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Abstract

Shioda-Inose structures establish a correspondence between the only two classes of
projective compact complex surfaces with trivial canonical bundle, namely K3 sur-
faces and Abelian surfaces, allowing the study of certain K3 surfaces to be reduced to
the study of their associated Abelian surface. In this thesis, we extend this classical
theory by introducing and analyzing generalized Shioda-Inose structures. In par-
ticular, we present Morrison’s work on Shioda-Inose structures of order two, the
generalization by Garbagnati and Prieto-Montañez to Generalized Shioda-Inose
structures of order three and the work of Piroddi on Generalized Shioda-Inose
structures of order four. Finally, we summarize the state of the art on Generalized
Shioda-Inose structures of order six, and discuss a possible generalization of the
very definition of this geometric construction.
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Introduction

Shioda-Inose structures represent a powerful relation between K3 surfaces and
Abelian surfaces, which are the only two distinct types of projective compact com-
plex surface with trivial canonical bundle. The definition of Shioda-Inose structure
was first proposed by D. Morrison, who generalized the work of Shioda-Inose by
including all Abelian surfaces. Morrison described a way to associate a K3 surface
SA to any Abelian surface A, in such a way that there exists a Hodge isometry be-
tween their transcendental lattices, i.e. T(A) ≃ T(SA). In particular, the unique
symplectic involution − idA on A gives rise to the Kummer surface X, which, in
turn, admits a double cover by a K3 surface. Morrison characterized those K3
surfaces that admit a Shioda-Inose structure, giving a description in terms of the
structure of the transcendental lattice.
After Morrison, many authors provided examples of Shioda-Inose structures and
showed some applications. More recently, A. Garbagnati and Y. Prieto-Montañez
extended the entire framework by examining Abelian surfaces that admit a sym-
plectic automorphism of order 3, and constructing a covering K3 surface S of the
generalized Kummer surface Km3(A) such that the relation between the transcen-
dental lattices of A and S still holds. Subsequently, B. Piroddi proposed a defini-
tion of Generalized Shioda-Inose structures of order 4, and showed that the Hodge
isometry between the trascendental lattices doesn’t hold anymore in general. In
this thesis we review the aforementioned works, and we present a possible defi-
nition for Generalized Shioda-Inose structures of order 6. In addition, we provide
the necessary background for understanding and approaching the topic. We as-
sume the reader has familiarity with basic concepts of Algebraic Geometry and
Complex Geometry.

The first chapter focuses on integral even lattices, which are fundamental for un-
derstanding the geometry of compact complex surfaces with trivial canonical bun-
dle. Here introduce key tools and important theorems related to even lattices and
their applications to the above mentioned surfaces.

In chapter two we introduce K3 surfaces, and briefly study their classical invari-
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Introduction iii

ants. Furthermore, we begin the study of the K3 lattice ΛK3 ≃ U3 ⊕E8(−1)2, which
leads to the statement of both the Global Torelli Theorem for K3 surfaces and the sur-
jectivity of the period map. Following this, we present Nikulin’s work on symplectic
automorphisms of finite order of K3 surfaces. These automorphisms are of partic-
ular interest, because their action yields isolated singular points of type ADE, and
their minimal resolution yields again a K3 surface. We classify cyclic groups act-
ing symplectically on these surfaces and characterize those K3 surfaces that admit
symplectic automorphisms of finite order.

In chapter three we shift our focus to Abelian surfaces. We provide the general
definition of a complex torus, together with the proof of its equivalence to a compact
connected complex Lie group. Furthermore, we characterize projective complex tori
using two different approaches. We then review Shioda’s work on the surjectivity
of the period map of Abelian surfaces, which leads to the work of Fujiki on finite
order automorphisms of these varieties. Here we reframe the treatment adopting
a lattice-theoretic perspective. Finally, we characterize Abelian surfaces that admit
a symplectic automorphism of finite order.

In the end, in chapter four, we bring together the concepts introduced in the pre-
vious chapters to present Shioda-Inose structures. We begin with Morrison’s work,
introducing a revised notation that ensures consistency with our subsequent treat-
ment of Generalized Shioda-Inose structures. We then follow Garbagnati and
Prieto-Montañez’s study on Generalized Shioda-Inose structures of order 3. More-
over, we propose a definition for Generalized Shioda-Inose structures which works
also for the order 4. After reviewing the results of Piroddi on Generalized Shioda-
Inose structures of order 4 we conclude with some considerations on a possible
approach to the case of order 6.



Chapter 1

Lattices

1.1 Definitions and examples

We begin with a comprehensive list of definitions and conventions.

Definition 1.1. An even lattice L is a finitely generated free Z-module L, equipped
with a non-degenerate symmetric even bilinear form bL(·, ·) : L × L → Z. Equiv-
alently, an even lattice L is a finitely generated free Z-module L together with a
non-degenerate quadratic form.

We may refer to an even lattice L as (L, bL) or even just as L if its bilinear form is
clear by the context.
Now we present a series of useful and common constructions and defitions for
even lattices.

Definition 1.2. If L1 and L2 are two lattices, then L1 ⊕ L2 is their orthogonal direct
sum; Ln denotes the orthogonal direct sum L ⊕ L ⊕ · · · ⊕ L.
Given an integer m ∈ Z, we write L(m) and refer to the lattice (L, m bL) where the
bilinear form of L has been multiplied by m.

Definition 1.3. Fixing a basis of vectors of an even lattice L, we denote the matrix
associated to its bilinear form bL by BL.
The determinant of L is the determinant of BL, and it is independent of the choice
of the basis. This is justified by the fact that any base change is given by a matrix
in GLn(Z), which has determinant ±1.
An even lattice is non-degenerate if its determinant is non-zero. If L is a non-
degenerate lattice, then its signature is a pair (s(+), s(−)), where s(±) stands for
the multiplicity of the eigenvalue ±1 of the associated real-valued bilinear form
on L ⊕ R.

1



1.1 Definitions and examples 2

Furthermore, L is said to be positive definite, negative definite or indefinite if its corre-
sponding real-valued bilinear form has the same property.

Example 1.4. (i) Hyperbolic Plane: It is the even unimodular lattice U of rank 2
with bilinear form given by the matrix(

0 1
1 0

)
.

Note that U is indefinite and its signature is (1,−1). Moreover for every
m ∈ Z the lattice U(m) is isometric to U(−m). Indeed, taking {e1, e2} as a set
of generators of U such that e2

1 = e2
2 = 0 and b(e1, e2) = 1 we can construct

the isomorphism
ϕ : U(m) → U(−m)

e1 7→ −e1

e2 7→ e2

Here it is easy to verify that ϕ(e1)
2 = ϕ(e2)2 = e2

1 = e2
2 = 0 and b(ϕ(e1), ϕ(e2)) =

b(e1, e2) = m

(ii) An lattice: Given the diagram

· · ·

The lattice An comes from the associated root lattice, and it corresponds to
the free Z-module of rank n together with the bilinear form given by the
matrix

An matrix:



2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2


.

Its determinant is equal to n + 1, therefore An is not unimodular and has
signature (n, 0). We will often use the lattice An(−1) of signature (0, n).

(iii) Dn lattice: Given the diagram

· · ·
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The lattice Dn again comes from the associated root lattice, and it is the free
Z-module of rank n defined by the matrix

Dn matrix:



2 −1 0 · · · 0 0 0 0
−1 2 −1 · · · 0 0 0 0
0 −1 2 · · · 0 0 0 0
...

...
...

. . .
...

0 0 0 · · · 2 −1 0 0
0 0 0 · · · −1 2 −1 −1
0 0 0 · · · 0 −1 2 0
0 0 0 · · · 0 −1 0 2


.

Its matrix is similar to that of An, but differs in the last 3 columns, where the
relation between the last 3 vertices is made explicit. Its determinant is equal
to 4 and its signature is (n, 0).

(iv) E6 lattice: Given the diagram

The lattice E6 is of rank 6 and its bilinear form is given by the matrix:

E6 matrix:



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 −1 0
0 0 −1 2 0 0
0 0 −1 0 2 −1
0 0 0 0 −1 2


.

Its determinant is 3 and it has signature (6, 0). This lattice (or, more properly,
the lattice E6(−1)) will be useful in the study of Generalized Shioda-Inose
structures of order 3.

(v) E7 lattice: Given the diagram
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The lattice E7 is a rank 7 lattice with bilinear form given by the matrix:

E7 matrix:



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 −1 0 0
0 0 −1 2 0 0 0
0 0 −1 0 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


.

Its determinant is 2 and it has signature (7, 0).

(vi) E8 lattice: Given by the diagram

The lattice E8 is given by a free Z-module of rank 8 together with a bilinear
form defined by the Matrix:

E8 matrix:



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 −1 0 0 0
0 0 −1 2 0 0 0 0
0 0 −1 0 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.

Its determinant is 1, i.e. it is unimodular, and its signature is (8, 0). This is
probably the most important Dynkin diagram in the context of K3 surfaces.
As we will see in chapter 2, the K3 lattice can be described in terms of E8(−1)
and U, the hyperbolic plane. Moreover, this lattice will be crucial when con-
sidering Shioda-Inose structures of order two.

1.2 Overlattices

Studying morphisms between objects is in line with customs and practices of math-
ematics, and we will not shy away from this tradition.

Definition 1.5. Given two even lattices L and M, a lattice morphism from L to M is
a homomorphism of Z-modules ϕ : L → M
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Definition 1.6. The dual lattice of the lattice L is L∗ := Hom(L, Z). Equivalently, it
is the subset of L ⊗ Q defined as follows:

{m ∈ L ⊗ Q | b̃L(m, l) ∈ Z for every l ∈ L},

where b̃L is the Q-linear extension of bL to L ⊗ Q.
The discriminant group of an even lattice L is AL := L∗/L. It can be zero or a product
of cyclic groups. In the first case, we call L unimodular.

Definition 1.7. An embedding of lattices is an injective morphism of even lattices
L ↪→ M that preserves the bilinear form, i.e. bL(l1, l2) = bM(ϕ(l1), ϕ(l2)). The
embedding is called primitive if M/L is free. If M/L is finite we say that M is an
overlattice of L.

Definition 1.8. The natural embedding L ↪→ L∗ given by l 7→ bL(l, ·) induces a
quadratic form on AL, called discriminant form and denoted qL : AL → Q/2Z.

Remark 1.9. It is straightforward to verify that qL(−1) ≃ −qL, and that qL⊕M ≃
qL ⊕ qM.

Remark 1.10. The absolute value of the determinant of the matrix BL is equal to
the order of the group AL. If the lattice has a positive definite bilinear form, this
follows from the fact that for x ∈ L ⊗ Q we have x ∈ L∗ ⇐⇒ b̃L(x, y) ∈ Z for
every y ∈ L, and this is equivalent to condition xTBy ∈ Z. In other words we are
saying that xTB = (BTx)T must be integer valued, implying that the dual basis of
L∗ is given by the columns of (BT)−1 and thus the Gram matrix of L∗ with respect
to this basis is given by B−1B(BT)−1 = (BT)−1.
Now, since the determinant of L is equal to the index of L in L∗, we get

|det(L)| = [L∗ : L] = |det(B)| = |det(BT)| = |det((BT)−1)
−1| = |det(L∗)|−1.

This is an instance of a more general fact about sublattices, valid for any symmetric
non-degenerate bilinear form: if L′ ⊂ L is a sublattice, then

[L : L′]2 =
|det(L′)|
|det(L)| . (1.11)

This follows easily by writing L′ = A L where A is an integer valued matrix. Then
[L : L′]2 = |det(A)| and 1.11 is proved by noticing that det(L′) = det(A)det(L).

Consider the following example:

Example 1.12 (Two noteworthy overlattices). Given the even lattice L = U ⊕ A2 ⊕
E6(−1)⊕3, its determinant is 34, since det(U) = 1 and det(A2) = det(E6(−1)) = 3.
An overlattice of L can be constructed, following the approach in [5], by consid-
ering a basis of each copy of E6(−1) as follows: let e(j)

i denote the basis vectors
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for each copy, where i ∈ {1, 2, 3, 4, 5, 6} and j indexes the corresponding copy of
E6(−1), with the intersection properties given by the matrix written in 1.4 (iv). We
define (E6(−1)⊕3)′ as the overlattice of index 3 of E6(−1)⊕3, obtained by adding
the vector

x =
1
3

3

∑
j=1

(
e(j)

1 + 2e(j)
2 + e(j)

4 + 2e(j)
5

)
In order to verify that its index is indeed equal to 3, we can use 1.11 and choose
a basis for the new overlattice simply by swapping an element basis ei with x. It
follows that det((E6(−1)⊕3)′) = 32, so its index is equal to 3.

Now define v(j) := (e(j)
1 + 2e(j)

2 + e(j)
4 + 2e(j)

5 )/3 and consider a basis ai of A2 for
i = 1, 2 such that a2

i = 2 and a1a2 = a2a1 = −1. Using this basis, we construct the
vector

y :=
1
3
(a1 + 2a2) + v(1) + v(2).

The lattice (U ⊕ A2 ⊕ E6(−1)⊕3)′′ is defined as the overlattice of L obtained by
adding the vectors x and y to L. This results in a unimodular even lattice, as the
index satisfies [(U ⊕ A2 ⊕ E6(−1)⊕3)′′ : L] = 32. Indeed, we’ve added two vectors
of self-intersection 3. We’ll discuss this lattice more in depth in the chapter 4.

Theorem 1.13 ([20, Milnor]). Every inde f inite unimodular even lattice L is of the form

L = Un ⊕ E8(−1)m for some positive m, n ∈ N.

Theorem 1.14 ([26, Corollary 1.13.3]). Let L be an indefinite even lattice that verifies
l(AL) ≤ rk(L) − 2 where l(AL) is the minimum number of generators of the group,
whereas rk(L) stands for the rank of L as a free group. Then, up to isometry, L is uniquely
determined by its signature and discriminant form qL.

Corollary 1.15. A unimodular indefinite even lattice is uniquely determined by its signa-
ture and discriminant form.

Lemma 1.16 ([22, Lemma 2.3]). Let M,N be two even lattices with the same signature
and discriminant form, and let L be an even lattice uniquely determined by its signature
and discriminant form. Then there exists an embedding M ↪→ L if and only if there exists
an embedding N ↪→ L, too.

Proof. Suppose M ↪→ L is primitive, and let K be the orthogonal complement of M
in L. We have the inclusions:

M ⊕ K ⊂ L ⊂ L∗ ⊂ (M ⊕ K)∗
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because taking the duals inverts the inclusion.
Now, from AM⊕K = AM ⊕ AK and the fact that AM ≃ AN we get the group iso-
morphism

ϕ : AN⊕K
∼−→ AM⊕K

Define the sublattice

L′ := {n ∈ (N ⊕ K)∗ | ϕ([n]) ∈ L/(M ⊕ K)} ⊂ (N ⊕ K)∗

Of course ϕ([n]) = ϕ([0]) = [0] ∈ AM⊕K for every n ∈ N, so we have the em-
bedding N ↪→ L′. In order to see that this embedding is primitive, we prove that
N∗ ∩ L′ = N. In fact, taking n ∈ N∗ ∩ L′, we have ϕ([n]) ∈ (M∗ ∩ L)/(M ⊕ K),
but, since we assumed that M ↪→ L is primitive, then ϕ([n]) ∈ M and n ∈ N.
We conclude using the uniqueness of L. In fact, qL′ ≃ qL because ϕ preserves the
discriminant form, and from the inclusions M ⊕K ⊂ L and N ⊕K ⊂ L′ we deduce
that L and L′ share the same signature.

Proposition 1.17 ([26, Proposition 1.6.1]). An embedding of an even lattice M into an
even unimodular lattice L verifies:

qM ≃ −q⊥M

Moreover, given any two even lattices M, N such that qM ≃ −qN , there exist an even
unimodular lattice L and a primitive embedding M ↪→ L with M⊥ ≃ N.

Example 1.18. Consider an even lattice M of signature (r, n − r). Then M(−1) has
signature (n − r, r) and, as mentioned earlier, qM ≃ −qM(−1). The proposition
tells us that there exists an even lattice L such that M⊥ ≃ M(−1), but then L has
signature (n, n) and is unimodular, which means that L ≃ Un by Theorem 1.13.
The embedding can be made explicit by considering a basis {m1, . . . , mn} for M
and a basis {e(i)1 , e(i)2 }i=1,..,n constructing the map this way:

mi 7→ e(i)1 +
1
2

m2
i e(i)2 + ∑

j<i
(mimj)e

(j)
2 .

This is summed up by the following proposition:

Proposition 1.19. An even lattice M of rank n admits a primitive embedding M ↪→ Un.

We conclude this section with yet another result by Nikulin on lattice embeddings
which is related to Theorem 1.14

Theorem 1.20 ([22, Theorem 2.8]). Let M be an even lattice with signature (s+, s−) and
discriminant form qM, and let L be an even unimodular lattice with signature (t+, t−) and
discriminant form qL. Suppose that
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1. s+ < t+;

2. s− < t−;

3. l(AM) ≤ rk(L)− rk(M)− 2.

Then there exists a unique embedding M ↪→ L.

1.3 Lattices associated to Compact Kähler surfaces

When dealing with a compact Kähler complex surface X, we will focus on study-
ing the second cohomology group, namely H2(X, Z). If this group is torsion-free,
then the intersection pairing gives it an even lattice structure. According to the
Hodge Index Theorem, the signature of the resulting lattice is always (2h2,0 +

1, h1,1(X)− 1). This lattice proves to be a crucial tool in the study of the geometry
of surfaces, particularly when examining the automorphisms of compact Kähler
surfaces. In the upcoming chapters, we will explore how the Torelli theorems for
both K3 surfaces and Abelian varieties offer a fresh algebraic and topological per-
spective on the geometry of these surfaces. Now, let us introduce the key concepts
that will serve as the foundation for this approach. In particular: Hodge theory on
complex Kähler manifolds.

Proposition 1.21. Let X be a compact Kähler manifold. Then, for each integer k, the k-th
de Rham cohomology group Hk(X, C) admits a Hodge decomposition:

Hk(X, C) =
⊕

p+q=k

Hp,q(X),

where Hp,q(X) denotes the Dolbeault cohomology group of type (p, q). Moreover, the
complex conjugation on Hk(X, C) induces an isomorphism:

Hp,q(X) = Hq,p(X).

Proposition 1.22 ((1,1)-Lefschetz). Let X be a compact Kähler manifold. Then the image
of Pic(X)

c1−→ H2(X, Z) is H1,1(X, Z) := H1,1(X) ∩ H2(X, Z).

Proof. We begin with a class α ∈ H2(X, Z) ⊂ H2(X, C). Thanks to the bidegree
decomposition, we can write α = α2,0 + α1,1 + α0,2. Since α ∈ H2(X, Z) ⊂ H2(X, R)

it follows that α = α, therefore α2,0 = α0,2.
By hypothesis α ∈ Im(c1), so it also lies in the kernel of H2(X, Z) → H2(X,OX),
and it is easy to verify that the map H2(X, C) → H2(X,OX) given by the sheaf
inclusion C ⊂ OX coincides with the projection map H2(X, C) → H0,2(X); then
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α0,2 is zero, and thus α2,0 = α0,2 = 0.
In conclusion, α reduces to its (1,1)-component: α = α1,1 ∈ H1,1(X) ∩ H2(X, Z).

In order to give H2(X, Z) a lattice structure, first we need to define its bilinear
form. The next theorem comes into help, giving a thorough description of its sig-
nature.

Theorem 1.23 (Hodge Index Theorem). Let X be a compact complex surface, and con-
sider the intersection pairing

H2(X, R)× H2(X, R) → R, (α, β) 7→
∫

X
α ∧ β.

Then its signature is equal to (2h2,0(X) + 1, h1,1(X)− 1), where hi,j(X) := dim Hi,j(X)

are the Hodge numbers of the surface X. In particular, restricted to H1,1(X), the intersec-
tion pairing has signature (1, h1,1(X)− 1).

Proof. Here we use the restriction of the bidegree decomposition, H2(X, R) =

(H2,0(X)⊕ H0,2(X)⊕ H1,1(X)) ∩ H2(X, R), and the fact that H1,1 = H1,1, giving
the orthogonal splitting:

H2(X, R) =
(

H2,0(X)⊕ H0,2(X)) ∩ H2(X, R
)
⊕ H1,1(X, R).

The third component, H1,1(X) ∩ H2(X, R), can be further broken in two orthog-
onal components: ⟨[ω]⟩ ⊕ H1,1(X, R)p, where the last term represents the prim-
itive cohomology. This is due to the Lefschetz Hard Theorem, which states that
H2(X, R) = H2(X, R)p ⊕ LH0(X, R)p (here the operator L is the wedge product
with the Kähler form ω). We’ve come down to the decomposition

H2(X, R) =
(

H2,0(X, C)⊕ H0,2(X, C)
)
∩ H2(X, R)⊕ ⟨[ω]⟩ ⊕ H1,1(X, R)p

Now for the first summand, take α = α2,0 + α0,2 ∈ (H2,0(X)⊕ H0,2(X))∩ H2(X, R):
it follows that ∫

X
α ∧ α = 2

∫
X

α2,0 ∧ α0,2 = 2
∫

X
α2,0 ∧ ᾱ2,0 ≥ 0.

As for the Kähler class, instead, its square is positive because the Kähler form is a
positive form by definition.
Lastly, every form 0 ̸= α ∈ H1,1(X, R)p has strictly negative self-intersection by
Hodge-Riemann bilinear relation.

We need to describe the structure of H2(X, Z). First of all, let us define what a
Hodge structure of weight two is.
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Definition 1.24 (Hodge Structure of weight two). Let L be an even lattice. A Hodge
structure of weight two on L is a decomposition

L ⊗ C = L2,0 ⊕ L1,1 ⊕ L0,2

where, writing bL for the C-linear extension of the bilinear form of L, the following
properties hold:

1. L2,0 = L0,2 and L1,1 = L1,1;

2. bL(x, y) = 0 for x ∈ L2,0 ⊕ L0,2, y ∈ L1,1;

3. bL(x, y) = 0 for x, y ∈ L2,0;

4. bL(x, x̄) > 0 for x ∈ L2,0.

It is obvious that this definition mimics what we have seen in the proof of Hodge
Index Theorem. We need to introduce some more definitions.

Definition 1.25 (Signed Hodge structure of weight two). Given an even lattice L,
a Signed Hodge structure of weight two on L is given by the following data:

1. a Hodge structure of weight two on L where the quadratic form associated
to L, restricted to L1.1 ∩ (L ⊗ R), has signature (1, n − 1);

2. a choice of one of the two components of the cone

P(L) := {x ∈ L1.1 ∩ (L ⊗ R) | bL(x, x) > 0}

Definition 1.26 (Polarized Hodge structure of weight two). Given an even lattice
L, a Polarized Hodge structure of weight two on L is a Hodge structure of weight
two on L where the quadratic form associated to L, restricted to L1.1 ∩ (L ⊗ R), is
negative definite.

Definition 1.27 ((Signed) Hodge Isometry). Given two even lattices L and M, both
with a Hodge structure of weight two, a Hodge Isometry is an isometry ϕ : L ∼−→ M
that preserves the Hodge structure, that is, ϕ(Li,j) = Mi,j for i, j ∈ {0, 1, 2}.
A Signed Hodge Isometry is a Hodge Isometry that preserves the choice of the
component of the cone P(L).

Remark 1.28. Let X be a compact Kähler surface such that H2(X, Z) is torsion-free.
Consider the Stiefel-Whitney class ω2(TX) ∈ H2(X, Z/2Z) of the tangent bundle
of X. For any point v ∈ H2(X, Z) Wu’s formula says that

v2 ≡ ω2(TX) · v (mod 2).

Since ω2(TX) ≡ c1(X) (mod 2) and c1(X) = 0, we get that H2(X, Z) is an even
lattice. By Poincaré duality, H2(X, Z) is also unimodular, and its signature is
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(2h2,0 + 1, h1,1 − 1) due to Hodge Index Theorem. This lattice inherits a Hodge
structure of weight two thanks to Hodge Decomposition:

H2(X, Z)⊗Z C = H2(X, C) = H2,0(X)⊕ H1,1(X)⊕ H0,2(X).

Furthermore, its Kähler class [ω] defines a natural choice for the component of
the positive cone, namely the one containing all Kähler classes, giving H2(X, Z) a
Signed Hodge structure of weight two.

Additional structure can be defined over this remarkable lattice. To do so recall
that, for projective manifolds, the map Div(X) → Pic(X) which associates a divi-
sor D to the line bundle O(D) is surjective.

Definition 1.29. Let X be an algebraic complex surface; we define an equivalence
relation on Pic(X): if L1, L2 ∈ Pic(X) are two line bundles and D1, D2 ∈ Div(X)

their corresponding divisors then we say that

L1 and L2 are algebraically equivalent

⇐
⇒

D1 − D2 = Df, where Df is a principal divisor.

The subgroup of line bundles algebraically equivalent to zero is denoted Pic0(X),
and the associated quotient is called Neron-Severi group:

NS(X) := Pic(X)/ Pic0(X)

Its rank as a free Z-module is ρ(X).

Proposition 1.30. The Kernel of c1 : H1(X,O∗
X) → H2(X, Z) coincides with Pic0(X).

In other words NS(X) ≃ H1,1(X, Z).

Proof. This is due to the fact that for a divisor D ∈ Div(X), its corresponding
line bundle O(D) is mapped to [D] via the boundary map c1. It can be easily
proven using the language of connections with respect to hermitian structures on
line bundles. This is beyond the scope of this thesis, but the curious reader may
refer to [12] for a more detailed discussion on this topic.

Definition 1.31. Let X be a compact Kähler surface. The transcendental lattice of X
is the orthogonal complement of NS(X) in H2(X, Z), denoted by T(X).

The following theorem turns out to be very useful when dealing with projective
surfaces.
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Theorem 1.32 ([16, Kodaira]). Let X be a compact complex Kähler surface. X is projec-
tive if and only if there exists a line bundle F on X of positive self-intersection.

In the context of projective surfaces, X always admits a line bundle of positive
self-intersection: namely, the restriction to X of O(1). For this reason, we can
deduce that projective complex surfaces all have the following properties: NS(X),
seen as an even lattice, has signature (1, ρ(X) − 1), and T(X) inherits a Hodge
structure which turns out to be a Polarized Hodge structure, since its signature is
(2h2,0(X), h1,1(X)− ρ(X)).

We conclude with a theorem that justifies the spirit of the following sections.

Theorem 1.33 ([16, Kodaira]). Let X be a compact complex Kähler surface whose canon-
ical bundle is trivial, i.e. ωX ≃ OX. Then h2,0(X) = 1 by Serre Duality and we only have
two possibilities:

• X = C2/Λ is a complex torus of dimension 2;

• X is a K3 surface.



Chapter 2

K3 surfaces

In this chapter we introduce the foundational definitions and main results about
K3 surfaces. We will combine the concepts introduced in the first chapter to study
closely the lattice structure of the group H2(X, Z). This structure is capable of fully
describing the geometry of a K3 surface, as stated in the global Torelli theorem for
K3 surfaces. In Section 2, we will define the K3 lattice, i.e., a particular unimodular
lattice to which every H2(X, Z) is isomorphic, for any K3 surface X.
In the treatment of finite-order symplectic automorphisms, thanks to Nikulin’s
results on the uniqueness of the action of symplectic automorphism groups on
the K3 lattice, algebraic tools will be provided to determine the existence of such
automorphisms on a surface X.

2.1 Core aspects of K3 surfaces

Definition 2.1. A K3 surface is a compact connected complex surface X such that
H1(X,OX) = 0 and its canonical bundle is trivial, ωX ≃ OX.

Note that there are many equivalent definitions for complex K3 surfaces. In a more
general context one might allow K3 surfaces to be defined on an arbitrary field k,
defining them as separated, geometrically integral k-schemes of finite type with
the same two triviality conditions: ωX/k ≃ OX and h1(OX) = 0. We are interested
in the complex case and, thanks to Serre’s GAGA1, we know that these two def-
initions -one in terms of Complex Manifolds and the other using the language of
Schemes- are, indeed, equivalent when considering algebraic K3 surfaces over C.
Of course, not all complex K3 surfaces are projective, which is why we decide to
adopt this specific definition.

1It stands for ’Géometrie Algébrique et Géométrie Analytique’, a theorem by Jean-Pierre Serre.

13
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Remark 2.2. The well known exponential sequence for a complex manifold X

0 → 2πiZ → OX
exp−→ O∗

X → 1 (2.3)

yields the long exact sequence in cohomology:

0 → H1(X, Z) → H1(X,OX) → H1(X,O∗
X)

c1−→
→ H2(X, Z) → H2(X,OX) → H2(X,O∗

X) → · · · .

In the case of K3 surfaces, using that H1(X,OX) = 0, we get H1(X, Z) = 0 and,
by Poincarè duality, H3(X, Z) = 0 over its free part. Moreover, H4(X, Z) ≃
H0(X, Z) ≃ Z and H2(X, Z) can be computed two ways: the first relies on the
fact that all K3 surfaces are Kähler, which is somewhat excessive for the complex-
ity of the proof of the result due to Siu[31]. The second one requires only to know
that, for X compact complex surface, the Hodge–Frölicher spectral sequence de-
generates at the first page:

H1(X, C) ≃ H1,0(X)⊕ H0,1(X). (2.4)

Thus, using Noether’s formula for surfaces

X (X,OX) =
(ωX.ωX) +X (X)

12
, (2.5)

and recalling that ωX ≃ OX, we obtain X (X) = 12X (X,OX).
Next, applying Serre’s duality (which holds for compact complex surfaces in gen-
eral), we find:

h2(OX) = h0,2(X) = h2,0(X) = dim H0(X,∧2ΩX) = dim H0(X,OX) = 1.

Therefore, X (X,OX) = h0(OX)− h1(OX) + h2(OX) = 1 − 0 + 1 = 2 . From equa-
tion (2.5), we get:

24 = X (X) =
4

∑
i=0

(−1)ihi(X) = h0(X)− h1(X) + h2(X)− h3(X) + h4(X).

Now, since h1(X) = h3(X) = 0 and h0(X) = h4(X) = 1, we deduce that h2(X) =

22. At this point we can draw the Hodge diamond of every (Kähler) K3 surface:

The K3 Hodge Diamond:

1
0 0

1 20 1
0 0

1

. (2.6)
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From now on, we assume all our surfaces to be algebraic (meaning they are pro-
jective complex surfaces).

Proposition 2.7. If X is a K3 surface ρ(X) = rk(Pic(X)) ≤ 20.

Proof. Recall that H1(X,O∗
X) ≃ Pic(X). The Proof now follows from (1, 1)-Lefschetz

and from the fact that h1,1(X) = 20 for K3 surfaces.

Remark 2.8. If X is a K3 surface it is clear that, since H1(X,OX) = 0, we have the
isomorphism Pic(X) ≃ NS(X). This will not be the case for complex tori, as we
will prove in the next chapter.

2.2 The K3 lattice

In this section we state the two main results about K3 surfaces, namely the Global
Torelli Theorem and the Surjectivity of the period map. The whole theory of K3 surfaces
is based on the fact that, since H2(X, Z) is torsion-free, every K3 surface X inherits
a lattice structure via the intersection pairing. This symmetric bilinear form coin-
cides with the cup product in cohomology, and the resulting lattice is unimodular
thanks to Poincaré duality.

Theorem 2.9. For every K3 surface X there exists an isometry

ϕ : H2(X, Z)
∼−→ U3 ⊕ E8(−1)2.

Proof. This follows from Theorem 1.13. Precisely, we already proved that H2(X, Z)

is an even unimodular lattice and, since h1,1(X) = 20 ≥ 2, it is indeed indefinite.
Now from the fact that h2 = 22 we have H2(X, Z) ≃ Un ⊕ E8(−1)m with the fol-
lowing possible values for (n, m): {(11, 0), (7, 1), (3, 2)}. Comparing the signatures
of these even lattices with that of H2(X, Z) given by Hodge Index Theorem (1.23),
namely (2h2,0 + 1, h1,1 − 1) = (3, 19), we conclude H2(X, Z) ≃ U3 ⊕ E8(−1)2.

This lattice plays a central role in the theory of K3 surface, so we need a proper
definition.

Definition 2.10 (The K3 lattice). We define the K3 lattice ΛK3 as the direct sum
U3 ⊕ E8(−1)2 . In contexts where it is obvious, we will denote it simply by Λ.

Remark 2.11. To summarize what has been discussed so far, we can list some prop-
erties of the even lattice ΛK3.

• Its signature is (3, 19), hence it is an indefinite lattice.
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• It is a unimodular lattice, and consequently, the primitive embedding of
NS(X) into H2(X, Z) is unique up to isomorphism thanks to Theorem 1.20.
This also holds for its orthogonal complement, namely T(X).

• Every K3 surface admits an isomorphism ϕ : H2(X, Z)
∼−→ ΛK3 thanks to

Theorem 2.9.

Example 2.12. An interesting even lattice isometric to the K3 lattice ΛK3 has already
been mentioned in Example 1.12. Indeed, the lattice L :=

(
U ⊕ A2 ⊕ E6(−1)3)′′ is

unimodular and has signature (3, 19). By Corollary 1.15, we conclude that L ≃
ΛK3. This description of the second integral cohomology group of K3 surfaces will
be crucial when proving the existence of order three symplectic automorphisms
for certain K3 surfaces (see 4.2.1).

In order to properly understand the relation between lattices and automorphisms
of projective complex surfaces, we need to invoke Global Torelli Theorem for K3
surfaces.

Definition 2.13 (Kähler Cone). The Kähler cone of a complex Kähler surface X is
the open convex cone of Kähler classes and we denote it by KX.

Theorem 2.14 (Global Torelli for K3 surfaces). Let X, Y be two complex K3 surfaces.
There exist an isomorphism f : X ∼−→ Y of K3 surfaces if and only if there exist a Hodge
isometry of even lattices ϕ : H2(Y, Z)

∼−→ H2(X, Z). Moreover, for every Hodge isometry
ϕ : H2(Y, Z)

∼−→ H2(X, Z) such that ϕ(KY) ∩ KX ̸= ∅, there exist an isomorphism
f : X ∼−→ Y which verifies f ∗ = ϕ.

This theorem allows one to shift focus from the geometric to the algebraic setting
and it also provides a powerful new method for constructing such isomorphisms.
One might wonder if any lattice isomorphic to Λ comes from the second integral
cohomology group of a K3 surface. The answer is affirmative when the lattice
comes with a signed Hodge structure of weight two, and it follows from the so
called Surjectivity of the Period Map. We state it without further discussion, as its
proof goes somewhat beyond the scope of this thesis. We direct the reader to [11]
for a comprehensive treatment of the topic. By the term period of a K3 surface X we
refer to the associated lattice H2(X, Z), together with a signed Hodge structure of
weight two.

Theorem 2.15 ([13, Theorem 7.4.1]). For every signed Hodge structure of weight two
on the lattice ΛK3 there exist a K3 surface X and a signed Hodge structure isomorphism

ϕ : ΛK3
∼−→ H2(X, Z).
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2.3 Symplectic Automorphisms of K3 surfaces

In this section we present an overview of the basic results about finite order sym-
plectic automorphisms. The reason for studying these kind of automorphisms is
the nature of the singular points of the quotient space: these are DuVal singulari-
ties admitting a minimal resolution which yields again a K3 surface.

Definition 2.16. Let X be a K3 surface. An automorphism f : X ∼−→ X is called
symplectic if its induced action on the second cohomology group H2(X, Z) pre-
serves the symplectic form, i.e. f ∗|H2,0(X) ≡ id |H2,0(X). Otherwise, we say that f is
non-symplectic.

Example 2.17. Let X be the quartic defined by the polynomial f (z0, z1, z2, z3) =

z4
0 + z4

1 + z4
2 + z4

3 in P3. First note that X is a K3 surface, in fact from the adjunction
formula ωX ≃ ωP3 |X ⊗O(4)|X ≃ OX and we also have the exact sequence

0 → O(−4) → O → OX → 0,

which yields H1(X,OX) = 0. Here we are using many tools, namely Kodaira Van-
ishing, the fact that Hi(X,OX) = Hi(P3, i∗OX) (under the inclusion i : X ↪→ P3)
and also some knowledge about the cohomology of the projective space. This
surface is naturally endowed with automorphisms given by permutations of co-
ordinates in P3, i.e. S4 is a group of finite automorphisms. These are obviously
automorphisms of the surface, since they come from projective transformations.
Using theory of residues, one can check that the action of every permutation is
also symplectic. This class of automorphisms on X can be expanded by also mul-
tiplying each coordinate by a 4-th root of unity.

Remark 2.18. The condition f ∗|H2,0(X) ≡ id |H2,0(X) is equivalent to f ∗|T(X) ≡ id |T(X).
If f acts as the identity on H2,0(X) then it is obvious that f acts trivially also on
H0,2(X), so any integral form α for which f ∗(α) ̸= α actually belongs to the Neron-
Severi group. This means that f ∗ is the identity map on T(X) = NS(X)⊥. Con-
versely suppose f ∗|T(X) ≡ id|T(X), then f ∗|T(X)⊗C = id |T(X)⊗C too, and we are
done, since T(X)⊗ C = H2,0(X)⊕ H0,2(X).

We are interested in symplectic automorphisms of finite order. The hypothesis of
finiteness is essential and the following lemma provides a compelling justification
for this assumption.

Lemma 2.19. Let f : X ∼−→ X be a symplectic automorphism of order n of a K3 surface
X. For every fixed point x there exist local holomorphic coordinates (z1, z2) around x and
a n-th primitive root of unity λ such that f (z1, z2) = (λz1, λ−1z2).
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Proof. On a proper neighbourhood U of x we have x = 0 ∈ U ⊂ C2. Here there ex-
ist local holomorphic coordinates given by g(y) := 1

n ∑n
i=1(d0 f )−i f i(y) where d0 f

is the differential of f in x = 0. Indeed, d0g = 1
n ∑n

i=1(d0 f )−i(d f )i = id. With this
choice one has g( f (y)) = 1

n ∑n
i=1(d0 f )−i f i+1(y) = (d0 f ) 1

n ∑n
i=1(d0 f )−i−1 f i+1(y) =

(d0 f )(g(y)), where we used the fact that f n+1(y) = f (y) and (d0 f )−n−1 = (d0 f )−1

given by the finite order nature of the automorphism f . As a consequence, using
coordinates (z1, z2) = g(y), we can rewrite f as a linear application d0 f , which,
under the right choice of basis, can be written as a diagonal matrix(

λ1 0
0 λ2

)
.

Notice that we excluded the non-diagonal Jordan-block case because f n = (d0 f )n =

id. Now f is symplectic, and therefore its determinant must equal 1 (this can
be easily seen by writing the non-zero holomorphic symplectic form around x as
dz1 ∧ dz2 and noticing that the action of f preserves it). This yields λ = λ1 = λ−1

2 .
The finite order condition also ensures that λ is an n-th root of unity. Moreover, we
can conclude that it is also a primitive root, since any k < n such that λ is a k-th
root of unity would yield f k = id in a neighbourhood of x = 0, which extends to
the whole surface X giving a contradiction.

In other words, a symplectic automorphism f acts locally on a K3 surface as an
element of SL(2, C). As a corollary we have the following:

Corollary 2.20. Let G be a finite abelian group of automorphisms acting symplectically
on a complex K3 surface X. For any fixed point x ∈ X, the group StabG(x) is a subgroup
of SL(2, C).

Note that the structure of finite abelian subgroups of SL(2, C) is thoroughly de-
scribed via the McKay classification.

Theorem 2.21 ([18, McKay]). Every finite abelian subgroup of SL(2, C) is cyclic.

Remark 2.22. One could go through the proof of Lemma 2.19 without the assump-
tion that f is symplectic, obtaining that there exist holomorphic local coordinates
(z1, z2) around a fixed point x ∈ X, in which the automorphism f can be written
as a linear application.

The singularities arising from the quotient space of a K3 surface X by a symplec-
tic automorphism of finite order f are ADE-type singularities, thanks to Corol-
lary 2.20, and thus they admit a minimal resolution which is crepant (meaning
the resolution does not affect the canonical bundle). Moreover, ωX is preserved
by definition of symplectic automorphism. Since any one-form on the resolution
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of the quotient would yield a one-form on the quotient (and thus on X), one can
use Theorem 1.32 to prove that the resulting surface is again a K3 surface. This is
summarized by the following theorem:

Theorem 2.23. Let f : X ∼−→ X be a symplectic automorphism of finite order on a K3
surface and denote by Y the quotient X/ f . Then Y admits a minimal resolution Ỹ → Y
which is crepant and such that Ỹ is a K3 surface.

Corollary 2.24. Let f : X → X be a non-trivial symplectic automorphism on a K3
surface. Then

|Fix( f )| = 24
n ∏

p|n

(
1 +

1
p

)−1

.

In particular 1 ≤ |Fix( f )| ≤ 8.

Proof. We use the Lefschetz fixed point formula for biholomorphic automorphisms:

∑
i
(−1)i Tr( f ∗|Hi(X,OX)

) = ∑
x∈Fix( f )

det(id−dx f )−1.

One should remember that h0,0 = h0,2 = 1, h0,i = 0 for i ̸= 0, 2 and, since f
is symplectic, it acts trivially on h0,2. This gives ∑i(−1)i Tr( f ∗|Hi(X,OX)

) = 2 and
proves |Fix( f )| > 0. For the right hand side of the formula, we know that for any
k ∈ N such that (k, n) = 1 the points fixed by f and those fixed by f k coincide, and
in general the expression can be written as

2 = ∑
x∈Fix( f )

1
(1 − λx)(1 − λ−1

x )

= ∑
x∈Fix( f )

1
(1 − λk

x)(1 − λ−k
x )

= ∑
(k,n)=1

1
ϕ(n) ∑

x∈Fix( f )

1
(1 − λk

x)(1 − λ−k
x )

.

Here by λx we mean the primitive n-th root of unity discussed in Lemma 2.19,
which depends on the fixed point x. Please note that the inequality |Fix( f )| ≤ 8
comes from the fact that |1 − λ±k

x | ≤ 2. To conclude, the last term of the above
chain of equalities can be simplified using a Lemma by S. Mukai [23, Lemma 1.3]
yielding

2 = ∑
(k,n)=1

1
ϕ(n) ∑

x∈Fix( f )

1
(1 − λk

x)(1 − λ−k
x )

= ∑
x∈Fix( f )

1
ϕ(n)

n2

12 ∏
p|n

(
1 − 1

p2

)−1

.

The corollary is proved using ϕ(n) = n ∏p|n

(
1 − 1

p

)
.
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This corollary is of huge importance in the study of K3 surfaces. As an application
of it, we provide an example of non-symplectic automorphism.

Example 2.25. Let X be the Fermat quartic surface in P3. Consider î ∈ PGL(3, C)

defined as î([z0 : z1 : z2 : z3]) = [z0 : iz1 : −z2 : −iz3]. It is obvious that î|X :
X → X is an automorphism on the surface X, and since no points are fixed, f must
be non-symplectic, due to Corollary 2.24. Its quotient Y = X/î has a non-trivial
canonical bundle, since the symplectic form α ∈ ωX gets killed by the quotient (it
is not preserved under the non-symplectic involution), and therefore h2,0(Y) = 0.
Moreover, the double covering π : X → Y yields the relation π∗π∗(ωY) = ω⊗2

Y ,
but π∗ωY = ωX = OX and π∗(OX) = OY, therefore ω⊗2

Y = OY. This is an
example of an Enriques surface, i.e. a compact complex surface such that h2,0 = 0
and ω⊗2

X = OX. In fact, every quotient of a K3 surface by a fixed point free non-
symplectic automorphism is an Enriques surface.

Remark 2.26. Non-symplectic automorphisms, by definition, do not act as the iden-
tity on H2,0(X); instead, it is easy to verify that they multiply the nowhere vanish-
ing holomorphic two-form by a n-th root of unity, where n is a divisor of the order
of the automorphism. Note that this root of unity need not to be primitive, as one
can see in the case of some non-symplectic automorphisms of order 4.

Our primary focus will be on the study of symplectic automorphisms. Indeed, in
the context of Shioda-Inose structures, both the automorphism on the K3 surface
and the automorphism on the Abelian surface are symplectic.
Currently, we already have many tools that allow us to enhance our understand-
ing of finite order symplectic automorphisms on K3 surface. For instance, Corol-
lary 2.24 states that the number of fixed points depends only on the order of the
automorphism, while Lemma 2.19 explains how these automorphisms act locally
on the surface. Furthermore, only certain finite orders are allowed for symplectic
automorphisms, as stated by the following Lemma:

Lemma 2.27. For any symplectic automorphism f : X ∼−→ X of finite order n, it holds
that n ≤ 8.

Proof. First of all we show that the invariant part H∗(X, C) f ⊂ H∗(X, C) has
complex dimension at least five. This is due to the fact that H0(X) ⊕ H2,0(X) ⊕
H0,2(X)⊕ H4(X) obviously is contained in H∗(X, C), which gives dim H∗(X, C) f ≥
4, together with the fact that for any ample class α ∈ NS(X) (we can take the re-
striction of OPn(1)) the sum ∑n

i=1( f i)∗α is preserved under the action of f and it
is again ample (remember that f acts as an isometry on H2(X, Z)). This yields
dim H∗(X, C) f ≥ 5. Now 1

n ∑n
i=1( f i)∗ can be seen as the projector on the subspace
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H∗(X, C) f , since it is the identity on this subspace and it is idempotent. This gives

n

∑
i=1

Tr(( f i)∗) = n dim H∗(X, C) f ,

which, using Lefschetz formula and the fact that f n = id, can be rewritten as

24 +
n−1

∑
i=1

|Fix( f i)| = n dim H∗(X, C) f .

Now, from Corollary 2.24 and the fact that dim H∗(X, C), we get the upper limit
for n.

Now we turn our attention to lattices and, using results from the previous section,
we give necessary and sufficient conditions for the existence of symplectic auto-
morphisms of a given order on a K3 surface X. This field has been deeply studied
by Nikulin in his PhD thesis (see [25]), and we will make great use of these results
in the upcoming chapters.

Definition 2.28. Let f : X ∼−→ X be a symplectic automorphism of finite order n on
a K3 surface X. We define

TX, f := H∗(X, C) f and NX, f := L⊥
X, f .

Lemma 2.29 ([25, Lemma 4.2]). Let f : X ∼−→ X be a symplectic automorphism of finite
order n on a K3 surface X. Then

1) NX, f is negative definite;

2) NX, f contains no element with square −2;

3) NX, f ⊂ NS(X) and T(X) ⊂ TX, f .

Proof. Assertion 3) follows from the very definition of symplectic automorphism.
Assertion 1) is true because, as before, for an ample class α ∈ H1,1(X) one has that
α̂ := ∑n

i=1( f i)∗α is again ample and invariant under the action of f . Therefore α̂ ∈
NS(X) f , which means that NX, f ⊂ α⊥. Now we can conclude using Hodge index
theorem, which guarantees that NX, f is negative definite. Lastly, thanks to the
Lefschetz theorem on (1, 1)-classes and Riemann-Roch formula, any element with
square −2 corresponds to an effective Divisor on the surface X. Effective divisors,
though, intersect the ample divisor positively, giving a contradiction which proves
assertion 2).

Nikulin utilized the Global Torelli theorem for K3 surfaces (Theorem 2.14), proved
by Piatetski-Shapiro and Šafarevič, to provide a pseudo-version of the converse of
the statement:
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Theorem 2.30. Let f ∈ O(ΛK3) be an isometry of the K3 lattice. Then f acts as a
symplectic automorphism on a K3 surface X if the following conditions hold:

1) N f := (Λ f
K3)

⊥ is negative definite;

2) N f contains no element with square −2;

Nikulin’s main result is the following:

Theorem 2.31 ([25, Theorem 4.5]). Let G be a finite abelian group acting symplectically
on a K3 surface. Then G has a unique action on ΛK3, hence the lattice ΩG := (ΛG

K3)
⊥

is uniquely determined by G, up to isometry. In particular, the action of any symplectic
automorphism on a K3 surface is uniquely determined by its order.

This allows us to talk about ”the lattice fixed by a symplectic automorphism of order n
and its orthogonal which is denoted as Ωn”. This is possible because Theorem 2.31
tells us that the said lattice is unique up to isometry. Equivalently, we talk about
ΩG as the lattice orthogonal to the lattice fixed by the symplectic automorphisms group
G. The following answers the question of the existence of a group of symplectic
automorphisms on a K3 surface.

Theorem 2.32 ([25, Theorem 4.15]). Let X be a K3 surface and let G be a finite abelian
group. Then G acts as a group of symplectic automorphisms of X if and only if there is a
primitive embedding ΩG ↪→ NS(X). In particular, a K3 surface admits an automorphism
of order n if and only if there is a primitive embedding Ωn ↪→ NS(X).

Remark 2.33. Note that in order for ΩG to be well-defined, there must exist a K3
surface X admitting an action of G as a group of symplectic automorphisms.

Remark 2.34. For non-abelian groups the same arguments as Theorem 2.31 follow,
except for five groups. See [10] for a detailed discussion on the topic.

Remark 2.35. Theorem 2.32 not only represents the core of Nikulin’s work, but also
gives birth to the study of finite groups acting as symplectic automorphisms on
K3 surfaces, which was later carried on by S. Mukai in [23], S. Kondo in [17], D. R.
Morrison in [22], K. Hashimoto in [10], A. Sarti and A. Garbagnati in [6], [7] and
A. Garbagnati in [4] and many others.

Nikulin’s work yielded the description of finite abelian groups acting as symplec-
tic automorphisms groups on K3 surfaces.

Theorem 2.36. Let G be an abelian group acting symplectically on a K3 surface. Then G
is one of the followings:

Z/nZ, 2 ≤ n ≤ 8, (Z/mZ)2, m = 2, 3, 4,

Z/2Z × Z/4Z, Z/2Z × Z/6Z, (Z/2Z)i, i = 3, 4.
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We conclude with a useful result by A. Garbagnati and A. Sarti (see [7] for the
complete classification, which contains all the abelian groups of Theorem 2.36).

Theorem 2.37. Let f : X ∼−→ X be a symplectic automorphism of finite order on a K3 sur-
face X. Then f has order n ∈ {2, 3, 4, 5, 6, 7, 8} and the following table lists the invariant
and co-invariant lattice for each case:

n rk(ΩG) discr(ΩG) Ω∨
G/ΩG rk(Ω⊥K3

G ) Ω⊥K3
G

2 8 28 (Z/2Z)8 14 E8(−2)⊕ U⊕3

3 12 36 (Z/3Z)6 10 U ⊕ U(3)⊕2 ⊕ A⊕2
2

4 14 210 (Z/2Z)2 ⊕ (Z/4Z)4 8 Q4

5 16 54 (Z/5Z)4 6 U ⊕ U(5)⊕2

6 16 64 (Z/6Z)4 6 U ⊕ U(6)⊕2

7 18 73 (Z/7Z)3 4 U(7)⊕
[

4 1
1 2

]

8 18 83 Z/2Z ⊕ Z/4Z ⊕ (Z/8Z)2 4 U(8)⊕
[

2 0
0 4

]

where

Q4 :=



0 4 0 2 0 −1 0 0
4 0 4 4 −4 0 0 −4
0 4 0 0 0 0 0 0
2 4 0 0 0 −1 0 0
0 −4 0 0 −2 −1 0 −2
−1 0 0 −1 −1 −2 1 1
0 0 0 0 0 1 −2 0
0 −4 0 0 −2 1 0 −2


.



Chapter 3

Abelian Surfaces

We now shift our focus to complex tori, beginning with a discussion of their main
invariants and properties. Furthermore, we will characterize projective complex
tori using two different approaches. In Section 2 we restrict our attention to pro-
jective complex tori of dimension two, also known as Abelian varieties. In this
context, we will make extensive use of the lattice theory concepts introduced in
Chapter 1. We will briefly review the surjectivity of the period map for Abelian
surfaces, due to Shioda, before moving on to the work of Fujiki on symplectic au-
tomorphisms of finite order on Abelian surfaces. Here, we provide a classification
of Abelian surfaces admitting an automorphism of order n, for all possible integer
values of n. Finally, we conclude with some examples.

3.1 Core aspects of Complex tori

Definition 3.1. A (full) lattice in Cn, denoted Γ, is a lattice obtained as the free group
over a set of elements T = {z1, . . . , z2n} ⊂ R2n such that T generates Cn as a real
vector space.

Definition 3.2 (Complex Torus). For any complex vector space V ≃ Cn we define
a lattice in V as a lattice Γ ⊂ R2n ≃ V such that Γ is a set of generating vectors.
In this setting, a complex torus of dimension n is a quotient V/Γ.

We will often implicitly choose a basis for V, and refer to a complex torus just as
the quotient Cn/Γ.

Definition 3.3 (Complex Lie Group). A complex Lie group of dimension n is a n-
dimensional complex manifold X which is also a group such that the map

µ : X × X → X such that µ(x, y) = xy−1

24
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is a holomorphic map.

This definition is justified by the following:

Lemma 3.4. Every connected compact complex Lie group X of dimension n is in a natural
way a complex torus.

Proof. We first show that X is abelian. Consider the holomorphic map ϕ : X × X →
X ϕ(x, y) = xyx−1y−1 and let U be a neighbourhood of 1 ∈ X. For every x ∈ X
ϕ(x, 1) = 1, there exist Vx a neighbourhood of x and Wx a neighbourhood of 1 such
that ϕ(Vx, Wx) ⊂ U. By compactness of X we deduce that there exist Vx1 , . . . , Vxn

such that
⋃n

i=1 Vxi = X, and denote W :=
⋂n

i=1 Wxi . It follows that ϕ(X, W) ⊂ U,
and since for any y ∈ W the map ϕ(x, y) is a holomorphic map on the compact
manifold X, ϕ|X×{y} is constant. Moreover ϕ(1, y) = ϕ(y, 1) = 1 for every y ∈ W,
which implies that ϕ|X×W is constant. Now by analytic continuation ϕ is constant
and therefore X is abelian.
In order to conclude that X is a complex torus we need a little bit of theory of Lie
groups (see [19]), indeed the exponential map exp : Cn → X is a homomorphism
which is a local diffeomorphism. Its image is an open subgroup of X, which is
connected. Therefore the exponential map is surjective and its kernel is a discrete
closed subgroup Γ ⊂ Cn. Since X is compact, Γ must be a full lattice.

Definition 3.5. A complex torus that is also projective is referred to as an Abelian
variety. When its complex dimension is one, it is known as an elliptic curve, while
in dimension two, it is called an abelian surface.

Remark 3.6. Let A = V/Γ be a complex torus of dimension n. Then V → A is the
universal covering of A, and therefore Γ = π1(A). Since this group is abelian, we
also have H1(A, Z) = Γ, and by the Universal Coefficient Theorem it follows that
H1(A, Z) = Γ∗, as H0(A, Z) is torsion-free.

Proposition 3.7. Let A = V/Γ be a complex torus of dimension n. Then its integral
cohomology groups are all computed as Hk(A, Z) =

∧k H1(A, Z).

Proof. In order to compute integral cohomology groups, we apply the Künneth
formula to (S1)

n ≃ A, which reads as

Hk
(
(S1)

n
)
= Hk

(
(S1)× (S1)

n−1
, Z
)

≃
⊕

i+j=k

Hi
(

S1, Z
)
⊗ H j

(
(S1)

n−1
, Z
)

.

Now we proceed by induction and suppose that it holds H j(Sn−1, Z) =
∧j H1(Sn−1, Z).
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Therefore

⊕
i+j=k

Hi
(

S1, Z
)
⊗ H j

(
(S1)n−1, Z

)
≃

⊕
i+j=k

∧i
H1
(

S1, Z
)
⊗
∧j

H1
(
(S1)n−1, Z

)
.

Furthermore, since H1((S1)
n, Z) ≃ H1(S1, Z)⊕ H1((S1)

n−1, Z) there is an isomor-
phism

∧k H1((S1)
n, Z) ≃ ⊕

i+j=k

(∧i H1(S1, Z)⊗∧j H1((S1)n−1, Z)
)

. This is true
by Vandermonde’s Identity, but one can also check this by writing down bases.
Now we’ve shown that Hk((S1)

n
) ≃ ∧k H1((S1)

n, Z), and since the cohomology
of S1 is well known we conclude the proof.

Remark 3.8. Let A be a complex torus of dimension n. We want to calculate hodge
numbers hp,q for A. For simplicity let A = Cn/Γ. Since the Kähler form as-
sociated to the flat metric on Cn is preserved under the action of Γ, A is again
a Kähler manifold and its hodge numbers can be calculated by counting har-
monic forms. Indeed Hq(A, Ω⊗p

A ) is spanned by {αi1,...,ip,j1,...,jq dz1 ∧ · · · ∧ dzp ∧ dz̄1 ∧
· · · ∧ dz̄q | ∆αi1,...,ip,j1,...,jq = 0}. All these αi1,...,ip,j1,...,jq are global holomorphic form,
and from the compactness of A we deduce they must be constant. This yields
hp,q(X) = (n

p)(
n
q) (if max{p, q} > n we just use symmetries of the Hodge diamond).

Inputting n = 2 we obtain the Hodge diamond of complex tori of dimension two:

Complex Tori of dimension two Hodge Diamond:

1
2 2

1 4 1
2 2

1

. (3.9)

Proposition 3.10. For every complex torus A of dimension two there exists an isomor-
phism

ϕ : H2(X, Z)
∼−→ U3.

Proof. From Remark 3.8 and Hodge Index Theorem (1.23) we deduce that H2(A, Z)

has signature (3, 3). Now by Theorem 1.13, there exists an isomorphism H2(X, Z) ≃
U3 which concludes the proof.

Lemma 3.11. A compact Kähler manifold X is projective if and only if the Kähler cone
contains some integral classes, i.e. KX ∩ H2(X, Z) ̸= ∅.

Proof. If KX ∩ H2(X, Z) ̸= ∅, then consider ω ∈ H2(X, Z) ∩ KX, by definition
of Kähler class, one has that ω2 > 0. Kodaira embedding ensures that the corre-
sponding line bundle Lω is ample, and therefore X is projective.
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Conversely, if X is projective, then the restriction of the Fubini-Study Kähler form
is positive and integral (it is the class corresponding to the restriction of O(1)).

Proposition 3.12. [12] Let A = V/Γ be a complex torus of dimension n. Then X is
projective, if and only if there exists an alternating bilinear form ω : V × V → R such
that:

1) ω(iu, iv) = ω(u, v)

2) ω( · , i ·) is positive definite

3) ω(u, v) ∈ Z for u, v ∈ Γ

Proof. Thanks to the alternating nature of ω and condition 1), we can interpret ω

as a two-form ω ∈ ∧2 V∗ ≃ H2(A, R) ⊂ H2(A, C). Moreover condition 2) ensures
that ω is a Kähler form. Since condition 3) is equivalent to ω ∈ H2(A, Z), Lemma
3.11 translates exactly into the statement of this proposition.

What we’ve just discussed can be expressed using the language of Hodge struc-
tures, which will prove to be very useful in the theory of Abelian surfaces. In this
context we will introduce a definition very similar to Definition 1.24.

Definition 3.13. A integral Hodge structure of weight k is a free finitely-generated
Z-module L, together with a direct sum decomposition

L ⊗ C =
⊕

p+q=k

Lp,q.

No requirement on the associated bilinear form has been done. This is necessary
to prove the following:

Proposition 3.14. There is a natural bijection between the set of isomorphisms classes of
complex tori and the set of isomorphisms of integral Hodge structures of weight one.

Proof. This is canonical. For an integral Hodge structure L we consider the lattice
in C given by L ∩ L1,0. The quotient L1,0/L is a complex torus, and any isomor-
phism of two integral Hodge structures of weight one L′ ≃ L clearly gives an
isomorphism of complex tori L′1,0/L′ ≃ L1,0/L. Conversely, consider a complex
torus A := Cn/Γ, as we’ve already proved H1(A, Z) = Γ, and the natural com-
plex structure on Cn endows the real vector space Γ ⊗ R with a complex structure.
Therefore, we have a decomposition

(Γ ⊗ R)⊗ C = Γ1,0 ⊕ Γ0,1,
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which is a Hodge structure of weight one. These two constructions are inverse
to each other, since there exist isomorphisms Cn ≃ Γ ⊗ R ≃ Γ1,0, of real vector
spaces.
Moreover, given any other complex torus A′ := Cn/Γ and a complex tori iso-
morphism A ≃ A′, the latter is induced by a unique (up to translation) C-linear
isomorphism ϕ : Cn ∼−→ Cn such that ϕ(Γ) = Γ′.

Now we need to fix a bilinear form, and we come back to lattices as we did in the
first chapter.

Definition 3.15. Let L be an integral Hodge structure of weight k. Define h : C∗ →
GL(L ⊗C) as h(z)α = (zp z̄q) · α for every α ∈ Lp,q. A polarization on L is a bilinear
form

( , ) : L × L → Z,

such that:

1) (h(z)α, h(z)β)C = (zz̄)k(α, β)C for every z ∈ C

2) (· , h(i)·)C is symmetric positive definite over (L ⊗ R)× (L ⊗ R).

Where we have used the C-linear extension of the bilinear form.

Please note that this definition is very similar to the definition of a polarized Hodge
Structure of weight two. The requirement that (· , h(i)·) is symmetric positive def-
inite creates a link between polarized Hodge structures and integral Kähler forms.
Now Proposition 3.12 reads as follows

Corollary 3.16. Let L be an integral Hodge structure of weight one endowed with a po-
larization. Then its corresponding complex torus is projective.

Proof. It sufficies to observe that conditions 1) and 2) of Definition 3.15 give a
Kähler form which is also integral due to its very definition.

As a corollary, we have a nice result for elliptic curves:

Corollary 3.17. All complex tori of dimension one are projective.

Proof. The corresponding Hodge structure of weight one is L = ⟨Γ⟩ = ⟨z1, z2⟩,
together with the decomposition ⟨Γ⟩C = Γ1,0 ⊕ Γ0,1 into two one-dimensional sub-
spaces. This structure admits a natural polarization given by the intersection prod-
uct. This is true by direct application of the Hodge-Riemann bilinear relations.

Remark 3.18. We would like to stress the equivalence between the different lan-
guages we used so far. For compact Kähler manifolds, being projective is a matter
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of having a positive class in H1,1(X, Z) = NS(X). For a complex torus A = V/Γ
of dimension n, this translates into the existence of an alternating bilinear form
on V∗ ≃ R2n, by H2(X, R) ≃ ∧2V∗, which is positive definite and compatible
with the complex structure of V∗ (condition 2 of Proposition 3.12). Moreover, this
bilinear form is integer-valued when restricted to the lattice Γ since it belongs to
H1,1(X, Z). Using Hodge structures, we are only moving the focus from bilinear
forms on V∗ to bilinear forms on the lattice Γ.

3.2 Automorphisms of Abelian surfaces

We will now restrict our focus to the case of Abelian surfaces. We are interested
in automorphisms of these surfaces; more precisely, we want to study those finite-
order automorphisms that preserve the nonzero holomorphic two-form. We will
presently prove that the minimal resolution of the quotient by any such automor-
phism action is a K3 surface. The entire discussion is based on the work of A. Fujiki
[3], who gave a complete classification of the pairs (A, G) where A is a complex
torus of dimension two and G a finite group automorphisms of A. We will discuss
many of these results, and we’ll provide some examples of finite order symplectic
automorphisms on complex 2-tori. Our focus will be the induced action on the lat-
tice H2(A, Z), the same way we did when treating automorphisms of K3 surfaces.
This lattice comes as well with a natural signed Hodge structure of weight two, as
we have already discussed in Remark 1.28.

While for K3 surfaces the lattice H2(X, Z) encodes all the informations about the
manifold, for Abelian surfaces the situation is slightly different. We start by clari-
fying this situation using a classical result due to T. Shioda.

Theorem 3.19 ([29, Theorem I]). Let A and B be two Abelian surfaces. If there exists a
Hodge isometry φ : H2(A, Z)

∼−→ H2(B, Z), then at least one of the followings holds:

1) A is isomorphic to B.

2) A is isomorphic to the dual torus of B, i.e. B∗ := H1(B,OB)/H1(B, Z) ≃ V/Γ∗.

The period of an Abelian Surface alone can’t distinguish between a complex torus
and its dual. Indeed, even if the period map is surjective, it is generically a 2:1
map.
Before proving the theorem, we will need some more tools.

Lemma 3.20 ([29, Lemma 1]). Let φ : H2(A, Z)
∼−→ H2(B, Z) be an even lattice isome-

try such that det φ = 1, then there exists an isomorphism of ψ : H1(A, Z)
∼−→ H1(B, Z)

such that det ψ = 1 and
∧2 ψ = φ or − φ.
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Proof. First, suppose A = B. We need to find an isomorphism ψ ∈ SL(4, Z) such
that

∧2ψ = φ or − φ. An isometry on H2(A, R) corresponds to an element in
OU := {M ∈ GL(6, R) | MTUM = U} where

U :=



0 1
1 0

0 1
1 0

0 1
1 0


.

We consider the map λR : SL(4, R) → OU(R) given by ψ 7→ ∧2ψ. Since SL(4, R)

is connected, the image of λR is connected, moreover it is a subset of OU(R) ∩
SL(6, R) ≃ SO(3, 3), and since I ∈ Im(λR), it corresponds to SO+

U(R) ≃ SO+(3, 3).
This gives SOU(R) = (Im λR) ∪ (− Im λR). In particular, the image consists of
isometries that preserve the positive cone.
Now if A ̸= B, consider any isomorphism ψ0 : H1(A, Z)

∼−→ H1(B, Z) such that
det ψ0 = 1, and define φ0 :=

∧2ψ. Then φ−1
0 ◦ φ is an isometry of H2(A, Z), and as

such admits an automorphism ψ of H1(A, Z) such that
∧2ψ = φ−1

0 ◦ φ or −φ−1
0 ◦ φ.

It follows that
∧2ψ0 ◦ ψ = φ or −φ as required.

This yields another, more familiar, and restricted version of Theorem 3.19:

Theorem 3.21 ([21, Theorem 2.1]). Let A be an Abelian surface. If φ : H2(A, Z)
∼−→

H2(A, Z) is a signed Hodge isometry of determinant 1, then there exists an automorphism
f : A ∼−→ A such that f ∗ = φ.

Proof. This is a direct application of Lemma 3.20. Consider ψ ∈ Aut(H1(A, Z))

as in the Lemma. Since φ is a signed Hodge isometry, it belongs to the connected
component of SOU(R) ≃ SO(3, 3) containing the Identity. Then,

∧2ψ = φ, and to
conclude our proof, we need to show that

ψC(H1,0(A)) = ψC(H1,0(A)),

which implies
ψC(H0,1(A)) = ψC(H0,1(A)),

thus completing the proof thanks to Proposition 3.14. Now, consider two genera-
tors ω1, ω2 ∈ H1,0(A) and write

ψC(ω1) = α1 + β̄1 and ψC(ω2) = α2 + β̄2,

for some α1, α2, β1, β2 ∈ H1,0(A). Since

φC(ω1 ∧ ω2) = ψC(ω1) ∧ ψC(ω2),
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we expand: φC(ω1 ∧ω2) = α1 ∧ α2 + α1 ∧ β̄2 + β̄1 ∧ α2 + β̄1 ∧ β̄2. Since φ is a Hodge
isometry, we know that

φ(ω1 ∧ ω2) ∈ H2,0(A).

This forces the conditions:

α1 ∧ β̄2 = 0, β̄1 ∧ α2 = 0, β̄1 ∧ β̄2 = 0.

From these, we deduce that β1 = 0 and β2 = 0, concluding the proof.

Conversely, any automorphism f of an Abelian surfaces induces an automorphism
ψ ∈ Aut(A) such that the isometry

∧2ψ =: φ ∈ O(H2(A, Z)) has determinant 1
and preserves both the Hodge structure and the choice of the positive cone.
Shioda proved that any Abelian surface A admits a Hodge isometry

φ : H2(A, Z)
∼−→ H2(A, Z)

of determinant −1. We will avoid the treatment of the period map, and we refer
the curious reader to the work of Shioda [29], where he proves that the period map
for Abelian surfaces is surjective, and generically 2:1. Furthermore, the moduli
space of complex tori of dimension two has two connected components which
map injectively onto the period domain.
We now come back to finite order symplectic automorphisms of Abelian varieties,
following the work of A. Fujiki [3], and referring to the modern translation by G.
Mongardi, K. Tari and M. Wandel [21].

Definition 3.22. An automorphism g : A ∼−→ A is said to be symplectic if g∗(ω) =

ω for 0 ̸= ω ∈ H2,0(A). Otherwise we call g non-symplectic. We define the
invariant lattice and the coinvariant lattice respectively as

TA, f := {x ∈ H2(X, Z) | g∗x = x for every g ∈ G},

NA, f := T⊥
A, f .

Remark 3.23. Let A be an Abelian surface an denote by Aut0(A) the group of auto-
morphisms of A that fix the identity. Lemma 3.20 shows that there exists a map

ν : Aut0(A) → O(H2(A, Z))

which is surjective and 2:1. Indeed, ker(ν) = {± idA}.
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Definition 3.24. Let G ⊂ Aut0(A) be a group of automorphisms of A. We call G
symplectic if every g ∈ G is a symplectic automorphism. We define the invariant
lattice and the coinvariant lattice respectively as

T(G) := {x ∈ H2(X, Z) | g∗x = x for every g ∈ G},

N(G) := T(G)⊥.

Where we used the same notation as in Chapter 2.
It is obvious from the definition that NA,G ⊂ NS(X). and T(X) ⊂ TA,G.

Lemma 3.25 ([3, Lemma 3.1]). For a group of automorphisms G on an Abelian surface
A the following are equivalent:

1) G is symplectic

2) the minimal resolution of A/G is a K3 surface

Proof. Consider the following diagram:

A

X A/G

π

ρ

,

where π is the quotient map, and X is the minimal resolution of A/G. Since G is
symplectic, there exists 0 ̸= ω ∈ H2,0(A) such that G fixes ω, and therefore this
nowhere vanishing holomorphic form passes down to X as a holomorphic two-
form whose zeroes lie in ρ−1(pi) for any fixed point pi. On the other hand, any
for any fixed point, the subgroup Gpi ⊂ G that fixes pi only has rational double
points, as the group action can be written locally as the action of a subgroup of
SL(2, C). This ensures that the holomorphic form on X is nowhere vanishing, too.
Therefore it sufficies to prove that H1,0(X) = 0, but this is necessarily true since
any non-trivial element of G acts locally as a matrix whose eigenvalues are never
1. This concludes 2) → 1).
Conversely, if X is a K3 surface, then π−1ρ(ω) gives a G-invariant holomorphic
two-form on A.

Lemma 3.26 ([3, Lemma 3.3]). Let A be an Abelian surface and let g : A ∼−→ A be a
finite order symplectic automorphism of A. Then g has order 1, 2, 3, 4 or 6.

Remark 3.27. Every complex torus of dimension two A = V/Γ comes with a
natural automorphism of order two −idA induced by − id ∈ GL(2, C). Equiva-
lently, using the torus complex lie group structure we could say that the operation
v 7→ −v is an automorphism of order two of the torus.
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In fact, this is the only symplectic automorphism of order two, and any automor-
phism of order 6 is the composition of an order 3 automorphism with − idA. This
reduces the study of symplectic automorphisms of Abelian surfaces to the cases of
− idA, order 3 and order 4 automorphisms.

Example 3.28 (Kummer surface). Let us study the case of g := − id. Let A := C2/Γ
be a complex torus of dimension two. The quotient A/g has 16 fixed points, we
can calculate it directly:

(−a − ib,−c − id) + (δ1γ1 + iδ2γ2, δ3γ3 + δ4γ4) = (a + ib, c + id),

where δi can be either 1 or 0, and < γ1, γ2, γ3, γ4 >= Γ. Therefore

(δ1γ1 + iδ2γ2, δ3γ3 + δ4γ4) = 2(a + ib, c + id),

which yields 16 solutions, one for each choice of (δ1, δ2, δ3, δ4) ∈ (Z/2Z)4.
As we have already discussed, these singularities are all rational double points.
The minimal resolution X of A/g therefore contains 16 smooth rational curves Ki

of self-intersection −2 and such that KiKj = 0 for i ̸= j. Moreover, Lemma 3.25
proves that X is a K3 surface.

This concept can be generalized to any symplectic automorphism of finite order:

Definition 3.29. Let A be an Abelian surface, and let g : A ∼−→ A be a symplec-
tic automorphism of A of finite order. We call the minimal resolution of A/g a
generalized Kummer surface, and we denote it by Kmn(A).

Finally, we get this important theorem by Fujiki:

Theorem 3.30 ([3, Theorem 6.9]). Let A be an Abelian surface. Then A admits an
automorphism g of order n ∈ {2, 3, 4, 6} if and only if the two equivalent conditions hold:

1) There is a primitive embedding of T(A) ↪→ TA, f = Tf ;

2) There is a primitive embedding of NA, f = N f ↪→ NS(A).

where Tf and N f are uniquely determined by the order of the automorphism g, and they
do not depend on the torus A.
The following table summarizes the conditions for Abelian surfaces to admit finite-order
symplectic automorphisms, all in terms of lattices.

Group Tf N f

Z/2Z H2(A, Z) {0}
Z/3Z A2 ⊕ U A2(−1)
Z/4Z A2

1 ⊕ U A1(−1)2

Z/6Z A2 ⊕ U A2(−1)
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Remark 3.31. As we already pointed out, having an order 3 symplectic automor-
phisms is equivalent to having a symplectic automorphism of order 6. In terms of
lattices, this is due to the fact that the action of − idA on H2(A, Z) is trivial.

Let’s give some straightforward examples of symplectic automorphisms of finite
order of an Abelian surface.

Remark 3.32. We’ve already discussed the case of the symplectic involution − idA

on an Abelian surface A. Now, let us explore the remaining finite orders for sym-
plectic automorphisms.

Order 3 Consider the lattice in C defined as Γ := Z ⊕ ζ3Z where ζ3 is a primitive
third root of unity and define the complex torus E := C/Γ. The following is
a representation of Γ:

R

iR

1

ζ3

Since the C-linear morphism given by the multiplication by ζ3 preserves Γ
(i.e. ζ3 · Γ = Γ), the curve E inherits an automorphism given by z 7→ ζ3z.
On the abelian surface A := E × E ≃ C/(Γ × Γ) = C/Γ̄ we define the
automorphism

σA : A → A, such that (z1, z2) 7→ (ζ3z1, ζ−1
3 z2).

The eigenvalues of σ∗
A are ζ3 and ζ−1

3 , therefore
∧2σ∗

A acts as the identity on
H2,0(A) ≃ ∧2H1,0(A).

Order 4 Similarly to the construction of the order 3 automorphism, we could con-
sider an elliptic curve E and the Abelian surface A := E × E. We define the
automorphism

τA : A → A, such that (z1, z2) 7→ (z2,−z1).



3.2 Automorphisms of Abelian surfaces 35

This automorphism is symplectic, since the action on H2,0(A), by the same
considerations as above, is trivial. Further considerations about this auto-
morphism will be discussed in the next chapter.

Order 6 An easy example of automorphism of order 6, proceding as above, is given
by considering again the elliptic curve E := C/(Z ⊕ ζ3Z) and constructing,
over the abelian surface A := E × E the automorphism

φA : A → A, such that (z1, z2) 7→ (−ζ3z1,−ζ−1
3 z2).

This is again symplectic, indeed
∧2φA(dz1 ∧ dz2) = d(−ζ3z1)∧ d(−ζ−1

3 z2) =

ζ3ζ−1
3 dz1 ∧ dz2 = dz1 ∧ dz2.



Chapter 4

Shioda-Inose structures

As we discussed in Chapter 1, there are only two classes of compact Kähler com-
plex surfaces with trivial canonical bundle: K3 surfaces and Abelian surfaces. The
Kummer construction, which we presented in the last Chapter, establishes a rela-
tion between these two: from every abelian surface A we can obtain a K3 surface
X, called Kummer surface, which contains 16 smooth rational curves with self-
intersection −2. As we will see, this setup can be further extended by considering
a K3 surface S with a symplectic involution iS such that, denoting as X the mini-
mal resolution of S/iS, X ≃ Km2(A) and the rational quotient map π : S 99K X
induces a Hodge isometry between the transcendental lattice of the covering K3
surface and the abelian surface. This purely geometric construction is called a
Shioda-Inose structure. It was first defined by D.R. Morrison [22], who expanded
the work by Shioda T. and Inose H. [30] to all Abelian surfaces and first set the
definition of a Shioda-Inose structure. Subsequently, many authors provided ex-
amples and applications of Shioda-Inose structures.
More recently, A. Garbagnati and Y. Prieto-Montañez [5] generalized the entire
setup by considering Abelian surfaces with a symplectic automorphism of order
3 and the related Generalized Kummer surface, followed by B. Piroddi [28], who
later discussed the order 4 case. In this last chapter we will summarize the litera-
ture on Shioda-Inose structures in their most general definition, and we will make
some considerations about the order 6 case.

4.1 The order 2 case

We present the definition as it was set by Morrison, slightly rephrased, and we will
examine how this definition has evolved as research on the topic progressed over
time.

36
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Definition 4.1 (Shioda-Inose structure of order 2). A Shioda-Inose structure is a
quadruple (S, iS, A) where S is a K3 surface, iS is a symplectic automorphism of
order 2 on S and A is an Abelian surface such that:

1) Km2(A) is isomorphic to the minimal resolution of S/iS;

2) T(S)(2) ≃ T(Km2(A)) as even lattices.

Remark 4.2. For any compact complex surface S equipped with an involution i,
write P1, . . . , Pk for the loci fixed by the involution, which we suppose to be isolated
points. By repeatedly blowing up these points in S, we obtain a new surface Z,
which inherits an involution from S acting trivially on the k exceptional curves
Ei. The quotient map π : Z → X is a double cover branched over these curves,
therefore we get 1

2 ∑k
i=1 Ci ∈ NS(X), where the Ci are the divisors corresponding

to the curves. Note that the viceversa is always true: more generally, for any set
{Ci}i=1,...,k of disjoint smooth irreducible rational curves on a surface X such that
1
n ∑k

i=1 Ci ∈ NS(X), there exists a covering of degree n branched over ∑k
i=1 Ci.

Since X is isomorphic to the minimal resolution of S/i, we obtain the following
diagram:

Z S

X S/i

φ

π̃ π

φ̃

.

Definition 4.3. We denote MZ/2Z the minimal primitive sublattice of NS(X) con-
taining the curves arising from the desingularization of fixed points.

Morrison, using the work of Shioda and Inose, proved the following:

Lemma 4.4 ([22, Lemma 3.1] and [30, Sect. 3]). Using the notation of Remark 4.2, and
denoting by HX the orthogonal complement of the exceptional curves in H2(X, Z), there
exist two natural maps

π∗ : H2(S, Z) → HX and π∗ : HX → H2(S, Z),

such that

π∗π∗(x) = 2x; π∗π∗(s) = s + i∗(s); x1x2 =
1
2

π∗(x1)π
∗(x2),

and
π∗(KX) = KS.

Furthermore, if there exists a sublattice TX ⊂ L ⊂ H2(X, Z)G, with L ≃ Un such that
π∗(L)⊥ has determinant 22n it holds that

π∗|T(X) : T(X) ≃ T(A)(2)

is a Hodge isometry.
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An Abelian surface A and its related Kummer surface Km2(A) manifest a peculiar
relation between their transcendental lattices. This was proved by Nikulin:

Proposition 4.5 ([24, Remark 2]). The rational quotient map π : A 99K Km2(A)

induces a Hodge isometry π∗ : T(A)(2) ≃ T(Km2(A)).

Before proving the proposition, it is useful to give a characterization of those K3
surfaces that arise from the quotient of an Abelian surface by its natural involution.
In the next section, we will provide a generalization of this theorem by J. Bertin.

Definition 4.6. The minimal primitive sublattice in NS(Km2(A)) containing the
classes of the 16 exceptional curves coming from the desingularization of A/i is
called Kummer lattice of order 2, and it is denoted KZ/2Z.

Theorem 4.7. [24] The following statements about the Kummer lattice hold:

1) det(KZ/2Z) = 26;

2) A K3 surface X is a Kummer surface if and only if there is a primitive embedding
KZ/2Z ↪→ NS(X);

3) The embedding KZ/2Z ↪→ ΛK3 is unique.

Proof of Proposition 4.5. Since the action of the involution − idA is trivial on H2(A, Z),
and KZ/2Z is by definition the smallest sublattice of H2(Km2(A), Z) containing all
the exceptional curves, necessarily π∗(H2(A, Z))⊥ ≃ KZ/2Z, which has determi-
nant 26. The statement is therefore true thanks to Lemmma 4.4.

Proposition 4.8. Let KZ/2Z be the Kummer lattice of order 2. Then qKZ/2Z
≃ (qU(2))

3.

Proof. As in the proof of proposition 4.5 we get

K⊥
Z/2Z ≃ π∗(H2(A, Z)) ≃ (U(2))3,

this gives
qKZ/2Z

≃ −q⊥KZ/2Z
≃ (qU(2))

3.

Now that the situation regarding the natural involution of Abelian surfaces has
been clarified, we turn our focus to involutions of K3 surfaces. We will construct
a symplectic involution on certain K3 surfaces and prove that the resulting reso-
lution of the quotient is indeed a Kummer surface. Moreover, we will establish
the necessary and sufficient conditions for this to occur. This follows the work of
Morrison [22].
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Any involution on a K3 surface fixes exactly 8 points which are double rational
points (See Nikulin [25, Section 5]). Moreover the lattice MZ/2Z is a rank 8 even
lattice, constructed as an overlattice of A8

1(−1). The following theorem sheds light
on the importance of this lattice.

Theorem 4.9 ([22, Theorem 5.7]). Let S be a K3 surface and suppose that E8(−1)2 ↪→
NS(S) is a primitive embedding. Then there exists a symplectic involution iS of S such
that, if X is the minimal resolution of S/iS and π : S 99K X is the rational quotient map,
the following holds:

1) There is a primitive embedding of MZ/2Z ⊕ E8(−1) ↪→ NS(X);

2) There is a Hodge isometry π∗ : T(S)(2) ≃ T(X);

3) MZ/2Z ⊕ E8(−1) is a rank 16 even lattice with discriminant form (qU(2))
3.

Proof. Consider a basis {c(j)
i } of E8(−1)2, where j ∈ {1, 2}, such that {c(j)

i } is a
basis for the jt-th copy of E8(−1) yielding the associated matrix equal to the neg-
ative of the matrix in Example 1.4. The isometry of Theorem 2.9 specializes to an
embedding φ : E8(−1)2 → H2(S, Z).
Define an isometry g on H2(S, Z) that switches the two copies of E8(−1) by send-
ing c(1)i 7→ c(2)i and viceversa, fixing the rest.
The lattice NS,G := (H2(S, Z)G)⊥ is generated by

{φ(c(1)i )− φ(c(2)i )},

which means that
E8(−2) ≃ NS,G ⊂ NS(S).

This is an even, negative definite lattice which surely contains no element of square
−2. Therefore, there exists a symplectic involution iS on S such that, up to isometry,
i∗S = g.
Let π : S 99K X be the rational quotient map. Thanks to Lemma 4.4, we know that
the classes π∗(c

(1)
1 ), . . . , π∗(c

(1)
8 ) are orthogonal to MZ/2Z, due to the definition of

the map π∗ (with abuse of notation, by c(1)i we refer to its image in H2(S, Z), which
is defined by the symplectic action of i∗S). Moreover, using again Lemma 4.4 we get(

π∗(c
(i)
j ), π∗(c

(1)
k )
)
=

1
2

(
π∗π∗c(1)j , π∗π∗c(1)k

)
=

1
2

(
c(1)j + i∗c(1)j , c(1)k + i∗c(1)k

)
=

1
2

(
c(1)j , c(1)k

)
+

1
2

(
c(2)j , c(2)k

)
=
(

c(1)j , c(1)k

)
.
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This implies that {π∗c(1)j } is a basis for a copy of E8(−1), which is therefore primi-
tively embedded in NS(X) (here we are using the fact that E8(−1) is unimodular).
Combining this with the fact that MZ/2Z is primitively embedded in NS(X) by its
very definition, we see that there is a primitive embedding MZ/2Z ⊕ E8(−1) ↪→
NS(X).
To conclude, we consider the orthogonal complement of the two copies of E8(−1)
switched by i∗S, and denote it as L. Note that L ≃ U3 contains the transcendental
lattice of S and is contained in the invariant lattice. Moreover, MZ/2Z ⊕ E8(−1) is a
rank 16 lattice because any involution of a K3 surface S contains exactly 8 isolated
fixed points, and a direct calculation shows that det(MZ/2Z ⊕ E8(−1)) = 26.
Using Lemma 4.4 we see that π∗ induces a Hodge isometry T(S)(2) ≃ T(X), and
π∗(L) ≃ U(2)3. Finally, the sublattice π∗(L) ⊂ H2(X, Z) is primitive and therefore

qMZ/2Z⊕E8(−1) = −qπ∗(L) = (qU(2))
3.

Remark 4.10. This ensures that whenever a Shioda-Inose structure exists, there are
Hodge isometries:

T(S)(2) T(A)(2)

T(Km2(A))

π̃∗

ρ

π∗
.

We will need one more lemma:

Lemma 4.11 ([22, Corollary 2.10]). Let S be a K3 surface such that ρ(S) ≥ 12. Then
there exists only one embedding T(S) ↪→ ΛK3, namely the restriction of H2(S, Z)

∼−→
ΛK3.

Proof. Note that l(AT(S)) ≤ 22 − ρ(S) ≤ 22 − (22 − ρ(S)) − 2. By hypothesis,
ρ(S) ≥ 12, therefore the above inequality is satisfied and Theorem 1.20 applies
and the lemma is proved.

We are ready to prove the central Theorem for Shioda-Inose structures of order 2.

Theorem 4.12. Let S be a projective K3 surface. Then the following are equivalent:

1) There exists an Abelian surface A and a symplectic involution iS of S such that
(S, iS, A) is a Shioda-Inose structure;

2) There exists an Abelian surface A together with a Hodge isometry T(A) ≃ T(S);

3) There exists a primitive embedding T(S) ↪→ U3;
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4) There is an embedding E8(−1)2 ↪→ NS(S).

Proof. 1) → 2): Obvious from the very definition of Shioda-Inose structure.
2) → 3): Since there exists an isometry φ : H2(A, Z)

∼−→ U3 (see Proposition 3.10),
we get the embedding by composing T(S) ≃ T(A) ↪→ H2(A, Z) ≃ U3

3) → 4): Since there is an embedding T(S) ↪→ U3, we have that 22 − ρ(S) ≤ 5,
which gives ρ(S) ≥ 17. Moreover U3 = {0} ⊕ U3 ⊂ E8(−1)2 ⊕ U3 = ΛK3. Then
the lemma ensures that the embedding

T(S) ↪→ U3 ↪→ ΛK3

corresponds to T(S) ↪→ H2(S, Z)
∼−→ ΛK3. We conclude by taking the orthogonal

complements
E8(−1)2 = (U3)⊥ ↪→ T(S)⊥ = NS(S),

which is again a primitive embedding.
4) → 1): This is just a review of what we’ve seen so far in this Chapter. Indeed by
Theorem 4.9 there exists an involution iS on S such that, denoting by X the min-
imal resolution of its quotient and by π : S 99K X the rational quotient map,
there is a primitive embedding MZ/2Z ⊕ E8(−1) ↪→ NS(X), and it holds that
T(S)(2) ≃ T(X).
We show that NS(X) is uniquely determined by its signature and discriminant
form. This is due to the fact that E8(−1) is a unimodular lattice that is primi-
tively embedded in the Neron-Severi group, which means that for sure ANS(X) ≤
ρ(X) − 2, giving the uniqueness of NS(X) by Theorem 1.14. Furthermore, since
the lattices MZ/2Z ⊕ E8(−1) and KZ/2Z share isomorphic discriminant-forms, we
conclude using Lemma 1.16: the primitive embedding MZ/2Z ⊕E8(−1) ↪→ NS(X)

determines a primitive embedding KZ/2Z ↪→ NS(X). Then X is isomorphic to
Km2(A) for an Abelian surface A, and Proposition 4.5 gives the Hodge isometry
π∗ : T(A)(2) ∼−→ T(X).

Corollary 4.13. Let S be a projective K3 surface.

1) If ρ(S) = 19 or 20, then S admits a Shioda-Inose structure;

2) If ρ(S) = 18, then S admits a Shioda-Inose structure if and only if T(S) ≃ U ⊕ T′;

3) If ρ(S) = 17 then S admits a Shioda-Inose structure if and only if T(S) ≃ U2 ⊕ T′;

4) If ρ(S) < 17 then S does not admit a Shioda-Inose structure.

Proof. Case 1): Since rk T(S) = 2 or 3, by Proposition 1.19 there is a primitive em-
bedding T(S) ↪→ U3.
Case 2: If S admits a Shioda-Inose structure, there is a primitive embedding T(S) ↪→
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U3. Let T′ := T(S)⊥U3 and consider the even lattice U ⊕ T′(−1); it has the same
signature as T(S) and, by Proposition 1.17, they share the same discriminant form.
Furthermore,

l(AT(S)) = l(AT′) ≤ 2 = rk(AT(S))− 2

and from Theorem 1.14 T(S) ≃ U ⊕ T′(−1). Conversely, if T(S) ≃ U ⊕ T′, then
T′ ↪→ U2 as in case 1), and then T ↪→ U3.
Case 3: this is almost identical to case 2.
Case 4: If ρ(S) ≤ 16 the condition E8(−1)2 ↪→ NS(S) can never be satisfied. This
is obvious for ρ(S) < 16, and is still true for ρ(S) = 16 because X is projective and,
from Kodaira embedding, we know there is always an ample divisor.

Remark 4.14. Theorem 4.12 creates a powerful link between K3 surfaces and Abelian
surfaces. Indeed, given any K3 surface S with a primitive embedding E8(−1)2 ↪→
NS(S), there are exactly two (just one if the torus is a principally polarized abelian
surface) complex tori that fit in a Shioda-Inose structure (S, iS, ·), one being the
dual of the other. Conversely, for any abelian surface A there exists exactly one
K3 surface S with a symplectic involution iS such that (S, iS, A) is a Shioda-Inose
structure. This is due to the fact that T(S) ≃ T(A) is a Hodge isometry, and then
the statement follows from the surjectivity of the period map.

4.2 Generalized Shioda-Inose structures

A natural way to generalize the work of Morrison is by substituting the involution
iS with a symplectic automorphism of order n of the K3 surface S, and the natural
map − idA with a symplectic automorphism of order n on the torus. This is the
leading path for Generalized Shioda-Inose structures which was first suggested by H.
Onsiper and S. Sertoz in [27].

Definition 4.15 (Generalized Shioda-Inose structure of order n). A Generalized
Shioda-Inose structure of order n is a quadruple (S, σS, A, σA) such that:

1) S is a K3 surface and σS is a symplectic automorphism of order n on S;

2) A is an abelian surface and σA is a symplectic automorphism of order n on
A;

3) the minimal resolution of S/σS is isomorphic to Kmn(A).

We will often refer to the Generalized Shioda-Inose structure of order n omitting
the term ’Generalized’.
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One should keep this diagram in mind:

S A

S/σS X ≃ Kmn(A) A/σA

This is a weak definition, because there’s no more trace of an isometry between the
transcendental lattices of A, S and Kmn(A). We will see that a relation of this type
still holds for Generalized Shioda-Inose structures of order 3, but this will be no
longer the case for order 4 structures.

Remark 4.16. The careful reader knows that there are only few possible values for
n other than n = 2, namely n = 3, n = 4 and n = 6 (see Lemma 3.26).

Proposition 4.17. for n ≥ 3, if a K3 surface S admits a Generalized Shioda-Inose struc-
ture of order n, then ρ(S) ≥ 19.

Proof. As shown in [14], ρ(S) = ρ(Kmn(A)). Moreover, since ρ(Kmn(A)) ≥ 19 for
any n ≥ 3 and any Abelian surface A, the proposition follows. See [15] for the
result on ρ(Kmn(A)).

Definition 4.18. We extend the definitions of MZ/2Z and KZ/2Z to MZ/nZ and
KZ/nZ naturally by considering the exceptional curves arising from the minimal
resolutions of the two different quotients.
In particular MZ/nZ is the minimal primitive sublattice of NS(X) that contains the
exceptional curves corresponding to the points with a non-trivial stabilizer under
the action of a symplectic automorphism of order n on a K3 surface S, whereas
KZ/nZ ⊂ NS(Kmn(A)) is the minimal primitive sublattice containing the excep-
tional curves corresponding to the fixed points of the symplectic automorphism of
order n on the Abelian surface A.

We conclude with a generalization of the results on the order 2 about Kummer
surfaces and the lattice KZ/2Z.

Theorem 4.19 ([2, Theorem 2.5]). A K3 surface S is a Generalized Kummer surface of
order n if and only if the lattice KZ/nZ is primitively embedded in NS(S).

Proposition 4.20 ([25, Proposition 7.1 and Lemma 10.2]). The lattices MZ/nZ and
Ωn are negative definite lattice with the same rank.
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4.2.1 The order 3 case

Recall from example 1.12 the definition of the unimodular even lattice (E6(−1)3)′.
The following is the work of A. Garbagnati and Y. Prieto-Montañez contained in
[5].

Remark 4.21 (The lattice MZ/3Z). the lattice MZ/3Z is described by Nikulin in [25,
Section 6]. We give an explicit construction for it as an abstract lattice:
Let a1, a2 be an usual basis of A2(−1) as in example 1.12. Consider the vector
b := (a1 + 2a2)/3 and extend this construction to A2(−1)6 using the notation b(j)

for the definition of b on the j-th copy of A2(−1), and {a(j)
i } for its basis. Then

MZ/3Z is the overlattice of A2(−1)3 obtained by adding the vector B := ∑6
j=1 b(j).

In addition, we denote as (MZ/3Z ⊕ E6(−1))′ the overlattice of index 3 of MZ/3Z ⊕
E6(−1) obtained by adding the vector n := (e1 + 2e2 + e4 + 2e5)/3 − b(1) + b(3) −
b(4) + b(5) where {ei} stands for the usual basis for E6(−1).

Remark 4.22. The construction in Example 1.12 shows that (U ⊕ A2 ⊕ E6(−1)3)′′ is
a unimodular even lattice of rank 22, and its signature is (3, 19). By Theorem 1.13,
there exists an isometry (U ⊕ A2 ⊕ E6(−1)3)′′ ≃ ΛK3. We will often make use of
this throughout this chapter.

Definition 4.23. Given the usual sets of generators:

• {a1, a2} for A2 that yield a matrix in the form of Example 1.4;

• {b1, b2} for A2(3);

• {u1, u2} for U as in Example 1.4;

• {v1, v2} for U(3);

we define the map

γ : U ⊕ A2 → U(3)⊕ A2 ⊂ (U(3)⊕ A2(3))⊗ Q

ui 7→ vi, a1 7→ (b1 + b2)/3, a2 7→ b2
.

Theorem 4.24 ([5, Theorem 1.24]). Let S be a K3 surface and suppose that (E6(−1)3)′ ↪→
NS(S) is a primitive embedding. Then there exists a symplectic automorphism σS of S of
order 3 such that, if X is the minimal resolution of S/σS and π : S 99K X is the rational
quotient map, the following holds:

1) There is a primitive embedding (MZ/3Z ⊕ E6(−1))′ ↪→ NS(X);

2) The transcendental lattice T(S) is primitively embedded in U ⊕ A2, and the map
π∗ acts on T(S) as the restriction of γ;
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3) (MZ/3Z ⊕ E6(−1))′ is a rank 18 negative definite even lattice with discriminant
form equal to that of U(−3)⊕ A2.

Proof. As in the case of sympectic involutions, we build the automorphisms by
working on the abstract lattice ΛK3. Consider the isometry g of the K3 lattice that
permutes cyclically the three copies of E6(−1) ⊂ (E6(−1))′ ↪→ NS(S) and leaves
the rest fixed. Let’s verify the conditions for Theorem 2.30:

i) Ng = K12, where K12 is the opposite of the lattice described by Coxeter and
Todd. This is shown explicitly in [8, Proposition 3.1].

ii) Ng has no element of square −2. This is true by the very definition of K12.
Alternatively, one could use Lemma 4.2 of [25] which proves that the coin-
variant lattice never contains such elements.

iii) Ng ⊂ NS(S): this follows easily from the embedding (E6(−1)3)′ ↪→ NS(S),
since the fixed part obviously contains T(S).

Therefore, there exists a symplectic automorphism σS : S ∼−→ S of order 3 such that
σS acts on H2(S, Z) by permuting cyclically the three copies of (E6(−1)3)′.
In order to prove assertion 1), we rely again on the work of Garbagnati and Prieto-
Montañez in [8, Section 3.5], where it is proved that H2(X, Z) is an overlattice
of finite index of MZ/3Z ⊕ π∗(H2(S, Z)). The gluing vectors needed to obtain
H2(X, Z) as an overlattice of MZ/3Z ⊕π∗(H2(S, Z)) are the same needed to obtain
NS(X) as an overlattice of MZ/3Z ⊕ π∗(NS(S)), since MZ/3Z ↪→ NS(X). More-
over, thanks to the work done in [8, Proposition 3.2] we can interpret the map
π∗ : H2(S, Z) → H2(X, Z) as the extension of the map

π∗ : U ⊕ A2 ⊕ E6(−1)⊕ E6(−1)⊕ E6(−1) → U(3)⊕ A2(3)⊕ E6(−1)

(u, a, e, f , g) 7→ (u, a, e + f + g)

to the overlattice (U ⊕ A2 ⊕ (E6(−1))3)′′. In addition, it is proved that E6(−1) ≃
π∗((E6(−1)3)′), and therefore E6(−1) is primitively embedded in NS(X). This
proves that NS(X) is a finite index overlattice of MZ/3Z ⊕ E6(−1). Furthermore,
it is also shown that the class n of remark 4.21 is contained in H2(X, Z), but
any primitive sublattice containing MZ/3Z ⊕ E6(−1) also contains n, since n ∈
AMZ/3Z⊕E6(−1). Therefore NS(X) contains the overlattice (MZ/3Z ⊕ E6(−1))′, and
this embedding is primitive (see [8, Proposition 3.4]) proving assertion 1).
For assertion 3), by hypothesis (E6(−1)3)′ ↪→ NS(S), which implies T(S) ↪→
U ⊕ A2 by the uniqueness of the embedding (E6(−1)3)′ ↪→ H2(S, Z).
Finally, the discriminant form of (MZ/3Z ⊕ E6(−1))′ can be directly calculated
from its description in remark 4.21.



4.2 Generalized Shioda-Inose structures 46

The following is the analogue of theorem 4.12:

Theorem 4.25. Let S be a projective K3 surface. Then the following are equivalent:

1) There exists a symplectic automorphism σ of S of order 3 and an Abelian surface
A admitting a symplectic automorphism σA of order 3 such that (S, σS, A, σA) is
a Generalized Shioda-Inose structure of order 3. Moreover there is an isometry
T(A) ≃ T(S);

2) There exists an Abelian surface A admitting a symplectic automorphism σA of order
3 together with an isometry T(A) ≃ T(S);

3) There exists a primitive embedding T(S) ↪→ U ⊕ A2;

4) There is an embedding (E6(−1)3)′ ↪→ NS(S).

Proof. We proceed similarly to the proof of Theorem 4.12. 1) → 2): Obvious from
the very definition of Shioda-Inose structure.
2) → 3): Recall from chapter 3 that an Abelian surface A admits a symplectic auto-
morphism of order 3 if and only if there is a primitive embedding T(X) ↪→ U ⊕ A2.
3) → 4): Since there is an embedding T(S) ↪→ U ⊕ A2, rk T(S) ≤ 3 and its signa-
ture is (2, t) for t ∈ {0, 1}, we can apply Theorem 1.20 so that there exists a unique
primitive embedding

T(S) ↪→ (U ⊕ A2 ⊕ E6(−1)3)′′ ≃ ΛK3.

We assume it is embedded onto the first two components, then

(U ⊕ A2)
⊥ = (E6(−1)3)′ ⊂ NS(S) = T(S)⊥.

4) → 1): Thanks to Theorem 4.24 we know that there exists a symplectic automor-
phism σS on S such that, denoting the minimal resolution of the quotient as X,
T(X) ≃ γ(T(S)) and there is a primitive embedding

(MZ/3Z ⊕ E6(−1))′ ↪→ NS(X).

Now, by Theorem 1.14 we know that NS(X) is uniquely determined by its signa-
ture and discriminant form. As in the proof of Theorem 4.12, we observe that the
lattices KZ/3Z and (MZ/3Z ⊕ E6(−1))′ have the same rank and discriminant form,
therefore we conclude using Lemma 1.16: the primitive embedding (MZ/3Z ⊕
E6(−1))′ ↪→ NS(X) determines a primitive embedding KZ/3Z ↪→ NS(X). Then X
is isomorphic to Km3(A) for an Abelian surface A. We need to prove the isometry
between transcendental lattices. Note that T(Km3(A)) = (πA)∗(T(A)). We refer
the reader to [1] for the description of the map (πA)∗, which for our sake is suffi-
cient to sum up as follows: the action of (πA)∗ on U ⊕ A2 is equal to the action of
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γ. This gives T(Km3(A)) = γ(T(A)).
We already proved that T(Km3(A)) ≃ T(X) ≃ γ(T(S)), so now γ(T(S)) ≃
γ(T(A)). It follows that T(A) is embedded in U ⊕ A2 as T(X), which yields
γ(T(A)) = γ(T(X)).

The isometry between T(S) and T(A) still holds, as in the case of Shioda-Inose
structures of order 2. One might think that a similar relation exists between T(S)
and T(Km3(A)) or between T(A) and T(Km3(A)). However, this is absolutely
false, as examples have been provided showing very different behaviours of the
lattice T(Km3(A)). See [5]. For this reason, the definition of Generalized Shioda-
Inose structure had to be modified by taking into consideration that the isometry
holds only between the K3 covering surface and the Abelian surface A. Further-
more, in definition 4.15 we also removed this latter condition, and this is due to the
work of B. Piroddi [28], who found that any relation of this type between the tran-
scendental lattices would restrict too much the possibilities for admissible Gener-
alized Shioda-Inose structures of order 4.

4.2.2 The order 4 case

In order to generalize Shioda-Inose structures to automorphisms of order 4, one
needs to understand the behavior of these automorphisms on the K3 lattice. This
work was conducted by Benedetta Piroddi in her PhD thesis, and we will present
the main results of her research.

Remark 4.26. From Theorem 2.37 we know that Ω4 is a rank 14 lattice. We will
consider Π, the overlattice of D4

4 ⊕ ⟨−4⟩2 obtained this way: set basis ei, fi, gi, hi

for the four copies of D4, and denote as a1 − a2 and σ the generators of the two
copies of ⟨−4⟩. Then the overlattice Π is obtained by adding the following gluing
vectors:

ζ1 = (σ + e1 − g1 + e2 − f2 + f4 − g4)/2,

ζ2 = (e1 − g1 + f1 − h1 + e2 − g2 + f4 − h4)/2,

ζ3 = (σ + f1 − h1 + e2 − h2 + f4 − e4)/2,

ζ4 = (e2 − g2 + e4 − g4 + a1 − a2 + σ)/2.

Theorem 4.27 ([28, Theorem 4.2.4.11]). Let S be a projective K3 surface. Then S admits
an order 4 automorphism such that the induced action on H2(S, Z) permutes cyclically
the four copies of D4 if and only if there is a primitive embedding Π ↪→ NS(S).

In order to describe the lattice MZ/4Z we want to understand the action of a sym-
plectic automorphism σS of order 4.
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Remark 4.28. Let σS be a symplectic automorphism of order 4 on a K3 surface S.
We know from Nikulin’s work [25, Chapter 5, case 2] that there are exactly 4 points
fixed by σS and 4 points fixed by σ2

S . This means that the quotient S/σS will have
6 fixed points, four of which are singularities of type A3, and two of which are A1

singular points. The resulting lattice MZ/4Z can be described as the overlattice of
A4

3 ⊕ A2
1 obtained by adding the vector

v :=
1
4

4

∑
i=1

(
mi

1 + 2mi
2 + 3mi

3

)
+

1
2

(
m̃1 + m̃2

)
,

where {mi
1, mi

2, mi
3} stands for a basis of the i-th copy of A3, and m̃j is a generator

of the j-th copy of A1.

Definition 4.29. Using the notation of Remark 4.28, we define (MZ/4Z ⊕ D4)
′ as

the overlattice of MZ/4Z ⊕ D4 obtained by adding the vector

w :=
m2

1 + m2
3 + m3

1 + m3
3 + m̃1 + m̃2 + e2 + e4

2
,

where {e1, e2, e3, e4} is a standard basis of D4 which gives the matrix associated to
the bilinear form as in example 1.4.

The following is the analogue of Theorems 4.24 and 4.9.

Theorem 4.30 ([28, Theorem 4.2.4.12]). Let S be a K3 surface and suppose that Π ↪→
NS(S) is a primitive embedding. Then there exists a symplectic automorphism σS of S of
order 4 such that, if X is the minimal resolution of S/σS and π : S 99K X is the rational
quotient map, the following holds:

1) There is a primitive embedding (MZ/4Z ⊕ D4)
′ ↪→ NS(X);

2) There exists an abelian surface A admitting a symplectic automorphism σA of order
4 such that X ≃ Km4(A).

The approach followed by B. Piroddi, in this case, is to preserve condition 1) of
Theorem 4.12 and give up on condition 2). In fact, the existence of an isometry
T(S) ≃ T(A) turns out to be rare in the general case, and we refer the reader to
[28, Theorem 4.2.4.14] for an explicit treatment. Piroddi found that there can be up
to two different families of K3 surfaces to which an abelian surface A, admitting
a symplectic automorphism of order 4, can be associated via Generalized Shioda-
Inose structures of order 4. In other words, Generalized Shioda-Inose structures of
order 4 no longer have the interesting property described in Remark 4.14.

We conclude this subsection with the analogue of 4.12. We omit the proofs of these
Theorems, and we refer the reader to the work of B. Piroddi [28, Chapter 4].

Theorem 4.31. Let S be a projective K3 surface. Then the following are equivalent:
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1) S admits a Generalized Shioda-Inose structure of order 4.

2) There exists an Abelian surface A with a symplectic automorphism σA of order 4 and
a symplectic automorphism σS of S of order 4 such that Km4(A) is isomorphic to
the minimal resolution of S/σS, and there is a correspondence between the projective
families of A and S.

3) There is a primitive embedding Π ↪→ NS(S).

4.2.3 The order 6 case

Remark 4.32. If S is a K3 surface admitting a Generalized Shioda Inose structure
of order 3 (S, σS, A, σA), then X also admits a Shioda-Inose structure of order 2
(S, iS, B). Indeed, T(S) ≃ T(A) for an abelian surface A, therefore T(S) ↪→ H2(A, Z) ≃
U3 is a primitive embedding and Theorem 4.12 applies. However, nothing assures
that A ≃ B.

If S is a K3 surface admitting a Generalized Shioda-Inose structure of order 3
(S, σS, A, σA), then one could compose σA with the natural symplectic involution
iA = − idA and obtain a symplectic automorphism of order 6. The situation is as
depicted in the diagram:

S A

Km3(A)

Km6(A)

At this point one might ask whether S admits a symplectic automorphism φS of
order 6 such that the minimal resolution of S/φS is isomorphic to Km6(A), so that
(S, φS, A, σA ◦ iA) is a Generalized Shioda-Inose structure of order 6. The following
proposition gives a negative answer:

Proposition 4.33. Let A be an Abelian surface such that T(A) ≃ U ⊕ ⟨2⟩. Then
there exists Km6(A) but A is not part of a Generalized Shioda-Inose structure of order
6 (S, φS, A, φA) such that T(A) ≃ T(S).

Proof. This is due to the fact that any primitive embedding T(A) ≃ U ⊕ ⟨2⟩ ↪→
U ⊕ A2 provides the existence of a symplectic automorphism φA = σA ◦ iA of
order 6, by Theorem 3.30. This proves that Km6(A) is well-defined. Furthermore,
any K3 surface S with an automorphism of order 6 admits a primitive embedding
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T(S) ↪→ U ⊕ U(6)2 (see Theorem 2.37). If we suppose that T(S) ≃ T(A) then,
denoting as N the orthogonal of T(S) inside U ⊕ U(6)2, we get

AN⊕T(S) = AN ⊕ AT(S)

and we know that AT(S) = Z/2Z and that AU⊕U(6)2 = (Z/6Z)4 (see Theorem
3.30). Since N is a rank 3 lattice, this leads to a contradiction.

This suggests that the existence of an isometry between the transcendental lattices
of S and A is something unique to Shioda Inose structures of order 2 and 3. Any
Generalization to the order 6 forbids this kind of relation. This is the reason why
definition 4.15 seems like the natural choice for the general definition of Shioda
Inose structure. Please note that the very existence of Shioda-Inose structures of
order 6 is still an open question.
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[5] A. Garbagnati and Y. Prieto Montañez. “Generalized Shioda–Inose struc-
tures of order 3”. In: (2022). arXiv: 2209 . 10141 [math.AG]. URL: https :
//arxiv.org/abs/2209.10141.

[6] A. Garbagnati and A. Sarti. “Symplectic automorphisms of prime order on
K3 surfaces”. In: J. Algebra 318.1 (2007), pp. 323–350.

[7] A. Garbagnati and A. Sarti. “Elliptic fibrations and symplectic automorphisms
on K3 surfaces”. In: Comm. Algebra 37.10 (2009), pp. 3601–3631.

[8] Alice Garbagnati and Yulieth Prieto Montañez. Order 3 symplectic automor-
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