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Abstract

Quantum neural networks are the quantum counterpart of deep neural networks and gen-
erate model functions given by the expectation value of a quantum observable measured
on the state generated by a parametric quantum circuit. Parametric quantum circuits
are made by the composition of elementary parametric quantum operations (gates) and
are considered prime candidates for practical applications of quantum computing with the
noisy intermediate-scale quantum devices that will be available in the forthcoming years.
Quantum neural networks have wide applications both in machine learning problems, such
as supervised learning, and in optimization problems. The recent work [Girardi et al.,
arXiv:2402.08726] has proven that the law of the model function generated by an untrained
quantum neural network with random parameters converges in distribution to a Gaussian
process in the limit of infinite width of the circuit. In this thesis we establish a quantitative
version of this result. We consider randomly initialized quantum neural networks of finite
width and a single input, and we establish an upper bound on the Kolmogorov distance
between the law of the random variable generated by the network and the Gaussian law
with the same mean and variance. Our proof is based on the method of cumulants to derive
an upper bound on the absolute difference between the characteristic functions of the two
random variables.

vii



viii



Contents

1 Introduction 1
1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Quantum computing and variational quantum algorithms 7
2.1 Foundation of quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Composite systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Overview of quantum computing . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Qubits and qubit measurements . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Quantum gates and circuits . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Quantum advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Introduction to variational quantum algorithms . . . . . . . . . . . . . . . . 22
2.3.1 The VQA framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Variational quantum eigensolvers . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Quantum neural networks . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The model function of quantum neural networks 27
3.1 The observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Observable weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Light cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The Hilbert space of a local observable . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Classical simulability . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Convergence to a Gaussian distribution 43
4.1 The Berry-Esseen theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Rate of convergence of the output function at initialization . . . . . . . . . . 46

4.2.1 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Some estimates and examples . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Logarithmic depth circuits and fixed weight observables . . . . . . . . 61
4.4 Comparison with previous work . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusion 65

A Consequence of the final layers 67

ix



x CONTENTS



Chapter 1

Introduction

The fields of quantum computing and artificial intelligence (AI) are rapidly evolving [1, 2, 3].
On their own, each has the potential to revolutionize entire industries. At their intersection
lies the burgeoning field of quantum machine learning.

Classical computers remain inadequate for simulating many-body physical systems due
to the exponential space and time requirements of recording their states and dynamics. In a
lecture given in 1981, the contents of which were published in [4], Richard Feynman proposed
to build a computer capable of simulating quantum mechanical systems using resources, in
terms of both time and space, proportional to the size of the system. This computer, he
posited, must itself be quantum mechanical. In 1985, David Deutsch gave rigor to this idea
by introducing a theoretical universal model of quantum computation [5]. In 1994 Peter Shor
introduced the ground-breaking quantum algorithms for efficient integer factorization and for
computing discrete logarithms [6]. This was a massive revelation since the classical hardness
of integer factorization and the discrete logarithm problem form the basis of the widely used
RSA cryptographic protocol. Such algorithms gave birth to the field of quantum computing
and provided motivation to search for further quantum algorithms and to physically build a
quantum computer.

Since then, quantum algorithms have been proposed to search an unstructured database
[7], solve systems of linear equations [8], and more, bolstering the belief that quantum com-
puting is more powerful than classical computing. In parallel, many technological advances
were made in the quest to physically build a quantum computer. In 2001 Shor’s algorithm
was used to factor the number 15 using a quantum processor with 7 qubits [9]. Nowadays,
companies such as IBM, Google, Microsoft and Amazon have unveiled quantum processors
with a number of qubits ranging from tens to a thousand and offer cloud-based quantum
computing platforms. However, despite their proliferation, quantum computers have not yet
been able to solve a computational problem of practical relevance faster than any existing
classical computer.

AI refers to the ability of programmable machines to exhibit human-like intelligence.
Image recognition, game-playing agents, and natural language processing are all examples
of this. Machine learning is a sub-field of AI concerned with algorithms and techniques
that allow machines to detect and “learn” patterns in large data sets in order to make
predictions or decisions without explicitly being programmed to do so. Deep learning is a
further sub-field of machine learning concerned with a class of model functions called deep
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2 CHAPTER 1. INTRODUCTION

neural networks.

Artificial neural networks are mathematical models designed to mimic the way in which
biological neurons store and transmit information. They consist of a network of intercon-
nected nodes, called artificial neurons, which are typically aggregated into input, hidden, and
output layers, with deep neural networks having many hidden layers. They are parametrized
functions in which information flows from the input layer to the output layer via weighted
connections and non-linearities in the hidden layers. By tweaking these weights – a process
called training – the model can be made to fit a corpus of data that is representative of the
patterns the model aims to learn. The ability of the model to learn the overall pattern rather
than memorizing specific examples is referred to as the generalization power of the model.

Deep neural networks have achieved extraordinary performances on several machine-
learning tasks. An example is the ImageNet Large Scale Visual Recognition Challenge,
a now discontinued annual event in which software programs compete to classify images
into categories. During the 2012 iteration of the competition a deep neural network named
AlexNet achieved a top-5 error rate 1 of 15.3%, which was more than 10% lower than the
runner-up, and a considerable improvement over the previous state-of-the-art [10]. For com-
parison, a human expert annotator later classified 1500 images from the same data set with
a top-5 error rate of 5.1% after practicing on 500 images, and a second annotator classified
258 images with an error rate of 12% after practicing on 100 images [11]. In 2016 a deep
neural network called AlphaGo, which was developed by DeepMind to play the board game
Go, defeated the reigning human European champion in 5 out of a series of 5 games [12].
This was considered a remarkable feat due to the complexity of Go and, in particular, its
immense number (approximately 2.1 × 10170 [13]) of legal game states. In 2022 OpenAI
released ChatGPT, an interactive large language model designed for conversational use [14].
ChatGPT quickly gained attention due to its general purpose utility and ability to respond
in a human-like way.

AlexNet, AlphaGo, and ChatGPT are all products of deep learning. These milestones
illustrate the extraordinary generalization power of deep neural networks and the success
they have achieved across a variety of AI applications. In particular, they are known to
perform exceedingly well when modeling high-dimensional data. Their empirical success has
motivated the development of a deeper understanding of their theoretical underpinnings and
some major breakthroughs have been made in this regard. In [15] the authors establish that
feedforward networks can approximate any continuous function on a compact subset of the
real numbers to any desired precision given enough hidden neurons. In [16] the equivalence
between a Gaussian process and a neural network with one infinitely wide hidden layer and
random weights is shown. This result was generalized to the case of deep neural networks in
[17].

The motivation for studying models with random weights can be summarized as follows.
The optimal network weights are obtained by minimizing a loss function which quantifies
the total error in the predictions of the model on the training data. This optimization is
carried out via an iterative procedure, such as gradient descent, in which the weights are
initially randomly sampled and then updated such that the loss function decreases at each

1Top-5 error rate refers to the percentage of images in which the program did not identify the correct
label among the five most likely.
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time step. Understanding a model with random weights therefore provides insight into the
dynamics of the optimization.

In particular, [18] proves that in the limit of infinite width the variation of any single
parameter during training by gradient descent is negligible, yet, since there are infinitely
many parameters, the combined variation results in a perceptible difference in the generated
function. Furthermore, the probability distribution of the generated function converges
in distribution to a Gaussian process that perfectly fits the training data exponentially
fast in the training time, and whose mean and covariance can be analytically evaluated
given said data and the network architecture. This revelation is central to explaining why
overparametrized neural networks (i.e. neural networks with more parameters than training
examples) are always trainable without suffering from bad local minima and are able to
generalize well without suffering from overfitting.

The desire to process ever-larger data sets and model increasingly complex patterns has
naturally led many to wonder whether quantum computing can be leveraged to improve
machine learning models. Quantum-enhanced machine learning is a sub-discipline of quan-
tum machine learning in which quantum computers assist in the learning of classical data
[19]. One approach to this task is to define a model function using a parametric quantum
circuit to prepare a system of qubits in a state that encodes both data input and trainable
parameters. Such a circuit is made by the composition of elementary parametric quantum
gates. The model function is given by the expected value of a measurement, described by
some observable, on the state of the qubits prepared by the circuit. These models are known
as quantum neural networks. Besides their potential utility in machine learning, they have
gained attention for their perceived suitability to near-term quantum devices [20]. Outside
of machine learning variational circuits can be applied to a plethora of applications such
as quantum chemistry and simulation, solving systems of linear equations, combinatorial
optimization, and more [21].

Like in the classical setting, quantum neural networks are trained by minimizing a cost
function that is dependent on the circuit architecture. It has been observed that for many
architectures the function exhibits vanishing gradients far from its minimum, impeding
gradient-based optimization techniques and thus preventing successful training of the net-
work. This phenomenon is known as barren-plateaus [22, 23] and is one of the main challenges
facing parametric quantum circuits. It has been speculated that any circuit which provably
avoids barren-plateaus can be efficiently simulated with a classical computer [24].

Similar to the classical setting, various works have aimed to develop a more rigorous
mathematical framework regarding quantum neural networks. In [25] the author extends to
the quantum setting the result that infinitely wide random neural networks are equivalent to
Gaussian processes. More specifically, it is proved that under certain hypotheses the function
defined by a quantum neural network converges in distribution to a Gaussian process as the
number of qubits of the model tends to infinity. It is further proved that the function
defined by the trained quantum neural network converges in distribution to a Gaussian
process which perfectly fits its training set exponentially fast in the training time. Essential
to these results holding is the use of a circuit that does not induce barren-plateaus, and
[25] provides examples of such circuits which are not classically simulable with brute-force
algorithms. These results rigorously prove that wide quantum neural networks are efficiently
trainable and do not suffer from bad local minima of the cost function.
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In practice, of course, quantum neural networks have finitely many qubits and therefore
it is desirable to know how fast this convergence takes place or, in other words, how well
the function generated by a finite model is approximated by a Gaussian process. This is
achieved in [26], in which the authors find an upper bound on the Wasserstein distance of
order 1 between the multivariate normal law and the law of the function generated by a
given finite quantum neural network.

1.1 Our contribution

In this thesis we provide an alternative quantitative version of the results of [25]: we consider
untrained quantum neural networks with a single input and random parameters, and we
establish an upper bound on the Kolmogorov distance between the law of the output of the
network and the Gaussian law with the same mean and variance. If we consider a sequence
of randomly initialized quantum neural networks with increasingly many qubits, then our
bound provides the rate of convergence of the sequence of their outputs to a Gaussian
random variable. While in [25, 26] the measured observable is constrained to be the sum of
single-qubit observables, our result is valid for any measurement.

To prove this result we first use the method of cumulants to derive an upper bound on
the absolute difference between the characteristic functions of the two random variables in
a neighborhood of zero. This involves expressing the model function as a sum of random
variables and quantifying the maximum degree of dependency any one variable has on the
others. We then translate this into a bound on the absolute difference between the cumulative
distribution functions of the two variables and then solve an optimization problem to find
the tightest bound possible.

The thesis is outlined as follows. In chapter 2 we begin with a brief overview of the
postulates of quantum mechanics followed by an introduction to the circuit model of quantum
computation. We then discuss the potential benefit afforded by quantum computers, the
main challenges they face, and the pursuit of a quantum advantage. Finally, we introduce
variational quantum algorithms (VQAs), which are a class of algorithms that are based on
variational circuits.

In chapter 3 we fix our assumptions on the architecture of the variational circuit and
we rigorously define the random variable generated by its output. We also define a num-
ber of quantities, interpreted as properties of the random variable, that are determined by
the circuit architecture and the observable describing the measurement of the qubits. We
then discuss the classical simulability of the circuit and the potential to obtain a quantum
advantage.

The original work of this thesis is contained in chapter 4. We begin this chapter with an
introduction to convergence in distribution, distances between probability measures, and the
Berry-Esseen theorem 2 on which our result is based. We then state and prove Theorem 5,
our main result: an upper bound on the Kolmogorov distance between the law of the output
of a randomly initialized variational quantum circuit and the Gaussian law with the same
mean and variance. This is followed by a discussion of the asymptotic behavior of the bound

2The Berry-Esseen theorem quantifies the rate of convergence that takes place in the Central Limit
Theorem.
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for certain architecture choices. To conclude this chapter we compare our bound with the
one given in [26].

In chapter 5 we give our closing remarks including a summary of our findings, their
implications and limitations, and avenues for further work.
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Chapter 2

Quantum computing and variational
quantum algorithms

Quantum computing is a model of computation that leverages the principles of quantum
mechanics. As a theoretical model it is believed to be more powerful than its classical
counterpart. Indeed, quantum computers have the potential to efficiently perform tasks, such
as factoring large composite integers or simulating quantum systems, that are intractable
to modern classical computers. However, today’s quantum computers suffer from significant
drawbacks such as noise, decoherence, and a lack of error correction that have prevented
them from realizing this potential.

VQAs are hybrid quantum-classical algorithms that have been envisaged for a wide va-
riety of applications. They have garnered much attention due to their perceived suitability
to the noisy intermediate-scale quantum (NISQ) devices that are expected to be available in
the near future [27]. In fact, they have emerged as a leading contender in the pursuit of a
quantum advantage which is demonstrated when a quantum computer executes an algorithm
that solves a practical problem more efficiently than any classical computer is capable of.

This chapter serves as an introduction to quantum computing and VQAs. We begin in
section 2.1 with an overview of the mathematical foundations of quantum mechanics. In 2.2
we provide an introduction to the theory of quantum computing, highlighting the properties
that set it apart from classical computing and providing an intuition as to why it is believed
to be superior. We will then discuss the challenges currently facing the field of quantum
computing. These sections will lay the groundwork for understanding both the motivation
behind, and the concept of, a VQA, which we present in section 2.3 along with two specific
examples of its applications.

2.1 Foundation of quantum mechanics

There are four key postulates describing quantum systems, their states, how they evolve, and
how they are measured. These postulates are presented in the language of linear algebra and
rely heavily on the theory of complex Hilbert spaces and linear operators. For a more in-depth
introduction to this topic we refer the reader to [28, Chapter 2]. This text provides, along
with the necessary mathematical prerequisites, a comprehensive introduction to quantum

7



8 CHAPTER 2. QUANTUM COMPUTING

mechanics with an emphasis on computational applications.

2.1.1 States

The first postulate deals with the mathematical representation of a physical system and its
state.

Postulate 1. Associated to every isolated physical system is a Hilbert space H called the
state space of the system. The state of the system is described by a linear operator ρ acting
on H that is positive semidefinite and has trace equal to 1.

ρ ∈ L(H), ρ ≥ 0, Trρ = 1. (2.1)

ρ is called a density operator.

Let |ψ⟩ ∈ H be a unit vector and suppose that ρ is the orthogonal projector onto the
subspace of H spanned by |ψ⟩:

ρ = |ψ⟩⟨ψ|, ⟨ψ|ψ⟩ = 1. (2.2)

ρ is a valid quantum state. Such a state is called pure and it is completely described by |ψ⟩
which we call a state vector. If a quantum state is not pure it is called mixed.

Let |ψ⟩, |ϕ⟩ ∈ H. |ψ⟩ and |ϕ⟩ describe the same state if and only if they differ by a global
phase:

|ψ⟩ = λ|ϕ⟩, λ ∈ C, |λ|= 1. (2.3)

In this case, we say that |ψ⟩ and |ϕ⟩ are proportional.

2.1.2 Evolution

The second postulate specifies how undisturbed quantum systems evolve over time.

Postulate 2. The evolution of an isolated quantum system is described by a unitary operator
acting on the state space of the system. Denote by ρt the state of the system at time t. For
all t1, t2 ∈ R with t1 ≤ t2

ρt2 = Ut1→t2ρt1U
†
t1→t2 (2.4)

for some unitary operator Ut1→t2 ∈ L(H).

Pure states evolve into pure states. If ρt1 = |ψt1⟩⟨ψt1|, then ρt2 = |ψt2⟩⟨ψt2| where
|ψt2⟩ = Ut1→t2 |ψt1⟩. An alternative formulation of Postulate 2 is the following.

Postulate 2. Associated to every isolated quantum system is a Hermitian operator H ∈
L(H) called a Hamiltonian. The Hamiltonian governs the dynamics of the system via the
equation

ih̄
dρt
dt

= [H, ρt] (2.5)

where h̄ is a constant known as reduced Planck’s constant. If ρt describes a pure state with
state vector |ψt⟩, then the evolution is given by Schrödinger’s equation:

ih̄
d|ψt⟩
dt

= H|ψt⟩. (2.6)
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The connection between the two formulations of Postulate 2 is this. Write |ψt⟩ as the
evolution of the state |ψt0⟩.

|ψt⟩ = Ut0→t|ψt0⟩. (2.7)

Then according to Schrödinger’s equation the operator Ut0→t, as a function of t, must satisfy
the differential equation

ih̄
d

dt
Ut0→t = HUt0→t. (2.8)

If H is time invariant, then the solution is given by

Ut0→t = exp

[
−iH(t− t0)

h̄

]
. (2.9)

Any operator of this form with H Hermitian is unitary. Furthermore, for any unitary U ∈
L(H) it is possible to find K ∈ L(H) Hermitian such that U = exp(iK).

2.1.3 Measurement

It is impossible to know the state of an isolated quantum system without first measuring it.
Furthermore, the act of measuring the system disturbs it. The third postulate deals with
measurements, their possible outcomes, and their effect on the system.

Postulate 3. A projective measurement with outcome set A is described by a collection of
measurement operators

{Pa : a ∈ A} ⊂ L(H) such that H =
⊥⊕
a∈A

suppPa. (2.10)

Each a ∈ A refers to a possible outcome of the measurement. If, before the measurement, the
state of the system is ρ, then the probability of the measurement described by {Pa : a ∈ A}
resulting in outcome a is given by

P(a|ρ) = Tr[Paρ]. (2.11)

If the outcome of the measurement is a, the state of the system after the measurement
becomes

ρ′a =
PaρPa
Tr[Paρ]

. (2.12)

In this case we say that ρ collapses to the state ρ′a.

Remark 1. Projective measurements are just a subset of a broader class of measurements
that are allowed on quantum systems. However, in the chapters to come we deal exclusively
with projective measurements and thus will not delve into the more general case.

If the pre-measurement state is pure, i.e. ρ = |ψ⟩⟨ψ|, then

P(a|ρ) = Tr[Pa|ψ⟩⟨ψ|] = ⟨ψ|Pa|ψ⟩ (2.13)

and the post-measurement state is ρ′a = |ψ′
a⟩⟨ψ′

a| where

|ψ′
a⟩ =

Pa|ψ⟩√
⟨ψ|Pa|ψ⟩

. (2.14)
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Definition 1. An observable of a quantum system described by H is a Hermitian operator
O ∈ L(H).

There is a one-to-one correspondence between projective measurements with outcomes
in the real numbers and observables. To illustrate this, let O be an observable and let A be
the spectrum of O. By the spectral theorem, A ⊂ R and

O =
∑
a∈A

aPa (2.15)

where Pa is the orthogonal projector onto the eigenspace ofO corresponding to the eigenvalue
a. One can show that the collection {Pa : a ∈ A} meets the definition of a projective
measurement. Conversely, if {Pa : a ∈ A} is a projective measurement, then O as defined in
(2.15) is Hermitian and therefore an observable. Given this correspondence we can say that
a projective measurement is described by an observable.

Observables are useful when computing statistics on the outcome of a measurement. For
example, let X be the random variable associated with the outcome of the measurement
described by the observable O. If the pre-measurement state is ρ = |ψ⟩⟨ψ|, then

E[X] =
∑
a∈A

aP(a|ρ)

=
∑
a∈A

a⟨ψ|Pa|ψ⟩

= ⟨ψ|

(∑
a∈A

aPa

)
|ψ⟩

= ⟨ψ|O|ψ⟩. (2.16)

2.1.4 Composite systems

The fourth postulate defines how we interpret a composite system made up of two or more
distinct physical systems.

Postulate 4. Let HA and HB be the state spaces of the physical systems A and B. The
state space of the composite physical system composed of A and B is the tensor product of
HA and HB.

HAB = HA ⊗HB. (2.17)

Let |ψA⟩ ∈ HA be the state of A and |ψB⟩ ∈ HB the state of B, then

|ΨAB⟩ = |ψA⟩ ⊗ |ψB⟩ (2.18)

is the state of the composite system and |ΨAB⟩ is called a product vector. Conversely, if
|ΨAB⟩ ∈ HAB and there are no |ψA⟩ ∈ HA and |ψB⟩ ∈ HB such that (2.18) is true, then
|ΨAB⟩ is an entangled vector.

One may perform a measurement of the whole composite system or only part of it.
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Definition 2. A partial measurement of a composite system is any measurement in which
there is at least one component of the system on which each of the measurement operators
acts as the identity.

For example, if {Pa : a ∈ A} ⊂ L(HA) is a projective measurement of system A, then

{Pa ⊗ IHB
: a ∈ A} ⊂ L(HA ⊗HB). (2.19)

is a partial measurement of the system AB. A partial projective measurement is described
by a local observable.

Definition 3. A local observable is an observable of a quantum system which acts as the
identity on at least one component of a composite system.

For example, if O ∈ L(HA) is the observable associated with the projective measurement
{Pa : a ∈ A}, then the local observable describing the partial measurement {Pa⊗IHB

: a ∈ A}
is

O ⊗ IHB
∈ L(HA ⊗HB). (2.20)

2.2 Overview of quantum computing

We are now ready to introduce the theoretical framework under which quantum computers
operate. Within this framework the basic unit of information is a physical system called a
qubit. This is the quantum equivalent of a classical bit. When processing information, a
quantum computer manipulates composite systems of qubits via series of controlled unitary
transformations called quantum gates. The composition of these gates is called a quantum
circuit. Gates and circuits are the quantum analogue of classic logic gates and binary circuits.
This section serves as a primer on these topics, which are fundamental to understanding how
quantum computers work. For a more exhaustive introduction we refer the reader to [28,
chapter 4].

In section 2.2.1 we give a presentation of qubits and some projective measurements that
are performed on them. In section 2.2.2 we describe quantum gates and circuits, and the
typical procedure for executing an algorithm on a quantum computer. In section 2.2.3 we
discuss why quantum computing is believed to be a more powerful model of computation
than classical computing and some of the practical drawbacks that it currently suffers from.

2.2.1 Qubits and qubit measurements

Definition 4. A qubit is a quantum system described by the Hilbert space C2 equipped
with the standard inner product.

Let {|0⟩, |1⟩} be an orthonormal basis of C2 such as e.g. the canonical or computational
basis:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
. (2.21)
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Postulate 1 tells us that the pure states of a qubit are described by the state vectors of the
form

|ψ⟩ = α|0⟩+ β|1⟩ (2.22)

for some α, β ∈ C such that |α|2+|β|2= 1. If α, β > 0, then the state of the qubit is neither
|0⟩ nor |1⟩ but rather a coherent superposition of the two. As illustrated by Example 1 we
can interpret this as |ψ⟩ being |0⟩ with probability |α|2 and |1⟩ with probability |β|2. This
is in stark contrast with the state of a classical bit which is determined at any given time
and must necessarily be one of {0, 1}.

Example 1. Consider the observable

σZ =

(
1 0
0 −1

)
. (2.23)

Its spectral decomposition is

σZ = |0⟩⟨0|−|1⟩⟨1| (2.24)

therefore this observable describes the projective measurement

{P1, P−1}, P1 = |0⟩⟨0|, P−1 = |1⟩⟨1|. (2.25)

Suppose we perform this measurement on a qubit in the state |ψ⟩ = α|0⟩+ β|1⟩. Postulate 3
tells us that the probability of each outcome is

P(1) = ⟨ψ|0⟩⟨0|ψ⟩ = |⟨0|ψ⟩|2= |α⟨0|0⟩+ β⟨0|1⟩|2= |α|2

and

P(−1) = ⟨ψ|1⟩⟨1|ψ⟩ = |⟨1|ψ⟩|2= |α⟨1|0⟩+ β⟨1|1⟩|2= |β|2

with expected outcome

⟨ψ|σZ |ψ⟩ = ⟨ψ|0⟩⟨0|ψ⟩ − ⟨ψ|1⟩⟨1|ψ⟩ = |α|2−|β|2. (2.26)

The corresponding post measurement states are

|ψ′
1⟩ =

1

|α|
|0⟩⟨0|ψ⟩ = α

|α|
|0⟩ (2.27)

and

|ψ′
−1⟩ =

1

|β|
|1⟩⟨1|ψ⟩ = β

|β|
|1⟩. (2.28)

These vectors are proportional to |0⟩ and |1⟩, therefore the state collapses to |0⟩ with proba-
bility |α|2 and |1⟩ with probability |β|2. Taking this measurement is called measuring a qubit
in the computational basis.

The observable σZ of Example 1 is one of three special operators known as the Pauli
matrices.
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Definition 5. The Pauli matrices are defined as

σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
. (2.29)

The Pauli matrices are traceless, Hermitian, unitary, and involutory:

Trσi = 0, σi = σ†
i = σ−1

i , σ2
i = I for all i ∈ {X, Y, Z}. (2.30)

They satisfy the relations

σXσY = iσZ , σY σZ = iσX , σZσX = iσY . (2.31)

They each have spectrum {1,−1} and corresponding eigenvectors

σX : {|+⟩, |−⟩}, σY : {|i⟩, |−i⟩}, σZ : {|0⟩, |1⟩} (2.32)

where

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

(2.33)

is the Hadamard basis and

|i⟩ = |0⟩+ i|1⟩√
2

, |−i⟩ = |0⟩ − i|1⟩√
2

(2.34)

is the imaginary basis. Both are alternative orthonormal bases of C2 to the computational
one. Performing the projective measurement described by the Pauli-X and Y observables
means to measure a qubit in these bases.

The identity on C2 is sometimes referred to as the fourth Pauli matrix: σI = 1C2 . This
is because {σI , σX , σY , σZ} is a basis for the Hermitian operators in L(C2). We can express
any observable O ∈ L(C2) as a linear combination of these terms:

O = v0σI + v1σX + v2σY + v3σZ , (v0, v1, v2, v3) ∈ R4. (2.35)

We now consider the quantum analog of a length-n bit string: n qubits.

Definition 6. n qubits is a composite quantum system described by the 2n dimensional
Hilbert space

(C2)⊗n = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

. (2.36)

Once again, let {|0⟩, |1⟩} be an orthonormal basis of C2. An orthonormal basis of (C2)⊗n

is
{|x1 · · ·xn⟩ : xi ∈ {0, 1}} (2.37)

where we have used the shorthand notation |x1 · · ·xn⟩ to refer to |x1⟩ ⊗ · · · ⊗ |xn⟩. Let
x1 · · ·xn be the binary representation of the natural number x ∈ {0, ..., 2n − 1}. For any
state vector |ψ⟩ ∈ (C2)⊗n we can write

|ψ⟩ =
2n−1∑
x=0

αx|x1 · · · xn⟩ (2.38)
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for some α ∈ C2n such that
2n−1∑
x=0

|αx|2= 1. (2.39)

|ψ⟩ is in a superposition of the basis states. To measure |ψ⟩ in the computational basis means
to perform the measurement described by the observable (σZ)

⊗n. For all x ∈ {0, ..., 2n − 1}
this measurement will collapse |ψ⟩ to the basis state |x1 · · ·xn⟩ with probability |αx|2.

Just as in the single qubit case we can construct general n-qubit observables out of
the Pauli matrices. {σI , σX , σY , σZ}⊗n is a basis for the Hermitian operators in L((C2)⊗n),
therefore any n-qubit observable can be expressed as

O =
∑

Oj∈{σI ,σX ,σY ,σZ}⊗n

wjOj (2.40)

for some w ∈ R4n . The Oj are called Pauli strings.
The physical system composed of n qubits is a composite system and therefore may be

entangled. If the state of two qubits are entangled, then it is impossible to describe the state
of either qubit independently of the other.

Example 2. The state |Ψ+⟩ ∈ (C2)⊗2 defined by

|Ψ+⟩ = |00⟩+ |11⟩√
2

(2.41)

is entangled. Indeed, if |Ψ+⟩ were not entangled, then by definition there would exist state
vectors |ψ1⟩, |ψ2⟩ ∈ C2 such that |Ψ+⟩ = |ψ1⟩ ⊗ |ψ2⟩. However, letting

|ψ1⟩ = α1|0⟩+ β1|1⟩ and |ψ2⟩ = α2|0⟩+ β2|1⟩, (2.42)

we see this is impossible since

|00⟩+ |11⟩√
2

= (α1|0⟩+ β1|1⟩)⊗ (α2|0⟩+ β2|1⟩)

= α1α2|00⟩+ α1β2|01⟩+ β1α2|10⟩+ β1β2|11⟩ (2.43)

implies that α1α2 = β1β2 =
1√
2
and α1β2 = β1α2 = 0 which is a contradiction.

When two qubits are entangled the measurement of one can instantaneously affect the
state of the other no matter how far apart they are. For example, the state |Ψ+⟩ as in
Example 2 is one of four special two-qubit states known as the Bell states. If a two-qubit
system were in this state and we were to perform a partial measurement of only the first
qubit in the computational basis we may find it in the state |0⟩ or |1⟩ with equal probability.
However, if we were to measure the second qubit directly after, we know with certainty that
we would find it in the same state as the first. Two classical bits, on the other hand, can
always be described independently of one another and manipulation or observation of one
bit does not affect the other.
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|0⟩

|0⟩

|0⟩

|ψin⟩ |ψout⟩

Figure 2.1: An example of a circuit diagram with width 3 and depth 4.

2.2.2 Quantum gates and circuits

Definition 7. An n-qubit quantum gate is a unitary operator U ∈ L((C2)⊗n). An elementary
quantum gate is a one or two-qubit gate.

Intuitively, a gate is just a unitary evolution of a system of qubits. One achieves a desired
transformation by enforcing a specific Hamiltonian on the system for a controlled duration.

Remark 2. When applying a gate U ∈ L((C2)⊗n) to a system of m ≥ n qubits, it is implicit
that we are, in fact, applying the gate U ′ ∈ L((C2)⊗m) to the system where U ′ is U tensored
with the identity on the Hilbert space of the m − n qubits on which U does not act. If U is
unitary, then so too is U ′.

Definition 8. A quantum circuit is a finite composition of quantum gates.

A composition of unitary operators is itself unitary, therefore a quantum circuit on a
system of m qubits is itself a single m-qubit quantum gate. On the other hand, any m-qubit
gate can be approximated to arbitrary precision in the operator norm by a finite composition
of elementary gates. We can therefore interpret a quantum circuit as a finite composition of
elementary gates. The depth of a circuit is the number of time steps necessary to apply all
the gates of the circuit. The width of the circuit is its number of qubits.

The typical procedure for executing a quantum algorithm is the following.

1. Prepare a system of m qubits in some known state |ψin⟩. It is often the case that
|ψin⟩ = |0⟩⊗m.

2. Apply a circuit U to the starting state, resulting in |ψout⟩ = U |ψin⟩.

3. Fully or partially measure |ψout⟩, typically in the computational basis.

The starting state, circuit, and measurement are chosen in such a way that the solution can
be extracted from the outcome of the measurement of the final state. This procedure is often
depicted in diagrams such as in figure 2.1. On the left are the qubits in the starting state.
Next to each qubit is a wire and the wires travel through boxes which represent quantum
gates. At the end of each wire is a lever, which represents a measurement being taken. As
time passes we imagine the qubits traveling from left to right along the wires, transforming
unitarily as they pass through each gate, until finally they reach the end and are measured.
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We now present a description of some commonly used elementary quantum gates, how
they act on the computational basis, and their circuit diagram depiction. We begin with
single-qubit gates.

1. Pauli gates. The Pauli matrices are unitary and are therefore single qubit gates.

(a) σX , also called bit flip, is the quantum equivalent of the classical NOT gate.

σX |0⟩ = |1⟩, σX |1⟩ = |0⟩. (2.44)

(b) σZ , also called phase flip, inverts the relative phase of the state vector.

σZ |0⟩ = |0⟩, σZ |1⟩ = −|1⟩. (2.45)

(c) σY , also called bit-phase flip, is the composition of a bit and phase flip and mul-
tiplication by a global, and thus irrelevant, phase.

σY |0⟩ = i|1⟩, σY |1⟩ − i|0⟩. (2.46)

≡

≡

X

Y

Z

Figure 2.2: Pauli gates

2. Hadamard gate.

H =
1√
2

(
1 1
1 −1

)
. (2.47)

This gate sends the computational basis to the Hadamard basis.

H|0⟩ = |+⟩, H|1⟩ = |−⟩. (2.48)

Applying H⊗m to |0⟩⊗m results in the uniform superposition of the basis states of
(C2)⊗m.

H⊗m|0⟩⊗m = |+⟩⊗m =

(
|0⟩+ |1⟩√

2

)⊗m

=
1

2m/2

2m−1∑
x=0

|x1 · · ·xm⟩. (2.49)

H

Figure 2.3: Hadamard gate
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3. Phase shift gates. A family of gates represented by the matrix

P (θ) =

(
1 0
0 eiθ

)
. (2.50)

This transformation shifts the relative phase of the state vector by θ.

P (θ)|0⟩ = |0⟩, P (θ)|1⟩ = eiθ|1⟩. (2.51)

Some commonly used phase gates are

Z = P (π), S = P (π/2), and T = P (π/4). (2.52)

P (θ)

Figure 2.4: Phase shift gate

4. Rotation gates. Every state vector has a unique representation as a point on the
surface of the unit sphere in R3. Consider |ψ⟩ = α|0⟩+ β|1⟩. We can rewrite

α = |α|eiϕ1 , and β = |β|eiϕ2 (2.53)

for some ϕ1, ϕ2 ∈ [0, 2π). Since |α|≤ 1, there is a θ ∈ [0, π] such that |α|= cos(θ/2) in
which case

|β|=
√
1− |α|2 =

√
1− cos2(θ/2) = sin(θ/2). (2.54)

Rewrite

|ψ⟩ = eiϕ1 cos(θ/2)|0⟩+ eiϕ2 sin(θ/2)|1⟩
= eiϕ1(cos(θ/2)|0⟩+ ei(ϕ2−ϕ1) sin(θ/2)|1⟩). (2.55)

Let ϕ = ϕ2 − ϕ1. Then |ψ⟩ is proportional to the state

cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩. (2.56)

We can therefore describe |ψ⟩ with just ϕ ∈ [0, 2π] and θ ∈ [0, π]. In spherical coordi-
nates (1, θ, ϕ) specifies a point on the surface of the unit sphere in R3.

The rotation gates RX , RY and RZ rotate this point about the x, y and z axes, respec-
tively.

RX(θ) = e−i
θ
2
σX =

(
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

)
RY (θ) = e−i

θ
2
σY =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
RZ(θ) = e−i

θ
2
σZ =

(
e−iθ/2 0
0 eiθ/2

)
(2.57)
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RX(θ)

RY (θ)

RZ(θ)

Figure 2.5: Rotation gates

5. Parameter encoding gates. These gates encode a parameter θ ∈ R as a time
evolution generated by the operator G over the period θ/2.

U(θ) = e−i
θ
2
G. (2.58)

The rotation gates are special cases of parameter encoding gates with G ∈ {σX , σY , σZ}.

The Pauli matrices along with H,S and T are all fixed gates while phase shift, rota-
tion, and parameter encoding gates are examples of parametric gates. We can think of a
parametric single-qubit gate U is a function

U : R → U(2) (2.59)

and U(θ), θ ∈ R, as a family of fixed unitaries. These types of gates are a key element of
parametric circuits which we describe in section 2.3.

We now present some examples of commonly used two-qubit gates.

1. Swap gate. The swap gate swaps two qubits.

S|00⟩ = |00⟩, S|01⟩ = |10⟩, S|10⟩ = |01⟩, S|11⟩ = |11⟩. (2.60)

Figure 2.6: Swap gate

2. Controlled gates. Given a single qubit unitary U a controlled-U (C-U) gate takes
as input a target |t⟩ and control |c⟩ qubit. It applies U to the target qubit if and only
if the control qubit is |1⟩.

C-U(|c⟩ ⊗ |t⟩) =

{
|c⟩ ⊗ |t⟩ if c = 0

|c⟩ ⊗ U |t⟩ if c = 1
. (2.61)

U

Figure 2.7: Controlled-U gate
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One could construct a controlled gate with any unitary U . Two examples are

(a) CNOT. This is a controlled-U gate with U = σX .

CNOT (|c⟩ ⊗ |t⟩) = |c⟩ ⊗ |t⊕ c⟩ (2.62)

where ⊕ is the binary XOR.

X
≡

Figure 2.8: CNOT gate

(b) C-Z. This is a controlled-U gate with U = σZ .

C-Z(|c⟩ ⊗ |t⟩) =

{
−|c⟩ ⊗ |t⟩ if c = t = 1

|c⟩ ⊗ |t⟩ otherwise
. (2.63)

Z

≡
Z

≡

Figure 2.9: C-Z gate

We conclude this section with an example of a quantum circuit which uses two of the
gates we have described.

Example 3. Let |ψin⟩ = |0⟩⊗2 and let U be the circuit resulting from applying a Hadamard
gate to the first qubit followed by a CNOT gate: U = CNOT(H⊗ I2). Then the final state is

|ψout⟩ = U |ψin⟩
= CNOT(H ⊗ I2)(|0⟩ ⊗ |0⟩)

= CNOT

(
|0⟩+ |1⟩√

2
⊗ |0⟩

)
= CNOT

(
|00⟩+ |10⟩√

2

)
=

|00⟩+ |11⟩√
2

. (2.64)

|ψout⟩ is the Bell state |Ψ+⟩ that was introduced in example 2. This circuit is depicted in
figure 2.10.
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|0⟩ H
|Ψ+⟩

|0⟩

Figure 2.10: The diagram of a circuit which constructs the Bell state |Ψ+⟩.

2.2.3 Quantum advantage

Time complexity is a metric used to evaluate both classical and quantum algorithms. It
does not refer to the length of time required for an algorithm to run, which will in any case
depend on the hardware used, but rather the number of elementary operations required to
execute the algorithm. In the quantum model one elementary operation is the application of
one elementary quantum gate. In the classical model it refers to a basic operation that can
be implemented in constant time. Although the literature does often include operations such
as basic arithmetic and comparison of fixed width integers, for simplicity we will adopt the
convention that one elementary operation corresponds to the application of one elementary
logic gate.

Time complexity is expressed as a function of the size of the input to the algorithm,
often using asymptotic notation. Asymptotic notation is a useful tool for characterizing the
behavior of a function as its argument(s) grow.

Definition 9. Let f : R → R and g : R → R.

• f(n) ∈ O(g(n)) if there exist positive constants n0 and c such that |f(n)|≤ c|g(n)| for
all n ≥ n0.

• f(n) ∈ Θ(g(n)) if there exists positive constants n0, c1 and c2 such that c1|g(n)|≤
|f(n)|≤ c2|g(n)| for all n ≥ n0.

• f(n) ∈ Ω(g(n)) if there exist positive constants n0 and c such that |f(n)|≥ c|g(n)| for
all n ≥ n0.

The first point refers to big-O notation and it is useful in the context of algorithm analysis,
especially when it comes to describing efficiency. It allows one to categorize an algorithm
in terms of its run time in the worst case scenario. Let f(n) be the time complexity of an
algorithm with input size n. We say that the algorithm is efficient if there exists a polynomial
p such that f(n) ∈ O(p(n)). Examples of efficient run times include constant: O(1), linear:
O(n), logarithmic: O(log n), and O(nk) where k is a constant independent of n. A run time
of O(2n) is exponential and not considered efficient.

Quantum computing is believed to be a more powerful computational model than classical
computing. It includes elementary operations that are not possible under the classical model
and this allows quantum computers to perform certain tasks more efficiently. A reversible
logic gate implements a one-to-one boolean function between a number of inputs and the
same number of outputs. It is so named because the input of a reversible gate is uniquely
determined by the output and thus it is invertible. These gates are special because for every
reversible gate there is a unitary operator which performs the same mapping. Furthermore,
reversible gates are universal - every binary circuit can be constructed out of only reversible
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gates. This implies that every binary circuit can be implemented on a quantum computer.
On the other hand, there are quantum gates that have no classical counterpart. Simulating
a quantum circuit using a classical computer requires, in the worst case, a time complexity
that scales exponentially with the number of qubits.

Another distinguishing feature that highlights the power of quantum computing is par-
allelism. Consider a function f : {0, 1}m → {0, 1}n. A quantum oracle for this function is a
unitary Uf ∈ L((C2)⊗(m+n)) such that for all |x⟩ ∈ (C2)⊗m and |y⟩ ∈ (C2)⊗n,

Uf |x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩. (2.65)

Recall that applying H⊗m to |0⟩⊗m results in the uniform superposition of the basis states
of (C2)⊗m. By applying Uf to this state we get

Uf (H
⊗m|0⟩⊗m)|0⟩⊗n =

1

2m/2

∑
x∈{0,1}m

|x⟩|f(x)⟩. (2.66)

Suppose we would like to determine some global property of an unknown function f and we
have access to the oracle Uf . With just one application of Uf the resulting state contains
information about f(x) for all x ∈ {0, 1}m. With clever further processing one can construct a
state from which the desired property can be extracted. This concept is known as quantum
parallelism and it allows quantum algorithms to explore multiple solutions to a problem
simultaneously, contributing to a faster run time.

The most famous example of this is Shor’s algorithm which factors large numbers into
prime factors in a time that grows only polynomially with the number of digits of the number
to be factored, providing an exponential speed up over its best known classic counterpart
[6]. Another prominent example is Grover’s algorithm which provides a quadratic speedup
for searching an unstructured database [7].

Time complexity, however, is not the whole picture when considering whether or not
quantum computers provide a significant advantage over classical computers. We must also
take into account the applicability of an algorithm and whether or not it can actually be
carried out in practice. To achieve a quantum advantage a quantum computer must solve a
practical, real-world problem more efficiently than any classical computer is capable of.

Factoring large numbers is a highly practical problem. The ability to do so efficiently
would render certain widely used public-key cryptosystems insecure. However, using Shor’s
algorithm to factor cryptographically relevant numbers is not possible using current quantum
computers and therefore does not provide a demonstrable advantage. In reality, few claims
of a quantum achievement in practice have been made, and many have later been challenged
or refuted [29].

The quantum computers of today suffer primarily from noise, decoherence, and limited
qubits. Noise refers to random disruptions of the state of the qubits, whether from inter-
ference or imperfect hardware. Decoherence occurs when the information held by the state
of the qubits is lost due to unavoidable interaction with their environment. Errors due to
noise and decoherence accumulate with each gate that is applied, making deeper circuits
especially prone to inaccuracies. And finally, today’s quantum computers have on the order
of tens to a thousand qubits with limited connectivity and no capability for error correction.
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It is thought that we are years, maybe even decades, away from scalable, fault tolerant
devices [27]. Consequently, the push to find a quantum advantage has centered around
applications suited towards NISQ devices. VQAs have emerged as a leading contender in
this vein.

2.3 Introduction to variational quantum algorithms

A VQA is a hybrid classical-quantum optimization based algorithm. It involves using a
quantum subroutine to compute a parametric function, while a classical computer performs
a parameter optimization. The VQA is a framework which can be applied to a variety of
applications including, but not limited to, combinatorial optimization [30], solving systems
of linear equations [31], quantum error correction [32], and quantum simulation [33]. As
described in section 2.2.3 it has garnered interest in recent years due to its suitability to
NISQ devices. In this section we give an introduction to this framework as well as two
specific applications. In section 2.3.2 we present the variational quantum eigensolver (VQE)
[34], a method for finding ground states of a physical system, and the first proposal of any
VQA. In section 2.3.3 we describe deterministic quantum neural networks [19], a machine
learning paradigm and the VQA example which the main result of this thesis is tailored
towards. For a more in-depth look at the general VQA framework we refer the reader to
[21].

2.3.1 The VQA framework

A fundamental component of a VQA is a parametric circuit. Parametric circuits, also called
variational circuits, are quantum circuits in which one or more of the elementary gates
composing the circuit are parametric. (See section 2.2.2 for a description of some parametric
gates.) A specific choice and arrangement of such gates is called an ansatz. This ansatz,
which we denote by U , takes as input a set of parameters Θ and defines a family of fixed
circuits which we denote by U(Θ). Let

|ψout(Θ)⟩ = U(Θ)|ψin⟩ (2.67)

be the output of the n-qubit circuit U(Θ) for a given input state |ψin⟩, and let O ∈ L((C)⊗n)
be an observable. The output of the VQA can be extracted from the measurement described
by O of the target state |ψout(Θ∗)⟩, where Θ∗ is a set of parameters which the algorithm has
deemed to be optimal. In both of the examples we consider, the output of the VQA is given
by the expected value of the measurement of the target state:

⟨ψout(Θ∗)|O|ψout(Θ∗)⟩. (2.68)

To determine the expected value one must prepare |ψout(Θ∗)⟩ and measure it a number of
times then take the average. Each of the measurements is called a shot and the number of
shots increases with the desired accuracy.

Determining the optimal parameters Θ∗ is one of the key tasks in executing a VQA. It is
done by minimizing a cost function C. The cost, which is a function of ⟨ψout(Θ)|O|ψout(Θ)⟩
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and possibly some other data, is specifically designed so that

Θ∗ = argmin
Θ

C(Θ). (2.69)

The parameters which minimize the cost function prescribe a fixed quantum circuit which
results in an output state that encodes the correct solution, or an approximation thereof, of
the problem the VQA aims to solve.

The optimization is carried out via an iterative procedure, such as gradient descent, in
which an initial guess is chosen and at each successive iteration the parameters are updated
in the opposite direction of the gradient of C. The evaluation of C and its gradients is left
up to a quantum computer while the parameter update is done by a classical computer. In
this sense the VQA is a hybrid algorithm.

Choosing an appropriate ansatz is another critical step when executing a VQA. A few
metrics typically used to evaluate an ansatz are its expressivity, trainability, and cost. The
first metric, expressivity, refers to the ability of an ansatz to prepare the correct target state
or at least a good approximation of it which is necessary for the VQA to be successful. The
probability that this is true is maximized if the family U(Θ) is capable of preparing states
that are well representative of the Hilbert space they reside in [35].

Trainability refers to the ability of the optimization procedure to converge to the global
minimum of the cost function. Certain circuit architectures suffer from a phenomenon known
as barren plateaus in which, with high probability, the gradient of the cost function decays
exponentially with the number of qubits [23]. This was shown to be true for deep unstruc-
tured variational circuits when randomly initialized in [22]. This pitfall causes the number of
shots required to calculate the direction of the parameter update to increase exponentially,
destroying any hope of a quantum advantage.

The last metric we will touch on is the cost which takes into account, among other things,
the depth and connectivity of a circuit as well as the number of measurements required.
Highly expressive circuits typically suffer from a higher cost and worse trainability therefore
a delicate balance must be struck in order to choose an effective ansatz.

This is particularly true in the NISQ era where shallow circuits are preferred. Fewer gates
and shorter execution time reduces the accumulation of errors and the chance of decoherence.
In fact, the ability of a VQA to be implemented using a shallow circuit is one of the reasons
why it is favored for NISQ devices. Another reason is its tolerance for noise. The averaging
of the shots taken to compute the expected value of a measurement smooths out some of
the noise introduced by the individual computations. In addition, VQAs benefit from the
techniques of classical optimization which are well studied and well developed.

2.3.2 Variational quantum eigensolvers

In section 2.1.2 we introduced Schrödinger’s equation which dictates the evolution of a phys-
ical system:

ih̄
d

dt
|ψt⟩ = H|ψt⟩. (2.70)

H, called the Hamiltonian of the system, is a Hermitian operator and therefore an observ-
able. By measuring this observable one measures the total energy of the system with each
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eigenvalue of H corresponding to a possible energy level. For this reason, the spectrum of
H is called the energy spectrum. The eigenvectors of H are called energy eigenstates or
sometimes stationary states. To illustrate this, suppose that |ψ0⟩ is an energy eigenstate
corresponding to the eigenvalue E0. Then according to Schrodinger’s equation we have(

ih̄
d

dt
|ψt⟩

)
t=0

= H|ψ0⟩ = E0|ψ0⟩, (2.71)

and thus

|ψt⟩ = e−iEt/h̄|ψ0⟩. (2.72)

|ψt⟩ is proportional to |ψ0⟩ for all t ∈ R, so as time varies the state of the system remains
the same in every observable way.

The smallest eigenvalue of H is the lowest possible energy of the system and is called
the ground state energy. The corresponding energy eigenstate is called the ground state.
For many applications such as e.g. quantum chemistry [36], it is desirable to determine
the ground state of a given physical system and its corresponding energy. However, even
with full knowledge of the Hamiltonian, using direct methods to find these values can be
computationally infeasible for very large systems. The VQE, first proposed in [37], aims
to find an upper bound on the ground state energy and a corresponding approximation of
the ground state. It is based on the Ritz-Rayleigh principle which states that if E0 is the
smallest eigenvalue of H, and |E0⟩ its corresponding eigenvector, then

E0 ≤
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

(2.73)

for all |ψ⟩ ∈ H with equality when |ψ⟩ = |E0⟩ [38]. Since ⟨E0|E0⟩ = 1 we can thereby find
E0 and |E0⟩ by minimizing ⟨ψ|H|ψ⟩ over all possible state vectors in H:

E0 = min
|ψ⟩∈H
∥|ψ⟩∥=1

⟨ψ|H|ψ⟩. (2.74)

To apply the VQE framework to this problem we first define a structure-preserving trans-
formation

T : L(H) → L((C2)⊗n) (2.75)

and let Ĥ = T (H). Ĥ is an observable that describes a measurement of trial states that can
be prepared with a quantum computer. We use a variational circuit to prepare trial states
as |ψout(Θ)⟩ = U(Θ)|ψin⟩. The cost function is given by

C(Θ) = ⟨ψout(Θ)|Ĥ|ψout(Θ)⟩. (2.76)

According to (2.74), E0 ≤ C(Θ) for all Θ, with equality if |ψout(Θ)⟩ = |E0⟩. The output
of the algorithm is therefore C(Θ∗) and |ψout(Θ∗)⟩ which is an upper bound on the ground
state energy and an approximation of the ground state.
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2.3.3 Quantum neural networks

Before diving into quantum neural networks let us first recall some notions from machine
learning. In the context of machine learning a model is an object capable of ingesting data
and making predictions or decisions about that data based on patterns, relationships, and
structure that it has “learned”. Often a machine learning task comes with an input domain
X , an output domain Y , and a corpus of training data in the form of input-output pairs:

D = {(x(i), y(i)) ∈ X × Y : i ∈ {1, ..., n}}, (2.77)

and the goal is to learn the relationship between X and Y based on D. This task is called
supervised learning. The two most common types of supervised learning are regression, in
which the output domain is continuous, and classification, in which the output domain is a
discrete set of labels. An example of a regression task is to predict the price of a house given
its size and location. A classification task could be, given an image, to predict if it contains
a human face or not. When a classification task has exactly two possible labels, then we say
it is a binary classification.

In the case of supervised learning a model is typically a parametrized class of functions
from the input to the output domain fΘ : X → Y and the learning procedure involves
identifying the parameters Θ∗ which result in the function that best fits the training data.
This is done by minimizing a cost function which quantifies the discrepancy between the
training outputs and predictions by the function on the inputs. One example of such a cost
function is the mean squared error

C(Θ) =
n∑
i=1

(fΘ(xi)− yi)
2. (2.78)

The goal is that for the Θ∗ that minimizes C(Θ), not only do we have

fΘ∗(x(i)) ≈ y(i) for all i ∈ {1, ..., n} (2.79)

but also fΘ∗ is able to make accurate predictions on unseen x ∈ X . The ability of a model
function to do so is called its generalization power. In general, when a model function has
a large amount of parameters, especially when the parameters far outnumber the training
examples, it has more flexibility to fit said examples, including any random fluctuations
which are not indicative of the overall relationship between the input and output domains.
This can lead to overfitting which occurs when a model perfectly fits the training data but
does not generalize well.

One of the most successful and widely used class of parametrized functions is the deep
neural network. These functions excel at learning tasks involving highly dimensional data
such as image and speech recognition, and have been observed to generalize well even when
heavily over-parametrized.

Definition 10. Let L ∈ N, n0, ..., nL+1 ∈ N and ϕ : R → R. A depth L fully connected
feedforward neural network with input dimension n0, output dimension nL+1, hidden layer
widths n1, ..., nL, and activation ϕ is a function

x(0) ∈ Rn0 → z(L+1) ∈ RnL+1 (2.80)
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defined by the relationsz
(l)
i = b

(l)
i +

nl−1∑
j=1

W
(l)
ij x

(l−1)
j , l = 1, ..., L+ 1

x
(l)
j = ϕ(z

(l−1)
j ), l = 1, ..., L

(2.81)

where W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl for all l ∈ {1, ..., L+ 1}.

L, n = (n0, ..., nL+1), and ϕ are called hyperparameters. They are fixed and determine
what we call the network architecture. L is the number of hidden layers in the network.
Networks with more than one hidden layer are considered deep. The matrices W (l) and
vectors b(l) are the trainable parameters.

We are now ready to introduce a class of deterministic model functions that utilize
variational quantum circuits. They are inspired by the classical neural networks and have
thus been dubbed quantum neural networks.

Definition 11. Let X be an input domain, Ω a parameter domain, and m ∈ N. Let U(x,Θ)
be a variational circuit on m qubits which is parametrized by x ∈ X and Θ ∈ Ω. Let
O ∈ L((C2)⊗m) be an observable, and

|ψ(x,Θ)⟩ = U(x,Θ)|0m⟩. (2.82)

The function
fΘ(x) = ⟨ψ(x,Θ)|O|ψ(x,Θ)⟩ (2.83)

defines a deterministic quantum model.

Borrowing the nomenclature from the classical version, we say that m is the width of the
circuit. It is a hyperparameter while Θ are trainable parameters. The ansatz that defines
the family of circuits U(x,Θ) is called the circuit architecture and the depth of the circuit is
akin to the depth of the network.

Clearly the supervised learning of a deterministic quantum model can be phrased as a
VQA. The problem the VQA aims to solve is to learn a function that fits a set of training
data. The output of the algorithm is the model function x→ fΘ∗(x) where Θ∗ minimizes a
cost function such as the mean squared error given by (2.78).



Chapter 3

The model function of quantum
neural networks

In chapter 2 we introduced quantum neural networks. We now turn our attention to the
model function they generate and how it can be viewed as a random variable which we
will label f(Θ). The goal of this chapter is twofold. Firstly, to fix some assumptions on the
architecture of the network. And secondly, to define a number of objects and quantities which
describe this architecture. Understanding these quantities will be crucial to characterizing
the Gaussianity of f(Θ), which is our ultimate goal and the main subject of chapter 4. Let
us first set the stage by formally defining f(Θ).

Let H = (C2)⊗m be the Hilbert space representing a system of m qubits and let |ψ⟩ ∈ H
be a vector representing the initial state of the system. Let X be an input domain and
Ω a parameter domain, and let U(x,Θ) ∈ L(H) be a unitary representing a variational
circuit parametrized by x ∈ X and Θ ∈ Ω. Denote by |ψ(x,Θ)⟩ ∈ H the result of applying
U(x,Θ) to the initial state: |ψ(x,Θ)⟩ = U(x,Θ)|ψ⟩. Finally, let O ∈ L(H) be an observable
describing a projective measurement of the system. As we saw in section 2.3, the model
function of a quantum neural network is given by

fΘ(x) = ⟨ψ(x,Θ)|O|ψ(x,Θ)⟩. (3.1)

Let us fix x̂ ∈ X and let Θ be sampled from Ω according to the probability distribution P,
as is the case when the model is randomly initialized. Then

⟨ψ(x̂,Θ)|O|ψ(x̂,Θ)⟩ (3.2)

is a random variable on the probability space (Ω,B(Ω),P) where B(Ω) is the Borel sigma
algebra generated by Ω. Denote by N its standard deviation. We define f(Θ) to be the
random variable on the same probability space, normalized so that V[f(Θ)] = 1:

f(Θ) :=
1

N
⟨ψ(x̂,Θ)|O|ψ(x̂,Θ)⟩. (3.3)

We will henceforth refer to N as the normalization constant of f(Θ). Given that x̂ is fixed,
going forward, we will refer to the unitary U(x̂,Θ) as U(Θ) and the state |ψ(x̂,Θ)⟩ as |ψ(Θ)⟩.

27
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The rest of this chapter is outlined as follows. In section 3.1 we discuss in detail the
observable O and introduce quantities which we call observable weights. In section 3.2
we discuss the circuit U(Θ) and introduce objects called interactions and light cones. In
section 3.3 we define a subspace of H which will inform both how the light cones and
observable weights affect the law of f(Θ), and whether we can expect to achieve a quantum
advantage. We follow the notation of [25, chapter 2] in which light cones and observables of
variational circuits are discussed. The notable difference is that we consider a broader class
of observables. We will make clear any important distinctions.

3.1 The observable

As we saw in section 2.2.1, {σI , σX , σY , σZ}⊗m forms a basis of the observables inH, therefore
we can express O as

O =

p∑
j=1

wjOj (3.4)

with Oj ∈ {σI , σX , σY , σZ}⊗m called a local observable and w = (w1, ..., wp) ∈ Rp. Further-
more, this representation is unique.

According to (3.4) we can express f(Θ) as the sum

f(Θ) =
1

N
⟨ψ(Θ)|O|ψ(Θ)⟩ =

p∑
l=1

fj(Θ) (3.5)

where we define
fj(Θ) :=

wj
N

⟨ψ(Θ)|Oj|ψ(Θ)⟩. (3.6)

When executing a VQA in practice, each of the fj(Θ) are computed individually on a
quantum device and the sum is computed classically. Since performing the measurement
described by Oj on |ψ(Θ)⟩ collapses the state, it is not possible to then take another mea-
surement described by Oj′ for some j′ ̸= j. It is therefore necessary to prepare p independent
copies of |ψ(Θ)⟩ in order to perform all p measurements. Consequently, a necessary condition
for the VQA to be considered an efficient algorithm is that p ∈ O(g(m)) for some polynomial
g.

Lemma 1. Let W = |w|∞, then

|fj(Θ)|≤ W

N
(3.7)

for all j ∈ {1, ..., p} implying |f(Θ)|≤ pW
N
.

Proof. It is enough to show that |⟨ψ|Oj|ψ⟩|≤ 1 for all |ψ⟩ ∈ H. The operator norm of Oj is
given by

∥Oj∥op = sup
∥|ψ⟩∥=1

∥Oj|ψ⟩∥. (3.8)

Since O†
j = Oj and O2

j = 1H, we have

∥Oj|ψ⟩∥ =
√

⟨ψ|O†
jOj|ψ⟩ =

√
⟨ψ|ψ⟩ = 1 (3.9)
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for all |ψ⟩ such that ∥|ψ⟩∥ = 1, therefore ∥Oj∥op = 1 for all j ∈ {1, ..., p}. The spectral
radius of a linear operator is bounded by the operator norm of said operator [39], thus if
Oj =

∑
i λi|λi⟩⟨λi| is the spectral decomposition of Oj, then |λi|≤ 1∀i. It follows that

|⟨ψ(Θ)|Oj|ψ(Θ)⟩| =

∣∣∣∣∣⟨ψ(Θ)

(∑
i

λi|λi⟩⟨λi|

)
|ψ(Θ)⟩

∣∣∣∣∣
=

∣∣∣∣∣∑
i

λi⟨ψ(Θ)|λi⟩⟨λi|ψ(Θ)⟩

∣∣∣∣∣
≤

∑
i

|λi|·|⟨λi|ψ(Θ)⟩|2

≤
∑
i

|⟨λi|ψ(Θ)⟩|2

= 1 (3.10)

since {|λi⟩}i is an orthonormal basis of H.

3.1.1 Observable weights

It is useful to write the local observable Oj explicitly as

Oj = σj1 ⊗ σj2 ⊗ · · · ⊗ σjm jk ∈ {I,X, Y, Z}. (3.11)

Definition 12. Given Oj as in (3.11), let Qj be the subset of qubits which Oj acts non-
trivially on:

Qj = {k ∈ {1, ...,m} : σjk ̸= I}. (3.12)

We define the Pauli weight of Oj to be |Qj| and the maximal Pauli weight of O to be

|Q|= max
j∈{1,...,p}

|Qj|. (3.13)

The Pauli weight is so named because each local observable is a tensor product of Pauli
operators. In practice, when we perform the measurement described by Oj on the output
state, we perform the measurement described by the Pauli operator σjk on the qubit k for
all k ∈ Qj. The identity terms do not contribute to the measurement.

Definition 13. Let Rk be the subset of local observables making up O which act non-
trivially on the qubit k:

Rk = {j ∈ {1, ..., p} : σjk ̸= I}. (3.14)

We define the qubit weight of qubit k, relative to O to be |Rk| and the maximal qubit weight
of O to be

|R|= max
k∈{1,...,m}

|Rk|. (3.15)

Remark 3. Clearly,
k ∈ Qj ⇐⇒ j ∈ Rk (3.16)

for all k ∈ {1, ...,m} and j ∈ {1, ..., p}.
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...

|ψ1⟩

U(Θ)

σ1

|ψ2⟩
σ2

...

|ψm⟩
σm

=

. . .

. . .

...
...

. . .

|ψ1⟩

U1(Θ) UL+2(Θ)

σ1

|ψ2⟩
σ2

...

|ψm⟩
σm

Figure 3.1: The circuit is a composition of layers.

Remark 4. By Definition 13 we see that

p =

∣∣∣∣∣
m⋃
k=1

Rk

∣∣∣∣∣ ≤
m∑
k=1

|Rk|≤
m∑
k=1

|R|= m|R|. (3.17)

Remark 5. In [25, assumption 2.6] only observables of the following form are considered.

O =
m∑
k=1

Ok (3.18)

where for all k ∈ {1, ...,m}, Ok is an observable acting only on the qubit k:

Ok = 11 ⊗ · · · ⊗ 1k−1 ⊗ σk ⊗ 1k+1 ⊗ · · · ⊗ 1m (3.19)

and σk ∈ {σX , σY , σZ}. In other words, p = m, and |Q|= |R|= W = 1.

3.2 The circuit

So far we have simply described the circuit U(Θ) as a parametric unitary. In this section
we will introduce some assumptions on the structure of the ansatz U and discuss their
implications.

Fixing L ≥ 0, the circuit U(Θ) is composed of L+ 2 layers :

U(Θ) = UL+2(Θ)UL+1(Θ) · · ·U1(Θ) (3.20)

where each layer Ul(Θ) is a unitary gate that further decomposes into

Ul(Θ) = VlWl(Θ) (3.21)

with the following structure imposed on Vl and Wl:

Assumption 1. [25, definition 2.4]

1. Vl is a fixed unitary composed of one and two-qubit gates such that no more than one
two-qubit gate acts on any single qubit.
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Ul(Θ) = Wl(Θ) Vl =

W1,l(θ1,l)

W2,l(θ2,l)

W3,l(θ3,l)

W4,l(θ4,l)

W5,l(θ5,l)

Vl

Figure 3.2: An example of one layer of a circuit with 5 qubits.

2. Wl(Θ) is a tensor product of m single-qubit parametric gates, each depending on a
single parameter.

Remark 6. For all l ∈ {1, ..., L}, Vl may depend on the input to the quantum neural network:
Vl(x̂), however, since x̂ is fixed in this case, we consider Vl a fixed unitary.

There are L+ 2 layers, each involving m parameters, therefore |Θ|= (L+ 2)m. Noticing
how, in a typical circuit diagram, the qubits are arranged in rows and the layers are arranged
in columns, it is natural to enumerate the parameters using matrix notation:

Θ =

θ1,1 · · · θ1,L+2
...

. . .
...

θm,1 · · · θm,L+2

 (3.22)

where θk,l parametrizes the single qubit unitary Wk,l which acts on the qubit k in the layer
l. We can then write a single layer as

Ul(Θ) = Vl (W1,l(θ1,l)⊗ · · · ⊗Wm,l(θm,l)) . (3.23)

On the other hand, it will be useful in certain cases to refer to a parameter or single qubit
unitary by a single index i ∈ {1, ..., (L + 2)m} in which case, following [25, definition 2.5],
we use the convention that

θk,l = θi

Wk,l = Wi

}
⇐⇒ i = (l − 1)×m+ k. (3.24)

Assumption 2. At initialization, each parameter is sampled independently, but not neces-
sarily identically, from Ω. That is, θi ⊥ θi′ for all i, i′ ∈ {1, ...,m(L+ 2)} such that i ̸= i′.
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. . .

. . .

...
...

...
...

...

. . .

|ψ1⟩ W1,1(θ1,1)

Vl

W1,L(θ1,L)

Vl

RX(
θ1,L+1

2
) RZ(

θ1,L+2

2
)

σ1

|ψ2⟩ W2,1(θ2,1) W2,L(θ2,L) RX(
θ2,L+1

2
)) RZ(

θ2,L+2

2
)

σ2

...

|ψm⟩ Wm,1(θm,1) Wm,L(θm,L) RX(
θm,L+1

2
)) RZ(

θm,L+2

2
)

σm

U1(Θ) UL(Θ) UL+1(Θ) UL+2(Θ)

Figure 3.3: The Final Two Layers are made up of Pauli X and Pauli Z rotations.

Assumption 3. [25, assumption 2.6] For all i ∈ {1, ..., (L + 2)m}, Wi(θi) is given by
the unitary evolution of a qubit generated by the Hamiltonian Gi over the time θi

2
, where

Gi ∈ L(C2) is Hermitian with spectrum in {−1, 1}:

Wi(θi) = e−i
θi
2
Gi . (3.25)

Remark 7. [25, remark 2.7] Assumption 3 ensures that each Wi has period π up to an
irrelevant sign, therefore we can restrict the domain of Θ to Ω = [0, π](L+2)m.

[25, assumption 2.24] enforces that the final layer of the circuit is chosen in such a way
that E[fk(Θ)] = 0 for all k ∈ {1, ...,m}, and an example of such a layer is given when the
observable is a sum of single-qubit Pauli-Z observables, i.e. when

O =
m∑
k=1

11 ⊗ · · · ⊗ 1k−1 ⊗ σZ ⊗ 1k+1 ⊗ · · ·1m. (3.26)

With assumption 4 we explicitly define the final two layers of U(Θ). In lemma 2, the proof
of which is reserved for appendix A, we show that these layers achieve the same effect for
any observable O ∈ L(H).

Assumption 4. VL+1 and VL+2 are the identity on (C2)⊗m and

Wk,L+1(θk,L+1) = RX(θk,L+1) = e−i
θk,L+1

2
σX (3.27)

Wk,L+2(θk,L+2) = RZ(θk,L+2) = e−i
θk,L+2

2
σZ (3.28)

for all k ∈ {1, ...,m}. Furthermore, the parameters used in the final two layers are indepen-
dent and sampled uniformly from [0, 2π] at initialization.

Lemma 2. Assumption 4 ensures that at initialization

1. E[fj(Θ)] = 0 for all j ∈ {1, ..., p} such that Qj ̸= ∅ and

2. Cov[fj(Θ), fj′(Θ)] = 0 for all j, j′ ∈ {1, ..., p} such that j ̸= j′.
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Proof. See Appendix A.

Remark 8. Suppose that there exists j ∈ {1, ..., p} such that Qj = ∅. That would imply that
Oj = 1H and therefore fj(Θ) =

wj

N
which does not depend on Θ. If we simply redefine f(Θ)

to be

f(Θ) :=

p∑
j′=1

fj′(Θ)− wj
N
, (3.29)

then

E[f(Θ)] =
∑

j′:|Qj′ |>0

E[fj′(Θ)] +
wj
N

− wj
N

= 0. (3.30)

We can therefore assume, without loss of generality, that Qj ̸= ∅ for all j ∈ {1, ..., p} and
therefore E[f(Θ)] = 0.

In order to have cleaner notation going forward we will sometimes refer to a paramet-
ric circuit U(Θ), layer Ul(Θ), or constituent thereof, Wl(Θ) or Wk,l(θk,l), without explicit
dependence on the parameters: U,Ul,Wl,Wk,l.

3.2.1 Light cones

In this section we describe how the dependence of the variables fj(Θ) on the parameters is
propagated backwards through the circuit as a result of qubit interactions.

Definition 14. Let k, k′ ∈ {1, ...,m} and l ∈ {1, ..., L + 2}. We say that qubit k interacts
with qubit k′ in the layer l if Vl contains a two-qubit gate acting on qubits k and k′.

Following the notation of [25, section 2.3.1], we introduce some auxiliary sets which
capture these interactions. Let Il be a partition of the set {1, ...,m} such that

• {k, k′} ∈ Il if and only if the the qubits k and k′ interact with each other in the layer
l and

• {k} ∈ Il if and only if qubit k does not interact with any other qubit in the layer l.

Let Il,k be the unique element of Il such that k ∈ Il,k; we note that if {k, k′} ∈ Il, then
Il,k = Il,k′ . Since VL+1 = VL+2 = 1H, there are no interactions in the last two layers and so
IL+1,k = IL+2,k = {k} for all k ∈ {1, ...,m}.

Remark 9. [25, remark 2.16] According to the definition of Il we can rewrite the unitary
Vl as the composition

Vl =
∏

{k}∈Il

V
(k)
l

∏
{k,k′}∈Il

V
(k,k′)
l (3.31)

where V
(k)
l is a unitary acting only on qubit k and V

(k,k′)
l is a unitary acting on qubits k and

k′. The order of the factors do not matter since each factor acts on a distinct Hilbert space
and so they commute.
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|ψ1⟩ W1(θ1) W7(θ7) RX(
θ13
2
) RZ(

θ19
2
)

σ1

|ψ2⟩ W2(θ2) W8(θ8) RX(
θ14
2
) RZ(

θ20
2
)

σ2

|ψ3⟩ W3(θ3) W9(θ9) RX(
θ15
2
) RZ(

θ21
2
)

σ3

|ψ4⟩ W4(θ4) W10(θ10) RX(
θ16
2
) RZ(

θ22
2
)

σ4

|ψ5⟩ W5(θ5) W11(θ11) RX(
θ17
2
) RZ(

θ23
2
)

σ5

|ψ6⟩ W6(θ6) W12(θ12) RX(
θ18
2
) RZ(

θ24
2
)

σ6

Figure 3.4: The past light cone of qubit 4 is N6 = {θi : i ∈ {2, 3, 4, 5, 9, 10, 16, 22}}. The
corresponding auxiliary sets are J 1

4 = {2, 3, 4, 5},J 2
4 = {3, 4},J 3

4 = {4} and J 4
4 = {4}.

For example, in Figure 3.2, Vl = V
(1,2)
l ·V (3,4)

l ·V (5)
l where V

(1,2)
l and V

(3,4)
l are Controlled

Z gates and V
(5)
l = 15.

The following sets, recursively defined, expand as we step backward through the circuit:

J l
k =


IL,k if l = L+ 2⋃
k′∈J l+1

k

Il,k′ if l < L+ 2. (3.32)

Given the lack of interactions in the final two layers it is implicit that J L+1
k = J L+2

k = {k}.
At each decreasing layer J l

k incorporates the indices of the qubits which interact with those
in the preceding layer: J 1

k ⊇ J 2
k ⊇ · · · ⊇ J L

k ⊇ J L+1
k = J L+2

k = {k}. Now to each J l
k

associate the set of parameters

N l
k =

⋃
k′∈J l

k

{θk′l}. (3.33)

Definition 15. [25, definition 2.12] For all k ∈ {1, ...,m}, define the past light cone of qubit
k as the subset of parameters given by

Nk =
L+2⋃
l=1

N l
k. (3.34)

And for all i ∈ {1, ...(L+2)m}, define the future light cone of the parameter θi as the subset
of qubits given by

Mi = {k′ ∈ {1, ...,m} : θi ∈ Nk′}. (3.35)
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|ψ1⟩ W1(θ1) W7(θ7) RX(
θ13
2
) RZ(

θ19
2
)

σ1

|ψ2⟩ W2(θ2) W8(θ8) RX(
θ14
2
) RZ(

θ20
2
)

σ2

|ψ3⟩ W3(θ3) W9(θ9) RX(
θ15
2
) RZ(

θ21
2
)

σ3

|ψ4⟩ W4(θ4) W10(θ10) RX(
θ16
2
) RZ(

θ22
2
)

σ4

|ψ5⟩ W5(θ5) W11(θ11) RX(
θ17
2
) RZ(

θ23
2
)

σ5

|ψ6⟩ W6(θ6) W12(θ12) RX(
θ18
2
) RZ(

θ24
2
)

σ6

Figure 3.5: The future light cone of parameter θ9 is M9 = {3, 4}.

Remark 10. Clearly,

θi ∈ Nk ⇐⇒ k ∈ Mi (3.36)

for all i ∈ {1, ..., (L+ 2)m} and k ∈ {1, ...,m}.

Definition 16. [25, definition 2.14] The maximal cardinalities of the past and future light
cones are given by

|N |= max
k∈{1,...,m}

|Nk| (3.37)

and

|M|= max
i∈{1,...,(L+2)m}

|Mi|. (3.38)

Let us now clarify some subtleties between this work and [25]. In the previous paper the
past light cone of qubit k is denoted Lpk and defined as the subset of parameters on which
the variable fk(Θ) depends. They show that, since Ok acts non-trivially on only qubit k,
Lpk is a subset of Nk which they define as the extended past light cone of qubit k. Similarly,

they denote by Lfi the future light cone of the parameter θi and define it as the subset of
local variables that depend on θi. They show that Lfi is a subset of Mi which is named the
extended future light cone of parameter θi.

Our case differs in that each observable may act non-trivially on an arbitrary number
of qubits, therefore the dependency relations between variables and parameters cannot be
characterized solely with what we refer to as light cones. In chapter 4 we will construct sets
which capture these relationships using the Mi,Nk,Qj and Rk.
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3.3 The Hilbert space of a local observable

Depending on the local observable Oj being measured, many of the gates making up the
circuit do not contribute to the expected value of the measurement. Furthermore, only a
subset of the qubits making up H are involved in the computation of fj(Θ). We denote
by Hj

loc the Hilbert space describing this subset of qubits. In this section we will illustrate
which unitaries are unnecessary which will in turn inform a definition of Hj

loc. This will be
crucial to understanding both the interplay of the variables fj(Θ) and the conditions under
which we expect to gain a quantum advantage.

In [25, definition 2.17] the authors introduce for each k ∈ {1, ...,m} a pruning operation
which removes certain gates from a circuit and then show in [25, lemma 2.18] that pruning
the circuit does not change the value of fk(Θ). In [25, definition 2.21] they give a definition
of Hk

loc and show in [25, lemma 2.22] that to compute fk(Θ) requires only linear algebra
operations in Hk

loc. Finally, they estimate the dimension of Hk
loc in [25, lemma 2.23].

In definition 17 we introduce for each j ∈ {1, ..., p} a similar operation which pares down
the circuit U(Θ) according to the properties of f(Θ)j, taking into account that each Oj may
act non-trivially on more than one qubit. In lemma 3 we similarly show that the pruning
operation does not affect the value of fj(Θ). In definition 18 we give a revised definition of
Hj
loc, show in lemma 4 that operations in Hj

loc are sufficient to compute fj(Θ), and estimate
the dimension of Hj

loc in lemma 5.

Definition 17. For each j ∈ {1, ..., p} the pruning operation [ · ]j acts on the circuit U(Θ) to
produce the pruned circuit [U(Θ)]j. The pruned circuit is the composition of pruned layers :

[U(Θ)]j =
L+2∏
l=1

[Ul(Θ)]j =
L+2∏
l=1

[Vl]j[Wl(Θ)]j. (3.39)

The pruning operation on Vl is defined as

[Vl]j =
∏

{k}∈Il

[V
(k)
l ]j

∏
{k,k′}∈Il

[V
(k,k′)
l ]j (3.40)

where

[V
(k)
l ]j =

{
1 if k /∈

⋃
k′∈Qj

J l
k′

V
(k)
l otherwise

(3.41)

[V
(k,k′)
l ]j =

{
1 if {k, k′} ∈ Il and {k, k′} ∩

⋃
k′′∈Qj

J l
k′′ = ∅

V
(k,k′)
l otherwise

. (3.42)

And the pruning operation on Wl(Θ) is defined as

[Wl(Θ)]j = [W1,l(θ1,l)]j ⊗ · · · ⊗ [W1,m(θ1,m)]j (3.43)

where

[Wk,l(θk,l)]j =

{
1 if θk,l /∈

⋃
k′∈Qj

N l
k′

Wk,l(θk,l) otherwise
. (3.44)
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|ψ1⟩

|ψ2⟩

|ψ3⟩

|ψ4⟩

|ψ5⟩

|ψ6⟩

|ψ7⟩

|ψ8⟩

|ψ9⟩

|ψ10⟩

|ψ11⟩

|ψ12⟩

|ψ13⟩

|ψ14⟩

|ψ15⟩

W1(θ1) σ1

σ6

σ12

[ · ]j−−→

|ψ1⟩

|ψ2⟩

|ψ5⟩

|ψ6⟩

|ψ7⟩

|ψ8⟩

|ψ11⟩

|ψ12⟩

|ψ13⟩

|ψ14⟩

W1(θ1) σ1

σ6

σ12

Hloc
j

Figure 3.6: On the left is an example of a circuit U(Θ) with m = 15 and L = 2. On the
right is the circuit [U(Θ)]j pruned according to an observable Oj with Qj = {1, 6, 12}.

In other words, if Oj acts non-trivially on the qubit k and the parameter θk′,l is in the

past light cone of qubit k, then the pruning operation leaves unchanged Wk′,l and V
(k′)
l (or

V
(k′,k′′)
l , whichever is appropriate). The rest of the unitaries are swapped with the identity.

Lemma 3. For any |ψ⟩ ∈ H the following holds

⟨ψ|[U(Θ)]†jOj[U(Θ)]j|ψ⟩ = ⟨ψ|U †(Θ)OjU(Θ)|ψ⟩. (3.45)

Proof. We proceed by induction on the number of layers. First we show that (3.45) holds
when L = 0. In this case the circuit consists of only the extra two layers: U = W2W1,
whence

⟨ψ|[U ]†jOj[U ]j|ψ⟩ = ⟨ψ|[W1]
†
j[W2]

†
jOj[W2]j[W1]j|ψ⟩

= ⟨ψ|

(
m⊗
k=1

[Wk,1]
†
j[Wk,2]

†
jσjk [Wk,2]j[Wk,1]j

)
|ψ⟩. (3.46)



38 CHAPTER 3. THE MODEL FUNCTION OF QUANTUM NEURAL NETWORKS

If k /∈ Qj, then σjk = I in which case

[Wk,1]
†
j[Wk,2]

†
jσjk [Wk,2]j[Wk,1]j = ([Wk,2]j[Wk,1]j)

†I[Wk,2]j[Wk,1]j

= I

= (Wk,2Wk,1)
†IWk,2Wk,1

= W †
k,1W

†
k,2σjkWk,2Wk,1. (3.47)

On the other hand, suppose k ∈ Qj. Given that J 1
k = J 2

k = {k}, by definition, N 1
k = {θk,1}

and N 2
k = {θk,2}. Therefore k ∈ Qj implies that

θk,l ∈
⋃
k′∈Qj

{θk′,l}

=
⋃
k′∈Qj

N l
k′ (3.48)

for l = {1, 2} and thus

[Wk,1]
†
j[Wk,2]

†
jσjk [Wk,2]j[Wk,1]j = W †

k,2W
†
k,1σjkWk,1Wk,2 (3.49)

trivially holds since [Wk,1]j = Wk,1 and [Wk,2]j = Wk,2. In either case, we have

⟨ψ|[U ]†jOj[U ]j|ψ⟩ = ⟨ψ|

(
m⊗
k=1

[Wk,1]
†
j[Wk,2]

†
jσjk [Wk,2]j[Wk,1]j

)
|ψ⟩

= ⟨ψ|

(
m⊗
k=1

W †
k,1W

†
k,2σjkWk,2Wk,1

)
|ψ⟩

= ⟨ψ|U †OjU |ψ⟩ (3.50)

for all |ψ⟩ ∈ H.
Assume now that the hypothesis holds when L = L′ for some L′ ≥ 0. Let U be a circuit

with L′ + 2 layers and U ′ the result of adding an additional layer U0 to the beginning of U :
U ′ = UU0. Then for all |ψ⟩ ∈ H, since U0|ψ⟩ ∈ H, by the inductive hypothesis,

⟨ψ|U ′†OjU
′|ψ⟩ = ⟨ψ|U †

0U
†OjUU0|ψ⟩

= ⟨ψ|U †
0 [U ]

†
jOj[U ]jU0|ψ⟩

= ⟨ψ|W †
0V

†
0 [U ]

†
jOj[U ]jV0W0|ψ⟩. (3.51)

We can split up V0 into the product of terms which become the identity under the pruning
operation and those which remain unchanged:

V0 = V ′
0V

′′
0 where [V ′

0 ]j = V ′
0 and [V ′′

0 ]j = 1H. (3.52)

Clearly,

[V0]j = [V ′
0 ]j[V

′′
0 ]j = V ′

0 · 1H = V ′
0 . (3.53)



3.3. THE HILBERT SPACE OF A LOCAL OBSERVABLE 39

If V0 contains V
(k,k′)
0 , then

{k, k′} ∈ Il and {k, k′} ∩
⋃

k′′∈Qj

J 0
k′′ = ∅. (3.54)

Since J 0
k′′ ⊇ J l

k′′ for all l ∈ 1, ..., L+ 2, we have also

{k, k′} ∩
⋃

k′′∈Qj

J l
k′′ = ∅, l ∈ {1, ..., L+ 2}. (3.55)

By the definition of the pruning operation, (3.55) implies [U ]j acts as the identity on the

qubits k and k′ in which case V
(k,k′)
0 commutes with [U ]j. And since J L+2

k′′ = {k′′}, (3.55)
implies that {k, k′} ∩ Qj = ∅ in which case V

(k,k′)
0 also commutes with Oj. By the same

logic, if V
(k)
0 divides V ′′

0 , then V
(k)
0 commutes with [U ]j and Oj and thus V ′′

0 commutes with
[U ]j and Oj.

We can similarly express W0 as

W0 = W ′
0W

′′
0 where [W ′

0]j = W ′
0 and [W ′′

0 ]j = 1H (3.56)

and thus [W0]j = W ′
0.

If for some k ∈ {1, ...,m},11 ⊗ · · · ⊗Wk,0(θk,0)⊗ · · · ⊗ 1m divides W ′′
0 , then

θk,0 /∈
⋃
k′∈Qj

N 0
k′

=
⋃
k′∈Qj

 ⋃
k′′∈J 0

k′

{θk′′l}

 (3.57)

implying ∄k′ ∈ Qj such that k ∈ J 0
k′ . It follows that

k /∈
⋃
k′∈Qj

J l
k′ ∀l ∈ {0, ..., L+ 2} (3.58)

therefore 11 ⊗ · · · ⊗Wk,0(θk,0) ⊗ · · · ⊗ 1m commutes with V0, [U ]j and Oj, and thus so too
does W ′′

0 . Finally,

⟨ψ|U ′†OjU
′|ψ⟩ = ⟨ψ|W †

0V
†
0 [U ]

†
jOj[U ]jV0W0|ψ⟩

= ⟨ψ|(W ′
0W

′′
0 )

†(V ′
0V

′′
0 )

†[U ]†jOj[U ]jV
′
0V

′′
0 W

′
0W

′′
0 |ψ⟩

= ⟨ψ|W ′
0
†
V ′
0
†
[U ]†jOj[U ]jV

′
0W

′
0|ψ⟩

= ⟨ψ|[W0]
†
j[V0]

†
j[U ]

†
jOj[U ]j[V0]j[W0]j|ψ⟩

= ⟨ψ|[U0]
†
j[U ]

†
jOj[U ]j[U0]j|ψ⟩

= ⟨ψ|[U ′]†jOj[U
′]j|ψ⟩ (3.59)

which shows that (3.45) holds when L = L′ + 1 and thus for all L ≥ 0.
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As a direct consequence of Lemma 3, we may defineHj
loc to be the Hilbert space describing

the subset of qubits that are acted on non-trivially by the pruned circuit [U ]j.

Definition 18. Let Hk be the Hilbert space associated with qubit k. We define the local
Hilbert space associated with the local observable Oj to be

Hj
loc :=

⊗
k∈

⋃
k′∈Qj

J 1
k′

Hk. (3.60)

Lemma 4. The computation of fj(Θ) only requires linear algebra in Hj
loc.

Proof. Suppose that Hk is not included in the tensor product that is Hj
loc. Then k /∈⋃

k′∈Qj
J 1
k′ . Since J l

k′ ⊆ J 1
k′ for all l ≥ 1 we have that k /∈

⋃
k′∈Qj

J 1
k′ for all l ≥ 1. Then, by

definition, [U ]j acts as the identity on Hk. By Lemma 3, operations on Hk are not needed
in order to compute fj(Θ).

We now derive an upper bound on the dimension of the local Hilbert space given different
assumptions on the circuit and observable.

Lemma 5. For all j ∈ {1, ..., p} it holds that

dimHj
loc ≤ 2|Q|2L . (3.61)

Proof. Since dimHk = dimC2 = 2 for all k ∈ {1, ...,m}, the dimension of Hj
loc is given by

2mj where

mj =

∣∣∣∣∣∣
⋃
k∈Qj

J 1
k

∣∣∣∣∣∣ ≤ |Qj|max
k∈Qj

|J 1
k |≤ |Q| max

k∈{1,...,m}
|J 1

k |. (3.62)

We notice that for all k ∈ {1, ...,m},

|J 1
k |=

∣∣∣∣∣∣
⋃
k′∈J 2

k

I1,k′

∣∣∣∣∣∣ ≤
∑
k′∈J 2

k

|I1,k′ |≤
∑
k′∈J 2

k

2 = 2|J 2
k | (3.63)

where we have used the fact that |Il,k|∈ {1, 2} for all l ∈ {1, ..., L+2} and k ∈ {1, ...,m} by
Assumption 1. Inductively, we can infer the relation

|J 1
k |≤ 2l|J l+1

k | (3.64)

for all l ≤ L. Since J L+1
k = {k}, we have that |J 1

k |≤ 2L|J L+1
k |= 2L. Since this is true for

all k ∈ {1, ...,m}, we conclude that mj ≤ |Q|2L and thus dimHj
loc ≤ 2|Q|2L .

Lemma 5 makes no assumption on the layout of the qubits and no restrictions are imposed
on which qubits may interact with each other. If, for example, the qubits are arranged in
a d-dimensional lattice and U(Θ) is such that entangling gates may only act on adjacent
qubits, then

|J 1
k |∈ O(Ld), k ∈ {1, ...,m} (3.65)
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implying the improved bound

dimHj
loc ∈ O(2|Q|Ld

), j ∈ {1, ..., p}. (3.66)

Such a circuit is called geometrically local. The restriction of geometric locality is often
imposed on a circuit due to limitations inherent to the physical implementation of the qubits.

Another particular case is when each of the local observables Oj act non-trivially on a set
of not more than h adjacent qubits. In this case, we say that O is spatially h-local [40]. If O is
spatially h-local, and U(Θ) is 1-dimensional and geometrically local, then we can find further
improved bounds on the dimension of the local Hilbert space. In this configuration, for all
j ∈ {1, ..., p}, Qj = {a, a+1, ..., a+h} for some a ∈ {1, ...,m−h} and J 1

k ⊆ {k−L, ..., k+L}
for all k ∈ {1, ...,m}. This implies⋃

k∈Qj

J 1
k ⊆

⋃
k∈{a,a+1,...,a+h}

{k − L, ..., k + L}

= {a− L, ..., a+ h+ L}, (3.67)

and thus
dimHj

loc ≤ 2h+2L. (3.68)

We will further examine these particular cases in chapter 4, however, it is important to
note that we do not assume that U(Θ) is geometrically local, nor that O is spatially local
unless otherwise specified.

3.3.1 Classical simulability

If we are able to efficiently simulate a quantum circuit with a classical device, then we
gain no advantage in using a quantum computer. The most direct method of simulation is
the state-vector approach where the initial state of an m qubit system is encoded in a 2m

dimensional vector with each entry representing the amplitude of a corresponding basis state.
The application of unitary gates to the initial state is simulated via matrix multiplication of
the state vector. Under this scheme, in the worst case, the run time of the circuit simulation
is no more than Cg2m where g is the number of elementary gates composing the circuit, and
C is a constant not depending on the circuit [41].

By Lemmas 4 and 5 it is possible to simulate the computation of fj(Θ) using a classical
computer with

O(L dimHj
loc) = O(L2|Q|2L) (3.69)

operations, and thus to compute f(Θ), O(pL2|Q|2L) operations are needed. In the case that
U(Θ) is geometrically local, O(pL2|Q|Ld

) operations are needed, and in the case that U(Θ)
is 1-dimensional geometrically local, and O is spatially h-local, O(pL2h+2L) operations are
needed. In section 4.3 we will discuss specific examples of |Q| and L and see whether or not
they afford the possibility of a quantum advantage.
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Chapter 4

Convergence to a Gaussian
distribution

In chapter 3 we introduced the random variable f(Θ) generated by a randomly initialized
quantum neural network with a fixed input. In this chapter we aim to assess how well the
law of this variable approximates the Gaussian distribution.

Suppose we have a sequence of randomly initialized quantum neural networks with di-
verging width and denote by f (m)(Θ) the variable generated by the circuit with width m. In
[25, Theorem 3.14] the author shows that if |Q|= |R|= W = 1 and

lim
m→0

m|M|2|N |2

N3
= 0, (4.1)

then f (m)(Θ) converges in distribution to a standard Gaussian random variable asm→ ∞. 1

In this chapter we aim to answer the question: How “fast” does f (m)(Θ) converge? Answering
this amounts to, for a fixed m, determining the “distance” between the law of f (m)(Θ) and
that of its limiting value. The measure we use to quantify this is the Kolmogorov distance.
This metric is widely used to quantify the rate of convergence in the context of Gaussian
approximation. A prominent example of such an application is the Berry-Esseen theorem
(see Theorem 2) which provides a bound on the rate of convergence in the Central Limit
Theorem (CLT) (see Theorem 1). Just as the authors of [25] take inspiration from the CLT
to show convergence of f (m)(Θ), we take inspiration from the Berry-Esseen theorem to find
the rate at which this convergence takes place.

In section 4.1 we introduce the Berry-Esseen theorem along with some necessary prelim-
inaries. In section 4.2 we state and prove the main result of this thesis: an upper bound on
the rate of convergence of f (m)(Θ) to a standard Gaussian random variable. In section 4.3
we discuss how we expect this upper bound to behave for certain dependencies of L and |Q|
on m. Finally, in section 4.4 we compare our bound with a result previously established in
[26] based on the same framework. We stress that our result includes observables in which
|Q|, |R|,W > 1 which is a scenario not considered by [25] or [26]. In what follows, we return
to the notation f(Θ), omitting the dependency on m.

1In fact, a stronger result is proved: the random function {f (m)(x,Θ)}x∈X converges in distribution to a
mean zero Gaussian process.

43
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4.1 The Berry-Esseen theorem

Definition 19. The Gaussian distribution with mean µ and variance σ2, denoted Nµ,σ2 , is
the distribution with density

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 . (4.2)

N0,1 is called the standard Gaussian distribution.

The Gaussian distribution plays a central role in statistics due in part to its connec-
tion with various convergence theorems - most notably the CLT. In the context of random
variables there are multiple notions of convergence. In this work we use convergence in
distribution.

Definition 20. Let (Xn) be a sequence of random variables with CDFs (Fn(x)) and X a
random variable with CDF F (x). If

lim
n→∞

Fn(x) = F (x) (4.3)

for every point x at which Fn(x) is continuous, then (Xn) converges in distribution to X and

we say Xn
d−−→ X.

This type of convergence is the subject of the CLT. Its classic version is as follows.

Theorem 1 (Central Limit Theorem). Let (Xi) be a sequence of independently and iden-
tically distributed random variables with E[X1] = µ and V[X1] = σ2 < ∞. Let (Sn) be the
sequence defined by

Sn =
1

σ
√
n

n∑
i=1

(Xi − µ). (4.4)

Then

Sn
d−−→ Z, Z ∼ N0,1 (4.5)

as n→ ∞.

Proof. See [42].

There are several metrics one can use to measure the difference between probability
measures. In this work we use the Kolmogorov distance which is well suited for quantifying
the rate of convergence in distribution.

Definition 21. Let PX and PY be probability measures on R, with FX(x) and FY (x) their
corresponding CDFs. The Kolmogorov distance between PX and PY is

dK(PX , PY ) := sup
x∈R

|FX(x)− FY (x)|. (4.6)

Intuitively, the Kolmogorov distance between two probability measures gives the maxi-
mum discrepancy between the probabilities assigned to an event by the two measures.
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Remark 11. Convergence in Kolmogorov distance implies convergence in distribution as it
implies uniform convergence of the CDF, a stronger condition than pointwise convergence
which is required for convergence in distribution.

Remark 12. dK(PX , PY ) ≤ 1 for all probability measures PX and PY on R.

Theorem 2 (Berry-Esseen). Let (Xi) be a sequence of independently and identically dis-
tributed random variables with E[X1] = 0,V[X1] = σ2 and E[|X1|3] = ρ < ∞. Let Sn be the
random variable defined by

Sn =
1

σ
√
n

n∑
i=1

Xi (4.7)

and PSn the law of Sn. There exists a constant C such that

dK(PSn ,N0,1) ≤
Cρ

σ2
√
n
. (4.8)

Proof. See [43, 44].

More generally, a Berry-Esseen type bound is any result that provides a similar quan-
titative bound on the rate of convergence of a sequence of random variables to its limit,
usually under weaker but somewhat similar conditions to that of Theorem 2. A widely used
approach to establishing these type of bounds is via the following result.

Theorem 3. Suppose that F is a distribution function, that G : R → R satisfies

G(−∞) = lim
x→−∞

G(x) = 0 and G(∞) = lim
x→∞

G(x) = 1, (4.9)

that G is differentiable and of bounded variation and that its derivative satisfies

M = sup
x∈R

|G′(x)|<∞ (4.10)

and that ∫
R
|F −G|dx <∞. (4.11)

Write

∆ =
1

2M
sup
x∈R

|F (x)−G(x)| (4.12)

and

φf (t) =

∫
R
eitxdF (x), φg(t) =

∫
R
eitxdG(x). (4.13)

Then for all T > 0,

∆ ≤ 1

πM

∫ T

0

|φf (t)− φg(t)|
t

dt+
12

πT
. (4.14)

Proof. See [43, 44].
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The preceding theorem introduces the function

φf (t) =

∫
R
eitxdF (x). (4.15)

If F is the CDF of a random variable, then φf (t) takes on a special interpretation - it is the
characteristic function of that variable.

Definition 22. The characteristic function of a random variable X with values in R is the
function φX(t) : R → C defined by

φX(t) := E[eitX ]. (4.16)

The characteristic function of Z ∼ N0,1 is

φZ(t) = e−
1
2
t2 . (4.17)

Theorem 3 demonstrates that for all random variables X ∼ PX a bound on |φX(t)− φZ(t)|
directly translates to a corresponding bound on dK(PX ,N0,1). This is unsurprising due to
the following theorem which provides an equivalence between convergence in distribution
and convergence of the characteristic function.

Theorem 4 (Lévy’s Theorem). Let (Xn) and (φXn) be a sequence of random variables in
R and the corresponding sequence of characteristic functions, respectively. If there exists a
random variable X such that

φ(t) = lim
n→∞

φXn(t), t ∈ R (4.18)

is the characteristic function of X, then Xn
d−→ X.

Proof. See [42].

When X is a sum of independently and identically distributed random variables, the
bound on the difference between the characteristic functions is favorable and easy to derive.
While f(Θ) is a sum of random variables, the variables are not independent, nor are they
necessarily identically distributed. However, if the circuit is wide and shallow enough, then
the variables, as we will see, exhibit weak dependence allowing us to, in a similar manner,
leverage Theorem 3 for the purpose of deriving Berry-Esseen type bounds for f(Θ).

4.2 Rate of convergence of the output function at ini-

tialization

We are now ready to present the main result of this thesis: an upper bound on the Kol-
mogorov distance between the law of f(Θ) and the standard Gaussian distribution. This
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bound is given in terms of the quantities defined in chapter 3. For convenience we summarize
them below.

m : number of qubits of the circuit

W : maximum coefficient of any summand of O in the Pauli basis

|Q|: maximal Pauli weight of O
|R|: maximal qubit weight of O
|N |: maximal cardinality of the past light cone of a qubit

|M|: maximal cardinality of the future light cone of a parameter

N : normalization constant

L : number of layers of the circuit

Thanks to [25, Theorem 3.14] we know that for certain choices of these quantities, if the
number of qubits utilized by the circuit is very large, then the law of f(Θ) is approximately
N0,1. Our result (Theorem 5) will tell us, for any choice of these quantities, how accurate
this approximation is. More precisely, it gives an upper bound on the maximum error in
probability ascribed by N0,1 to the outcome represented by f(Θ). Conversely, if one were
to define a variable width architecture in which these quantities were a function of m, then
this bound determines, for a desired precision ϵ > 0, how many qubits are required to ensure
that the error is not more than ϵ.

Theorem 5. Let Pf(Θ) be the law of f(Θ). If assumptions 1, 2, 3 and 4 hold, then

dK(Pf(Θ),N0,1) ≤
64

π

(√
6(eW )3√

2π

m|M|2|N |2|Q|2|R|3
N3

+
96(eW )3√

2π

m|M|2|N |2|Q|2|R|3

N3

)
.

(4.19)

Corollary 1. If assumptions 1, 2, 3 and 4 hold and

lim
m→∞

m|M|2|N |2|Q|2|R|3

N3
= 0 (4.20)

then

f (m)(Θ)
d−−→ Z, Z ∼ N0,1 (4.21)

as m→ ∞.

Proof. An immediate consequence of (4.20) and Theorem 5 is that

lim
m→∞

dK(Pf(Θ),N0,1) = 0 (4.22)

which implies f (m)(Θ)
d−−→ Z as m→ ∞ by remark 11.
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4.2.1 Proof of Theorem 5

Let F (x) and Φ(x) be the CDFs of f(Θ) and Z ∼ N0,1, respectively:

F (x) = P(f(Θ) ≤ x), Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
y2dy. (4.23)

Then
dK(Pf(Θ),N0,1) = sup

x∈R
|F (x)− Φ(x)|. (4.24)

Our strategy involves applying Theorem 3 to F and Φ. We proceed by following the three
steps outlined below, each of which is presented in its own subsection.

1. We use the properties of the Gaussian distribution to show that F (x) and Φ(x) meet
the criteria of Theorem 3, implying that

dK(Pf(Θ),N0,1) ≤
2

π

∫ T

0

|φf (t)− φZ(t)|
t

dt+
24M

πT
(4.25)

for all T > 0 where φf (t) and φZ(t) are the characteristic functions of f(Θ) and Z.

2. We use the properties of f(Θ) to find a function ϵ(t) such that |φf (t) − φZ(t)|≤ ϵ(t)
in a neighborhood of 0. This involves quantifying the extent to which the fj(Θ) are
dependent on one another and it accounts for the bulk of the work. Much of this
section follows the work of [25, chapter 3], in which the convergence of f(Θ) is proved
via Levy’s theorem (Theorem 4) by showing that φf (t) converges pointwise to φZ(t).
Once again we will highlight any important distinctions.

3. We estimate the integral ∫ T

0

ϵ(t)

t
dt (4.26)

and optimize (4.25) over T .

The distribution functions

By definition, F is a distribution function and so is Φ which means that Φ satisfies condition
(4.9). It is non-decreasing on R thus its total variation is given by

Φ(∞)− Φ(−∞) = 1− 0 = 1 <∞

and is therefore of bounded variation. We have

M = sup
x∈R

|Φ′(x)|

= sup
x∈R

1√
2π
e−

1
2
x2

=
1√
2π

<∞. (4.27)

Furthermore, we claim F and Φ satisfy (4.11).
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Lemma 6. ∫ ∞

−∞
|F (x)− Φ(x)|dx ≤ 4pW

N
+

√
2

π
(4.28)

Proof. Recall that by Lemma 1, |f(Θ)|≤ pW
N

which implies that F (x) = 0 for all x < −pW
N

and F (x) = 1 for all x > pW
N
. It follows that

∫ ∞

−∞
|F (x)− Φ(x)|dx

=

∫ pW
N

−∞
|Φ(x)|dx+

∫ pW
N

− pW
N

|F (x)− Φ(x)|dx+
∫ ∞

pW
N

|1− Φ(x)|dx. (4.29)

Since F and Φ are distribution functions, they are upper bounded by one, thus

∫ pW
N

− pW
N

|F (x)− Φ(x)|dx ≤
∫ pW

N

− pW
N

|F (x)|+|Φ(x)|dx

≤
∫ pW

N

− pW
N

2dx

=
4pW

N
. (4.30)

It is useful now to introduce the error function which is a function erf : R → R defined
as

erf(z) =
2√
π

∫ z

0

e−t
2

dt, (4.31)

and the complimentary error function, a function erfc : R → R defined as

erfc(z) = 1− erf(z). (4.32)

We recall, without proof, that Φ can be expressed as a function of erf :

Φ(x) =
1

2
+

1

2
erf

(
x√
2

)
, (4.33)

that erf is odd: erf(−x) = −erf(x), that erfc(x) ≥ 0 for all x ∈ R, and that

∫ ∞

0

erfc(x) =
1

π
. (4.34)
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We now use these properties to bound the tails of our integral.∫ − pW
N

−∞
|Φ(x)|dx+

∫ ∞

pW
N

|1− Φ(x)|dx

=
1

2

∫ − pW
N

−∞

∣∣∣∣1 + erf

(
x√
2

)∣∣∣∣ dx+ 1

2

∫ ∞

pW
N

∣∣∣∣1− erf

(
x√
2

)∣∣∣∣ dx
=

∫ ∞

pW
N

∣∣∣∣1− erf

(
x√
2

)∣∣∣∣ dx
=

∫ ∞

pW
N

∣∣∣∣erfc( x√
2

)∣∣∣∣ dx
≤

∫ ∞

0

∣∣∣∣erfc( x√
2

)∣∣∣∣ dx
=

√
2

∫ ∞

0

|erfc(x)|dx

=

√
2

π
. (4.35)

All together, ∫ ∞

−∞
|F (x)− Φ(x)|dx ≤ 4pW

N
+

√
2

π
. (4.36)

With that we have shown that F and Φ satisfy the hypotheses of Theorem 3, and therefore

sup
x∈R

|F (x)− Φ(x)|≤ 2

π

∫ T

0

|φf (t)− φZ(t)|
t

dt+
24

π
√
2πT

(4.37)

for all T > 0.

The characteristic function

Without knowledge of U(Θ) or O it is impossible to find an expression for φf (t), and even
with knowledge of U(Θ) and O it may be very hard. Thankfully, we need not find φf (t)
itself - an approximation of |φf (t)−φZ(t)| will do. For this we use the method of cumulants,
a well known tool for comparing random variables with Gaussian ones [45].

Definition 23. The cumulant generating function of a real valued random variable X is

KX(t) := logφX(t). (4.38)

The Maclaurin series of the cumulant generating function is

∞∑
r=0

Kr(X)

r!
(it)r (4.39)



51

where for all r ∈ N,
Kr(X) = (−i)r d

r

dtr
logE[eitX ]|t=0 (4.40)

is the rth cumulant of X.

The first and second cumulants of any random variable are its mean and variance, re-
spectively: K1(X) = E[X] and K2(X) = V[X]. This tells us that the first two cumulants of
f(Θ) and Z accord since

E[f(Θ)] = E[Z] = 0 (4.41)

by Lemma 2, and
V[f(Θ)] = V[Z] = 1. (4.42)

The third and higher order cumulants of Z are zero as evidenced by the fact that

logφZ(t) = −1

2
t2. (4.43)

We can write

logφf (t) = −1

2
t2 + T (t)

⇒ φf (t) = e−
1
2
t2+T (t) (4.44)

where T (t) is the tail of Kf(Θ)(t):

T (t) :=
∞∑
r=3

Kr(f(Θ))

r!
(it)r. (4.45)

Notice that

|φf (t)− φZ(t)| = |e−
1
2
t2+T (t) − e−

1
2
t2|

= e−
1
2
t2 |eT (t) − 1|

= e−
1
2
t2(e|T (t)| − 1). (4.46)

This tells us that bounding |φf (t)−φZ(t)| amounts to bounding |T (t)| which can be done by
bounding the third and higher order cumulants of f(Θ). Intuitively, this makes sense, since
the third and higher order cumulants of Z are zero. To do so we use the following theorem:

Theorem 6 ([46]). For any integer r ≥ 1, there exists a constant Cr with the following
property. Let {Xα}α∈V be a family of random variables with dependency graph G. We
denote with |V | the number of vertices of G and D the maximal degree of G. Assume that
the variables Xα are uniformly bounded by a constant A. Then, if

X =
∑
α∈V

Xα, (4.47)

one has
|Kr(X)|≤ Cr|V |(D + 1)r−1Ar (4.48)

with Cr = 2r−1rr−2.
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Corollary 2. Assuming the hypotheses of Theorem 6 hold,

|Kr(X)|≤ |V |
D

(4eAD)rr! . (4.49)

Proof. For all |V |, D,A > 0 and r > 1,

2r−1rr−2|V |(D + 1)r−1Ar =
|V |(2rA(D + 1))r

2r2(D + 1)

≤ |V |
D

(2rA(D + 1))r

≤ |V |
D

(4rAD)r. (4.50)

Using the fact that rr ≤ err! we conclude

|Kr(X)|≤ |V |
D

(4eAD)rr! . (4.51)

f(Θ) is the sum of p random variables that are uniformly bounded by W
N
. Therefore we

can equate V in Theorem 6 with the set {1, ..., p}, and A with W
N
. What we are missing is

a dependency graph for the collection {fj(Θ)}pj=1.

Definition 24. Let {Xα}α∈V be a collection of random variables indexed by some set V . A
dependency graph for {Xα}α∈V is a graph G = (V,E) such that the following property holds:
whenever V1 and V2 are disjoint subsets of V such that there are no edges in G with one end
in V1 and one in V2, the collections {Xα}α∈V1 and {Xα}α∈V2 are independent.

To apply Theorem 6 we must construct a dependency graph for {fj(Θ)}pj=1 and find its
maximal degree D. Such a graph is not, in general, unique. For example, the complete graph
is a valid dependency graph. However, since a smaller D leads to a tighter bound on the
cumulants of f(Θ), we look for the sparsest graph possible. Following a similar procedure
as in [25] in which a dependency graph is constructed for the set {fk(Θ)}pk=1 where Ok acts
non-trivially on only the qubit k, we construct a dependency graph for the general case of
{fj(Θ)}pj=1, albeit with a higher maximal degree.

We begin by defining for each j ∈ {1, ..., p} the set Pj which is analogous to the Pk
introduced in [25, lemma 2.25].

Pj = {j′ ∈ {1, ..., p} : fj(Θ) is not independent of

fj′(Θ) at initialization}. (4.52)

Observe that since by assumption 2 the individual parameters in Θ are independent of one
another, then fj(Θ) and fj′(Θ) are independent if and only if there is no parameter θ of
which they are both a function. With this in mind, it is useful to introduce the auxiliary
sets Sj and Ti which are analogous to the past and future light cones (Lpk and Lfi ) of [25,
definition 2.11].

Sj = {θi ∈ Θ : fj(Θ) depends on θi}, (4.53)
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|ψ1⟩ σ1

|ψ2⟩ σ2

|ψ3⟩ σ3

|ψ4⟩ σ4

|ψ5⟩ σ5

|ψ6⟩ σ6

|ψ7⟩ σ7

|ψ8⟩ σ8

|ψ9⟩ σ9

|ψ10⟩ σ10

|ψ11⟩ σ11

|ψ12⟩ σ12

|ψ13⟩ σ13

|ψ14⟩ σ14

|ψ15⟩ σ15

|ψ16⟩ σ16

Figure 4.1: An example of a circuit with m = 16 and L = 2. Let fj(Θ) be such that
Qj = {5, 12, 13}, and let fj′(Θ) be such that Qj′ ∩ ([2, 7] ∪ [10, 15]) ̸= ∅. Then Sj ∩ Sj′ ̸= ∅
and so j′ ∈ Pj.

and
Ti = {j ∈ {1, ..., p} : fj(Θ) depends on θi}, (4.54)

and notice that
Pj ⊆ {j′ ∈ {1, ..., p} : Sj ∩ Sj′ ̸= ∅} (4.55)

since if j′ ∈ Pj, there is a parameter on which both fj and fj′ depend.

Remark 13. Clearly,
i ∈ Sj ⇐⇒ j ∈ Ti (4.56)

for all i ∈ {1, ..., (L+ 2)m} and j ∈ {1, ..., p}.

Lemma 7. [25, lemma 3.9] Let G = (V,E) be a graph with vertices V = {1, ..., p} and edges

E = {(j, j′) ∈ V 2 : j′ ∈ Pj}. (4.57)

G is a dependency graph for the collection {fj(Θ)}pj=1.

Proof. Let V1, V2 ⊂ {1, ..., p} such that V1 ∩ V2 = ∅ and that ∄(j, j′) ∈ E with j ∈ V1 and
j′ ∈ V2. We show that the collections {fj(Θ)}j∈V1 and {fj′(Θ)}j′∈V2 are independent.

Let j ∈ V1 and j′ ∈ V2, then (j, j′) /∈ E, by definition, implies j′ /∈ Pj. It follows that

j′ ∈ {{1, ..., p} : Sj ∩ Sj′ = ∅}. (4.58)
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The set of parameters that both {fj(Θ)}j∈V1 and {fj′(Θ)}j′∈V2 depend on is(⋃
j∈V1

Sj

)
∩

( ⋃
j′∈V2

Sj′
)

=
⋃
j∈V1
j′∈V2

Sj ∩ Sj′ =
⋃
j∈V1
j′∈V2

∅ = ∅.

Since each collection depends on a distinct set of independent parameters, they are indepen-
dent.

Now that we have a valid dependency graph for {fj(Θ)}pj=1, we establish its maximal
degree. Let us first recall the definitions of the sets we introduced in chapter 3. Let

Oj = σj1 ⊗ · · · ⊗ σjm , jk ∈ {I,X, Y, Z} (4.59)

be the observable associated with fj(Θ). The sets Qj and Rk are defined as

Qj = {k ∈ {1, ...,m} : σjk ̸= I} and Rk = {j ∈ {1, ..., p} : σjk ̸= I}. (4.60)

The past light cone of qubit k is the subset of Θ given by

Nk =
L+2⋃
l=1

N l
k (4.61)

where
N l
k =

⋃
k′∈J l

k

{θk′l}. (4.62)

And the future light cone of the parameter θi is the subset of qubits given by

Mi = {k′ ∈ {1, ...,m} : θi ∈ Nk′}. (4.63)

The following lemma is a generalization of [25, corollary 2.19] in which it is shown that
the extended light cones generalize light cones:

Lpk ⊆ Nk, Lfi ⊆ Mi. (4.64)

Lemma 8. The relations

Sj ⊆
⋃
k∈Qj

Nk and Ti ⊆
⋃
k∈Mi

Rk (4.65)

hold.

Proof. If θi ∈ Sj, then fj(Θ) depends on the parameter θi, and by Lemma 3, θi must appear
in the pruned circuit [U(Θ)]j. Let k, l be such that i = (l− 1)×m+ k. By definition of the
pruning operation,

θi = θk,l ∈
⋃
k′∈Qj

N l
k′ ⊆

⋃
k′∈Qj

Nk′ (4.66)

since N l
k′ ⊆ Nk′ for all l ∈ {1, ..., L+ 2}. We conclude that Sj ⊆

⋃
k∈Qj

Nk.
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On the other hand, let j ∈ Ti, then θi ∈ Sj ⊆
⋃
k∈Qj

Nk, as just demonstrated. This is
equivalent to say that

∃k ∈ Qj such that θi ∈ Nk

and by Remark 10,
∃k ∈ Qj such that k ∈ Mi.

Rewriting we get
∃k ∈ Mi such that k ∈ Qj

and by Remark 3
∃k ∈ Mi such that j ∈ Rk

which implies j ∈
⋃
k∈Mi

Rk and therefore Ti ⊆
⋃
k∈Mi

Rk.

Corollaries 3 and 4 are generalizations of [25, lemma 2.25] in which it is shown that if
|Q|= |R|= 1, then |Pk|≤ |M||N |.

Corollary 3. For all j ∈ {1, ..., p} and i ∈ {1, ..., (L+ 2)m}, it holds that

|Sj|≤ |Q||N | and |Ti|≤ |M||R|. (4.67)

Proof. We have

|Sj|=

∣∣∣∣∣∣
⋃
k∈Qj

Nk

∣∣∣∣∣∣ ≤
∑
k∈Qj

|Nk|≤
∑
k∈Qj

|N |= |Qj||N |≤ |Q||N |, (4.68)

and |Ti|≤ |M||R| follows by the same logic.

Corollary 4. For all j ∈ {1, ..., p}, Pj satisfies

|Pj|≤ |M||N ||Q||R|. (4.69)

Proof.

Pj ⊆ {j′ ∈ {1, ..., p} : Sj ∩ Sj′ ̸= ∅}
= {j′ ∈ {1, ..., p} : ∃i ∈ Sj ∩ Sj′}
=

⋃
i∈Sj

{j′ ∈ {1, ..., p} : i ∈ Sj′}

=
⋃
i∈Sj

{j′ ∈ {1, ..., p} : j′ ∈ Ti}

=
⋃
i∈Sj

Ti. (4.70)

Therefore

|Pj| ≤ |Sj|max
i

|Ti|

≤ |Q||N ||M||R|. (4.71)
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Corollary 5. If D is the maximum degree of G, then D ≤ |M||N ||Q||R|.

Proof. Let D be the maximum degree of G, then

D = max
j∈V

|{(j, j′) ∈ E}|

= max
j∈V

|{(j, j′) ∈ V 2 : j′ ∈ Pj}|

= max
j∈V

|Pj|

≤ |M||N ||Q||R| (4.72)

by Corollary 4.

We now have all the ingredients to apply Theorem 6.

|Kr(f(Θ))| ≤ N

D
(4eAD)rr! .

≤ m|R|
|M||N ||Q||R|

(
4eW |M||N ||Q||R|

N

)r
r!

=
m

|M||N ||Q|

(
(4eW )

|M||N ||Q||R|
N

)r
r! . (4.73)

This implies the bound on the tail function

|T (t)| =

∣∣∣∣∣
∞∑
r=3

Kr(f(Θ))

r!
tr

∣∣∣∣∣
≤

∞∑
r=3

|Kr(f(Θ))|
r!

tr

≤ m

|M||N ||Q|

∞∑
r=3

(
(4eWt)

|M||N ||Q||R|
N

)r
≤ (4eWt)3

m|M|2|N |2|Q|2|R|3

N3

∞∑
r=0

(
(4eWt)

|M||N ||Q||R|
N

)r
. (4.74)

This sum converges for all t such that

|4eWt| |M||N ||Q||R|
N

< 1. (4.75)

If we further enforce that

|4eWt| |M||N ||Q||R|
N

<
1

2
, (4.76)

i.e. that

|t|< N

8eW |M||N ||Q||R|
, (4.77)
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then

|T (t)|≤ 2(4Wet)3
m|M|2|N |2|Q|2|R|3

N3
(4.78)

implying

|φf (t)− φZ(t)|≤ e−
1
2
t2(eat

3 − 1) (4.79)

where we have defined

a := 2(4We)3
m|M|2|N |2|Q|2|R|3

N3
. (4.80)

The integral and optimization

Our next task is to solve the integral∫ T

0

|φf (t)− φZ(t)|
t

dt ≤
∫ T

0

e−
1
2
t2(eat

3 − 1)

t
dt

≤
∫ T

0

e−
1
2
t2(eaT t

2 − 1)

t
dt. (4.81)

Using the fact that e|z| − 1 ≤ |z|e|z| for all z ∈ R, we have∫ T

0

e−
1
2
t2(eaT t

2 − 1)

t
dt ≤ aT

∫ T

0

te−
1
2
t2(1−2aT )dt

=
aT

1− 2aT
(1− e−

1
2
T 2(1−2aT )). (4.82)

Substituting (4.82) into (4.37) gives

sup
x∈R

|F (x)− Φ(x)| ≤ 2aT

π(1− 2aT )
(1− e−

1
2
T 2(1−2aT )) +

24

π
√
2πT

≤ 2

π

(
aT

(1− 2aT )
+

12√
2πT

)
(4.83)

for all T ∈
(
0, N

8eW |M||N ||Q||R|

]
such that 1− 2aT ≥ 0.

We now find an appropriate T̃ such that (4.83) is minimized. The first order condition
tells us that

0 =
a

(1− 2aT̃ )2
− 12√

2πT̃ 2

= a
√
2πT̃ 2 − 12(1− 2aT̃ )2

= (a
√
2π − 48a2)T̃ 2 + 48aT̃ − 12, (4.84)

thus

T̃ =
2
√
3

4
√
3a±

√
a
√
2π
, (4.85)
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which implies

1− 2aT̃ =
±
√
a
√
2π

4
√
3a+

√
a
√
2π
. (4.86)

We therefore select T̃ = 2
√
3

4
√
3a+

√
a
√
2π

to ensure that 1− 2aT̃ ≥ 0. This also ensures that the

second order condition, namely that

0 ≤ 4a2

(1− 2aT̃ )3
+

24√
2πT̃ 4

, (4.87)

is satisfied. Finally, we show that T̃ ≤ N
8eW |M||N ||Q||R| .

T̃ =
2
√
3

4
√
3a+

√
a
√
2π

≤ 2
√
3

4
√
3a

=
1

2a

=
N3

4(4eW )3m|M|2|N |2|Q|2|R|3

=
N

8eW |M||N ||Q||R|

(
N2

2(4eW )2m|M||N ||Q||R|2

)
. (4.88)

We use the fact that K2(f(Θ)) = 1, so that by (4.73)

1 = |K2(f(Θ))|≤ m

|M||N ||Q|

(
(4eW )

|M||N ||Q||R|
N

)2

2! (4.89)

implying
N2

2(4eW )2m|M||N ||Q||R|2
≤ 1 (4.90)

which proves the claim.
All together we have

dK(Pf(Θ),N0,1) ≤ 2

π

(
aT̃

(1− 2aT̃ )
+

12√
2πT̃

)

=
2

π

(
2
√
3a√

a
√
2π

+
12(4

√
3a+

√
a
√
2π)

2
√
6π

)

=
8

π

(√
3a√
2π

+
6a√
2π

)
(4.91)

=
64

π

(√
6(eW )3√

2π

m|M|2|N |2|Q|2|R|3
N3

+
96(eW )3√

2π

m|M|2|N |2|Q|2|R|3

N3

)
.
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4.3 Some estimates and examples

The variable quantity of interest with regard to Theorem 5 is

m|M|2|N |2|Q|2|R|3

N3
. (4.92)

Since we know a priori that dK(Pf(Θ),N0,1) < 1, the conclusion of Theorem 5 is trivial unless
f(Θ) is such that (4.92) is very small. In fact, we are interested in the case when it vanishes
in the large m limit. In this section we investigate under what conditions this may occur. In
order to do so it is necessary to gain an understanding of the behavior of |M|, |N |, |Q|, |R|
and N in relation to m. Clearly, the growth of |M| and |N | is controlled by L. Similarly,
we can control the growth of |R| with |Q|. Finally, we will see that N is a function of m,L
and |Q|. The dependencies, or lack thereof, of L and |Q| on m will therefore determine how
(4.92) behaves as m→ ∞.

Light cones

In [25, sec 2.3.4], the following architecture independent bounds are given:

|M|≤ 2L and |N |≤ 2L+1. (4.93)

And if U(Θ) is d-dimensional and geometrically local, then

|M|∈ O(Ld) and |N |∈ O(Ld+1). (4.94)

Observable weights

The theoretical upper bound of p is |{σI , σX , σY , σZ}⊗m|= 4m in which case |Q|= m and

|R|=
m∑
i=1

(
m− 1

i− 1

)
3i = 3 · 4m−1. (4.95)

However, for an efficient VQA, we need p ∈ O(mc) for some constant c. For fixed |Q| an
upper bound on p and |R| is

p ≤
|Q|∑
i=1

(
m

i

)
3i =

|Q|∑
i=1

m!

(m− i)! i!
3i ≤ m|Q|

|Q|∑
i=1

3i

i!
≤ e3m|Q| (4.96)

and

|R|≤
|Q|∑
i=1

(
m− 1

i− 1

)
3i ≤ e3m|Q|−1. (4.97)

If |Q|∈ Θ(1), then the efficiency requirement is satisfied.
We can find improved bounds if O is spatially h-local. In this case, obviously |Q|= h.

An upper bound on |R| will depend on how the qubits are arranged. For example, if the
qubits are arranged in a 1-dimensional lattice - a line in other words - then we can estimate

|R|≤
h∑
i=1

i · 3i ≤ 3

4
(2 · 3h · h− 3h + 1) ≤ 3

2
3h · h (4.98)
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and

p ≤ 3

2
3h · hm. (4.99)

The normalization constant

We start by deriving an upper bound on N .

1 = V[f(Θ)] =

p∑
j=1

V[fj(Θ)] +

p∑
j=1

∑
j′ ̸=j

Cov[fj(Θ)fj′(Θ)] =

p∑
j=1

E[f 2
j (Θ)] (4.100)

by Lemma 2 and
p∑
j=1

E[f 2
j (Θ)] ≤

p∑
j=1

(
W

N

)2

=
pW 2

N2
(4.101)

by Lemma 1, thus N ≤ √
pW ≤

√
m|R|W .

On the other hand, having no knowledge of U(Θ), it is much harder to determine a lower
bound for N besides the trivial one: N ≥ 0. In [40] a class of circuits is introduced in which
the entangling gates V are randomly sampled from U(4) according to a unitary 2-design.
A unitary 2-design on U(d) is an approximation of the Haar measure which is the unique
translation invariant measure on U(d). The Haar measure, denoted µH , is often referred to
as the uniform measure on the unitary group because it assigns an equal probability to each
element of the group.

Definition 25. Let ν be a probability distribution over a set of unitary matrices S ⊂ U(d).
ν is a unitary t-design if

EV∼ν [V
⊗kOV †⊗k] = EU∼µH [U

⊗kOU †⊗k] (4.102)

for all O ∈ L((Cd)⊗k).

Generating Haar random unitaries is computationally expensive, whereas generating ran-
dom unitaries according to a k-design can be done efficiently. This makes them a desirable
alternative for applications in which only the lower order moments of the Haar measure need
be replicated [47].

The author of [40] has shown that if the entangling gates V are sampled according to a
unitary 2-design ν, then there exists a constant c such that

EV∼ν [N
2] ≥ p

2cL|Q| . (4.103)

This suggests that the variance of f(Θ) decays exponentially in L|Q| and so for the purpose
of this discussion we assume that there exists a constant c such that

N ≥
√
p

2cL|Q| ≥
√
m

2cL|Q| (4.104)

for all configurations of the entangling gates of U(Θ). If U(Θ) is 1 dimensional geometrically
local and O is spatially h-local, then [40] gives the improved bound of

N ≥
√
m

2c(L+h)
. (4.105)
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4.3.1 Logarithmic depth circuits and fixed weight observables

We now analyze the behavior of f(Θ) in the large m limit based on the bounds we have
derived in this section. In particular, we examine the case that L ∈ Θ(log2m) and |Q|∈ Θ(1).
We also consider the possibility of a quantum advantage. Recall that in section 3.3.1 we
showed that the computation of f(Θ) is classically simulable with O(pL2|Q|2L) operations in
general, O(pL2|Q|Ld

) operations if U(Θ) is d-dimensional geometrically local, and O(pL2h+2L)
operations if U(Θ) is 1-dimensional geometrically local and O is spatially h-local.

1. In the most general case

m|M|2|N |2|Q|2|R|3

N3
∈ O

(
2L(4+3c|Q|)|Q|2

m1/2−3(|Q|−1)

)
. (4.106)

For this to converge it must be true that 3(|Q|−1) < 1
2
i.e. that |Q|= 1 which is the

case when O is the sum of single qubit observables.

(a) If we choose |Q|= 1 and L ∈ Θ(1), then (4.106) behaves as O(m−1/2) which clearly
tends to 0. However, with this choice of |Q| and L we do not achieve a quantum
advantage since f(Θ) is efficiently simulable with linear run time.

(b) If we choose |Q|= 1 and L = ϵ log2(m) for some ϵ > 0, then (4.106) behaves as
O(m−1/2+ϵ(4+3c)) which tends to 0 as long as ϵ < 1

2(4+3c)
. Furthermore, with this

choice of |Q| and L, we may achieve a quantum advantage since to compute f(Θ)
classically, O(m log2(m

ϵ)2m
ϵ
) operations are needed.

2. If U(Θ) is d-dimensional geometrically local, then

m|M|2|N |2|Q|2|R|3

N3
∈ O

(
23cL|Q|L4d+2|Q|2

m1/2−3(|Q|−1)

)
. (4.107)

Again, letting |Q|= 1 and L = ϵ log2m, (4.107) behaves as

O

(
log2(m

ϵ)4d+2

m1/2−ϵ3c

)
(4.108)

which converges as long as ϵ < 1
6c
. Classical simulation is possible with

O(log2(m
ϵ)m1+ϵd logd−1

2 m) (4.109)

operations which is super-polynomial if d ≥ 2.

3. If O is spatially h-local and U(Θ) is 1 dimensional but not geometrically local, then

m|M|2|N |2|Q|2|R|3

N3
∈ O

(
2L(4+3ch)33hh5√

m

)
. (4.110)

In this configuration |Q|= h need not be 1. If h ∈ Θ(1) and L = ϵ log2(m) for some
ϵ > 0, then (4.110) behaves as O(m−1/2+ϵ(4+3ch)) which converges as long as ϵ < 1

2(4+3ch)
.

Once again, we expect a quantum advantage since O(m log2(m
ϵ)2hm

ϵ
) operations are

needed for classical simulation.
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4. If O is spatially h-local and U(Θ) is 1 dimensional and geometrically local, then

m|M|2|N |2|Q|2|R|3

N3
∈ O

(
23c(L+h)33hh5L6

√
m

)
. (4.111)

Due to the improved lower bound on N given by (4.105) we may have that both L and
h are logarithmic. Let h = ϵ1 log3m and L = ϵ2 log2m, then 4.111 behaves as

O

(
log53(m

ϵ1) log62(m
ϵ2)

m1/2−3(c(ϵ1+ϵ2)+ϵ1)

)
(4.112)

which converges as long as ϵ1(1+ c)+ ϵ2 ≤ 1
6
. However, in this configuration we do not

obtain a quantum advantage since classical simulation is possible with

O(m2(ϵ1+ϵ2)+1 log3(m
ϵ1) log2(m

ϵ2)) (4.113)

operations.

Based on these examples it would appear that to achieve a desirable result, O must be
spatially local with constant weight, L must be at most logarithmic in m, and U(Θ) must
either be not geometrically local, or have dimension greater than 1. We stress, however, that
this is not necessarily the case. The bounds presented in this section are very crude as they
must account for the very worst case. It is for this reason that we have not simplified the
conclusion of Theorem 5 to rely on just m,L and |Q|.

4.4 Comparison with previous work

An alternative metric to the Kolmogorov distance is the Wasserstein distance.

Definition 26. Let µ and ν be probability measures on R and let p ∈ [1,∞). The Wasser-
stein distance of order p (or p-Wasserstein distance) between µ and ν is defined by

dWp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
R
|x− y|pdπ(x, y)

)1/p

(4.114)

where Π(µ, ν) is the set of probability measures on R2 which admit µ and ν as marginals.

Intuitively, the 1-Wasserstein distance represents the minimum “cost” associated with
transforming one probability measure into the other. If we visualize two probability measures
as two piles of dirt distributed over an area, then the cost takes on the interpretation of the
amount of work required to transform one pile into the other. It depends on the amount of
dirt which must be moved and how far. For this reason it is often called the earth-mover’s
distance. For a comprehensive treatment of this topic see [48]. The following proposition
illustrates the relationship between the Kolmogorov and 1-Wasserstein distances.

Proposition 1 ([49]). Let µ and ν be probability measures on R. If the density of ν with
respect to the Lebesgue measure is bounded by C, then

dK(µ, ν) ≤
√
2C · dW1(µ, ν). (4.115)
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In [26], under the same framework as ours, the authors use Stein’s method to estimate
the 1-Wasserstein distance between a centered Gaussian process and the distribution of the
outputs of an untrained quantum neural network over a set of inputs. We can use this result
to infer an estimate in the univariate case. [26, Theorem 5.1] provides the following bound
when |Q|= |R|= W = 1.

dW1(Pf(Θ),N0,1) ≤ 8
m|M|7/2|N |7/2

N3
(1 + logN). (4.116)

The Lebesgue density of N0,1 is bounded by C = 1/
√
2π, therefore (4.116) combined with

Proposition 1 gives dK(Pf(Θ),N0,1) < B1, where

B1 =

√
16√
2π

m|M|7/2|N |7/2
N3

(1 + logN) (4.117)

whereas Theorem 5 tells us that dK(Pf(Θ),N0,1) < B2 where

B2 =
64

π

(√
6e3√
2π

m|M|2|N |2
N3

+
96e3√
2π

m|M|2|N |2

N3

)
. (4.118)

So which bound is better? On one hand, B2 undoubtedly suffers from huge constant terms.
But on the other hand,

m|M|2|N |2

N3
≤ m|M|7/2|N |7/2

N3
(1 + logN) (4.119)

for all m, implying that B2 is more asymptotically favorable. To illustrate this, let us assume
that

lim
m→∞

m|M|7/2|N |7/2

N3
(1 + log2N) = 0. (4.120)

Then

lim
m→∞

m|M|2|N |2

N3
= 0 (4.121)

and

lim
m→∞

|M|3/2|N |3/2(1 + logN) = ∞. (4.122)

Then there exists M1 > 0 such that for all m ≥M1,

m|M|2|N |2

N3
≤

√
2π

96e3
(4.123)

and there exists M2 > 0 such that for all m ≥M2,

|M|3/2|N |3/2(1 + logN) ≥ 26112e3

π2
. (4.124)
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It follows that for all m ≥ max{M1,M2} we have

B2 =
64

π

(√
6e3√
2π

m|M|2|N |2
N3

+
96e3√
2π

m|M|2|N |2

N3

)

≤ 64

π

√
102e3√

2π

m|M|2|N |2
N3

=

√
26112e3

π

√
16√
2π

m|M|2|N |2
N3

=

√
26112e3

π
√
|M|3/2|N |3/2(1 + logN)

√
16√
2π

m|M|7/3|N |7/3
N3

(1 + logN)

=

√
26112e3

π
√
|M|3/2|N |3/2(1 + logN)

B1

≤ B1. (4.125)

Likewise, one could just as easily show that there exists M3 > 0 such that for all m ≤ M3,
the opposite relation is true: B2 ≥ B1. Theorem 5 therefore provides a tighter bound than
[26, Theorem 5.1] when m is large, and the opposite is true when m is small. Precisely how
large or small depends on how |M|, |N | and N grow in relation to m. In any case, one may
use the two results in conjunction:

dK(f(Θ), Z) ≤ min{B1,B2}. (4.126)
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Conclusion

We have proved an upper bound on the Kolmogorov distance between the output of a
randomly initialized variational quantum circuit and the Gaussian random variable with the
same mean and variance. Our bound, which is easily computable with the knowledge of
a given circuit architecture, provides insight into the number of qubits required in order
to achieve any desired precision in the approximation of the output of the circuit with a
Gaussian random variable. Due to the large constant terms, the number of qubits required
to make the bound non-trivial is unfortunately beyond the reach of any currently available
hardware.

For example, we saw in section 4.3.1 that the best asymptotic bound we can hope for,
which happens when |Q|= 1 and L is constant, is when

m|M|2|N |2|Q|2|R|3

N3
∈ O(m−1/2). (5.1)

Supposing that W = 1 and plugging this into Theorem 5, we get

dK(Pf(Θ),N0,1) ≤ 64

π

(√
6e3C√
2πm

+
96e3C√
2πm

)

≈ 141

√
C√
m

+ 15671
C√
m

(5.2)

for some constant C independent of m. For this bound to be less than 1 we require m >
2.11× 109 qubits.

A natural follow-up to this work would be to determine whether a lower and more realistic
number of qubits are still enough for the Gaussian approximation to hold. Moreover, it
would be interesting to investigate whether the relaxed constraints on the observable improve
either the expressibility or trainability of the model function defined by the quantum neural
network. Finally, it would be fundamental to extend our Berry-Esseen type bounds to trained
quantum neural networks as has been done in [26] with the Wasserstein distance of order 1.
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Appendix A

Consequence of the final layers

We provide a proof of Lemma 2 on the implications of the final two layers of the circuit. For
convenience Lemma 2 is restated along with Assumption 4 in which the final two layers are
characterized.

Assumption 4. VL+1 and VL+2 are the identity on (C2)⊗m and

Wk,L+1(θk,L+1) = RX(θk,L+1) = e−i
θk,L+1

2
σX (3.27)

Wk,L+2(θk,L+2) = RZ(θk,L+2) = e−i
θk,L+2

2
σZ (3.28)

for all k ∈ {1, ...,m}. Furthermore, the parameters used in the final two layers are indepen-
dent and sampled uniformly from [0, 2π] at initialization.

Lemma 2. Assumption 4 ensures that at initialization

1. E[fj(Θ)] = 0 for all j ∈ {1, ..., p} such that Qj ̸= ∅ and

2. Cov[fj(Θ), fj′(Θ)] = 0 for all j, j′ ∈ {1, ..., p} such that j ̸= j′.

Proof. Consider the value of fj(Θ) with the layers of the circuit expanded:

fj(Θ) =
wj
N

⟨ψ|U †OjU |ψ⟩

=
wj
N

⟨ψ|U †
1 · · ·U

†
L+1U

†
L+2OjUL+2UL+1 · · ·U1|ψ⟩

=
wj
N

⟨ψ|U †
1 · · ·U

†
L

(
m⊗
k=1

ei
θk,L+1

2
σXei

θk,L+2

2
σZσjke

−i θk,L+2

2 e−i
θk,L+1

2
σX

)
UL · · ·U1|ψ⟩.

Using the identity

e−iθσα = cos(θ)I − i sin(θ)σα, α ∈ {I,X, Y, Z} (A.1)
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we see that

ei
θ
2
σXσβe

−i θ
2
σX

= (cos(θ/2)I + i sin(θ/2)σX)σβ(cos(θ/2)I − i sin(θ/2)σX)

= cos2(θ/2)σβ + sin2(θ/2)σXσβσX + i sin(θ/2) cos(θ/2)(σXσβ − σβσX)

=


σI β = I

σX β = X

cos(θ)σY − sin(θ)σZ β = Y

cos(θ)σZ + sin(θ)σY β = Z

. (A.2)

By the same logic

ei
θ
2
σZσβe

−i θ
2
σZ =


σI β = I

cos(θ)σX − sin(θ)σY β = X

cos(θ)σY + sin(θ)σX β = Y

σZ β = Z

, (A.3)

and thus

ei
θ1
2
σXei

θ2
2
σZσβe

−i θ2
2
σZe−i

θ1
2
σX

=


σI β = I

cos(θ2)σX − cos(θ1) sin(θ2)σY + sin(θ1) sin(θ2)σZ β = X

sin(θ2)σX + cos(θ1) cos(θ2)σY − sin(θ1) cos(θ2)σZ β = Y

sin(θ1)σY + cos(θ1)σZ β = Z

. (A.4)

Define the following functions:

hI(θ1, θ2; β) =

{
1 β = I

0 otherwise
, (A.5)

hX(θ1, θ2; β) =


0 β = I

cos(θ2) β = X

sin(θ2) β = Y

0 β = Z

, (A.6)

hY (θ1, θ2; β) =


0 β = I

− cos(θ1) sin(θ2) β = X

cos(θ1) cos(θ2) β = Y

sin(θ1) β = Z

, (A.7)

hZ(θ1, θ2; β) =


0 β = I

sin(θ1) sin(θ2) β = X

− sin(θ1) cos(θ2) β = Y

cos(θ1) β = Z

, (A.8)
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and notice that if θ1 and θ2 are independently sampled from the uniform distribution on
[0, 2π], then

• E[hα(θ1, θ2; β)] = 0 for all α ∈ {I,X, Y, Z} and β ∈ {X, Y, Z} and

• E[hα1(θ1, θ2; β1)hα2(θ1, θ2; β2)] = 0 for all α1, α2 ∈ {I,X, Y, Z} and β1, β2 ∈ {X, Y, Z}
such that α1 = α2 ∩ β1 = β2 is not true.

We can now compactly write

ei
θk,L+1

2
σXei

θk,L+2
2

σZσjke
−i

θk,L+2
2

σZe−i
θk,L+1

2
σX =

∑
α∈{I,X,Y,Z}

hα(θk,L+1, θk,L+2;σjk)σα (A.9)

and letting it be understood that the summation runs over α ∈ {I,X, Y, Z}:

m⊗
k=1

ei
θk,L+1

2
σXei

θk,L+2

2
σZσjke

−i θk,L+2

2 e−i
θk,L+1

2
σX

=
m⊗
k=1

∑
α

hα(θk,L+1, θk,L+2;σjk)σα

=
∑

α1,...,αm

hα1(θ1,L+1, θ1,L+2;σj1)σα1 ⊗ · · · ⊗ hαm(θm,L+1, θm,L+2;σjm)σαm

=
∑

α1,...,αm

(
m∏
k=1

hαk
(θk,L+1, θk,L+2;σjk)

)
σα1 ⊗ · · · ⊗ σαm . (A.10)

To ease notation, we use the abbreviation hjαk
= hαk

(θk,L+1, θk,L+2;σjk), and define

fα1,...,αm := ⟨ψ|U †
1 · · ·U

†
L(σα1 ⊗ · · · ⊗ σαm)UL · · ·U1|ψ⟩. (A.11)

We can then write

fj(Θ) =
wj
N

∑
α1,...,αm

(
m∏
k=1

hjαk

)
fα1,...,αm . (A.12)

First we show that if Qj ̸= ∅, then E[fj(Θ)] = 0. Note that the terms fα1,...,αm are indepen-
dent of the hjαk

since they only depend on the parameters in the first L layers, thus

E[fj(Θ)] =
wj
N

∑
α1,...,αm

E

[
m∏
k=1

hjαk

]
E[fα1,...,αm ].

Furthermore, hjαk
is independent of hjαk′

for all k ̸= k′ so

E

[
m∏
k=1

hjαk

]
=

m∏
k=1

E[hjαk
]. (A.13)
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Partitioning {1, ...,m} into Qj and Qc
j := {1, ...,m}\Qj gives

m∏
k=1

E[hjαk
] =

∏
k∈Qj

E[hαk
(θk,L+1, θk,L+2;σjk)]

∏
k∈Qc

j

E[hαk
(θk,L+1, θk,L+2; I)]

=
∏
k∈Qj

0
∏
k∈Qc

j

E[hαk
(θk,L+1, θk,L+2; I)]

= 0 (A.14)

since it was assumed that Qj ̸= 0. This shows that E
[∏m

k=1 h
j
αk

]
= 0 for all α1, ..., αm ∈

{I,X, Y, Z} therefore E[fj(Θ)] = 0.
Next we show that, if j ̸= j′, then E[fj(Θ)fj′(Θ)] = 0. If there were j, j′ ∈ {1, ..., p}

such that Oj = Oj′ , then we could combine the terms fj and fj′ as fj + fj′ = (wj +
wj′)⟨ψ|U †(Θ)OjU(Θ)|ψ⟩, therefore, without loss of generality, we may assume that Oj ̸= Oj′

for all j ̸= j′. In other words, for all j ̸= j′, there exists k ∈ {1, ...,m} such that σjk ̸= σj′k .
Following the notation introduced thus far,

fj(Θ)fj′(Θ) =
wjwj′

N2

∑
α1,...,αm

α′
1,...,α

′
m

(
m∏
k=1

hjαk
hj

′

α′
k

)
fα1,...,αmfα′

1,...,α
′
m
. (A.15)

Taking the expected value,

E[fj(Θ)fj′(Θ)] =
wjwj′

N2

∑
α1,...,αm

α′
1,...,α

′
m

m∏
k=1

E[hjαk
hj

′

α′
k
]E[fα1,...,αmfα′

1,...,α
′
m
]

=
wjwj′

N2

∑
α1,...,αm

m∏
k=1

E[hjαk
hj

′

αk
]E[f 2

α1,...,αm
] (A.16)

since E[hjαk
hj

′

α′
k
] = 0 unless αk = α′

k. Furthermore, since j ̸= j′, there exists k ∈ {1, ...,m}
such that σjk ̸= σj′k in which case E[hjαk

hj
′
αk
] = 0 for all αk ∈ {I,X, Y, Z}. Each of the terms

in (A.16) are then necessarily zero and thus E[fj(Θ)fj′(Θ)] = 0.
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