
Alma Mater Studiorum \cdot Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Matematica

Collaboration and Innovation in the

Equational Theories Project:

Formalizing Mathematics with Lean 4

Tesi di Laurea Magistrale in Formalizzazione di Matematica

Relatore:

Chiar.mo Prof.

GIOVANNI PAOLINI

Correlatore:

Dott.

LORENZO LUCCIOLI

Presentata da:

MARCO PETRACCI

Sessione VI
Anno Accademico 2023-2024

A Davide,

a mamma e papà.

Abstract

This thesis explores the “Equational Theories” project, an innovative initiative
launched by Terence Tao which combines collaboration between professional
and amateur mathematicians with the use of artificial intelligence tools and
proof-assistant languages, such as Lean 4. The project focuses on the study of
equational theories in universal algebra, particularly on magmas (sets equipped
with a binary operation), with the goal of determining the implications between
different algebraic equations and constructing an implication graph.

A central aspect of this thesis is the greedy construction, an iterative
algorithm that enables the construction of infinite magmas satisfying specific
equations. This method has been applied in detail to prove the non-implication
1516 \nvdash 255, through the construction of a counterexample. The formalization
in Lean revealed errors in the informal version of the proof, highlighting the
importance of formalization in ensuring the correctness of the results.

This thesis also introduces magma cohomology, a new mathematical struc-
ture that emerged during the project, which generalizes group cohomology
and has proven useful in resolving finite implications.

In summary, the project represents an innovative approach to mathemati-
cal research, based on open collaboration, advanced computational tools, and
rigorous formalization, paving the way for future explorations in this field.

Contents

Introduction . 1

1 Proof assistants 3

1.1 Lean 4 . 3

1.2 Overview of Lean Code . 4

1.3 Mathlib . 8

1.4 Importance of proof assistants 9

2 Equational theories project 11

2.1 Preliminary definitions . 12

2.2 Goal of the project . 15

2.3 How to minimize the number of proofs 19

2.4 Project Organization . 21

3 Useful Techniques and Mathematical Structures 25

3.1 Greedy Algorithm Construction 25

3.1.1 An example of a Greedy construction 30

3.2 Linear Magmas . 33

3.3 Magma Cohomology . 35

4 Exploring Equations 41

4.1 Commutative and Associative law 41

4.2 Equation 677 . 42

4.2.1 A finite non-right-cancellative example 47

4.2.2 Free 677 Magma . 49

3

4.3 Equation 1516 does not imply Equation 255 53
4.3.1 Blueprint proof . 54
4.3.2 Formalization of the proof 65

5 Conclusions 69

Introduction

In recent years, the advent of new interactive theorem provers has drawn
increasing attention to the formalization and verification of mathematical
proofs. These tools not only ensure the correctness of the results obtained
but also support mathematicians in achieving their goals. This thesis focuses
on one of the most widely used tools, Lean 4, and how it is employed by the
mathematical community.

In particular, the thesis presents a description of the project titled Equa-

tional Theories, launched by Terence Tao. The goal of this project is to
experiment with a new way of collaborating, combining the efforts of profes-
sional and amateur mathematicians with those of artificial intelligence tools
and proof assistant languages, such as Lean. Typically, research projects
are conducted by small groups of mathematicians who are familiar with all
aspects of the subject. In this case, Terence Tao aimed to experiment with a
large-scale project, given the minimal prerequisites required, leveraging proof
assistant languages like Lean, which allow for broader participation and the
use of AI tools.

The Equational Theories project focuses on the study of equational theories
in universal algebra, particularly on magma structures, which are sets equipped
with a binary operation. The main objective is to determine the implications
between different algebraic equations, constructing an implication graph that
describes the relationships between these equations. This graph is essential
for understanding how different algebraic properties are interconnected and
for identifying which equations imply or do not imply others.

1

In this thesis, we will focus particularly on the formalization of the non-
implication 1516 \nvdash 255, a significant result achieved through the construction
of a counterexample using the greedy algorithm. This work was undertaken by
Lorenzo Luccioli, Pietro Monticone, and myself, leveraging pre-existing code
developed by Bernhard Reinke for a different implication, and it highlighted
the importance of formalization in Lean for identifying and correcting errors
in the “on paper” version of the proof.

In summary, this thesis explores how mathematical formalization, com-
bined with innovative collaboration and advanced computational tools, can
lead to new results and discoveries. The Equational Theories project repre-
sents a significant step toward a new mode of mathematical research, where
formal correctness and large-scale collaboration play a central role.

2

Chapter 1

Proof assistants

Proof assistants, or interactive theorem provers, are computer systems that
allow a user to do mathematics on a computer: not so much the computing
(numerical or symbolical) aspect of mathematics, but the aspects of proving
and defining. So a user can set up a mathematical theory, define properties
and do logical reasoning with them.
They are now mainly used by specialists who formalize mathematical theories
in it and prove theorems. If you are already convinced of your proof, it is not
convenient to use proof assistants to verify it: the formalization needs much
more details than the “on paper” version. However, it often happens in math-
ematics that one is not fully convinced of a proof, or it is not widely accepted
by the community: it is in these cases that proof assistants demonstrate their
usefulness.

1.1 Lean 4

Lean 4 is a new open source interactive theorem prover, and a functional
programming language, i.e. a software that allows you to formalize mathemat-
ical definitions, statements and demonstrations by verifying their correctness
and, in some cases, helping with their construction.

The Lean project was launched by Leonardo de Moura when he was at

3

Microsoft Research in 2013. Lean 4 is the latest version, released in 2021,
and it is hosted on GitHub1.

It is not easy for newcomers to understand Lean code. For this reason, in
the next section we provide the basic knowledge of Lean, inserting examples
and walking through the comprehension of the code step-by-step.

1.2 Overview of Lean Code

First of all, we remember that Lean is a programming language, so a code
editor needs to be downloaded: the most used is Visual Studio Code.
Lean is a tool for building complex expressions in a formal language known as
dependent type theory. Every expression has a type, and you can use the
#check command to print it. Some expressions have types like N or N - \rightarrow N:
these are mathematical objects.

1 #check 3 + 2

2
3 def g (x : N) := x + 2

4
5 #check g

where the results of these #check are:

1 3 + 2 : N

2
3 g : N \rightarrow N

In general, types can be thought of as if they were sets, but with some
important differences: the most significant one is that, while in set theory an
element can belong to multiple sets, in type theory an element can belong
to only one type. One particularity is that even propositions are types. For
example, mathematical statements have type Prop.

1 theorem add_comm (a b : N) := a + b = b + a

2
3 #check add_comm

1see https://github.com/leanprover

4

https://github.com/leanprover

In this case, #check, in addition to obviously showing the statement,
provides some technical information about the inputs required by the theorem,
which we will examine in more detail in the next example:

1 add_comm.{u_1} {G : Type u_1} [AddCommMagma G] (a b : G) : a + b = b

+ a

Let us now examine in detail an example of a Lean definition, analyzing
all the commands used.

1 def Function.Injective {A : Sort*} {B : Sort*}

2 (f : A \rightarrow B) : Prop :=

3 \forall (a b : A), f a = f b \rightarrow a = b

In this way we have just given the definition of injective function. We now
enter the code to see step by step which commands are used:

• def is the first command met. It is a keyword that allows us to define a
new object in Lean. There are other keywords that can be used for the
same goal, for example structure can be used for definitions that group
multiple variables or properties within it;

• Function.Injective is the name of the new object that we are defining.
There are no rigid rules to follow when choosing a name, you can use
whatever you prefer: however, it is advisable to choose something related
to what we are defining.

The next three items are the arguments to define the object. Each time
you want to say that a function is injective, Lean will require as input that
information, namely the domain and the codomain of the function, and the
function itself. The arguments differ in the type of brackets that enclose them,
and now we are going to compare them.

• {A : Sort*} {B : Sort*} indicates the type to which the two sets A and
B belong, which will then be taken as the domain and codomain of the
function. Arguments in curly brackets { } are called implicit arguments,
because Lean does not explicitly require them when we use the definition,

5

especially when they can be easily deduced from the context. Implicit
arguments can also be enclosed within square brackets [], but they
work differently: for example if we had had [add G], Lean would have
tried to independently deduce that G has an addition operation, based
on previously proved instances of the code;

• the last argument is (f : A \rightarrow B), the function that is required to be
injective. The ones contained between the round brackets () are called
explicit arguments, because we must recall them as input every time we
use this definition;

• the part of the code between : and := represents the type of the object
we are defining: in this case it is the proposition that the function f is
injective, so its type will be Prop;

• at the end we have the body of the definition, that is for all a, b elements
of the set A, if f(a) is equal to f(b), then a is equal to b.

Let’s look at a new example. This time we see how to prove a rather
simple theorem. The difficulty of programming is that often simple proofs on
paper require more attention than expected for formalization in lean.

1 theorem prove1 (a b c : N) : a * b * c = b * (a * c) := by

2 rw [mul_comm a b]

3 rw [mul_assoc]

Again, we dive into the code to understand it better.

• theorem is the keyword to start the definition of a new theorem in Lean.
We can also use lemma, or example if we don’t need to give it a name to
call it later in the code;

• (a b c : N) are the arguments of the theorem, so every time we want
to apply it we have to check that these hypotheses are verified. In this
case we can apply it only if it has as input three elements of N;

6

• after : there is the thesis, in the form of a proposition. In this case the
theorem says that a \cdot b \cdot c = b \cdot (a \cdot c) holds for every natural number.

Finally, after := by, the proof of the theorem begins. Each step of the
proof simplifies the thesis to be proved, until it becomes trivial to prove.
When a cursor is in the middle of a tactic proof, Lean reports on the current
proof state in the Lean Infoview window, along with the available hypotheses.
As you move your cursor past each step, you can see the state change. Let us
look how it works in this case:

• when the cursor is next to by, the Lean Infoview shows the initial state.
There is only one hypotesis, that is a, b, c are natural numbers. The
equality after \vdash represents the thesis:

1 1 goal

2 a b c : N

3 \vdash a * b * c = b * (a * c)

• the first step is rw [mul_comm a b], where mul_comm a b claims the com-
mutativity of the multiplication, specifically a \ast b = b \ast a, and rw[] is
the rewrite tactic, that replaces the left-hand side of an identity (in this
case it considers the identity given by mul_comm a b) by the right-hand
side in the goal. So the goal changes, as the Lean Infoview shows:

1 1 goal

2 a b c : N

3 \vdash b * a * c = b * (a * c)

• at the end we have rw [mul_assoc]. It works like the previous step,
but in this case the equality that the rewrite tactic uses to make the
substitution is (b\ast a)\ast c = b\ast (a\ast c) given by mul_assoc, i.e. the associative
property of multiplication. At this point the goal is transformed into
\vdash b * (a * c) = b * (a * c), which is trivial, so the proof is complete.
Even the Lean Infoview communicates that there are no more goals:

1 No goals

7

The proof could also be done in a more concise way, using the command
rw [mul_comm a b,mul_assoc].

As can be seen from the example just given, Lean uses a type of backward
reasoning, that is, it starts from the goal that you want to demonstrate
and simplifies it until it becomes trivial. It is also possible to use forward
reasoning, working on the hypotheses that you have in order to be able to
then arrive at the thesis, but it is less common. The ideal method would be
to use the two types of reasoning in a combined manner, simplifying the goal
as much as possible and developing the hypotheses in order to be able to
arrive at a trivial resolution.

Lean also helps in building proofs. It warns us if the proof we are building
is not yet finished, that is, if the various steps are not yet sufficient to reach
the goal. In this case, the keyword sorry is very useful, as it offers a partial
resolution of the thesis, allowing us to delay the problem and use that result
elsewhere in the code.

Moreover, Lean can help us complete the code: by using the commands
rw? and apply?, suggestions for the next steps in the proof appear in the Lean
Infoview, which also shows how the goal would change accordingly.

1.3 Mathlib

The Lean mathematical library, Mathlib, is a community-driven project
born to build a unified library of mathematics formalized in the Lean proof
assistant. Mathlib is essential to work efficiently with Lean 4, as it provides a
huge amount of mathematical foundations ready to be used, so that you do
not have to continually prove concepts and theorems from scratch. It contains
a large amount of mathematical definitions and theorems in various fields,
such as algebra, number theory, geometry, analysis, logic, category theory,
and others2. This means that users can reuse already formalized results,

2see in more detail here https://leanprover-community.github.io/mathlib-ove

rview.html

8

https://leanprover-community.github.io/mathlib-overview.html
https://leanprover-community.github.io/mathlib-overview.html

saving time in formalization and focusing on more advanced problems.
One of the main goals of Mathlib is to provide statements in the most

general form possible, eliminating all unnecessary assumptions, so that they
can be used in multiple contexts.

Being an open-source project, whose development is managed by the
community and organized by maintainers, individual contributions are highly
appreciated: however, the proposed code must undergo a review process
conducted by a maintainer before being merged into the main branch, and a
high standard of quality is required. This approach allows the library to grow
rapidly, while keeping a high level of coherence and maintainability.

1.4 Importance of proof assistants

Proof assistants are becoming increasingly crucial for mathematicians,
especially in contexts that require formal rigor, absolute precision, and the
handling of complex theorems. The main function of proof assistants is to
ensure that proofs are correct.

Often, you have to work with complex theorems that involve thousands
of logical steps or advanced concepts. Using these new tools allows you to
manage and formalize theorems that are difficult to do by hand, such as
Fermat’s Theorem or other proofs of topology or algebraic geometry, while
also ensuring a rigorous formal approach.

It is important to note that proof assistants stimulate greater collaboration
among mathematicians, as proofs can be written and verified in a way that is
easily understandable and shareable. In particular, the open-source commu-
nity around tools such as Coq, Lean, and Isabelle has created an ecosystem
that favors teamwork and the collective construction of results. Complex
theorems can be formalized by a group of researchers in different universities
or even in different continents, or large-scale projects can be launched, just
as happened with the Equational theories project launched by Terence
Tao, which will be presented in the next chapter.

9

Chapter 2

Equational theories project

At the end of September 2024, Terence Tao announced a new project1

called “Equational theories” on his blog. In the introduction Terence Tao
explained how mathematicians tend to work in small trusted groups, while
they rarely collaborate with the public or with AI tools, due to the risk that
a single mistake could invalidate the entire work: interactive theorem provers
can counteract this danger. Previously there have been several formalization
projects that have dealt with existing results, but now he is trying to explore
new problems.

The blog post announced a new pilot project with two goals: to study a
specific mathematical problem but also to explore new ways to collaborate on
mathematics in a public setting using Lean formalization as the medium.
So the idea is to collaboratively work on the problem with the additional
correctness guarantees from formalizing the results.

An example of this style of project is the Busy Beaver challenge2, a
massively collaborative research project dedicated to the Busy Beaver problem,
which was recently completed. The goal was to formalize a result about Turing

1You can see here: https://terrytao.wordpress.com/2024/09/25/a-pilot-proje
ct-in-universal-algebra-to-explore-new-ways-to-collaborate-and-use-machi

ne-assistance/
2More information on this can be found at this link: https://bbchallenge.org/1349

3336

11

https://terrytao.wordpress.com/2024/09/25/a-pilot-project-in-universal-algebra-to-explore-new-ways-to-collaborate-and-use-machine-assistance/
https://terrytao.wordpress.com/2024/09/25/a-pilot-project-in-universal-algebra-to-explore-new-ways-to-collaborate-and-use-machine-assistance/
https://terrytao.wordpress.com/2024/09/25/a-pilot-project-in-universal-algebra-to-explore-new-ways-to-collaborate-and-use-machine-assistance/
https://bbchallenge.org/13493336
https://bbchallenge.org/13493336

machines, i.e. to prove the conjecture “BB(5) = 47, 176, 870 ”, about the 5th
busy beaver value; in this case the formal theorem prover Coq3 was used.

But Terence Tao’s idea was different: instead of working on an individual
problem, he thought that a good approach for this type of project is to use
crowdsourcing for a class of problems, because this makes it easier for many
people to partecipate, especially for people without in-depth knowledge of a
specific area. In particular the problem of Universal Algebra he chose is general
enough to be accessible to many contributors with different backgrounds,
from accomplished mathematicians to people with no graduate level training,
or limited experience in Lean.

2.1 Preliminary definitions

Before describing the research goal of the project, we have to set down some
definitions. While the algebraic structures most commonly studied are groups,
rings, and fields, which exhibit recurring properties such as associativity and
commutativity (as can be seen in [Her78]), the reference algebraic structure
in this project is the magma, endowed with less conventional properties.

Definition 2.1.1 (Magma). A magma is a set M with a binary operation
\diamond :M \times M - \rightarrow M .

Initially there are no specific rules that the operation \diamond must satisfy, and in
these cases, magmas are not very interesting objects. So we start adding some
equational axioms on these sets, which are equalities involving the operation
\diamond and indeterminate variables in M .

Definition 2.1.2 (Equational Law). An equational law is a formal symbolic
expression A of the form

\varphi (\diamond ;x1, . . . , xk) = \psi (\diamond ;x1, . . . , xk) (A)
3Coq is a formal proof management system. It provides a formal language to write

mathematical definitions, executable algorithms and theorems together with an environment
for semi-interactive development of machine-checked proofs

12

where \varphi (\diamond ;x1, . . . , xk) and \psi (\diamond ;x1, . . . , xk) are applications of the operation
\diamond to the variables x1, . . . , xk.

We say that A has order n if the operation \diamond appears n times, i.e. if the
sum of the orders of \varphi and \psi is n.

Given a magma\scrM = (M, \diamond), we say that\scrM obeys A if the equality

\varphi (\diamond ; a1, . . . , ak) = \psi (\diamond ; a1, . . . , ak)

holds for all a1, . . . , ak \in M . In this case we write\scrM | = A.

Two easy examples could be the commutative law :

x \diamond y = y \diamond x,

and the associative law :

(x \diamond y) \diamond z = x \diamond (y \diamond z),

that must be satisfied \forall x, y, z \in M . Axioms that include constants, such as
a \diamond x = x (where a \in M), are not considered equational axioms: equational
axioms must contain only indeterminate variables.

We say that an Equation A implies an Equation B (denoted A \vdash B) if all
magmas that obey A also obey B, otherwise we say that Equation A refutes
Equation B. This definition will be crucial in this work, because the project
analyzes magmas that initially obey a single equation A, and aims to study
which equations are implied and which are not implied by it, as well as which
ones imply A and which do not. We now provide two examples.

Given Equation C : x \diamond y = x and Equation D : x \diamond (y \diamond z) = (x \diamond w) \diamond u,
we want to prove the following proposition:

Proposition 2.1.3. C \vdash D.

Proof. We want to prove that:

x \diamond (y \diamond z) = (x \diamond w) \diamond u (2.1)

13

From equation C we obtain that:

y = y \diamond z, (2.2)

and
x = x \diamond w. (2.3)

So by substituting Eq. (2.2) and Eq. (2.3) in Eq. (2.1) we get that:

x \diamond (y \diamond z) = x \diamond w. (2.4)

We apply the equation once again C:

x \diamond w = (x \diamond w) \diamond u. (2.5)

Substituting Eq. (2.5) into Eq. (2.4) we obtain the thesis.

Now we want to provide an example of a non-implication between two
equations: these cases are more complicated to prove, as it is necessary to find
counterexamples. Consider the equations E : x = x \diamond x and E \prime : x = x \diamond y,
let us prove that:

Proposition 2.1.4. E \nvdash E.\prime

Proof. Let us consider a magma M with elements only in {0,1}, and with
an operation \diamond defined according to the Table 2.1. As we can easily see, the

\diamond 0 1

0 0 1

1 1 1

Table 2.1: Operator \diamond on M

model satisfies E:

• 0 = 0 \diamond 0;

• 1 = 1 \diamond 1.

But does not obeys E \prime :

• 0 \not = 0 \diamond 1.

Therefore, we have proven that equation E does not imply E \prime .

14

2.2 Goal of the project

Since there are an infinite number of equational laws, it is useful to consider
only a finite number of them, for example by putting a bound on the order
of the laws. For this reason, let us focus on the set \scrE containing all the
equational axioms of order at most four, up to relabeling and the reflexive and
symmetric axioms of equality. Before proceeding, let us explain what these
three criteria consist of, which allow us to avoid counting the same property
multiple times:

• Relabeling: we consider two laws, A and A\prime , to be the same if, assuming
that A is of the form \varphi (\diamond ;x1, . . . , xk) = \psi (\diamond ;x1, . . . , xk), there exist some
permutation \sigma of the alphabet of formal symbols such that A\prime is equal
to \varphi (\diamond ;\sigma (x1), . . . , \sigma (xk)) = \psi (\diamond ;\sigma (x1), . . . , \sigma (xk)). For example, the
equations x \diamond y = x and y \diamond x = y are the same up to relabeling;

• Symmetry: we consider two laws to be the same up to symme-
try if, given A of the form \varphi (\diamond ;x1, . . . , xk) = \psi (\diamond ;x1, . . . , xk), A\prime is
\psi (\diamond ;x1, . . . , xk) = \varphi (\diamond ;x1, . . . , xk), that is if their LHS and RHS are
swapped;

• Reflexivity: we say that an equation is reflexive if the LHS and RHS
coincide. In this case we consider it to be the same as the trivial law of
order 0, x = x, which is the only trivial law that we count.

The goal of the project is to determine the implication graph of the set \scrE ,
proving which equations imply, or do not imply, which others. We now try to
quantify how many implications and refutations we need to study.

Given the criteria just explained, let us now describe, in general, how to
count all equations of a given order n.

Lemma 2.2.1. The number of equational laws of order n, up to relabeling, is

Cn+1Bn+2,

15

where Cn is the n - th Catalan number4, and Bn is the n - th Bell Number5.

Proof. Let us consider an equation A of order n of the form \varphi (\diamond ;x1, . . . , xk) =
\psi (\diamond ;x1, . . . , xk), where \varphi has order n\prime and \psi has order n\prime \prime , such that n\prime +n\prime \prime = n.
The different shapes that \varphi can take are just the different ways we have of
associating the n\prime applications of the binary operator \diamond which are counted by
the Catalan number Cn\prime , and the same for \psi with Cn\prime \prime . Therefore, the total
number of ways to associate n times the operator \diamond in A is counted by:

n\sum
n\prime =0

Cn\prime Cn - n\prime = Cn+1.

Now, for each of those shapes we need to label the n+2 variables that appear
in the expression. If we want to avoid counting multiple times expressions
that are equivalent up to relabeling, we can notice that assigning the variables
is equivalent to partitioning the set of n+ 2 positions into nonempty subsets,
and then assign the same symbol to the positions in each subset, and different
symbols to different subsets. The number of ways to partition a set of n+ 2

elements is given by Bn+2.
In conclusion, the formula Cn+1Bn+2 counts the number of equations of

order n, up to relabeling.

This is not yet the final number of equations, because we must avoid
counting symmetric pairs of equations twice. To reach the exact number, we
must first provide a result that will be useful later in the proof.

Lemma 2.2.2 (Burnside’s Lemma). Let G be a finite group acting on a finite
set X and let | X/G| be the number of orbits of the action of G on X. Then
we have

| X/G| = 1

| G|
\sum
g\in G

| Xg| ,

4The Catalan numbers form a sequence of natural numbers that is very useful in combi-
natorics. They can be defined recursively by imposing C0 = 1 and Cn =

\sum n - 1
i=0 CiCn - 1 - i

for n \geq 1. In this context, we use them to count the number of ways to associate n

applications of a binary operation.
5The Bell numbers Bn are defined as the number of partitions of a set of n elements.

16

where Xg is the set of elements of X fixed by g, for every g \in G.

Proof. For the proof of this theorem, the reader is referred to [Rot95], Theorem
3.22.

Lemma 2.2.3. The number of equational laws of order n up to symmetry
and relabeling is\Biggl\{

1
2
Cn+1Bn+2 if n is odd,

1
2
(Cn+1Bn+2 + Cn/2(2Dn+2 - Bn+2)) if n is even,

where Dn is the number of partitions6 of [n] := \{ 1, 2 . . . , n\} up to reflection.

Proof. Let A : \varphi = \psi and A\prime : \psi = \varphi be two equations of order n. In
Lemma 2.2.1, they can be counted only once if, in addition to being the
symmetric of one another, they are also identical up to relabeling, or counted
twice if they are not.

In the case where n is odd, A and A\prime can never be identical up to relabeling,
because \varphi and \psi will certainly have different orders. Therefore, in the formula
Cn+1Bn+2, each equation is counted twice due to its symmetry. To obtain
the number of equations up to symmetry and relabeling, it will be enough to
divide the result by 2.

We now proceed to examine the case where n is even. We can use a similar
strategy of dividing by 2 the number of laws up to relabeling, but before
doing that, we need to artificially add back A\prime whenever it has been removed
from the previous count by being the same as A up to relabeling. So, if we
call X the number of laws A : \varphi = \psi that are the same as A\prime : \psi = \varphi up to
relabeling, the result we are looking for is

1
2
(Cn+1Bn+2 +X). (2.6)

To calculate X, we must determine in how many ways we can construct
an equation A : \varphi = \psi , such that it is identical to its symmetric counterpart

6Dn counts the number of ways to partition a set of n elements up to the reflection
map i \mapsto \rightarrow n+ 1 - i. For example, given n = 3, the partitions \{ \{ 1\} , \{ 2, 3\} \} and \{ \{ 3\} , \{ 2, 1\} \}
are considered the same.

17

A\prime : \psi = \varphi up to relabeling. First, \varphi and \psi must have the same order, that
is, n/2, and the same shape, which we can choose in Cn/2 ways.

Then, we need to assign the variables. To do this, let us callm := (n+2)/2,
L the set of partitions of [2m], \tau : [2m]\rightarrow [2m] the permutation that swaps
the first half and the second half of the elements. With a slight abuse of
notation, we can consider \tau : L \rightarrow L as the map induced by \tau , so that for
every partition \scrP \in L, for every P \in \scrP , there is \tau (P) \in \tau (\scrP) such that
for every i \in [2m] we have i \in P if and only if \tau (i) \in \tau (P). Since \tau is an
involution over L, then \{ id, \tau \} is a group acting on L, and we can apply
Burnside’s Lemma to obtain the following:

| L \setminus \{ id, \tau \} | = 1
2
(| Lid| + | L\tau |). (2.7)

Clearly, all partitions are fixed by the identity, so | Lid| = | L| = Bn+2. More-
over, the number of orbits | L \setminus \{ id, \tau \} | is equal to the number of ways to
partition [2m] up to the permutation \tau , which is Dn+2. Finally, since the
numbers in [2m] correspond to the positions of variables in \varphi and \psi , then
the action of \tau corresponds to swapping \varphi and \psi in A, so the partitions fixed
by \tau are exactly the ones such that A\prime is the same as A up to relabeling, so
exactly the ones we are looking for. Therefore, Eq. (2.7) becomes

Dn+2 =
1
2
(Bn+2 + | L\tau |),

and allows us to conclude that X = Cn/2| L\tau | = Cn/2(2Dn+2 - Bn+2). We
obtain the final result by substituting the value of X just made into Eq. (2.6).

At this point, we only need to apply the final criterion: reflexivity.

Theorem 2.2.4. The number of equational laws of order n up to relabeling,
symmetry, and reflexivity is\left\{

2 if n = 0,
1
2
Cn+1Bn+2 if n is odd,

1
2
(Cn+1Bn+2 + Cn/2(2Dn+2 - Bn+2)) - Cn/2Bn/2+1 if n > 0 is even.

18

Proof. To prove this result, we can use Lemma 2.2.3 and subtract the number
of trivial laws of order n.

A trivial law is of the form A : \varphi = \varphi , therefore, if n is odd, equations of
this type cannot exist. Therefore, the result follows directly from Lemma 2.2.3.

Let us now consider the case where n is even. First, we study the case
n = 0. It is easy to count the possible number of equations of order 0, as
there are only two possibilities: the trivial law x = x or the singleton law
x = y.

For n > 0, we can count the number of trivial laws E : \varphi = \varphi by first
choosing the shape of \varphi , which we can do in Cn/2 ways, and then assigning
its n/2 + 1 variables, which we can do in Bn/2+1 ways.

The set \scrE that we will study contains only equations up to order 4, so
there will be exactly

2 + 5 + 39 + 364 + 4284 = 4694,

which means that it will be necessary to study a total of approximately
22 million implications or refutations. The list of all equations has been
generated and numbered using a Python script7.

2.3 How to minimize the number of proofs

Given the large number of proofs to be addressed, it was necessary to
adopt techniques that would allow for a reduction in their number, in order
to deduce the implication graph by studying the smallest possible number
of implications or refutations. For example, starting from a base of already
proven results, let us see how it is possible to expand the graph by exploiting
the properties of transitivity and duality.

7The script to generate them can be found here: https://github.com/teorth/

equational_theories/blob/main/scripts/generate_eqs_list.py. Instead here
https://github.com/teorth/equational_theories/blob/main/data/equations.txt

a list of all equations.

19

https://github.com/teorth/equational_theories/blob/main/scripts/generate_eqs_list.py
https://github.com/teorth/equational_theories/blob/main/scripts/generate_eqs_list.py
https://github.com/teorth/equational_theories/blob/main/data/equations.txt

As for transitivity, it allows us to automatically prove that:

• A - \rightarrow B and B - \rightarrow C implies A - \rightarrow C;

• A - \rightarrow B and A\nrightarrow C implies B \nrightarrow C;

• B - \rightarrow C and A\nrightarrow C implies A\nrightarrow B.

On the other hand the duality in a magma (M, \diamond), where \diamond is a binary
operation on M , consists of defining another operation, called the dual

operation, which can be obtained through a symmetric transformation of
the structure, maintaining the same properties but in an inverted form. We
now give the formal definition.

Definition 2.3.1 (Dual magma). Given a magma (M, \diamond), we define a new
binary operation \ast :M \times M \rightarrow M as follows:

x \ast y := y \diamond x.

Then, (M, \ast) is the dual magma of (M, \diamond).

With this definition, it is easy to deduce what it means for one equation
to be the dual of another: given, for example, Equation 4 : x = x \diamond y,
its dual is x = y \diamond x, or given the Equation 11 : x = x \diamond (y \diamond y), its dual is
x = (y\diamond y)\diamond x. Therefore, having already proved that 4 - \rightarrow 11, we automatically
have 4\ast - \rightarrow 11\ast .

Despite these properties, there is still a huge number of proofs to be
addressed, which is why proof automation is also employed. Two main types
are used in this context:

• Lean tactics: these produce proofs in Lean and are tightly integrated
with it. Some of the tactics used in the project are aesop [LF23], duper
[Clu+24] and egg [RG24];

• ATP (Automated Theorem Provers): they are independent of Lean,
having existed before it, and come in various types. They are then used
in different ways:

20

– some ATPs are directly implemented in Lean as tactics;

– there are Lean tactics that use external ATPs, then translate their
output into a Lean proof;

– the last approach involves using an external script that employs
an ATP to produce Lean code.

• An important tool used in collaboration with ATPs is Mace48: it
is very useful for finding counterexamples to a given set of axioms
by searching for finite models that satisfy first-order and equational
statements. Mace4 can be a valuable complement to Prover9 (an ATP),
searching for counterexamples before (or simultaneously with) Prover9
searches for a proof. It can also be used to help debug input clauses
and formulas for Prover9. The two tasks can be run in parallel, with
Prover9 looking for a proof and Mace4 searching for a counterexample.

Thanks to these tools, we can greatly reduce the number of proofs, mainly
using them for trivial, repetitive, and uninteresting ones that only result in a
large waste of time.

2.4 Project Organization

The approach adopted by Terence Tao for this project consists of breaking
the central problem into many smaller subproblems, allowing participants to
independently choose which proofs to work on based on their expertise. All
contributions are managed through a central repository on GitHub9, where
the formalized proofs in Lean are uploaded, and a file describing the current
state of the project is updated concurrently.

8see https://www.cs.unm.edu/~mccune/prover9/.
9GitHub is a collaborative development platform based on Git. It allows developers to

store, manage, and share their code, so that multiple people can easily work together on
the same project. The main repository of the project can be found at the following link:
https://github.com/teorth/equational_theories

21

https://www.cs.unm.edu/~mccune/prover9/
https://github.com/teorth/equational_theories

An innovative aspect of the project organization is the method introduced
by Pietro Monticone, which involves maintainers creating GitHub Issues,
which participants can then claim. This system prevents multiple people
from unknowingly working on the same task and also facilitates the overall
management by keeping track of the work completed.

In this context, the day-by-day diary10, continuously updated by Ter-
ence Tao, proves to be particularly useful. He summaries results and Zulip

discussions11 as they occurred, offering a historical perspective on the pro-
gression of the project. The diary serves as a key tool since it enables each
contributor, especially for those who tends to focus solely on their task or do
not follow Zulip (which could be very active), to gain an overview and stay
informed about the developments.

In parallel with other formalization projects, a semi-formal blueprint12

is also developed. The blueprint is a human-readable record of the results
established, which accepts handwritten proofs from contributors without Lean
experience, as well as contributions from automated proofs, whose outputs
are typically in a different format from Lean.

The blueprint is written in a special form of LaTeX that supports some
integration with Lean. In particular, definitions, theorems, and proofs of
theorems can be tagged with additional macros:

• A macro \lean{leanThm} in the statement of a definition or theorem
in the blueprint, will allow the blueprint to connect that definition or
theorem to the corresponding Lean definition or theorem. It is possible
to link a blueprint theorem to multiple Lean theorems;

• The macro \uses{ref1, ref2} in the statement of a definition or theorem,
10The diary can be viewed at the following link: https://github.com/teorth/equati

onal_theories/wiki/Terence-Tao%27s-personal-log#day-67-dec-1.
11Zulip is a conversation platform widely used by the Lean community, designed to

enable people to collaborate efficiently on complex projects. At this link you can find the
Zulip discussions: https://leanprover.zulipchat.com/#narrow/stream/458659-Equ
ational/.

12https://teorth.github.io/equational_theories/blueprint/

22

https://github.com/teorth/equational_theories/wiki/Terence-Tao%27s-personal-log#day-67-dec-1
https://github.com/teorth/equational_theories/wiki/Terence-Tao%27s-personal-log#day-67-dec-1
https://leanprover.zulipchat.com/#narrow/stream/458659-Equational/
https://leanprover.zulipchat.com/#narrow/stream/458659-Equational/
https://teorth.github.io/equational_theories/blueprint/

or a proof of that theorem, will indicate that the relevant statement or
proof uses the results in the blueprint that have the indicated \label

{ref1} and \label{ref2}. These will create edges in the dependency
graph13;

• The macro \leanok in the statement of a definition or theorem indicates
that the statement has been formalized. The macro \leanok in the proof
of a theorem indicates that the proof has been formalized. This will
create various colors in the nodes of the dependency graph.

Contributors are welcome to make suggestions or additions to the blueprint,
but all contributions are subject to continuous integration (CI) checks, which
ensure that the blueprint compiles correctly. Additionally, all contributions
must be approved by the maintainers, who verify their correctness.

Other useful tools for the project are:

• As I mentioned before, the Zulip chat proves to be an invaluable tool
for participant discussions, useful for resolving doubts regarding specific
implications or for delving deeper into topics that have emerged during
the proofs;

• Equational Explorer14 is the primary tool to navigate the implication
graph. All the equations of the project can be viewed, and each one has
a dedicated page: here there are its inbound and outbound implications
and refutations, other members of that equation’s equivalent class, its
dual, and also links to other useful tools, such as Graphiti or Finite
Magma Explorer;

• Graphiti15 allows you to view the implication graph as a diagram,
where the edges going upwards are implications and equivalence classes
are collapsed into a single node, which is distinguished by its rounded

13https://teorth.github.io/equational_theories/blueprint/dep_graph_docum

ent.html
14https://teorth.github.io/equational_theories/implications/
15https://teorth.github.io/equational_theories/graphiti/

23

https://teorth.github.io/equational_theories/blueprint/dep_graph_document.html
https://teorth.github.io/equational_theories/blueprint/dep_graph_document.html
https://teorth.github.io/equational_theories/implications/
https://teorth.github.io/equational_theories/graphiti/

edges. It also gives the option to view only the branches related to
specific equations instead of displaying the entire graph, which can be
really difficult to navigate. For example, below we can see the graph,
generated using Graphiti, of the equations that imply Equation 43

“Commutative Law”.

Figure 2.1: Graph representing the equations that imply the “Commutative
Law”

24

Chapter 3

Useful Techniques and

Mathematical Structures

In this chapter, we focus on the Greedy Algorithm Construction, a
crucial technique widely used in various proofs within the project, including
the refutation of implication 1516 \vdash 255, which will be explored in greater
detail in the following chapters. This algorithm plays a fundamental role in
constructing infinite magmas that satisfy specific equations. Additionally, we
will introduce a mathematical structure that has emerged as a result of these
proofs: Magma cohomology.

In the first part of the chapter, we provide a detailed analysis of the
Greedy Algorithm Construction, including an example to illustrate how it is
applied in the construction of a magma. The second part of the chapter is
dedicated to describing the structure of Magma cohomology and how it is
connected to group cohomology.

3.1 Greedy Algorithm Construction

The Greedy Algorithm Construction is a method particularly useful for
constructing algebraic structures, such as magmas, that satisfy specific equa-
tions. The idea is to work with magma operations that are already partially

25

defined, and then extend them to obtain the entire operation table. This
is an iterative algorithm that consists of making the choice that seems the
best at the moment, hence the term “greedy” (see [Cor+22], Section 15),
without worrying too much about the long-term consequences. Let us explain
in further detail how it functions.

Consider a partially defined magma operation \diamond : S \rightarrow G, on some carrier
set G, with S \subseteq G\times G. This can be interpreted as a relation R(x, y, z), with
x, y, z \in G, that holds if and only if x \diamond y is well-defined, i.e. x, y \in S, and
equal to z. Furthermore, the relation R satisfies the following “vertical line
test”:

if R(x, y, z) and R(x, y, z\prime)\Rightarrow z = z\prime . (VLT)

With an abuse of notation, since R is associated with the operation \diamond , we can
say that R is a partially defined magma operation on S: our goal is to extend
R so that it is defined on the entire G\times G.

Given an expression w(x1, . . . , xn)
1 in variables x1, . . . , xn, we will say

that w(x1, . . . , xn) is well-defined with respect to the partial operation R if it
can be entirely computed by R. For example, we will say that the expression
x \diamond (y \diamond z) is well-defined if there exist u, v \in G such that R(y, z, u) and
R(x, u, v) hold, which means x \diamond (y \diamond z) = u. Notice from VLT that this
evaluation, when it exists, is unique. Instead, w(x1, . . . , xn) is said to be
almost well defined if all the subexpressions of w are well defined. Returning
to the previous example, x \diamond (y \diamond z) is almost well-defined if there exists
u \in G such that R(y, z, u) holds, but there does not exist w \in G such that
R(x, u, w).

Definition 3.1.1. Given an equational law w1(x1, . . . , xn) = w2(x1, . . . , xn),
it is said to be locally obeyed by R if w1 and w2 are well-defined and evaluated
to the same output y.

We now provide some examples to clarify this further.

1It is a notation to indicate an expression with n - 1 applications of the binary operator
\diamond between the variables x1, . . . , xn

26

Example 3.1.2 (Equation 65 “Asterix law”). Given Equation 65, called
“Asterix law”:

x = y \diamond (x \diamond (y \diamond x)\underbrace{} \underbrace{}
z

)

\underbrace{} \underbrace{}
u

, (3.1)

it is said to be locally satisfied by R if the following holds:

if R(y, x, z) and R(x, z, u)\Rightarrow R(y, u, x).

We now provide an example with a more complex expression on both
sides of the equation.

Example 3.1.3. Now let us consider Equation 4673:

(x \diamond y)\underbrace{} \underbrace{}
u

\diamond z = (x \diamond z)\underbrace{} \underbrace{}
v

\diamond y.

In this case, R must be such that:

• if R(x, y, u), R(u, z, w) and R(x, z, v)\Rightarrow R(v, y, w);

• if R(x, z, v), R(v, y, w) and R(x, y, u)\Rightarrow R(u, z, w).

Note that in the case where R is associated with an operation \diamond defined
on the entire magma, then in that case, R satisfies the law w1 = w2 if and
only if the operator \diamond satisfies the same law.

Suppose we have a relation R that satisfies a certain theory \Gamma , that is
a set of universal laws, but is finitely supported, meaning there are only a
finite number of triples (x, y, z) such that R(x, y, z) holds: this implies that
the operator \diamond associated with R is only partially defined on the magma.
Therefore, we can find elements a, b \in G such that a \diamond b is not defined. If the
set G is infinite, then it is possible to find a “fresh value” c that satisfies the
following conditions:

(novel-1) c \not = a, b

(novel-2) if R(x, y, z)\Rightarrow c \not = x, y, z;

27

(undefined) R(a, b, x) does not hold for any x \in G.

Definition 3.1.4 (\Gamma greedily extensible). We say that a theory \Gamma is greedily
extensible if, whenever R is a finitely supported ternary relation obeying \Gamma ,
and a, b, c are constants obeying (novel-1), (novel-2) and (undefined), there
exists an extension R\prime of R such that:

• \forall x, y, z \in G : R(x, y, z)\Rightarrow R\prime (x, y, z);

• R\prime is finitely supported and obeys \Gamma ;

• R\prime (a, b, c) holds.

Therefore, informally, the idea is to extend R with R\prime by defining the
operation \diamond between a and b as a \diamond b := c, ensuring that the axioms of R
continue to be satisfied.

Note that if the theory \Gamma is greedily extensible, every partially defined
ternary relation R that satisfies \Gamma on an infinite set G, by iterating the
procedure just described, can be extended to a globally defined relation that
continues to satisfy \Gamma . Indeed we can choose a pair (a, b) for which a \diamond b is not
yet defined, a “fresh value” c, which satisfies the conditions stated above, to
define as a \diamond b, exploiting the greedily extensible property of \Gamma , and then we
take a direct limit of the sequence of relations thus produced. In this way, we
are able to construct a magma that satisfies a specific theory \Gamma , but does not
satisfy other laws of the form w1(x1, . . . , xn) = w2(x1, . . . , xn), where both
sides are well-defined but do not yield the same output.

However, there are some theories that are not greedily extensible without
making certain modifications: it is often not sufficient to simply take a fresh
value and assign it as the result of the operation \diamond between two elements for
which the operation is not yet defined, but additional checks are required in
our extension. For example, let us consider a theory \Gamma that includes VLT and
“Asterix law” (Eq. (3.1)). Consider a ternary relation R with finite support,
which we want to extend and ensure it is globally defined, while respecting \Gamma

and a, b, c \in G such that (novel-1), (novel-2) and (undefined) hold. At this

28

point, we attempt to construct R\prime , a finite extension of R, that continues to
satisfy \Gamma , as explained previously, by requiring that:

R\prime (x, y, z) \Leftarrow \Rightarrow R(x, y, z) or (x, y, z) = (a, b, c).

However, these conditions are not sufficient: indeed, if there exists a z such
that R(z, a, b), it follows that R\prime (z, a, b). Substituting x = a, y = z into
Eq. (3.1) and knowing that R\prime (a, b, c), it follows that R\prime satisfies Eq. (3.1) if
and only if R\prime (z, c, a). Therefore, we modify the construction of the extension
R\prime by requiring that:

• \forall x, y, z \in G : R(x, y, z)\Rightarrow R\prime (x, y, z);

• R\prime (a, b, c);

• if \exists z : R(z, a, b)\Rightarrow R\prime (z, c, a).

This is still not sufficient. In fact, if R(b, a, b) holds, then from the new
construction we have that R\prime (b, c, a). Therefore, knowing R\prime (a, b, c) and
R\prime (b, c, a), by substituting x = a and y = b into Eq. (3.1), it is necessary
to have R\prime (a, a, b) in order for R\prime to satisfy Eq. (3.1). We need to add an
additional condition for R\prime :

• if R(b, a, b)\Rightarrow R\prime (a, a, b).

At this point, a possible violation of VLT could be checked: if we had R(a, a, z)
for some z \not = b, then from the construction of R\prime we would also have R\prime (a, a, z),
which would violate VLT. Therefore, this time we need to modify the theory
\Gamma , adding an additional requirement:

• if R(y, x, y)\Rightarrow R(x, x, y). (3.2)

Upon checking if there are any further modifications to be made, we notice
that from the new construction of R\prime and the addition of Eq. (3.2) in \Gamma :

- from Eq. (3.2): R(b, a, b)\Rightarrow R(a, a, b);

29

- knowing that if \exists z : R(z, a, b)\Rightarrow R\prime (z, c, a), by setting z = b, we obtain
that R(b, a, b)\Rightarrow R\prime (b, c, a).

Consequently, also from the construction of R\prime :

- as in the previous point, knowing that if \exists z : R(z, a, b)\Rightarrow R\prime (z, c, a), by
setting z = a, we obtain that R(a, a, b)\Rightarrow R\prime (a, c, a).

Since R\prime must satisfy \Gamma , it must also satisfy Eq. (3.2), so:

- R\prime (a, c, a)\Rightarrow R\prime (c, c, a).

Therefore, we construct R\prime in such a way that it satisfies the following
requirements:

• \forall x, y, z \in G : R(x, y, z)\Rightarrow R\prime (x, y, z);

• R\prime (a, b, c);

• if \exists z : R(z, a, b)\Rightarrow R\prime (z, c, a);

• if R(b, a, b)\Rightarrow R\prime (b, c, a), R\prime (a, c, a), R\prime (c, c, a).

Finally, it can be proven, for example, with the help of automated theorem
provers, that if R is finitely supported and satisfies \Gamma , which includes VLT,
Eq. (3.1), and Eq. (3.2), and a, b, c satisfy (novel-1), (novel-2) and (undefined),
then the R\prime just constructed is finitely supported and satisfies \Gamma . This shows
that \Gamma , with some modification, is greedily extensible.

In the next subsection, we will provide an informal idea of how to visualize
the expansion of a magma using the greedy construction, while in the next
chapter, we will use this algorithm to prove 1516 \nvdash 255, also analyzing the
formalization in Lean.

3.1.1 An example of a Greedy construction

We aim to construct a solution for Equation 1648:

30

x = (x \diamond y) \diamond ((x \diamond y) \diamond y).

We define a partial solution as a partial function \diamond : E - \rightarrow N, where
E \subset N\times N is a finite subset (which we can also think of as a ternary relation
R with finite support), such that:

i) if x \diamond y = z and z \diamond y = w, then z \diamond w = x;

ii) if z \diamond x = y, w \diamond x = y, then z = w.

That is, in point i), we required that the operation \diamond locally obeys Equation
1648, according to Definition 3.1.1, while in point ii) we require that \diamond be
left-injective. We aim to extend this solution so that it is globally defined
on N\times N while continuing to satisfy conditions i) and ii). To illustrate this,
we demonstrate how the greedy algorithm construction works in this case,
showing how the operation \diamond is gradually extended. We begin with a partial
finite model defined in Table 3.1.

\diamond 1 2 3

1 2 3 3

2

3

Table 3.1: operation \diamond

The operation \diamond provides a partial solution to Equation 1648, satisfying
both conditions i) and ii). We now seek three elements a, b, and c that satisfy
(novel-1), (novel-2), and (undefined) to define a \diamond b := c. By choosing c = 4,
a = 2, and b = 1, we extend \diamond to define 2 \diamond 1 := 4.

Next, we verify that \diamond remains a partial solution, particularly ensuring
it continues to satisfy condition i). We proceed by defining new operations
involving the “fresh value” c, with c appearing in the conclusion of i), while
only previously defined operations appear in the hypotheses. By setting
w = 4, we modify i) as follows:

31

x \diamond y = z, z \diamond y = 4\Rightarrow z \diamond 4 = x. (3.3)

Taking z = 2 and y = 1 (since 2\diamond 1 = 4), we now look for x such that x\diamond 1 = 2.
Referring to Table 3.1, we see that 1 \diamond 1 = 2, so x = 1. Substituting this into
Eq. (3.3), we obtain:

1 \diamond 1 = 2, 2 \diamond 1 = 4\Rightarrow 2 \diamond 4 = 1. (3.4)

Thus, to ensure \diamond respects i), we must define 2 \diamond 4 := 1. The expansion of the
model is shown in Table 3.2. We continue by defining additional fresh values.

\diamond 1 2 3 4

1 2 3 3

2 4 1

3

4

Table 3.2: First \diamond extension

First, we choose c = 5 and define 2 \diamond 2 := 5, and then c = 6 with 3 \diamond 1 := 6.
However, in these cases, we are unable to use condition i) to define other
operations involving 5 and 6. Next, we explore the case where c = 7, and
extend \diamond by defining 1 \diamond 4 := 7. To maintain consistency with i), we proceed
as follows:

• We choose parameters such that only previously defined operations
appear in the hypotheses, and the new value 7 appears in the conclusion.
Taking w = 7, z = 1, and y = 4, we modify i) as:

x \diamond 4 = 1, 1 \diamond 4 = 7\Rightarrow 1 \diamond 7 = x. (3.5)

• Since 2 \diamond 4 = 1 is already defined, we choose x = 2. From Eq. (3.5), we
then define 1 \diamond 7 := 2 to ensure \diamond remains a partial solution.

After several extensions, the operation \diamond is globally defined as follows:

32

\diamond 1 2 3 4 5 6 7

1 2 3 3 7 2

2 4 5 1

3 6

4

5

6

7

Table 3.3:

By iterating this process, the operation \diamond can gradually be defined globally
on N\times N, such that it satisfies Equation 1648.

3.2 Linear Magmas

Before proceeding, it is necessary to introduce linear magmas, which serve
as a valuable resource for counterexamples and will be extensively used in
the subsequent discussion.

Definition 3.2.1 (Linear Magma). We say that \scrM = (M, \diamond) is a linear
magma if the carrier M is a ring (M,+) (which may be commutative or non-
commutative, finite or infinite), and the operation \diamond is given by x\diamond y := ax+by,
where a, b \in End(M).

Let us now take an abelian group M = (M,+), on which we define a
magma linear operation as follows:

s \diamond t := as+ bt, a, b \in End(M).

We want to choose a, b such that \diamond satisfies Equation E : wE,1(x1, . . . , xn) =

wE,2(x1, . . . , xn). Notice that in the magmaM , every expression w(x1, . . . , xn)
is of the form:

w(x1, . . . , xn) =
n\sum
i=1

Pw,i(a, b)xi,

33

where Pw,i(a, b) are non-commutative polynomials with natural coefficients
in the variables a and b. Let us now see some examples to understand better:

s \diamond s = (a+ b)s

t \diamond (s \diamond s) = at+ b(s \diamond s) = at+ (ba+ b2)s

(t \diamond (s \diamond s)) \diamond t = a2t+ (aba+ b2a)s+ bt = (a2 + b)t+ (aba+ b2a)s.

Therefore, Equation E will be of the form:

n\sum
i=1

PwE,1,i(a, b)xi =
n\sum
i=1

PwE,2,i(a, b)xi,

so M obeys E if:

PwE,1,i(a, b) = PwE,2,i(a, b), for i = 1, . . . , n. (3.6)

For example, given Equation 1110

x = y \diamond ((y \diamond (x \diamond x)) \diamond y),

we develop the right-hand side according to the definition of \diamond on M and
obtain

x = (baba+ bab2)x+ (ba2 + b2 + a)y,

from which it follows that M satisfies this law if and only if:\left\{ baba+ bab2 = 1,

ba2 + b2 + a = 0.
(3.7)

Example 3.2.2 (Commutative counterexample). Linear magmas, on various
fields, are primarily used to establish counterexamples. So given Equation
1286:

x = y \diamond (((x \diamond y) \diamond x) \diamond y), (3.8)

and Equation 3 (“Idempotent law”):

x = x \diamond x, (3.9)

34

we want to prove that 1286 \nvdash 3 by constructing a commutative counterexample
using linear magmas. We must therefore choose a, b in a ring M such that
Eq. (3.8) holds but Eq. (3.9) does not, i.e., a and b must obey the following
conditions: \left\{ a+ ba3 + bab = 1,

a+ ba2b+ b2 = 0.
(3.10)

and
a+ b \not = 1. (3.11)

Thus, we choose M := Z/pZ with p = 11, setting a := 1 and b := 7. In
this way, we have defined a commutative counterexample\scrM = (M, \diamond), where
x \diamond y := 1x+ 7y, with M = Z/11Z.

3.3 Magma Cohomology

Magma cohomology is a variant of group cohomology (or rather, it can
be thought of as a generalization of it) that was discovered while working on
some proofs for the project, and later explored in more detail. More precisely,
a new “magma extension” strategy was discovered, which allowed for the
resolution of many finite implications. This strategy involves extending a
magma G by taking the set G\times M , whereM is a ring or an abelian group, and
defining an operation (x, s) \diamond (y, t) := (x \diamond y, as+ bt+ f(x, y)), where a, b are
coefficients of some linear magma model s\diamond t = as+bt, and f :M\times M \rightarrow G is
a “cocycle” that satisfies a certain “cocycle type equation” (we will explain it in
detail later on). We now aim to analyze this construction to understand why
it is referred to as cohomology. We begin by briefly reviewing the concept of
group cohomology and explore how it can be extended to the case of magmas.

Let G be an abelian group and M be a G-module. Define the set
Cn(G,M) := HomSet(G

n,M), i.e. the set of functions f : Gn \rightarrow M .

Remark 3.3.1. Let e be the identity element of the abelian group G, and
G0 = \{ e\} . Therefore, we have:

C0(G,M) = Hom(\{ e\} ,M) \simeq M.

35

For all n, define the map dn : Cn(G,M)\rightarrow Cn+1(G,M) as follows:

dn\varphi (g1, . . . , gn+1) := g1\varphi (g2, . . . , gn+1) +
n\sum
i=1

(- 1)i\varphi (g1, . . . , gigi+1, . . . , gn+1)

+ (- 1)n+1\varphi (g1, . . . , gn).

It is easy to see that dn+1 \circ dn = 0 for all n, so we have the complex:

0\rightarrow C0(G,M)
d0 - \rightarrow C1(G,M)

d1 - \rightarrow C2(G,M)
d2 - \rightarrow C3(G,M)\rightarrow . . .

and the cohomology group is defined as Hn(G,M) := \mathrm{k}\mathrm{e}\mathrm{r} dn

Im(dn - 1)
. For further

details, the reader is referred to [Bro12].
Let us see how this construction can be generalized in the case of magmas.

Let G be a magma and M a linear magma, we now consider the extensions
of G through M , i.e. the magmas with values in the set G \times M , with an
operation \diamond defined as follows:

(x, s) \diamond (y, t) := (x \diamond y, as+ bt+ f(x, y)), (3.12)

where f : G\times G - \rightarrow M . It can be proven inductively that every expression
w((x1, s1), . . . , (xn, sn)) is of the form:

w((x1, s1), . . . ,(xn, sn)) =
\Bigl(
w(x1, . . . , xn),

n\sum
i=1

Pw,i(a, b)xi

+
\sum

w1\diamond w2\leq w

Qw,w1\diamond w2(a, b)f
\bigl(
w1(x1, . . . , xn), w2(x1, . . . , xn)

\bigr) \Bigr)
,

where Qw,w1\diamond w2(a, b) is a non-commutative monomial in variables a, b. Con-
sider now Equation E:

wE,1((x1, s1), . . . , (xn, sn)) = wE,2((x1, s1), . . . , (xn, sn)),

where both sides are expanded as shown above. Suppose that G and M obey
E, so the condition Eq. (3.6) holds. Then, the operation \diamond on G\times M obeys
E if and only if:\sum

w1\diamond w2\leq wE,1

QwE,1,w1\diamond w2(a, b)f(w1(x1, . . . , xn), w2(x1, . . . , xn))

=
\sum

w1\diamond w2\leq wE,2

QwE,2,w1\diamond w2(a, b)f(w1(x1, . . . , xn), w2(x1, . . . , xn)).
(3.13)

36

For example, let us examine the conditions under which this extension obeys
Equation 1110:

(x, s) = (y, t) \diamond (((y, t) \diamond ((x, s) \diamond (x, s))) \diamond (y, t)). (3.14)

We now proceed with the calculations on the right-hand side:

(y, t) \diamond (((y, t) \diamond ((x, s) \diamond (x, s))) \diamond (y, t)) = (y \diamond ((y \diamond (x \diamond x)) \diamond y),

(baba+ bab2)s+ (ba2 + b2 + a)t+ babf(x, x) + baf(y, x \diamond x)

+ bf(y \diamond (x \diamond x), y) + f(y, (y \diamond (x \diamond x)) \diamond y).

(3.15)

By substituting Eq. (3.7) (since we are assuming that before the extension, M
obeys 1110) and Eq. (3.15) into Eq. (3.14), and knowing that G obeys 1110
(therefore we have that x = y \diamond ((y \diamond (x \diamond x)) \diamond y)), we obtain:

(x, s) = (x, s+babf(x, x)+baf(y, x\diamond x)+bf(y\diamond (x\diamond x), y)+f(y, (y\diamond (x\diamond x))\diamond y)).

Therefore, Equation 1110 is obeyed if and only if the condition Eq. (3.13)
holds, which in this case is equivalent to:

babf(x, x) + baf(y, x \diamond x) + bf(y \diamond (x \diamond x), y) + f(y, (y \diamond (x \diamond x)) \diamond y) = 0,

for all x, y \in G.

Definition 3.3.2 (E-cocycle). Given an Equation E : wE,1((x1, s1), . . .

. . . , (xn, sn)) = wE,2((x1, s1), . . . , (xn, sn)), we say that f : G\times G - \rightarrow M is a
E-cocycle if Eq. (3.13) holds, and we denote with Z2

E(G,M) the space of such
E-cocycles.

Remark 3.3.3. Z2
E(G,M) is an abelian group, and each E-cocycle defines a

magma on G\times M obeying E.

Remark 3.3.4. If f = 0, the defined magma is precisely the direct product of
G and M.

Given a function g : G\rightarrow M , we define the bijection \varphi : G\times M \rightarrow G\times M
by (x, s) \mapsto \rightarrow (x, s+ g(x)), which conjugates Eq. (3.12) with the following law:

(x, s) \diamond (y, t) = (x \diamond y, as+ bt+ f(x, y) + g(x \diamond y) - ag(x) - bg(y)). (3.16)

37

Lemma 3.3.5. Eq. (3.12) and Eq. (3.16) are conjugate.

Proof. We define the maps \psi , \~\psi : (G\times M)\times (G\times M) - \rightarrow G\times M by:

\psi ((x, s), (y, t)) := (x \diamond y, as+ bt+ f(x, y)),

\~\psi ((x, s), (y, t)) := (x \diamond y, as+ bt+ f(x, y) + g(x \diamond y) - ag(x) - bg(y)),

which correspond to Eq. (3.12) and Eq. (3.16), respectively. We want to prove
that the following diagram

(G\times M)\times (G\times M) G\times M

(G\times M)\times (G\times M) G\times M

\~\psi

\varphi - 1

\psi

\varphi

commutes, where \varphi - 1((x, s), (y, t)) = ((x, s - g(x)), (y, t - g(y)). Then we
apply \psi and we have that:

\psi ((x, s - g(x)), (y, t - g(y)) = (x \diamond y, as - ag(x) + bt - bg(y) + f(x, y)).

Only applying \varphi remains, and we obtain (x \diamond y, as+ bt+ f(x, y) + g(x \diamond y) -
ag(x) - bg(y)), that is equal to \~\psi ((x, s), (y, t)). Therefore, we have shown
that

\~\psi = \varphi - 1 \circ \psi \circ \varphi .

Since they are conjugate, the new operation satisfies E if and only if the
original operation does.

Definition 3.3.6. We call a function f : G\times G - \rightarrow M a coboundary if it is of
the form f(x, y) = g(x \diamond y) - ag(x) - bg(y), for some g : G - \rightarrow M . We denote
with B2(G,M) the space of coboundaries.

Remark 3.3.7. We can add a coboundary to an E-cocycle and still obtain an
E-cocycle.

Remark 3.3.8. B2(G,M) is a subgroup of Z2
E(G,M).

38

Finally, we can define the E-cohomology H2
E(G,M) as:

H2
E(G,M) :=

Z2
E(G,M)

B2(G,M)
.

Lemma 3.3.9. If E \vdash E \prime , then H2
E(G,M) \subseteq H2

E\prime (G,M).

Proof. We just have to prove that if f is an E-cocycle, is also an E \prime -cocycle.
But being f an E-cocycle, this means that E holds, so thanks to the hypotesis
also E \prime holds. But E \prime holds if and only if f is an E \prime -cocycle.

A very useful application of this theory is that, to prove that E \nvdash E \prime , it is
sufficient to find a magma G and a linear magma M , which satisfy both E
and E \prime , such that:

H2
E(G,M) \not \subseteq H2

E\prime (G,M).

This leads to a computational approach to refutations, as these groups can
be computed by linear algebra.

Remark 3.3.10. The E-cohomology group just defined can also be viewed in
terms of a partial chain complex

0\rightarrow C0(G,M)
d0 - \rightarrow C1(G,M)

d1 - \rightarrow C2(G,M)
d2E - \rightarrow Cn(G,M),

where d0 : C0(G,M) - \rightarrow C1(G,M) is the zero map, the first coboundary map
d1 : C1(G,M) - \rightarrow C2(G,M), which does not depend on Equation E, is defined
as:

d1f(x, y) := f(x \diamond y) - (f(x) \diamond f(y)) = f(x \diamond y) - af(x) - bf(y), (3.17)

and the second map d2E : C2(G,M)
d2E - \rightarrow Cn(G,M), which instead depends on

Equation E, is defined as:

d2Ef(x1, . . . , xn) :=
\sum

w1\diamond w2\leq wE,1

QwE,1,w1\diamond w2(a, b)f(w1(x1, . . . , xn), w2(x1, . . . , xn))

 -
\sum

w1\diamond w2\leq wE,2

QwE,2,w1\diamond w2(a, b)f(w1(x1, . . . , xn), w2(x1, . . . , xn)),

(3.18)

39

where f \in C2(G,M), and (x1, . . . , xn) \in Gn. Obviously, from the definition of
d0, we have d1 \circ d0 = 0, while from the fact that the coboundary maps, which
exactly correspond to Im d1, are also E-cocycles, we obtain that: d2E \circ d1 = 0.
Therefore, observing that \mathrm{k}\mathrm{e}\mathrm{r} d2E corresponds to the space Z2

E(G,M) of E-
cocycles, we have that the E-cohomology group H2

E(G,M) is equal to \mathrm{k}\mathrm{e}\mathrm{r} d2E
Im d1

,
that is the second cohomology group of the complex.

40

Chapter 4

Exploring Equations

In this chapter, we analyze the most significant equations of the project,
including those on which I have focused the most. Specifically, after briefly
introducing the commutative and associative laws, we examine Equation
677, where the concepts of linear magma and free magma emerge. The
non-implication 677 \nvdash 255, for linear magmas, remains the only one that is
conjectured but not yet proven. Finally, we prove that 1516 \nvdash 255, by con-
structing a counterexample using the greedy algorithm construction technique
introduced in the previous chapter. We will also discuss the formalization
work of this non-implication that we have undertaken.

4.1 Commutative and Associative law

The commutative law : x \diamond y = y \diamond x and the associative law : x \diamond (y \diamond z) =
(x \diamond y) \diamond z are considered fundamental equations in the study of algebraic
structures, and they are probably the most important among all the equations
in the project. They are not equivalent to any other equation in the project,
and below we can visualize which equations are implied by them.

41

Figure 4.1: Commutative law

Figure 4.2: Associative law

4.2 Equation 677

Equation 677 is still being studied by many mathematicians working on the
project. In fact, the only non-implication that still lacks a proof, either formal
or informal, is 677 \nvdash 255 in the case of finite magmas. For general magmas,
an infinite counterexample has been found, and it has been conjectured that
677 does not imply 255 also for finite magmas, but no finite counterexample

42

has been found yet. Automatic tools, such as Mace4, Prover9, and Magma1,
are being used to generate finite magmas with different characteristics and
sizes that satisfy 677 but not 255, but for now none has succeeded.

First, we present Equation 677:

x = y \diamond (x \diamond ((y \diamond x) \diamond y)), (4.1)

and Equation 255:

x = ((x \diamond x) \diamond x) \diamond x. (4.2)

Using the notation Lyx := y \diamond x, Ryx := x \diamond y, Sx := x \diamond x, we can rewrite
677 as:

x = LyLxLLyxy = Ly(x \diamond RyLyx), (4.3)

and 255 as:

x = (Sx \diamond x) \diamond x. (4.4)

Now we provide and prove some basic properties of 677 magmas.

Lemma 4.2.1. Let M be a finite 677 magma. Then:

i) the left multiplication operators Ly : M - \rightarrow M are all invertible, and
L - 1
y x = x \diamond RyLyx;

ii) If x, y \in M and y \diamond x = x, then y = Sx \diamond x. In particular, Equation 255

holds if and only if y \diamond x = x is solvable for every x;

iii) for all x, y \in M , we have x = Lyx \diamond RyL
2
yx.

Proof. We can easily see from Eq. (4.3) that Ly is surjective, and thus injective
because we are working with finite magmas, meaning that Ly is invertible.

1Magma is a Computer Algebra system designed to solve problems in algebra, number
theory, geometry and combinatorics that may involve sophisticated mathematics and
which are computationally hard. A key feature is the ability to construct canonical
representations of structures, thereby making possible such operations as membership
testing, the determination of structural properties and isomorphism testing. We provide
the following link for further information: https://magma.maths.usyd.edu.au/magma/.

43

https://magma.maths.usyd.edu.au/magma/

Furthermore, from Eq. (4.3) we have that L - 1
y x = x \diamond RyLyx. For ii), we have

that Lyx = x. Therefore, i) becomes x = x \diamond Ryx = LxLxy, and using the
fact that Lx is invertible from i), we obtain:

y = L - 1
x L - 1

x x
i)
= L - 1

x (x \diamond RxLxx) = L - 1
x (LxRxLxx) = RxLxx = Sx \diamond x.

For iii), we use i) by substituting x with Lyx.

Now we provide some characterizations of 255, which will be useful later
on.

Lemma 4.2.2. Let M be a finite 677 magma, and let x \in M . Then the
following statements are equivalent:

i) Rx(Sx \diamond x) = x;

ii) Rxy = x has the unique solution y = Sx \diamond x;

iii) Rxy = x has a solution;

iv) RxLxz = x has a solution;

v) LxRxz = z has a solution;

vi) RxLxy = y has a solution;

vii) LxSy = y has a solution.

Proof. ii) - \rightarrow i): the proof is straightforward.

i) - \rightarrow iii): From i), we know that 255 holds. Therefore, from ii) in
Lemma 4.2.1, it follows that \forall x,\exists y : y \diamond x = x, which is equivalent to
iii).

iii) - \rightarrow ii): This result is exactly Item (ii).

iii) \updownarrow iv): the proof follows immediately by exploiting the surjectivity of
Lx.

44

v) - \rightarrow vi): from v), \exists z : LxRxz = z, and since Lx is invertible, \exists y : z = Lxy.
Thus, exploiting again the invertibility of Lx, we have that:

LxRxz = z \Leftarrow \Rightarrow Rxz\underbrace{} \underbrace{}
RxLxy

= L - 1
x z\underbrace{} \underbrace{}
y

\Leftarrow \Rightarrow RxLxy = y,

from which we obtain vi).

vi) - \rightarrow v): we repeat the same reasoning as above, proceeding backwards.

vii) - \rightarrow vi): knowing that Sy = Lyy, we can rewrite vii) as LxLyy = y.
Moreover, we know that:

y
(677)
= LxLyLLxyx = LxLy (Lxy \diamond x)\underbrace{} \underbrace{}

RxLxy

= LxLyRxLxy.

Thus, we have:

LxLyy = y = LxLyRxLxy,

and by exploiting left-injectivity, we obtain vi).

vi) - \rightarrow vii): we repeat the same reasoning as above, proceeding backwards.

iv) \updownarrow v): the proof is similar to the one carried out above.

This characterization will be useful to prove that linear 677 magmas
cannot be used as counterexamples to refute the implication 677 \nvdash 255, since
the following lemma holds.

Lemma 4.2.3. Let M be a finite magma obeying 677, which is linear in
the sense that M is an abelian group and x \diamond y = \alpha x + \beta y + c, for some
endomorphisms \alpha , \beta : M - \rightarrow M and a constant c. Then M obeys Equation
255.

Proof. From ii) of Lemma 4.2.1, it is sufficient to prove that y \diamond x = x is
solvable for every x, so it is enough to prove that Rx is surjective. However,
in the case of finite magmas, it is equivalent to prove that Rx is injective.

45

Suppose that Rxy = Rxy
\prime , which is equivalent to Lyx = Ly\prime x. Thus, using

the definition of \diamond on M , we have:

y \diamond x = y\prime \diamond x \Leftarrow \Rightarrow \alpha y + \beta x+ c = \alpha y\prime + \beta x+ c \Leftarrow \Rightarrow \alpha y = \alpha y\prime ,

from which we deduce that Ly = Ly\prime . Therefore, applying Eq. (4.3), we get:

LyLxLLyxy = x = Ly\prime LxLLy\prime x
y\prime

Ly=Ly\prime
= LyLxLLyxy

\prime ,

and by exploiting the injectivity of Ly, Lx, and LLyx, we obtain that y = y\prime .

Another technique often used to construct magmas is to start from a
magma that satisfies both equations and extend it linearly, hoping that the
new magma continues to satisfy the first equation but no longer satisfies the
second. However, this approach also has no hope of yielding a counterexample
for 677 \vdash 255, as the following lemma demonstrates.

Lemma 4.2.4. Let us consider a 677 magma with carrier G\times M , where G
is a magma obeying 677 and 255, M is an abelian group, and the operation \diamond
on G\times M is defined by:

(x, s) \diamond (y, t) := (x \diamond y, \alpha x,ys+ \beta x,yt+ cx,y),

for some endomorphisms \alpha x,y, \beta x,y :M - \rightarrow M and costants cx,y. Then G\times M
obeys 255.

Proof. From Lemma 4.2.1, it is sufficient to prove that for every (y, t) \in G\times M ,
the equation (x, s) \diamond (y, t) = (y, t) is solvable. From the definition of \diamond , we
have that (x, s) \diamond (y, t) := (x \diamond y, \alpha x,ys+ \beta x,yt+ cx,y), so we need to prove that
there exists (x, s) such that:

(x \diamond y, \alpha x,ys+ \beta x,yt+ cx,y) = (y, t).

Knowing that G obeys 255, we have that there exists x such that x \diamond y =

y. Now, we only need to prove that the map s \mapsto \rightarrow \alpha x,ys + \beta x,yt + cx,y is
surjective. In the case of finite magmas, this is equivalent to proving that it

46

is injective. Suppose, for the sake of contradiction, that given s \not = s\prime , we have
\alpha x,ys+\beta x,yt+ cx,y = \alpha x,ys

\prime +\beta x,yt+ cx,y, that is, \alpha x,ys = \alpha x,ys
\prime . Consequently,

we have:
L(x,s)(y, t

\prime) = L(x,s\prime)(y, t
\prime), \forall t\prime \in M. (4.5)

Since G obeys 255 and 677, it follows that:

x \diamond y = y
4.1
= x \diamond (y \diamond ((x \diamond y) \diamond x)),

From left-invertibility, we obtain y = y \diamond ((x\diamond y)\diamond x), so L(y,t)LL(x,s)(y,t)(x, s) =

(y, t) \diamond ((x, s) \diamond (y, t) \diamond (x, s)) will be of the form (y, t\prime) for some t\prime . Knowing
that G\times M obeys 677, we have:

L(x,s)L(y,t)LL(x,s)(y,t)(x, s) = (y, t) = L(x,s\prime)L(y,t)LL(x,s\prime)(y,t)
(x, s\prime)

4.5
=

L(x,s)L(y,t)LL(x,s)(y,t)(x, s
\prime),

and using left-invertibility again, we obtain s = s\prime , which is a contradiction.

4.2.1 A finite non-right-cancellative example

Now, we provide an example of how to construct 677 magmas, specifically
non-right-cancellative magmas. This does not directly bring us any closer to
refuting 677 \vdash 255, but it may offer some broader intuition as to what 677
finite magmas might look like.

Let us start from a 677 magma G and a set M . We want to extend
the magma structure from G to G\times M , ensuring it continues to obey 677.
Therefore, for each pair x, y, we define a binary operation \diamond x,y :M \times M \rightarrow M

such that:
s = t \diamond y,L - 1

y x

\bigl(
s \diamond x,(y\diamond x)\diamond y ((t \diamond y,x s) \diamond y\diamond x,y t)

\bigr)
. (4.6)

Consequently, we define the operation \diamond on G\times M as:

(x, s) \diamond (y, t) := (x \diamond y, t \diamond x,y s).

It can be easily seen, using Eq. (4.6), that it satisfies 677. Moreover, \diamond : (G\times
M) \times (G \times M) \rightarrow (G \times M) is right-injective if the operation \diamond defined on

47

G and \diamond x,y for all x, y \in M are both right-injective. Let M be a field that
admits a primitive cube root of unity \omega as well as a primitive fifth root of
unity \zeta (for example, M could be a field of order 16), we define the following
operations:

• s \diamond 0 t := s - \zeta (t - s);

• s \diamond + t := t;

• s \diamond - t := s - \omega (t - s).

It can be easily seen that for all t, s \in M , the following identities hold:

i) s = t \diamond 0 (s \diamond 0 ((t \diamond 0 s) \diamond 0 t));

ii) s = t \diamond + (s \diamond + ((t \diamond - s) \diamond - t));

iii) s = t \diamond - (s \diamond - ((t \diamond + s) \diamond + t)).

Now suppose that G is also a field with a primitive fifth root of unity \beta , but
 - 1 and \beta - 1 are non-zero quadratic non-residues2 (for example, one can
think of G as a field of order 31, with \beta = 2). Defining the operation \diamond on G
as x \diamond y = x - \beta (y - x), and \diamond x,y as:

\diamond x,y =

\left\{
\diamond 0 if x = y,

\diamond + if y - x is a non-zero quadratic residue,

\diamond - if y - x is a non-zero quadratic non-residue,

it can be shown that Eq. (4.6) holds, and thus the extension G\times M , with \diamond
defined as above, obeys 677. Furthermore, it can be easily seen that \diamond + is
not right-cancellative, so this tells us that we have constructed a finite 677

magma that is not right-cancellative.

2We say that x is a quadratic residue if x4 = x.

48

4.2.2 Free 677 Magma

In this subsection, we aim to construct the free 677 magma \scrM X,677

generated by a set of generators X. First, we consider MX as the free magma
generated by a set X through the pairing of its elements x, y \mapsto \rightarrow (x, y). The
elements of MX can be thought of as finite trees with leaves in X. Let us now
introduce some notation. Let w = (x, y) \in MX , where we denote by wL and
wR the left and right components, meaning in this case wL = x and wR = y.
Iteratively, we can define wLL, wRR, . . . , for instance, if w = ((x, y), z), we
have wLL = x, wLR = y, and wR = z. Additionally, we define a partial order
relation < on MX , where w < w\prime if w is a subtree of w\prime , that is, if either
w \leq w\prime

L or w \leq w\prime
R holds. At this point, we define an operation \diamond on MX

recursively.

Definition 4.2.5. Let x, y \in MX . If x < y = (yL, (x \diamond yL) \diamond x), then define
x \diamond y := yL. Otherwise, define x \diamond y := (x, y).

Remark 4.2.6. Note that to define x \diamond y recursively, it is sufficient to know
how to calculate x\prime \diamond y\prime , where y\prime < y. Moreover, since, as all the elements
of MX are finite trees, there are no infinite descending chains in the partial
order <. Therefore, the operation \diamond is well-defined.

Lemma 4.2.7 (Properties of operation). Let x, y \in MX such that x \diamond y = z.
Then, one of the following statements holds:

i) x, z < y = (z, (x \diamond z) \diamond x);

ii) x, y < z = (x, y).

Proof. According to Definition 4.2.5, there are two possibilities to define x \diamond y:

• If x < y = (yL, (x \diamond yL) \diamond x), then x \diamond y = yL, so z = yL. This implies
that y has the form (z, (x \diamond z) \diamond x), and consequently x, z < y, thus i)
holds.

• Otherwise, x \diamond y = (x, y), so z = (x, y) and obviously ii) holds.

49

The goal is to prove that the operation \diamond just defined on MX obeys 677; in
particular, it guarantees that if x \diamond y falls into the first case of the definition,
then y is of the form y = (yL, (x \diamond yL) \diamond x) = yL \diamond ((x \diamond y) \diamond x).

Lemma 4.2.8 (Additional property). Let x, y \in MX , then:

x \diamond ((y \diamond x) \diamond y) = (x, (y \diamond x) \diamond y).

Proof. First, let us define new variables z := y \diamond x, u := z \diamond y and v := x \diamond u.
We want to prove that v = (x, u). From Lemma 4.2.7, we know that y is
(strictly) upper bounded by x or z, z by u or y, and x by u or v. Among
all these elements, in light of what has been just stated, the only elements
that can be maximal are u and v: if v were maximal, then it would imply
that, since v = x \diamond u, from Lemma 4.2.7 we have x, u < v (if this were not the
case, we would have x, v < u, but this is impossible because v is maximal),
therefore v = (x, u), thus concluding the proof. It is sufficient to prove that u
is not maximal. Suppose, for the sake of contradiction, that it is maximal.
Then, using Lemma 4.2.7, we have the following:

• z, y < u, so u = (z, y);

• x, v < u, hence u has the form (uL, (x \diamond uL) \diamond x). From the previous
part, we know that u = (z, y), hence uL = z and y = (x \diamond z) \diamond x.

From Lemma 4.2.7, x is upper bounded by x \diamond z or z. Therefore x \diamond z, being
y = (x \diamond z) \diamond x, is upper bounded by x or y. Remembering that y is upper
bounded by either z or x, among x, y, z, and x \diamond z, the only maximal element
can be z. In particular, z is not bounded by x or y, so z = (y, x). We now
focus on x \diamond z. We know that z is not upper bounded by x or x \diamond z, so from
Lemma 4.2.7 this means that x, x \diamond z < z. Therefore, x \diamond z = zL. Since
z = (y, x), we have:

y = zL = x \diamond z. (4.7)

In conclusion, from the earlier result, we know that y = (x\diamond z)\diamond x. Substituting
Eq. (4.7) and by the definition of z, we get:

y = y \diamond x = z,

50

which leads to a contradiction, as y cannot be maximal.

Corollary 4.2.9. The operation \diamond obeys Eq. (4.1).

Proof. Using the results obtained so far, we know that it suffices to prove that
y < (x, (y \diamond x)\diamond y). Indeed, from Lemma 4.2.8, we know that x\diamond ((y \diamond x)\diamond y) =
(x, (y \diamond x) \diamond y), so Eq. (4.1) is equivalent to:

x = y \diamond (x, (y \diamond x) \diamond y). (4.8)

At this point, if y < (x, (y \diamond x) \diamond y) holds, from the definition of \diamond , we obtain
y \diamond (x, (y \diamond x) \diamond y) = x, and thus Eq. (4.8) is satisfied. Therefore, we simply
need to prove that y < (x, (y \diamond x) \diamond y).

Let us define z, u, and v as in the previous proof. We need to show that
y < v. From Lemma 4.2.8, we know that v = (x, u), so trivially, x < v. Since
z := y \diamond x, from Lemma 4.2.7, y is upper bounded by either x or z:

• If it is upper bounded by x, we know that x < v, so y < v;

• If it is upper bounded by z, we can reason as follows. z is upper bounded
by either y or u: however, we exclude y because we already know that
y < z, so we cannot have z < y. Therefore, we have y < z < u < v,
hence y < v.

Before proceeding to the last theorem, it is necessary to provide the
definition of a free magma for an equational law and an alphabet X.

Definition 4.2.10. Given a set X and an Equation E, the free magma for
E generated by the alphabet X is a magma\scrM X,E obeying E, together with
a map iX,E : X - \rightarrow \scrM X,E that satisfies the following universal property: for
every magma \scrM that obeys E, and for every function f : X - \rightarrow \scrM , there
exists a unique homomorphism \varphi f,E :\scrM X,E - \rightarrow \scrM such that \varphi f,E \circ iX,E = f.

Now, let us prove a result that will be fundamental for the last corollary.
This lemma determines the carrier of the free magma for 677, which will be a
subset of MX . In fact, (MX , \diamond) is already a 677 magma, however it is not the
free magma for 677 generated by X; the reason is that it cannot guarantee
the uniqueness of the homomorphisms \varphi f,677.

51

Lemma 4.2.11. \exists \~M \subseteq MX such that:

i) X \subseteq \~M ;

ii) \diamond : \~M \times \~M - \rightarrow \~M ;

iii) \forall x \in \~M \setminus X, x = xL \diamond xR.

Proof. We define \~M as the \diamond -closure of X, i.e. the smallest set containing X
that is closed under the operation \diamond . Equivalently, it can be defined iteratively
starting from the alphabet X: indeed, it is the free magma generated by X.
Thus, an element of \~M is either a letter of X, or of the form w1 \diamond w2, where
w1, w2 \in \~M and \diamond is defined as in Definition 4.2.5. Therefore, according
to this definition, \~M contains all elements of MX , except those of the form
(x, (y, (x \diamond y) \diamond x)), with x, y \in MX , and all elements that can be obtained
from these elements using \diamond . Therefore, from the definition, it immediately
follows that i) e ii) hold.

Let us now consider iii). Take x = (xL, xR) \in \~M . The only case to
examine is if xR = (y, (xL \diamond y) \diamond xL), because in that case xL \diamond xR = y.
However, xR cannot be of that form, since (xL, (y, (xL \diamond y) \diamond xL)) /\in \~M .

Let\scrM X,677 denote the magma (\~M, \diamond). We are finally ready to prove the
central result of this section.

Theorem 4.2.12. \scrM X,677 is the free magma for Eq. (4.1) generated by X.

Proof. We need to prove that \scrM X,677 obeys Definition 4.2.10. We already
know that \diamond obeys Eq. (4.1) on \~M , since from Corollary 4.2.9 we know that \diamond
obeys 677 onMX , and \~M \subseteq MX . We can also define the map iX,677 : X - \rightarrow \~M

as the inclusion map, since X \subseteq \~M . Now we just need to show that every
function f : X \rightarrow M into a 677 magma M can be extended to a unique
homomorphism \varphi f : \~M \rightarrow M (since \varphi f \circ iX,677 = \varphi f | X). Uniqueness is clear
since \~M is generated by X through \diamond , and \varphi f is a homomorphism.

For existence, we define \varphi f by first extending f to the unique homomor-
phism from MX (with the pairing map) to M , and then restricting to \~M .

52

To verify the homomorphism property \varphi f(x \diamond y) = \varphi f(x) \diamond \varphi f(y), we are
already done when x \diamond y = (x, y), since \varphi f is already an homomorphism with
respect to the pairing map. The only remaining case is when x \diamond y = yL

and x < y = (yL, (x \diamond yL) \diamond x). We proceed by induction. The base case is
given when y is a letter of X, in which case the claim is trivial, since it is
not possible that x < y. Suppose by induction that for all y\prime < y, we have
\forall x\prime \in \~M : \varphi f (x

\prime) \diamond \varphi f (y\prime) = \varphi f (x
\prime \diamond y\prime). Therefore, knowing that y = yL \diamond yR,

we obtain that:

\varphi f (y) = \varphi f (yL) \diamond \varphi f (yR) = \varphi f (yL) \diamond (\varphi f (x \diamond yL) \diamond \varphi f (x)) =

\varphi f (yL) \diamond ((\varphi f (x) \diamond \varphi f (yL)) \diamond \varphi f (x)),

where in the second equality we use the inductive hypotesis to prove that
\varphi f(yR) = \varphi f(x \diamond yL) \diamond \varphi f(x), since x < y. The claim follows since M obeys
677.

4.3 Equation 1516 does not imply Equation 255

In this final section, we will analyze the refutation 1516 \nvdash 255. In the first
part, we will prove this non-implication by using various methods, specifically
the greedy construction, to build a magma that obeys 1516 but not 255. In
the second part, we will analyze its formalization in Lean, describing the
most interesting parts of the code. The first part of the proof was formalized
by Bernhard Reinke by adapting some code from the proof of another non-
implication (E1516 \nvdash E1489), while I contributed to formalizing the rest of
the proof together with Lorenzo Luccioli and Pietro Monticone.

Initially, we tried to complete the formalization following the blueprint
proof, but it was only thanks to the implementation in Lean that we noticed
some issues in the proof that had initially escaped our attention. For this
reason, we first modified the “on paper” proof, addressing the various problems
we had encountered, and then completed the formalization.

53

An informal description of the proof can be found in the blueprint3, while
the code for the formalization, consisting of approximately 2000 lines and
developed over about a month of continuous work, is available on GitHub4.

4.3.1 Blueprint proof

Let us begin by presenting Equation 1516:

x = (y \diamond y) \diamond (x \diamond (x \diamond y)), (4.9)

and Equation 255:

x = ((x \diamond x) \diamond x) \diamond x. (4.10)

Using the notation Sx := x\diamond x, Lyx := y \diamond x, Ryx := y \diamond x, as done previously,
we can rewrite Eq. (4.9) as:

x = LSyLxLxy. (4.11)

Since we not deal with the formalization of the first part of the proof, we will
avoid going into the details, but we will outiline all the most important steps.

Using a greedy construction, we begin by building a translation-invariant
model with carrier Z that obeys 1516. We briefly introduce the definition of
translation-invariant magmas.

Definition 4.3.1 (Translation-invariant magma). A translation-invariant
magma is a magma whose carrier G is an abelian group G = (G,+), and
whose magma operation takes the form

y \diamond x = y + f(x - y),

for some function f : G - \rightarrow G.

3see https://teorth.github.io/equational_theories/blueprint/1516-chapter

.html.
4see https://github.com/teorth/equational_theories/blob/main/equational

_theories/ManuallyProved/Equation1516.lean.

54

https://teorth.github.io/equational_theories/blueprint/1516-chapter.html
https://teorth.github.io/equational_theories/blueprint/1516-chapter.html
https://github.com/teorth/equational_theories/blob/main/equational_theories/ManuallyProved/Equation1516.lean
https://github.com/teorth/equational_theories/blob/main/equational_theories/ManuallyProved/Equation1516.lean

Thus, taking Z as the carrier, we define:

x \diamond y := x+ f(y - x), (4.12)

for some function f : Z - \rightarrow Z, with f(0) = 0. This ensures that Sx = x.
Assuming we take y = x+ h, we then have Lxy = x+ f(h), L2

yx = x+ f 2(h),
and LyL2

xy = y + f(f 2(h) - h). Therefore, in this case, Eq. (4.11) becomes:

f(f 2(h) - h) = - h. (4.13)

Let E = \{ (h, f(h))\} be the graph of f . We have that if (a, b), (b, c) \in E, then
(c - a, - a) \in E, since:

f(c - a) = f(f(b) - a) = f(f 2(a) - a) 4.13
= - a.

This helps to explain the next definition.

Definition 4.3.2 (1516 seed). A 1516 seed is a finite collection E of pairs
(a, b), with (a, b) \in Z, obeying the following statements:

1. E is finite;

2. (0, 0) \in E;

3. if (a, b) \in E and a \not = 0, then b \not = 0, - a;

4. if (a, b), (a, b\prime) \in E, then b = b\prime ;

5. if (a, b), (b, c) \in E, then (c - a, - a) \in E;

6. If (b, a), (b\prime , a), (- b, d), (- b\prime , d\prime) \in E with b \not = b\prime , then b+ d \not = d\prime , b\prime + d\prime .

An extension of a 1516 seed E is a 1516 seed E \prime that contains E.

Now we provide, but do not prove, two results that will be helpful later.

Lemma 4.3.3 (1516 extension). Let E be a 1516 seed, and let a0 \in Z. Then
there exists an extension E \prime of E that contains (a0, c0), for some c0 \in Z.

55

Lemma 4.3.4 (1516 extension variant). Let E be a 1516 seed, and let h \in Z

be non-zero. Then there exists an extension E \prime of E that contains (ai, ai + h),
for i = 1, 2, 3, 4, for some distinct a1, a2, a3, a4.

Now, let us see how to construct a 1516 magma, using the greedy con-
struction starting from a 1516 seed.

Theorem 4.3.5 (Base Magma). There exists a 1516 magma\scrM with carrier
Z with the properties that:

i) Sa = a, \forall a \in Z;

ii) For any distinct a, b \in Z, there exist at least four solutions c for the
equation Rac = b;

iii) For each a \in Z, there exist at least two b \not = a such that LaRab = b.

Proof. We start with E0 = \{ (0, 0), (- 1, 2), (3, 1), (- 10, 20), (30, 10)\} , that is
trivially a 1516 seed. Thanks to Lemma 4.3.3 and Lemma 4.3.4, we can
iteratively extend E0 using the greedy algorithm until we obtain a graph
\{ (a, f(a)) : a \in Z\} of a function f : Z - \rightarrow Z such that:

• f(0) = 0, f(- 1) = 2, f(3) = 1, f(- 10) = 20, f(30) = 10;

• if f(a) = b and f(b) = c, then f(c - a) = - a;

• for every non-zero h, there are distinct ah,1, ah,2, ah,3, ah,4 with f(ah,i) =
ah,i + h, for i = 1, 2, 3, 4;

• Eq. (4.13) holds;

• If we define the magma operation \diamond by Eq. (4.12), we obtain Eq. (4.9).
Therefore\scrM is a 1516 magma.

Since f(0) = 0, we have i). Given distinct a, b \in Z, we can rewrite b = a+h, for
some non-zero h. There exist at least four values dh such that f(dh) = dh+h.

So we see that:

Ra(a - dh) = a - dh + f(dh) = a - dh + dh + h = a+ h = b,

56

from which we conclude ii).
Finally, fixed a \in Z, we have Ra(a+ 1) = a+ 1+ f(a - a - 1) = a+ 3, so

LaRa(a+1) = a+ f(a+3 - a) = a+1, and in the same way LaRa(a+10) =

a+ 10, giving iii).

Let us denote by A the free group over N. Note that a magma with the
same properties as in Theorem 4.3.5 but having carrier A can be constructed
similarly. The same thing is true for the following results. This specification
is due to the fact that in the formalization in Lean we used A instead of Z,
in order to make use of the pre-existing code.

Now we need to extend the magma to build a more complex 1516 magma,
with a new carrier G = Z \uplus G\prime , where:

G\prime := \{ (a, c, n) \in Z\times Z\times N : a \not = c\} . (4.14)

The elements of Z will be the squares in the final magma (from before, in
fact, we have that Sa = a, \forall a \in Z), while the elements in G\prime will be the
non-squares. The most important coordinate of an element (a, c, n) \in G\prime is
a, since we will extend the squaring map S by defining S(a, c, n) := a; the
other two components are technical; in particular, n will be used to ensure a
certain infinite surjective property.

The 1516 magma constructed in Theorem 4.3.5 will be the restriction of
G to Z. Thus, for a, b \in Z, a \diamond b is already defined in G, but the rest of the
multiplication table is currently undefined.

First, we need to provide some auxiliary results on the magma structure
over Z that will be useful in the next steps.

Lemma 4.3.6. Let a, c \in Z, then Lca = a if and only if c = a.

Proof. If c = a, we have that Laa = Sa = a. On the other hand, if Lca = a,
from Eq. (4.11):

c = LSaLcLca = LSaLca = LSaa = Sa = a.

Lemma 4.3.7. For every a \in Z, the function La : Z - \rightarrow Z is surjective.

57

Proof. Since Eq. (4.11) holds, i.e., LSaLbLba = b, we have that LSa = La is
surjective.

As already mentioned, we extend the squaring map S to the entire set
G by defining S(a, c, n) := a, so now S is a map from G to Z. Now, for all
b \in Z, we need to extend the map Lb : Z - \rightarrow Z to a map from G to G, and
also introduce additional maps Lx : G - \rightarrow G for x \in G\prime , obeying the following
axioms:

Axiom A: for any x \in G\prime , Lxx = Sx;

Axiom B: for any x \in G\prime and b \in Z, LSxLbLbx = b;

Axiom C: for any x \in G and y \in G\prime , LSxLyLyx = y.

We begin by proving the following lemma.

Lemma 4.3.8 (Useful elements). There exist a map c : G\prime \times Z - \rightarrow Z such
that, for all y \in G\prime , we have:

• \forall b \in Z, cy,b \not = a, b, c and LaLcy,bb = cy,b;

• the map b \mapsto \rightarrow cy,b is injective.

Proof. Let us fix y = (a, c, n) \in G\prime and b \in Z. If b = a, from Item (iii), there
exist at least two c\prime \not = a such that c\prime = LaRac

\prime = LaLc\prime a. Thus, at least one
is different from c, and we can take cy,a = c\prime . Let us now consider the case
where b \not = a. By Item (ii), there exist at least four c\prime such that Rac

\prime = b: we
choose the value \not = a, b, c and set cy,b = c\prime . Hence, we have that:

LaLcy,bb = LaLcy,bRacy,b = LaLcy,bLcy,ba = cy,b,

where the last equality is given by Eq. (4.11).

Now we want to prove that the map b \mapsto \rightarrow cy,b is injective. Let b \not = b\prime be
two elements of Z such that cy,b = cy,b\prime . If b = a or b\prime = a, then cy,b \not = cy,b\prime by
construction. Otherwise, b = Racy,b = Racy,b\prime = b\prime .

58

Now we can proceed to extend all the operation to the carrier Z\times G, with
a greedy construction. Defining the theory \Gamma for the algorithm is equivalent
to defining properties for a partial definition of Lc\prime : G - \rightarrow G.

We define a partial solution as a partial assignment of Lc\prime y \in G for c\prime \in Z

and y \in G.

Definition 4.3.9 (Partial solution). We say that a partial assignment for
the functions Lc\prime : G - \rightarrow G for some c\prime \in Z is a partial solution if it satisfies
the following properties, for any c\prime \in Z and y \in G:

a. if y \in Z, then Lc\prime y agrees with the operation in Theorem 4.3.5;

b. if y = (a, c, 0) \in G\prime , then Lay = a;

c. if y = (a, c, n) \in G\prime and n \not = 0, then Lay = (a, c, 0);

d. If y = (a, c, n) \in G\prime and b \in Z, then Lcy,by = b;

e. For any a, c, Lc(a, c, n) is only defined for finitely many n;

f. If y = (a, c, n) \in G\prime and c\prime \in Z are such that Lc\prime y is defined, then
Lc\prime Lc\prime y and LaLc\prime Lc\prime y are defined, with LaLc\prime Lc\prime y equal to c\prime ;

g. If y = (a, c, n) \in G\prime and c\prime \in Z are such that c\prime \not = a and Lc\prime y is defined,
then Lc\prime y \not = c\prime .

This rule set was designed gradually to solve different problems that arose
during the construction. In particular, the first version of the rule set that
was proposed in the informal proof did not include Item b., Item c., and
Item d., and only had a weaker version of Item f..

Moreover, the version of the informal proof that was in the blueprint was
not organized in this modular fashion, and contained several typos as well as
some obscure passages that turned out to be incorrect. The feedback from
the initial formalization attempt was crucial to identify and correct these
issues, prompting the original author, Terence Tao, to revise the informal

59

proof and provide a more detailed and formalization-friendly explanation of
the construction.

This is an example of how the formalization process can help to improve
the quality of the informal proof, and how the collaboration between the
original designer of the proof and the people working on the Lean code can
be beneficial for both parties. In fact, while some mistakes could have been
spotted even without the formalization, a few subtle issues may have gone
unnoticed, and became apparent only when trying to fill in some details of
the code.

Let us now prove the existence of a partial solution.

Lemma 4.3.10 (Existence of a partial solution). A partial solution exists.

Proof. We define Lc\prime y for y = (a, c, n) \in G\prime as follows:

i) if c\prime = a and n = 0, then Lc\prime y := a;

ii) if c\prime = a and n \not = 0, then Lc\prime y := (a, c, 0);

iii) if c\prime = cy,b for some b, then Lc\prime y := b;

iv) in all other cases, Lc\prime y is undefined.

We also defined Lc\prime y for y \in Z using Theorem 4.3.5. From Lemma 4.3.8
we see that this is a well-defined operation, with Lcy undefined for any
y = (a, c, n) \in G\prime . So properties from Item a. to Item e. and Item g. are clear
from construction. In each of the three cases Item (i), Item (ii), Item (iii), it
is clear from construction that Item e. is satisfied.

Now we want to extend the partial solution so that it is globally defined,
and that (Axiom A), (Axiom B), and (Axiom C) are satisfied. To do this,
we need to divide the extension into two steps, as we require the functions
La to verify an infinite surjectivity property. The first extension is natural
from the greedy construction, by defining the operation on a new pair where
it was not previously defined.

60

Lemma 4.3.11 (First extension). Let c\prime \in Z and y = (a, c, n) \in G\prime . Suppose
we have a partial solution for which Lc\prime y is currently undefined, then one can
extend this partial solution in such a manner that Lc\prime y is now defined.

Proof. From Lemma 4.3.7, we know that La : Z - \rightarrow Z and Lc\prime : Z - \rightarrow Z are
surjective, so we can find b \in Z such that:

LaLc\prime b = c\prime . (4.15)

If b = c\prime , then Lc\prime c\prime = c\prime . Therefore, Eq. (4.15) becomes Lac\prime = c\prime , and from
Eq. (4.9), we have a = c\prime . But this would lead to a contradiction, since Lay
is already defined in Item (i). Therefore, b \not = c\prime , and we can define Lc\prime y := b,
ensuring that Item g. is satisfied.

Now we need to introduce a second extension step. At each step of the
greedy construction, we take a pair (c\prime , y) \in Z \times G\prime and a natural number
m, and we require not only that Lc\prime y is defined, but also that the equation
Lc\prime z = y has at least m distinct solutions z \in G\prime . This will be useful to show
that the final Lc\prime will have infinitely many solutions z to this equation. We
will now show how, given a fixed y \in G\prime , if Lc\prime z is still undefined, it is possible
to set it equal to y.

Lemma 4.3.12 (Second extension). Suppose we have a partial solution, and
let c\prime \in Z and y = (a, c, n) \in G, then, unless c\prime = a and n = 0, exists z \in G
such that Lc\prime z is currently undefined, but it is possible to extend the partial
solution so that Lc\prime z = y.

Remark 4.3.13. We exclude the case c\prime = a and n = 0, because as we have
defined the partial solution, we know that the set \{ x \in G\prime : Lax = y\} is
infinite, as it contains (a, c, n), \forall n \in N.

Proof. We divide the proof into several cases:

(Case 1): Lc\prime y = w for some w \in G\prime . From Lemma 4.3.8 we have that
cw,c\prime \not = c\prime , and Lcw,c\prime

w = c\prime . From Item e. we know that, given

61

z = (cw,c\prime , c
\prime , n), Lc\prime z is only defined for finitely many n, therefore

we can find n\prime such that Lc\prime (cw,c\prime , c\prime , n\prime) is undefined. Thus, we set
z = (cw,c\prime , c

\prime , n\prime) and extend the partial solution by defining Lc\prime z := y.
So that we have Lcw,c\prime

Lc\prime Lc\prime = c\prime .

(Case 2): c\prime \not = a and Lc\prime y = b for some b \in Z. From Item g. we have
c\prime \not = b. By Theorem 4.3.5 we can find a\prime such that La\prime b = Rba

\prime = c\prime ,
and a\prime \not = c\prime . By Item e., we can find z = (a\prime , c\prime , n\prime) such that Lc\prime z is
currently undefined. Therefore we define Lc\prime z := y, and then we have
La\prime Lc\prime Lc\prime z = c\prime .

(Case 3): c\prime \not = a and Lc\prime y is currently undefined. Using the first extension,
we set Lc\prime y equal to some b \in Z, then we apply the second case.

(Case 4): c\prime = a. Since we are excluding the case n = 0, by Item c., we fall
into the first case.

We exclude the case c\prime = a and n = 0, because as we have defined the
partial solution, we know that the set \{ x \in G\prime : Lax = y\} is infinite, as it
contains (a, c, n), for any n \in N. Instead, in the other cases, we add a finite
number m of solutions z at each step of the greedy construction.

This distinction was not present in the first version of the informal proof,
which remained a bit ambiguous on this point. During the first attempt to
formalize the proof, we faced this issue and came up with a solution that tried
to avoid modifying the structure of the code, and in particular we wanted
to avoid the addition of an external parameter to the greedy extension step.
The crucial point is that initially we had required the finiteness of the partial
solution, and therefore we needed to control the number of new solutions
that we were adding at each step and for how many pairs (c\prime , y) we were
adding them, but at the same time we needed a value that we could increase
arbitrarily to ensure the infinite surjectivity of the final operation. We found
that the cardinality of the set \{ a | Lax = y for some x and y\} was a good
candidate for this purpose, while at the same time being a quantity that only
depended on data that was already present in the partial solution.

62

We implemented almost the whole proof with this approach, but near the
end another more profound issue arose that forced us to modify the informal
proof and prompted the original author to rewrite the blueprint in the current
form. Since we needed to heavily modify the code to adapt it to the new
proof, we decided to try again the previously discarded idea of adding an
external parameter, and we found that this was a much cleaner and more
straightforward solution; in fact, the idea of using the cardinality of the set
above was a bit convoluted and added a lot of unnecessary complexity to the
code that made it longer to write and harder to understand.

At this point, after explaining the two steps, we show how by running the
greedy algorithm we manage to obtain an extension Lb : G\rightarrow G that satisfies
Axiom B.

Proposition 4.3.14 (Obtaining Axiom B). There exists a way to extend
Lb : Z - \rightarrow Z to Lb : G - \rightarrow G in such a way that Axiom B holds, furthermore
for each b \in Z and x \in G\prime , the set \{ y \in G\prime : Lby = x\} is infinite. Also, we
can ensure that Lbx \not = x, for any b \in Z and x \in G\prime .

Proof. By iterating Lemma 4.3.11 and Lemma 4.3.12 in alternation, we can
find an extension of the partial solution such that, for any y = (a, c, n) \in G\prime ,
c\prime \in Z and k \in N, Lc\prime y is defined, and such that Lc\prime z = y has at least k
distinct solutions z \in G\prime : it is enough to extend the partial solution several
times using Lemma 4.3.12, in order to obtain the necessary number of solutions
to the equation. So we can find an increasing chain of partial solutions with
these property, and taking the limit of this chain we can find a fully defined
operation Lc\prime y for c\prime \in Z and y \in G. This operation obeys all the properties
of Definition 4.3.9, but not Item e.. Thus, considering the increasing chain of
extensions, the partial solutions will have an increasing number k of solutions
to Lc\prime z = y, so since the operation Lc\prime is defined as the limit of this chain, it
will have more solutions than any k \in N, and therefore, it will be infinite.
For this reason, for each b \in Z and x \in G\prime , the set \{ y \in G\prime : Lby = x\} is
infinite.

63

At this point, the operation \diamond is well defined when we have an element
from Z on the left and one from G on the right. The only thing left to define
is Lx : G - \rightarrow G for x \in G\prime . In this case, the greedy construction is simpler
to implement, and it is not necessary to describe the extensions outside the
proof as we did previously.

Proposition 4.3.15 (Obtaining Axiom A, C). There exists maps Lx : G - \rightarrow G

for each “non-square” x \in G\prime , such that Axiom A, Axiom C hold.

Proof. We fix x \in G\prime . Our task is to find a function Lx such that:

Lxx = Sx, (4.16)

and
LSyLxLxy = x, (4.17)

for all y \in G. We construct a seed from which to start the greedy construction,
in order to define a partial function Lx such that:

a. it is defined on a finite number of values;

b. it is injective;

c. it satisfies Eq. (4.16);

d. it satisfies Eq. (4.17), in the case where LxLxy is defined.

If there exists a y \in G such that Lxy is not yet defined, then, because Lx
is injective, there will be at most one z such that Lxz = y. If such a z

exists, we define Lxy := w\prime , where w\prime \in \{ w : LSzw = x\} is different from
y and is not in the domain or range of Lx. We can do this because, from
the infinite surjectivity property in Proposition 4.3.14, we know that the set
\{ w : LSzw = x\} is infinite. We already know that with this new extension,
conditions (a), (b), and (c) continue to be satisfied, and now we need to check
(d). But in the case of y, we have LSyLxLxy = LSyLxw

\prime , but Lxw\prime is not
defined. On the other hand, in the case of z, we have:

LSzLx Lxz\underbrace{} \underbrace{}
y

= LSz Lxy\underbrace{} \underbrace{}
w\prime

= LSzw
\prime = x.

64

If, otherwise, no such z exists, we set Lxy to be an arbitrary element of G, not
already in the domain or range of Lx, and we can see that the seed properties
continue to be satisfied.

Therefore, starting from a seed where only Lxx := Sx is defined, and
iteratively extending it following the criteria just outlined, we obtain the
thesis.

After these different greedy constructions, we have finally build a new
magma\scrM = (G, \diamond) that obeys Equation 1516. Now the only thing left to do
is to prove that violates 255, also proving that 1516 \nvdash 255.

Theorem 4.3.16. Let \scrM = (G, \diamond) be the magma just build, then \scrM does
not obey Equation 255.

Proof. We fix x = (a, c, 0) \in G\prime . From Axiom C we know that Lxx = Sx = a,
and by Item b. we have Lax = a. Putting everything in Eq. (4.10):

((x \diamond x)\underbrace{} \underbrace{}
a

\diamond x) \diamond x = (a \diamond x)\underbrace{} \underbrace{}
a

\diamond x = a \diamond x = a \not = x.

Therefore\scrM does not obey Equation 255.

4.3.2 Formalization of the proof

Now that we have finished describing the informal proof provided in the
blueprint, explaining how it was progressively modified to resolve issues that
we encountered during the formalization, we will conclude by providing some
details about its formalization.

We will now examine the formalization of Lemma 4.3.8 to highlight the
challenges encountered in formalizing a proof that, on paper, seems rather
straightforward.

1 lemma exists_useful_c (y : G’) : \exists c : A \rightarrow A, c.Injective \wedge
2 \forall b, y.1.1 \diamond ((c b) \diamond b) = c b \wedge c b \not = b \wedge c b \not = y.1.1 \wedge c b \not =

y.1.2.1 := by

3 rcases base2’ y.1.1 y.1.2.1 with \langle c1, hc1a, hc1c, hc1\rangle

65

4 have c_aux {b : A} (h : y.1.1 \not = b) : \exists c, c \diamond y.1.1 = b \wedge c \not = c1 \wedge
c \not = b \wedge c \not = y.1.2.1 :=

5 base1’ h c1 b y.1.2.1

6 let c := fun b : A \mapsto \rightarrow if h : y.1.1 = b then c1 else (c_aux h).

choose

7 refine \langle c, fun b1 b2 \mapsto \rightarrow ?_, fun b \mapsto \rightarrow ?_\rangle
8 · unfold c

9 rcases ne_or_eq y.1.1 b1 with hx | ha <;> rcases ne_or_eq y.1.1 b2
with hy | ha’

10 · rw [dif_neg hx, dif_neg hy]

11 intro hind

12 have prop : (c_aux hx).choose \diamond y.1.1 = (c_aux hy).choose \diamond y

.1.1 := by rw [hind]

13 have h_aux : (c_aux hx).choose \diamond y.1.1 = b1 := (c_aux hx).

choose_spec.1

14 have h_aux2 : (c_aux hy).choose \diamond y.1.1 = b2 := (c_aux hy).

choose_spec.1

15 rw [h_aux, h_aux2] at prop

16 exact prop

17 · rw [dif_neg hx, dif_pos ha’]

18 exact fun h \mapsto \rightarrow ((c_aux hx).choose_spec.2.1 h).elim

19 · rw [dif_pos ha, dif_neg hy]

20 exact fun h \mapsto \rightarrow ((c_aux hy).choose_spec.2.1 h.symm).elim

21 · exact fun h \mapsto \rightarrow ha \triangleleft ha’

22 · unfold c

23 rcases ne_or_eq y.1.1 b with h1 | h2

24 · rw [dif_neg h1]

25 refine \langle ?_, \langle (c_aux h1).choose_spec.2.2.1, ?_, (c_aux h1).

choose_spec.2.2.2\rangle \rangle
26 · nth_rw 1 [\leftarrow A_idempotent y.1.1]

27 nth_rw 4 [\leftarrow (c_aux h1).choose_spec.1]

28 exact (A_satisfies_Equation1516 _ _).symm

29 · by_contra h

30 have := A_idempotent _ \triangleleft h \triangleleft (c_aux h1).choose_spec.1

31 exact h1 this

32 · simp_rw [dif_pos h2, \leftarrow h2, hc1]

33 exact \langle trivial, hc1a, hc1a, hc1c\rangle

66

As can be clearly seen, the code appears to be much more complex than
initially expected. Let us explain it. In the first few lines, we have the
statement of the theorem: as can be observed, the first step is to fix y \in G\prime ,
and then the existence of a map c : A - \rightarrow A (which, after fixing y, would
actually be the map b \mapsto \rightarrow cy,b) is required, satisfying the two conditions stated
in Lemma 4.3.8. After defining the map c in:

1 let c := fun b : A \mapsto \rightarrow if h : y.1.1 = b then c1 else (c_aux h).choose

by utilizing previously defined auxiliary functions, we use:

1 refine \langle c, fun b1 b2 \mapsto \rightarrow ?_, fun b \mapsto \rightarrow ?_\rangle

which is the command to transform the goal and split it into two parts,
proving separately that the map c just defined satisfies both conditions in
Lemma 4.3.8. From lines 8 to 21, we prove injectivity, and as can be seen,
it is necessary to divide the proof into several cases. Specifically, we require
that y is either different from or equal to b1, and each of these cases is further
divided into two subcases: y = b2 or y \not = b2. A similar procedure is applied
starting from line 22 onward, where we proceed to prove that for each b \in Z,
we have cy,b \not = a, b, c, and that LaLcy,bb = cy,b. This code is an example of
how a proof can be formalized step by step to ensure its correctness. The
proof is particularly detailed and relies on techniques of rewriting and case
splitting to handle the various possibilities that arise during the construction
of the map c. To make it easier to utilize the results proven in the theorem,
the properties are divided into several lemmas:

1 noncomputable abbrev useful_c (y : G’) : A \rightarrow A := (exists_useful_c y)

.choose

2
3 lemma useful_c_injective (y : G’) : (useful_c y).Injective := (

exists_useful_c y).choose_spec.1

4
5 lemma useful_c_spec (y : G’) (b : A) : y.1.1 \diamond ((useful_c y b) \diamond b) =

useful_c y b :=

6 (exists_useful_c y).choose_spec.2 b |>.1

7

67

8 lemma useful_c_ne_b (y : G’) (b : A) : useful_c y b \not = b :=

9 (exists_useful_c y).choose_spec.2 b |>.2.1

10
11 lemma useful_c_ne_y1 (y : G’) (b : A) : useful_c y b \not = y.1.1 :=

12 (exists_useful_c y).choose_spec.2 b |>.2.2.1

13
14 lemma useful_c_ne_y2 (y : G’) (b : A) : useful_c y b \not = y.1.2.1 :=

15 (exists_useful_c y).choose_spec.2 b |>.2.2.2

We give a name to the map c constructed in the theorem, denoting it by
useful_c, where it is necessary to always fix y, since we are working with the
map b \mapsto \rightarrow cy,b. When there exists a lemma of the form \exists x : P (x), in Lean, to
select the element x, we use the function (name of the lemma).choose, while
the function (name of the lemma).choose_spec.1 provides the proof that the x
we have just selected satisfies P (x). This is how all the lemmas in which we
have divided the properties of the map c were constructed.

68

Chapter 5

Conclusions

In this thesis, we explored the “Equational Theories” project launched by
Terence Tao, an innovative initiative that combines collaboration between
professional and amateur mathematicians with the use of artificial intelligence
tools and proof assistant languages, such as Lean. The project represents
a new way of conducting mathematical research, where formalization and
proof verification play a central role, and where collaboration is extended
beyond traditional small groups to include a wider community of contributors,
including those without advanced mathematical training.

One of the key aspects of the project was the use of Lean as a formalization
tool. Lean not only ensured the correctness of the results but also played a
crucial role in identifying and correcting errors in the “on paper” proofs. During
the formalization process, particularly in the proof of the non-implication
1516 \nvdash 255, we encountered several issues in the informal proof that had
initially gone unnoticed. These issues were only revealed when attempting
to formalize the proof in Lean, prompting revisions to the original blueprint.
This experience highlighted the importance of formalization in improving
the quality and accuracy of mathematical proofs, as well as the value of
collaboration between the original proof designers and those working on the
formalization.

A central technique used throughout the project was the greedy algo-

69

rithm construction, which proved to be a powerful method for building
algebraic structures, particularly infinite magmas, that satisfy specific equa-
tions. This iterative algorithm allowed us to extend partially defined magma
operations to fully defined ones while ensuring that the resulting structures
obeyed the desired equational laws. The greedy construction was instrumental
in constructing counterexamples, such as the one used to prove that equation
1516 does not imply equation 255. This technique demonstrated its versatility
and effectiveness in handling complex algebraic problems, especially when
combined with other tools like Mace4 and Prover9.

Another notable outcome of the project was the emergence of magma
cohomology, a mathematical structure that arose naturally during the explo-
ration of certain proofs. Magma cohomology can be seen as a generalization
of group cohomology, and it was discovered while working on strategies to
extend magmas and resolve finite implications. The construction of magma
cohomology involves extending a magma G by taking the set G\times M , where
M is a ring or an abelian group, and defining an operation that incorporates
a “cocycle” satisfying specific conditions. The relationship between magma
cohomology and group cohomology highlights the deep connections between
different areas of mathematics and how new structures can emerge from the
study of specific problems.

In conclusion, the Equational Theories project represents a significant step
forward in the way mathematical research is conducted, since it introduced a
new way of collaborating in mathematics. Unlike traditional research projects,
which are typically conducted by small, tightly-knit groups of experts, the
Equational Theories project was designed to be open and accessible to a
broader audience. This was made possible by the use of Lean, which allowed
contributors with varying levels of experience to participate. The project was
organized through a central GitHub repository, where contributors could claim
tasks, upload formalized proofs, and track the progress of the project. Terence
Tao’s daily log and the Zulip discussions provided a historical perspective
and facilitated communication among participants. This work has shown how

70

formal mathematics, combined with innovative collaboration and advanced
computational tools, can lead to new insights and discoveries. The hope is
that projects like this will inspire further research and collaboration, pushing
the boundaries of mathematics and opening up new avenues for exploration.

71

Bibliography

[Bro12] Kenneth S Brown. Cohomology of groups. Vol. 87. Springer Science
& Business Media, 2012.

[Clu+24] Joshua Clune et al. “Duper: A Proof-Producing Superposition
Theorem Prover for Dependent Type Theory”. In: 15th Interna-
tional Conference on Interactive Theorem Proving (ITP 2024).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. 2024, pp. 10–1.

[Cor+22] Thomas H Cormen et al. Introduction to algorithms. MIT press,
2022.

[Her78] I. N. Herstein. Algebra. English. Physik Verlag, Weinheim, 1978,
pp. xii+390. isbn: 3-87664-035-0.

[LF23] Jannis Limperg and Asta Halkjær From. “Aesop: White-box best-
first proof search for Lean”. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and
Proofs. 2023, pp. 253–266.

[RG24] Marcus Rossel and Andrés Goens. “Bridging Syntax and Se-
mantics of Lean Expressions in E-Graphs”. In: arXiv preprint
arXiv:2405.10188 (2024).

[Rot95] Joseph J. Rotman. An introduction to the theory of groups. Fourth.
Vol. 148. Graduate Texts in Mathematics. Springer-Verlag, New
York, 1995, pp. xvi+513. isbn: 0-387-94285-8. doi: 10.1007/978-
1-4612-4176-8. url: https://doi.org/10.1007/978-1-4612-
4176-8.

73

https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-1-4612-4176-8

	Introduction
	Proof assistants
	Lean 4
	Overview of Lean Code
	Mathlib
	Importance of proof assistants

	Equational theories project
	Preliminary definitions
	Goal of the project
	How to minimize the number of proofs
	Project Organization

	Useful Techniques and Mathematical Structures
	Greedy Algorithm Construction
	An example of a Greedy construction

	Linear Magmas
	Magma Cohomology

	Exploring Equations
	Commutative and Associative law
	Equation 677
	A finite non-right-cancellative example
	Free 677 Magma

	Equation 1516 does not imply Equation 255
	Blueprint proof
	Formalization of the proof

	Conclusions

