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Abstract

La siccità è uno dei fenomeni meteo-climatici più importanti. Negli ultimi de-

cenni in Europa, siccità di estrema intensità e durata hanno avuto effetti deleteri

per l’agricoltura, l’economia, gli ecosistemi e la società. Comprendere le cause

di questi eventi è di fondamentale importanza, soprattutto alla luce del cambia-

mento climatico antropico, dal momento che l’intero continente, e in particolare

la regione mediterranea, è riconosciuto come un’area critica del cambiamento cli-

matico. In questo studio, abbiamo condotto un’analisi basata sulle Self-Organising

Map (SOM) per classificare i dati mensili di altezza di geopotenziale a 500 hPa

in ERA5 in prototipi di circolazione atmosferica dominanti sulla regione euro-

atlantica. Queste configurazioni sono state poi analizzate in termini di variabilità

atmosferica e di variabili legate alla siccità, valutando la loro relazione con le tele-

connessioni euro-atlantiche ed il loro effetto sulle variabili idrologiche di superficie

quali lo Standardized Precipitation Index (SPI) e lo Standardized Precipitation

Evaportanspiration Index (SPEI). Utilizzando questo approccio, si sono analizzati

tre eventi estremi di siccità europee di eccezionale intensità e durata: la siccità

britannica del 1974-1975, la siccità iberica del 2004-2005 e la più recente siccità

euromediterranea del 2022-2023. I nostri risultati mostrano che, durante questi

eventi, la frequenza delle configurazioni di circolazione associate alle precipitazioni

è stata di molto inferiore alla media, mentre quella delle configurazioni legate a

condizioni secche molto superiore. Per esempio, nel caso della siccità del 2022-2023,

la frequenza di configurazioni atmosferiche umide è stata del 3,7%, mentre quella

di configurazioni secche ha raggiunto addirittura l’85,2%. Questa tecnica fornisce

una metodologia che evidenzia i meccanismi atmosferici che governano le siccità ed

il loro legame con la variabilità della circolazione su larga scala. Inoltre, consen-

tendo una valutazione quantitativa della percentuale dei tipi di circolazione secca,

umida e neutra, fornisce una metodologia per studi di attribuzione dell’effetto dei

cambiamenti climatici antropogenici su eventi estremi di siccità.
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Abstract

Drought is one of the most important meteo-climatic phenomena. In the last

decades, European droughts of extreme intensity and duration have had severe

impacts on agriculture, economy, ecosystems, and society. Understanding the

drivers of these events has become increasingly crucial, especially in the context

of anthropogenic climate change, as the whole continent, and, specifically, the

Mediterranean region, is recognized as a climate change hotspot. In this study,

we apply Self-Organizing Map (SOM) analysis to classify ERA5 500 hPa monthly

geopotential height data into dominant circulation types over the Euro-Atlantic re-

gion. These patterns were then analyzed in terms of both atmospheric variability

and drought-related variables, assessing their relation to Euro-Atlantic telecon-

nections and evaluating their effects on surface hydrological variables such as the

Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapo-

transpiration Index (SPEI). Using this framework, we examined three extreme Eu-

ropean drought events characterized by extraordinary intensity and duration: the

1974-1975 UK drought, the 2004-2005 Iberian drought, and the most recent Euro-

Mediterranean 2022-2023 drought. Our results show that, during these events,

the frequency of precipitation-related circulation patterns significantly decreased,

while that of dry patterns substantially increased. For instance, in the 2022-2023

case, the frequency of wet patterns dropped as low as 3.7%, whereas dry patterns

reached up to 85.2%. This approach provides a methodology that highlights the

atmospheric mechanisms driving droughts and their link to large-scale circulation

variability. Most importantly, by allowing for a quantitative assessment of the

percentage of the dry, wet, and neutral circulation types, it provides a framework

for a future attribution studies on the effect of anthropogenic climate change on

extreme droughts.

2



Contents

1 Introduction 5

1.1 Overview on droughts . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Main metrics for drought assessment . . . . . . . . . . . . . . . . . 7

1.3 Droughts in Europe and Italy . . . . . . . . . . . . . . . . . . . . . 12

1.4 Relation between droughts in Europe and atmospheric variability . 14

1.5 Self-Organising Maps (SOMs) . . . . . . . . . . . . . . . . . . . . . 19

1.6 SOMs in drought studies . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Data and methods 24

2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Technical details of the SOM algorithm . . . . . . . . . . . . . . . 26

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Preprocessing of Z500 . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Training of the 7× 5 SOM . . . . . . . . . . . . . . . . . . 32

2.4 Composite analysis and statistical significance testing . . . . . . . 34

2.5 Analysis of drought events . . . . . . . . . . . . . . . . . . . . . . . 36

3 Results 39

3.1 SOM classification of atmospheric variability . . . . . . . . . . . . 41

3.1.1 Relationship of SOM nodes to main teleconnections . . . . 41

3.2 Relation between atmospheric patterns and drought-related quantities 48

3.3 SOM-based analysis of atmospheric drivers of drought events . . . 52

3.3.1 The 1975-1976 drought . . . . . . . . . . . . . . . . . . . . 53

3



3.3.2 The 2004-2005 drought . . . . . . . . . . . . . . . . . . . . 60

3.3.3 The 2022-2023 drought . . . . . . . . . . . . . . . . . . . . 67

4 Discussion and Conclusions 74

4.1 Summary and discussion of the results . . . . . . . . . . . . . . . . 74

4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A Appendix 82

4



Chapter 1

Introduction

1.1 Overview on droughts

Drought, commonly characterized by below-normal precipitation over a pe-

riod of months to years (Dai (2011b)), is one of the most impactful extreme

meteoclimatic events. Drought events, in fact, pose significant challenges

due to their complex nature, making them difficult to monitor and predict.

This complexity arises not only from the multiple environmental and climatic

factors at play, such as rainfall patterns, soil evapotranspiration, river levels,

and vegetation, but also from the wide range of temporal and spatial scales

over which droughts may occur.

When characterized by long duration and large spatial extent, drought can

result in considerable social, environmental and economic costs (Li et al.

(2015), Spinoni et al. (2015a)) and can be seen as one of the most expensive

and widespread natural disasters with negative impacts on agriculture, wa-

ter resources, natural ecosystems, and society activities (Mishra and Singh

(2010)). Droughts are among the most damaging natural disasters, caus-

ing tens of billions of dollars in damage and affecting millions of people all

over the world each year (Wilhite (2000)). Furthermore, the exacerbation of

drought events by global warming has increased the urgency to better un-
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derstand and manage their impacts (Dai (2011a)).

The complexity of various influencing factors complicates the precise char-

acterization of drought events, specifically their onset, duration, conclusion,

extent, and, crucially, their underlying causes. Consequently, a universally

accepted definition of drought is still missing. According to Wilhite and

Glantz (1985), droughts are divided into 4 categories based on the type of

water resource affected:

• Meteorological drought: it is defined as a lack of precipitation over

a region for a period of time;

• Agricultural drought: it is associated with soil moisture deficit,

which leads to reduced crop production and plant growth;

• Hydrological drought: it is defined as a deficit in surface and sub-

surface water resources supply (e.g., rivers, lakes, etc);

• Socioeconomic drought occurs when the demand for an economic

good exceeds supply as a result of a weather-related deficit in water

supply.

Meteorological droughts refer to instances in which precipitation deficits last

between 1 and 3 months. However, critical shortages in soil moisture and

water reservoirs, common characteristics of the other drought categories, may

require longer periods (from several months to years) of lack of precipitation.

This suggests that the period considered is essential to differentiate between

the various forms of drought (Pascale and Ragone (2025)).

Droughts lasting more than a year, also known as multi-year droughts, can

severely compromise water security, leading to irreversible socioeconomic and

ecological consequences. One notable example of a multi-year drought is the

”Day Zero” drought in Cape Town, which lasted from 2015 to 2018. This

exceptional multi-year event resulted in one of the worst water crises in the

metropolitan area and has been widely studied in scientific literature (e.g.

Odoulami et al. (2020, 2023), Pascale et al. (2020)).
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1.2 Main metrics for drought assessment

The assessment of the sensitivity of a drought event and real-time moni-

toring requires the use of quantitative indices. The Standardized Precipi-

tation Index, or SPI (McKee et al. (1993)), the Standardized Precipitation-

Evapotranspiration Index, or SPEI (Vicente-Serrano et al. (2010)), and the

Palmer Drought Severity Index, or PDSI (Palmer (1965)), are among the

most widely used for this aim, due to the simplicity of their definition and

to their flexibility to describe droughts at multiple time scales. The SPI,

introduced to measure precipitation deficits, offers temporal flexibility by

allowing analysis over various timescales; however, it focuses exclusively on

precipitation, potentially limiting its ability to capture water balance dy-

namics. The definition of the SPI (Bordi and Sutera (2002)), is based on

the assumption that the cumulative precipitation over a period (e.g. 3,12,24

months) is a random variable that is gamma-distributed. Thereby, if x is the

random variable, the gamma distribution is defined by its probability density

function as

g(x) =
1

βαΓ(α)
xα−1e−

x
b (1.1)

where α > 0 is a shape parameter, β > 0 is a scale parameter and Γ(α) is

the gamma function. These parameters, which can be estimated from the

data sample by means of a maximum-likelihood method, are then used to

find the cumulative probability of precipitation for a given month and time

scale at the station considered. The cumulative probability, letting t = x/β,

becomes the incomplete gamma-function:

G(x) =

∫ x

0

g(x)dx =
1

Γ(α)

∫ x

0

tα−1e−tdt (1.2)
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Since the gamma function is undefined for x = 0 and the precipitation field

may contain zeros, the cumulative probability becomes:

H(x) = q + (1− q)G(x) (1.3)

where q is the probability of zero precipitation. H(x) is then transformed to

a normal variable Z through the following approximation:

Z = SPI = −(t− c0+c1t+c2t2

1+d1t+d2t2+d3t3
) for 0 < H(x) ≤ 0.5,

Z = SPI = +(t− c0+c1t+c2t2

1+d1t+d2t2+d3t3
) for 0.5 < H(x) < 1

(1.4)

where
t =

√
ln( 1

(H(x)2)
) for 0 < H(x) ≤ 0.5,

t =
√
ln( 1

1−(H(x)2)
) for 0.5 < H(x) < 1

(1.5)

and c0, c1, c2, d1, d2, d3 are the following constants:

c0 = 2.515517, d1 = 1.432788,

c1 = 0.802853, d2 = 0.189269,

c2 = 0.010328, d3 = 0.001308.

(1.6)

The definition of the SPEI (Vicente-Serrano et al. (2010)) is similar to that

of the SPI, but it expands on this by incorporating potential evapotranspi-

ration (PET). As such, it measures the accumulated deficit of precipitation

- evapotranspiration, i.e. the climatic water balance at the surface. The

SPEI is particularly useful in regions where temperature-driven evapotran-

spiration plays a significant role in water scarcity, and it allows for a clear

differentiation between meteorological drivers of a drought, associated with

precipitation, and thermodynamic effects linked to temperature. In fact, to

a first approximation, PET depends on temperature alone. Thornthwaite

equation (Thornthwaite (1951)) estimates PET based primarily on temper-

ature and latitude, making it relatively simple but less accurate in arid re-
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gions. The Penman-Monteith equation (Monteith (1965)) incorporates other

variables such as humidity, wind speed, and solar radiation, which also de-

termines PET, thus providing a more accurate estimate. Finally, the Harg-

reaves equation (Hargreaves and Samani (1985)) offers a simpler alternative

to Penman-Monteith, relying mainly on temperature and extraterrestrial ra-

diation, making it useful when limited data are available.

Finally, PDSI, as with SPEI, incorporates both PET and precipitation data

to assess long-term drought severity, although its main limitation is its fixed

temporal scale and reliance on simplified soil moisture models. Some of

the PDSI problems were solved with the development of the self-calibrated

PDSI (sc-PDSI) (Wells et al. (2004)), although the main shortcoming of the

PDSI remains. The choice of the drought index often depends on the spe-

cific objectives of the analysis and the temporal or spatial scales of interest.

For example, when evaluating meteorological droughts, SPI-3 (or SPEI-3) is

commonly used. The delay in the transition from meteorological to hydro-

logical drought suggests that SPI-12 (SPEI-12) may be appropriate for the

types of events (Van der Wiel et al. (2022)) since they are less sensitive to

seasonal variations and singular extreme events (McKee et al. (1993); Spinoni

et al. (2015a)). Nevertheless, if the objective is to highlight seasonality or the

interplay between droughts and particular seasonal atmospheric circulation

patterns, as explored by Kingston et al. (2015), employing SPI-6 (SPEI-6)

may bring significant insights.

Fig 1.1 shows that SPI and PDSI are almost equivalent over long periods

(i.e., 12 months, 24 months). Furthermore, the comparison of SPI and SPEI

allows to determine their reliability and to explore the diversity and com-

plexities of the various factors that affect the phenomenon in question. For

instance, different values for SPI and SPEI might underline the different

roles played by soil moisture and precipitation. For example, Baronetti et al.

(2020) focused on this difference to separate the driving factor for drought

in the Po Plain.
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Figure 1.1: The sc-PDSI and 3-, 6-, 12-, 18-, and 24-month SPI at the Indore
observatory (1910–2007) (Vicente-Serrano et al. (2010)).

For this study, SPI and SPEI were identified as the most suitable indices, as

they can be easily worked out from observations and climate model outputs.

Both SPI and SPEI are constructed as cumulative sums over a chosen number

of months, allowing a temporal flexibility which is fundamental for drought

analysis, given the wide range of scale of the phenomenon. The indexes most

frequently employed vary according to the category of interest, with SPI-1,

SPI-3, SPI-6, SPI-12, and SPI-24 (alongside SPEI-1, SPEI-3, SPEI-12, and

SPEI-24) being predominant.

SPI and SPEI values typically range from -3 to 3. The severity of a drought
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event can be characterized by the thresholds given in Table 1.1, with values

less than -1 being commonly used to define drought conditions. The index

SPI/SPEI Value Dry/wet Category
−2.0 or less Extreme drought

−1.5 to −1.99 Severe drought
−1.0 to −1.49 Moderate drought
−0.99 to 0.99 Near normal
1.0 to 1.49 Moderate wet
1.5 to 1.99 Severe wet
2.0 or more Extreme wet

Table 1.1: Table of SPI (SPEI) thresholds corresponding to different dry/wet
categories (McKee et al. (1993)).

computation generally occurs at grid points or at a given meteorological sta-

tion. Regions of the domain exhibiting a common SPI (SPEI) value below

a specified threshold are identified as drought-affected areas. These kinds of

indices are frequently employed to track the status of drought occurrences,

but also to establish correlations with climate indices that identify both at-

mospheric and non-atmospheric modes. Fig. 1.2 shows drought conditions in

Europe in terms of SPEI-12 in December 2024: Eastern Europe, the Balkan

area, and the Mediterranean region seem to be affected by low values of

SPEI-12, indicating low levels of precipitation at least in the last 12 months.

On the other hand, the northwest region of Europe has positive values of

SPEI, indicating the presence of weather regimes enriched in precipitation in

the last 12 months, especially in the UK.
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Figure 1.2: Standardized Precipitation Evapotranspiration Index (SPEI-12)
for the 12-month accumulation period ending in December 2024, from the
SPEI Glogal Drought Monitor (https://spei.csic.es/map/maps.html#
months=4#month=11#year=2024).

1.3 Droughts in Europe and Italy

Droughts in Europe can be identified on different scales, both temporally and

spatially, ranging from short-term, localized events to prolonged, widespread

conditions that span multiple seasons or even years. Several studies show

that, in the last 100 years, major droughts have affected not only areas such

as southern Europe (Garrido-Perez et al. (2024)), but also western and cen-

tral Europe, the British Islands (Parry et al. (2012)), Scandinavia, eastern

Europe (Spinoni et al. (2015b)), and Russia, as discussed in Parry et al.

(2012).

Past and current drought conditions are monitored and assessed by na-

tional and international agencies, such as the European Drought Observatory,

or EDO, (http://edo.jrc.ec.europa.eu/) and the SPEI Global Drought

Monitor (http://sac.csic.es/spei/), actively track and assess past and

current drought conditions, providing critical data for mitigation and adap-
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tation efforts. An example of drought assessment for Europe can be seen

in Fig 1.3, showing, for July 2024, wetter-than-normal conditions from the

Po Plain to the Nordic Sea, and drier-than-normal conditions in the region

between the Black Sea and the Caspian Sea.

Figure 1.3: SPI-3 in July 2024, from the EGDO Analytical Report Global
Drought Observatory: Drought in Europe (https://drought.emergency.
copernicus.eu/).

Since the second half of the 20th century, Europe has experienced a slightly

increasing drought pattern (Dai (2011a); Spinoni et al. (2015a); Garćıa-

Herrera et al. (2007)) partly due to global warming. Rising temperatures

caused by the effect of global warming are contributing to an increase in the

atmosphere’s capacity to hold water vapor. This thermodynamic relation is

well explained by the Clasius-Clapeyron equation, with supporting evidence

illustrated in the Assessment Report 6 (AR6), WG1 (IPCC (2023)). As the

atmospheric demand for water vapor rises, there is a corresponding increase

in potential evapotranspiration, which leads to increased drying of the soil.

This effect is particularly evident in southern Europe (Spinoni et al. (2015a),

Faranda et al. (2023)). Identified as a climate change hotspot (Giorgi (2006)),
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the Mediterranean region is experiencing more frequent and intense droughts,

often linked to rising temperatures and record-breaking heatwaves (Garrido-

Perez et al. (2024)).

Regarding Italy, different approaches by different authors have been used to

assess drought conditions in the peninsula. For instance, Baronetti et al.

(2020) investigated drought occurrences in the Po Plain over the past fifty

years, examining their underlying causes and their relationship with cli-

mate change (Baronetti et al. (2022)). In a broader context, Bordi and

Sutera (2002) explored the influence of low-frequency atmospheric variabil-

ity on drought through SPI. In particular cases, emphasis was placed on spe-

cific events: Faranda et al. (2023) examined the 2022 drought event, which

had repercussions in northern Italy, southern France, and Spain. More re-

cently, Pascale and Ragone (2025) compiled an extensive list of significant

widespread multi-year drought events that affected the whole country from

1901 to the present day. Using SPI-12 and SPEI-12 they identified 9 ma-

jor events, spanning from the drought of 1921-1922 and extending to the

most recent event from 2021 to 2023. Other significant drought periods were

recorded years 1942-1944, 1945-1946, 1979-1981, 1988-1989, 2006-2008, 2011-

2013, and 2015-2019.

1.4 Relation between droughts in Europe and

atmospheric variability

The main low-frequency variability modes, or simply, teleconnections, play

an important role in driving drought events in Europe, as below-average

precipitation is generally associated with persistent anticyclonic conditions

related to specific large-scale atmospheric patterns. The main low-frequency

teleconnections over the Euro-Atlantic sector were first identified in Barnston

and Livezey (1987) through EOF analysis. As an example, Fig. 1.4 shows

14



the first 4 EOFs of Z500 anomalies (in order of explained variance), which

physically correspond to: a) the North Atlantic Oscillation (NAO); b) the

Scandinavian Pattern (SCAND); c) the East Atlantic (EA); d) the East At-

lantic/Western Russian (EAWR). The prominence of the spatial pattern of

these modes varies seasonally and it is particularly evident in winter. When

differentiating between an extended winter (December through May) and an

extended summer (June to November), the percentage of explained variance

increases during the winter months and decreases during the summer months.

This can be seen in Fig A.1 and Fig A.2 for winter and summer, respectively.

Figure 1.4: EOF loading pattern of monthly Z500 anomalies of: a) EOF1
(NAO), b) EOF2 (SCAND), c) EOF3 (EA), d) EOF4 (EAWR). Based on
ERA5 monthly reanalysis (Hersbach et al. (2020)). Percentage over each
panel denotes the fraction of explained total variance.
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According to the NOAA Climate Prediction Center (https://www.cpc.ncep.

noaa.gov/data/teledoc/telecontents.shtml), these four main telecon-

nection patterns are defined as follows:

• The NAO (Fig 1.4.a ) consists of a north-south dipole of anomalies,

with one center located over Greenland and the other center of opposite

sign spanning the central latitudes of the North Atlantic between 35
◦N and 40 ◦N. The positive phase of the NAO reflects below-normal

heights and pressure across the high latitudes of the North Atlantic and

above-normal heights and pressure over the central North Atlantic, the

eastern United States, and western Europe. The negative phase reflects

an opposite pattern of height and pressure anomalies over these regions..

The 3-month running mean (Fig. 1.5) shows a substantial variability

at the seasonal and multi-annual timescale.

• The SCAND (Fig 1.4.b ) consists of a primary circulation center over

Scandinavia, with weaker centers of opposite sign over western Europe

and eastern Russia / western Mongolia. The Scandinavian pattern has

previously been referred to as the Eurasia-1 pattern by Barnston and

Livezey (1987). The positive phase of this pattern is associated with

positive height anomalies, sometimes reflecting major blocking anticy-

clones, over Scandinavia and western Russia, while the negative phase

of the pattern is associated with negative height anomalies in these re-

gions.

• The EA pattern (Fig 1.4.c ) is the second prominent mode of low-

frequency variability over the North Atlantic, and appears as a leading

mode in all months. The EA pattern is structurally similar to the NAO,

and consists of a north-south dipole of anomaly centers spanning the

North Atlantic from east to west. The anomaly centers of the EA pat-

tern are displaced southeastward to the approximate nodal lines of the

NAO pattern. For this reason, the EA pattern is often interpreted as
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a ’southward shifted’ NAO pattern. However, the lower-latitude center

contains a strong subtropical link in association with modulations in the

subtropical ridge intensity and location.

• The EAWR (Fig 1.4.d ) pattern is one of three prominent telecon-

nection patterns that affect Eurasia throughout the year. This pattern

has been referred to as the Eurasia-2 pattern by Barnston and Livezey

(1987). The East Atlantic / West Russia pattern consists of four

main anomaly centers. The positive phase is associated with positive

height anomalies located over Europe and northern China and negative

height anomalies located over the central North Atlantic and north of

the Caspian Sea.

The relationship between atmospheric teleconnections and European droughts

has been extensively studied in scientific literature. For example, Vicente-

Serrano and López-Moreno (2008) investigated the European response of

the SPI-12 to the NAO and found opposing NAO–SPI correlations between

northern and southern Europe (positive correlation in the north; negative cor-

relation in the south). Furthermore, while Bordi and Sutera (2002) identified

the NAO as a key driver for drought in Europe, other studies such as Sousa

et al. (2011) and Pascale and Ragone (2025) support the hypothesis of the

NAO and the SCAND being the primary factors influencing droughts in the

western and central Mediterranean regions. In addition, Parry et al. (2012)

and Kingston et al. (2015) explored the effects of other circulation patterns

such as the EAWR patterns on famous drought events in the UK. However,

there remains uncertainty over the connections in the process cascade that

link such large-scale low-frequency variability to precipitation deficits. A

given phase of the NAO, or any other atmospheric modes, does not always

directly lead to the expected precipitation anomaly in a specific region, and

drought indices are moderately correlated or not correlated at all (Kingston

et al. (2015)). This was the case, for example, during the 2004-2005 Iberian

drought (Garćıa-Herrera et al. (2007)), when atmospheric blocking condi-
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Figure 1.5: NAO timeseries from the National Oceanic and Atmospheric Ad-
ministration (NOAA) (https://www.cpc.ncep.noaa.gov/data/teledoc/
telecontents.shtml). The index is based on the sea-level pressure dif-
ference between the Subtropical (Azores) High and the Subpolar Low.

tions over the central Atlantic observed in certain months (e.g. March 2005)

and associated with below-average precipitation, occurred with NAO and

EA phases opposite of what typically expected with droughts over Iberia

(specifically, the NAO was in its negative phase, while the EA in its positive

phase). This further supports the argument that atmospheric modes alone
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may not be sufficient to study the relationship between droughts and at-

mospheric variability, as their relationship with precipitation anomalies can

be highly nonlinear and modulated by additional factors. Reflecting this

complexity, connections between circulation indices, local climate, and hy-

drological variation (including drought) are often more complex than can

be described adequately through index-based approaches—as demonstrated

by analyses based on gridded climate fields (Parry et al. (2012); Kingston

et al. (2015)). This suggests that simply performing a correlation analysis

between atmospheric modes and drought may be insufficient. A more flexi-

ble approach to characterize variability of the atmospheric state is required,

especially for intermediate configurations that do not distinctly match the

positive or negative phases of known atmospheric modes. Self-organizing

maps may provide such approach.

1.5 Self-Organising Maps (SOMs)

Self-Organizing Maps (SOMs), sometimes also referred to as Kohonen maps,

were first introduced by Ritter and Kohonen (1989). A SOM is a type of

artificial neural network (ANN) trained using unsupervised learning to gen-

erate a low-dimensional (typically two-dimensional) representation of multi-

dimensional input data. This representation, referred to as a self-organized

map, reduces the dimensionality of large datasets by clustering similar data

points and organizing them into a structured two-dimensional grid (Skific

and Francis (2012)). In many aspects, SOMs are analogous to other forms

of cluster analysis; in fact, given an N-dimensional cloud of data points, the

SOM seeks to place an arbitrary number of nodes within the data space

such that their distribution represents the multi-dimensional density func-

tion. The nodes are spaced more closely in regions of high data density.

However, SOMs differ from traditional cluster algorithms in one significant

way, that is how groups are defined. While the end result of the SOM analy-
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sis is some form of data clustering, SOMs do not directly partition data into

groups. They create a map where each node represents a nearby set of data

points. While clusters may form naturally, the primary goal of SOMs is to

represent the overall data structure rather than explicitly defining clusters.

SOMs attempt to find nodes or points in the measurement space that are

representative of the nearby cloud of observations and, when taken together,

describe the multi-dimensional distribution function of the data set (Hewit-

son and Crane (2002)).

SOMs in climate science and meteorology have been increasingly used in

the last two decades. Some of the most notable applications are synoptic

climatology (Hewitson and Crane (2002)) as well as North Atlantic variabil-

ity (Reusch et al. (2005)), meteorological extremes (Cavazos (2000)), ENSO

flavor distinction (Johnson (2013)) and NAO shift analysis, particularly re-

garding its secular eastward shift that began in the 1970s (Johnson et al.

(2008)). SOMs provide a more flexible, robust, and interpretable framework

for analyzing climate data than other more traditional techniques, such as

EOFs. Unlike the latter, which by construction decompose data into orthog-

onal modes of variability based on linear assumptions, SOMs accommodate

non-linear relationships in the data, making them better suited for capturing

complex patterns and processes that are often present in atmospheric and

oceanic systems.

One key advantage of SOMs over EOFs lies in their ability to represent data

as a continuum of states rather than discrete modes. This characteristic

is particularly valuable for atmospheric circulation data, where SOMs cap-

ture the full spectrum of synoptic conditions. In contrast, EOFs impose a

rigid framework by representing variability as mutually orthogonal modes,

potentially oversimplifying the underlying dynamics. This was proven to be

extremely helpful in the discussion of the eastward shift to the NAO (John-

son et al. (2008)), and more in general, to the whole context of the North

Atlantic large-scale circulation (Rousi et al. (2015)), where SOMs demon-
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strated their ability to uncover subtle shifts and transitions that are difficult

to capture with EOFs (Reusch et al. (2007)).

1.6 SOMs in drought studies

Recently, SOMs have proven to be useful in attribution studies for extreme

drought events, i.e., in determining the effect of anthropogenic climate change

(ACC) and the likelihood of circulation types driving droughts (Otto, 2017).

Figure 1.6: A 3×4 SOM for New Zealand 2013 event. Inset numbers refer to
the number of days each node was observed over the duration of the drought
from Harrington et al. (2016).

A notable application of SOMs for this purpose is found in the study by Har-

rington et al. (2016), which analyzed the 2013 New Zealand drought (Fig.

1.6). They used SOMs within a multi-member coupled climate model en-

semble to examine changes in daily circulation patterns between two 41-year

periods: a counterfactual climate with anthropogenic forcing as in 1861-1991
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and a factual climate with anthropogenic forcing as in 1993–2023. Their

results suggest a strong anthropogenic influence on the likelihood of excep-

tionally high seasonal mean sea level pressure patterns over New Zealand,

with the most extreme manifestation occurring during the 2013 drought. In

particular, they observed an increase in the frequency of nodes corresponding

to blocking configurations.

Another significant example is the study by Odoulami et al. (2020) and later

by Odoulami et al. (2023), who applied SOMs to analyze the 2015–2018

Western Cape drought in South Africa (Fig. 1.7). Knowing the frequency of

occurrence of each node, they were able to assess the persistence of specific

configurations and quantify their associated rainfall. Using this quantity

as reference, they classified ”dry” and ”wet” nodes and identified two key

contributors to the event: a decrease in the frequency of rain-producing cir-

culation patterns, accompanied by an increase in the occurrence of ”dry”

nodes, and a reduction in the rainfall volume associated with ”wet” nodes.

Figure 1.7: 6× 5 SOM by Odoulami et al. (2020) for an attribution study in
the ”Day Zero” Cape Town drought of 2015-2018.
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Expanding on this analysis, Odoulami et al. (2023) linked the event to

human-induced climate change, using five large ensembles of atmospheric

and coupled model simulations to compare climate scenarios with natural-

only (i.e., the counterfactual climate) and anthropogenic (i.e, the factual

climate) forcings.

1.7 Objective of this thesis

The objective of this thesis is to develop an attribution study framework for

major European, multi-year droughts based on SOMs. The SOM algorithm

will be applied to atmospheric reanalysis to identify distinct anomaly pat-

terns in atmospheric circulation. These configurations will then be examined

in terms of their relationship with low-frequency variability, assessing their

connection to the main atmospheric teleconnections and their significance

for variables associated with the surface climatic water balance such as pre-

cipitation, temperature, and potential evapotranspiration. This analysis will

highlight how different low-frequency atmospheric configurations influence

drought patterns across the study domain. This framework will be applied

to three major prolonged drought events: the 1974–1975 UK drought, the

2004–2005 Iberian drought, and the 2022–2023 Euro-Mediterranean drought.

This methodology will allow us to analyze the frequency and persistence of

SOM nodes corresponding to dry, wet and neutral circulation patterns, and

to provide a deeper understanding of how persistence in circulation patterns

contributes to drought events. Finally, it will be explained how this frame-

work can be used for extreme event attribution studies to assess the influence

of anthropogenic climate change on the frequency of occurrence of these dry,

wet and neutral circulation types during a drought event.
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Chapter 2

Data and methods

In this chapter, we describe the dataset used to characterize low-frequency

patterns through the SOMs and provide additional technical details about

SOMs. In particular, we will provide additional technical details regard-

ing SOMs. Furthermore, we outline the training and refinement processes

involved in developing the model, highlighting the key steps taken to en-

sure optimal performance. In addition, we discuss essential preprocessing

techniques and statistical methods that play a crucial role in analyzing the

results. Finally, we discuss the major steps for the analysis of three relevant

drought events. These events were selected following a comprehensive review

of the literature on major droughts in Europe, identifying them as particu-

larly impactful cases in terms of severity (more details in Section 3.3).

2.1 Data

To analyze the low-frequency atmospheric variability in Europe and the

North Atlantic Ocean (spatial domain defined by [80°W, 40°E, 20°N, 80°N])
we use the geopotential height at 500 hPa (Z500). Z500 data were obtained

from the ERA5 reanalysis (Hersbach et al. (2020)) at monthly frequency.

ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global
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climate covering the period from January 1940 to the present and it is pro-

duced by the Copernicus Climate Change Service (C3S) at ECMWF. Re-

analyses combine past observations with models to generate consistent time

series of multiple climate variables. They are among the most-used datasets

in the atmospheric sciences and provide a comprehensive description of the

observed climate as it has evolved during recent decades, on 3D grids at

sub-daily intervals. Initially available at a resolution of 0.25◦ × 0.25◦, the

data were regridded to 1◦ × 1◦ using Climate Data Operator (CDO) Version

2.5.0 (Schulzweida (2023)). The software is a collection of many operators

for standard processing of climate and forecast model data developed by the

Max Planck Institute for Meteorology. The adoption of regridding was based

on the premise that low-frequency, large-scale atmospheric variability can be

effectively captured without requiring high-resolution data. This approach

ensures that the essential patterns of circulation remain identifiable while

reducing computational costs. To further enhance the distinction between

different circulation types, we worked out Z500 anomalies by subtracting the

climatological mean from the actual data. The resulting anomaly field serves

as the primary input for the SOM, with the resulting patterns used as the

basis for the following drought analysis.

Monthly precipitation and surface temperature data were downloaded from

the Climate Research Unit (CRU), TS version 4.08 (Harris et al. (2020)),

already provided at a resolution of 1◦ × 1◦ resolution. The CRU dataset

extends from 1901-01-01 to 2023-12-01, covering a longer period than ERA5.

SPI and SPEI indices were derived from the CRU datasets. The Python

package climate indices computes the climatic water balance as the dif-

ference between precipitation and PET, where PET is computed using the

Thornthwaite equation (Thornthwaite (1951)). Commands indices.spi

and indices.spei were employed to generate monthly datasets at a res-

olution of 1◦ × 1◦, with different timescales such as SPI-1 (SPEI-1), SPI-6

(SPEI-6), and SPI-12 (SPEI-12).
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Finally, monthly timeseries for NAO, EA, SCAND, and EAWR indices were

obtained from the NOAA Physical Sciences Laboratory (PSL) (https://

psl.noaa.gov/data/climateindices/list/), which conducts weather, cli-

mate, and hydrologic research to advance the prediction of water availability

and extremes. The dataset covers a period from 1950-01-01 to 2024-10-01

and is derived from the NCEP/NCAR reanalysis (Kalnay et al. (1996)).

2.2 Technical details of the SOM algorithm

A SOM consists of a two-dimensional grid of nodes, where each node is

associated to an N-dimensional weight vector, also known as a reference

vector mi. To every mi corresponds to a two-dimensional pattern. The

similarity between a data sample z (a vector from the input dataset) and

each reference vector is measured in terms of Euclidean distance. During

training, the node with the smallest distance (eq 2.1), known as the Best

Matching Unit (BMU), is identified as the closest match to the data sample:

||z−mBMU || = min||z−mi|| (2.1)

This node is considered the ”winner” for that iteration, effectively marking

which pattern the input most resembles. Subsequently, only the vectors for

the best-matching node and those that are topologically close to it in the

two-dimensional array are updated by the relation

mi(t+ 1) = mi + hBMU,i(t)[z(t)−mi(t)] (2.2)

The neighboring nodes are determined based on their proximity to the BMU

on the grid, which can be defined by a neighborhood radius h. The degree

of the update is modulated by a neighborhood function. The most common

neighborhood function is of Gaussian form (Skific and Francis, 2012), which
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can be described as

hBMU,i = α(t)e−||rBMU−ri||2/2σ2(t) (2.3)

where α(t) is the learning rate, rBMU and ri ∈ R2 are the radius vectors of

the BMU and the i-th node respectively, and σ(t) defines the width of the

function (Johnson et al. (2008)). As training progresses, the quantization er-

ror q is calculated to evaluate how well the SOM represents the input data.

This metric measures the average Euclidean distance between each input vec-

tor and its corresponding BMU. Additionally, the topological error t assesses

how well the SOM preserves the spatial relationships in the input data. This

error reflects the proportion of input samples for which neighboring BMUs

are not located next to each other on the grid. A low topological error in-

dicates that similar input samples are represented by adjacent nodes on the

map, maintaining the structure of the original data distribution. Training

continues iteratively until both the quantization error and the topological

error reach acceptable levels. This process is often called convergence phase.

Once the SOM is trained, the reference vectors of the nodes are mapped onto

the two-dimensional grid (Fig 2.1). The patterns emerging on this grid reveal

predominant states or clusters in the dataset, with each node representing a

cluster of similar data points. Clusters located near each other in the grid

correspond to similar patterns, while more dissimilar clusters typically ap-

pear at the corners of the map.

Once anomaly patterns are assigned to nodes, their frequency of occurrence

(FO) can be determined, indicating how often specific patterns occur within

the data. The frequency is a count of how many times each node has been

the BMU, meaning it tracks how often a particular pattern is the closest

match for any input vector. Nodes with higher activation frequencies cor-

respond to patterns that are more common in the data, while nodes with

lower activation frequencies represent less common patterns. Maps showing

the FO for every node, as Fig 2.2 does, are called activation maps.
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Figure 2.1: (b): SOM representation after the training. (c): Projection of
the reference vectors for various stages of map training. From Skific and
Francis (2012).
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A critical aspect of SOMs is the determination of the number of nodes in the

grid. This choice significantly influences the results, both in terms of pattern

representation and in quantization error values and topographic error values,

yet it remains inherently arbitrary, lacking a universally accepted guideline.

Unlike other machine learning methods with clear criteria for model selec-

tion, SOMs heavily rely on domain expertise and the specific purpose of

the analysis. A small number of nodes may be preferred for tasks like data

compression or visualization, while a larger number of nodes might be neces-

sary for clustering (Rousi et al. (2015)) or for identifying subtle patterns in

complex datasets or for attribution studies (Odoulami et al. (2023)). How-

ever, this choice involves a delicate trade-off. A grid that is too small may

lead to underfitting, where distinct clusters merge and important patterns

are lost. On the other hand, an excessively large grid can result in overfit-

ting, introducing artificial clusters that do not reflect meaningful structures

in the data. Despite the existence of some ”rules of thumb” which provides

a starting point, researchers often rely on iterative testing, qualitative visu-

alization, and metrics like quantization and topographic errors to fine-tune

the grid size.

A commonly adopted guideline in attribution studies suggests selecting a

sufficient number of nodes to ensure a continuous and well-distributed rep-

resentation of atmospheric states, thereby preserving the structure of the

data without introducing unnecessary fragmentation. Although these gen-

eral guidelines exist, their application often leads to different choices in grid

configuration, depending on the specific dataset and research objectives. For

instance, while Harrington et al. (2016) opted for a relatively compact 3× 4

grid (Fig. 1.6), Odoulami et al. (2020) and later Odoulami et al. (2023) em-

ployed a larger 6 × 5 grid (Fig. 1.7), whereas Rousi et al. (2015) chose an

intermediate 4×5 grid. This variation highlights how the same foundational

principles can lead to differing grid sizes, as the optimal number of nodes

depends not only on theoretical considerations but also on practical factors
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such as data complexity or spatial domain.

Figure 2.2: Activation map for the 7× 5 SOM employed in this study. Each
rectangle represents a node’s frequency of activation. As expected, the most
frequent patterns are those in the corner of the map.

2.3 Methodology

Starting from the Python package Minisom, a 7 × 5 SOM was developed.

The adoption of a 7 × 5 grid is driven by the necessity for a continuous

representation across an extensive spatial domain. Other configurations, in-

cluding 3 × 3, 4 × 3, and 5 × 4, did not achieve the desired optimal results.

The implementation of a 7 × 5 map enabled the inclusion of a wider array

of atmospheric states, many of which emerged from the superimposition of

various atmospheric modes. This study specifically aimed to investigate also

the states that correspond to overlapping configurations, as other approaches

do not provide such insights. After choosing the number of nodes, the SOM

must be trained and later optimized to minimize the quantization error over

a subset of the entire Z500 dataset (70%), ensuring the best possible perfor-
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mance. Lastly, the model is retrained using the whole dataset.

2.3.1 Preprocessing of Z500

The preprocessing step is crucial for improving data quality by cleaning and

normalizing it. In this specific case, monthly Z500 anomalies were first di-

vided into a training set (70%) and a testing set (30%). Each subset was then

standardized by dividing its values by their respective standard deviation,

a process commonly referred to as normalization. Following normalization,

Principal Component Analysis (PCA), a dimensionality reduction technique,

was applied to the training set. PCA is a widely used method in machine

learning and climate science to reduce the complexity of large datasets by

transforming them into a smaller number of components that still capture

the most significant patterns and trends. This step is fundamental as it sim-

plifies the dataset, reducing noise and the risk of overfitting, especially when

working with high-dimensional data such as large-domain atmospheric data.

The use of PCA as a preprocessing step becomes particularly crucial when

dealing with datasets that have more features than samples, a scenario com-

monly referred to as the ‘curse of dimensionality’ (Bellman (1961)). In such

cases, PCA not only helps mitigate the curse of dimensionality but also en-

hances the data by focusing on the principal components that capture the

majority of the variance. This focus enables noise reduction, leading to

cleaner data and, potentially, more robust clustering results.

In this study, by using the Python package sklearn.decomposition and

retaining 99% of the explained variance, the PCA identified 35 components.

When applying PCA, the information is encoded into a reduced set, of com-

ponents: at each time step, the dataset still corresponds to a unique spatial

pattern, but instead of being represented in terms of raw Z500 values, it is

represented in terms of a reduced set of principal component scores. When

the SOM clusters these PCA-reduced representations, it is still effectively

clustering spatial structures, just in a more efficient and compact form.
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2.3.2 Training of the 7× 5 SOM

The training step involves iteratively adjusting the network using the train-

ing set to minimize the quantization error. In this case, ten SOMs were

generated, and after training, the SOM with the lowest q error was declared

as the best performer.

Initially, the model was trained using arbitrary parameters, which provided a

baseline performance. These parameters included settings such as the learn-

ing rate, the neighborhood radius, and the number of iterations, which in-

fluence how the SOM adapts to the data. It is important to underline that

the first step of the training is to randomly initialize the SOM weights (e.g.

the reference vector). In fact, it has been proven that SOMs results are not

sensitive to the selected initialization method (Hewitson and Crane (2002)).

Even after initialization, the training vectors keep being extracted randomly,

to avoid falling into local minima. This choice reflects the no a priori as-

sumption on the distribution of the data.

Following this initial training, a tuning process was conducted to optimize

these parameters systematically. Tuning refers to the process of refining

a model’s hyperparameters to achieve better performance. This is typically

done by exploring different combinations of parameter values. By fine-tuning

the hyperparameters, the model becomes better equipped to generalize to

unseen data while minimizing errors. In this case, the tuning process was

critical to ensure that the selected SOM provided the most accurate repre-

sentation of the input data with the lowest quantization error. The optimal

set of parameters for the lower quantization error (q = 66.37) were:

1. Neighborhood radius σ = 3

2. Learning rate lr = 0.001

3. Number of iterations niter = 10000
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Starting with the neighborhood radius, there is a ”rule of thumb” that defines

the right value for the neighborhood radius as Y - 1 (Hewitson and Crane

(2002)). In the training step, σ was first set to σ = 4 and later changed

to σ = 3 after the optimization step, as it returned a lower q error. The

neighborhood function modulating the σ is the Gaussian function, because,

as shown in Fig. 2.3, it was the function that minimized the q error. Its

characteristic exponential decay ensures that nodes farther away from the

Best Matching Unit (BMU), in terms of Euclidean distance, have progres-

sively less influence.

The learning rate determines the step size taken during each iteration of the

training process. It represents the speed at which a machine learning model

”learns”. If lr is set too high, the model may fail to converge, potentially

leading to erratic behavior. Conversely, if the learning rate is too low, the

model may converge extremely slowly or become stuck on incorrect configu-

ration, effectively hindering learning. Typically, the learning rate is chosen

within a range of values depending on the algorithm and the specific problem

being addressed. For this model, values ranged from 0.001 to 0.0001.

Lastly, the number of iterations simply defines how many times the model

has to be trained.

The full training procedure was reiterated with the comprehensive timeseries

of data, but, this time, only the best performer was retrained. The final

quantization error and topographic error values are

q = 66.49 (2.4)

t = 0.01 (2.5)

and the resulting activation map is shown in Fig 2.2. The following chapter

will provide a detailed description of the remaining aspects.
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Figure 2.3: Q error evolution for different neighborhood functions.

2.4 Composite analysis and statistical signif-

icance testing

By analyzing the entire time period, the dates on which each node is the win-

ner (i.e., the BMU) can be extracted. From this list of dates, the monthly

and yearly occurrences can be shown. These kinds of characterizations allow

for the identification of seasonal patterns that may be prominent in specific

seasons or, on a yearly scale, distinguish between patterns that have been

emerging or fading in recent years. This form of analysis could be integrated

with results from other research examining drought conditions over extended

periods, as it may help focus on recurrent patterns which could have connec-

tions to blocking states of the atmosphere.

To achieve a better characterization of each node, composite analysis was

applied to calculate the composite mean values of the four teleconnection in-

dices, precipitation, temperature, SPI-1, and SPEI-1. This statistical method
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is a useful technique used in climate science to determine the basic structural

characteristics of a meteorological phenomenon associated with a subset of

the whole data. Composite analysis involves collecting large numbers of

cases of a given phenomenon, which are then composited together as a col-

lection. The composite analysis then generally involves computing the com-

posite mean and perhaps computing some other statistical measures, such as

the standard deviation and statistical significance.

By selecting only the dates in which the node activates and then computing

the mean, this approach allows for the identification of a particular pattern,

or more likely a specific region within the SOM, referred to as a cluster,

which corresponds to a phase of a specific mode. First, the analysis was

carried out considering the whole dataset as a continuous timeseries, then

it was repeated dividing the year into extended winter (Dec-May) and ex-

tended summer (Jun-Nov). Further validation for the outcome was given

by a statistical significance assessment, with the null hypothesis having a

value significantly different from zero. Given the uniqueness of the dataset,

characterized by the presence of a single timeseries, a bootstrap method was

employed to assess statistical significance.

To assess the reliability of our results, we test statistical significance using

bootstrap techniques. In research, statistical significance measures the prob-

ability of the null hypothesis being true compared to the acceptable level

of uncertainty regarding the true answer. In particular, it helps determine

whether the null hypothesis should be rejected or not. This analysis is widely

used in research as it provides a quantitative measure of reliability and con-

fidence. In this case, the null hypothesis is stated as follows:

The mean value is significantly different from 0.

To evaluate this hypothesis, it is essential to establish a distribution of mean

values. Since the composite analysis yielded only one value, it became nec-

essary to generate a distribution. A bootstrap technique was employed for
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this purpose. Specifically, this method involves randomly selecting a value

from the dataset, retaining it, and then reinserting it before drawing the

next value. This cycle is repeated until a new dataset of the same size as

the original is created. By constructing multiple resampled datasets, the

bootstrap method approximates the sampling distribution of the statistic,

allowing for higher confidence levels. Such techniques are particularly useful

in cases where data is limited, as they provide a way to infer population

parameters without requiring additional observations.

For this analysis, a total of 10000 bootstrap samples were generated, and

the mean was calculated for each resampled dataset. A confidence interval

was then determined by identifying the range between the 2.5th and 97.5th

percentiles of the bootstrap distribution, corresponding to a 95% confidence

level. Any observed mean falling outside this interval was considered sta-

tistically significant, suggesting that the original result is unlikely to have

occurred by chance. Whenever this was the case, the mean value would be

shown in bold font.

2.5 Analysis of drought events

Here we outline the methodology used to analyze significant drought events.

As first step, we define the beginning and the end dates of each event. The

time periods associated with these droughts vary in the literature, depending

on the criteria used for drought classification. To ensure a systematic and

objective definition, we adopted the following metrics:

• Beginning of drought: the month in which the SPI-12, averaged

over the spatial domain of the drought, first reaches a value of 0.

• End of drought: the month corresponding to six months after the

minimum value of the averaged SPI-12 within the same spatial domain.

This approach is justified by the fact that SPI-12 is calculated over a one-year
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period, making it less sensitive to short-term fluctuations and seasonal varia-

tions. As a result, it provides a more stable and climatologically meaningful

representation of drought onset and recovery. Additionally, the six-month

period following the lowest SPI-12 value allows us to capture the lagged ef-

fects of drought persistence and hydrological recovery, which are critical for

understanding long-term drought impacts.

After a brief overview of the surface variables during the event, we shift our

focus to a more quantitative analysis of the relationship between the atmo-

spheric patterns described by the SOM resulting patterns and precipitation.

This characterization is done in terms of SPI-1 and SPEI-1 averaged over

the reference spatial domain. We use SPI-1 in place of monthly precipitation

anomalies as it provides an already standardized quantity easier to compare

across different locations. Systematic comparison of SPI and SPEI should

highlight the role played by high surface temperature in each drought event.

We perform composite analysis for each node to find the distribution of the

corresponding spatially averaged SPI-1 and SPEI-1 values, also computing

the composite mean. To classify each node as, dry, wet or neutral, we em-

ploy a bootstrap technique which enables us to assess whether the composite

mean SPI-1 and SPEI-1 values for a given node are significantly different

from zero. Based on this analysis, we categorize the nodes into three groups:

• A node is classified as dry if the mean SPI-1 (SPEI-1) is significantly

lower than 0.

• A node is classified as wet if the mean SPI-1 (SPEI-1) is significantly

higher than 0.

• A node is classified as neutral if the mean SPI-1 (SPEI-1) is not signif-

icantly different from 0.

Once the nodes have been assigned to one of these three categories, we com-

pute the frequency of occurrence for each class. This is done by counting
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the number of months in which a dry, wet, or neutral node is activated dur-

ing the event and then expressing these occurrences as a percentage of the

total time period analyzed. This frequency provides information on the at-

mospheric configurations that prevailed during the drought.

To assess how exceptional the event was, we conducted the following analy-

sis. Given the duration of the drought, we examined the entire dataset and

identified all periods of equal length, same start, and same end month (for

example, in the case of the Iberian drought, each period starting in November

and ending in February of the following year). For each of these periods, we

applied the same classification procedure described above to determine the

activation frequencies of dry, wet, and neutral nodes. This process resulted

in frequency distributions for each category, representing the typical vari-

ability across the dataset. We then compared these distributions with the

activation frequencies observed during the drought event to determine how

much they deviated from the expected range. Specifically, we calculated the

percentile rank of the event’s frequency within the distribution and derived

the corresponding probability, quantifying how rare or unusual the observed

frequencies were in a historical context.
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Chapter 3

Results

In this chapter, we present the results of our analysis, which is divided into

two main parts. First, we examine the Z500 patterns identified through the

SOM algorithm, providing insight into the dominant atmospheric circulation

regimes. We then characterize each node in terms of low-frequency vari-

ability and drought-related quantities, highlighting the connections between

atmospheric variability and surface conditions.

In the second part, we apply the methodology introduced in Section 2.5

to three case studies (the 1974-1975 drought, the 2004-2005 drought, and

the 2022-2023 drought) and analyze the atmospheric drivers of persistent

droughts associated with each drought event. We highlight the SOM-based

methods for drought analysis but also describe a framework and baseline for

future attribution studies.
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Figure 3.1: ERA5 Z500 monthly anomalies for 1940-2023 classified using the
self-organizing maps (SOM) with 35 nodes.
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3.1 SOM classification of atmospheric vari-

ability

Fig. 3.1 shows the 35 different patterns of monthly Z500 anomalies. The po-

sition of very distinct configurations at the corners of the SOM array demon-

strates that the model has correctly placed the most different configurations

as far apart as possible. Additionally, the activation map shown in Fig. 2.2

confirms that the model has correctly identified the most important patterns

(e.g. those that occur most frequently) placing them at the corners of the

map. The intermediate nodes display a gradual transition between extreme

configurations, suggesting that the SOM effectively captures the continuum

of atmospheric variability. Furthermore, the intensity of anomalies in the

corner nodes highlights the presence of the most pronounced and contrast-

ing patterns, reinforcing the validity of the classification. These intermediate

configurations are crucial for this study, as they provide a comprehensive view

of the variability that would be difficult to obtain with traditional methods

such as EOF analysis.

The monthly and yearly occurrences for each node, are shown in Fig. A.3.

These distributions highlight how certain patterns are predominantly associ-

ated with specific seasons, while others influence the synoptic scale uniformly

throughout the year. Additionally, the variability in yearly occurrences (Fig.

A.4) provides insight into possible long-term trends such as decadal variabil-

ity or shifts in the frequency of specific patterns over time.

3.1.1 Relationship of SOM nodes to main teleconnec-

tions

In order to relate the SOM nodes to four main low-frequency teleconnections

over the Atlantic-European sector, we work out the composite mean of the

NAO, EA, SCAND, EAWR indices for each node (Fig. 3.2).

41



Figure 3.2: Mean value of the a) NAO, b) EA, c) SCAND, d) EAWR index
for each SOM node. Bold values denote statistically significant from 0.

Mean values for the NAO index (Fig. 3.2.a), show an area characterized

by negative values (blue) in the upper left corner, and one characterized

by positive values (red) in the opposite corner (bottom right). Most of the

values are also significantly different from 0, although the magnitude of the

positive and negative phases is not symmetric: the strongest positive value

(1.20) is found in node (4,6), whereas the strongest negative value (-1.85) is

in node (0,0). This asymmetry suggests that the NAO+ and NAO- phases

may not have equivalent atmospheric impacts. These nodes exhibit patterns

that closely resemble the canonical NAO structure (1.4), while nonsignificant
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or close to zero values are associated with other atmospheric modes or a

superimposition of them. Considering the monthly occurrences, Fig. 3.3

underlines that the NAO is most frequent during winter. This is true in both

phases, although only one monthly frequency is shown.

Figure 3.3: Monthly frequency of the pattern corresponding to the node
(0,0).

This is consistent with what described in scientific literature, that is the NAO

is responsible for much of the low-frequency atmospheric variability in the

North Atlantic region during the months of November to April (Barnston

and Livezey (1987)).

The results for the extended summer and extended winter are shown in Fig.

A.5. During winter, the NAO- area appears slightly reduced, covering fewer

nodes compared to the annual analysis. The same cannot be said for the

NAO+ area, which is more spread out in winter but appears more clearly

defined during extended summer.

The mean values of the EA index (Fig. 3.2.b), are also grouped together

in two very distinct areas corresponding to EA+ (bottom left), and EA-

(upper center). With most of the nodes being statistically significant, the

two phases are on opposite parts of the map. The node with the highest

statistically significant value is node (4,2), while the most negative value

is found in node (0,4). The negative phase shows overall stronger values

than the positive phase, reaching almost -1.8, while the EA+, reaches 1.16.
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Both patterns correspond to the typical structure for the EA (Fig. 1.4).

Interestingly enough, when considering the yearly manifestation for the EA+

node, shown in Fig. 3.4, the frequency of occurrence of the pattern has

increased since the beginning of the 21st century. This result is also confirmed

by the standardized EA index, (see, e.g. https://www.cpc.ncep.noaa.gov/

data/teledoc/ea_ts.shtml).

Figure 3.4: Yearly frequency of the pattern corresponding to the node (4,2).

Seasonal differentiation (Fig. A.6) shows a similar classification to Fig. 3.2.b

during a) winter, while for b) summer we find less distinct results. In fact,

node (1,6) presents a positive mean value even if belongs to the EA- area,

although the value is not significant. EA- is stronger during winter, whereas

EA+ is stronger in summer.

As far as the SCAND is concerned (Fig. 3.2.c), areas with well-defined values

are less clear than in the case of NAO or EA. Although there is a distinct

area for SCAND+ in the upper right corner and one for SCAND- in the lower

right corner of this SOM array, significantly positive values can also be found

in the leftmost part of the map. The positive phase is clearly stronger than

the negative one: node (0,6) presents a mean value of 1.44, while node (3,5)

has a mean of -0.63. This distribution suggests that the SCAND pattern in

isolation appears less in the data with respect to the NAO or EA. Node (0,6)

shows a geopotential pattern that clearly resembles the typical structure for

the SCAND (Fig. 1.4), while for the negative phase, we struggle to find
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correspondence.

Unlike NAO and EA, which are characterized by a dipole structure, the

SCAND pattern features a more complex three-pole configuration, with cen-

ters over Scandinavia, the North Atlantic, and Eastern Europe (Fig. 1.4).

This inherent complexity, along with its greater spatial and temporal vari-

ability, may explain why the SOM struggles to clearly isolate SCAND-related

patterns from the data. Additionally, the presence of multiple interacting

centers might lead to a more diffuse representation in the SOM, as reflected

in the scattered distribution of near-neutral nodes and the weaker phase tran-

sitions across the map.

Seasonal analysis (Fig. A.7) further highlights this complexity. In winter,

the SCAND- cluster spreads toward the center of the map, blurring the dis-

tinction between phases. Conversely, summer appears to offer the clearest

separation between SCAND+ and SCAND- clusters, though substantial pos-

itive values can still be identified outside the upper right corner.

The SOM array for the EAWR (Fig. 3.2.d) shows even less distinct areas

compared to the other teleconnections. Few nodes display significant values,

and both positive and negative phases appear scattered across the SOM ar-

ray without forming well-defined regions. A small concentration of EAWR+

can be observed in nodes (1,6), (2,5), (2,6), and (3,6), although only two of

these nodes reach statistical significance. EAWR- appears primarily confined

to the lower part of the SOM array, spanning from node (4,0) to node (4,4),

with some additional presence in row 3. However, for both phases, isolated

significant values also emerge outside these tentative clusters, further blur-

ring the separation between positive, negative, and neutral states.

This blurring may also be partially explained by the intrinsic structure of the

EAWR pattern, which is often described as a quadrupole pattern featuring

alternating geopotential anomalies over the East Atlantic, western Europe,

eastern Europe, and Western Russia (Fig. 1.4). This more complex and
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spatially distributed structure could rarely appear in the data, leading to

struggles in isolating EAWR-related patterns as clearly as it does for sim-

pler, dipolar modes. These results also align closely with the findings from

the EOF analysis. The EAWR pattern is associated with the fourth mode

of variability, explaining a considerably smaller fraction of the total variance

compared to the leading patterns, such as NAO and EA. This reduced impor-

tance is reflected in the SOM, as lower-variance EOF modes correspond to

less dominant large-scale patterns, often characterized by weaker and more

localized spatial signals. Thus, the imprint of EAWR on the atmospheric

states is less robust, less persistent, and harder to capture for the SOM.

Seasonal analysis (Fig. A.8) does not substantially clarify the clustering

structure. A modest improvement is visible in summer, where EAWR- nodes

are more consistently grouped in the bottom left corner of the map. However,

EAWR+ remains diffuse across seasons, reflecting the overall weak phase sep-

aration.

We further estimate the probability of having a positive or negative NAO,

EA, SCAND, and EAWR for each SOM node. A strong positive (negative)

event is defined by a mean value exceeding 1 (-1). In practice, this is equiv-

alent to considering ±1 standard deviation, as the indices are standardized.

The probability was computed simply by considering the number of successes

over the total number of events.
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Figure 3.5: Probability array for a) NAO+, b) NAO-, c) EA+, d) EA-, e)
SCAND+, f) SCAND-, g) EAWR+, h) EAWR- .

Fig. (3.5) shows a general consistency with the mean index value maps dis-

cussed in the previous subsections. Nodes characterized by positive mean

values tend to exhibit a high probability of strong positive events, while

nodes with negative mean values display a high probability of strong nega-

tive events. This relationship is particularly evident in the NAO (a and b)

and EA (c and d) arrays. In these cases, the nodes with the highest proba-

bility of strong positive (negative) events coincide with the nodes associated

with the most positive (negative) mean values. However, this consistency is

partially lost in the SCAND array (e and f). The alignment holds for positive

events, but the spatial coherence is reduced for strong negative events. The

correspondence is almost completely disrupted in the EAWR (g and h) array,

where there is little correspondence between mean values and event proba-

bilities. This result was expected: as boundaries become less sharp in the

mean value analysis, the corresponding probability maps also become more

diffuse. The increasing difficulty in isolating coherent patterns for SCAND

and EAWR reflects the weaker imprint of these modes on the atmospheric
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variability, as already highlighted by the EOF analysis and the mean value

distributions.

3.2 Relation between atmospheric patterns

and drought-related quantities

To understand the influence and the impact of each individual node pattern

over Europe, composite analysis of near-surface temperature precipitation

anomalies, SPI-1, and SPEI-1 were evaluated. Results are shown for here

temperature (Fig. 3.6), SPI-1 (Fig. 3.7), and SPEI-1 (Fig. 3.8), while pre-

cipitation maps can be found in Appendix A (Fig. A.9).

Figure 3.6: Composite of near-surface temperature anomalies for each SOM
node.

In addition to composites, we also work out, for each SOM node, the prob-
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ability of being in a dry month (i.e. SPI-1 or SPEI-1 ≤ 1). Specifically, the

probability was computed simply as number of successes (i.e. having a value

under the threshold) over the total number of events. The resulting maps

are shown in Appendix A (Fig. A.10 and Fig. A.11).

The temperature anomaly maps clearly reflect the influence of the different

geopotential patterns over Europe. Consistent with expectations and evi-

dence illustrated in the Assessment Report 6 (AR6), WG1 (IPCC (2023)),

the NAO+ group leads to widespread positive temperature anomalies espe-

cially over northern Europe, while NAO- nodes feature negative anomalies

over the same region. A similar, though less pronounced, relationship is ev-

ident for the EA nodes. An interesting resulting pattern emerges from the

SCAND+ pattern (upper right), where the positive temperature anomaly

is concentrated over the Scandinavian Peninsula and negative temperature

anomalies are evident over southern-eastern Europe.

Beyond the specific phases of individual atmospheric modes, a broader and

more notable feature emerges: patterns indicative of stationary Rossby waves,

characterized by persistent high-pressure systems over Europe, consistently

correspond to positive temperature anomalies over large portions of the con-

tinent. Conversely, cyclonic and rain-bearing configurations are generally as-

sociated with negative temperature anomalies. This coherence between the

geopotential fields and surface temperature response highlights the strong

coupling between large-scale circulation patterns and near-surface climate

variability in the Euro-Atlantic region.
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Figure 3.7: Composites of SPI-1 for each SOM node.

SPI-1 maps (Fig. 3.7) suggest that temperature alone cannot fully explain the

observed precipitation anomalies. While there is a general correspondence be-

tween colder-than-average (warmer-than-average) conditions and drier (wet-

ter) conditions—particularly in the corners associated with NAO- and NAO+

(nodes (0,0) and (4,6) )—this relationship does not hold consistently across

all patterns. For instance, when considering the opposite corners (nodes (0,6)

and (4,0) ), the link between temperature anomalies and precipitation vari-

ability appears weaker. This suggests that other factors play a crucial role in

modulating drought conditions beyond what temperature alone can account

for. Although the transition is less straightforward than in the temperature

maps, the intermediate nodes play a crucial role in ensuring a smooth and

gradual shift between the atmospheric patterns represented in the corner

nodes, capturing the continuum of variability in precipitation responses.
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Figure 3.8: Composites of SPEI-1 for each SOM node.

When examining the SPEI-1 maps (Fig. 3.8), we gain a more comprehensive

view of the relationship between atmospheric patterns and precipitation and

temperature anomalies. In fact, the SPEI-1, thanks to the inclusion of evap-

otranspiration, provides additional information that helps explain responses

that SPI-1 alone could not justify. This demonstrates that comparing SPI

and SPEI can be highly valuable in studies of this kind, as it allows for a more

complete understanding of the mechanisms driving hydroclimatic variability.

For this reason, we chose to use both indices as criteria for the analysis con-

ducted in Section 3.3.

A particularly noteworthy case is the EA+ cluster, located in the lower-left

part of the SOM array. As previously illustrated in Fig. 3.4, this pattern

has shown an increase in frequency since the 2000s. In this context, the

EA+ cluster is associated with notably strong negative values for the SPEI-1

across large portions of southern and central Europe. However, as depicted
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in Fig. 3.7, the same pattern in earlier years appeared to have a less pro-

nounced impact on the composite. Under SPEI-1 it is possible to highlight

the growing connection between this specific atmospheric configuration and

the increased risk of drought in recent decades.

The consistency observed across the geopotential, temperature, and precip-

itation maps highlights the potential of SOMs as a valuable tool in drought

attribution research. By effectively capturing the relationships between large-

scale atmospheric patterns and surface climate anomalies, SOMs demonstrate

their capacity to extract key information relevant to drought development

and persistence. Their ability to identify both canonical and transitional

atmospheric states, along with the associated surface responses, suggests

that their application could offer new insights into the complex dynamics of

droughts, revealing connections that may be overlooked by more traditional

approaches.

3.3 SOM-based analysis of atmospheric drivers

of drought events

This section presents findings related to three major, multi-year European

drought events: the 1975–1976 drought in the United Kingdom, the 2004–2005

drought in the Iberian Peninsula, and the 2022–2023 drought in Southern Eu-

rope. To provide context, we first present a brief overview of each drought,

outlining its severity, duration, and socioeconomic consequences. We then

introduce the results obtained through the methodology described in Section

2.5, which offers insights that traditional approaches, such as simple correla-

tions between atmospheric and surface variables or standard statistical tools,

fail to capture. Through the implementation of a comprehensive SOM-based

framework across the three events, this study gives e new insight into at-

mospheric drivers of these droughts and provides a general framework for

subsequent attribution studies.
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3.3.1 The 1975-1976 drought

The 1975-76 drought is considered one of the most severe experienced across

much of the UK. Although shorter in duration relative to other major droughts

experienced in the last century, the 1975–76 drought is widely acknowledged

as the benchmark drought of the last 50 years in the UK, with no other

historical drought matching the degree of spatial coherence, geographic ex-

tent or hydrological intensity (Parry et al. (2012)). It caused considerable

depletion of surface water and groundwater over most of England and Wales

as well as neighboring parts of the Continent, while Scotland and Northern

Ireland were relatively less affected (Marsh et al. (2007)). The drought se-

riously reduced agricultural production, caused the industry to reuse water,

restricted navigation, it damaged buildings, made householders become very

cautious in their use of water, and provided a severe test of the water au-

thorities (Rodda and Marsh (2011)).

This remarking event started in May 1975 and ended in late autumn 1976,

with the hydrological drought lagging behind rainfall deficiencies over these

16 months (Parry et al. (2012)). It initially developed gradually over the win-

ter months, primarily affecting the UK, especially the southeast, as well as,

to a lesser extent, southern Scandinavia. Throughout the winter, the drought

became increasingly spatially coherent across most affected regions. In the

UK, the earliest impacts were felt in the western regions from October to

December 1975 before the drought shifted eastward, where it remained con-

centrated until eventually spreading across the entire country and reaching

the continent by the summer of 1976 (Parry et al. (2012)). By January 1976,

the most severe deficits were observed in southeastern UK. The delayed onset

in this region can be attributed to its higher groundwater storage capacity,

which initially provided resilience against short-term precipitation deficits.

Regarding large-scale atmospheric variability, the evolution of the NAO dur-

ing the event does not adequately explain the precipitation deficit, as the

period was marked by neutral to moderately positive values. In contrast,
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the EAWR exhibited the most significant deviations from neutrality, though

these shifts toward the positive phase remained moderate (Parry et al. (2012)).

Although this drought has significantly impacted also other regions across

Europe, here we focus on the British Isles as the area of interest and define

the spatial domain as [12°W, 4°E, 50°N, 60°N]. Using the methodology de-

scribed in Section 2.5, we set the beginning of the drought in August 1975

and its end in February 1977.

Figure 3.9: Spatially averaged SPI-12 over the UK domain. Solid line shows
the month corresponding to the minimum, dashed lines correspond to the
beginning and end dates for the event.

The spatial distribution of SPI-12 and SPEI-12 for August 1976, shown in

Fig. 3.10, represents the conditions during the month that recorded the low-

est value as depicted in Fig. 3.9. Both indices indicate critical drought con-

ditions across the UK, with negative values dominating the maps. However,

SPI-12 shows more extreme drought conditions, with larger areas experienc-

ing values below -2.5, particularly in southern England. In contrast, SPEI-12

exhibits a less intense pattern, with fewer regions reaching the most severe

drought classifications.

The fact that SPI-12 depicts dryer conditions suggests that the drought was

primarily driven by a significant lack of precipitation rather than by an in-

creased atmospheric evaporative demand, meaning that precipitation deficits
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alone were enough to cause extreme drought conditions. However, although

evapotranspiration does not appear to be the main driver of the drought, it

may have played a role in modulating the severity in some regions, partic-

ularly in southern England, where the drought was more intense and where

the lowest values of SPEI-12 are found. This suggests that in these areas, the

increase in atmospheric demand could have contributed to the intensification

of dry conditions.

Figure 3.10: Spatial distribution of SPI-12 (left) and SPEI-12 (right) in Au-
gust 1976, the month corresponding to the minimum value identified in Fig.
3.9.

When characterizing precipitation anomalies in terms of SOM nodes, several

interesting patterns emerge. Using the entire time series and considering only

the dates corresponding to the activation of each node, the occurrence of neg-

ative and positive precipitation anomalies was computed over the study area.

The number of months in which the mean precipitation anomaly is negative

for each node is shown in Fig. 3.11.a, while Fig. 3.11.b shows the number

of occurrences for positive anomalies. Finally, Fig. 3.11.c shows the mean

precipitation anomaly over the entire time period, providing a direct measure
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of the average deviation from normal precipitation conditions.

Notably, the nodes with the highest frequencies do not necessarily correspond

to those associated with the most extreme positive or negative precipitation

anomalies. This highlights a clear distinction between frequency and inten-

sity: circulation patterns that occur frequently are not always linked to the

most severe precipitation anomalies. A striking example is node (4,5), which,

despite having far fewer positive anomaly occurrences than nodes (4,0) and

(4,6), exhibits a mean composite value in Fig. 3.11.c of nearly the same

magnitude. Another particularly interesting case is node (0,6), which dis-

plays a nearly equal number of negative and positive occurrences, resulting

in a mean precipitation anomaly close to zero. However, the slightly higher

number of positive occurrences suggests that negative anomalies tend to be

stronger.

Figure 3.11: Occurrences of a) negative precipitation anomalies and b) pos-
itive precipitation anomalies over the UK study area and c) mean precipita-
tion anomaly associated with each SOM node.

Aggregating nodes associated with precipitation anomalies of the same sign,

we have a characterization of dry, wet, and neutral nodes for the UK in terms

of a) SPI-1 and b) SPEI-1 (Fig. 3.12). The classifications provided by the

two indices are largely similar and consistent with the patterns observed in

Fig. 3.11.c, confirming the overall coherence in the spatial distribution of dry
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and wet conditions. However, some differences emerge when comparing the

two indices. SPI-1 identifies a total of 9 dry nodes and 11 wet nodes, while

SPEI-1 detects 10 dry nodes but only 6 wet nodes. This discrepancy implies

that several nodes classified as wet by SPI-1 are instead categorized as neutral

when considering SPEI-1. This result suggests that in these nodes, evapo-

transpiration may have counterbalanced the precipitation excess, leading to

a reclassification from wet to neutral.

Figure 3.12: Characterization of wet (blue), dry (red), and neutral (yellow)
SOM nodes based on a) SPI-1 and b) SPEI-1 for the UK study area.

After characterizing the dry, wet, and neutral nodes in terms of SPI-1 and

SPEI-1, we computed the activation frequencies of the three categories for

the period going from August 1975 to February 1977. Table 3.1 indicates

that, in terms of SPI-1, the dry nodes were active 57.89% of the time, the

wet nodes 10.53%, and the neutral nodes 31.58%. Regarding SPEI-1, the dry

nodes were active 57.89% of the time, the wet nodes 5.26%, and the neutral

nodes 36.85%. Although the frequency of dry nodes remains unchanged, the

activation of wet nodes is halved compared to SPI-1, leading to a correspond-

ing increase in neutral nodes. This behavior is expected, as the additional

sensitivity of SPEI-1 led to a lower number of nodes classified as wet. On the

other hand, the number of dry nodes remains nearly the same (Fig. 3.12).

Fig. 3.13 presents the activation frequencies of dry, wet, and neutral nodes
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for a) SPI-1 and b) SPEI-1 during the 1975-1976 drought, compared against

the distribution of values during 1940-2023 due to natural climate variability.

Each boxplot represents the distribution of activation frequencies computed

over all periods of the same start, same end, and equal length to the event,

providing a benchmark for typical variability. The red dots indicate the spe-

cific activation frequencies observed during the 1975-1976 drought. For both

metrics, the frequency of activation of dry nodes during the event is higher

than the median of the reference distribution (which is 28.95% for both), in-

dicating a greater-than-expected persistence of drought conditions. The wet

category shows an even more striking deviation, with activation frequencies

during the drought significantly lower than the reference values, reinforcing

the notion of a pronounced and sustained precipitation deficit. Meanwhile,

the neutral nodes also display deviations from typical values.

Figure 3.13: Frequency distribution for dry, wet, and neutral nodes consider-
ing all the periods with the same start (end) month. Red dots represent the
observed frequencies for the event. The box spans from the 25th to the 75th
percentile, with a line at the median. Whiskers extend from 25Q−1.5×IQR
to 75Q+ 1.5× IQR, where IQR = 75Q− 25Q.

Table 3.1 presents the observed activation frequencies, their corresponding
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percentiles, and the associated probability. The percentile was calculated

empirically, comparing the observed frequency with the reference distribu-

tion. Additionally, the probability was computed in terms of obtaining an

equally or more extreme value, representing the likelihood of observing such

an extreme activation frequency under typical conditions. The probability

is equal to the percentile when considering the lower tail of the distribution;

otherwise, it is given by 1− percentile when referring to the upper tail.

SPI-1 SPEI-1
Freq. (%) Pctl Prob (%) Freq. (%) Pctl Prob (%)

Dry 57.89 98.36 1.64 57.89 99.65 0.35
Wet 10.53 0.75 0.75 5.26 0.01 0.01

Neutral 31.58 86.67 13.33 36.85 89.47 10.53

Table 3.1: Observed frequencies, percentiles, and probabilities for SPI and
SPEI during the 1975-1976 drought.

The results from the probability values confirm that the 1975-1976 drought

was indeed an exceptional event, both when considering SPI-1 and SPEI-1

indices. The corresponding percentiles for the dry categories are extremely

high, 98.36 for SPI-1 and 99.65 for SPEI-1, reflecting a almost unprecedented

persistence of dry conditions. Notably, the probability of encountering dry

conditions is lower for SPEI-1 (0.35%) compared to SPI-1 (1.64%), indicat-

ing that the incorporation of evapotranspiration in the latter intensifies the

severity of the drought. For the wet category, the probabilities are similarly

low: 0.75% for SPI-1 and 0.01% for SPEI-1, further confirming the pro-

longed dryness during this period. The neutral category, with probabilities

of 13.33% for SPI-1 and 10.53% for SPEI-1, suggests that these neutral at-

mospheric states, while not directly related to extreme dryness or wetness,

still contributed to the overall atmospheric conditions.

In conclusion, these findings underscore the rarity and significance of the

1975-1976 drought, with probability estimates pointing to an outcome far
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beyond traditional assessments. Thanks to this new approach, which has

never been applied to this specific case, we have also quantified the distinct

contributions of dynamical and thermodynamical drivers.

3.3.2 The 2004-2005 drought

The 2004-05 hydrological year was marked by one of the most severe droughts

ever recorded in the Iberian Peninsula, particularly in the central and south-

ern regions. Intense droughts are a common feature of the Iberian precipita-

tion regime, which is characterized by strong interannual and decadal vari-

ability (Esteban-Parra et al. (1998)). However, the low levels of precipitation

and the widespread impact have made this event one of the most devastat-

ing episodes in the region’s history. According to Spanish and Portuguese

authorities, several long-term precipitation stations across central Spain and

Portugal recorded the worst drought since the late nineteenth century. In

southern Iberia, it ranks as the second most intense drought in the last 130

years. This severity led to significant political and social unrest, as water

levels in dams across Spain and Portugal dropped to around 55% of their

total capacity by June 2005 (Garćıa-Herrera et al. (2007)). River flow values

throughout Iberia also dropped substantially, reaching record lows, with di-

rect consequences for hydroelectric power production. Iberian precipitation is

highly variable across the region, and even the most widespread droughts do

not affect the entire territory. Typically, about 20% of the Iberian peninsula

is impacted during a drought event, with the most intense episodes affecting

over 50% of the territory (Vicente-Serrano and López-Moreno (2008)).

The NAO plays a key role in controlling precipitation variability in the region,

particularly during winter. At the same time, other large-scale atmospheric

circulation patterns, such as the EA and SCAND patterns, also influence

precipitation in Iberia. Although Garćıa-Herrera et al. (2007) demonstrated

that scarce precipitation in the Iberian peninsula is closely linked to the pos-

itive phase of the NAO, its influence alone did not fully account for the low
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precipitation levels observed in February. Instead, a negative phase of the EA

provided a more convincing explanation. In contrast, March 2005, stands as

an exception: despite the negative NAO and positive EA, neither index ade-

quately explained the significant negative precipitation anomalies over much

of Europe. The primary driver of this unusual precipitation pattern was a

blocking episode in early March, which caused atypical shifts in storm tracks,

preventing cyclonic activity from reaching Iberia. Such blocking events dur-

ing negative NAO phases are less frequent over Iberia compared to other

regions, as the displacement of blocking centers in this case favored dry con-

ditions across the Peninsula. This highlights the importance of a SOM-based

approach in this context, as it provides a more flexible method to identify

atmospheric patterns driving droughts.

For this case study the spatial domain for averaging SPI and SPEI is defined

by [10°W ,5°E ,35°N ,45°N]. Given the time evolution of the area-averaged

SPI-12 (Fig. 3.14), we consider the period November 2004 - February 2006

as characteristic of the drought duration.

Figure 3.14: Spatially averaged SPI-12 over the Iberian domain. Solid line
shows the month corresponding to the minimum value, dashed lines corre-
spond to the beginning and end dates for the event.

The spatial distribution of SPI-12 and SPEI-12 is shown in Fig. 3.14 for

the month of August 2005, that is the time of maximum dryness (Fig. 3.14).
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Both indices indicate critical drought conditions across the Iberian Peninsula,

however, SPI-12 exhibits more extreme drought conditions in several regions,

particularly in the central-eastern parts of the peninsula. In contrast, SPEI-

12 presents a slightly less severe pattern, with fewer areas reaching the most

extreme drought classifications.

Figure 3.15: Spatial distribution of SPI-12 (left) and SPEI-12 (right) in Au-
gust 2005, month corresponding to the minimum value identified in Fig. 3.14.

The characterization of precipitation anomalies in terms of the SOM nodes,

shown in Fig. 3.16, reveals several interesting features. When consider-

ing occurrences of negative anomalies, a key difference from the previous

case is that the highest frequency and highest intensity now coincide in the

same node, specifically node (4,6). However, this is not the case for posi-

tive anomalies in Fig. 3.16.b, where node (0,6) does not correspond to the

highest mean precipitation anomaly. Instead, other nodes, such as (4,0) and

(4,5), exhibit greater positive anomaly magnitudes despite occurring less fre-

quently. This suggests that while some circulation patterns lead to frequent

wet conditions, they are not necessarily associated with the most extreme

precipitation events.

Additionally, when comparing Fig. 3.16.a and Fig. 3.16.b, the spatial dis-

tribution of positive and negative anomalies appears asymmetric. Negative

anomalies do not exhibit any clear clustering, whereas two major regions
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emerge for positive anomalies: one in the upper right corner and another

along the left side of the array. Finally, Fig. 3.16.c shows a stronger resem-

blance to Fig. 3.16.b than to Fig. 3.16.a, reinforcing the idea that positive

precipitation anomalies tend to be more spatially structured, whereas nega-

tive anomalies are more evenly distributed.

Figure 3.16: Occurrences of a) negative precipitation anomalies and b) pos-
itive precipitation anomalies over the Iberian peninsula study area, and c)
mean precipitation anomaly associated with each SOM node.

The characterization of dry, wet, and neutral nodes in terms of a) SPI-1 and

b) SPEI-1 is shown in Fig. 3.17. Compared to the previous case, the clas-

sifications here exhibit greater discrepancies between the two indices. While

both maps show some resemblance to Fig. 3.16.c, the agreement between

SPI-1 and SPEI-1 is less clear. In particular, the identification of wet nodes

appears relatively consistent between the two and the precipitation anoma-

lies, whereas the correspondence for dry nodes is less straightforward.

SPI-1 identifies only 8 dry nodes and 7 wet nodes, whereas SPEI-1 detects

a total of 16 dry nodes and just 5 wet nodes. This difference suggests that

SPEI-1 classifies as dry even atmospheric patterns that are not associated

with large negative precipitation anomalies, significantly increasing the num-

ber of dry nodes while reducing the neutral ones. The fact that SPEI-1 iden-
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tifies nearly twice as many dry nodes as SPI-1 implies that in a southern

European region such as Iberia, evapotranspiration plays a crucial role in

intensifying drought conditions. Indeed, Iberia is naturally prone to hot, dry

summers, where high temperatures and increased evapotranspiration exacer-

bate drought conditions. SPEI-1 better captures these effects related to soil

drying, thus enlarging the number of dry nodes and reducing the number of

neutral nodes.

Figure 3.17: Characterization of wet (blue), dry (red), and neutral (yellow)
nodes based on a) SPI-1 and b) SPEI-1 for the Iberia study area.

During the drought, the activation frequencies for each class were found to be

33.33% (dry), 16.67% (wet), and 50.00% (neutral) for SPI-1, while for SPEI-

1, the frequencies were 41.67% (dry), 25.00% (wet), and 33.33% (neutral).

Fig. 3.18 presents them in comparison to the distribution of values during

1931-2023 due to natural climate variability. Under SPI-1, the frequency

of dry node activation during the event falls within the interquartile range

(IQR), suggesting that dry conditions were broadly in line with typical vari-

ability when evaluated from the perspective of precipitation alone. However,

this is not the case for wet nodes, where the activation frequency during the

event lies far below the IQR, indicating a notably lower occurrence of wet

conditions than expected.

Under SPEI-1, this relationship is inverted: the dry node frequency is more
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extreme, aligning with the upper tail of the reference distribution, which

suggests a pronounced dry anomaly when accounting for evapotranspiration

effects. Conversely, wet node activation is below the IQR but remains within

the whiskers, indicating a marked reduction in wet conditions, though not

at an extreme level. Neutral node frequencies under SPEI-1 are closer to

the typical range, suggesting a more balanced distribution of neutral condi-

tions compared to SPI-1. The differences in frequency for dry and neutral

nodes between SPI-1 and SPEI-1 reflect the difference in classification of the

nodes, as many nodes that for SPI-1 were classified as neutral resulted dry

for SPEI-1.

Figure 3.18: Frequency distribution in terms of a) SPI-1 and b) SPEI-1 for
dry, wet, and neutral nodes considering all the periods with the same start
(end) month. Red dots represent the observed frequencies for the event. The
box spans from the 25th to the 75th percentile, with a line at the median.
Whiskers extend from 25Q− 1.5× IQR to 75Q+ 1.5× IQR, where IQR =
75Q− 25Q.
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Table 3.2 presents the observed activation frequencies, their corresponding

percentiles, and the associated probabilities. Despite the event being recog-

nized as a significant drought, the probability associated with the activation

frequency of dry nodes under SPI-1 (32.43%) suggests that dry conditions

were relatively typical, as it falls near the median of the reference distri-

bution. However, SPI-1 effectively captures the anomalously low activation

of wet nodes, with a probability of only 9.05%, highlighting its deviation

from reference variability. What stands out in this case is the exceptional

probability associated with neutral nodes (0.14%), indicating that these con-

figurations played a dominant role in shaping the event. This suggests that

the drought, as depicted by SPI-1, was not driven by an extreme increase in

dry conditions, but rather by an unusually high presence of neutral condi-

tions combined with a significant reduction in wet occurrences.

SPEI-1, on the other hand, places stronger emphasis on the dry anomaly, as

reflected in the high percentile (93.75) and relatively low probability (6.25%),

suggesting that the activation of dry nodes was much less typical compared

to SPI-1. However, SPEI-1 is less effective in capturing the rarity of the low

wet-node activation, which appears more anomalous in SPI-1 (9.05%) than

in SPEI-1 (19.48%). The activation frequency of neutral nodes under SPEI-

1 does not appear particularly unusual, with a higher probability (21.43%)

compared to SPI-1. This suggests that while SPI-1 highlights the anomalous

reduction in wet conditions, SPEI-1 better identifies the extent of the dry

anomaly, likely due to its incorporation of evapotranspiration effects.

SPI-1 SPEI-1
Freq. (%) Pctl Prob (%) Freq. (%) Pctl Prob (%)

Dry 33.33 67.57 32.43 41.67 93.75 6.25
Wet 16.67 9.05 9.05 25.00 19.48 19.48

Neutral 50.00 99.86 0.14 33.33 78.57 21.43

Table 3.2: Observed frequencies, percentiles, and probabilities for SPI-1 and
SPEI-1 during the 2004-2005 drought.
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To conclude, the analysis of the 2004-2005 drought provides valuable insights

through the SOM-based characterization. The results highlight a key differ-

ence between SPI-1 and SPEI-1 in how the drought was represented. Under

SPI-1, the event was primarily driven by an unusually high activation of neu-

tral nodes, rather than an extreme increase in dry conditions. In contrast,

SPEI-1 attributes the drought more directly to the activation of dry nodes,

emphasizing the role of temperature in enhancing evapotranspiration.

3.3.3 The 2022-2023 drought

In 2022, intense and prolonged drought conditions severely affected large por-

tions of France, Italy, and Spain, with widespread socio-economic and eco-

logical consequences. The drought was driven by a persistent precipitation

deficit that began in late 2021, becoming particularly evident in northwest-

ern Italy by March 2022. Poor snow accumulation in the Alps and unusually

warm winter temperatures raised concerns about reduced snowmelt contri-

butions to river flows in spring, increasing the risk of hydrological drought

(GDO report for March 2022). Drought severity indicators such as SPI and

SPEI frequently fell below -2 (categorized as extreme drought with respect

to Tab. 1.1), with some areas recording values below -3 (Faranda et al.

(2023)). The impacts were severe across sectors: in Italy, water restrictions

affected around 50% of the population, especially in the North. Record in-

land saltwater intrusion was reported in the Po River Delta, reaching up to

40 km from the coast. Agriculture suffered significant losses, with maize,

soybean, and sunflower yields reduced by approximately 15% compared to

the 5-year average (GDO report for March 2022). Hydropower production

and cooling systems for power plants were also strained due to reduced water

availability. Similar impacts were observed in France and Spain. Southern

France experienced extensive wildfires, with burned land more than double

that of 2021 and 4.6 times the 2012–2021 average. By August, 66 French

departments were under the highest drought alert level, with 93 under one
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of the top three levels. In Spain, Portugal, and the Netherlands, agriculture,

energy production, and domestic water supply were similarly affected.

The exceptional nature of the 2022 drought drew considerable media at-

tention, elevating water management as a priority on the political agenda.

This event also fueled public debate on the role of anthropogenic climate

change. Studies such as Faranda et al. (2023) and Bevacqua et al. (2024)

suggest that ACC intensified the drought through a thermodynamic effect,

making the atmosphere both ‘stronger’ and ‘warmer,’ thereby exacerbating

drying conditions. However, no clear evidence was found of changes in the

frequency of the slow-evolving atmospheric circulation pattern that triggered

the drought, indicating that while global warming amplifies the intensity of

drought, it has not significantly altered its patterns of occurrence.

Although this exceptional drought affected large portions of central and west-

ern Europe, the spatial domain we chose for area-averaging is [7°W, 17°E,
35°N, 49°N] (Fig. 3.20), which corresponds to the part of Europe where the

drought lasted longer and the lowest values of drought indices were reached.

The time period identified by the spatially averaged SPI-12 spans from March

2021 to February 2023, with a total duration of 24 months.

Figure 3.19: Spatially averaged SPI-12 over southern Europe domain. Solid
line shows the month corresponding to the minimum value, dashed lines
correspond to the beginning and end dates.
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The spatial distribution of SPI-12 and SPEI-12 for August 2022 (Fig. 3.20)

illustrates the drought conditions during the month corresponding to the

minimum value in Fig. 3.19. Although both indices indicate severe drought

across much of the region, key differences emerge. SPI-12 depicts a less

heterogeneous drought pattern, with particularly severe conditions in north-

ern Italy and parts of southern France (where values drop below -2.5), but

severe drought conditions appear, for example, in Spain and Sicily, suggest-

ing a more spatially variable impact. In contrast, SPEI-12 presents a more

uniformly distributed and intense drought, with a larger portion of the re-

gion experiencing extreme dryness. Hence, while precipitation deficits were

clearly significant, the additional drying effect from high temperatures and

increased evapotranspiration likely exacerbated the drought’s severity, lead-

ing to a stronger and wider signal in SPEI-12.

Figure 3.20: Spatial distribution of SPI-12 (left) and SPEI-12 (right) in Au-
gust 2005, the month corresponding to the minimum value identified in Fig.
3.19.

Fig. 3.21 presents the characterization of precipitation anomalies over the

study area in Fig. 3.19 in terms of SOM nodes. The distributions are broadly

similar to the Iberian case (Fig. 3.15), which is not surprising given the sim-

ilar spatial domain. However, unlike the Iberian drought’s case, node (4,6)

does not exhibit the strongest mean anomaly. Fig. 3.21.b reveals a different

pattern for positive anomalies: node (0,6) is no longer associated with the
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most intense positive mean anomaly Fig. 3.21.c. Instead, other nodes, such

as (0,0) and (4,0), exhibit higher positive precipitation anomalies despite oc-

curring less frequently.

Comparing Fig. 3.21.a and Fig. 3.21.b the spatial distributions of negative

and positive anomalies appear asymmetric. Negative anomalies are more

evenly distributed across the array, whereas positive anomalies are more lo-

calized, with concentrations in the upper right and upper left corners. Finally,

panel 3.21.c aligns closely with both Fig. 3.21.a and Fig. 3.21.b, although

the relationship is less direct between Fig. 3.21.a and Fig. 3.21.c . This rein-

forces the idea that positive precipitation anomalies tend to be more spatially

structured, whereas negative anomalies are more broadly distributed across

different circulation patterns.

Figure 3.21: Occurrences of a) negative precipitation anomalies and b) pos-
itive precipitation anomalies over southern Europe study area, and c) mean
precipitation anomaly associated with each SOM node.

The characterization of dry, wet, and neutral nodes in terms of a) SPI-1 and

b) SPEI-1 (Fig. 3.22) also exhibit a similar pattern compared to the previous

case and consistency with Fig. 3.21.c . SPI-1 identifies fewer dry nodes and

more wet nodes, whereas SPEI-1 detects a significantly higher number of dry

nodes and fewer wet ones. This discrepancy highlights the fact that SPEI-1

captures more monthly circulation patterns associated with dry conditions,
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increasing the number of classified dry nodes while reducing wet classifica-

tions.

Given that this region, similarly to the Iberian Peninsula, experiences a

Mediterranean climate characterized by hot, dry summers, the similarities

between the two cases are not surprising. The persistent high temperatures

and strong evapotranspiration rates in the region likely explain why SPEI-

1 systematically detects a more widespread and severe drought compared

to SPI-1, reinforcing the importance of considering atmospheric demand in

drought assessments.

Figure 3.22: Characterization of wet (blue), dry (red), and neutral (yellow)
SOM nodes based on a) SPI-1 and b) SPEI-1 for southern Europe study area.

Figure 3.23 shows the activation frequencies of dry, wet, and neutral nodes,

represented in terms of a) SPI-1 and b) SPEI-1, compared to the reference

variability. In this case, for SPI-1, the activation frequency of the dry (wet)

nodes falls out of the IQR, indicating a notable increase (reduction) during

the event. The activation of neutral nodes is significantly above the median,

even exceeding the whiskers, implying that neutral conditions were far more

persistent than usual. This suggests that under SPI-1 the drought was driven

more by a strong persistence of dry and neutral configurations at the expense

of wet patterns.

The characterization based on SPEI-1 is, however, markedly different. The
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activation frequency for dry nodes is an extreme outlier, well above the typ-

ical distribution, highlighting the exceptional nature of the drought when

considering both precipitation deficits and increased evaporative demand.

Meanwhile, the wet node frequency is near zero, aligning with the lower tail

of the reference distribution, further emphasizing the rarity of wet conditions

during this period. This comparison suggests that, unlike previous drought

events analyzed, SPEI-1 more clearly captures the exceptionality of the 2022-

2023 drought, likely due to the compounded effect of reduced precipitation

and abnormally high temperatures.

Figure 3.23: Frequency distribution for dry, wet, and neutral nodes consider-
ing all the periods with the same start (end) month. Red dots represent the
observed frequencies for the event. The box spans from the 25th to the 75th
percentile, with a line at the median. Whiskers extend from 25Q−1.5×IQR
to 75Q+ 1.5× IQR, where IQR = 75Q− 25Q.

Table 3.3 presents the observed activation frequencies, their corresponding

percentiles, and the associated probabilities. The results align with the con-

clusions drawn in the previous paragraph. Under SPI-1, the activation fre-
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quency of dry nodes appears relatively typical, with an associated probabil-

ity of 14.29%, indicating that dry conditions during the event were rare but

not exceptional compared to historical variability. Similar conclusions can

be drawn from the probability for wet nodes (9.73%). However, the neu-

tral nodes exhibit a notably high percentile (95.24) and a low probability

(4.76%), indicating that their activation was unusually frequent compared to

historical records. This reinforces the idea that, under SPI-1, the drought

was characterized more by a reduction in wet conditions and an increased

presence of neutral configurations rather than an extreme dominance of dry

nodes.

In contrast, under SPEI-1, the activation frequency of dry nodes is extreme,

reaching a percentile of 100, highlighting the exceptional and unprecedented

nature of the dry conditions when accounting for both precipitation deficits

and increased evaporative demand. This is further supported by the ex-

tremely low probability (0.00%), confirming that such a high frequency of

dry conditions had never occurred in the reference dataset. Conversely, wet

and neutral nodes exhibit very low percentiles (0.00 and 1.43, respectively),

highlighting their complete absence during the event.

SPI-1 SPEI-1
Freq. (%) Pctl Prob (%) Freq. (%) Pctl Prob (%)

Dry 37.04 85.71 14.29 85.19 100.00 0.00
Wet 25.92 9.73 9.73 3.70 0.00 0.00

Neutral 37.04 95.24 4.76 11.11 1.43 1.43

Table 3.3: Observed frequencies, percentiles, and probabilities for SPI-1 and
SPEI-1 during the 2022-2023 drought.
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Chapter 4

Discussion and Conclusions

In this chapter, we will discuss the results presented in the previous chapter

in the contest of the recent scientific literature. We will examine both the

benefits and potential drawbacks of the approach, highlighting its strengths

as well as any limitations that may affect the interpretation of the findings.

Additionally, we will consider possible improvements and alternative methods

that could refine the analysis. Finally, we will explore future perspectives,

discussing how the framework we defined can be expanded for further studies

and potentially applied in the field.

4.1 Summary and discussion of the results

By applying a 7 × 5 Self-Organizing Map, we identified the predominant

atmospheric patterns over the Euro-Atlantic domain and used them to char-

acterize three major drought events using two drought indicators, SPI-1 and

SPEI-1.

For the 1974-1975 drought (Parry et al. (2012)), SPI-1 identified 11 wet

patterns, 9 dry patterns, and the rest as neutral out of 35 total patterns,

while SPEI-1 classified 6 as wet, 10 as dry, and the rest as neutral. Overall,

the drought seems to be primarily driven by an above-average activation of
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dry nodes, while the activation of wet nodes is substantially below-average

(10.53% for SPI and 5.26% for SPEI). The rarity of wet nodes is particularly

striking, with probabilities of only 1.64% (SPI-1) and 0.35% (SPEI-1), high-

lighting an exceptional scarcity of precipitation-bearing patterns. The main

difference between SPI-1 and SPEI-1 emerges in the frequency of activation

for wet nodes, which is half in SPEI-1 (5.26%) compared to SPI-1 (10.53%),

likely reflecting the additional influence of evapotranspiration.

For the 2004-2005 Iberian drought (Garćıa-Herrera et al. (2007)), the differ-

ences between SPI and SPEI are more pronounced, especially in the iden-

tification of dry and wet nodes. While SPI-1 classifies 8 dry nodes and 7

wet nodes, SPEI-1 identifies 16 dry nodes and only 5 wet nodes, highlighting

the region’s sensitivity to evapotranspiration effects (Vicente-Serrano and

López-Moreno (2008); González-Hidalgo et al. (2018)). These differences

are also reflected in the frequency and probability values. Under SPI-1, the

drought appears to be driven by an unusually high activation of neutral nodes

(50.00%) at the expense of wet nodes (16.67%), with probability values indi-

cating that such persistence of neutral patterns was virtually unprecedented

in the dataset (0.14%). In contrast, SPEI-1 attributes the drought primarily

to the high activation of dry nodes (41.67%), which are associated with a

probability of 6.25%, while the occurrence of neutral nodes (21.43%) is far

less exceptional.

Lastly, for the 2022-2023 drought (Bevacqua et al. (2024); Faranda et al.

(2023)), the results strongly reflect the unprecedented severity of the event.

The classification of nodes remains almost identical to the previous case,

given the similar geographical domain, with SPI-1 identifying 8 dry and 7

wet nodes, while SPEI-1 classifies 17 dry and 5 wet nodes. However, the

most remarkable aspect is the activation frequency under SPEI-1: dry nodes

were active for the vast majority of the time (85.19%), at the expense of

both wet (3.70%) and neutral nodes (11.11%). In practical terms, wet nodes

were almost entirely absent during the event. The probability values further

75



highlight the extremeness of the drought by showing that dry nodes had an

associated 0% probability, indicating that such high activation has never oc-

curred in the observational dataset ranging over the period 1940-2023. The

probability for wet nodes activation was also exceptionally low (0%), rein-

forcing the unprecedented nature of the event.

These results demonstrate that the methodology we developed is not only

effective in identifying extreme events, but also in providing new insights

into their underlying dynamics. First, it offers a continuous representation

of the dominant atmospheric patterns over the Euro-Atlantic domain, im-

proving upon traditional approaches. Second, it allows for a quantification

evaluation of the probability of occurrence of dry, wet, and neutral circula-

tion patterns, offering a deeper insight into the dynamical drivers of the event.

As far as the methodology is concerned, some critical aspects must be ac-

knowledged. A key challenge is the selection of the number of nodes in

the SOM array, as different configurations can lead to significantly different

results. There is no universal rule for determining the optimal number of

nodes; instead, it largely depends on the study’s objectives and the desired

level of detail. This remains an open area for further experimentation, as

different SOM configurations could reveal additional insights into the com-

plex dynamics behind droughts. However, we expect that the key point of

this approach, i.e., the identification of dry, wet, and neutral nodes and their

aggregated probability of occurrence during an extreme drought event, is

pretty insensitive to the change of SOM dimension.

Another potential limitation lies in the choice of SPI-1 and SPEI-1 as criteria

for defining dry, wet, and neutral nodes. While these indices are widely used

in drought studies, alternative approaches exist. For instance, Odoulami

et al. (2020) and Harrington et al. (2016) classified atmospheric patterns by

analyzing the broader circulation dynamics over their domain of interest. In-

stead of relying solely on drought indices, they assigned labels to patterns
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based on their role in regional climate variability. Specifically, they consid-

ered the positioning of key synoptic features, such as westerlies, subtropical

anticyclones, and low-pressure systems, and identified patterns that actively

contributed to blocking as ”dry” and those related to rain-bearing systems as

”wet”. Future research could explore hybrid methods that integrate multiple

criteria to enhance classification robustness, such as incorporating key synop-

tic features that influence the spatial domain. A third point requiring some

attention is the time available for analysis, which in our case was 83 years

(1940-2023). Having reanalysis and longer precipitation datasets, such as

20CRU3, would provide a more robust historical perspective. Despite these

limitations, the methodology remains a powerful tool for studying droughts

from a new perspective and lays the foundation for attribution studies.

The next step for this study would be to conduct an extreme event attribution

analysis (Otto (2017)) to assess the influence of anthropogenic climate change

on these drought events. Our method not only provides insights into how

human-induced warming affects drought likelihood but, more importantly,

helps evaluate its impact on atmospheric dynamical drivers. Quantifying

this influence is particularly challenging, and few studies have successfully

isolated clear anthropogenic signals in circulation patterns. While thermo-

dynamic effects, such as those driven by warming, are relatively easier to

detect, the impact of human-induced changes on purely dynamical atmo-

spheric variables remains highly uncertain (Bevacqua et al. (2024)).

Our approach would be especially valuable for analyzing multi-year droughts

(Pascale and Ragone (2025)), which involves the synergy of different atmo-

spheric drivers to maintain dry conditions over a long time period. While

standard model comparisons remain a complementary method, applying such

techniques to drought studies often relies on the assumption that a specific

drought measure, such as soil moisture, can be consistently simulated by

climate models over time and is fully representative of the underlying mech-
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anisms driving event severity. In contrast, the SOM-based approach focuses

solely on changes in atmospheric circulation patterns throughout the event,

providing a unique perspective on drought attribution that is less dependent

on a single drought metric.

The proposed framework, inspired by Odoulami et al. (2023), would aim

to assess the impact of anthropogenic climate change by comparing climate

model simulations under different forcing scenarios. It consists of the follow-

ing steps:

1) Estimate the frequency of activation for dry, wet, and neutral nodes

during the event.

2) Obtain the same estimate in a counterfactual climate, where human-

induced climate change is absent, and in a factual climate, where it is

present.

3) Assess whether anthropogenic climate change has significantly altered

the probability of having such an extreme event.

To achieve this, we employed simulations from the atmospheric general circu-

lation model ECHAM5.4 (Hoell et al. (2017)), obtained from the Atmosphere

Model Intercomparison Project (AMIP; Hoell et al. (2017)), freely available

at https://psl.noaa.gov/repository/entry/show. These simulations in-

clude a large ensemble of atmosphere-only experiments under two forcing

scenarios: all or actual forcings (ALL) representing the factual world, and

natural-only forcing (NAT) as the counterfactual. In the NAT simulations,

(i) observed sea surface temperatures are detrended and adjusted to 1880

mean conditions, (ii) sea ice follows a repeating seasonal cycle representative

of 1979–1989 conditions, and (iii) greenhouse gas concentrations and ozone

levels are set to their 1880 values.

Applying the SOM model to these datasets would allow us to redefine and

analyze the dry, wet, and neutral nodes under both scenarios. By comput-

ing activation frequencies, we could quantify how anthropogenic influences
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have altered the persistence and occurrence of specific atmospheric patterns,

ultimately assessing whether human-induced climate change has increased

or decreased the likelihood of extreme drought events. Fig. 4.1 shows the

SOM-based classification of Z500 monthly anomalies in the NAT ECHAM5.4

ensemble. Apart from differences in the labeling and orientation of the SOM

array, comparison to Fig. 3.1 shows the ability of the model to capture the

main dry, wet, and neural nodes. The next step, which goes beyond the

scope of this thesis and is left for future work, would be to quantify the

probabilities of occurrence of dry, wet, and neutral nodes for a specific event

(e.g. for the 2022-2023 Euro-Mediterranean drought) in the NAT and ALL

ensembles, and, eventually, extend these to additional large ensemble models

(like, e.g. in Pascale et al. (2020)).

4.2 Conclusions

In this thesis, we examined the dynamical drivers of extreme, major drought

events in Europe through a SOM-based framework. We implemented a 7× 5

Self-Organizing Map to identify the most recurrent Z500 anomaly patterns

across Europe and North Atlantic, and to correlate these patterns with the

significant teleconnections impacting Europe. We found that this approach

offers a continuous depiction of atmospheric states, revealing intermediate

states that do not represent a single mode, but rather the superimposition of

many. Most importantly, we showed how these patterns identified through

the SOM affect precipitation, near-surface temperature, and potential evap-

otranspiration, which are the main variables defining droughts.

The key findings of this work are about the characterization of three major

extreme European drought events (1975-1976 UK drought, 2004-2005 Iberian

drought, and 2022-2023 Euro-Mediterranean drought). While few other stud-

ies have employed similar methodologies (Odoulami et al., 2020, 2023), and

Harrington et al. (2016)), none have specifically addressed these three events,
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Figure 4.1: Z500 monthly anomalies patterns for the NAT experiment from
the general circulation model ECHAM5.4 from AMIP (Hoell et al., 2017)
classified using a SOM with 35 nodes.

making this analysis a novel contribution to the field. On the other hand,

while these events have been extensively studied (Parry et al. (2012); Garćıa-

Herrera et al. (2007); Faranda et al. (2023)), none of these focused on the

dynamical drivers using the SOM approach. Our results demonstrate the

effectiveness of the SOM approach in recognizing the exceptional nature of

these events. Specifically, we showed that during the events the patterns

associated with dry conditions manifested significantly more frequently than

rain-bearing ones, providing a new insight into the underlying dynamic driv-

ing the event. Finally, the combined use of SPI and SPEI clearly differentiates

the dynamical and thermodynamical drivers of the droughts. For example,
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in the case of the recent drought in 2022-2023, we proved that high tem-

peratures contributed significantly to the severity of the event, leading to

unprecedented drying conditions. In future work, the application of such an

approach to a large ensemble of climate models will allow for an attribution

of the driving mechanism of major European droughts.
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Appendix A

Appendix

Figure A.1: Z500 EOFs during extended winter months.

Figure A.2: Z500 EOFs during extended summer months.
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Figure A.4: Yearly frequency for every node

Figure A.3: Monthly frequency for every node
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Figure A.5: Same analysis computed only in a) extended winter (Dec-May)
and b) extended summer (Jun-Nov).

Figure A.6: Same analysis computed only in a) extended winter (Dec-May)
and b) extended summer (Jun-Nov).
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Figure A.7: Same analysis computed only in a) extended winter (Dec-May)
and in b) extended summer (Jun-Nov).

Figure A.8: Same analysis computed only in a) extended winter (Dec-May)
and b) extended summer (Jun-Nov).

85



Figure A.9: Composites of precipitation anomalies for each SOM node.

Figure A.10: Maps of moderately dry probability for SPI-1.
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Figure A.11: Maps of moderately dry probability for SPEI-1.
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Garćıa-Herrera, R., Hernández, E., Barriopedro, D., Paredes, D., Trigo,

R. M., Trigo, I. F., and Mendes, M. A. (2007). The Outstanding 2004/05

Drought in the Iberian Peninsula: Associated Atmospheric Circulation.

Journal of Hydrometeorology, 8(3):483–498. Publisher: American Meteo-

rological Society Section: Journal of Hydrometeorology.

Garrido-Perez, J., Vicente-Serrano, S., Barriopedro, D., Garćıa-Herrera, R.,
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