance of curvature perturbations in a logarithmic wavenumber
interval centered around the pivot scale kp, and ns is the scalar spectral index
(Sect. 1.6). A spectrum such that k3P (k) is constant (i.e., does not depend on
k) is called a scale-invariant or scale-free spectrum. Since ns ≈ 1 from CMB mea-
surments, we conclude that the spectrum of perturbations generated by inflation is
close to be scale-free.

2.4 Primordial non-Gaussianities

Some of the most prominent theories of inflation, such as the single-field slow-roll
model, predict that primordial perturbations follow a nearly Gaussian distribution.
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Deviations from this prediction, known as PNG, serve as one of the most promis-
ing probes to constrain the properties of the inflationary epoch, as almost every
non standard model predicts their existence (Liguori et al., 2003; Seery & Lidsey,
2005a,b).

In the context of PNG, the statistical properties of the curvature perturbation
R can be analyzed through its correlation functions, such as the power spectrum
PR, the bispectrum BR, and the trispectrum TR:

⟨R(k1)R(k2)⟩ = (2π)3PR(k1)δ
(3)
D (k1 + k2) , (2.25)

⟨R(k1)R(k2)R(k3)⟩ = (2π)3BR(k1, k2, k3)δ
(3)
D (k1 + k2 + k3) , (2.26)

⟨R(k1)R(k2)R(k3)R(k4)⟩ = (2π)3TR(k1, k2, k3, k4)δ
(3)
D (k1 + k2 + k3 + k4) . (2.27)

Unlike the power spectrum, which depends on a single wavenumber, the bispectrum
and trispectrum depend on three and four wavenumbers, respectively. The specific
form of these higher-order statistics depends on the underlying inflationary mecha-
nism, which gives rise to different characteristic shapes, such as the local, equilateral,
and orthogonal templates. These shapes will be briefly introduced in the following
subsection.

2.4.1 Bispectrum

Focusing on the bispectrum, its amplitude is typically described by the nonlinearity
parameter fX

NL, where the superscript “X” indicates the specific shape. Since the
shape of the bispectrum is directly linked to the physical mechanism responsible for
generating primordial fluctuations, it provides a powerful tool to distinguish between
different models. Below, we summarize some of the most studied bispectrum shapes:

• Local type → This type of bispectrum arises from nonlinearities generated on
super-horizon scales in the primordial adiabatic fluctuations. The curvature
perturbation in this case can be expressed as (Komatsu & Spergel, 2001)

R = RG +
3

5
f loc
NLR2

G + . . . , (2.28)

where RG represents the Gaussian component of the perturbation. This ex-
pansion leads to a bispectrum of the form:

Bloc
R (k1, k2, k3) =

6

5
f loc
NL [PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k3)PR(k1)]

(2.29)
with PR(k) defined in Eq. 2.24. As illustrated in Fig. 2.3, this shape of the bis-
pectrum peaks in the squeezed limit k3 ≪ k1 ≃ k2. The curvature perturbation
R can be related to the gravitational potential Φ during the matter-dominated
era through the relation R = 5Φ/3 (valid on super-horizon scales). Examples
of models that produce local-type PNG include the curvaton scenario (Moroi
& Takahashi, 2001; Lyth & Wands, 2002; Enqvist & Sloth, 2002), modulated
reheating (Kofman, 2003; Dvali et al., 2004), mixed inflaton-curvaton models
(Langlois & Vernizzi, 2004; Lazarides et al., 2004; Moroi et al., 2005), multi-
field inflation (Byrnes et al., 2008; Byrnes & Choi, 2010), and others.
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Figure 2.3: Shapes of the curvature bispectrum: local (top), equilateral (bottom left)
and orthogonal (bottom right). Credits to Takahashi (2014).

• Equilateral type → This shape of bispectrum is characterized by the following
functional form (Creminelli et al., 2006):

Bequil
R (k1, k2, k3) =

3

5
f equil
NL

[
−3PR(k1)PR(k2)− 2P

2/3
R (k1)P

2/3
R (k2)×

×P
2/3
R (k3) + 6P

1/3
R (k1)P

2/3
R (k2)PR(k3) + (5 permutations)

]
,

(2.30)

which peaks around k1 ≃ k2 ≃ k3, as shown in Fig. 2.3. This shape of
the bispectrum can be obtained by considering a non-canonical form of the
scalar field ϕ. Alternatively, other models of inflation capable of generating
equilateral-type PNG are: k-inflation (Armendáriz-Picón et al., 1999; Garriga
& Mukhanov, 1999), Dirac-Born-Infeld inflation (Alishahiha et al., 2004) and
ghost inflation (Arkani-Hamed et al., 2004; Izumi & Mukohyama, 2010).

• Orthogonal type → In some models, another type of bispectrum can arise,
which is orthogonal to the local and equilateral forms. Hence, it is referred
to as the orthogonal shape. Its bispectrum form is given by (Senatore et al.,
2010):

Bortho
R (k1, k2, k3) =

3

5
f ortho
NL

[
−9PR(k1)PR(k2)− 8P

2/3
R (k1)P

2/3
R (k2)×

×P
2/3
R (k3) + 18P

1/3
R (k1)P

2/3
R (k2)PR(k3) + (5 permutations)

]
.

(2.31)

This shape gives a positive amplitude in the limit k1 ≃ k2 ≃ k3, and negative
in the limit k1 ≃ 2k2 ≃ 2k3, as shown in Fig. 2.3.
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2.5 Primordial non-Gaussianity from Single-field

Inflation

Many models over the past year were proposed in the attempt of characterize the
epoch of inflation. In most models, the predicted value of fNL can vary from fNL ∼
O(1) to fNL ≫ O(1) (see Takahashi, 2014, for a detailed review of the topic). Here,
we discuss about the predictions of the single-field inflation model.

Let us consider an action of the form (Garriga & Mukhanov, 1999)

S =

∫
d4x

√−g

[
1

2
M2

plR + P (X,ϕ)

]
, (2.32)

where X ≡ −(1/2)gµν∂µϕ∂νϕ, R is the Ricci scalar and Mpl ≡ (8πG)−1/2 is the
Planck mass. With this action we can define the power spectrum as

PR(k) =
k3

2π2
PR(k) =

1

8π2M2
pl

H2

csϵ
, (2.33)

with cs being the sound speed, defined by

c2s =
P,X

P,X + 2XP,XX

. (2.34)

Here, P,X and P,XX indicate first and second derivatives with respect to the quantity
X. Additionally, the slow-roll parameters can be derived as follows:

ϵ = − Ḣ

H2
, ηH =

ϵ̇

ϵH
, s =

ċs
csH

. (2.35)

In this case, we can write the bispectrum as (Chen et al., 2007)

BR(k1, k2, k3) = (2π)4P2
R

1∏3
i=1 k

3
i

[(
1

c2s
− 1− 2λ

Σ

)
3k2

1k
2
2k

2
3

2K3
t

+

+

(
1

c2s
− 1

)(
− 1

Kt

∑

i<j

k2
i k

2
j +

1

2K2
t

∑

i ̸=j

k2
i k

2
j +

1

8

∑

i

k3
i

)
+

AO + Aϵ + Aη + As] ,

(2.36)

where Kt ≡ k1 + k2 + k3, AO,s,ϵ,η depend on the slow-roll parameters defined in
Eq. 2.35 and

Σ = XP,X + 2X2P,XX =
H2ϵ

c2s
, λ = X2P,XX +

2

3
X3P,XXX . (2.37)

To describe the amplitude of the bispectrum, one can generalize the definition of
the parameter fNL as

⟨R(k1)R(k2)R(k3)⟩ = (2π)7δ
(3)
D (k1 + k2 + k3)

∑3
i=1 k

3
i∏3

i=1 k
3
i

P2
R

(
3

10
fNL

)
. (2.38)
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Taking the equilater limit (k1 = k2 = k3 = k), one can derive f equil
NL for the expression

Eq. 2.36 as

f equil
NL =

85

324

(
1− 1

c2s

)
− 10

81

λ

Σ
. (2.39)

Now, let us consider a standard slow-roll single-field inflation model characterized
by a canonical kinetic term P = X − V (ϕ). The functional form of the bispectrum
has been calculated as (Maldacena, 2003)

BR(k1, k2, k3) =
(2π)4

8
P2

R
1∏
k3
i

[
(3ϵ− 2ηϕ)

∑

i

k3
i + ϵ

∑

i ̸=j

kik
2
j +

+ 8ϵ

∑
i>j k

2
i k

2
j

Kt

]
,

(2.40)

where ηϕ ≡ M2
pl(V,ϕϕ/V ) is the slow-roll parameter defined with respect to the

potential V of the inflaton. We note that the two parameters ηϕ and ηH are related
by ηH = −2ηϕ + 4ϵ. In the squeezed limit where k3 → 0, the above bispectrum
reduces to

BR(k1, k2, k3) = 2(3ϵ− ηϕ)PR(k1)PR(k3) = (1− ns)PR(k1)PR(k3) . (2.41)

By taking the same limit in Bloc
R given in Eq. 2.29 and comparing it with the above

expression, we obtained the so-called consistency relation between f loc
NL and ns

f loc
NL =

5

12
(1− ns) . (2.42)

In general, this relation has been shown to hold for any single-filed inflation
model, regardless of its potential and kinetic term (Creminelli & Zaldarriaga, 2004).
Since current constraints on ns indicate 1 − ns = O(10−2), any detection of f loc

NL ≫
10−2 would rule out any single-field model for inflation. Today, the best constraints
on PNGs come from the Planck data (Planck Collaboration et al., 2020b) and they
indicate

f loc
NL = −0.9± 5.1 , f equil

NL = −26± 47 , f ortho
NL = −38± 24 . (2.43)
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Chapter 3

Theory of Structure Formation

In the last chapter, we provided an explanation for why our Universe is homogeneous
and isotropic on large scales. However, when we restrict our focus to smaller scales,
specifically on the order of Megaparsecs (Mpc), it becomes evident that this approx-
imation no longer holds. On these smaller scales, we observe significant fluctuations
in matter density, with amplitudes reaching hundreds of times the mean density, in-
dicating a highly nonlinear evolution. Thanks to CMB maps (Planck Collaboration
et al., 2020c), it is possible to derive the order of magnitude of the perturbations at
the time of recombination. Assuming adiabatic perturbations, we have

δT

T̄
≃ δρ

ρ̄
≃ 10−5 , (3.1)

where T̄ and ρ̄ indicates the mean black body temperature of the CMB and the mean
density of the Universe, respectively. As a consequence of the small fluctuations we
can conclude that, at this epoch, the Universe was nearly homogeneous.

From this evidence, it is clear that from recombination to the present day, pertur-
bations have grown by several orders of magnitude due to gravitational instability.
The evolution of fluid perturbations under the influence of gravity was first ana-
lytically described in Jeans (1902). The theory developed from these studies can
be extended to the cosmological framework to predict the formation of large-scale
structures (LSS) in the Universe. In the next section, we will specifically see how
inhomogeneities in the primordial fluid are amplified as the Universe evolves. How-
ever, the results of Jeans’ theory are accurate as long as we remain in a linear regime,
where perturbations can be considered small. The evolution of perturbations in the
nonlinear regime can be analytically addressed only for extremely simple models,
such as spherical evolution (Sect. 3.2). Today, the study of structure evolution dur-
ing the nonlinear phase is mostly carried out using N-body simulations (Sect. 3.3).

3.1 Linear Theory

The aim of Jeans’ theory is to describe the rate at which initial density perturbations
must grow to match the inhomogeneities observed today. This model is applicable to
non-relativistic matter and on scales not exceeding the cosmological horizon, which
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represents the portion of the Universe that is in causal connection with the observer.
The cosmological horizon is defined as in Sect. 2.1:

η(t) =

∫ t

0

dt′

a(t′)
. (3.2)

At this point we can separate perturbations according to their size:

• for scales r > η the only force affecting the fluctuations is gravity and pertur-
bations are always able to grow;

• for scales r < η micro-physical processes become important and the perturba-
tions evolves according to the prediction of the Jeans’s theory at linear order.

To study the evolution of a perturbation with size larger than the cosmological
horizon, we can treat the fluctuation as a closed Universe embedded in a flat and
single-component background Universe. Let us write the first Friedmann equation
(Eq. 1.26) for the perturbation and for the background:

H2
b =

8πG

3
ρb , H2

p =
8πG

3
ρp −

1

a2
, (3.3)

where the subscripts “b” and “p” refer to the background and to the perturbation,
respectively. Since the perturbation is entirely embedded within the background,
their corresponding scale factors are initially the same, allowing us to set their
Hubble parameters to be equal, yielding:

8πG

3
ρb =

8πG

3
ρp −

1

a2
=⇒ δ ≡ ρp − ρb

ρb
=

3

8πGρba2
. (3.4)

Therefore, the evolution of the perturbation depends on the evolution of the density
of the background Universe. Using the relations reported in Table 1.1 we obtain the
following results: 




δ = δr ∝ a2 ∝ t for z > zeq

δ = δm ∝ a ∝ t2/3 for z < zeq .
(3.5)

Consequently, for scales larger than the horizon, perturbations can continuously
grow throughout cosmic time.

The analysis of perturbations on scales smaller than the horizon can be carried
out in the Newtonian approximation using the equation governing a fluid embedded
in an expanding Universe:





∂ρ

∂t
+∇ · (ρv) = 0

∂v

∂t
+ (∇ · v)v = −1

ρ
∇p−∇Φ

∇2Φ = 4πGρ

dS

dt
= 0

p = p(ρ, S) = p(ρ)

(3.6)
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where v is the velocity of a fluid element, Φ is the gravitational potential, S is
the entropy and p is the pressure. This set of equations allows for a background
solution that can be perturbed by introducing small fluctuations (δq/q ≪ 1, with
q any quantity of interest). Regarding velocity, it consists of two components: the
first is the Hubble flow, and the second is the peculiar velocity

v = Hd+ vp , (3.7)

where v indicates the fluid position vector.
At this point it is useful to define the dimensionless density contrast through the

relation

δ(x, t) =
δρ(x, t)

ρb
(3.8)

and solve the system of equation for it. In Fourier space, what results from this is
the so-called dispersion relation

δ̈k + 2Hδ̇k + δk
(
k2c2s − 4πGρb

)
= 0 , (3.9)

where δk is the Fourier transform of the density contrast and cs is the sound speed.
The term 2H(t)δ̇k is the Hubble friction, while the term k2c2sδk accounts for the char-
acteristic velocity field of the fluid. These terms tend to dissipate the fluctuations,
acting against their growth. We can now separate the solutions of the dispersion
relation based on their scale λ, in relation to a characteristic scale λJ, known as the
Jeans’ scale, and given by

λJ =
2π

kJ
= cs

(
π

Gρb

)1/2

. (3.10)

In particular, for λ < λJ the perturbation propagates as a wave with constant
amplitude and velocity tending to cs for λ ≪ λJ. On the other hand, for λ > λJ, the
dispersion relation leads to two solutions, referred to as the growing and decaying
modes. For an EdS Universe we obtain





δ+(t) ∝ t2/3 ∝ a

δ−(t) ∝ t−1 ∝ a−3/2 .
(3.11)

Since the decaying solution does not give rise to gravitational instability (i.e. col-
lapsed structures), we are primarily interested in the growing mode. If the only
relevant component apart from matter are a cosmological constant and curvature,
we can obtain an integral form of the growing mode solution

δ+(a) ∝ H(a)

∫ a da′

[a′H(a′)]3
(3.12)

that, unfortunately, has no analytic solution. However, there exist an empirical
relation for the growth rate f , i.e. the logarithmic derivative of δ+ with respect to
the scale factor:

f(a) ≡ d ln δ+(a)

d ln a
≃ Ω0.55

m +
ΩΛ

70

(
1 +

Ωm

2

)
. (3.13)
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This relation implies that the energy density of matter strongly influences the growth
of perturbation, while dark energy has a minor impact. Moreover, the exponent 0.55
is a prediction of GR (Coles & Lucchin, 2002; Dodelson & Schmidt, 2020); thus,
measuring it serves as a test for the theory.

3.2 Nonlinear Evolution: Spherical Model

The cosmic structures we observe in today’s Universe, such as galaxies, galaxy
clusters, and DM halos, are the result of gravitational instabilities that have oc-
curred throughout cosmological history. Unfortunately, to describe the formation
of these objects, characterized by a strongly nonlinear regime (δ ≫ 1), the small-
perturbations approximation introduced in the previous section is no longer accu-
rate. Once the linear regime breaks down, meaning δ close to unity, the weakly
nonlinear regime begins. During this stage, the fluctuation distribution function al-
ready starts to deviate from a Gaussian shape. Moreover, we must consider that the
evolution of the baryonic component differs from that of the DM. In fact, baryons
are subject to hydrodynamical effects such as star formation, supernova explosions,
and feedback from active galactic nuclei. These phenomena further complicate the
description of the entire scenario with a comprehensive and solid theory. For this
reason, the most viable way to understand what happens when we move out of the
linear regime is to rely on N-body simulations. However, there are very few and
specific cases in which it is possible to proceed analytically.

The model we present here, known as the spherical evolution model (Gunn &
Gott, 1972), is sufficiently accurate for describing the isolated formation of spher-
ical collapsed overdensities (i.e. DM halos). By considering an initially spherical
perturbation, we can represent it as a closed or open Universe, respectively, evolv-
ing within a flat and single-component background Universe. We start at an initial
time ti ≫ teq, which allows us to study the evolution of perturbations during the
matter-dominated era. Assuming the validity of the CP, each perturbation can be
treated as an independent Friedmann Universe as long as it evolves adiabatically.
Therefore, the only interaction we need to consider is gravitational.

3.2.1 Overdensities

Let us study the evolution of an initially overdense shell embedded in an EdS Uni-
verse. In Sect. 3.1 we have derived the growing and decaying modes for a matter
perturbation. Consequently, the density contrast can be written as the combination
of these two modes:

δ(t) = δ+(ti)

(
t

ti

)2/3

+ δ−(ti)

(
t

ti

)−1

. (3.14)

Assuming the perturbations have an initial zero velocity, we can take the derivative
of the previous relation with respect to time and evaluate it at the initial time,
yielding

2

3
δ+(ti) = δ−(ti) . (3.15)
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Therefore, inserting this result in Eq. 3.14 leads to the following expression at t = ti:

δi ≡ δ(ti) = δ+ + δ− =
5

3
δ+(ti) . (3.16)

Consequently, 3/5 of the initial perturbation is captured by the growing mode, while
the remaining 2/5 decays over time, eventually becoming negligible.

Now, let us consider the density parameter of the perturbation, denoted as Ωp.
In the case of an overdense region, the perturbation behaves like a closed Universe
undergoing collapse. Therefore, the overdensity must satisfy the condition Ωp > 1,
that can be written as

Ωp(ti) ≡
ρp(ti)

ρcrit(ti)
=

ρb(ti)(1 + δi)

ρcrit(ti)
= Ω(ti)(1 + δi) > 1 , (3.17)

where Ω(ti) denotes the initial density parameter of the EdS background Universe.
It follows that the condition for collapse can be translated into a condition on the
initial density contrast

δi >
1− Ω(ti)

Ω(ti)
. (3.18)

At this point, we can make use of the tight relation that exists between the den-
sity parameter today and that at a given redshift z for a generic single-component
Universe

Ω(z) =
Ω0(1 + z)1+3ws

(1− Ω0) + Ω0(1 + z)1+3ws
(3.19)

Since we are considering times deep into the matter-dominated era, we have wm = 0.
Hence, the condition for collapse becomes

δi >
1− Ω0

Ω0(1 + zi)
. (3.20)

Therefore, for a closed or flat Universe (Ω0 ≥ 1), collapse occurs for any positive
initial density contrast of the perturbation. However, in an open Universe (Ω0 <
1), expansion inhibits collapse, which can only occur if the initial density contrast
exceeds a certain threshold.

The spherical overdense region begins to expand at a rate slower than the Hubble
flow, thereby increasing its density contrast. The expansion gradually slows down
until the overdensity reaches its maximum size, characterized by a radiusRmax. After
this moment, known as turn-around, collapse begins, initiating structure formation.
It is possible to show that, at the moment of maximum expansion t = tmax, the
density of the perturbation is

ρp(tmax) =
3π

32G

1

t2max

. (3.21)

Recalling the fundamental relations for the EdS model in Table 1.1, we can easily
compute the density contrast at the turn-around:

δ(tmax) =
ρp(tmax)

ρb(tmax)
− 1 =

(
3π

4

)2

≃ 4.6 . (3.22)
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Thus, even at the moment of the turn-around, the collapsing region is already within
the nonlinear regime and exhibits a density more than 5 times larger than that of
the background Universe. Alternatively, if computed within the framework of linear
theory, the same quantity would be:

δL(tmax) = δ+(ti)

(
tmax

ti

)2/3

=
3

5

(
3π

4

)2/3

≃ 1.07 . (3.23)

In principle, a rigorous gravitational treatment of a closed Universe implies that
after reaching the turn-around point, the size of the overdensity will shrink until it
becomes a singularity at t = 2tmax. However, due to hydrodynamical interactions
of baryons or the increase of the dispersion velocity of DM particles, a virialized
structure with a size given by the virial radius Rvir forms at tvir = 3tmax.

Due to the virialization of the overdensity at the end of collapse, we can establish
a relationship between its kinetic energy T and gravitational potential energy V
using the scalar virial theorem, which states that

2T + V = 0 . (3.24)

Assuming a perfectly self-gravitating spherical overdensity with mass M , the grava-
tional potential energy can be expressed as

V = −3

5

GM2

R
. (3.25)

Using this and Eq. 3.24, we obtain that at the moment of virialization tvir, the total
energy of the system E is given by

E(tvir) = T + V =
V
2
= − 3

10

GM2

Rvir

. (3.26)

In the absence of any energy loss during the collapse phase, we can assume that
E(tvir) = E(tmax), which leads to 2Rvir = Rmax. Since the density scales as R−3,
the density of the perturbation once it is virialized is 8 times higher than that at
the turn-around. Therefore, the density contrasts at tcoll = 2tmax and tvir = 3tmax,
assume the following values:

δ(tcoll) =
ρp(tcoll)

ρb(tcoll)
− 1 =

8ρp(tmax)

ρb(tmax)

(
tcoll
tmax

)2

− 1 ≃ 178 ; (3.27)

δ(tvir) =
ρp(tvir)

ρb(tvir)
− 1 =

8ρp(tmax)

ρb(tmax)

(
tvir
tmax

)2

− 1 ≃ 402 . (3.28)

In linear theory, the same quantities would be

δL(tcoll) = 1.06

(
tcoll
tmax

)2/3

≃ 1.686 , (3.29)

δL(tvir) = 1.06

(
tvir
tmax

)2/3

≃ 2.2 . (3.30)

The values in Eq. 3.27 and Eq. 3.28 computed in nonlinear theory closely approx-
imate those measured, but they are significantly influenced by the cosmological
model, particularly by the curvature. In contrast, the corresponding linear values
are less affected (Kitayama & Suto, 1996; Jenkins et al., 2001).
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3.3 Numerical N-body Simulations

As we have seen, the analytical treatment of structure formation is very complex,
especially when structures enter their nonlinear phase of evolution, for which only
a few solutions exist. Additionally, the micro-physics related to the presence of
baryons must also be considered, significantly complicating the overall model. To
address these challenges, numerical simulations are used. Since the formation of cos-
mic structures is essentially the result of the dynamic evolution of a particle system,
once the underlying cosmological scenario and initial conditions are established, the
simulation is run to track the system’s evolution.

The primary effect crucial for mimicking the evolution of density perturbations
is the gravitational interaction, which dominates on large scales and affects the ma-
jority of the matter in the Universe (specifically, DM). Simulations that exclusively
incorporate gravitational forces are termed N-body simulations. For a more accurate
depiction of LSS, hydrodynamic effects arising from baryonic matter must also be
included. Simulations that evolve both the baryonic and dark matter components
are known as hydrodynamic simulations.

Focusing on simulations that accounts for only gravity, the particle system is
evolved by solving the following set of equations:





F i = GMi

N∑

i ̸=j

Mj

r2ij
r̂ij

ẍi =
dvi

dt
=

F i

Mi

ẋi =
dxi

dt
= vi .

(3.31)

For each i-th particle, F i represents the force acting on it, Mi denotes its mass,
xi is its comoving 3-dimensional position and vi indicates its velocity components.
Given this set of equations, the Euler equation can be written as

dxi

dt
+ 2

ȧ

a
vi = − 1

a2
∇Φ = −G

a3

N∑

i ̸=j

Mj
xi − xj

|xi − xj|3
=

F i

a3
, (3.32)

where a is the scale factor. By utilizing the first Friedmann equation (Eq. 1.26), the
Poisson equation becomes

∇2Φ = 4πGρ̄a2δ =
3

2
H2

0Ω0,m
δ

a
, (3.33)

with ρ̄ and δ representing the mean matter density and the local density contrast,
respectively.

N-body simulations integrate all the involved equations over discretized time
steps δt, with varying efficiency depending on the method implemented. For in-
stance, the simplest method to compute the gravitational force F i acting on a
particle is the particle-particle method. In each time step, the force is calculated by
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Figure 3.1: A visualization of the AbacusSummit boxes, showing progressive zoom-ins
from the full box down to cluster scales. The 139 boxes that comprise the suite are shown
as tiles in the background. Each box tracks the evolution of 69123 ≃ 330 billions particles
up to z = 0.1. Renderings display a snapshot at z = 0.1, and projections are 10 h−1 Mpc
deep. Credits to Maksimova et al. (2021).

summing the contributions of all the particles. This method is the most precise,
as it yields the exact values of the forces. However, it is also very computationally
demanding, scaling as O(N2) (where N is the number of particles). More efficient
methods to compute the gravitational interaction are the hierarchical tree and the
particle mesh (see Hockney & Eastwood, 1981; Barnes & Hut, 1986, for details).

The initial studies involving numerical simulations focused on solving the N-
body problem for a few hundred particles (Aarseth, 1963; Peebles, 1970). Thanks
to significant advancements in technology and computational techniques over recent
decades, it is now possible to conduct simulations with particle counts reaching
several billions (see Fig. 3.1 for an example). Despite the impressive achievements
in this area of research, cosmological simulations still face significant limitations.
Simulations with small volumes offer high resolution, which is essential for studying
galaxy formation models and resolving detailed physical processes. In contrast,
simulations with large volumes allow for an in-depth examination of the LSS of the
Universe and facilitate statistical analyses of its properties. Achieving simulations
that combine both high resolution and large volume remains difficult.

3.3.1 Halo finders

The final output of an N-body simulation is a set of snapshots that capture the con-
figuration of the particle system (Fig. 3.1) at various redshifts, thereby illustrating
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the evolution of the total matter density field. In a snapshot, one immediately no-
tices regions where there is an higher concentration of dark matter particles, known
as DM halos. To identify these structures, two standard techniques are commonly
applied: spherical overdensity (SO, Press & Schechter, 1974) and Friends-of-Friends,
(FOF, Davis et al., 1985). These techniques have laid the foundation for the devel-
opment of more advanced halo finding algorithms.

The SOmethod is based on defining spherical regions around density peaks, which
are identified by sorting particles based on their local density. Once a density peak
is found, a halo is identified by expanding a sphere around it. The expansion stops
when the mean density within this sphere reaches the value ∆cρcrit(z), where ∆c is
the chosen overdensity threshold and ρcrit(z) is the critical density of the Universe
at fixed redshift (Eq. 1.32). Then, the radius and mass of each halo are defined
according to the following relation:

4π

3
R3

∆c
∆cρcrit = M∆c . (3.34)

Alternatively, the background density, defined as ρb ≡ Ωmρcrit, can also be used as
the reference density for determining the mass and radius of DM halos.

On the other hand, the FOF algorithm categorizes halos as groups of DM par-
ticles that are closer to each other than a specified linking length ℓ = b d̄, where d̄
represents the average inter-particle separation in the DM particle data set, and b
is a configurable parameter of the algorithm1. Closely related to the discussed halo
finding techniques is SUBFIND (Springel et al., 2001), an algorithm designed to iden-
tify substructures within larger parent groups previously identified using a standard
FOF finder. In this context, substructures are defined as locally overdense regions
of particles that are self-bound. Another notable example of a more sophisticated
halo finding algorithm is ROCKSTAR (Robust Overdensity Calculation using K-Space
Topologically Adaptive Refinement, Behroozi et al., 2013), which will be employed
to prepare most of the data sets used in the following chapters (see Sect. 5.3.1).

These halo-finding methods provide the foundation for constructing halo cata-
logs, which are essential for studying the LSS of the Universe. In particular, halos
identified in N-body simulations serve as the counterparts of observed galaxy clus-
ters. Therefore, predictions based on numerical simulations can be directly compared
with real observational data, allowing to test and constrain cosmological models and
parameters (see, e.g., Lesci et al., 2022; Ghirardini et al., 2024).

3.4 Statistical Characterization of the Universe’s

Density Field

Up to this point, we have examined the linear evolution of an individual perturbation
in the density field, characterized by δ(x, t) = δ+(t)δ(x). Nevertheless, the true
evolution of structures results from the superposition of density fluctuations across
different scales. Utilizing the Fourier space description of these perturbations is
particularly advantageous, as it enables us to depict this scenario as a superposition

1To construct halo catalogues, a value b = 0.2 is typically adopted (More et al., 2011).
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of independent plane waves. Therefore, let us introduce the Fourier transform of
the real-space density contrast δ(x):

δ(k) =

∫
d3x δ(x)e−ik·x ⇐⇒ δ(x) =

∫
d3k

(2π)3
δ(k)eik·x . (3.35)

Given two perturbations characterized by δ(k) and δ(k′), the mean quadratic am-
plitude of the density fluctuations can be measured using the matter power spectrum
Pm(k).

To find an expression for it, let us relate the potential on sub-horizon scales
and during matter-domination, to the primordial curvature perturbation generated
during inflation

Φ(k, a) =
3

5
R(k)T (k)

δ+(a)

a
, (3.36)

where T (k) is the transfer function, which describes the evolution of perturbations
through the epochs of horizon crossing and radiation/matter transition. Then, we
can employ the Poisson equation to relate the matter overdensity δ(k) to the po-
tential, leading to

δ(k, a) =
2k2a

3ΩmH2
0

Φ(k, a) =
2

5

k2

Ω0,mH2
0

R(k)T (k)δ+(a) = M(k, z)R(k) . (3.37)

Employing the equation for the curvature power spectrum obtained in the previous
chapter (Eq. 2.24), we can write the matter power spectrum as

Pm(k, a) =
8π2

25

As

Ω2
0,m

δ2+(a)T
2(k)

kns

H4
0k

ns−1
p

. (3.38)

Since the amplitudes of the fluctuations have a nearly Gaussian distribution in
real space, their mean value is statistically zero by definition. Instead, the variance
of the fluctuation amplitudes, σ2, is defined by:

σ2 = ⟨δ2(x)⟩ =
∑

k

⟨|δ(k)|2⟩ = 1

VU

∑

k

δ2k , (3.39)

where the average is taken over an ensemble of Universe realizations, each with
volume VU. In the limit VU → ∞ and assuming the validity of the CP, the variance
can be written as

σ2 =
1

2π2

∫ ∞

0

Pm(k)k
2dk . (3.40)

computing σ2 requires the evaluation of the density at each point in space, necessitat-
ing the reconstruction of the entire density field, which is impractical. A convenient
method is to represent the fluctuation field by “filtering” on a scale R. With this ap-
proach, we can recover the density fluctuation from a discrete distribution of tracers
as follows:

δM =
M − M̄

M̄
. (3.41)
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Here, M̄ is the mean mass present inside a spherical volume of radius R. The
fluctuation δM is directly related to the “standard” density fluctuation. Specifically,
it is the convolution of it with a window function (or filter) W :

δM = δ(x)⊗W (x, R) . (3.42)

Thanks to the last definitions and to Eq. 3.39, we can obtain the mass variance as

σ2
M = ⟨δ2M⟩ = ⟨(M − M̄)2⟩

M̄2
=

1

2π2

∫ ∞

0

Pm(k)k
2Ŵ 2(k,R)dk , (3.43)

where Ŵ (k,R) is the Fourier transform of the window function and R is the scale as-
sociated to the mass M . Typically, a spherical top-hat window function is employed
in cosmological analyses, and in Fourier space, it takes the form:

Ŵ (k,R) =
3 [sin(kR)− kR cos(kR)]

(kR)3
. (3.44)

Although inflation theory does not predict the normalization of the power spectrum,
a commonly used method is to set the value of the mass variance, computed using
a filter with R = 8 h−1 Mpc at the present time

σ2
8 =

1

2π2

∫ ∞

0

Pm(k)k
2Ŵ 2(k,R = 8 h−1 Mpc)dk . (3.45)

The square root of this quantity not only represents the mass fluctuation in spheres
with a radius of 8 h−1 Mpc, but also serves as a parameter to quantify the amplitude
of the power spectrum. However, Sánchez (2020) showed that a more effective
approach to characterize the power spectrum is to normalize it by a reference scale
measured in physical units, i.e. Mpc. A suitable choice for this scale is 12 Mpc,
which approximately corresponds to 8 h−1 Mpc for h ≃ 0.67, as suggested by current
CMB data (Planck Collaboration et al., 2020a). Referring to the corresponding
square root of the variance as σ12, it has been shown that this normalization not
only better describes the degeneracy between h and As but also helps to mitigate
the growth of structure tension (see Sect. 1.7).

3.4.1 Evolution of the matter power spectrum

Density perturbations entering the cosmological horizon before radiation-matter
equality are damped by a phenomenon known as stagnation or Mészáros effect
(Meszaros, 1974). This effect arises because the Hubble drag term during the
radiation-dominated era is larger than during the matter-dominated era. Specif-
ically, when comparing the free-fall time τff , which is the characteristic time for a
perturbation to collapse under its own gravitational force, with the Hubble time
τH, which represents the characteristic time for the expansion of the Universe, we
observe that

τH
τff

∝
(

ρm
ρrad

)1/2

≪ 1 for t < teq . (3.46)

34



Figure 3.2: The observed linear matter power spectrum Pm(k) at z = 0 as a function
of the wavenumber k, obtained from a combination of different cosmological probes (the
dotted line shows the impact of nonlinear clustering at z = 0). The broad agreement of
the model (black line) is an impressive testament to the explanatory power of ΛCDM.
Credits to Planck Collaboration et al. (2020d).

Since the free-fall time is much longer than the expansion time, density perturbations
cannot grow during this period. The main consequence of this effect is a change in
the shape of the power spectrum.

As the cosmological horizon expands over time (Eq. 3.2), larger perturbations
will enter the horizon at later times, experiencing less stagnation (or no stagnation if
they enter the horizon only after the equality). In contrast, perturbations on scales
larger than the horizon continue to grow at the same rate regardless of their scale,
following the trends described in Eq. 3.5. Consequently, the power spectrum at the
time of equivalence exhibits a peak at kH,eq, the wavenumber corresponding to the
horizon at that epoch. This peak primarily depends on Ω0,mh

2 and Ω0,rh
2, which

are related to the matter and radiation densities and the Hubble parameter.
The shape of the observed matter power spectrum Pm(k, z) depends on the

amount and nature of matter in the Universe, providing crucial constraints for cos-
mology. HDM particles remain relativistic at decoupling, whereas CDM particles
are non-relativistic before decoupling2. Consequently, CDM particles are generally
more massive than HDM particles. If the matter component consisted entirely of
HDM particles, the power spectrum would drop sharply to zero beyond the peak.
Modern observations from the CMB, galaxy clusters, gravitational lensing, and the
Lyα forest confirm that the Universe’s matter component is predominantly cold, as
shown in Fig. 3.2.

The shape of Pm(k) at the time of equivalence depends on the transfer function
T (k). In a scenario dominated by CDM, the transfer function assumes the following

2In principle, DM is non-collisional, meaning there is no decoupling. However, in scenarios
where DM consists of WIMPs or axions, a (minimal) coupling could exist.
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forms depending on the wavenumber:

T (k) =





1 for k < kH,eq

∝ k−2 for k > kH,eq .
(3.47)

Therefore, on large scales, where T (k) = 1, the power spectrum is proportional to
kns , while in the large k regime it decays as kns−4.

3.5 Bias Theory

DM halos trace the underlying matter distribution, as they are thought to form in
regions of high-density peaks. However, the process of gravitational collapse leading
to halo formation is highly non-linear and complex. On quasi-linear scales, these
complexities can be effectively captured by a series of operators, whose corresponding
coefficients are known as bias parameters (Bardeen et al., 1986; Desjacques et al.,
2018). Within perturbation theory, the density contrast of halos, as well as other
LSS tracers like galaxies or galaxy clusters, can be expressed as a function of position
and redshift in the following way:

δh(x, z) =
∑

O

bO(z)O(x, z). (3.48)

In this equation, the terms O represent various fields influencing the matter density
field, while the coefficients bO correspond to the bias parameters associated with
each operator. The leading-order term in Eq. 3.48 is given by

δh = b1 δm . (3.49)

Here, we use b1 to indicate the effective bias parameter. This relation is only valid
within the purely linear regime, typically considered for wave numbers below kmax ≲
0.1 h Mpc−1. Using the bias parameter b1, the power spectrum of halos can be
written in terms of the linear matter power spectrum Pm as:

Ph(k, z) = b21(z)Pm(k, z) . (3.50)

3.5.1 Scale-dependent bias

In the presence of local-type PNG, the bias expansion at leading order (Eq. 3.48)
includes an additional term proportional to f loc

NLΦ, where Φ is the gravitational po-
tential. Consequently, the halo density contrast can be expressed as

δh(k, z) = b1(z)δm(k, z) + bΦf
loc
NLΦ =

[
b1(z) +

3f loc
NLbΦ(z)

5M(k, z)

]
δm(k, z). (3.51)

The second equality follows from Eq. 3.37, where δm = MR = (5/3)MΦ. Here, bΦ
denotes the bias parameter associated with the operator Φ, which only arises in the
presence of PNG.
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Figure 3.3: Theoretical power spectra obtained from Eq. 3.52. The blue line represents
the linear matter power spectrum at z = 1. The orange line corresponds to a biased tracer
with Gaussian initial conditions. The green line shows the impact of a non-Gaussian
contribution with f loc

NL = 100 and a PNG response parameter bΦ given by Eq. 3.54 with
p = 1. The red line demonstrates how a different value of f loc

NL can produce the same signal
if the bΦ parameter deviates from the universality relation. Since the product bΦf

loc
NL is

the same, the red and green lines overlap. Finally, the purple line illustrates the expected
signal for bΦf

loc
NL < 0. Credits to Gutiérrez Adame et al. (2024).

With this new bias expansion, the power spectrum of DM halos — or any biased
tracer of the total matter density — can be derived analogously to Eq. 3.50. The
resulting halo power spectrum is given by

Ph(k, z) =

[
b1(z) +

3f loc
NLbΦ(z)

5M(k, z)

]2
Pm(k, z). (3.52)

The relation between Ph(k, z) and Pm(k, z) now exhibits a scale dependence due
to the M(k, z) term, which scales as k−2. This effect is commonly referred to as
scale-dependent bias.

Figure 3.3 illustrates the expected behavior of the halo power spectrum for dif-
ferent combinations of f loc

NL and bΦ. Notably, we observe that different values of
f loc
NL can lead to identical signals depending on the value of the bias parameter bΦ,
highlighting a perfect degeneracy between f loc

NL and bΦ (Barreira, 2022a).
The parameter bΦ characterizes the response of halo abundance to perturbations

in the primordial gravitational potential Φ. Since local-type PNG couples long-
and short-wavelength perturbations, in the framework of the peak-background split
theory (Kaiser, 1984; Bardeen et al., 1986), it can be shown that bΦ also describes the
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response of the halo number density to variations in the amplitude of the primordial
power spectrum (Desjacques et al., 2018; Barreira, 2022b):

bϕ =
1

n̄h

∂n̄h

∂ log
(
f loc
NLΦ

) =
1

n̄h

∂n̄h

∂ logAs

, (3.53)

where n̄h is the mean halo number density and As is the amplitude of the primordial
scalar perturbations. Assuming a universal mass function, a theoretical prediction
for bΦ can be derived (Dalal et al., 2008; Slosar et al., 2008; Desjacques et al., 2018):

bΦ = 2δc,0 (b1 − p) . (3.54)

Here, δc,0 = 1.686 is the critical overdensity for spherical collapse (see Sect. 4.1),
and p depends on the tracer population. Under the assumption of a universal mass
function, p = 1 for all tracers of the matter distribution (Dalal et al., 2008; Slosar
et al., 2008). This expression, with p = 1, is commonly referred to as the universality
relation for bΦ.

However, recent studies suggest that this relation does not always accurately
describe the scale-dependent bias. For instance, Barreira et al. (2020) found that
for galaxies selected by stellar mass, p = 0.5 provided a better fit for bΦ. Similarly,
Gutiérrez Adame et al. (2024) analyzed halos within a specific mass range and
obtained p = 0.955± 0.013, revealing a ∼ 3σ deviation from the universal relation.
Additionally, bΦ may depend on secondary properties beyond mass, such as halo
concentration (Lazeyras et al., 2023; Fondi et al., 2024).
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Chapter 4

Statistical Properties of Dark
Matter Halos

In cosmological simulations, as well as in observation data, the LSS of the Universe
reveals itself as a filamentary network of matter known as the cosmic web. This
structure is characterized by galaxies that, through gravitational interactions, ag-
gregate into dense clusters within the most overdense regions, which correspond to
the most massive DM halos. By examining the statistical properties of galaxies and
galaxy clusters as their number densities and spatial distributions, we can assess
and refine cosmological models and constrain their key cosmological parameters.

In this chapter, we will provide an overview of the Press-Schechter formalism
(PS, Press & Schechter, 1974) that will allow us to derive key properties of DM
halos. Specifically, we will examine how this formalism aids in understanding the
distribution of DM halos based on their mass. We will also address how these pre-
dictions do not align with data and introduce more advanced models to rectify these
discrepancies. As these results are based on a Gaussian distribution of primordial
density fluctuations, we will also introduce their modification induced by PNG.

4.1 Press-Schechter Formalism

According to linear theory, a generic density field evolved as δ(x, t) = δ+(t)δ0(x),
where δ0(x) is the density field linearly extrapolated at t = t0. As discussed in
Sect. 3.2.1, regions with overdensities exceeding the threshold δc ≃ 1.686 have col-
lapsed to produce DM halos by time t. By rearranging terms, we can also interpret
this as follows: regions with δ0(x) > δc/δ+(t) have collapsed to produce halos by
time t. In this case, we treat the density field as static (at the value extrapolated
for the time t0), while the collapse barrier evolves over time. Let δM be the linear
density field smoothed on a mass scale M . In principle, locations where δM = δc(t)
indicate the regions where, at time t, a halo of massM condensed out of the evolving
density field.

In this scenario, the halo mass function is determined by assessing the number
density of peaks (Fig. 4.1) within the smoothed density field:

n(> M) = npk(δM) , (4.1)
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Figure 4.1: The solid blue line shows the 1D smoothed density field δM , while the red
line indicates a long-wavelength perturbation. The dashed horizontal line marks the linear
threshold for spherical collapse. Credits to Desjacques et al. (2018).

where n(> M) is the number density of halos with mass above M and npk(δM) is the
number density of peaks above δc in the smoothed density field. This idea was firstly
investigated by Bardeen et al. (1986). However, it soon encountered the issue that
some peaks — specifically, those that become part of a higher peak when smoothed
with a larger filter — need to be excluded when associating peaks with halos. This
issue is known as the cloud-in-cloud problem. As a result, the peak formalism was
abandoned in favor of PS formalism, which, while less rigorous, proved to be more
successful.

In this framework, it is assumed that the probability of δM > δc(t) corresponds
to the mass fraction, at time t, contained in halos with mass greater than M . For a
Gaussian random field, one finds that this probability is given by

P(δM > δc) =

∫ +∞

δc

P (δM)dM =
1√
2πσ2

M

∫ +∞

δc

exp

(
− δ2M
2σ2

M

)
dδM , (4.2)

with P (δM)dδM being the probability distribution function (PDF). In the limitM →
0, the variance diverges, and thus, the probability is expected to approach unity,
implying that all the matter should be part of collapsed structures. However, the
PS formalism predict a value of 1/2, suggesting that only half of it is locked-up
in collapsed structures. This discrepancy is the manifestation of the cloud-in-cloud
problem and it was addressed by introducing an adjustment factor of 2 into the
probability, which corrected the predicted value to align with expectations:

F (> M) = 2P(δM > δc) . (4.3)

By utilizing the extended PS formalism, also known as excursion-set, it is possible
to derive the factor of 2 directly from the theoretical framework, eliminating the
need for any adjustment factors (see, Zentner, 2007, for a review of the topic).

4.1.1 Press-Schechter halo mass function

The halo mass function (HMF) can be formally defined as the number of halos per
unit comoving volume, with masses in the range between M and M + dM . Given

40



that (∂F/∂M)dM represents the fraction of mass contained in halos with masses
between M and M + dM , the HMF can be expressed as

dn(M, z)

dM
dM =

ρ̄m
M

∂F (> M)

∂M
dM , (4.4)

where ρ̄m indicates the mean comoving matter density. Substituting Eq. 4.3 into
this equation yields the general expression for the Press-Schechter HMF:

dn(M, z)

dM
=

√
2

π

ρ̄m
M2

δc
σM

∣∣∣∣
d lnσM

d lnM

∣∣∣∣ exp
(
− δ2c
2σ2

M

)
. (4.5)

Alternatively, the HMF can be expressed more compactly as follows

dn

dM
= f(σM)

ρ̄m
M

d lnσ−1
M

dM
, (4.6)

where we have introduced the so-called multiplicity function f(σM). It is common
to define this function also in terms of the variable ν ≡ δc/σM . In principle, it
is dependent on the specific HMF model, as we will see in Sect. 4.2. For the PS
scenario, it can be straightforwardly derived as

f(σM) =

√
2

π

δc
σM

exp

(
− δ2c
2σ2

M

)
=

√
2

π
ν exp

(
−ν2

2

)
. (4.7)

4.2 Accurate Halo Mass Function Models

The PS approach combines the assumption of spherical collapse with the notion
that initial density fluctuations follow a Gaussian distribution. However, this model
does not accurately describe the data from cosmological simulations. In particular,
the model tends to overestimate the abundance of high-mass halos while underesti-
mating the number of low-mass halos (Sheth & Tormen, 1999).

Galaxy clusters have proven to be powerful probes of cosmology, leading to the
construction of several large-scale surveys. To fully leverage the statistical power
of recent large-scale surveys, we must be able to make accurate predictions for
abundance evolution as a function of cosmological parameters.

In previous works, it has been proposed that the functional form of the HMF,
when expressed in appropriate variables, should be universal across different red-
shifts and cosmologies (Bond et al., 1991; Sheth & Tormen, 1999). Although this
universality is expected to be only approximate (Musso & Sheth, 2012; Paranjape
et al., 2013), it greatly simplifies the task of constraining cosmological parameters
from observational data. As a result, this idea has formed the foundation for fit-
ting functions whose parameters are calibrated using N-body simulations (Sheth &
Tormen, 1999; Jenkins et al., 2001; Warren et al., 2006). In this regard, Fig. 4.2
shows an example of a fitted universal HMF alongside some of the data points used
to build the model. However, using a general fitting function, the collapse threshold
δc is no longer directly tied to spherical collapse. Nevertheless, spherical collapse
and the excursion-set offer a plausible physical explanation of the phenomenon. As
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Figure 4.2: The halo mass function (multiplied by M2/ρ̄m) as measured in a large suite
of N-body simulations. The three sets of points correspond to different mass definitions
M∆b

, with ∆b = 200, 800, and 3200 (from top to bottom). Markers and colors distinguish
data points extracted from simulations with different resolution. Finally, the black solid
lines represent the best-fit model for the mass function at the three different overdensities.
Credits to Tinker et al. (2008).

the simulated data sets have grown, it has also become feasible to quantify small
deviations from universality (Tinker et al., 2008; Crocce et al., 2010; Despali et al.,
2016). Currently, modern models calibrated on numerical simulations achieve an
accuracy of a few percent.

Starting from Eq. 4.6, the various HMFs are derived by adjusting the multiplicity
function. In Table 4.1, we present the expressions of f(σM) for some of the most
well-known and widely-used models in literature.

4.3 The Effect of local-type PNG on the Halo

Mass Function

In order to take into account the effect of local-type PNG on the smoothed density
field, let us consider a general PDF P (δM)dM . The n-central moment for the PDF
is defined as

⟨δnM⟩ =
∫ +∞

−∞
δnMP (δM)dδM , (4.8)

while each reduced p-th cumulant can be defined as

Sp(M) =
⟨δpM⟩

⟨δ2M⟩p−1
. (4.9)
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Model Multiplicity Function f(σM)

Press-Schechter f =

√
2

π

δc
σM

exp

(
− δ2c
2σ2

M

)

Sheth-Tormen f = A

√
2a

π

δc
σM

exp

(
− aδ2c
2σ2

M

)[
1 +

(
σ2
M

aδ2c

)p]

Warren et al. f = A
(
σ−a
M + b

)
exp

(
− c

σ2
M

)

Tinker et al. f = A

[(σM

b

)−a

+ 1

]
exp

(
− c

σ2
M

)

Table 4.1: Multiplicity function for some of the various HMF models present in literature.
The parameters entering the function in the last three cases are derived from fits to data
obtained from various simulation sets (for details on the models, see Press & Schechter,
1974; Sheth & Tormen, 1999; Warren et al., 2006; Tinker et al., 2008).

In particular, ⟨δ2M⟩ ≡ σ2
M , while S3 and S4 are referred to as normalized skewness

and kurtosis of the distribution, respectively. For example, the cumulant S3 can be
expressed as follows:

S3(M) =
1

σ4
M

∫
d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

M̂(k1)M̂(k2)M̂(k3)⟨R(k1)R(k2)R(k3)⟩ , (4.10)

with M̂(k, z) ≡ M(k, z)Ŵ (kR), where M and Ŵ are defined in Eqs. 3.37 and 3.44,
respectively. Analogous formulae are valid for higher-order cumulants. Therefore,
the normalized skewness is related to the bispectrum from Eq. 2.26 and is propor-
tional to the parameter f loc

NL (hereafter fNL), assuming a local shape. Similarly, we
obtain that the kurtosis S4 depends on the trispectrum of the distribution and is
proportional to f 2

NL.
We know from Sect. 4.1 that, under the assumption of Gaussianity, from the PDF

we can recover the standard PS mass function (Eq. 4.5). Therefore, let us consider
a non-Gaussian PDF of the matter density fluctuations, based on the concept of the
Edgeworth expansion. Specifically, we write the PDF P (x)dx, with x = δM/σM ,
in terms of the derivatives of the Gaussian one, PG(x), as (Juszkiewicz et al., 1995;
LoVerde et al., 2008)

P (x)dx = dx

[
c0PG(x) +

∑

m=1

cm
m!

P
(m)
G (x)

]
, (4.11)

where we define PG and P
(m)
G as

PG(x) ≡
1√
2π

exp

(
−x2

2

)
, (4.12)

P
(m)
G (x) ≡ dm

dxm
PG(x) = (−1)mHm(x)PG(x) . (4.13)
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Here, Hm indicates the Hermite polynomials of order m. Therefore, we can regard
Eq. 4.11 as a non-Gaussian PDF expanded in terms of the Hermite polynomials.
Since they satisfy the orthogonal relations, we can evaluate the coefficients cm as

cm = (−1)m
∫ +∞

−∞
Hm(x)P (x)dx . (4.14)

Then, we obtain the expressions for the coefficients cm in terms of the mass variance
and of the cumulants S3 and S4. As a result, the non-Gaussian PDF of the density
field can be written as

P (x)dx =
dx√
2π

exp

(
x2

2

)[
1 +

S3σM

6
H3(x) +

1

2

(
S3σM

6

)
H6(x) +

+
S4σ

2
M

24
H4(x) +

1

2

(
S4σ

2
M

24

)2

H8(x) + ...

]
,

(4.15)

up to the second-order terms in S3 and S4, and neglecting the contribution of higher-
order cumulants, that are expected to be negligible.

By inserting this equation for the non-Gaussian PDF into the computation of
the PS mass function, we obtain the fundamental relation

dnNG
PS

dM
(M, z) =

dnPS

dM
(M, z)C(M, z) . (4.16)

Thus, the non-Gaussian mass function can be simply written as the Gaussian one
multiplied by a correction factor. It is typical to assume that the correction factor
is independent of the model of Gaussian HMF, therefore, once it is computed, it can
be applied to any known model, such as those introduced in Sect. 4.2.

At 2nd-order in S3 and in terms of the variable ν ≡ δc/σM , the correction factor
found by LoVerde et al. (2008) (LMSVQ hereafter) can be written as

CLMSVQ(M, z) = 1 +
S3σM

6

[
H3(ν) +

1

ν

d ln (S3σM)

d lnσM

H2(ν)

]
+

(S3σM)2

72
×

×
[
H6(ν) +

2

ν

d ln (S3σM)

d lnσM

H5(ν)

]
+

S4σ
2
M

24

[
H4(ν) +

1

ν

d ln (S4σ
2
M)

d lnσM

H3(ν)

]
.

(4.17)
In literature, other models have been proposed to account for the effect of local-
type PNG on the HMF. For, example, in Matarrese et al. (2000) (MVJ hereafter),
the authors employed the saddle-point approximation to calculate the level excur-
sion probability, while in D’Amico et al. (2011a) (DMNP hereafter), they derived
the non-Gaussian halo mass function by calculating the first-crossing rate of a ran-
dom walk with non-Gaussian noise in the presence of an absorbing barrier. Their
correction factors can be written respectively as

CMVJ(M, z) = exp

(
δ3c

S3

6σ2
M

)[
1

6

δc√
1− δcS3/3

dS3

d lnσM

+

√
1− δcS3

3

]
, (4.18)
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Figure 4.3: The non-Gaussian correction factors C for the halo mass function computed
assuming fNL = 100 in the mass range from 4× 1013 to 6× 1015 h−1 M⊙. Different colors
and line styles are used to indicate the different theoretical models: solid orange line
for MVJ (Eq. 4.18), green dashed line for LMSVQ (Eq. 4.17) and purple dotted line for
DMNP (Eq. 4.19). Each panel refer to a different redshift, with the left one corresponding
to z = 0, and the right one to z = 0.5.
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4
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)]}
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(4.19)

where, in the second equation, the coefficients c1 and c2 are smoothly varying func-
tions of the variance σ2

M . Furthermore, we define the functions εn, known as the
“equal-time” functions, where εn−2 ≡ ⟨δnM⟩/⟨δ2M⟩n for n ≥ 3. It is straightforward to
show that the equal-time functions ε1 and ε2 are related to the normalized skewness
and kurtosis by ε1 = σMS3 and ε2 = σ2

MS4.
In this Thesis, we will focus on the aforementioned LMSVQ, MVJ and DMNP

models, as they provide a prescription that is well-known and widely used in the
literature to describe the deviations caused by PNG on the Gaussian HMF. As
shown in Fig. 4.3, they predict that positive values of the parameter fNL lead to an
increase in the halo number counts at high masses and a decrease at low masses. The
specific mass scale at which this change occurs varies with the model; for example,
the MVJ model predicts that this turnover occurs at lower masses in comparison
to the other models considered in this work. In contrast, negative values of fNL are
expected to produce the opposite effect. Finally, we observe that all the correction
factors converge to unity in the limit fNL → 0, naturally recovering the standard
Gaussian model for the HMF.

4.4 Density Profiles of Dark Matter Halos

The density profile of a DM halo describes how the density of DM varies as a
function of distance from the center of the halo. This profile can be calibrated
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from cosmological N-body simulations. A commonly used 2-parameter function
that accurately describes the DM halo density profile is the Navarro-Frenk-White
(NFW) profile (Navarro et al., 1997), in which the density is given by

ρNFW(r) =
δcρcrit

(r/rs)(1 + r/rs)2
, (4.20)

where rs is the scale radius and δc is the characteristic overdensity of the halo. The
former is related to the so-called concentration c, such that rs = r∆c/c, where r∆c is
the radius at which the average density of the halo is ∆c times the critical density of
the Universe. Usually a reference value of ∆c = 200 is used, but it is also common
to employ the virial radius rvir.

Note that r200c determines the mass of the halos and that δc and c are linked by
the requirement that the mean density within r200c should be 200ρcrit. That is

δc =
200

3

c3

[ln (1 + c)− c/(1 + c)]
. (4.21)

The concentration of DM halos has been found to correlate with the mass of the
halo: at fixed redshift, the concentration decreases for increasing mass. This is the
so-called concentration-mass relation (see, e.g., Diemer & Kravtsov, 2015; Klypin
et al., 2016; Child et al., 2018).

This form of the density profile is seen to be universal for different masses and
geometries of the Universe. From Eq. 4.20, we find that ρ is proportional to r−1 in
the innermost regions of the halo, and proportional to r−3 in the outer regions.

Another model that has been widely used to describe the density profile of halos
is the Einasto profile (Einasto, 1965):

ρ(r) = ρs exp

{
− 2

α

[(
r

rs

)α

− 1

]}
. (4.22)

Here, ρs ≡ ρ(rs) is the scale density and α is the Einasto index, which determines
the shape of the profile. Thus, this profile is characterized by 3 parameters. Note
that in this case we do not have a divergent solution in the limit r → 0, contrary to
the NFW profile. Moreover, this profile has the same functional form of the Sersic’s
law (Sérsic, 1963), which is used to describe the surface brightness profile of galaxies.

Finally, we emphasize that these functional forms for the density profiles of DM
halos have been derived from simulations that feature a standard ΛCDM scenario.
However, in the presence of PNGs, deviations in the density profiles may arise,
as suggested in previous studies (Smith et al., 2011; Baldi et al., 2024). We will
investigate these deviations in Sect. 6.3.2.
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Chapter 5

Cosmological N-body Simulations
and Numerical Tools

Nowadays, numerical simulations are a fundamental tool in cosmology, enabling the
testing and validation of theoretical models by replicating the evolution of LSS un-
der a wide range of physical conditions (Angulo & Hahn, 2022). These simulations
offer a powerful framework for exploring the impact of various cosmological param-
eters — such as those characterizing PNGs — on the formation and evolution of
cosmic structures. In this chapter, we provide an overview of the numerical N-body
simulations used to analyze the effects of local-type PNG on DM halos. Specifically,
we will describe a total of four simulation sets, highlighting their key characteris-
tics, and comparing their similarities and differences. Finally, we will present the
numerical tools employed for constructing halo catalogs, extracting and analyzing
summary statistics, and performing a comprehensive Bayesian analysis.

5.1 The Quijote and Quijote-PNG Simulations

The most effective way to test the models discussed in Sect. 4.3 is by utilizing
numerical N-body simulations that incorporate various levels of local-type PNG,
described by specific values of the parameter fNL. For this purpose, we utilize the
Quijote simulations1 (Villaescusa-Navarro et al., 2020), a suite consisting of more
than 82 000 full N-body simulations. Specifically, we focus on the set of simulations
that features a standard ΛCDM model, as well as the set that includes PNG, known
as Quijote-png (Coulton et al., 2023). These simulations were generated using
the codes 2LPTIC (Crocce et al., 2006) and 2LPTPNG2 (Scoccimarro et al., 2012) to
produce the initial conditions at z = 127 and GADGET-3 — an enhanced version of
GADGET-2 (Springel, 2005) — to follow their evolution up to z = 0.

Generating initial conditions with local non-Gaussianity follows a straightforward
procedure. The process begins by generating the modes of a Gaussian primordial
potential field, Φ(k), in Fourier space using the input power spectrum. This field is
then transformed back to real space via an inverse Fourier transform. To introduce

1https://quijote-simulations.readthedocs.io
2https://github.com/dsjamieson/2LPTPNG
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non-Gaussianity of the local type, the real-space field is squared, mean-subtracted,
scaled by the chosen amplitude fNL, and added to the original potential field. Finally,
the modified potential field is transformed back to Fourier space, yielding the modes
of the primordial potential that now include local-type PNG. In Fourier space, this
procedure can be expressed as a convolution, leading to the following relation:

Φloc(k) = Φ(k) + fNL

∫
d3k1
(2π)3

d3k2
(2π)3

Φ(k1)Φ(k2)(2π)
3δ

(3)
D (k1 + k2 + k)−

−fNL

∫
d3k

(2π)3
Φ(k)Φ∗(k) ,

(5.1)

where the last term removes the mean contribution ⟨Φ2⟩, preventing an artificial
modification of the background expansion. Once the modified potential is obtained,
the initial conditions are generated by constructing primordial anisotropies from a
power-law spectrum characterized by the amplitude As and spectral tilt ns. These
anisotropies are computed on a 10243 grid to reduce aliasing effects, and non-
Gaussianity of the local type is introduced through Eq. 5.1. The perturbations
are evolved to redshift z = 0 using the linear transfer function T (k). Then, their
amplitude is rescaled to z = 127 using the standard growth factor δ+(z), using the
following relation

Pm(k, z = 127) =
δ2+(z = 127)

δ2+(z = 0)
Pm(k, z = 0) , (5.2)

which is derived from Eq. 3.38. Finally, the gridded field at z = 127 is used with
the 2nd-order Lagrangian perturbation theory (2LPT, Jenkins, 2010) to generate the
initial particle displacements for the simulations.

For the purposes of our analysis, we utilize 8000 realizations for the ΛCDM
cosmology and all 1000 realizations featuring local-type PNG (500 for fNL = 100
and 500 for fNL = −100). Each realization follows the evolution of 5123 CDM
particles in a periodic box with size Lbox = 1 h−1 Gpc, which translates into a
mass resolution of 6.56 × 1011 h−1 M⊙. Both sets of simulations are characterized
by the same cosmological parameters: Ω0,m = 0.3175, Ω0,b = 0.049, h = 0.6711,
ns = 0.9624, and σ8 = 0.834. The only difference is the parameter fNL, which is
set to 100 and −100 in the simulations that include PNG. With the exception of
fNL, the cosmological parameters are consistent with the constraints of Planck 2015
(Planck Collaboration et al., 2016). The main characteristics of the simulation suites
are summarized in Table 5.1.

5.2 The PRINGLS Set

In addition to these publicly available suites, we ran another set of complementary
simulations, maintaining a setup as similar as possible to that used in Quijote.
Specifically, these new N-body simulations, referred to as Pringls (PRImordial
Non-Gaussianity of Local-type Simulations), share most of the characteristics of the
previously mentioned simulations, including cosmological parameters. The main

48



IC fNL Nreal Lbox [h−1 Mpc] Npart MDM [h−1 M⊙]

Quijote 2LPTIC 0 8000 1000 5123 6.56× 1011

Quijote-png 2LPTPNG ±100 2× 500 = = =

Pringls PNGRUN 0,±40,±100 5× 10 = = =

Pringls-hr PNGRUN 0,±100 3× 1 = 10243 8.21× 1010

Table 5.1: From left to right : Main characteristics of the N-body simulation sets em-
ployed in this work: the code used to generate the initial conditions, the values of the
parameter fNL, the number of realizations, their box size, the number of particles, and
the DM particle mass.

differences lie in the code used to generate the initial conditions, the number of
realizations, and the values of fNL. Local-type PNG are introduced in the initial
conditions using the PNGRUN code (Wagner et al., 2010), with 10 realizations for each
cosmological scenario. Furthermore, we include two additional values of fNL (−40
and 40) compared to Quijote-png.

The code PNGRUN employed to determine initial conditions for these simulations is
based on the computation of the non-Gaussian contribution ΦNG to the gravitational
potential Φ = ΦG + ΦNG starting from the desired bispectrum B(k1, k2, k3) of the
potential field, which is defined in Fourier space as

⟨Φ(k1)Φ(k2)Φ(k3)⟩ = (2π)3δD(k1 + k2 + k3)B(k1, k2, k3) , (5.3)

where Φk is the Fourier transform of the real-space potential Φ. As we have seen in
Sect. 2.4.1, in the local approximation and in terms of the potential, the bispectrum
takes the form:

B(k1, k2, k3) = 2fNL [P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)] . (5.4)

The non-Gaussian component of the gravitational potential can be computed as

ΦNG
k =

1

6

∑

k′

B(k, k′, |k + k′|) Φ∗G
k′

P (k′)

ΦG
k+k′

P (|k + k′|) , (5.5)

where ΦG
k is a random realization of a Gaussian field with the power spectrum given

by P (k) ∝ kns−4. Once the Fourier-space non-Gaussian potential ΦNG
k has been

computed, the linear density field δk at redshift z is derived from the potential
Φk = ΦG

k + ΦNG
k through the transfer function T (k) and the Poisson equation.

Finally, this density field is used to displace N-body particles from a regular cartesian
grid according to 2LPT at the desired starting redshift of the simulations.

Finally, we also realized a higher-resolution version of this suite, known as
Pringls-hr, which follows the same setup as Pringls but with a number of
particles equal to 10243, allowing the simulations to have a mass resolution of
8.21 × 1010 h−1 M⊙. This suite comprises only one realization for each value of
the parameter fNL, which is set to 0, 100, and −100. We report in Table 5.1 also
the properties of these simulations.

In the next section, we will present the numerical methods employed to build and
analyze halo catalogs, extract summary statistics, and carry out Bayesian inference.
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5.3 Numerical Tools

5.3.1 ROCKSTAR

Our analysis relies on the usage of DM halo catalogs, which were obtained using the
publicly available halo finder ROCKSTAR3. As a first step, the ROCKSTAR code employs
a rapid variant of the 3D FOF method to identify overdense regions (see Sect. 3.3.1
for details). It then constructs a hierarchy of FOF subgroups in phase space by
progressively and adaptively reducing the 6D linking length. This process ensures
that a configurable fraction of particles is included in each subgroup relative to their
immediate parent group. Subsequently, it translates this hierarchy of FOF groups
into a list detailing which particles belong to each halo. The algorithm proceeds
by establishing relationships between host halos and subhalos, utilizing information
from previous time steps when available. Finally, it removes particles that are not
gravitationally bound from halos and computes various halo properties.

For determining halo masses, ROCKSTAR calculates spherical overdensities us-
ing various user-specified density thresholds, ∆. These thresholds can include the
virial threshold (Bryan & Norman, 1998) or overdensities relative to the critical or
background density, ρcrit(z) and ρb ≡ ρcrit(z)Ωm(z) respectively. For Quijote and
Quijote-png simulations, we have used the publicly available catalogs at z = 0, 0.5
and 1, in which masses are characterized by ∆b = 200, and ∆c = 200, 500, and 2500,
where the subscripts “b” and “c” denote overdensities relative to ρb and ρcrit, respec-
tively. In this regard, Fig. 5.1 shows an example of a halo identified by ROCKSTAR

along with two spherical overdensities defined by R200b and R200c that are used to
define the corresponding masses. These catalogs were realized assuming a parameter
b = 0.27 for the linking length of FOF groups (see Sect. 3.3.1) and considering halos
as collections of at least 10 particles. For Pringls and Pringls-hr, we gener-
ated catalogs using the same setup as for Quijote, defining halo masses according
to ∆b = 200, and ∆c = 200, 300, 500, 800, 1000 and 1200 at the same redshifts
considered for Quijote.

In Fig. 5.2, we show four snapshots at z = 0, 0.5, 1 and 2 of one realization of
the Quijote suite, including also the DM halos identified by ROCKSTAR and charac-
terized by a mass M200b greater than 5× 1013 h−1 M⊙. This mass threshold, which
we adopt for all halos considered in this work regardless of the mass definition,
corresponds to halos composed of at least 76 particles for the low-resolution simula-
tions (Quijote, Quijote-png and Pringls) and 609 for the high-resolution ones
(Pringls-hr).

5.3.2 CosmoBolognaLib

All the cosmological computations and data manipulations in this work are con-
ducted within the framework of CosmoBolognaLib4 (CBL, Marulli et al., 2016), a
large set of free-software C++/Python libraries designed for cosmological research.
This software is continuously updated, offering a range of tools for analyzing cosmo-

3https://bitbucket.org/gfcstanford/rockstar/src/main/
4https://gitlab.com/federicomarulli/CosmoBolognaLib
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Figure 5.1: An example of a DM halo identified by ROCKSTAR in one of the Pringls
realizations. The colors represent the magnitude of the density field, expressed as the ratio
ρ/ρ̄, where ρ̄ is the mean matter density of the Universe. Higher-density regions appear in
yellow, while lower-density areas are darker. The blue and green circles indicate the radii
R200b and R200c, with the former represented by a solid line and the latter by a dashed
line. These radii define the spherical overdensities used to compute the corresponding halo
masses, M200b and M200c, according to Eq. 3.34.

logical data, including functions for managing catalogs, customizing cosmological
models, and performing statistical analysis. Additionally, it provides capabilities
for calculating correlation functions, and power spectra, with built-in wrappers for
CAMB5 (Lewis et al., 2000) and CLASS6 (Lesgourgues, 2011), or accurate fitting models
(see e.g. Eisenstein & Hu, 1999).

The core of this software is represented by the cbl::cosmology::Cosmology

class, which allows users to set various cosmological parameters, such as the density
parameters for different cosmological components (Ωm, Ωb, Ωr, ΩΛ), the spectral
index ns, the scalar amplitude As, and the non-Gaussian parameter fNL. It also in-
cludes pre-configured cosmologies such as Planck 2015 (Planck Collaboration et al.,
2016) and Planck 2018 (Planck Collaboration et al., 2020a). This class supports
the calculation of DM halo properties, including their mass function and their linear
effective bias. As our goal is to analyze the effects of PNG on numerical simulations,
we optimized existing functions for non-Gaussian cosmologies to enhance computa-
tional efficiency and incorporate all the theoretical prescriptions discussed in the

5CAMB (Code for Anisotropies in the Microwave Background) is a cosmology code for calculating
CMB anisotropies, lensing, galaxy clustering, dark-age 21 cm power spectra, matter power spectra,
and transfer functions. For further details, see https://camb.readthedocs.io/en/latest/.

6CLASS (Cosmic Linear Anisotropy Solving System) is a code used to simulate the evolution of
linear perturbations in the Universe and to compute CMB and LSS observables. For details, see
http://class-code.net/class.html.
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Figure 5.2: Slices with a depth of 20 h−1 Mpc of one realization of the Quijote simu-
lations. The panels show the evolution of 5123 CDM particles from z = 2 (top left panel)
to z = 0 (bottom right panel). Each particle is represented by a blue dot, while the yellow
circles indicate ROCKSTAR halos with masses M200b > 5 × 1013 h−1 M⊙. Finally, we can
appreciate how, as time passes, the number of collapsed structures increases and the cos-
mic web becomes more pronounced, with filaments and nodes growing denser and more
interconnected, shaping the structure of the Universe.

52



previous chapters, such as those for the mass function correction (see Sect. 4.3).
The cbl::catalogue::Catalogue class is designed to manage collections of var-

ious astrophysical objects, including halos, galaxies, galaxy clusters, and voids. Its
characterized by private attributes to store object properties such as positions (in
both comoving and observed coordinates), masses, velocities, magnitudes, and other
relevant attributes. Additionally, this class allows for the creation of custom cata-
logs, random catalogs, and sub-catalogs, offering the flexibility to apply user-defined
filters to selectively include or exclude objects.

Finally, functions and classes within the cbl::statistics namespace were used
to perform Bayesian analysis using a Markov Chain Monte Carlo (MCMC) algorithm
(Hogg & Foreman-Mackey, 2018; Speagle, 2019), a widely adopted method in cos-
mology. Bayesian inference provides a framework for estimating the parameters θ
of a model M given a data set D, allowing us to determine the full probability dis-
tribution of the parameters, known as the posterior distribution P (θ|D). According
to Bayes’ theorem, the posterior is given by

P (θ|D) =
L(D|θ)P (θ)

P (D)
, (5.6)

where L(D|θ) is the likelihood function, representing the probability of obtaining
the data given a set of parameters, P (θ) is the prior distribution, reflecting prior
knowledge about the parameters, and P (D) is the evidence, a normalization con-
stant. Since the posterior is often analytically intractable, numerical methods like
MCMC are widely used. This algorithm generates a sequence of parameter samples
that follow a Markovian trajectory, meaning that each state in the chain depends
only on the previous one. This technique allows for an efficient exploration of the
posterior distribution, ensuring accurate parameter estimation.

5.3.3 Pylians

We rely on the Python library Pylians7 (Villaescusa-Navarro, 2018) to compute the
matter and halo power spectra of the various realizations of our simulations sets.

The matter power spectrum Pm(k) is obtained by first interpolating the distri-
bution of DM particles onto a 3D grid using a mass assignment scheme (MAS), such
as cloud-in-cell (Cui et al., 2008). This step constructs the density field, which is
then transformed into Fourier space via a fast Fourier transform, yielding the matter
density contrast δm(k). The power spectrum is then computed as

Pm(k) =
1

Vbox

⟨|δm(k)|2⟩ , (5.7)

where Vbox is the simulation volume, and the average is taken over modes with the
same wavenumber k. Since the interpolation onto the grid modifies the Fourier-space
representation of the density field, Pylians applies a correction by deconvolving the
power spectrum with the square of the MAS window function WMAS(k), ensuring
an accurate estimate of Pm(k). The same procedure is applied to compute the halo
power spectrum Ph(k), replacing DM particles with halo positions to construct the
halo density contrast δh(k).

7https://pylians3.readthedocs.io/en/master/
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Figure 5.3: The matter power spectrum (black line) at z = 0 as a function of the
wavenumber k measured by averaging the individual spectra from 100 realizations of the
Quijote simulations. The shaded black region indicates the error. In green, we show
the nonlinear theoretical prediction computed with CAMB, assuming the same cosmological
parameters of the simulation set.

For the purposes of our analysis, we modified the power spectrum computation
function of Pylians to enable a logarithmic binning of the wavenumber k. In
Fig. 5.3, we present the matter power spectrum at z = 0 evaluated from theQuijote
simulations alongside the nonlinear theoretical prediction from CAMB. The power
spectrum was obtained by averaging the 100 individual power spectra, with an
error estimated as the standard deviation across the spectra divided by the square
root of the number of realizations. The figure shows good agreement between our
measurement and the theoretical model, highlighting how the numerical method
employed by our version of Pylians is robust. Noticeable deviations emerge only
at large k, corresponding to small scales where nonlinear effects become significant.
Analogous results are also obtained at higher redshifts.
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Chapter 6

Measuring the Effects of local-type
PNG on LSS in Simulations

In the previous chapters, we discussed how PNG can alter measurable properties
of the LSS. For example, we showed how PNG generates a scale-dependent bias
(Sect. 3.5.1) and affects the abundance and mass distribution of DM halos (Sect. 4.3).
Currently, the best constraints on the parameter fNL from LSS come from modeling
the 3D power spectrum (D’Amico et al., 2022; Cabass et al., 2022; Castorina et al.,
2019; Mueller et al., 2022), yielding σ(fNL) = O(20). However, future LSS observa-
tions may improve this to σ(fNL) < 1 (Seljak, 2009; Doré et al., 2014; Karagiannis
et al., 2018; Ferraro & Wilson, 2019), enabling us to distinguish between inflation-
ary models. These analyses assume that the scale-dependent bias follows a universal
relation. However, recent studies have shown this assumption may not always hold
(Gutiérrez Adame et al., 2024), suggesting the need for further tests. Regarding the
halo mass function, previous works on N-body simulations have shown discrepancies
from theoretical models, often attributed to differences in halo mass definitions and
halo-finding methods (Grossi et al., 2007; Dalal et al., 2008; Desjacques et al., 2009).

We aim now to investigate on the aforementioned discrepancies with the goal,
eventually, to provide solutions to account for them. Hence, in the following sections,
we use the data extracted from the simulations presented in Chapter 5 to assess
the impact of the local shape of PNG on the bias parameter and mass function,
comparing these measurements with the theoretical predictions.

6.1 Scale-dependent Bias in the Quijote-PNG

To compute the scale-dependent bias, the first step is to measure the effective linear
bias b1 in the Gaussian simulations. According to Sect. 3.5, one way to estimate
the bias is through the square root of the ratio of the halo power spectrum to the
matter power spectrum (Eq. 3.50).

Using our modified version of Pylians (see Sect. 5.3.3), we analyzed 100 realiza-
tions of the Quijote suites at z = 0, 0.5, and 1. For each realization, we computed
both the matter and halo power spectra, with the halo power spectrum estimated
using ROCKSTAR halos and mass definitions M200b, M200c, and M500c. Additionally,
we limited our analysis to halos with masses above 5 × 1013 h−1 M⊙, regardless of
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the mass definition.
At this point, estimating b1 ideally involves computing the square root of the

ratio Ph/Pm for each of the 100 realizations, then taking the mean value at each k
bin and fit through an MCMC for the best-fit value of b1. However, for the halo
power spectrum, it is crucial to account for shot noise, which can be assumed to
follow a Poissonian distribution. In this case, the shot noise contribution is given
by Vbox/Nhalo, where Nhalo is the number of halos in the simulation box.

To mitigate the impact of shot noise, we estimate the effective bias using the
cross power spectrum between halos and DM, as for it the shot noise is expected
to be significantly reduces and thus negligible. The computation follows the same
steps of the auto power spectrum, with the key difference that we now take the
average product of the two density fields, δm and δh, as described in Eq. 5.7. For
each realization, the effective bias is then simply given by

b1(z) =
Ph,m(k, z)

Pm(k, z)
, (6.1)

where Ph,m(k) is the cross power spectrum between halos and DM. Then, we average
the values of these ratios and for each k bin and we derive the error as the standard
deviation between the ratios divided by the square root of the number of realizations.
Finally, we determine the best-fit value of b1 using an MCMC fitting procedure,
assuming a Gaussian likelihood and a flat prior on b1.

Figure 6.1 shows the measured effective bias and the corresponding best-fit b1
values, in the k range between 6×10−3 and 3×10−2 h Mpc−1, for different mass defi-
nitions and redshifts. Additionally, we compare our fitted values with the theoretical
effective bias of DM halos, computed as

b1(z) =

∫ Mmax

Mmin

dMb(M, z)ϕ(M, z)

∫ Mmax

Mmin

dMϕ(M, z)

, (6.2)

where ϕ(M, z) is the halo mass function from Tinker et al. (2008) and the integration
limits, Mmin and Mmax, correspond to the minimum and maximum halo masses in
our sample. The linear bias b(M, z) is provided by the model proposed by Tinker
et al. (2010), in which b is computed according to the following expression:

b(ν) = 1− A
νa

νa + δac
+Bνb + Cνc . (6.3)

Here, ν ≡ δc/σM while the six parameters A, a, B, b, C, c are fitted from numerous
N-body simulation sets.

In general, we find deviations of up to 4% between our measured effective bias
and the predicted values. However, since our primary focus is on relative deviations
from the Gaussian case, we decided to rely on the measured values of b1 as the best
estimate of the effective bias for the cosmological simulations considered.

To test the non-Gaussian bias model presented in Sect. 3.5.1, we use the corre-
sponding 100 realizations for each cosmological scenario of the Quijote-png sim-
ulations (fNL = 100 and −100). Following the same approach of the Gaussian
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Figure 6.1: Comparison between the measured and predicted values of the effective halo
bias b1 for different z and mass definitions. Rows correspond to data sets with the same
redshift (from top to bottom z = 0, 0.5, and 1), while columns refer to different halo
mass definitions (from left to right M200b, M200c, M500c). All the halos have masses above
5 × 1013 h−1 M⊙, regardless of the chosen halo identification threshold. The blue dots
represent the measured bias at any k bin, while the best fit value for b1 and its error are
indicated by the light blue line and shaded region, respectively. Finally, the red dashed
line refers to the prediction (Eq. 6.2) proposed by Tinker et al. (2010).
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simulations, we restrict the analysis to halos with masses M200b, M200c and M500c

greater than 5 × 1013 h−1 M⊙. For each realization, we measure the halo-matter
power spectrum Ph,m(k, z) and the matter power spectrum Pm(k, z) in the same k
interval of the Gaussian case, from 6 × 10−3 to 3 × 10−2 h Mpc−1. This interval
was chosen due to the dependence k−2 on the non-Gaussian bias, as we expect the
signal induced by PNG to be stronger at very large scale, in the low k regime (see
Fig. 3.3).

At this point, we average the scale-dependent bias measured in the 100 realiza-
tions for each scenario and assign an error to each k bin, calculated as the standard
deviation divided by the square root of the number of realizations employed. Fi-
nally, we compute the correction ∆b to the effective bias by subtracting the mean
bias measured in the PNG simulations by the one measured in the Gaussian ΛCDM
simulations (Fig. 6.1), propagating the error. The results of this analysis are pre-
sented in Fig. 6.2, which shows a direct comparison of the measured ∆b with the
predictions from Eq. 3.52, assuming the universal relation (i.e. p = 1). In this
context, the theoretical behavior of the correction ∆b is given by

∆b(k, z) =
3fNLbΦ(z)

5M(k, z)
=

3fNL

5M(k, z)
2δc,0(b1(z)− p) . (6.4)

The plot displays the measured deviations at different redshifts and for various
mass definitions. We observe that the overall trend of the data is well reproduced by
the non-Gaussian bias model, despite the fact that small discrepancies are observed
for M200b halos at z = 0.5 and z = 1. We tested the effect of leaving p as a free
parameter of the model to reveal possible deviations from universality. However,
the additional degree of freedom appears to not significantly improve the agreement
of the model with the observed trend, except in a few cases. Moreover, the best-fit
values obtained for p range from 0.64 to 1.47 without a clear pattern. Thus, we
conclude that no strong evidence is found for deviations from universality, at least
with the precision achieved with the data employed in our analysis.

6.2 Deviations from Gaussianity in the Halo Mass

Function

We begin this section by examining the Gaussian mass function derived from the
standard ΛCDM simulations. Figure 6.3 presents the Gaussian halo mass function
as measured in the Quijote simulations, focusing on ROCKSTAR halos with masses
defined by M200b, M200c, and M500c at redshift z = 0. For each definition, the mass
function is calculated as the average of the 8000 individual mass functions obtained
from each realization. The error for each mass bin is estimated as σ/

√
Nreal, where

σ represents the standard deviation between all realizations, and Nreal is the total
number of realizations. Given the large number of realizations in Quijote, the
statistical error on the mean is significantly reduced compared to that resulting
from the analysis of an individual halo mass function.

We also compare the estimated mass functions with the phenomenological model
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Figure 6.2: Deviations of the halo bias from b1 caused by the presence of PNG. The
quantity ∆b is the difference between the non-Gaussian and the Gaussian bias and is
reported as a function of scale k, for different z and mass definitions. Rows correspond to
data sets with the same redshift (from top to bottom z = 0, 0.5, and 1), while columns refer
to different halo mass definitions (from left to right M200b, M200c, M500c). All the halos
have masses above 5×1013 h−1 M⊙, regardless of the chosen halo identification threshold.
The red upward-pointing triangles and the blue downward-pointing triangles represent
the data extracted from simulations with fNL = 100 and fNL = −100, respectively. The
orange and light blue solid lines are instead the predictions computed for the non-Gaussian
halo bias assuming p = 1 in Eq. 3.54, again for fNL = 100 and fNL = −100 respectively.
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Figure 6.3: The average Gaussian halo mass function measured from 8000 realizations
of the Quijote simulations at redshift z = 0, within the mass range of 5 × 1013 to
7 × 1015 h−1 M⊙. The purple, green and orange circles correspond to different mass
definitions: M200b, M200c, and M500c, respectively. The solid lines indicate the model
proposed by Tinker et al. (2008) for each definition of mass. The subpanel displays the
percentage residuals of the data relative to the model.

proposed by Tinker et al. (2008), which can be expressed as (Table 4.1):

dn

dM
= f (σM)

ρ̄m
M

d lnσ−1
M

dM
, with f (σM) = A

[(σM

b

)−a

+ 1

]
e−c/σ2

M . (6.5)

The four parameters characterizing the multiplicity function are determined by fit-
ting the data obtained from various simulation sets. It is important to note that
the model is calibrated for halo masses defined by overdensities relative to the back-
ground density. To align our halo definitions with this model, we convert the ∆c

values characterizing our halos into ∆b by imposing

∆cρcrit = ∆bρb =⇒ ∆b =
∆c

Ωm(z)
. (6.6)

Here, the matter density parameter evolves with redshift according to the relation

Ωm(z) =
Ω0,m(1 + z)3

E2(z)
, (6.7)

which is obtained by combining Eqs. 1.32 and 1.37. Therefore, each value ∆c (e.g.,
200, 500, 2500) corresponds to a different value ∆b at different z. We report in
Table 6.1, the converted values of our ∆c at the three redshifts of our snapshots.

As illustrated in the subplot of Fig. 6.3, the phenomenological model does not
reproduce the data with high accuracy. For halos defined by M200b, the agreement
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∆c

∆b

z = 0 z = 0.5 z = 1

200 630 327 254

300 945 491 381

500 1575 818 634

800 2520 1310 1015

1000 3150 1637 1269

1200 3780 1964 1522

2500 7874 4092 3172

Table 6.1: Conversion of the overdensity threshold ∆c into ∆b for different redshifts.
The values of ∆b are computed according to Eqs. 6.6 and 6.7. Each column shows the
corresponding ∆b at z = 0, 0.5 and 1.

is relatively good, with residuals around 5% (excluding the first two data points).
However, as we move to other mass definitions, the agreement deteriorates, with
residuals increasing up to 10% and 20% (in absolute value) for M200c and M500c,
respectively. Similar results are also observed when the mass functions are examined
at higher redshifts. We repeated the analysis on the halo mass functions extracted
from Pringls and Pringls-hr and verified their consistency with the Quijote
data in all definitions of mass and redshifts. In this case as well, the model again
showed poor agreement with the Pringls data, despite the larger error bars due
to the smaller number of available realizations (only 10 per cosmological model).
For Pringls-hr, we only have one simulation for the ΛCDM scenario, therefore
we computed the associated uncertainty as the standard Poissonian error, equal
to the square root of the counts in each bin. For this simulation we found good
agreement for the M200b case, with residuals below 5%. However, the situation
remains unchanged for the other mass definitions.

Because of the statistically relevant discrepancies found between the model and
the Gaussian data, we chose to use the measured Gaussian mass function as a ref-
erence to calculate the deviation of the non-Gaussian halo mass function. In other
words, we substituted the halo number counts predicted by the Tinker et al. (2008)
model with the data extracted from the Quijote simulations, which have an associ-
ated statistical uncertainty that is almost negligible. Although this approach cannot
be applied to real data, it eliminates systematic errors related to poor agreement
between the data and the mass function model and allows us to directly measure
the expected deviations from Gaussianity.

In this context, we focus now on the modifications induced by PNG on the halo
mass function, comparing the predictions of the theoretical models introduced in
Sect. 4.3 and data extracted from the simulations presented in Chapter 5. As we
have seen in Sect. 4.3, the corrections to the halo mass function model require the
computation of the normalized skewness and kurtosis of the distribution (S3 and
S4, respectively) at each value M of the mass. However, the numerical integration
required for these computations is time consuming. To accelerate the process, we
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Figure 6.4: Deviations between halo mass functions in PNG scenarios with respect to
their Gaussian counterpart. We compare different theoretical models and data sets at
z = 0, for the two scenarios fNL = 100 and −100. On the y-axis we show the percentage
residuals (Eq. 6.9) between the mean halo number counts measured using Quijote-png
and those extracted from Quijote (representing the reference ΛCDM number counts).
Different marker shapes are used for the two fNL values: upward-pointing triangles for
+100 and downward-pointing triangles for −100. Colors denote different mass definitions:
green for M200b, blue for M200c, and orange for M500c. The theoretical models for mass
function corrections are indicated with different line styles: solid for MVJ, dashed for
LMSVQ, and dotted for DMNP (Eqs. 4.17 to 4.19, respectively). The subplot displays
a zoomed region at low masses to allow a clearer understanding of the behavior of both
model and data points.

employ empirical relations for S3 and S4 of the form (Enqvist et al., 2011; Yokoyama
et al., 2011):

S3 ≃ fNL
α

σ2β
M

, S4 ≃ f 2
NL

γ

σ2θ
M

, (6.8)

with α = 2.16 × 10−4, β = 0.4, γ = 8.43 × 10−8 and θ = 0.99. It is important to
emphasize that these empirical formulae were calibrated specifically for the cosmol-
ogy used in our simulations. Consequently, if different cosmological parameters are
adopted, the empirical functions will need to be re-calibrated accordingly. We will
discuss this limitation in the final chapter of this Thesis.

In Fig. 6.4 we show the residuals at z = 0 between the mean halo mass functions
measured in Quijote-png (one for fNL = 100 and one for fNL = −100) and the
reference Gaussian halo mass function derived from Quijote. The residuals are
expressed as percentages through the following relation:

∆% (Mi) = 100

(
dn̄/dM(Mi, fNL ̸= 0)

dn̄/dM(Mi, fNL = 0)
− 1

)
, (6.9)

where dn̄/dM represents the mean halo mass function and Mi indicates its various
mass bins. We report in the same figure also the deviations predicted by the MVJ,
LMSVQ, and DMNP models (Eqs. 4.17 to 4.19, respectively).
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It is easy to note how these theoretical models fail to accurately reproduce the
data, with the agreement worsening as the overdensity used to define halo masses
increases. LMSVQ and DMNP models provide a reasonable fit forM200b halos, while
MVJ aligns more closely with theM200c case. However, all models exhibit slight over-
or underpredictions in the amplitude of the deviation from the Gaussian case (the
standard ΛCDM scenario) and the behavior of halos characterized by other mass
definitions, such as M500c and M2500c — the latter not displayed for clarity reasons
— is not well reproduced by any of the theoretical models. We also found analogous
trends at z = 0.5 and 1.

Testing the models against the data extracted from Pringls and Pringls-hr
simulations with the same fNL values led to very similar results. In fact, despite
larger error bars, the observed deviations for the same mass definitions are fully
consistent with those shown in Fig. 6.4, as expected.

Previous studies (Grossi et al., 2009; Pillepich et al., 2010; Wagner & Verde, 2012)
found that similar discrepancies also arise for halos identified by a FOF algorithm.
In particular, both the LMSVQ and the MVJ corrections have been evidenced to
overpredict the effect of PNG in this scenario. However, these differences could be
mitigated by introducing an external factor q into the calculations for the corrections
of the halo mass function. This factor modifies the present linear collapse threshold
as δc,0 = 1.686

√
q, with fits to numerical simulations indicating a value q ≃ 0.75−0.8.

This adjustment is usually attributed to the effects of ellipsoidal collapse, which are
reflected in a deviation from sphericity in the case of FOF halos. However, this
modification does not improve the description of halos identified using a spherical
overdensity algorithm, since in this case halos are spherical by construction.

Consequently, in Sect. 7.1, we will introduce a new parameterization that incor-
porates the dependency on the halo mass definition into the theoretical framework,
without interpreting this correction as due to the shape of the overdensities. The
following section will focus on exploring the physical motivation behind the necessity
of incorporating a dependency on the density contrast threshold into the theoretical
model of the mass function in PNG scenarios.

6.3 Density Profiles in PNG Cosmologies

To have hints about the behavior observed in Fig. 6.4, we compute the stacked
halo density profiles using Pringls simulations. In this case, we do not use the
Quijote-png data sets because the total number of halos in Pringls is sufficient
to provide good enough statistics and we are interested in exploring multiple values
of fNL. A similar density profile analysis was performed by Smith et al. (2011) using
FOF halos in simulations with fNL = ±100. In contrast, we decided to focus on halos
with masses M200b identified by ROCKSTAR, extending the analysis also to smaller
values of |fNL|.

6.3.1 Evaluating the density profiles

Density profiles are derived by counting DM particles within concentric and loga-
rithmically spaced spheres of radii Ri, which range from 0.05R200b to 3R200b. Here,
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Figure 6.5: Illustration of the ChainMesh3D algorithm applied to a slice of the simulation
box. The DM particles are displayed in black, while the grid used for spatial partitioning
is overlaid in thin black lines. The red circle represents the search region centered on
a ROCKSTAR halo (marked by the red dot), while the red-shaded cells highlights the grid
elements that intersect with this search region.

R200b is defined as the radius where the density is 200 times the background density
and is provided directly by the halo finder. The profile estimate is then represented
in terms of the dimensionless density contrast:

δ(Ri) =
1

n̄DM

N(Ri)

V (Ri)
− 1 , (6.10)

where n̄DM, N(Ri), and V (Ri) denote the mean number density of DM particles in
the simulation box, the number of particles within the i-th sphere and its volume,
respectively. This method was applied to all halos within the mass range of 1014 to
4× 1015 h−1 M⊙, using snapshots at z = 0 for all available realizations.

To efficiently identify DM particles within a given searching area, we utilize the
ChainMesh3D algorithm from CBL, a spatial partitioning technique specifically de-
signed for fast neighbor searches in cosmological simulations. This method organizes
particles into a cubic grid with cells of side length ℓcell, reducing the computational
cost by limiting the search to cells that intersect the target region.

In our implementation, we set the cell size to ℓcell = 2 d̄, where d̄ denotes the
mean inter-particle separation, evaluated as

d̄ =

(
Vbox

NDM

)1/3

=

(
1

n̄DM

)1/3

≃ 1.95 h−1 Mpc , (6.11)

where NDM and Vbox is the total number of DM particles in the simulated box and
the volume of the latter, respectively. For each halo, particles are selected from grid
cells overlapping with a spherical search region of radius R = 3R200b and centered
on the halo center position provided by the catalog. Figure 6.5 illustrates a 2D
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Figure 6.6: Stacked DM halo density profiles at z = 0 from one realization of the
Pringls ΛCDM. The individual profiles are colored according to their mass: the higher
is the mass the redder is the color. The mean profile in each radial bin is indicated with
black dots while the vertical and horizontal black dashed lines represent the radius R200b

and the corresponding value of the density contrast, respectively. The panels refer to the
different M200b bins, covering in total the range between 1014 and 4× 1015 h−1 M⊙.

projection of the grid created by the ChainMesh3D algorithm, and the region around
a halo from which particles are recovered.

To avoid stacking density profiles of halos having significantly different masses,
we divide the individual profiles into four bins according to the mass of the halos.
Finally, for each mass bin we average the individual profiles of realizations sharing
the same value of fNL (0, ±40, ±100), assigning an error to each radial bin equal to
σ/

√
Nhalos, where σ is the standard deviation between individual profiles and Nhalos

is the total number of halos in each mass bin.
Figure 6.6 shows an example of the mean density profiles obtained by averaging

the individual profiles measured in one realization of the Pringls ΛCDM simula-
tions. Notably, due to the mass definition used, every halo is characterized by the
same density contrast at a distance R = R200b from the center, therefore we expect
all individual profiles, as well as the mean ones, to converge to that value as R ap-
proaches R200b. However, as evidenced by some profiles, particularly in the top right
panel, certain profiles violate this condition. This is likely due to the sophisticated
approach employed by the ROCKSTAR halo finder to compute halo properties (see
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Figure 6.7: Ratio at z = 0 of stacked halo density profiles from Pringls with different
levels of PNG to those measured in the Gaussian ΛCDM scenario. In light blue, blue,
red, and orange we show the results for fNL = −100, −40, 40, and 100, respectively. The
panels correspond to different M200b bins, covering in total the range between 1014 and
4× 1015 h−1 M⊙.

Sect. 3.3.1), which may introduce small deviations compared to simpler methods,
such as the direct particle count that we employed for this analysis.

Finally, the mean profile in the first mass bin appears to be flatter in the inner-
most region compared to the others. This is because, due to the limited resolution of
the simulations, lower-mass halos tend to have poorly resolved inner regions, leading
to artificially low central densities. This effect is evident when inspecting the indi-
vidual profiles, which reveal that many halos exhibit very low inner densities. We
will investigate the effects of unresolved density profiles on our re-parameterization
of the model for the mass function correction in Sect. 7.1.3.

6.3.2 The impact of PNG

To assess deviations from Gaussianity, we normalized the mean profiles measured in
simulations with fNL ̸= 0 by profile obtained from the Gaussian ΛCDM simulations,
and then propagated the error of the latter on the ratio. The results of this analysis
are shown in Fig. 6.7.

DM halos exhibit an increase in inner density for positive values of fNL, while
a decrease is observed when fNL is negative. We note that all profiles become
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M200b [1014 h−1 M⊙]
Number of halos

fNL = 100 fNL = 40 fNL = 0 fNL = −40 fNL = −100

1− 3 285 787 285 216 284 678 284 332 283 663

3− 6.5 48 059 47 471 47 088 46 580 45 983

6.5− 9.5 7085 6913 6775 6666 6488

9.5− 40 3795 3602 3492 3375 3206

Table 6.2: Total number of DM halos across each set of 10 pringls simulations char-
acterized by a specific fNL value at z = 0: from left to right 100, 40, 0, −40 and −100.
Each row corresponds to a specific mass range, with the mass defined by the overdensity
∆b = 200.

almost identical when the x-axis reaches unity, as these halos have the same mass
definition (M200b) and the distance from their center is rescaled by their radius
(R200b). Furthermore, the measured mean deviations from the Gaussian profile
appear symmetric, with variations of at most 2% in the innermost regions of the
halos. Within each mass bin, the number of halos increases as fNL increases, with
the opposite behavior occurring as fNL decreases, as shown in Table 6.2.

The change we observe in the slope of the density profiles, i.e. in the compactness
of DM halos, is reflected in the deviations found in the halo mass function for
different values of the identification threshold (see Fig. 6.4). In fact, given a threshold
∆, the radius at which that density contrast is reached depends on the value of fNL,
and the mass of the halo changes as a consequence. For example, for positive values
of fNL, the threshold is met at a greater distance from the halo center, resulting in
a larger mass within the corresponding sphere. Additionally, higher ∆ values cause
the identified halo radii to be closer to the center, leading to greater deviations from
the Gaussian case.

We believe that the effects induced by PNG on the halo density profile were
not included in the original development of the theoretical framework for the halo
mass function, as very complex to predict without relying on numerical simulations.
Thus, our goal is now to incorporate these effects into the theoretical modeling by
adding a semi-analytical parameterization dependent on the halo mass definition.
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Chapter 7

A Revisited Correction to the
Mass Function for PNG

Given the results presented in Chapter 6, it is essential to develop a method that
explicitly accounts for the dependence on mass definitions in the PNG correction
factor for the mass function. In the following sections, we will take one of the
previously discussed models as a starting point and introduce a simple modification
to incorporate this dependence. We will then test the proposed approach, examining
its potential systematic errors and assessing possible resolution effects. Finally, we
will evaluate the improvements offered by our method, particularly in the perspective
of constraining fNL using cluster number counts.

7.1 A New Parameterization for the Mass Func-

tion Correction

7.1.1 Calibration of the correction factor κ

Based on the results presented in the Chapter 6, it is clear that the theoretical
models, without adjustments for specific mass definitions, do not adequately agree
with data from simulations, especially at higher overdensities. To address this, we
sought a method that incorporates the effects of varying mass definitions. In the
literature, it is common to introduce a correction factor to align theoretical models
with FOF data sets when correcting the halo mass function for PNG (as discussed
in Sect. 6.2). We adopted a similar approach by introducing a modification of the
linear critical density for collapse, parameterized by a factor κ, which varies with the
chosen overdensity criterion used to identify the halos. Among all the theoretical
non-Gaussian mass function models analyzed, we chose to rely on the LMSVQ model
since it showed the best agreement with our data (see e.g. theM200b case in Fig. 6.4).
Consequently, we modify Eq. 4.17 by substituting δc with κ× δc.

We start by focusing on Quijote-png data sets, as the high number of real-
izations available for these simulations is expected to provide a more accurate and
precise calibration of this correction factor. In order to extend the LMSVQ model
to halos with any mass definitions, we perform a Bayesian analysis using a MCMC
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Mass
κ(z = 0) κ(z = 0.5) κ(z = 1)

fNL = 100 fNL = −100 fNL = 100 fNL = −100 fNL = 100 fNL = −100

M200b 0.971± 0.003 0.976± 0.003 0.978± 0.002 0.980± 0.002 0.982± 0.002 0.979± 0.002

M200c 1.091± 0.003 1.097± 0.003 1.021± 0.002 1.022± 0.002 0.998± 0.002 0.995± 0.002

M500c 1.243± 0.003 1.245± 0.003 1.139± 0.002 1.136± 0.003 1.089± 0.002 1.081± 0.002

M2500c 1.670± 0.004 1.665± 0.004 1.509± 0.004 1.508± 0.004 1.415± 0.006 1.396± 0.007

Table 7.1: The correction factor κ as a function of redshift and mass definition for the
two fNL values from the Quijote-png simulations. Parameter values and their associated
errors are estimated through MCMC fitting.

algorithm (see Sect. 5.3.2) to estimate the factor required to correct the model for
data sets created with different overdensity thresholds.

Since we are interested in modeling the deviations from the Gaussian mass func-
tion, our data are given by the residuals between the halo number counts extracted
from the simulations with fNL ̸= 0 and those with fNL = 0, as defined in Eq. 6.9.
For this fit we set a flat prior on the only free parameter of the model (i.e. κ) and
a Gaussian likelihood function expressed as:

L ({xi}|{σi}, {µi}) =
Nd∏

i=1

1√
2πσ2

i

exp

(
−(xi − µi)

2

2σ2
i

)
, (7.1)

where Nd is the total number of data points, and xi, σi, and µi are the data, the
error, and the model at the mass bin i, respectively. We repeat the procedure to
cover all the available redshifts and for both cosmological scenarios fNL = ±100.
Table 7.1 shows the resulting values of κ derived for different redshifts and mass
definitions. For a fixed mass definition, we found no significant differences between
the fits of the fNL = 100 and −100 data sets, as almost all estimated parameters
are consistent within the uncertainties. This suggests that κ is independent of the
sign of fNL (see Sect. 7.1.2 for further details). In contrast, the values of κ derived
for halos defined by a critical overdensity threshold, ∆c, exhibit a slight dependence
on redshift, with κ decreasing as redshift increases.

To find a relation that can be used for halos identified at any redshift, we convert
all critical overdensities ∆c (200, 500, and 2500) into background overdensities ∆b by
dividing by Ωm(z), according to Eq. 6.6. In our case, each value of ∆c corresponds
to three values of ∆b, one for each redshift of 0, 0.5 and 1 (see Table 6.1). The
advantage of converting these thresholds in terms of background densities lies also
in removing the dependence on h: given the current uncertainty on the estimation
of the Hubble constant, it is important to calibrate a relation that is independent
of the value of h used to build the cosmological simulations1.

Now our goal is to search for a relation between the different values of the factor
κ and the corresponding background density contrasts used to define the halos. For
this purpose, we rely on a second-degree polynomial of the form:

κ(x) = a+ bx+ cx2 with x = log(∆b/200) , (7.2)

1For a review of the complications associated with quantities that depend explicitly on h see,
e.g., Sánchez (2020).
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Figure 7.1: Left : factor κ as a function of the overdensity ∆b. Different markers in-
dicate the two opposite values of the fNL parameter in the Quijote-png simulations
(upward-pointing triangles for +100 and downward-pointing triangles for −100), while
colors correspond to redshifts z = 0, 0.5, and 1 (cyan, light purple, and magenta, respec-
tively). In red and blue we indicate the 1σ confidence region around the best fit of the
fNL = 100 and −100 data points, respectively (note that these regions are almost per-
fectly overlapping). The dark purple curve represents the simultaneous fit of both data
sets, including the effect of covariance. Right: 68% and 95% 2D confidence contours for
the parameters a, b, and c characterizing the second-degree polynomials (Eq. 7.2) for each
fitting procedure. The same colors are used to indicate the results for fNL = 100, −100
and their combination. The projected 1D marginalized posterior distributions are shown
at the top of each column along with the 68% uncertainty (shaded bars).

and fit the coefficients a, b and c for the two scenarios fNL = ±100. The best-
fit values of these coefficients are a = 0.980 ± 0.001 (0.979 ± 0.001), b = 0.134 ±
0.005 (0.131 ± 0.005), c = 0.191 ± 0.004 (0.191 ± 0.004) for fNL = 100 (−100).
The results of this fit are shown in Fig. 7.1. In the left panel all the values of
κ are displayed as a function of ∆b. From this plot, we can appreciate how the
data points closely follow the shape of the second-degree polynomial and how the
results for fNL = 100 and fNL = −100 are highly compatible. In the right panel of
Fig. 7.1 we instead show the posterior distributions of the polynomial coefficients
derived from the fit of κ(∆b). As a further confirmation, here we can see that
the confidence contours for fNL = ±100 cosmologies are consistent within 1σ. We
conclude therefore that our re-parameterization of the halo mass function model can
be considered independent of the sign of fNL.

Given the latter result, a simple improvement of the analysis just presented
consists in modeling simultaneously the deviations measured for fNL = 100 and
fNL = −100 to increase the precision in the calibration of the parameters a, b and c.
However, since realizations with opposite sign of fNL share the same random seed for
initial conditions, these data sets cannot be considered as independent. Therefore,
to follow this strategy we need to consider the covariance between the mass bins in
the two different cosmological scenarios and across all mass definitions used.
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Figure 7.2: Covariance matrices (normalized by their diagonal elements) of the residuals
between the 2× 500 individual halo mass functions measured in Quijote-png for fNL =
100 and −100 and the mean one measured in the Quijote standard ΛCDM simulations.
Each subplot corresponds to the M200b covariance matrix at different redshifts: 0 (left),
0.5 (center), and 1 (right). Each matrix is divided into four blocks separated by vertical
and horizontal black lines to isolate the two different cosmological scenarios.

Figure 7.2 presents the covariance matrix C normalized by the diagonal elements,
estimated from the residuals between the individual 2 × 500 halo mass functions
M200b measured in each realization of Quijote-png (500 for fNL = 100 and 500 for
fNL = −100) and the mean halo mass function extracted from Quijote (fNL = 0).
Similar covariance matrices are also obtained for the other mass definitions.

Analytically, for a given mass definition and redshift, the full covariance matrix
C is formed by 4 blocks, such that

C =

(
C++ C+−

C−+ C−−

)
, (7.3)

where C++ and C−− are the autocovariances of the residuals for fNL = 100 and
fNL = −100, respectively, while C+− and C−+ account for the cross-covariances
between the two cosmological scenarios. Each block is computed as

Cαβ
ij =

1

N − 1

N∑

k=1

(
Rα,k

i − R̄α
i

)(
Rβ,k

j − R̄β
j

)
, (7.4)

where Rα,k
i is the residual in the i-th mass bin of the k-th realization of the scenario

α (with α, β = + or −), R̄α
i is the mean residual in that bin over all realizations,

and N = 500 is the number of realizations per scenario. Finally, each element of
the matrix is rescaled by a factor N to account for the number of realizations; in
this way, the diagonal elements will correctly represent the error on the mean of the
residuals.

Figure 7.2 also shows a strong correlation between the same mass bins in the
fNL = ±100 data sets, whereas for the other bins, the correlation is consistent with
zero, except for minor fluctuations due to noise. To avoid possible inaccuracies due
to the latter, we set to zero all elements that do not belong to the diagonals of the
four blocks in each matrix. The resulting covariance matrices were then used as
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input for the MCMC analysis to constrain κ for each redshift and mass definition,
generalizing Eq. 7.1 as follows:

L (x|C,µ) = 1

(2π)Nd/2 det(C)1/2
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
, (7.5)

where Nd is the total number of data points, x is the data vector, and µ is the
vector of expected values. The results for this case are also shown in Fig. 7.1. As
expected, the new best fit of κ(x) is consistent with that obtained from the analysis
of the individual cases fNL = 100 and fNL = −100. This is evident in the right
panel, where the posterior distribution of the second-degree polynomial parameters
is shown to be consistent with those of the earlier cases. The best fit we obtained
for this case is:

κ(x) = 0.9792 + 0.132x+ 0.190x2 , (7.6)

with x defined in Eq. 7.2. The errors associated with each polynomial parameter are
∆a = 0.0004, ∆b = 0.002, and ∆c = 0.002. Consequently, we observe a reduction
in the errors of approximately 50% compared to those obtained from individual fits.

Finally, Fig. 7.3 compares data with the new parameterization for the LMSVQ
model across redshifts and mass definitions M200b, M200c, and M500c. With the addi-
tion of the factor κ (∆b), the model accurately reproduces the data in all considered
cases (including M2500c). Notably, as shown in the zoomed region of the top panel,
now we accurately capture the point at low masses where the effect of fNL on halo
counts reverses, which was not well constrained by the original implementation.

To evaluate the goodness of this fit, we calculate the reduced chi-square, χ̃2, using
the total data vector that includes the two scenarios fNL = ±100 and accounting
for covariance. In this case, the χ̃2 is calculated from the likelihood (Eq. 7.5) as

χ̃2 ≡ 1

Nd − 1

[
(x− µ)TC−1(x− µ)

]
. (7.7)

When considering the LMSVQ model reparameterized by means of κ, the agreement
with the data is remarkable, as χ̃2 is typically of order 2− 3. For example, at z = 0
we observe χ̃2 = 3, 3.2 and 1.2 for the definitions of mass M200c, M500c and M2500c,
respectively. The improvement is particularly significant, as χ̃2 evaluated with the
original model is 155, 553 and 1265, respectively for the same mass definitions.
Similar results are also obtained at higher redshifts.

7.1.2 Testing different fNL values

In the previous section, we demonstrated how the correction factor κ appears to be
independent of the sign of fNL. To further test the non-Gaussian halo mass function
re-parameterization, we compare it with the data extracted from Pringls, which
also includes scenarios with fNL = ±40. Thus, the same analysis performed with
Quijote-png is now repeated using the halos identified in Pringls. The Pringls
sets with fNL = ±100 will be used to verify the consistency with the results obtained
with Quijote-png.

Now, because of the limited number of realizations, we expect the derived con-
straints to be less precise. Additionally, the reduced number of realizations prevents

72



1014 1015

−40

−20

0

20

40

60

∆
%

d
at

a
f N

L
=

0

Residuals z = 0

Model κ (M500c)

Model κ (M200c)

Model κ (M200b)

M500c fNL = ±100

M200c fNL = ±100

M200b fNL = ±100

1014

−2

0

2

1014 1015

−80

−60

−40

−20

0

20

40

60

80

∆
%

d
at

a
f N

L
=

0

Residuals z = 0.5

1014
−5

0

5

1014 1015

M [h−1 M�]

−75

−50

−25

0

25

50

75

∆
%

d
at

a
f N

L
=

0

Residuals z = 1

1014

−10

0

10

Figure 7.3: From top to bottom: residuals in percentage (Eq. 6.9) of the halo mass
function correction as a function of mass for various mass definitions across different
redshifts. Markers indicate opposite fNL values, with upward-pointing triangles for fNL =
100 and downward-pointing triangles for fNL = −100. Green, blue and orange refers to
the mass definitions M200b, M200c, M500c, respectively. Finally, with solid lines we indicate
the LMSVQ model corrected by the κ factor. The colors of the lines matches the colors
of the corresponding mass definition. In each panel the subplot displays a zoomed region
at low masses to allow a clearer understanding of the behavior of both model and data
points.
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Figure 7.4: 68% and 95% confidence levels for the coefficient a, b, and c of the second-
degree polynomial used to fit the values of κ(∆b) derived with pringls simulations. Blue,
light blue, orange and red correspond to the different values of fNL: −100, −40, 40, 100,
respectively. Black dashed lines are the best fit values of the parameters reported in
Eq. 7.6, which we obtained using Quijote-png. The projected 1D marginalized posterior
distributions are shown at the top of each column along with the 68% uncertainty (shaded
bars).

us from simultaneously modeling halo number counts with different values of fNL:
in this case the covariance matrix is dominated by noise and does not allow us to
accurately estimate the correlation between the mass bins of different sets of simu-
lations. Consequently, we will continue testing the calibration of κ using individual
fits as in Sect. 7.1.

Also in this case, we measure the mass function of halos identified with ROCKSTAR,
transforming the thresholds ∆c (200, 300, 500, 800 1000 and 1200) in their corre-
sponding value ∆b at z = 0, 0, 5 and 1. Then, for each threshold value we find the
correction factor κ required to match the measured deviations from the Gaussian
halo mass function (Eq. 6.9). Consequently, we fit the coefficients a, b, and c of the
second-degree polynomial used to parameterize κ as a function of ∆b (see Eq. 7.2).

We present the main outcome of this analysis in Fig. 7.4, where we show the
confidence contours relative to a, b and c for the four scenarios fNL = ±40 and
fNL = ±100. We note that the posterior distributions of these parameters are in
good agreement with the best-fit values obtained with Quijote-png (vertical and
horizontal dashed lines in the plot, also reported in Eq. 7.6). A minor deviation
is observed for the fNL = 100 case, which is, however, compatible at the 2σ level
with our reference values. We consider this minor discrepancy negligible for our
analysis, attributing it to statistical fluctuations due to the presence of noise in the
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data. Despite using the same number of realizations, we observe in Fig. 7.4 that the
contours for the fNL = ±40 scenarios are broader. This is because for fNL values
closer to zero, the differences from the ΛCDM case are smaller, and the relatively
large errors of the residuals limit the constraining power.

Most importantly, given the compatibility of the constraints obtained for all the
scenarios analyzed, we can conclude that the calibrated relation for κ(∆b) is not
only independent of the sign of fNL, but also of its absolute value. We attribute this
result to the fact that, in the expression for the halo mass function correction, all
the information on the magnitude of fNL is already well encapsulated in the higher-
order cumulants of the distribution, S3 and S4. Having no statistical evidence to the
contrary, we do not need to extend the reparameterization of the collapse threshold
δc to include this additional dependency. This outcome is clearly very important:
given a sample of DM halos identified with any threshold ∆, we now have a unique
and simple recipe to predict the mass function in scenarios featuring whatever level
of local-type PNG.

As a final consideration, we note that the proposed re-parametrization of δc by
means of the factor κ(∆b) can be applied also to other non-Gaussian halo mass
function models, for example MVJ and DMNP. We confirm that this modification
is indeed effective in correcting the model predictions according to the selected halo
density thresholds, although the best agreement with the data is achieved using
the LSMVQ model. Since we used the latter to calibrate the κ(∆b) relation, we
recommend applying Eq. 7.6 solely in combination with the LMSVQ model for an
accurate prediction of the non-Gaussian halo mass function.

7.1.3 Calibration against high resolution simulations

Defining halo masses within a radius enclosing a given overdensity ∆ implies that the
halo mass can be derived from the integral of the density profile within a fixed radius.
Consequently, the mass depends on the internal density distribution of the halo and
is therefore more sensitive to resolution effects, especially at high overdensities. As
discussed in Sect. 6.3.1, the inner regions of DM halos, particularly at low masses,
are not well resolved (top panels of Fig. 6.6). To evaluate the impact of resolution on
our parameterization, we repeated the analysis performed with the Pringls suite
using its higher resolution counterpart, Pringls-hr.

This set consists of only three realizations: one for the Gaussian case and two
for fNL = 100 and fNL = −100. Despite the increase in the number of particles,
the number of realizations implies that the confidence contours will be significantly
wider than those obtained from Quijote. We compute the halo mass functions
from the halos identified with ROCKSTAR, adopting the same overdensity thresholds
used in Pringls. After converting the critical overdensity threshold ∆c into the
corresponding ∆b values at z = 0, 0.5, and 1, we determine the correction factor κ
required to match the residuals across all mass definitions and redshifts. Finally, we
extract through a MCMC analysis the three parameters defining the second-order
polynomial used to model the behavior of κ.

The results of this analysis are shown in Fig. 7.5. We notice how the contours
derived from the residuals for fNL = 100 and −100 are fully compatible, high-
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Figure 7.5: 68% and 95% confidence levels for the coefficients a, b, and c of the second-
degree polynomial used to fit κ(∆b) from Pringls-hr simulations. Light blue and orange
contours correspond to fNL = −100 and fNL = 100, respectively. Black dashed lines
indicate the best-fit values of the parameters reported in Eq. 7.6, obtained using Quijote-
png. The projected 1D marginalized posterior distributions are shown at the top of each
column, with shaded bars representing the 68% uncertainty.

lighting that the independence of this new parameterization of the sign of fNL is
robust even when considering high-resolution simulations. Moreover, we observe
from the posterior distributions, that the results obtained with the Quijote-png
data sets (vertical and horizontal dashed lines) are compatible within 1σ with those
of Pringls-hr. Therefore, we conclude that our new parameterization seems to be
not significantly affected by resolution effects.

7.2 Impact on Forecasted Constraints

Equipped with a new prescription to correct the non-Gaussian halo mass function
model for different halo identification thresholds, we now investigate its impact
in forecasting constraints on fNL. We set fNL as a free parameter with uniform
prior and we compare the outcomes of two models: the original LMSVQ halo mass
function correction (Eq. 4.17) and its re-parametrized version, in which the halo
linear collapse threshold is multiplied by the function κ(∆b) expressed in Eq. 7.6.

With the goal of building up a more realistic setting, we use a subset of Quijote-
png simulations that cover a volume of 50 h−3 Gpc3, similar to those anticipated for
stage IV spectroscopic surveys like Euclid (Euclid Collaboration et al., 2024) and
Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016). In
practice, we use the mean halo number counts in the mass range from 5 × 1013 to
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Mass
fNL from LMSVQ fNL from LMSVQ with κ(∆b)

z = 0 z = 0.5 z = 1 z = 0 z = 0.5 z = 1

M200b 91.5+4.4
−4.0 90.8+2.7

−3.0 92.1+2.1
−1.8 105.1+4.9

−4.7 101.2+3.2
−3.2 98.9+2.3

−1.8

M200c 142.6+6.5
−7.1 111.6+3.4

−2.9 98.1+2.1
−1.9 99.7+4.2

−4.5 101.2+2.7
−3.0 98.9+2.2

−1.9

M500c 237.3+11.8
−11.5 182.4.8+4.9

−5.5 139.8+3.4
−3.5 99.9+3.6

−3.9 98.5+2.6
−3.0 98.9+2.7

−2.0

M2500c 305.0+33.9
−34.8 633.1+24.8

−25.3 364.1+22.5
−16.3 100.4+3.2

−3.2 96.7+3.4
−3.1 94.7+4.4

−5.0

Table 7.2: Constraints on fNL obtained by fitting the mean non-Gaussian mass func-
tions extracted from 50 realizations of the quijote-png simulations with fNL = 100, for
different halo mass definitions and redshifts. The left part of the table shows the values
obtained using the original LMSVQ correction (Eq. 4.17), while the right part refers to its
re-parametrized version, that includes the dependency on the halo mass definition trough
the previously calibrated factor κ(∆b).

7× 1015 h−1 M⊙ derived from the 50 realizations of Quijote-png characterized by
fNL = 100, and we employ the mean Gaussian halo mass function derived from Qui-
jote to compute the residuals as in Eq. 6.9. We then perform a MCMC analysis,
to determine the best-fit value of the parameter fNL and the corresponding uncer-
tainty. The analysis is repeated for different halo mass definitions (M200b, M200c,
M500c, M2500c) and redshifts (0, 0.5, 1) to check for possible systematic errors.

The best-fit values of fNL and their 1σ uncertainty are presented in Table 7.2. For
the sake of clarity, we remind the reader that these results should be compared with
the true cosmological parameters of the simulations, which feature fNL = 100. We
can notice that employing the original LMSVQ model leads to biased constraints,
with a deviation from the true value that increases with the threshold used to identify
the halos. This offset is present at all the analyzed redshifts with a similar intensity.
As expected from the results presented in Sect. 7.1, the case with M200b is the least
affected by systematic errors.

In contrast, including κ(∆b) in the model significantly improves the accuracy of
the constraints, which are almost always consistent with the true simulation value
at the 1σ level. Minor systematic errors emerge only for extreme mass definitions
(i.e. M2500c) and at z ≥ 0.5.

This result provides further confirmation that, without accounting for the halo
identification threshold in the halo mass function correction for PNG, significant
deviations from the theory arise. This systematic error, if not corrected, could
potentially compromise upcoming cosmological constraints on PNG derived with
cluster counts. It is therefore essential to incorporate this dependency on the halo
definition into the model in order to avoid biased estimates of the parameters fNL.
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Chapter 8

Conclusions and Future
Perspectives

PNG refer to deviations from the Gaussian distribution of primordial density fluc-
tuations. These deviations can provide crucial insights into the physics governing
inflation, the brief period of rapid expansion in the very early Universe that gave
rise to these fluctuations. Studying PNG is particularly important in the era of
precision cosmology, where highly accurate measurements of the cosmic microwave
background and LSS will allow us to probe cosmological models with unprecedented
precision. In this context, LSS offer a promising route for detecting potential signa-
tures of PNG, as such non-Gaussianities should influence halo statistics. This can
help refine our understanding of the evolution of the Universe and the fundamental
physics that governs it.

The goal of this Thesis was to use numerical simulations to study the effects
caused by local-type of PNG, which is quantified by the parameter fNL. The data
were extracted from halo catalogs generated by applying the halo finder ROCKSTAR
(Behroozi et al., 2013) to the four sets of N-body cosmological simulations Qui-
jote, Quijote-png, Pringls and Pringls-hr (see Sects. 5.1 and 5.2). These
simulations share the same standard ΛCDM cosmological parameters and together
cover different levels of PNG, i.e. fNL = 0, fNL = ±40 and fNL = ±100. A key point
in our analysis consisted in the creation of catalogs with different thresholds ∆ for
halo identification. In particular, we focused on different threshold values, defined
both with respect to ρb (e.g. ∆b = 200) and ρcrit (e.g. ∆c = 200, 500, 2500).

We started our analysis in Sect. 6.1 by measuring the scale-dependent bias of
DM halos defined with different mass definitions at different redshifts, employing
the Quijote-png simulations. We then compared the measured behavior of the
bias with the theoretical prescription presented in Dalal et al. (2008) and Desjacques
et al. (2018), showing that no significant deviations emerge.

Then, in Sect. 6.2, we focused on testing the accuracy of already existing halo
mass function models developed for cosmological scenarios featuring PNG. We se-
lected three well-known models from the literature, that is, Matarrese et al. (2000),
LoVerde et al. (2008), and D’Amico et al. (2011a), which provide a theoretical pre-
scription to predict the deviation from the Gaussian halo mass function produced
by local type of PNG. We compared their predictions with the halo number counts
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extracted from the halo catalogs: we found that none of them was able to perfectly
capture the deviations caused by PNG on the halo mass function. We showed how
this discrepancy depends on the halo mass definition, as it increases significantly
when higher density thresholds are used.

To investigate the reason for this systematic error, in Sect. 6.3.1 we compared
the stacked density profiles of DM halos measured in simulations with different
values of fNL. We showed that PNG modify the DM matter distribution around
the halo center such that for fNL > 0 halos exhibit a steeper inner density profile,
whereas the opposite occurs for fNL < 0. Moreover, the change in the slope of the
halo density profile becomes more significant as the value of |fNL| increases. This
behavior explains why using different identification thresholds produces a deviation
in the observed halo mass function. In fact, halos become more (less) compact in a
fNL > 0 (< 0) cosmology, and the higher the identification threshold, i.e. closer we
get to the halo center, the larger (smaller) their mass will result with respect to a
standard ΛCDM scenario.

At this point, the main part of our work consisted of developing a correction
to the theoretical model for the non-Gaussian halo mass function that incorporates
the dependence on the halo mass definition. We took as a reference the quadratic
model of LoVerde et al. (2008) since it was the one showing the best agreement with
the measured halo mass function (see ∆b = 200 data in Fig. 6.4). The prescription
we propose is simple: we correct the linear density threshold for halo collapse,
δc, by means of a factor κ(∆b). The latter is calibrated as a function of the halo
identification threshold, which we require to be expressed in terms of the background
density of the Universe, ρb(z).

In Sect. 7.1.1 we calibrated this correction factor by fitting the deviations on
the measured halo mass function caused by PNG at different redshifts (z = 0, 0.5,
1), and for halos identified with different thresholds (converting those overdensities
relative to ρcrit into the corresponding background quantity). We found that a
second-degree polynomial can accurately represent the variation of κ as a function
of ∆b(z), for all analyzed redshifts. We estimated the best-fit values for the three
polynomial coefficients and their relative uncertainty, finding that a unique relation
can be used to incorporate the dependence of the halo identification threshold into
the non-Gaussian halo mass function model. In other terms, we proposed a re-
parametrization of the model that holds for cosmologies with different levels of
local-type PNG, independent of the sign and the amplitude of the parameter fNL (see
Sect. 7.1.2) and that is robust against resolution effects (see Sect. 7.1.3). The best
fit of the function κ(∆b) is presented in Eq. 7.6, where we combined the halo number
counts extracted from simulations with fNL = −100 and fNL = 100, including the
covariance between these data.

Furthermore, in Sect. 7.2, we presented a simple example of cosmological fore-
casts focused on constraining fNL. We considered a hypothetical survey volume of
50 h−3 Gpc3 and compared the constraints derived with the original model and its
re-parameterized version (see Table 7.2). We demonstrated how the original im-
plementation leads to extremely biased cosmological constraints for halos identified
with thresholds as ∆c = 200 or 500, with a systematic error increasing for higher
values of ∆. In contrast, we found that the model re-parametrized with ∆b(z) allows
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us to accurately constrain fNL without statistically relevant systematic errors.
It is important to emphasize that these results are particularly relevant in the

perspective of the application to real data. Indeed, wide field surveys allow us
to extract the number of galaxy clusters as a function of their mass, but their
definition of mass can vary depending on the wavelength analyzed. For example,
optical and X-ray observations generally identify clusters with masses around M200c

and M500c, respectively, making it crucial to have a model that consistently adapts
to any identification threshold. The re-parametrized model offers a natural solution
to this need. However, a real application to survey data will require all cosmological
parameters to be left free, not just fNL. Therefore, it is important to consider
that non-Gaussian halo mass function models are computationally very expensive
to calculate for different cosmologies, as the approximated relations in Eq. 6.8 cannot
be used. For this reason, in the next follow-ups of this work, we aim at using machine
learning techniques to develop emulators of the non-Gaussian halo mass function to
speed up model computation, making it feasible for use in MCMC analyses.

Furthermore, we underline that the methodology proposed in this work is not
meant to be limited only to local-type PNG: a natural extension of this work will
consist of testing the models present in the literature also for other shapes of the
potential bispectrum (i.e. equilateral and orthogonal). Moreover, one of our goals is
to extend our analysis to the underdense counterpart of DM halos, namely cosmic
voids. In fact, the same formalism used to predict the non-Gaussian halo mass
function can be applied to void counts, allowing us to model the non-Gaussian void
size function (Kamionkowski et al., 2009; D’Amico et al., 2011b). These two models
can ultimately be used in combination to extract the overall information from halo
and void number counts. In fact, several studies have demonstrated the strong
complementarity of these two statistics (see e.g. Bayer et al., 2021; Kreisch et al.,
2022; Contarini et al., 2022; Pelliciari et al., 2023), making them excellent probes
for breaking key degeneracies between cosmological parameters.
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