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Introduction

In algebraic geometry, given a certain type of algebro-geometric objects, one would like

to construct a space whose points correspond to isomorphism classes of those objects. These

spaces are known as moduli spaces. In this thesis, we construct several examples of moduli

spaces. In particular, we are interested in the construction of moduli spaces for a certain type

of curves and surfaces. Even if curves (and surfaces) are schemes, the moduli spaces that we

construct are not schemes. Indeed, in order to find a space which parametrizes isomorphism

classes of our objects of interests, we have to enlarge the category of schemes to the category

of stacks, which allow to keep track of the automorphisms of those objects.

The first algebro-geometric rigorous construction of a space Mg whose points correspond

to isomorphism classes of genus g curves (for g ≥ 2) is due to Mumford in [MFK94]. In this

thesis, we will recover Mg as the coarse moduli space (Remark 1.16) of a contravariant functor

from the category of schemes to the category of sets. More precisely, let us fix an integer g ≥ 2

and consider the functor

FMg : (Sch)op → (Set)

which sends every scheme T to the set of isomorphism classes of smooth genus g curves over

T (Definition 1.4), i.e. proper, smooth morphisms of schemes C → T , whose geometric fibres

are connected curves of genus g. This functor is not representable in the category of schemes,

and the reason is that curves can have non-trivial automorphism group (Remark 1.8).

However, it defines a category fibred in groupoidsMg over the category of schemes (Remark

1.7). The objects of Mg are exactly smooth genus g curves over any scheme T ; observe in

particular that if k is a field, then objects ofMg(Spec k) are exactly smooth genus g curve over

the field k. It turns out thatMg is a stack and moreover thatMg is isomorphic to a quotient

stack [H/PGL5g−5] (Theorem 1.12), where H is a locally closed subscheme of a projective

Hilbert scheme. A very important geometric tool that we use is that if C is a smooth genus g

curve for g ≥ 2 over a field k, then the canonical line bundle ωC/k is ample and ω⊗3
C/k is very

ample. It is known that the existence of a “natural” ample line bundle allows to descend ob-

jects. Moreover, deformation theory for smooth curves gives important tools in understanding

geometric properties of the stackMg.

In particular in this thesis we study whyMg is smooth and of finite type over SpecZ (Propo-

sition 1.14) and why it has relative dimension 3g − 3 (Proposition 1.17). Moreover, the auto-

morphism group scheme of a genus g curve is finite and reduced for g ≥ 2, and in the language

of stacks this is telling us thatMg is a Deligne-Mumford stack (Theorem 1.12).

Then we study the stack of smooth genus g curves for g = 0, 1. We define M0 as the

category whose objects are proper and smooth morphisms of schemes C → T , whose geometric

fibres are connected curves of genus 0. The study ofM0 is very similar to the case g ≥ 2. The

reason is that if C is a smooth curve of genus 0 over a field k, then there exists a natural choice

of an ample line bundle, namely the anti-canonical one. This allows us to prove that M0 is

indeed an algebraic stack.
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However, this argument do not work for the genus 1 case, indeed if C is a smooth curve

of genus 1 over a field k, then the canonical line bundle ωC/k is trivial. If we define M̃1 as

before for g = 1 (Definition 1.21), it turns out that M̃1 is not a stack, as there exist examples

of ineffective descent data for smooth genus 1 curves. Thus, we define M1 (Definition 1.28)

as the category whose objects are proper and smooth morphisms of algebraic spaces C → T

from an algebraic space C to a scheme T , such that each geometric fibre is a smooth genus

1 curve. Allowing the total space to be an algebraic space, enables us to prove that M1 is a

stack (Proposition 1.33).

Then the thesis develops on the theory of surfaces. One of the goals of this thesis is to

construct the stack Mmin (Proposition 3.80) parametrizing minimal surfaces of general type

and the stack Mcan (Definition 3.42) parametrizing canonical models of minimal surfaces of

general type, in all characteristics. Moduli spaces of surfaces have been of great interest to

mathematicians in the twentieth century. Minimal surfaces of general type and their canonical

models have been studied by Bombieri [Bom73] in characteristic zero, and Ekedahl [Eke88]

generalized Bombieri’s result in positive characteristic. Gieseker [Gie77], using techniques of

Mumford’s geometric invariant theory [MFK94], was the first to construct, over the field of

complex numbers, the coarse moduli space M can,C
χ,K2 of canonical models of minimal surfaces

of general type with fixed Euler characteristic χ and self-intersection of the canonical bundle

K2. The geometry of these spaces has been studied, for example, by Catanese [Cat84] and

Horikawa [Hor76]. The reader can find an exposition of these topics in [Cat13]. More generally

Kollár in [Kol23] studied varieties of general type and their moduli spaces. We will use the

language of fibred categories and algebraic stacks: a great work in this field is due to Artin in

[Art74b], [Art73], [Art69].

If S → Spec k is a minimal surface of general type over an algebraically closed field k, i.e.

a smooth integral projective surface over k with Kodaira dimension 2 (which corresponds to a

big canonical bundle) and minimal (which corresponds to a nef canonical bundle), then there

exists a canonical model X of S, obtained by contracting the (−2)-curves on S. The canonical
model X is a normal surface, with at worst Du Val singularities, and with an ample canonical

line bundle (Theorem 2.54). An important fact is that X can be obtained by considering the

canonical ring of S, namely

X = Proj
⊕
m≥0

H0(S, ω⊗m
S/k).

We aim to study how this process generalizes to families of surfaces.

To do this, the first step is to construct the stack of canonical models of minimal surfaces

of general type. We define a category Mcan (Definition 3.42) whose objects are families of

canonical models, i.e. proper, flat and finitely presented morphisms of schemes X → T , such

that each geometric fibre is the canonical model of a minimal surface of general type. The

important property is that if X → Spec k is the canonical model of a minimal surface of general

type, the canonical line bundle ωX/k is ample (Corollary 2.56), and moreover that ω⊗5
X/k is very

ample by a result of Bombieri and Ekedahl (Theorem 2.60). We use this fact to prove that

Mcan is indeed a stack (Proposition 3.41), as we did forM0 andMg, g ≥ 2. In particular, once

two integers χ and K2 are fixed, we consider the stack Mcan
χ,K2 which parametrizes canonical

models X of minimal surfaces of general type with fixed Euler characteristic χ = χ(OX) and

self-intersection of the canonical bundle K2 = (ω2
X) (Definition 3.36). Fixing such invariants
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allows us to fix the Hilbert polynomial of ω⊗5
X/k

P (m) = χ+
5m(5m− 1)

2
K2

and find an isomorphism

Mcan
χ,K2 ≃ [W/PGLN ],

where W is a locally closed subscheme of the Hilbert scheme that parametrizes closed sub-

schemes of PN−1
Z with Hilbert polynomial P (m) and N = P (1) = χ + 10K2 (Theorem 3.48).

This isomorphism also allows us to prove that the stack

Mcan =
∐
χ,K2

Mcan
χ,K2

is an algebraic stack (Theorem 3.50).

Subsequently, we construct the stack of minimal surfaces of general type. The construction

of this stack requires the use of algebraic spaces because we do not have a natural choice for

an ample line bundle on those surfaces, just as with M1. Thus we first study the stack

Spaces′ which parametrizes proper, flat and finitely presented morphisms of algebraic spaces

(Definition 3.55 and Lemma 3.58). Then we define Mmin as the full subcategory of Spaces′
whose objects are proper, smooth and finitely presented morphisms of algebraic spaces S → T

from an algebraic space S to a scheme T , whose geometric fibres are minimal surfaces of general

type (Definition 3.72). We prove thatMmin is a stack (Proposition 3.80) and furthermore that

it is an algebraic stack using Artin’s axioms (Theorem 3.88).

An important property is that in characteristic zero, both Mmin and Mcan are Deligne-

Mumford stacks (Proposition 3.90, Proposition 3.54), because the automorphisms groups of

minimal surfaces of general type (and of their canonical models), in characteristic zero, are

finite and reduced (Proposition 2.72). However, this is no longer true in positive characteristic,

as there exist examples of smooth minimal surfaces of general type (and also of their canonical

models) with non reduced automorphism group (Remark 2.73).

In this thesis we also construct the stack MK3 (Proposition 3.106) parametrizing K3

surfaces, i.e. smooth surfaces with trivial canonical line bundle and irregularity zero. The

construction of this stack requires the use of algebraic spaces, and it is very similar to the

construction ofMmin. Finally, we construct the stackMdP (Proposition 3.114) parametrizing

del Pezzo surfaces, i.e. smooth surfaces with ample anti-canonical line bundle. In this case,

we use again the existence of an ample line bundle to descend objects. We observe that the

stack MK3 is not algebraic (Remark 3.107), as there exist examples of formal objects of K3

surfaces which are not effective. On the other hand, the stack MdP is algebraic (Theorem

3.115), because we have a “natural” choice of an ample line bundle, namely the anti-canonical

one.

In the final chapter of the thesis we study how the process of taking the canonical model

of a minimal surfaces of general type generalizes to families. In order to do this, we first prove

that if S → Spec k is a minimal surface of general type, for a sufficiently large c the c-th

canonical ring ⊕
m≥0

H0(S, ω⊗cm
S/k )
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is generated in degree 1 (Proposition 2.83). Moreover we can take c depending on some

plurigenera of S. This is a key tool in proving the following fact. If p : S → T is a family

of minimal surfaces of general type over T , i.e. an object of Mmin(T ), then it is possible to

consider the coherent sheaf of OT -algebras

A =
⊕
m≥0

p∗ω
⊗5m
S/T ,

and we prove that

π : Proj
T
(A)→ T,

is proper, flat and finitely presented (Corollary 4.19, Proposition 4.12 and Proposition 4.20).

In particular, we observe that the geometric fibres of π are exactly the canonical models for

the geometric fibres of p. Thus, we have proved that π is a family of canonical surfaces, i.e. an

object ofMcan(T ) (Corollary 4.22).

It follows that we have a morphism of stacks α :Mmin → Mcan (Proposition 4.23). An

interesting property is that α is bijective on geometric points, i.e. for all algebraically closed

fields k, the morphism

α(k) :Mmin(k)→Mcan(k)

induces a bijection on the sets of isomorphism classes of the objects of these two groupoids

(Proposition 2.62). Indeed, if S → Spec k is a minimal surface of general type over k, then the

canonical model X → Spec k of S is an object ofMcan(k). On the other hand, if X → Spec k

is an object ofMcan(k), taking the minimal resolution

S → X → Spec k

of singularities of X gives an object of Mcan(k). However α is not an isomorphism (Remark

4.24), because there exist families of canonical surfaces p′ : X → T which do not admit a

simultaneous resolution, i.e. an object p : S → T of Mmin with the property that geometric

fibres of p are minimal desingularization of geometric fibres of p′.
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CHAPTER 1

Quick review of the stack of curves

In this chapter we study moduli of curves. More precisely, in §1.1 we recall the construction

of the stack of smooth genus g curves for g ≥ 2. We also give a brief presentation of the stack

of smooth genus 0 curves, which is very similar to the case g ≥ 2. In §1.2 we construct the

stack of smooth curves of genus 1.

We now fix some notation.

Definition 1.1. Let T be a scheme. A geometric point of T is a morphism of schemes

σ : Spec k → T

where k is an algebraically closed field.

If X → T is a morphism of schemes, or if X → T is a morphism of algebraic spaces from

an algebraic space X to a scheme T , we denote by Xk the base change of X to Spec k given

by the following cartesian diagram

Xk X

Spec k T

φ

σ

and call it a geometric fibre.

If L is a line bundle on X, we denote LXk
= φ∗L the pullback of L to the fibre Xk.

Suppose now that t ∈ T is a point. Then we also denote by t the induced morphism of

schemes

t : Specκ(t)→ T

where κ(t) = OT,t/mOT,t
is the residue field of t. Moreover we denote by

t : Specκ(t)→ T

the induced morphism on an algebraic closure κ(t) of κ(t).

Finally, we denote by

Xt = X ×T Specκ(t)

the fibre over κ(t) and by

Xt = X ×T Specκ(t)

the fibre over κ(t), which is in particular a geometric fibre of X → T .

1.1. The stack of curves of genus greater than one

Definition 1.2. Let k be a field. A curve over k is a scheme of finite type over k such

that all irreducible components have dimension 1.

Definition 1.3. Let X → Spec k be a projective, smooth and geometrically connected

curve over a field k and let ωX = ωX/k be the canonical sheaf of X. Then we define the

(geometric) genus of X to be

g = dimk H
0(X,ωX) = dimk H

1(X,OX).

1



2 1. QUICK REVIEW OF THE STACK OF CURVES

Definition 1.4. Let T be a scheme and let g ≥ 0 be an integer such that g ̸= 1. A family

of smooth curves of genus g over T is a proper smooth morphism of schemes C → T such that

for every point t ∈ T the geometric fibre Ct is a connected curve of genus g = h1(Ct,OCt
).

Proposition 1.5. Let C → T be a morphism of schemes. Let g ≥ 0 be an integer with

g ̸= 1. Then the following are equivalent:

(1) C → T is a family of smooth curves of genus g over T ;

(2) C → T is a proper, flat and finitely presented morphism of schemes such that for

every point t ∈ T the fibre Ct is a smooth, projective and geometrically connected

curve over κ(t) of genus g.

Proof. [(1) ⇒ (2)]. Since C → T is smooth, then it is flat by [Stacks, Lemma 01VF]

and locally of finite presentation by [Stacks, Lemma 01VE]. Moreover, since C → T is proper,

it is also quasi-compact by [Stacks, Lemma 04XU] and separated. It follows that C → T is

a finitely presented morphism of schemes. Fibres are smooth by [Gro67, Théorème IV.17.5.1]

and the genus of a curve over a field is stable under base change by [Liu02, Corollary 5.2.27].

[(2) ⇒ (1)]. A flat and finitely presented morphism of schemes with smooth fibres is smooth

by [Stacks, Lemma 01V8]. □

Definition 1.6. Let g ≥ 0 be an integer different from 1. We define the categoryMg as

follows.

• Objects are families of smooth curves of genus g.

• An arrow (C ′ → T ′)→ (C → T ) between two objects is a pair (f, g) where f : C ′ →
C, g : T ′ → T are morphisms of schemes such that the diagram

C ′ C

T ′ T

f

g

is cartesian.

Remark 1.7. Observe that Mg is in a natural way a category fibred in groupoids over

Sch, by sending an object (C → T ) ofMg to the scheme T . The moduli functor associated to

the categoryMg is

FMg
: Schop → Set,

where FMg (T ) is the set of isomorphism classes of families of smooth curves of genus g over T .

Remark 1.8. We claim that the functor FMg
is not representable by a scheme, so that

it does not exist a fine moduli space for the functor FMg . Indeed, suppose by contradiction

that such a scheme exists, and call it Sg. If C → T is an isotrivial family of genus g curves,

i.e. a non-trivial family of smooth curves of genus g whose all fibres are isomorphic to a fixed

curve C̃, then this family corresponds to a map T → Sg which maps every point of T to the

same point of Sg. This contradicts the fact that this map should correspond to the trivial

family C̃ × T which is not isomorphic to C by hypothesis. Indeed if a fine moduli space Sg

exists, by Yoneda’s lemma (A.6), morphisms of schemes from T to Sg correspond to unique

families of curves of genus g over T . The reason why isotrivial families exist is that curves can

have non-trivial automorphism group. See [Alp24, Example 0.3.32] for an explicit example of

an isotrivial family of curves. To keep track of these data, we have to enlarge the category of

schemes to the category of stacks.

Lemma 1.9. Let k be a field and let A be a k-algebra of finite type such that dimA = 0.

Then SpecA is finite.

https://stacks.math.columbia.edu/tag/01VF
https://stacks.math.columbia.edu/tag/01VE
https://stacks.math.columbia.edu/tag/04XU
https://stacks.math.columbia.edu/tag/01V8
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Proof. We have that A is isomorphic as a k-algebra to a quotient of k[x1, . . . , xn] by an

ideal I, for some finite number of indeterminates x1, . . . , xn. By the Hilbert basis theorem, A

is noetherian. Since dimA = 0, A is also an artinian ring. It follows that SpecA is finite. □

Lemma 1.10. Let G be a group scheme of finite type over a field k. Let e ∈ G(k) be the

neutral element of G and let TeG = g be the tangent space at G at e. Then the following are

equivalent:

(1) g = 0;

(2) G is isomorphic as a k-scheme to a finite disjoint union of copies of Spec k.

Proof. [(1)⇒ (2)]. Consider the local ring A = OG,e and let m be its maximal ideal. We

have

0 = TeG = (m/m2)∨.

By Nakayama’s lemma, m = 0, so that A is a field. Since e ∈ G(k) it follows that A = k. This

means that there is a neighbourhood of e which is just a point A = Spec k. The group scheme

G acts transitively on itself by translation, so that for all points g ∈ G there exists an open

neighbourhood which is just Spec k. Since G is a scheme of finite type over k, there exists a

finite affine covering {Ui}i∈I of G such that each Ui is of finite type over k. By Lemma 1.9

each Ui is finite. [(2) ⇒ (1)]. The local ring OG,e is just Spec k by hypothesis, so that the

tangent space is zero. □

Remark 1.11. If G is a group scheme locally of finite type over a field k, using the same

notation of Lemma 1.10, we see that if g = 0 then G is isomorphic to a disjoint union of (not

necessarily finite) copies of Spec k.

Theorem 1.12. For g ≥ 2, Mg is a Deligne-Mumford stack in the étale topology over

SpecZ. Moreover, Mg ≃ [H/PGL5g−5] where H is a locally closed subscheme of a projective

Hilbert scheme.

Proof. The fact that Mg is a stack is proved in [Alp24, Proposition 2.5.14]. See also

Remark 1.13 below. The isomorphism with the quotient stack is proved in [Alp24, Theorem

3.1.17]. Finally, to prove thatMg is a Deligne-Mumford stack, by Theorem A.101 it is suffi-

cient to show that every smooth, projective and geometrically connected curve C over a field

k has discrete and reduced automorphism group scheme AutC , which is the group scheme

representing the functor AutC of Example A.64. This is a group scheme locally of finite type

over k by [MO67, Theorem 3.7]. Moreover the tangent space at the identity idC ∈ AutC(k) to

AutC is

TidC
AutC ≃ HomOC

(Ω1
C/k,OC) = H0(C, TC)

as proved in [MO67, Lemma 3.4], and H0(C, TC) = 0 since the degree of the tangent bundle TC
is 2− 2g, which is negative. But then by Remark 1.11 we have that AutC is discrete (i.e. the

underlying topological space is discrete) and reduced (i.e. is a reduced scheme), so thatMg is

a Deligne-Mumford stack in the étale topology. □

Remark 1.13. The key point in proving thatMg is a stack in the étale topology for g ≥ 2

is that for a family of smooth curves C → T of genus g, the canonical bundle ωC/T is ample

relative to the morphism C → T . Indeed if C → Spec k is a smooth projective curve of genus

g ≥ 2, then ωC is a line bundle on C whose degree is

deg(ωC) = 2g − 2

which is positive for g ≥ 2. We can use this fact to descent immersions in the projective space.

See [Alp24, Proposition 2.5.14] for details. Observe that the existence of a natural ample line
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bundle can be used to prove thatMg is a stack in the étale topology also by [Vis08, Theorem

4.38].

Proposition 1.14. For g ≥ 2, the stackMg is of finite type over SpecZ.

Proof. We have to show that Mg is locally of finite type over SpecZ and that Mg is

quasi-compact (see Definition A.91 and [Stacks, Definition 04YB]). To prove thatMg is locally

of finite type, by Theorem 1.12 we have to show that

[H/PGL5g−5]→ SpecZ

is locally of finite type. By Remark A.92 it is sufficient to see thatH → SpecZ is locally of finite

type. In order to prove this, observe thatH is a locally closed subscheme of a projective scheme,

which is in particular locally of finite type over SpecZ. Then we use the fact that a locally

closed immersion is locally of finite type ([Stacks, Lemma 01T5]) and that the composition of

morphisms which are locally of finite type is again locally of finite type ([Stacks, Lemma 01T3]).

To prove that Mg is quasi-compact we use [Stacks, Lemma 04YC], the smooth presentation

H → [H/PGL5g−5] and the fact that H is quasi-compact in the Zariski topology. □

Remark 1.15. By Proposition 1.14 it follows thatMg is locally noetherian, because H is

locally of finite type over SpecZ and we use [Stacks, Lemma 01T6].

Remark 1.16. By the Keel-Mori theorem A.103 we know thatMg admits a coarse moduli

space (Definition A.102), which we denote by Mg.

Proposition 1.17. For g ≥ 2, the stack Mg is a smooth Deligne-Mumford stack over

SpecZ of relative dimension 3g− 3, i.e. for every algebraically closed field k, the dimension of

Mg ×Z k is 3g − 3.

Proof. We use the infinitesimal lifting criterion for smoothness ([Alp24, Theorem 3.7.1]).

Namely, we have to prove that if we have a 2-commutative diagram ([Alp24, Definition 2.4.17])

Spec k SpecA0 Mg

SpecA SpecZ

where A → A0 is a surjection of artinian local rings with residue field k such that k =

ker(A→ A0), then there exists a dotted arrow making the diagram 2-commutative. The map

Spec k → Mg corresponds to a smooth genus g curve over k by 2-Yoneda’s lemma (A.58),

while the map SpecA0 → Mg corresponds to a family of curves C0 → SpecA0 over A0. It

follows that the dotted arrow of the diagram corresponds to a lifting

C C0 C

Spec k SpecA0 SpecA

of C0 over A. Since C is a smooth curve over k, there exists an obstruction theory with

obstruction space H2(C, TC) (see [TV13, Theorem 5.16]). Thus, the existence of a lifting of C0
over A follows by the fact that H2(C, TC) = 0 because C is a curve.

Let now k be an algebraically closed field and let C → Spec k a smooth connected genus g

curve over k, which corresponds to a morphism φC : Spec k →Mg. To prove that the relative

dimension of Mg is 3g − 3, by [Alp24, Proposition 3.7.6] it is sufficient to show that the

dimension of the tangent space TMg,C atMg at C ∈Mg(Spec k) ([Alp24, Definition 3.5.7]) is

https://stacks.math.columbia.edu/tag/04YB
https://stacks.math.columbia.edu/tag/01T5
https://stacks.math.columbia.edu/tag/01T3
https://stacks.math.columbia.edu/tag/04YC
https://stacks.math.columbia.edu/tag/01T6
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3g − 3, because by Theorem 1.12 we see that the dimension of AutC is 0. By [TV13, Remark

3.24] we have

TMg,C ≃ H1(C, TC).

Since deg(TC) = 2− 2g < 0 it follows that h0(C, TC) = 0 and that the dimension of H1(C, TC)
is

h1(C, TC) = h1(C, TC)− h0(C, TC) = −(deg(TC) + 1− g) = 3g − 3

where we used the Riemann-Roch theorem for curves. □

However, the stackMg for g ≥ 2 is not proper (see [Edi00, Theorem 1.2]). There exists a

compactification ofMg given by adding nodal stable curves (see [DM69, Definition 1.1]). For

g ≥ 2, defineMg to be the stack of stable curves of genus g.

Theorem 1.18. For g ≥ 2, the moduli stack Mg of stable curves of genus g is a smooth,

proper and irreducible Deligne-Mumford stack of relative dimension 3g − 3 over SpecZ which

admits a projective coarse moduli space Mg.

Proof. The reader can find a complete proof in [Alp24, Theorem A]. See also the original

paper [DM69]. □

The construction of the stack of genus 0 curves is very similar to the case g ≥ 2.

Define the category M0 as in Definition 1.6 for g = 0. Let k be an algebraically closed field.

If C → k is a complete (i.e. proper over k) smooth curve of genus 0, then C ≃ P1
k, see [Har77,

Example IV.1.3.5]. The automorphism functor AutP1
k
(Example A.64) is representable by an

algebraic group scheme, denoted by PGL2,k. This is an affine algebraic group scheme, as it is

identified with the open subset in P3
k with coordinates x0, x1, x2, x3 given by D(x0x3 − x1x2).

In particular, on k-points we have Aut(P1
k) = PGL2,k(k), where

PGL2,k(k) =

{[
x0 x1
x2 x3

]
∈ P3

k(k)

∣∣∣∣ x0x3 − x1x2 ̸= 0

}
.

Remark 1.19. Even in the case of genus 0 curves we have a natural choice of an ample line

bundle, which can be used to prove thatM0 is a stack in the étale topology by [Vis08, Theorem

4.38]. Indeed if C → Spec k is a smooth projective genus 0 curve, then the anticanonical bundle

is ample having positive degree

degω∨
C = 2− 2g = 2 > 0.

Let now PGL2 be the affine algebraic group scheme representing the functor AutP1
Z
.

Proposition 1.20. The category M0 of smooth curves of genus 0 is a stack in the étale

topology. Moreover, it is isomorphic to BPGL2, the classifying stack of the affine group scheme

PGL2.

Proof. One way to prove this fact is to find a bijective correspondence between smooth

genus 0 curves and Brauer-Severi schemes of relative dimension 1 and use the correspondence

between families of genus 0 curves and PGL2-torsors. We refer to [Alp24, Exercise 2.5.15] and

[Alp24, Exercise B.1.67] for this approach. However, we can also prove the isomorphism ofM0

with B PGL2 using the same method that we will use in the proof of Theorem 3.48, thanks to

Remark 1.19. See also [Ols16, Remark 8.4.15]. □
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1.2. Curves of genus one

Definition 1.21. We define the category M̃1 as follows.

• Objects are families of smooth curves of genus 1.

• An arrow (C ′ → T ′)→ (C → T ) between two objects is a pair (f, g) where f : C ′ →
C, g : T ′ → T are morphisms of schemes such that the diagram

C ′ C

T ′ T

f

g

is cartesian.

The category M̃1 is fibred in groupoids over Sch, by sending an object (C → T ) of M̃1 to

the scheme T . However, M̃1 is not a stack over Schét. The reason is that there exist examples

of ineffective descent data for families of smooth curves of genus 1, i.e. on can find a covering

{Ti → T}i∈I in the étale topology and families Ci → Ti of smooth curves of genus 1 over Ti
for all i ∈ I with isomorphisms

Ci|Tij
≃ Cj|Tij

satisfying the cocycle condition, and which do not glue to a family of smooth curves of genus 1

over T . The reader can find an example of this phenomena in [Ray70, Remarques III.3.1.b] or

in [Zom18, Theorem 1.2]. Moreover, observe that for M̃1 we can not apply [Vis08, Theorem

4.38] using the (anti)canonical bundle, because in this case it is a line bundle of degree 0.

In order to obtain a stack, we will allow the total space to be an algebraic space, see

Definition 1.24.

Lemma 1.22. Let f : SpecB → SpecA be a finite morphism. Then f is projective.

Proof. Let b1, . . . , bn ∈ B such that generate B as an A-module, i.e.

B = Ab1 + . . .+Abn.

Define the N-graded A-algebra given by

S = A⊕Bz ⊕Bz2 ⊕Bz3 ⊕ . . .

with the grading such that S0 = A and Si = Bzi for all i > 0. Consider the surjective

homomorphism of N-graded A-algebras given by

A[x0, . . . , xn] → S

x0 7→ z

xi 7→ biz for 1 ≤ i ≤ n.

It follows that there is a closed immersion

ProjS ↪→ Pn
A

of A-schemes. We claim that SpecB ≃ ProjS. Let m ≥ 1 and b ∈ B. Then bzm ∈ S+ and

(bzm)2 = b2z2m = b2z2m−1z ∈ Sz.

This shows that S+ ⊆
√
Sz. Moreover Sz ⊆ S+. It follows that

√
Sz =

√
S+. Observe that

the localization of S in z gives

Sz =
⊕
m∈Z

Bzm

and the degree 0 part is

S(z) ≃ B.
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Then we have

SpecB ≃ SpecS(z) ≃ D+(z) = ProjS. □

Theorem 1.23. Let k be a field, and let X be a proper algebraic space over k such that

dimX ≤ 1. Then X is a projective scheme over k.

Proof. The fact that X is a scheme follows by [Stacks, Lemma 0ADD]. In order to show

that X is projective, it is not restrictive to assume that X is connected. Indeed, suppose that

X is the disjoint union of a finite number of projective schemes. Then X is projective, as we

now explain. If X = X1

∐
X2 with

X1 Pn
k and X2 Pm

k

k k,

then

X = X1

∐
X2 ↪→ Pn

k

∐
Pm
k ↪→ Pn+m+1,

where the last embedding is given by the inclusion in the first (resp. last) n+ 1 (resp. m+ 1)

coordinates. The same argument works for the disjoint union of a finite number of projective

schemes, so we can assume that X is connected.

If dimX = 0, we have X = SpecA with A artinian local k algebra. Since SpecA → Spec k

is proper, it is of finite type, so that A is a finitely generated k-algebra. By [AM69, Exercise

8.3] it follows that A is a finite k-algebra. Finally, a finite morphism between affine varieties is

projective, by Lemma 1.22. If dimX = 1, we conclude by [Stacks, Lemma 0A26]. □

Definition 1.24. Let T be a scheme. A family of smooth curves of genus 1 is a proper,

smooth and finitely presented morphism of algebraic spaces C → T , such that for every point

t ∈ T the geometric fibre Ct is a connected curve genus 1.

Proposition 1.25. Let C → T be a morphism of algebraic spaces where T is a scheme.

Then the following are equivalent:

(1) C → T is a family of smooth curves of genus 1 over T ;

(2) C → T is a proper, flat and finitely presented morphism of algebraic spaces such that

for every point t ∈ T the fibre Ct is a smooth, projective and geometrically connected

curve over κ(t) of genus 1.

Proof. The proof is the same as in Proposition 1.5. □

Remark 1.26. As we mentioned above, in the definition of a family of smooth curves of

genus 1, we allow the total space to be an algebraic space. However, every fibre of such a

family is actually a projective scheme by Theorem 1.23.

Proposition 1.27.

Definition 1.28. We define the categoryM1 as follows.

• Objects are families of smooth curves of genus 1.

• An arrow (C ′ → T ′)→ (C → T ) between two objects is a pair (f, g) where f : C ′ → C

is a morphism of algebraic spaces, g : T ′ → T is a morphism of schemes and the

diagram

C ′ C

T ′ T

f

g

is cartesian.

https://stacks.math.columbia.edu/tag/0ADD
https://stacks.math.columbia.edu/tag/0A26
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Remark 1.29. The category M1 is fibred in groupoids over Sch, by sending an object

C → T ofM1 to the scheme T .

Definition 1.30. Let T be a scheme and Z → B, X → B morphisms of algebraic spaces

over T . We define the functor

HomB(Z,X) : (Sch /B)op → Set

sending (S → B) to the set of morphisms ZS → XS between pullbacks of Z,X to S. A

morphism S′ → S of schemes over B is sent to the morphism of sets which maps f : ZS → XS

to the unique dotted arrow filling in the diagram

ZS′ ZS

XS′ XS

S′ S.

f

Lemma 1.31. Let T be a scheme and Z → B, X → B morphisms of algebraic spaces over

T . If X → B is separated and Z → B is proper, flat and of finite presentation, then we have

a natural transformation of functors

Γ : HomB(Z,X)→ HilbZ×BX/B

which is injective and is representable by open immersions.

Proof. First observe that here HilbZ×BX/B is the Hilbert functor associated to a mor-

phism of algebraic spaces as in [Stacks, Situation 0CZY].

Let S be a scheme over B and let fS : ZS → XS be an object in the set HomB(Z,X)(S).

Define the graph of fS to be

ΓfS = (id, fS) : ZS → ZS ×S XS = (Z ×B X)S .

By [Stacks, Lemma 03KL] we know that being separated is stable under base change. It follows

that XS → S is separated and that ΓfS is a closed immersion by [Stacks, Lemma 03KO]. By

[Stacks, Lemma 03MO], [Stacks, Lemma 04WP] and [Stacks, Lemma 03XR], the base change

ΓfS (ZS) ≃ ZS → S is proper, flat and of finite presentation. It follows that ΓfS (ZS) is an

element of HilbZ×BX/B(S). The map fS 7→ ΓfS (ZS) is injective because a graph

Y ⊆ (Z ×B X)S

uniquely determines the morphism fS : ZS → XS by composing the inverse of pr1|Y
: Y → ZS

with pr2|Y
.

Finally, Γ is representable by open immersions by [Stacks, Lemma 0D1B]. □

Lemma 1.32. The diagonal

∆ :M1 →M1 ×SpecZM1

is representable by algebraic spaces.

Proof. We use the characterization of Proposition A.80. Let x = (C1 → T ) and y =

(C2 → T ) be two families of smooth curves of genus 1. We have to show that the sheaf

IsomT (x, y) : (Sch /T )
op → Set

https://stacks.math.columbia.edu/tag/0CZY
https://stacks.math.columbia.edu/tag/03KL
https://stacks.math.columbia.edu/tag/03KO
https://stacks.math.columbia.edu/tag/03MO
https://stacks.math.columbia.edu/tag/04WP
https://stacks.math.columbia.edu/tag/03XR
https://stacks.math.columbia.edu/tag/0D1B
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sending (S → T ) to the set of isomorphisms f : (C1)S → (C2)S between the pullbacks to S

of the two families of smooth curves is an algebraic space (Definition A.61 and Remark A.63).

Consider the natural transformation of functors

id1 : T → IsomT (x, x)

which sends every T -scheme S → T to the identity morphism id(C1)S of the pullback of C1

to S. Let id2 be the analogous natural transformation of functors for C2. Then we have a

cartesian diagram

IsomT (x, y) T

IsomT (x, y)× IsomT (y, x) IsomT (x, x)× IsomT (y, y),

(id1,id2)

where the bottom row is given by (ϕ, ψ) 7→ (ψ ◦ ϕ, ϕ ◦ ψ). Moreover, the sheaves

IsomT (x, y)× IsomT (y, x) and IsomT (x, x)× IsomT (y, y)

are algebraic spaces because

HilbCi×TCj/T for i, j = 1, 2

is an algebraic space (see [Stacks, Proposition 0D01]) and we use Lemma 1.31. The conclusion

follows by the fact that fibre products exist in the category of algebraic spaces ([Stacks, Lemma

02X2]) □

Proposition 1.33. The categoryM1 is a stack in the étale topology.

Proof. We have already proved that morphisms glue in Lemma 1.32. To see that objects

glue, let {Ti → T}i∈I be an étale covering of T , and let Ci → Ti be a family of smooth genus

1 curves over Ti for all i ∈ I. Suppose that we are given isomorphisms

αij : (Ci → Ti)ij → (Cj → Tj)ij

for all i, j ∈ I satisfying the cocycle condition on triple intersections Ti ×T Tj ×T Tk. In other

words, we are given isomorphisms (which we also denote by αij) of algebraic spaces

αij : Ci ×T Tj → Cj ×T Ti

over Ti ×T Tj satisfying the cocycle condition over Ti ×T Tj ×T Tk for all i, j, k ∈ I. Since

every morphism Ci → Ti is of finite presentation, in particular it is also of finite type. Then by

[Stacks, Lemma 0ADV.(2)] there exists an algebraic space C over T such that C ×T Ti ≃ Ci

for all i ∈ I. Moreover, being proper and smooth is an étale (even fppf) local property on the

base, see [Stacks, Lemma 0429] and [Stacks, Lemma 0422]. It follows that C → T is a proper

and smooth morphism of algebraic spaces.

Then we only have to prove that for every point t : Specκ(t) → T of T , the geometric fibre

Ct → Specκ(t) is a connected curve of genus 1.

Denote also by t ∈ T the unique point in the image of the morphism t. By surjectivity of∐
i Ti → T there exists a point t′ ∈ Ti for some i ∈ I which is sent to t. Thus we obtain a

morphism of schemes

Specκ(t′)→ Ti → T

whose image is t ∈ T . Pre-composing with an algebraic closure κ(t′) of κ(t′) we obtain a

geometric point of T

σ : Specκ(t′)→ T

which factorizes as

(1) Specκ(t′)→ Specκ(t)→ T.

https://stacks.math.columbia.edu/tag/0D01
https://stacks.math.columbia.edu/tag/02X2
https://stacks.math.columbia.edu/tag/02X2
https://stacks.math.columbia.edu/tag/0ADV
https://stacks.math.columbia.edu/tag/0429
https://stacks.math.columbia.edu/tag/0422
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Observe that we have a commutative diagram

(Ci)κ(t′) Ci C

Specκ(t′) Ti T

in which the squares on the right and on the left are cartesian. Thus, also the external square

is cartesian (Lemma A.3), Cκ(t′) ≃ (Ci)κ(t′) and Cκ(t′) → Specκ(t′) is a geometric fibre of

C → T . Since Ci → Ti is an object of M1, then this geometric fibre is a connected curve of

genus 1.

By the factorization in Equation (1) it follows that we have a cartesian diagram

Cκ(t′) Ct C

κ(t′) Specκ(t) T.

But then also Ct is a connected curve of genus 1 because being a connected curve of genus

1 is stable under a base change which is a field extension by [Stacks, Lemma 054N], [Gro67,

Corollaire 4.1.4] and Corollary B.3. It follows that C → T is a family of smooth curves of

genus 1 over T . □

Lemma 1.34. Let X be a locally noetherian scheme and F ∈ Coh(X). Let p ∈ X be a

point. Then the following are equivalent:

(1) there exists an open neighbourhood U ⊆ X of p such that F|U = 0;

(2) the stalk Fp is zero;

(3) the fibre F(p) = Fp ⊗OX,p
κ(p) is zero.

Proof. The statement is local, so that up to restrict F to an open affine covering, we

can assume that X = SpecA is affine, and F = M̃ is the sheafification of a finitely generated

A-module

M = Am1 + . . .+Amk.

Let p ∈ SpecA be the chosen point. Then [(1) ⇒ (2) ⇒ (3)] are clear. We now prove

[(2) ⇒ (1)]. If Mp = 0 we have that there exist s1, . . . , sk ∈ A \ p such that simi = 0 for

all i = 1, . . . , k. Define f = s1 · . . . · sn ∈ A. It follows that Mf = 0. Finally we prove the

implication [(3)⇒ (2)]. If

Mp ⊗Ap
Ap/pAp = 0

we have Mp = (pAp)Mp and by Nakayama’s lemma Mp = 0 follows. □

Corollary 1.35. Let i : X ↪→ X ′ be a closed immersion of locally noetherian schemes

and assume that it is a homeomorphism. Let F ′ ∈ Coh(X ′) be a coherent sheaf on X ′. Let

F = i∗F ′ be the pullback of F ′ to X. Then F = 0 if and only if F ′ = 0.

Proof. If F ′ = 0 clearly also F = 0. Suppose now that F = 0 and let p ∈ X ′ be a point.

By hypothesis, we can view p as a point of X. It follows that

F ′(p) = F(p) = 0

and by Lemma 1.34 we have F ′ = 0. □

Proposition 1.36. The stackM1 is algebraic.

https://stacks.math.columbia.edu/tag/054N
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Proof. To show that M1 is an algebraic stack, it is sufficient to show that for every

smooth and connected genus 1 curve C over a field k, there exist a scheme U and a smooth

representable morphism ϕU : U → M1 of fibred categories over Sch (here U stands for the

fibred category Sch /U over Sch) such that (C → Spec k) ∈M1(k) is in the image of

ϕU (k) : U(k)→M1(k).

Indeed, if that is the case, we claim that the morphism of fibred categories over Sch given by

ϕ =
∐
U

ϕU :
∐
U

U →M1.

is a smooth presentation from a scheme, where the disjoint union runs all over the morphisms

constructed above. In order to prove the claim, we have to show that ϕ is representable, smooth

and surjective. For every scheme T and morphism T →M1, the fibre product in the category

of stacks

X T

∐
U U M1

is

X =
∐
U

U ×M1
T ≃

∐
U

(U ×M1
T ),

hence it is an algebraic space, being the disjoint union of algebraic spaces by Lemma 1.32. Let

V =
∐
U

VU → X

be an étale presentation, where each VU → U ×M1
T is an étale presentation. We have to

show that the composition α : V → X → T is smooth and surjective. First observe that α is

smooth, being the disjoint union of the morphisms

αU : VU → U ×M1 T → T

and each of this morphism is smooth by the definition of smoothness for ϕU . To prove the

surjectivity of α, consider t : Spec k → T a k-point of T , where k is a field. The composition

Spec k → T →M1

corresponds to an object x = (C → Spec k) ∈ M1(k) by 2-Yoneda’s lemma (A.58). But

then there exists a scheme U and a smooth representable morphism ϕU : U → M1 of fibred

categories over Sch such that x is in the image as above. It follows that there is a k-point p in

the fibre product U×M1
T which is sent to t through the projection to T . Since VU → U×M1

T

is an étale presentation, it is surjective, so that there exists a k-point of VU which is sent to p.

Taking the disjoint union V =
∐

U VU , this shows that V → T is surjective.

We now prove the sufficient condition stated before. Let C → Spec k be a smooth and

connected genus 1 curve over a field k. First of all, choose an embedding C ↪→ PN
k such that

H1(C,OC(1)) = 0. For example, if k = k, we can fix a rational point P ∈ C and consider the

embedding given by the linear system |3P | which is very ample because it has degree 3, see

[Har77, Corollary IV.3.2]. In this case,

H1(C,OC(3P )) ≃ (H0(C,OC(KC − 3P )))∨ = 0

because degC(OC(KC − 3P )) = −3 < 0. Let P = P (m) be the Hilbert polynomial of the

embedding, and H = HilbP (PN
Z ) the corresponding Hilbert scheme. Let π : C → H be the

universal family, so that there exists a k-point h ∈ H(k) such that the fibre Ch is isomorphic

to C as closed subschemes of PN
k . By the definition of the Hilbert scheme (Example A.11), the
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morphism π : C → H is proper (because it is projective), flat and finitely presented. Moreover

OC(1) is a quasi-coherent sheaf on C which is flat over H, because it is flat as an OC-module

and π is flat. By Corollary B.6 there exists an open neighbourhood V ⊆ H of h such that

R1π∗OC(1)|V = 0. By cohomology and base change (Theorem B.5) for all points t ∈ V it

holds H1(Ct,OCt
(1)) = 0. We restrict further V to another open neighbourhood, which we

denote by H ′, where each fibre is smooth over the base field, geometrically connected and

has genus 1. Indeed these are all open conditions, by [Gro67, Théorème 12.2.4.iii], [Gro67,

Théorème 12.2.4.viii] and [Har77, Corollary III.9.10]. We get a morphism H ′ →M1 which is

given by forgetting the embedding in the projective space, i.e. is the morphism corresponding

to the family C ×H H ′ → H ′ by 2-Yoneda’s lemma (A.58). The morphism H ′ →M1 of stacks

is representable by algebraic spaces, since the diagonal of M1 is representable by algebraic

spaces (Lemma 1.32, see also [Alp24, Corollary 3.2.3]). It only remains to show that H ′ →M1

is smooth. In order to do that, we will use the infinitesimal lifting criterion for smoothness

([Alp24, Theorem 3.7.1]). Take a small surjection, i.e. a surjection φ : A′ → A of local artinian

rings such that ker(φ) = k. For every diagram

Spec k Spec A H ′

Spec A′ M1

we have to show that there exists a dotted arrow completing the diagram. Observe that

an arrow from SpecA to H ′ corresponds to an embedded family of genus 1 curves curve

C ⊆ PN
A by Yoneda’s lemma (A.6) and 2-Yoneda’s lemma (A.58), while the map from Spec k

to H ′ corresponds to an embedded curve C ⊆ PN
k . Moreover, the morphism SpecA′ → M1

corresponds to a family of smooth genus 1 curves C′ → SpecA′. Thus, in order to complete

the diagram with the dotted arrow we have to find an embedding C′ ⊆ PN
A′ compatible with

the restriction to A. In other words, we have to find a dotted arrow completing the following

diagram:

PN
k PN

A PN
A′

C C C′

Spec k Spec A Spec A′.

We know that morphisms to projective space are determined by line bundles and sections.

In particular C ↪→ PN
A is determined by a line bundle L and by global generating sections

s0, . . . , sN ∈ H0(C,L). It is possible to find a line bundle L′ on C′ such that the restriction

on C is isomorphic to L, since an obstruction theory to deforming L over A′ is given by

H2(C,OC), which is zero, see [TV13, Theorem 5.24]. We claim that sections si deform to

sections s′i ∈ H0(C′,L′). In order to see this, observe that since ker(A′ → A) = k, we have a

short exact sequence

0→ k → A′ → A→ 0

of A′-modules. Tensoring it with A′-module OC′ , which is a flat A′-module (since C′ → SpecA′

is flat), we get

0→ OC → OC′ → OC → 0,
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and tensoring with L′

0→ L|C → L
′ → L → 0.

Note that H1(C,L|C ) = 0, because C → Spec k corresponds to a point in H ′. Passing in

cohomology, we get the surjectivity of the map

H0(C′,L′)→ H0(C,L)

so that we can lift the sections si as claimed above. The sections si are base point free (by the

correspondence between maps to the projective space and tuples of line bundles and sections).

Moreover C ↪→ C′ is a closed immersion which is a homeomorphism. It follows that the residue

fields at the points of C and C′ are the same. By Nakayama’s lemma, it follows that the sections

s′i are also base point free. This implies that there exists a morphism i′ : C′ → PN
A′ that restricts

to i : C ↪→ PN
A over A. The map i′ is finite, as it is both proper and quasi-finite. Moreover, i′

is a closed immersion. To see this, consider the map

β : OPN
A′
→ i′∗OC′ .

The cokernel of β is a coherent sheaf, and it vanishes when restricted to C, since i is a closed

immersion. By Corollary 1.35 it follows that coker(β) = 0, so that β is surjective. □





CHAPTER 2

Minimal surfaces of general type and their canonical

models

In this chapter we study surfaces. More precisely, we are interested in minimal surfaces of

general type and in their canonical models. In §2.1 we define the objects of study. In §2.2 we

redefine the classical intersection number for proper schemes over an algebraically closed field.

Canonical models of minimal surfaces of general type are studied in §2.5, and their singularities,

known as Du Val singularities are studied in §2.4. In §2.7 we study the automorphism group

scheme of minimal surfaces of general type and of their canonical models. Finally in §2.8 we

study the finite generation of the pluricanonical rings of minimal surfaces of general type.

2.1. Basics about surfaces

Let k be an algebraically closed field of arbitrary characteristic.

Definition 2.1. A surface over k is an integral scheme of dimension 2 which is proper

over k. We simply say that S is a surface if the base field is clear from the context.

Observe that if f : S → k is a surface over k, then f is in particular a finite type morphism

of locally noetherian schemes. We will say that S is a smooth surface if f : S → k is smooth,

or equivalently if S is a regular scheme ([GW20, Theorem 6.28 and Corollary 6.32]).

Remark 2.2. It is true that every smooth surface over an algebraically closed field k is

projective, by a theorem of Zariski and Goodman, see [Băd01, Theorem 1.28].

If S is a Cohen-Macaulay surface over k, then we can define the dualizing sheaf ωS = ωS/k,

which is a coherent sheaf on S (see Section §B.4; we use the fact that a ring of finite type over

a noetherian ring is of finite presentation). Recall that ωS is invertible in a neighbourhood of

a point s ∈ S if and only if the local ring OS,s is Gorenstein (Proposition B.13). In particular,

if S is Gorenstein (e.g. if S is regular or has at most Du Val singularities, see Definition 2.48),

then ωS is an invertible sheaf on S, and it is also called the canonical sheaf of S. If S is a

smooth surface, then the canonical sheaf is ωS = detΩ1
S/k by Proposition B.13.

Remark 2.3. If S is a surface, by [Har77, Proposition II.6.15] we have an isomorphism

between the group of Cartier divisor modulo linear equivalence on S and Pic(S). In particular,

if ωS is an invertible sheaf, it corresponds to a class KS of Cartier divisors modulo linear

equivalence. Every Cartier divisor in this class is called a canonical divisor.

Definition 2.4. If S is a smooth surface over k, we define the the m-plurigenus for m ≥ 1

as

pm(S) = dimk H
0(S, ω⊗m

S ).

If m = 1 we write pg(S) = pm(S) and call it the geometric genus of S.

We define the irregularity as

q(S) = dimk H
1(S,OS),

and the Euler characteristic of S as

χ(OS) = 1− q(S) + pg(S).

15
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In particular, these numbers are birational invariants for smooth surfaces, see [Har77, The-

orem II.8.19, Exercise II.8.8] for the invariance of pm and [Har77, Remark III.7.12.3, Corollary

V.5.6] for the invariance of the irregularity q. Another birational invariant for smooth surfaces

is the Kodaira dimension (see [Har77, Introduction §V.6]).

Definition 2.5. Let S be a smooth surface over k. The Kodaira dimension of S is

κ(S) = −∞ if pm(S) = 0 for all m ≥ 1, otherwise is defined as

κ(S) = min

{
d

∣∣∣∣ pm(S)

md
is bounded from above

}
.

Definition 2.6. A smooth surface S over k is of general type if κ(S) = 2.

Definition 2.7. If X is a surface over k, we define the Euler characteristic of X as

χ(OX) =

2∑
i=0

(−1)i dimk H
i(X,OX).

If S is a smooth surface, χ(OS) is the same as in Definition 2.4.

Remark 2.8. Let S → Spec k be a smooth surface over k. Since S is proper over k, and

Spec k is noetherian and separated, it follows that S is also noetherian and separated. Thus, it

makes sense to talk about Weil divisors on S. Moreover, since S is smooth, then S is a regular

scheme and it is in particular locally factorial, see [Har77, Remark II.6.11.1A]. It follows by

[Har77, Corollary II.6.16] that there is an isomorphism between the group of Weil divisors

modulo linear equivalence and Pic(S). By Remark 2.3 these groups are also isomorphic to the

group of Cartier divisors modulo linear equivalence.

Definition 2.9. Let S be a smooth surface over k. A curve over S is an effective divisor

on S.

Remark 2.10. In the above definition, it makes sense to talk about an effective divisor

without specifying if we are considering a Weil divisor or a Cartier divisor. Indeed, by Remark

2.8, the group of Weil divisors is isomorphic to the group of Cartier divisors. Moreover by

[Har77, Remark II.6.17.1] effective Cartier divisors correspond exactly to the effective Weil

divisor.

Observe further that by [Har77, Remark II.6.17.1] there is a bijective correspondence between

curves on S and locally principal closed subschemes of S, i.e. subschemes whose sheaf of ideals

is locally generated by a single element. This way, we will also see a curve as a locally principal

closed subscheme of S. When we say that a curve over S is connected we mean that the

corresponding closed subscheme is connected.

Let S be a surface over k. Let Z1S be the free abelian group generated by closed integral

subschemes of dimension 1. Observe that if S is a smooth surface, then Z1S is exactly the

group of Weil divisors; and if that is the case, the class group ClS is the quotient group of

Z1S by the relation given by the linear equivalence.

Let C ⊂ S be a closed integral subscheme of dimension 1 and let ν : C̃ → C be the normaliza-

tion of C. If L ∈ Pic(S) is a line bundle, we define

L · C = degC̃(ν
∗(L|C )).

We define a pairing between Pic(S) and Z1S given by

Pic(S)× Z1S
·−→ Z

(L, C) 7→ L · C.
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Definition 2.11. Let S be a surface over k. We say that two line bundles L1,L2 ∈ Pic(S)

are numerically equivalent if L1 ·D = L2 ·D for all D ∈ Z1S. We say that D1, D2 ∈ Z1S are

numerically equivalent if L ·D1 = L · D2 for all L ∈ Pic(S). We define N1S as the quotient

group of Pic(S) by the relation given by the numerical equivalence and N1S as the quotient

group of Z1S by the relation given by the numerical equivalence.

It follows that we have a non degenerate bilinear pairing

N1S ×N1S → Z,

see [Laz04, Section §1.4] for details. Recall that if S is a smooth surface over k and C is a

curve over S, then C is in particular an element of Z1S.

If S is a smooth surface, by Remarks 2.3 and 2.8, for each curve C there is an associated

line bundle of S denoted by OS(C).

Definition 2.12. Let S be a smooth surface over k and let C ⊂ S be a curve. We define

the self-intersection of C on S as

C2 = OS(C) · C.
More generally, we define the intersection number of two divisors C,D on a smooth surface S

as

C ·D = OS(C) ·D.

Remark 2.13. If S is a smooth surface, we have that N1S = N1S and we call it the

Néron-Severi group, [Har77, Remark V.1.9.1]. The Néron-Severi group is denoted by Num S.

It follows that we have a non degenerate bilinear pairing

Num S ×Num S → Z.

Remark 2.14. If C,D are two distinct integral closed subschemes of dimension 1 of a

smooth surface S, then C ·D ≥ 0 by [Har77, Proposition V.1.4].

Definition 2.15. A curve E on a smooth surface S over k is said to be a (−1)-curve or

an exceptional curve of the first kind if E ≃ P1
k and E2 = −1.

A curve E on a smooth surface S over k is said to be a (−2)-curve if E ≃ P1
k and E2 = −2.

Definition 2.16. Let C be an integral scheme of dimension 1 proper over k. We define

the arithmetic genus of C as

pa(C) = h1(C,OC).

Proposition 2.17. Let C be an integral scheme of dimension 1 projective over k. Then

pa(C) = 0 if and only if C ≃ P1
k.

Proof. If C ≃ P1
k, then the arithmetic genus and the geometric genus coincide by [Har77,

Proposition IV.1.1]. The geometric genus of P1
k is

pg(P1
k) = dimk H

0(P1
k, ωP1

k
) = 0

because deg(ωP1
k
) = −2. It follows that pa(P1

k) = 0.

Suppose now that pa(C) = 0. Consider the normalization

ν : C̃ → C

of C and the induced morphism of sheaves

ν# : OC → ν∗OC̃ .

For every closed point P ∈ C we have

ν#P : OC,P ↪→ (ν∗OC̃)P ≃ ÕC,P .
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by definition of normalization, see also [Stacks, Lemma 0C3B]. It follows that ν# is injective.

The coherent sheaf F = coker(ν#) is supported on the singular locus of C, and we have an

exact sequence of sheaves on C given by

0→ OC → ν∗OC̃ → F → 0.

Passing in cohomology we get a long exact sequence

0→ H0(C,OC)→ H0(C, ν∗OC̃)→ H0(C,F )→ 0

because H1(C,OC) = 0 by hypothesis. Since C, C̃ are integral schemes over an algebraically

closed field, then H0(C,OC) ≃ H0(C, ν∗OC̃) ≃ k. It follows that H
0(C,F ) = 0 and in particular

F = 0. This means that for all P ∈ C closed, OC,P is normal, hence C is normal. But since

C has dimension 1 and k is perfect, C is smooth over k and ν is an isomorphism away from

singular points. Since F = 0, ν is an isomorphism of schemes. Thus, C is a smooth curve, and

pa(C) = pg(C) = 0. In particular, C ≃ P1
k ([Har77, Example IV.1.3.5]). □

Proposition 2.18. Let S be a smooth surface and let E ⊆ S be a closed integral subscheme

of dimension 1.

(1) E is a (−1)-curve if and only if pa(E) = 0 and E2 = −1;
(2) E is a (−2)-curve if and only if pa(E) = 0 and E2 = −2.

Proof. We know that S is projective over k by Remark 2.2. Since E is a closed subscheme

of S, then E is also projective over k. Then E ≃ P1 if and only if pa(E) = 0 by Proposition

2.17. □

Theorem 2.19 (Castelnuovo). If E is a (−1)-curve on a smooth surface S, then there

exists a morphism f : S → S0 to a smooth surface S0, and a point P ∈ S0, such that S is

isomorphic via f to the blow-up of S0 with centre P , and E is the exceptional curve.

Proof. See [Har77, Theorem V.5.7]. □

On the other hand, if S0 is a smooth surface and f : S → S0 is the blow-up of S0 at a

point P , the inverse image of P through f is a curve E = f−1(P ). In particular, S is again a

smooth surface, and E is a (−1)-curve, see [Har77, Proposition V.3.1].

Definition 2.20. We say that a smooth surface S is minimal if S does not contain (−1)-
curves.

By Castelnuovo’s theorem (Theorem 2.19), a surface is minimal if and only if there does

not exist another smooth surface S′ such that S is isomorphic to the blow-up of S′ in a point.

Again by Castelnuovo’s theorem, we see that every smooth surface is birational to a minimal

smooth surface. Thus, in order to classify smooth surfaces up to birationality, it is sufficient

to classify the birational classes of smooth minimal surfaces.

In characteristic zero, the classification is due to Enriques and is based on the Kodaira dimen-

sion. The classification has been generalized in positive characteristic by the work of Mumford

and Bombieri in [Mum69],[BM77],[BM76].

The classification of minimal surfaces of general type has not be established yet.

In this chapter, we will mainly consider minimal surfaces of general type.

Notation 2.21. When we say that a surface is minimal of general type we are assuming

that S is smooth.

If S is a minimal surface of general type, we have already seen that there exists a canonical

divisor KS (Remark 2.3), which by Remark 2.8 is both a Cartier divisor and Weil divisor.

Thus it makes sense to define

K2
S := ωS ·KS .

https://stacks.math.columbia.edu/tag/0C3B
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In the next section we generalize the self-intersection of the canonical bundle for Gorenstein

surfaces. More generally, we define the intersection between two line bundles on a surface.

2.2. Intersection theory

We fix an algebraically closed field k of arbitrary characteristic. We will define intersection

theory for a scheme X which is proper over k. We follow [Kle66, § I.1, II.2]. See also [GW23,

§23.15].

Definition 2.22. Let Q[n1, . . . , nt] be the polynomial ring in variables n1, . . . , nt over the

rational numbers. If f ∈ Q[n1, . . . , nt], then f is called a numerical polynomial if for every

(n1, . . . , nt) ∈ Zt the value of f at (n1, . . . , nt) is an integer.

Theorem 2.23 (Snapper). Let X be a scheme proper over k. Let F be a coherent OX-

module. Let L1, . . . ,Lt be t invertible OX-modules, t ≥ 0. Then the function

fF (n1, . . . , nt) = χ(F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nt

t )

is a numerical polynomial in n1, . . . , nt of degree equal to dim(Supp(F)).

Proof. [Kle66, § I.1, Theorem], [Băd01, Theorem 1.1]. □

We now redefine the classical intersection number.

Definition 2.24. Let t ≥ 0 be an integer and let L1, . . . ,Lt be t invertible sheaves on

a scheme X proper over k. Let F be a coherent OX -module such that dim(Supp(F)) ≤ t.

The intersection number of L1, . . . ,Lt with F is by definition the coefficient of the monomial

n1n2 . . . nt in the numerical polynomial χ(F ⊗ L⊗n1
1 ⊗ . . .⊗L⊗nt

t ). We denote this integer by

(L1 · . . . · Lt · F).

If L1 = L2 = . . . = Lt = L we write (Lt · F) instead of (L · . . . · L · F). If F = OZ with

Z a closed subscheme of X, we write (L1 · . . . · Lt · Z) instead of (L1 · . . . · Lt · i∗OZ), where

i : Z ↪→ X is the corresponding closed immersion. If F = OX we simply write (L1 · . . . · Lt)

instead of (L1 · . . . · Lt · OX). Finally, if Li = OX(Di) for Cartier divisors Di we also write

(D1 · . . . ·Dt · F) instead of (L1 · . . . · Lt · F).
Suppose now that S is a surface over k and that L1,L2 are two invertible sheaves on S.

Considering F = OS in Definition 2.24 we obtain the definition of the intersection number

(L1 · L2).

Definition 2.25. If S is a Gorenstein surface, then ωS is a line bundle on S, and we define

the self-intersection of the canonical bundle as

K2
S := (ωS · ωS).

If S is smooth, then by Remark 2.3 we have that K2
S is also equal to

(KS ·KS).

Proposition 2.26. If S is a smooth surface and L1,L2 are two line bundles on S, then

(L1 · L1) coincides with the classical intersection number of Remark 2.13. In this case, we will

denote (L1 · L2) simply by L1 · L2.

Proof. See [Băd01, Corollary 1.20]. □

Definition 2.27. Let X be a scheme of dimension r ≥ 1 which is proper over k and let

L be a line bundle on X. We say that L is nef or numerically effective if (L · C) ≥ 0 for all

integral closed subscheme of X of dimension 1.

In particular, if S is a surface and L is a line bundle on S, then L is nef if (L · C) ≥ 0 for all

integral curves on S.
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By Lemma [GW23, Lemma 23.64] we have that formation of the numerical polynomial of

Definition 2.23 is invariant under changing the base field. In particular we obtain the following

lemma.

Lemma 2.28. Let k be a field, and let X be a scheme proper over k. Let F be a coherent

OX-module and L1, . . . ,Lt be t invertible OX-modules. Suppose that k ⊆ K is a field extension

and let L1,K , . . . ,Lt,K ,FK be the pullbacks of L1, . . . ,Lt,F to X ⊗k K. Then

(L1 · . . . · Lt · F) = (L1,K · . . . · Lt,K · FK).

Proof. See [GW23, Remark 23.71]. □

If X is a quasi-compact and quasi-separated scheme, in Definition B.7 we defined what an

ample invertible OX -module is.

If X is a scheme of finite type over a noetherian ring A, then an invertible OX -module L is

ample if and only if some tensor power L⊗n, n > 0, is very ample over SpecA, see [Har77,

Theorem II.7.6].

Theorem 2.29 (Nakai-Moishezon Criterion). Let X be a scheme proper over k and let L
be an invertible OX-module. Then L is ample if and only if for every integral closed subscheme

Z ⊆ X of dimension t > 0 we have (Lt · Z) > 0.

Proof. See [Băd01, Theorem 1.22]. □

Corollary 2.30. If S is a surface over k and L is an invertible OS-module, then L is

ample if and only if (L2) > 0 and (L · C) > 0 for every integral closed subscheme C ⊂ S of

dimension 1. If in addition H0(S,L) ̸= 0, then the condition (L2) > 0 is not needed.

Proof. See [Băd01, Corollary 1.24]. □

2.3. Characterization of minimal surfaces of general type

We start this section by proving that for a surface of general type (Definition 2.6), requiring

the canonical bundle ωS to be nef (Definition 2.27) is equivalent to requiring that S is minimal

(Definition 2.20).

Lemma 2.31. Let S be a smooth surface.

• If ωS is nef, then S is minimal.

• If κ(S) ≥ 0, then S is minimal if and only if ωS is nef.

Proof. Suppose that ωS is nef, and suppose by contradiction that E ⊂ S is a (−1)-curve
on S. By adjunction formula we have

−2 = 2pa(E)− 2 = (OS(E)⊗OS
ωS) · E

where pa(E) = 0 is the arithmetic genus of E ≃ P1
k. Since E

2 = −1 it follows that ωS ·E = −1
which is an absurd because ωS is nef.

Suppose now that κ(S) ≥ 0. It follows that there exists an integer m > 0 such that

dimk H
0(S, ω⊗m

S ) ̸= 0. Let

D =
∑
ai>0

aiCi ∈ |ω⊗m
S |

be an effective divisor on S, where each Ci is a closed integral subscheme of S of dimension

1. Suppose by contradiction that ωS is not nef; thus there exists an integral closed subscheme

C ⊂ S of dimension 1 such that ωS · C < 0. Since D ∈ |ω⊗m
S | we also have∑

i

aiCi · C = D · C < 0.
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If C ̸= Ci for all i, then C · Ci ≥ 0 for all i by Remark 2.14, and then D · C ≥ 0. This means

that there exists an index i such that C = Ci. From D ·C < 0 we deduce that C2 < 0. Again

by adjunction formula we have

−2 ≤ 2pa(C)− 2 = (O(C)⊗ ωS) · C = C2 + ωS · C ≤ −2,

so that the only possibility is pa(C) = 0 and C2 = ωS ·C = −1. It follows by Proposition 2.18

that C would be a (−1)-curve, which is absurd. □

Definition 2.32. Let X be an integral scheme proper over a field k and let L be a line

bundle on X. We say that L is big if there exists m ∈ N+ such that

dimφ|L⊗m|(X \ Bs|L⊗m|) = dimX

where φ|L⊗m| is the map associated to the complete linear system |L⊗m|. Equivalently, L is

big if the dimension of the space of global sections of L⊗m grows as mdimX when m tends to

infinity, see [Laz04, Definition 2.1.3 and Corollary 2.1.37].

Example 2.33. If S is a surface and L ∈ Pic(S) is a line bundle, then L is big if there

exists a positive integer m such that

dimφ|L⊗m|(S \ Bs|L⊗m|) = dimS = 2.

Equivalently, L is big if the dimension of the space of global sections of L⊗m grows quadratically

with m when m tends to infinity.

Corollary 2.34. Let S be a smooth surface. Then S is a minimal surface of general type

if and only if ωS is big and nef.

Proof. The bigness of the canonical bundle ωS means that the Kodaira dimension of S

is 2, so by definition S is of general type. Finally, S is minimal if and only if ωS is nef by

Lemma 2.31. □

Remark 2.35. Let S be a minimal surface of general type. It holds K2
S = ω2

S > 0

because otherwise h0(S, ω⊗m
S ) would not increase quadratically with m as m tends to infinity

by asymptotic Riemann-Roch theorem [Laz04, Corollary 1.4.41]. Moreover ωS ·C ≥ 0 for every

integral closed subscheme C ⊂ S of dimension 1 because ωS is nef.

Thus, by the Nakai-Moishezon criterion of ampleness (Theorem 2.29 and Corollary 2.30), ωS

is ample if and only if for every integral closed subscheme C ⊂ S of dimension 1, we have

ωS · C ̸= 0.

Proposition 2.36 (Hodge index theorem). Let S be a smooth surface. Let D be a divisor

on S such that (D2) = (D ·D) > 0. Then for every divisor E such that (D · E) = 0 we have

(E2) ≤ 0. Moreover (E2) = 0 if and only if E is numerically equivalent to 0.

Proof. See [Băd01, Corollary 2.4]. □

Corollary 2.37. Let S be a minimal surface of general type. The following are equivalent:

(i) ωS is ample;

(ii) S does not contain (−2)-curves.

Proof. Suppose first that ωS is ample. Suppose by contradiction that there exists a

(−2)-curve C ⊂ S. In particular, pa(C) = 0 and (C2) = −2. By adjunction formula we have

−2 = 2pa(C)− 2 = (C2) + (ωS · C) = −2 + (ωS · C).

Thus, (ωS · C) = 0, which is an absurd because ωS is ample.

Conversely, suppose that S does not contain (−2)-curves. Suppose by contradiction that ωS is

not ample. By Remark 2.35 there exists an integral closed subscheme C ⊂ S of dimension 1
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such that (ωS ·C) = 0. By Hodge index theorem (Proposition 2.36) we have (C2) < 0 because

ω2
S > 0 and C can not be numerically equivalent to zero [Băd01, Proof of Theorem 9.1]. Thus

by adjunction formula we have

2pa(C)− 2 = C2 + (ωS · C) = (C2) < 0.

It follows that pa(C) = 0 and (C2) = −2. In other words, C is a (−2)-curve on S. □

2.4. Du Val singularities

Let k be an algebraically closed field and let X be a normal scheme of dimension 2 which

is proper over k (i.e. a normal surface).

Definition 2.38. A resolution or desingularization of X is a proper morphism π : S → X

from a surface S which is smooth over k, such that π∗OS = OX and

π|π−1(X\Sing(X)) : π
−1(X \ Sing(X))→ X \ Sing(X)

is an isomorphism.

Remark 2.39. If π : S → X is a resolution of X, then by Zariski’s main theorem ([Har77,

Corollary III.11.4]) we have that the fibres of π are connected.

Definition 2.40. A resolution is said to be minimal if for every other resolution π′ : S′ →
X, there exists a unique morphism u : S′ → S such that π′ = π ◦u as in the following diagram:

S′ S

X.

u

π′ π

Proposition 2.41. Let π : S → X be a resolution. Then π is minimal if and only if for

every x ∈ Sing(X), there are no exceptional curves of the first kind among the components of

the reduced fibre E = π−1(x)red.

Proof. Suppose first that π : S → X is a minimal resolution. If X is smooth over k, then

Sing(X) is empty, thus the condition on the preimage of singular points is trivially satisfied.

On the other hand, if x ∈ Sing(X), suppose by contradiction that C ⊂ S is a (−1)-curve
which is an irreducible component of the reduced fibre π−1(x)red. By Castelnuovo’s theorem

(Theorem 2.19) the curve C can be contracted to a point over another smooth surface S′. Then

π factors through S′ and π would not be minimal.

Suppose now that π : S → X is a resolution such that there are no exceptional curves of the

first kind among the components of the reduced fibres of singular points. Let π′ : S′ → X

another desingularization. Let u = π−1 ◦ π′. Then u is a birational map. By the structure

theorem of birational maps between two smooth projective surfaces S′ and S (S′ and S are

projective because they are smooth and proper over k and the morphisms π and π′ are also

projective), there exists a morphism v : S′′ → S that is composite of finitely many blow-ups,

such that u ◦ v is a morphism

S′′

S′ S.

v

u

Choose v such that it is a composite of a minimal number of blow-ups. We must show that

this number is zero, i.e. that u is a morphism.

Assume by contradiction that the number of blow-ups involved is strictly positive. Then S′′

contains an exceptional curve of the first kind, E′′, contained in the fibre (π′ ◦ v)−1(x). If
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(u ◦ v)(E′′) is a point, then we can contract E′′ to a surface S̃ which dominates both S′ and

S, and this would contradict the minimality of v. Thus (u ◦ v)(E′′) is a component, say E1,

of the fibre π−1(x). Since u ◦ v is a birational morphism, u ◦ v is a composite of a finite

number of blow-ups (and isomorphisms). Since π−1(x)red does not contain (−1)-curves, we
have (E2

1) ≤ −2. However, the proper transform of a curve C by a blow-up has self-intersection

less than or equal to (C2). Hence we would get (E′′)2 ≤ −2, which contradicts the hypotheses

that E′′ is an exceptional curve of the first kind. It follows that u is a morphism. □

Remark 2.42. Let X be a normal surface. Then X has a finite number of singularities,

i.e. non regular points. Indeed, since X is normal, then X is regular in codimension one by

[Har77, Theorem I.6.2A]. It follows that Sing(X) is just a set of points. Since X is noetherian,

there is just a finite number of such points.

Proposition 2.43. Let X be a normal surface. Then there exists a minimal resolution

resolution of X.

Proof. First, a resolution of X exists by a theorem of Zariski-Abhyankar [Zar39], [Zar42],

[Abh57].

It is not restrictive to assume that X is singular in a unique point x ∈ X. If not, for every

singular point x′ ∈ X we can choose an affine open x′ ⊂ U ⊆ X in which x′ is the unique

singular point. At this point we work locally, and we eventually glue all the minimal resolutions

of the singular points.

Suppose now that x ∈ X is the unique singular point and let π : S → X be an arbitrary

desingularization. If π is minimal we are done. Otherwise, by Proposition 2.41, in the reduced

fibre E = π−1(x)red there exists a component E1 of E which is a (−1)-curve. Thus we can

contract E1 to another smooth surface S1 and we get a desingularization π1 : S1 → X. If

π1 is minimal we are done. Otherwise, notice that the fibre π−1
1 (x)red has n− 1 components,

where n is the number of components of E. Repeating this process, we necessarily arrive

in a finite number of steps to a desingularization in which the reduced fibre over x does not

contains exceptional curves of the first kind. In other words, we necessarily arrive to a minimal

desingularization. □

Remark 2.44. It is clear that the minimal resolution of Proposition 2.43 is unique up to

isomorphism, by Definition 2.40.

Definition 2.45. Let X be a normal surface. Let x ∈ X be a singular point. We say that

(1) x ∈ X is a rational singularity if there exist a desingularization π : S → X and

an affine open neighbourhood U of x in X such that U \ {x} is smooth over k and

(R1π∗OS)|U = 0;

(2) x ∈ X is a Du Val singularity or a rational double point if x is a rational singularity

and x is a Gorenstein point (i.e. OX,x is Gorenstein).

Remark 2.46. Definition 2.45.(1) is independent on the choice of the desingularization,

in the sense that if U is a neighbourhood of x in X such that U \ {x} is smooth over k,

and if π : S → X is a desingularization such that (R1π∗OS)|U = 0, then for every other

desingularization π′ : S′ → X it holds that (R1π′
∗OS′)|U = 0, see [Băd01, Definition 3.17].

Proposition 2.47. Let X be a normal surface over k. Then each singular point of X

is a rational singularity if and only if there exists a desingularization π : S → X such that

R1π∗OS = 0.

Proof. Suppose first that there exists a desingularization π : S → X such that R1π∗OS =

0. Then each singular point of x ∈ X is rational because it is sufficient to consider an open



24 2. MINIMAL SURFACES OF GENERAL TYPE AND THEIR CANONICAL MODELS

neighbourhood U of x in X in which x is the unique singular point of U .

Suppose now that X has only rational singularities. Let x1, . . . , xn be the singular points of

X. For all i = 1, . . . , n, let Ui be an affine open neighbourhood of xi, such that Ui \ {xi} is

smooth over k and let πi : Si → Ui be a desingularization. Since xi is a rational singularity,

we have R1(πi)∗OSi = 0. Denote U ′
i = Ui \ {xi}. For all i, the restriction

πi|π−1
i (U ′

i)
: π−1

i (U ′
i)→ U ′

i

is an isomorphism. Let Sn+1 = X \
(⋃n

i=1 Ui

)
and consider also the identity morphism

idSn+1
: Sn+1 → Sn+1.

It follows that we can glue the πi’s and idSn+1
together to a morphism

π : S → X

where

S =

( n+1∐
i=1

Si

)/
∼

with the relation ∼ given by s ∼ s′ in S if s = s′ or if s ∈ Si, s
′ ∈ Sj and πi(s) = πj(s

′).

The morphism π is proper because being proper is a local property on the target [GW20,

Proposition 12.58], and each πi is proper. Moreover, S is smooth over k because each Si is

smooth over k. For all i = 1, . . . , n we have that

π|Si
: Si → Ui

induces an isomorphism of sheaves

φi : OUi
≃ (π|Si

)∗OSi
.

The same holds also for idSn+1
. Then π induces an isomorphism OX ≃ π∗OS of sheaves on X,

by glueing the isomorphisms φi.

For all x ∈ X, we have

(R1π∗OS)x ≃ H1(π−1(x),O|π−1(x))

by [Har77, Proposition III.8.1]. Since π is an isomorphism outside the singular locus of X, it

follows that R1π∗OS is supported on the singular locus of X, because if x ∈ X is a regular

point, then π−1(x) is just a point. Working locally, if x ∈ Ui is a singular point, we observe

that

(R1π∗OS)x = (R1(πi)∗OSi
)x = 0.

It follows that R1π∗OS = 0. □

Definition 2.48. If X is a normal Gorenstein surface whose singular points are rational

singularities, we will say that X has at most Du Val singularities.

Proposition 2.49. Let π : S → X be the minimal desingularization of a normal surface

with at most Du Val singularities, then

π∗ωS = ωX .

Proof. See [Băd01, Corollary 4.19]. □

Proposition 2.50. Let X be a normal surface and let π : S → X be a resolution. The

following are equivalent:

(1) R1π∗OS = 0;

(2) χ(OS) = χ(OX).
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Proof. The Leray spectral sequence of Theorem B.15 gives an exact sequence

0→ H1(X,OX)→ H1(S,OS)→ H0(X,R1π∗OS)→

→ H2(X,OX)→ H2(S,OS)→ 0.

By a standard dimension argument it follows that

χ(OX)− χ(OS) = dimk H
0(X,R1f∗OS).

Since R1f∗OS is supported on the singular locus of X, the equivalence of conditions (1) and

(2) follows. □

Lemma 2.51. Let X be a scheme of finite type over a field k and let K/k be a field extension.

Let XK = X ⊗k SpecK be the base change of X to SpecK. Then X is Gorenstein if and only

if XK is Gorenstein.

Proof. See [Stacks, Lemma 0C03]. □

Lemma 2.52. Let k be an algebraically closed field and let X → Spec k be a normal surface

over k. Let K be another algebraically closed field and let K/k be a field extension. Denote by

X ′ = X ⊗k K the base change of X to K. Then X has at most Du Val singularities if and

only if X ′ has at most Du Val singularities.

Proof. First observe that X is Gorenstein if and only if X ′ is Gorenstein by Lemma 2.51.

Therefore we can assume that X and X ′ are Gorenstein. Let f : S → X be a desingularization

of X and f ′ : S′ → X ′ the base change of f through X ′ → X. Thus, we have the following

diagram

S′ S

X ′ X

SpecK Spec k

g′

f ′ f

g

We have that S′ is again smooth over SpecK by [Stacks, Lemma 01VB]. Moreover, f ′ is again

proper by [Stacks, Lemma 01W4]. Observe further that

f ′∗OS′ = f ′∗(g
′)∗OS ≃ g∗f∗OS = g∗OX = OX′

where the second isomorphism comes from flat base change (Lemma B.1). Using the charac-

terization of Proposition 2.50 we have to show that χ(OS) = χ(OX) if and only if χ(OS′) =

χ(OX′). This is clear by Corollary B.3. □

2.5. Canonical models of surfaces

Let S be a minimal surface of general type over an algebraically closed field k. We define

the canonical ring of S as

R(S) =
⊕
m≥0

H0(S, ω⊗m
S ).

In an appendix to Zariski [Zar62], Mumford proved in [Mum62, Theorem] that R(S) is a finitely

generated ring over k = H0(S,OS). In particular R(S) is noetherian. The ring R(S) has a

natural N-graduation given by R(S)m = H0(S, ω⊗m
S ) for all integers m ≥ 0.

Definition 2.53. With notation as above, we define the canonical model of S as

X = ProjR(S).

https://stacks.math.columbia.edu/tag/0C03
https://stacks.math.columbia.edu/tag/01VB
https://stacks.math.columbia.edu/tag/01W4
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Theorem 2.54. Let S be a minimal surface of general type. Then for sufficiently large n

the complete linear system |nKS | is base point free and defines a morphism

ϕn = ϕ|nKS | : S → PN
k

where N = dimk H
0(S, ω⊗n

S )− 1 with the following properties: the image Xn = ϕn(S) is a nor-

mal surface having at most Du Val singularities, and ϕn is an isomorphism of S\ϕ−1
n (Sing(Xn))

onto Xn \ Sing(Xn), where Sing(Xn) denotes the singular locus of Xn. Hence ϕn : S → ϕn(S)

is a desingularization.

Proof. See [Băd01, Theorem 9.1]. □

Remark 2.55. The morphism ϕn of Theorem 2.54 is given by contracting (−2)-curves on
S to points, see [Băd01, Proof of Theorem 9.1].

If there are no such curves on S, then by Corollary 2.37, ωS is ample. Then there exists an

integer n > 0 such that ω⊗n
S is very ample. In this case, ϕn is a closed embedding and in

particular an isomorphism on the image.

Therefore there only remains to consider the case when such curves do exist on S. It turns

out that there is just a finite number of these curves, see [Băd01, Proof of Theorem 9.1], say

E1, . . . , Er and the morphism πn : S → Xn is given by contracting (−2)-curves E1, . . . , Er to

points. Moreover, the intersection matrix ||(Ei · Ej)||i,j is negative definite ([Băd01, Proof of

Theorem 9.1]) and thus

ϕ∗nωXn
= ωS

by [Art62, Theorem 2.7], see also [Băd01, Theorem 3.15]. We also note here that since ωXn is

a line bundle, we have

ϕ∗n(ω
⊗m
Xn

) = ω⊗m
S

for all integers m ∈ Z.
It is clear that S is the minimal desingularization of Xn, and thus by Proposition 2.49 we also

have

ωXn
= (ϕn)∗ωS .

Finally, by projection formula we also find

ω⊗m
Xn
≃ (ϕn)∗ϕ

∗
nω

m
Xn
≃ (ϕn)∗ω

⊗m
S

for all m ∈ Z.

Corollary 2.56. With notation as in Theorem 2.54, the canonical line bundle ωXn
is

ample.

Proof. Let F be a closed integral subscheme of Xn of dimension 1 and let E be the

proper transform of F by ϕn. It is clear that E is not among the curves Ei with (ωS ·Ei) = 0

because otherwise it would be contracted to a point by Corollary 2.37. Then

(ωXn
· F ) = (ϕ∗n(ωXn

) · E) = (ωS · E) > 0

where the positivity is because ωS is nef and (ωS · E) ̸= 0. Moreover

(ωXn
· ωXn

) = (ωS · ωS) > 0.

By the Nakai-Moishezon criterion (Corollary 2.30) we conclude. □

Definition 2.57. Let S be a minimal surface of general type. With notation as in Theorem

2.54, the surface Xn = ϕn(S) is called the n-canonical model of S. We denote by πn : S → Xn

the map from S to its n-canonical model, which is given by restricting ϕn to its image.
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Remark 2.58. By Remark 2.55 it follows that the canonical ring R(S) is identified with

R(S) =
⊕
m≥0

H0(S, ω⊗m
S ) =

⊕
m≥0

H0(Xn, ω
⊗m
Xn

),

and that we have an isomorphism

Xn ≃ Proj
( ⊕
m≥0

H0(Xn, ω
⊗m
Xn

)
)
= ProjR(S) = X,

where the first isomorphism is given by [GW20, Corollary 13.75], because ωXn is ample by

Corollary 2.56. Thus, for sufficiently large n, the n-canonical model of S is isomorphic to

the canonical model of S. In particular, post-composing πn with this isomorphism we get a

morphism

π : S → X.

Proposition 2.59. Let S be a minimal surface of general type and let π : S → X be the

map from S to its canonical model. Then for all m ∈ Z we have

(1) π∗(ω
⊗m
S ) ≃ ω⊗m

X and

(2) ω⊗m
S ≃ π∗(ω⊗m

X ).

Moreover, ωX is ample.

Proof. If m = 0, then π∗OS ≃ OX and π∗OX ≃ OS . If m ̸= 0, everything is clear by

Remark 2.55 and by Corollary 2.56. □

Theorem 2.60 (Bombieri, Ekedahl). Let k be an algebraically closed field of arbitrary

characteristic. Let S be a smooth surface such that ωS := detΩ1
S/k is big and nef, i.e. S is a

minimal surface of general type. Then

(1) for each integer i ≥ 4, ω⊗i
S is globally generated;

(2) for each integer i ≤ −1, H0(S, ω⊗i
S ) = 0;

(3) for each i ∈ Z \ {−1, 0, 1, 2}, H1(S, ω⊗i
S ) = 0;

(4) assuming char k ̸= 2, for each i ∈ Z \ {0, 1}, H1(S, ω⊗i
S ) = 0;

(5) for each integer i ≥ 2, H2(S, ω⊗i
S ) = 0;

(6) if X is the canonical model of S, for each integer m ≥ 5 the line bundle ω⊗m
X is very

ample on X.

Proof. (1): in characteristic zero Bombieri states the result in [Bom73, Theorem 2.(i)].

In positive characteristic, Ekedahl states the result in [Eke88, Main Theorem.(ii)].

(2): for i ≤ −4, by (1) we obtain that H0(S, ω
⊗(−i)
S ) ̸= 0 hence H0(S, ω⊗i

S ) = 0 because

ω
⊗(−i)
S is not trivial, as it is big, being a power of ωS which is big.

The cases i = −1,−2,−3 are obtained by taking suitable powers of sections and using

what we already know for i ≤ −4.
(3,4): if m ≥ 1, then ω⊗m

S is again big and nef. Thus, in characteristic zero, if i ≥ 2 we

have that H1(S, ω⊗i
S ) = 0 by the Kawamata–Viehweg vanishing [Kaw82, Theorem 1], [Vie82,

Theorem I]. On the other hand, if i ≤ −1, by Serre duality it holds

H1(S, ω⊗i
S ) ≃

(
H1

(
S, ω

⊗(1−i)
S

))∨
= 0

which vanishes as we said above.

In positive characteristic, Ekedahl states the result for i ≤ −2 [Eke88, Main theorem.(i)]. If

i ≥ 3, by Serre duality we obtain

H1(S, ω⊗i
S ) ≃

(
H1

(
S, ω

⊗(1−i)
S

))∨
= 0

(5): follows from (2) by Serre duality.
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(6): Bombieri proved this in characteristic zero [Bom73, Main Theorem.(i)] and Ekedahl

generalized the result in positive characteristic [Eke88, Main therem.(iii)]. See also [Bea10,

Remark X.2] or [Cat+99, Theorem 1.2]. □

Corollary 2.61. In Theorem 2.54 we can take n ≥ 5.

Proof. By looking at the proof of [Băd01, Theorem 9.1], we see that it is sufficient to

consider n sufficiently large such that the n-th power of the canonical line bundle ω⊗n
Xn

on Xn

is very ample. Thus it is sufficient to take n ≥ 5 by Theorem 2.60.(6). □

Proposition 2.62. Let k be an algebraically closed field of arbitrary characteristic. There

is a bijective correspondence between

A =

S → Spec k

∣∣∣∣∣∣∣
S is an integral scheme, proper and smooth

over k of dimension 2 with canonical

line bundle ωS big and nef


and

B =

X → Spec k

∣∣∣∣∣∣∣∣∣∣

S is an integral and normal scheme, proper

over k of dimension 2 with at most

Du Val singularities and ample canonical

line bundle ωX


which is given by sending (S → Spec k) ∈ A to (X → Spec k) where X is the canonical model

of S.

Proof. Clearly the set A is the set of minimal surfaces of general type over k. By Theorem

2.54 the canonical modelX of S is normal a surface with at most Du Val singularities. Moreover

by Proposition 2.59, the canonical line bundle ωX is ample. It follows that (X → Spec k) is an

element of B.

On the other hand, let (X → Spec k) be an element of B, and let S → X be the minimal

resolution of X, which exists by Proposition 2.43. Then by [Kle66, Proposition I.4.1] we have

that ωS is nef, because ωS = π∗ωX and ωX is nef being ample. Moreover, since by Proposition

2.59 it holds π∗ω
⊗m
S = ω⊗m

X for all m ≥ 0, we have

H0(S, ω⊗m
S ) = H0(X,π∗ω

⊗m
S ) = H0(X,ω⊗m

S ).

Then it is clear that ωS is big, as ωS is big, being ample. It follows that (S → Spec k) is an

element of A. □

Definition 2.63. We say that a surface X over k is a canonical model of a minimal surface

of general type if X → Spec k is an element of the set B in Proposition 2.62.

2.6. Examples

Example 2.64. Let S = C1×C2 be the product of two nonsingular projective curves over

k of genus g1 and g2 respectively. If ωC1
and ωC2

are the canonical bundles of the two curves,

then the canonical bundle of S is ωS ≃ p∗1ωC1 ⊗ p∗2ωC2 where p1, p2 denote the projections of S

to C1 and C2 respectively (see for example [Har77, Exeercise II.8.3]). It follows that for n > 0

we have

H0(S, ω⊗n
S ) = H0(C1, ω

⊗n
C1

)⊗H0(C2, ω
⊗n
C2

).

In particular, h0(S, ω⊗n
S ) = h0(C1, ω

⊗n
C1

) · h0(C2, ω
⊗n
C2

). Thus, if g1 ≥ 2 and g2 ≥ 2 we have

κ(S) = 2.
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Example 2.65. Let S be a smooth projective surface embedded in Pn
k such that S is

complete intersection in Pn
k , i.e. the homogeneous ideal I(S) ⊆ k[x0, . . . , xn] defining S is

generated by n − 2 homogeneous polynomial f1, . . . , fn−2 of positive degree d1, . . . , dn−2. If

Hi ⊆ Pn
k is the hypersurface with equation fi = 0 for i = 1, . . . , n− 2 we also say that S is the

complete intersection of the hypersurfaces H1, . . . ,Hn−2. Define the restriction of OPn
k
to S as

OS(m) = OPn
k
(m)⊗OS . Then by adjunction formula we have ωS = OS((

∑n−2
i=1 di)− n− 1).

We see that ωS is an ample invertible OS-module if
∑n−2

i=1 di > n+ 1. Moreover, if this is the

case, if E is a (−1)-curve on S, then by

−2 = 2pa(E)− 2 = E2 + ωS · E = −1 + ωS · E

we have that ωS · E = −1 which is an absurd. Thus S is a minimal surface of general type.

One can also prove that the irregularity of S is q(S) = 0 (see, for example, [Băd01, Example

9.6.1]).

As a particular case, if n = 3 we see that smooth hypersurfaces of degree d ≥ 5 in P3
k are

minimal surfaces of general type with q = 0.

Example 2.66. Let S′ ⊂ P3
k be the Fermat hypersurface of degree 5 given by

x50 + x51 + x52 + x53 = 0,

where xi are the coordinates of P3
k(k). By the previous example, we know that if char k ̸= 5

then S′ is a smooth minimal surface of general type with q(S′) = 0. If ξ is a primitive root of

unity of order 5, we have an automorphism of S′

u : S′ → S′

given by u(t0, t1, t2, t3) = (t0, ξt1, ξ
2t2, ξ

3t3), and it is such that u5 = idS′ . One can see that

u has no fixed points on X ′, and if we define G to be the subgroup of the automorphisms of

S′ generated by u, then we know that the quotient surface S = S′/G is a smooth projective

surface. One can prove that the homomorphism of OS′ -module α : OS → f∗OS′ defined by

f : S′ → S, induces an injective map in cohomology

0→ H1(S,OS)→ H1(S′,OS′),

see, for example, [Băd01, Example 9.6.2]. It follows that H1(S,OS) = H1(S′,OS′) = 0.

Observe that pg(S
′) = h0(S′,OS′(1)) = 4. Thus χ(OS′) = 1 − q(S′) + pg(S

′) = 5. Since

f : S′ → S is an étale morphism of degree 5, then χ(OS′) = 5χ(OS) ([Băd01, Proposition

9.7]) and f∗ωS ≃ ωS′ , which implies that ωS is ample on S. It follows that χ(OS) = 1 and by

χ(OS) = 1− q(S) + pg(S) we also have pg(S) = 0. Thus S is an example of a minimal surface

of general type with q(S) = pg(S) = 0. Surfaces with these properties are called Godeaux

surfaces.

Example 2.67. Togliatti in [Tog40] constructed an example of a degree 5 surface with

31 isolated rational double points of type A1, i.e. in the minimal desingularization, over any

singular point there is exactly one (−2)-curve. Moreover, Beauville proved that 31 is the

maximum number of ordinary double points (i.e. rational double points of type A1) on a

degree 5 surface.

Barth in [Bar96] constructed an example of a degree 6 hypersurface S in P3
C with 65 isolated

rational double points of type A1. An explicit equation defining S in P3
C with coordinates

x, y, z is

4(Φ2x2 − y2)(Φ2y2 − z2)(Φ2z2 − x2)− (1 + 2Φ)(x2 + y2 + z2 − 1)2 = 0

where Φ =
√
5+1
2 . Moreover, 65 is the maximum number of ordinary double points on a sextic

([JR97]).
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2.7. Automorphism group

Let S be a minimal surface of general type over an algebraically closed field k of arbitrary

characteristic and let π : S → X be the map to its canonical model. We want to study the

automorphism groups of S and X. We will work in a more general context.

If V is a scheme over another scheme T , we consider the functor

AutV/T : (Sch /T )op → Grp

given by sending (T ′ → T ) to the group AutT ′(T ′ ×T V ). If T = Spec k we simply write

AutV = AutV/k. We denote by Aut(V ) the group of k-automorphisms of V , i.e. it is the group

AutV (k) of k-points of AutV . See also Example A.64.

Lemma 2.68. Let k be an algebraically closed field and let V be a projective scheme over

k. Then AutV is represented by a group scheme AutV which is locally of finite type over k.

If V is Gorenstein and moreover V is such that either the canonical bundle ωV or the anti-

canonical bundle ω∨
V is ample, then AutV is represented by a group scheme AutV which is of

finite type over k.

Proof. The first assertion follows by [MO67, Theorem 3.7]. Suppose now that V is

Gorenstein and that ωV is ample, the other case being analogous. We only have to prove that

AutV is quasi-compact. First, define Homk(V, V ) as in Example A.64. If f ∈ Homk(V, V )(k)

we consider the graph of f to be

Γf : V → V ×k V

and we denote by W = Γf (V ) ⊂ V ×k V the associated closed subscheme. Consider now the

scheme V ×k V . The line bundle

L = ωV ⊠ ωV = pr∗1ωV ⊗ pr∗2ωV

is ample on V ×k V . Observe that W = Γf (V ) ≃ V and under this isomorphism we have that

L|W is

(ωV ⊠ ωV )|W = id∗ωV ⊗OV
f∗ωV ≃ ω⊗2

V .

The Hilbert polynomial of W with respect to the line bundle L|W is then

P = P (m) = χ(W,L⊗m
|W ) = χ(V, ω⊗2m

V ).

We consider now the Hilbert scheme HilbL,P
V×kV/k, which parametrizes closed subschemes Z ⊂

V ×k V with Hilbert polynomial P with respect to the line bundle L|Z . This is a projective

scheme over k, see [Fan+05, Theorem 5.16].

By [Fan+05, Theorem 5.23], the functor Homk(V, V ) is representable by an open subscheme

Homk(V, V ) of HilbL,P
V×kV/k, and moreover AutV is representable by an open subscheme AutV

of Homk(V, V ). Since HilbL,P
V×kV/k is quasi-compact and noetherian, it follows that AutV is

quasi-compact. □

Corollary 2.69. Let k be an algebraically closed field. Let X be the canonical model of

a minimal surface of general type over k. Then AutX is a group scheme of finite type over k.

Proof. This follows by Lemma 2.68 because ωX is ample. □

Lemma 2.70. Let S be a minimal surface of general type over k and let X be its canonical

model. The morphism π : S → X induces a group homomorphism Aut(S)→ Aut(X) which is

an isomorphism.
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Proof. Let φ ∈ Aut(S) be an automorphism of S over k. Since the canonical bundle ωS

is preserved by φ, it follows that φ induces a unique automorphism of X over k, because by

definition X = ProjR(S). Let now ψ ∈ Aut(X). In particular, ψ is a birational map from

X to itself. Since S is birational to X, it follows that ψ induces a birational map ϕ from S

to itself. By [Băd01, Theorem 10.21] (see also [Bea10, Remarks II.13.(1)]) we have that ϕ is

necessarily an isomorphism. These are group homomorphisms which are one inverse of the

other. □

Proposition 2.71. Let k be a field of characteristic 0. Let X → Spec k be a normal

integral scheme of dimension 2, proper over k, with at most Du Val singularities such that the

canonical bundle ωX is ample. Then H0(X, TX) = 0.

Proof. Suppose first that X is smooth. By Grothendieck duality (Theorem B.14) we

have

H0(X, TX) ≃ (H2(X,Ω1
X/k ⊗OX

ωX))∨ = 0

where the vanishing follows by the Kodaira-Nakano vanishing theorem (recall that char k = 0).

If X is not smooth, then the vanishing of H0(X, TX) follows by [Bha+13, Lemma 2.5]. □

Proposition 2.72. Let k be a field of characteristic 0 and let S be a minimal surface of

general type over k. Let π : S → X be the projection to the canonical model. Then AutS and

AutX are isomorphic to the disjoint union of finitely many copies of Spec k. Moreover,

α : AutS → AutX

is an isomorphism of group schemes.

Proof. The tangent space at the identity at AutX is

TidX
AutX ≃ H0(X, TX)

by [MO67, Lemma 3.4]. Thus TidX
AutX = 0 by Proposition 2.71. Hence AutX is isomorphic

to a finite disjoint union of copies of Spec k by Lemma 1.10.

By [BW74, Proposition 1.2] it holds that π∗TS ≃ TX . It follows that

H0(S, TS) ≃ H0(X,π∗TS) ≃ H0(X, TX) = 0

by Proposition 2.71. Then AutS is isomorphic to a disjoint union of copies of Spec k by

Remark 1.11. Finally, there is just a finite numbers of copies of Spec k in AutS because

AutS(k) = Aut(S) is finite, being in bijection with Aut(X) = AutX(k) by Lemma 2.70.

It follows that α : AutS → AutX is a morphism of group schemes which are the disjoint union

of finitely many copies of Spec k and that it induces an isomorphism of groups

Aut(S)→ Aut(X)

on k-points by Lemma 2.70. Thus, α is necessarily an isomorphism. □

Remark 2.73. However, if k is an algebraically closed field such that char k = p > 0, an

analogous result of Proposition 2.72 do not hold. Suppose that X is the canonical model of a

minimal surface of general type over such a field k. By Corollary 2.69 we know that AutX is

a group scheme of finite type over k. Thus by Lemma 1.10 we know that AutX is isomorphic

to a finite disjoint union of copies of Spec k if and only if the tangent space in the identity of

AutX is zero. This do not always happen in positive characteristic; indeed there are examples

in which

TidX
AutX ≃ H0(X, TX) ̸= 0,

see [Tzi22, Proposition 3.1]. Moreover, there exists also examples of smooth surfaces S with

ample canonical line bundle and non-trivial tangent space at the identity TidX
AutS . See, for

example, [Lan83] or [She96].
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2.8. Finite generation of pluricanonical rings

Throughout this section, we prove that if S is a minimal surface of general type over an

algebraically closed field k, then the graded k-algebra⊕
m≥0

H0(S, ω⊗cm
S )

is generated in degree 1 for sufficiently large c (Proposition 2.83).

Lemma 2.74. Let r ≥ 1 be an integer, let X be a topological space and let

0→ Fr → · · · → F2 → F1 → F0 → 0

be an exact sequence of sheaves of abelian groups on X. Assume Hj−1(X,Fj) = 0 whenever

2 ≤ j ≤ r.
Then H0(X,F1)→ H0(X,F0) is surjective.

Proof. We proceed by induction on r. If r = 1 then we have an isomorphism F1 ≃ F0.

If r = 2 there is a short exact sequence

0→ F2 → F1 → F0 → 0

and we use the long exact sequence in cohomology and H1(X,F2) = 0.

The inductive step is proved as follows. Assume r ≥ 3. Suppose that the statement of the

lemma holds for r − 1 and we want to prove for r. Set G = ker(Fr−2 → Fr−3). From the long

exact sequence in cohomology induced by the short exact sequence

0→ Fr → Fr−1 → G→ 0

we deduce Hr−2(X,G) = 0. So we can apply the inductive hypothesis to the exact sequence

0→ G→ Fr−2 → · · · → F2 → F1 → F0 → 0.

and conclude. □

Definition/Proposition 2.75. Let A be a ring and let f1, . . . , fn ∈ A. We define a

complex of A-modules as follows. Set K0 = A and Kp = 0 if p is not in the range 1 ≤ p ≤ n.

For 1 ≤ p ≤ n, let
Kp =

⊕
Aei1...ip

be the free A module of rank
(
n
p

)
with basis{

ei1...ip
∣∣ 1 ≤ i1 < . . . < ip ≤ n

}
.

The differential d : Kp → Kp−1 is defined by

d(ei1...ip) =

p∑
r=1

(−1)r−1firei1...̂ir...ip ;

and for p = 1 set d(ei) = fi. One check easily that d2 = 0. This complex is called the Koszul

complex of f1, . . . , fn.

Proof. See [Mat89, §16]. □

We refer to [Mat89, §16] for properties of the Koszul complex.

Lemma 2.76. Let A be a ring and let f1, . . . , fr ∈ A be generators of the unit ideal A.

Then the Koszul complex of f1, . . . , fr is exact.

Proof. It is well known that the cohomology of the Koszul complex of f1, . . . , fr is anni-

hilated by the ideal generated by f1, . . . , fr. □
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Lemma 2.77. Let X be a proper scheme over the field k and let L be a globally generated

invertible sheaf on X. Set V = H0(X,L) and r = dimk V . Then the Koszul complex

(2) 0→ ∧rV ⊗k L
⊗(−r) → · · · → ∧2V ⊗k L

⊗(−2) → V ⊗k L
⊗(−1) → OX → 0

is an exact sequence of locally free sheaves on X.

Proof. Since L is globally generated, V ⊗k OX → L is an epimorphism of sheaves. Then

V ⊗k L
∨ → OX is an epimorphism.

Let s1, . . . , sr be a k-basis of V = H0(X,L). Let U ⊆ X be an open affine subset of X such

that L|U is trivial. Fix an isomorphism L|U ≃ OU . Then si|U corresponds to fi ∈ Γ(U,OX).

It is clear that f1, . . . , fr generate the unit ideal in Γ(U,OX). By taking sections on U of the

complex (2) we obtain the Koszul complex of f1, . . . , fr with respect to the ring Γ(U,OX).

This is exact by Lemma 2.76. □

Proposition 2.78. Let X be a proper scheme over the field k. Let L be a globally generated

invertible sheaf on X. Let b ≥ 1 be an integer. Assume Hq(X,L⊗(b−q)) = 0 whenever 1 ≤ q ≤
h0(X,L)− 1. Then the multiplication map

H0(X,L)⊗k H0(X,L⊗b)→ H0(X,L⊗(b+1))

is surjective.

Proof. Set V = H0(X,L) and r = dimk V = h0(X,L). We tensor the Koszul complex

(2), which is exact by Lemma 2.77, by L⊗(b+1) and get the exact sequence

0→ ∧rV ⊗k L
⊗(b+1−r) → · · · → ∧2V ⊗k L

⊗(b−1) → V ⊗k L
⊗b → L⊗(b+1) → 0.

We now verify that hypothesis of Lemma 2.74 are satisfied. For all 2 ≤ j ≤ r we have

Hj−1(X,∧jV ⊗k L
⊗(b+1−j)) = ∧jV ⊗k Hj−1(X,L⊗(b−(j−1))) = 0

where the last vanishing holds by hypothesis. Thus, Lemma 2.74 implies that V⊗kH
0(X,L⊗b)→

H0(X,L⊗(b+1)) is surjective. □

Lemma 2.79. Let A be a commutative N-graded ring which is generated by A1 as an A0-

algebra, namely A = A0[A1]. Let M be an N-graded A-module. Suppose that {yλ}λ∈L is a

system of homogeneous generators for M such that deg(yλ) ≤ n0 for all λ ∈ L. Then for all

n ≥ n0 and for all k ≥ 0 we have Mn+k = Ak ·Mn.

Proof. We follow the proof of [Bou61, §III.1.3 Lemme 1].

Let n ≥ n0. Let x ∈Mn+1. Write x =
∑
aλyλ as a finite linear combination of generators

of M with coefficients aλ ∈ A. Up to considering the homogeneous part of each coefficient

αλ, we can suppose without loss of generality that the aλ’s are homogeneous in A, so that

deg(aλ) = n+1−deg(yλ) ≥ 1. Since A = A0[A1] and deg(aλ) > 0, we can write aλ as a linear

combination of elements of the form a′ · a with a′ ∈ A1 and a ∈ A. It follows that x ∈ A1 ·Mn

and in particular Mn+1 = A1 ·Mn. Let now k ≥ 2. Then

Mn+k = A1 ·Mn+k−1 = A1 ·A1 · . . . ·A1︸ ︷︷ ︸
k times

·Mn

and since A = A0[A1] we have Mn+k = Ak ·Mn. □

Lemma 2.80. Let A be an N-graded commutative ring such that A = A0[A1]. Let S =⊕
i≥0 Si be an N-graded A-algebra, which is a finite A-module. Then there exists a finite set

of homogeneous generators {sλ}λ∈L for S as an A-module. Let n0 be a positive integer such

that deg(sλ) ≤ n0 for all λ ∈ L. Then

(1) for all n ≥ n0 and k ≥ 0, Sn+k = Sk · Sn;
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(2) for all d ≥ n0, S(d) = S0[Sd].

Proof. We follow the proof of [Bou61, §III.1.3 Lemme 2]. Since S is a finite A-module,

there exists a finite set of homogeneous generators {sλ}λ∈L for S as an A-module. Since L is

finite, there exists a positive integer n0 such that deg(sλ) ≤ n0 for all λ ∈ L. Then (1) follows

by Lemma 2.79. If d ≥ n0 and m > 0, we immediately obtain by (1) that Smd = (Sd)
m. It

follows that S(d) = S0[Sd]. □

Lemma 2.81. Let k be a field, let R =
⊕

i≥0Ri be an N-graded k-algebra with R0 =

k. Assume R is generated as a k-algebra by R1, R2, R3, which are k-vector spaces of finite

dimension.

Then for every integer e ≥ 5 dimk R1+4dimk R2+3dimk R3, the (6e)-th Veronese subring

R(6e) is generated in degree 1.

Proof. We follow the proof of [Bou61, §III.1.3 Proposition 3]. Set di = dimk Ri. Pick a k-

basis {x1, . . . , xd1
} of R1, a k-basis {y1, . . . , yd2

} of R2 and a k-basis {z1, . . . , zd3
} of R3. These

are homogeneous generators of the k-algebra R. Let B be the sub-k-algebra of R generated by

x61, . . . , x
6
d1
, y31 , . . . , y

3
d2
, z21 , . . . , z

2
d3
.

Observe that the degree of the elements of B is divisible by 6. Let F be the set consisting of

(3) xα1
1 · · ·x

αd1

d1
yβ1

1 · · · y
βd2

d2
zγ1

1 · · · z
γd3

d3

as 0 ≤ αi < 6, 0 ≤ βi < 3, 0 ≤ γi < 2 are such that

6 | α1 + · · ·αd1
+ 2β1 + · · ·+ 2βd2

+ 3γ1 + · · ·+ 3γd3
.

The degree of the element in (3) is at most 5d1 + 4d2 + 3d3.

Let A be the N-graded ring whose underlying ring is B with the grading given by At = B6t. By

definition of B, we have that A is generated as a k-algebra by A1. In other words A = A0[A1].

Let S be the N-graded ring whose underlying ring is the 6-th Veronese subring R(6) and the

grade is given by St = R6t. It is obvious that S is an A-algebra. Moreover elements of F are

in particular elements of the ring S. We want to show that that S is generated by F as a

B-module. In order to do that, it is sufficient to show that every element of the form

p = xα1
1 · · ·x

αd1

d1
yβ1

1 · · · y
βd2

d2
zγ1

1 · · · z
γd3

d3

with αi ≥ 0, βi ≥ 0, γi ≥ 0 such that

6 | α1 + · · ·αd1
+ 2β1 + · · ·+ 2βd2

+ 3γ1 + · · ·+ 3γd3

is a linear combination of elements of F with coefficients in B. Write

αi = 6ki + ri 1 ≤ i ≤ d1, 0 ≤ ri < 6;

βi = 3k′i + r′i 1 ≤ i ≤ d2, 0 ≤ r′i < 3;

γi = 2k
′′

i + r
′′

i 1 ≤ i ≤ d3, 0 ≤ r′′i < 2.

Define

p1 = (x61)
k1 · . . . · (x6d1

)kd1 · (y31)k
′
1 · . . . · (y3d2

)k
′
d2 · (z21)k

′′
1 · . . . · (z2d3

)k
′′
d3

p2 = xr11 · . . . · x
rd1
d1
· yr

′
1

1 · . . . · y
r′d2
d2
· zr

′′
1

1 · . . . · z
r′′d3
d3
.

We see that p1 ∈ B because is a multiplication of generators of B. Moreover p2 ∈ F because if

6 | α1 + · · ·αd1
+ 2β1 + · · ·+ 2βd2

+ 3γ1 + · · ·+ 3γd3

then also

6 | r1 + . . .+ rd1
+ 2r′1 + . . .+ 2r′d2

+ 3r′′1 + . . .+ 3r′′d3
.
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In particular we see that p = p1 · p2 so that S is generated by F as a B-module, and so also

as an A-module. By the description of the elements of F , we see that the cardinality of F is

finite. In other words, S is a finite A-module. By Lemma 2.80, there exists an integer n0 ≥ 0

such that for all d ≥ n0 we have S(d) = S0[Sd]. By Lemma 2.79, we see that it is sufficient to

take n0 as the maximum degree of a set of generators for S as a finite A-module. Thus we can

take n0 = 5d1 + 4d2 + 3d3 because this is the maximum degree of the elements of F .
Since S = R(6) we have S(d) = R(6d). Hence for all d ≥ 5d1 + 4d2 + 3d3 we have that R(6d) is

generated in degree 1. □

Proposition 2.82. Let k be an algebraically closed field of arbitrary characteristic. Let S

be a minimal smooth surface of general type over k. Let a ≥ 4 be an integer. Then:

(1) for every integer b ≥ 3, then the multiplication map

H0(S, ω⊗a
S )⊗k H0(S, ω⊗ab

S )→ H0(S, ω
⊗a(b+1)
S )

is surjective;

(2) the N-graded k-algebra ⊕
m≥0

H0(S, ω⊗am
S )

is generated by degrees ≤ 3.

Proof. (1): we have to show that the hypotheses of Proposition 2.78 are satisfied. Fix an

integer a ≥ 4 and denote L = ω⊗4
S . Observe first that L is globally generated by Theorem 2.60.

We now show that for all b ≥ 3 and for all 1 ≤ q ≤ h0(S,L)− 1 we have

Hq(S,L⊗(b−q)) = 0.

Since dimS = 2, we only have to check that it holds for q = 1, 2. But H1(S,L⊗(b−1)) = 0

because a · (b − 1) ≥ 8 and we apply Theorem 2.60.(3). Finally H2(S,L⊗(b−2)) = 0 because

a · (b − 2) ≥ 4 and we apply Theorem 2.60.(5). Thus (1) follows by Proposition 2.78. To

conclude, (2) follows immediately from (1). □

Proposition 2.83. Let k be an algebraically closed field of arbitrary characteristic. Let S

be a minimal smooth surface of general type over k. For every integer i ≥ 1, let pi = h0(S, ω⊗i
S )

be the ith plurigenus of X. If e ≥ 5p4 + 4p8 + 3p12, then the (24e)th-canonical ring⊕
m≥0

H0(X,ω⊗24em
X )

is generated in degree 1.

Proof. By Proposition 2.82 we know that the N-graded k-algebra

R =
⊕
m≥0

H0(S, ω⊗4m
S )

is generated by degrees ≤ 3. Denote by Rm = H0(S, ω⊗4m
S ) the graded part of degree m. Let

d1 = dimk R1 = dimk H
0(S, ω⊗4

S ) = p4,

d2 = dimk R2 = dimk H
0(S, ω⊗8

S ) = p8,

d3 = dimk R3 = dimk H
0(S, ω⊗12

S ) = p12.

By Lemma 2.81 we have that if e ≥ 5p4 + 4p8 + p12, then

R(6e) =
⊕
m≥0

R6em =
⊕
m≥0

H0(S, ω⊗24em
S )

is generated in degree 1. □





CHAPTER 3

Stacks of surfaces

In this chapter we study the construction of some stacks of surfaces. In order to do that, we

first recall properties of schemes over fields which are stable under field extension in §3.1 and

open or ind-constructible subsets of the target of a morphism of schemes in §3.2. Subsequently
we construct the stack of canonical models of minimal surfaces of general type in §3.4, the
stack of minimal surfaces of general type in §3.7, the stack of del Pezzo surfaces in §3.10 and

the stack of K3 surfaces in §3.9. In particular, we prove that the stack of canonical models is

algebraic (Theorem 3.50 and Theorem 3.97) and that the stack of minimal surfaces of general

type is algebraic (Theorem 3.88).

3.1. Stable properties under field extension

We will use notation introduced in Definition 1.1.

Definition 3.1. Let k be a field and let k be an algebraic closure of k. Let X be a scheme

of finite type over k. Let P be one of the following property of schemes

(1) integral;

(2) connected;

(3) regular;

(4) reduced;

(5) irreducible.

We say that the morphism X → Spec k has property P geometrically if the scheme Xk =

X ⊗k Spec k has property P.

The reader should note that, with notation as above, being geometrically P is a property

of the morphism X → Spec k, and not of the scheme X. If X → Spec k has property P
geometrically, by abuse of notation we will also say that X has property P geometrically. We

have the following key remark.

Remark 3.2. If k = k, then X → Spec k is geometrically P if and only if X has property

P.

Lemma 3.3. Let X be a scheme of finite type over a field k. Let K/k be a field extension

and let XK = X ⊗k SpecK be the base change. Then

(1) X is geometrically integral if and only if XK is geometrically integral;

(2) X is geometrically normal if and only if XK is geometrically normal.

Proof. A scheme is geometrically integral if and only if it is both geometrically reduced

and geometrically irreducible. Then (1) follows by [Stacks, Lemma 0384] and [Stacks, Lemma

054P]. Finally, (2) follows by [Stacks, Lemma 038P]. □

Proposition 3.4. Let X be an integral scheme of finite type over a field k and let K/k

be a field extension. Then every irreducible component of XK = X ⊗k SpecK has dimension

equal to the dimension of X.

Proof. See [Gro67, Corollaire IV.4.1.4] or [Har77, Exercise II.3.20]. □
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Proposition 3.5. Let X be a proper scheme over a field k. Let L be a line bundle on X.

Let K/k be a field extension and let

XK = X ⊗k SpecK X

SpecK Spec k

φ

be the base change. Denote LXK
= φ∗L. Then

(1) L is ample on X if and only if LXK
is ample on XK ;

(2) L is nef for X if and only if LXK
is nef for XK ;

(3) the pullback map

φ∗ : Pic(X)→ Pic(XK)

is injective;

(4) if X, XK are both integral schemes, then L is big for X if and only if LXK
is big for

XK ;

(5) if X is integral and Gorenstein then ωXK
= φ∗ωX and

(ωn
XK

) = (ωn
X)

where n = dim(X) = dim(XK).

Proof. (1): follows by [Alp24, Proposition B.2.9], [GW20, Proposition 13.64], [GW20,

Proposition 14.58].

(2): follows by [Alp24, Proposition B.2.15]. See also [Kle66, Proposition I.4.1].

(3): the scheme X is quasi-compact and quasi-separated, because it is proper over Spec k.

Moreover, H0(X,OX) is a finite-dimensional k-vector space because X is proper over k, see

[GW20, Theorem 12.65] or [GW23, Corollary 23.18]. Then by [Stacks, Lemma 0CC5] we con-

clude.

(4): follows by [Alp24, Proposition B.2.24].

(5): observe that XK is Gorenstein by Lemma 2.51 and that XK is again proper over K,

because XK → SpecK is the pullback of a proper and flat morphism of schemes. Then ωX

(resp. ωXK
) is a line bundle on X (resp. XK) by Proposition B.13. Then by §B.4 we know

that ωXK
≃ φ∗ωX . Hence the statement follows by Lemma 2.28. □

Proposition 3.6. Let f : X → Y and g : Y ′ → Y be morphisms of schemes. Let

X ′ = X ×Y Y ′ X

Y ′ Y

g′

f ′ f

g

be the base change of f to Y . Let P be one of the following properties of morphism of schemes

(1) proper;

(2) flat;

(3) of finite presentation;

(4) smooth.

If f has property P then f ′ has property P.
Moreover, the same fact holds if X,X ′, Y, Y ′ are algebraic spaces.

https://stacks.math.columbia.edu/tag/0CC5
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Proof. We use [Stacks, Lemma 01W4], [Stacks, Lemma 01U9], [Stacks, Lemma 01TS],

[Stacks, Lemma 01VB] for schemes.

The statement for algebraic spaces follows by [Stacks, Lemma 03XR], [Stacks, Lemma 03MO],

[Stacks, Lemma 04WP], [Stacks, Lemma 03ZE]. □

3.2. Open and ind-constructible properties on the target

Let f : X → Y be a morphism of schemes. Suppose that P is property of a schemes over

fields. In this section we want to study the subsets of Y of the form

YP = {y ∈ Y | P holds for Xy over κ(y)} .

Under certain hypotheses, we will show that YP is open in Y for some P, while in other

cases it will be an ind-constructible subset of Y (Definition 3.7).

We follow conventions of [Gro67], which are the same as [Stacks], but they differ from the

second version of [GD71].

Definition 3.7. Let X be a topological space and let E be a subset of X.

• We say that E is retro-compact if for every quasi-compact open V ⊆ X, the intersec-

tion E ∩ V is quasi-compact.

• We say that E is constructible in X if E is a finite union of subsets of the form U∩V c,

where U and V are open and retro-compact in X.

• We say that E is locally constructible in X if there exists an open covering X =
⋃

i Vi
such that each E ∩ Vi is constructible in Vi.

• We say that E is ind-constructible in X if for every point x ∈ X there exists an open

neighbourhood x ∈ U in X such that E ∩ U is the union of locally constructible

subsets of U .

Remark 3.8. It is clear that if E is locally constructible in X, then it is also ind-

constructible in X.

Proposition 3.9. Let X be a noetherian topological space. The constructible sets in X

are precisely the finite unions of locally closed subsets of X. In particular, open subsets and

closed subsets of X are constructible.

Proof. See [Stacks, Lemma 005L]. □

Proposition 3.10. Let X be a noetherian scheme and let E ⊆ X be a subset.

(1) E is closed if and only if E is locally constructible and stable under specialization.

(2) E is open if and only if E is locally constructible and stable under generization.

Proof. See [GW20, Lemma 10.17]. □

Proposition 3.11. Let f : X → Y be a proper, flat and finitely presented morphism of

schemes. Then the following subset of Y are open in Y :

(1) the set of y ∈ Y such that the fibre Xy is geometrically integral;

(2) the set of y ∈ Y such that the fibre Xy is geometrically normal.

Proof. See [Gro67, Théorème IV.12.2.4 (iv) and (viii)]. □

Proposition 3.12. Let f : X → Y be a proper, flat and finitely presented morphism of

schemes. Let

ηX/Y : Y → {0, 1, 2, 3, . . . ,∞}
be the function which associate to y ∈ Y the dimension of the fibre Xy. Then ηX/Y is locally

constant.

https://stacks.math.columbia.edu/tag/01W4
https://stacks.math.columbia.edu/tag/01U9
https://stacks.math.columbia.edu/tag/01TS
https://stacks.math.columbia.edu/tag/01VB
https://stacks.math.columbia.edu/tag/03XR
https://stacks.math.columbia.edu/tag/03MO
https://stacks.math.columbia.edu/tag/04WP
https://stacks.math.columbia.edu/tag/03ZE
https://stacks.math.columbia.edu/tag/005L
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Proof. See [Stacks, Lemma 0D4J]. □

Proposition 3.13. Let f : X → Y be a proper, flat and finitely presented morphism of

schemes in which every fibre is a Gorenstein integral normal scheme scheme of dimension 2.

Then the function

Y → Z, y 7→ (K2
Xy

) = (ωXy
· ωXy

)

is locally constant on Y .

Proof. We know that ωX/Y is a line bundle by Proposition B.13. Then ω
⊗(n1+n2)
X/Y is

again a line bundle for all integers n1, n2 ≥ 0. By Theorem B.4, the function

y 7→
∑
i≥0

(−1)i dimκ(y) H
i

(
Xy, ω

⊗(n1+n2)
Xy

)
= χ

(
Xy, ω

⊗(n1+n2)
Xy

)
is locally constant. By Definition 2.24, the self-intersection of the canonical bundle of Xy is the

coefficient of the monomial n1n2 in the numerical polynomial χ

(
Xy, ω

⊗(n1+n2)
Xy

)
; in particular,

it is locally constant. □

Proposition 3.14. Let f : X → Y be a morphism of schemes of finite presentation and

let L be a line bundle on X. Then the set{
y ∈ Y

∣∣ LXy is ample over κ(y)
}

is ind-constructible in Y , and it is open if f is also proper.

Proof. See [Gro67, Proposition IV.9.6.2(II)] and [Gro67, Proposition IV.9.6.4]. □

Proposition 3.15. Let f : X → Y be a proper, smooth and finitely presented morphism

of schemes such that for all points y ∈ Y the geometric fibre Xy is a minimal surface of

non-negative Kodaira dimension. Then the set

Ybig =
{
y ∈ Y

∣∣ ωXy
is big

}
is open in Y .

Proof. Recall that the dualizing sheaf ωX/Y exists and it is a line bundle by Proposition

B.13.

Observe that for all y ∈ Y the line bundle ωXy
is nef by Lemma 2.31. It follows that for all

y ∈ Y the line bundle ωXy
is nef by Proposition 3.5. By the characterization of bigness for nef

divisor ([Laz04, Theorem 2.2.16] and [Alp24, Corollary B.2.23]) we have that

Ybig =
{
y ∈ Y

∣∣ ωXy is big
}
=

=
{
y ∈ Y

∣∣ (ωXy
· ωXy

) > 0
}
.

Then the statement follows by Proposition 3.13. □

Definition 3.16. Let f : X → Y be a morphism of schemes. Assume that all the fibres

Xy are locally noetherian schemes.

(1) Let x ∈ X and let y = f(x). We say that f is Gorenstein at x if f is flat at x and

the local ring OXy,x is Gorenstein.

(2) We say that f is a Gorenstein morphism if f is Gorenstein at every point of x.

Lemma 3.17. Let f : X → Y be a morphism of schemes. Assume that all the fibres Xy

are locally noetherian schemes. The following are equivalent:

(1) f is Gorenstein;

(2) f is flat and its fibres are Gorenstein.

https://stacks.math.columbia.edu/tag/0D4J
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Proof. This is clear from Definition 3.16. □

Lemma 3.18. Let f : X → Y be a morphism of schemes which is flat and locally of finite

presentation. Define

XGor = {x ∈ X | f is Gorenstein at x} .
Then formation of XGor commutes with arbitrary base change and is open in X.

Proof. See [Stacks, Lemma 0E0Q], [Stacks, Lemma 0C09]. □

Lemma 3.19. Let f : X → Y be a morphism of schemes which is proper, flat and of finite

presentation. Define

YGor = {y ∈ Y | Xy is a Gorenstein scheme} .

Then YGor is open in Y .

Proof. We claim that

YGor = Y \ f(X \XGor).

Suppose first that y ∈ YGor. Suppose by contradiction that y = f(x) for x ∈ X \XGor. Then

f would not be Gorenstein at x, and by Definition 3.16 we would have that OXy,x is not

Gorenstein. This is absurd because Xy is a Gorenstein scheme.

Suppose now that y ∈ Y \ f(X \XGor). Suppose by contradiction that Xy is not a Gorenstein

scheme. Then there exists x ∈ Xy such that OXy,x is not Gorenstein. Then x /∈ XGor, so that

x ∈ X \XGor. Since f(x) = y we have that y ∈ f(X \XGor) which is absurd.

We already know that XGor is open in X by Lemma 3.18. Then X \XGor is closed. Since f

is proper, then f(X \XGor) is closed in Y . It follows that YGor is open in Y . □

Consider now the following situation. Let f : X → Y be a proper, flat and finitely

presented morphism of schemes whose geometric fibres are integral normal Gorenstein schemes

of dimension 2. We define

YDV = {y ∈ Y | Xy has at most Du Val singularities} .

Definition 3.20. Let f : X → Y be a proper, flat and finitely presented morphism of

schemes whose geometric fibres are integral normal Gorenstein schemes of dimension 2. We

define a simultaneous resolution of f to be a proper and finitely presented map r : X ′ → X

such that the composition f ′ = f ◦ r is smooth and its geometric fibres are resolutions of the

geometric fibres of f (Definition 2.38).

Lemma 3.21. Let f : X → Y be a proper, flat and finitely presented morphism of schemes

whose geometric fibres are integral normal Gorenstein schemes of dimension 2. If there exists

a simultaneous resolution of f , then YDV is open and closed in Y .

Proof. Let r : X ′ → X be a simultaneous resolution of f . Since f is proper, flat and

finitely presented morphism, by Theorem B.4 we have that the function

a : y 7→ χ(Xy,OXy )

is locally constant on Y . Since f ′ : X ′ → Y is smooth and proper by definition, then again by

Theorem B.4 we have that also

b : y 7→ χ(X ′
y,OX′

y
)

is locally constant on Y .

Since r∗OX′
y
= OXy , applying Leray spectral sequence (Theorem B.15) we obtain a long exact

sequence

0→ H1(Xy,OXy
)→ H1(X ′

y,OX′
y
)→ H0(Xy, R

1r∗OX′
y
)→

→ H2(Xy,OXy )→ H2(X ′
y,OX′

y
)→ 0.
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A standard dimensional argument shows that

χ(Xy,OXy )− χ(X ′
y,OX′

y
) = h0(Xy, R

1(ry)∗OX′
y
).

But YDV is exactly the locus where R1(ry)∗OX′
y
= 0. Thus it is the locus where a(y)−b(y) = 0,

because if y ∈ Y is any point, then

χ(Xy,OXy ) = χ(Xy,OXy )

by Corollary B.3. Since a and b are locally constant on Y , it follows that YDV is open and

closed in Y . □

Lemma 3.22. Let f : X → Y be a proper, flat and finitely presented morphism of schemes

whose geometric fibres are integral normal Gorenstein schemes of dimension 2. Assume further

that Y = SpecR is affine. Then there exists a noetherian affine scheme Y0 and a cartesian

diagram

X X0

Y Y0

f f0

where f0 is a proper, flat and finitely presented morphism of schemes whose geometric fibres

are integral normal Gorenstein schemes of dimension 2.

Proof. First observe that every fibre of f is a geometrically integral, geometrically normal

Gorenstein scheme of dimension 2 by Lemma 3.3, Proposition 3.4 and Lemma 2.51. Consider

the set

{Rλ | Rλ ⊆ R such that Rλ is of finite type over Z} .
We denote Yλ = SpecRλ. Then by [Stacks, Lemma 01ZM] there exists an index α and a

morphism of finite presentation fα : Xα → Yα such that the diagram

X Xα

Y Yα

f fα

is cartesian. Consider now the projective system {Yλ}λ≥α of affine schemes such that Rλ are

subrings of R which are finitely generated extension of Rα. Denote fλ : Xλ → Yλ the base

change of fα to Yλ. Then f is the projective limit of the fλ’s. Denote uλ : Y → Yλ and

uλµ : Yµ → Yλ, for µ ≥ λ the morphisms induced by the inclusions. Since f is proper and

flat, there exists an index β ≥ α such that fβ is proper and flat by [Stacks, Lemma 04AI] and

[Stacks, Lemma 081F]. Moreover, fβ is of finite presentation because it comes from fα by base

change.

It remains to verify that the geometric fibres of some fλ, λ ≥ β are geometrically integral and

geometrically normal Gorenstein schemes of dimension 2. For every λ ≥ β consider Eλ ⊆ Yλ
made out of points y ∈ Yλ such that the fibre (Xλ)y satisfies the following properties:

(1) (Xλ)y is a geometrically integral and geometrically normal scheme;

(2) (Xλ)y has dimension 2;

(3) (Xλ)y is a Gorenstein scheme.

These conditions do not depend on the base field; i.e. they hold over κ(y) if and only if they

hold over some (every) field extension K of κ(y) by Lemma 3.3, Lemma 2.51 and Proposition

3.4; therefore by transitivity of the fibres ([Gro67, Proposition I.3.6.4]) we have the equalities

u−1
λµ(Eλ) = Eµ and u−1

λ (Yλ) = Y by hypothesis.

Property (1) gives an open condition by Proposition 3.11. By Proposition 3.12 the dimension

https://stacks.math.columbia.edu/tag/01ZM
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of the fibres is locally constant, hence condition (2) is open. Finally, property (3) gives an open

condition by Lemma 3.19. Since an open set in a noetherian topological space is in particular

ind-constructible by Proposition 3.10 and Remark 3.8, then properties (1),(2) and (3) define

an ind-constructible subset of Eλ.

Since the limit of ind-constructible subset Eλ, λ ≥ β, coincides with the limit of Yλ’s according

to [Gro67, Corollaire IV.8.3.5], there exists an index γ ≥ β such that Eγ = Yγ . □

Lemma 3.23. Let X → Y be a proper, flat and finitely presented morphism of schemes

whose fibres are geometrically integral, geometrically normal, of dimension 2 and Gorenstein.

Then YDV is locally constructible in Y .

Proof. Up to considering an affine covering of Y , we assume that Y is affine. Moreover, by

an argument of noetherian approximation, it is not restrictive to assume that Y is noetherian,

as we now explain.

By Lemma 3.22 there exists a morphism of schemes X ′ → Y ′ with the same properties as

X → Y and a cartesian diagram

X X ′

Y Y ′
u

such that Y ′ is noetherian. If Y ′
DV is locally constructible, then YDV = u−1(Y ′

DV) is again

locally constructible by [GW20, Proposition 10.43]. Thus, it is not restrictive to assume Y

noetherian.

By [Art74a, Theorem 1] there exists an algebraic space R which is locally of finite type over

Y ([Art69, Theorem 5.3]) representing the functor of simultaneous resolutions (see [Art74a,

Introduction]). It follows that for an étale presentation U → R, there exists a simultaneous

resolution of X ×Y U → U , where U is a scheme, corresponding to the étale presentation

U → R. By Lemma 3.21 we have that UDV is open and closed in U . In particular, UDV is

locally constructible by Proposition 3.9. Denote by f : U → Y the composition, which is a

morphism of schemes.

Since Y is noetherian, then R is also locally of finite presentation over Y . It follows in particular

that U is locally of finite presentation over Y . Since UDV = f−1(YDV ) it follows that YDV is

locally constructible by [GD71, Corollaire 7.2.10]. □

Lemma 3.24. Let X → Y be a proper, flat and finitely presented morphism of schemes

whose fibres are geometrically integral, geometrically normal, of dimension 2 and Gorenstein.

Assume further that Y = SpecR is the spectrum of a discrete valuation ring. Let y0 be the

special point of Y and let ξ be the generic point of Y . If y0 ∈ YDV then ξ ∈ YDV.

Proof. See [Lie08, Proposition 6.1]. □

Lemma 3.25. Let X → Y be a proper, flat and finitely presented morphism of schemes

whose fibres are geometrically integral, geometrically normal, of dimension 2 and Gorenstein.

Let y0, y1 ∈ Y such that y0 ∈ {y1}. If y0 ∈ YDV then y1 ∈ YDV.

Proof. Suppose by contradiction that y1 /∈ YDV. We have that y0 ∈ Y is in the closure

of the image of the morphism

f : U \ UDV → Y

which is the restriction to U \UDV of the morphism that we constructed in the proof of Lemma

3.23. Then by [Stacks, Lemma 0CM2] there exists a commutative diagram

https://stacks.math.columbia.edu/tag/0CM2
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SpecK U \ UDV

SpecR Y

f

where R is a discrete valuation ring, K = frac(R), and the closed point of SpecR maps to y0.

We can assume moreover that the generic point of SpecR maps to y1 (see proof of [Stacks,

Lemma 0CM2]).

If we base change the morphism (X → Y ) to T = SpecR we obtain a cartesian diagram

XT X

T Y

g

where g is again a proper, flat and finitely presented morphism of schemes (Proposition 3.6)

whose fibres are geometrically integral, geometrically normal, of dimension 2 and Gorenstein,

because they are in particular fibres of the starting family.

The fibre over the special point t0 ∈ T = SpecR is given by a cartesian diagram

X0 XT X

Specκ(t0) T = SpecR Y

g

and t0 ∈ TDV because t0 maps to y0 and y0 ∈ YDV by hypothesis. However, the generic point

ξ ∈ T is not in TDV because ξ maps to y1 and y1 /∈ YDV by assumption. This is absurd by

Lemma 3.24. □

Corollary 3.26. Let X → Y be a proper, flat and finitely presented morphism of schemes

whose fibres are geometrically integral, geometrically normal, of dimension 2 and Gorenstein.

Assume that Y is noetherian. Then YDV is open in Y .

Proof. This follows immediately by Lemma 3.25, Lemma 3.23 and Proposition 3.10. □

Proposition 3.27. Let f : X → Y be a proper, smooth and finitely presented morphism

of schemes whose fibres are integral schemes. Then the set

Y≥0 =
{
y ∈ Y

∣∣∣ ∃ m ∈ N≥1 such that dimκ(y) H
0(Xy, ω

⊗m
Xy

) ̸= 0
}

is ind-constructible in Y .

Proof. Define the following subset of Y :

E =
{
y ∈ Y

∣∣∣ dimκ(y) H
0(Xy, ω

⊗m
Xy

) = 0 ∀m ≥ 1
}
.

It is clear that

Y≥0 = Y \ E =
⋃
m≥1

{
y ∈ Y

∣∣∣ dimκ(y) H
0(Xy, ω

⊗m
Xy

) > 0
}
.

Denote Am =
{
y ∈ Y

∣∣∣ dimκ(y) H
0(Xy, ω

⊗m
Xy

) > 0
}
. Each Am is a locally constructible set

by Theorem B.4. In particular, each Am is ind-constructible by Remark 3.8. It follows that

Y≥0 is union of ind-constructible sets, and thus it is ind-constructible by [Gro67, Proposition

IV.1.9.5]. □

https://stacks.math.columbia.edu/tag/0CM2


3.2. OPEN AND IND-CONSTRUCTIBLE PROPERTIES ON THE TARGET 45

Corollary 3.28. Let f : X → Y be a proper, smooth and finitely presented morphism of

schemes whose fibres are integral schemes of dimension 2. Then the set

{y ∈ Y | κ(Xy) ≥ 0}

is ind-constructible in Y , where κ(Xy) is the Kodaira dimension of the geometric fibre over

κ(y).

Proof. Observe that the set in the statement is

{y ∈ Y | ∃ m ∈ N≥1 such that pm(Xy) ̸= 0} =

=
{
y ∈ Y

∣∣∣ ∃ m ∈ N≥1 such that dimκ(y) H
0(Xy, ω

⊗m
Xy

) ̸= 0
}
=

=
{
y ∈ Y

∣∣∣ ∃ m ∈ N≥1 such that dimκ(y) H
0(Xy, ω

⊗m
Xy

) ̸= 0
}
,

where in the last equality we used Corollary B.3. Then the statement follows by Proposition

3.27. □

Proposition 3.29. Let f : X → Y be a proper, smooth and finitely presented morphism

of schemes whose fibres are geometrically integral schemes of dimension 2. Consider the set

Ymin = {y ∈ Y | Xy is a minimal surface} .

Then

(1) Ymin is closed in Y .

(2) If the geometric fibres of f have non-negative Kodaira dimension, then Ymin is also

open in Y .

Proof. (1): Let H = HilbX/Y be the relative Hilbert scheme ([Stacks, Section 0CZX])

which is locally of finite presentation over Y by [Stacks, Proposition 0D01]. For every point

y ∈ Y we have a cartesian diagram

HilbXy HilbXy H

κ(y) κ(y) Y

π

where HilbXy
(resp. HilbXy

) is the Hilbert scheme parametrizing closed subschemes ofXy (resp.

Xy), proper over κ(y) (resp. κ(y)). Suppose that C ⊂ Xy is a (−1)-curve on Xy (Definition

2.15), and denote by i : C ↪→ Xy the closed immersion. Then the normal bundle of C in Xy is

NC/Xy
≃ OP1

κ(y)
(−1). It follows that

(4) H0(C,NC/Xy
) = H1(C,NC/Xy

) = 0.

By deformation theory, there exists an isomorphism T[C]HilbXy
≃ H0(C,NC/Xy

), where

HilbXy
is the functor defined in [TV13, §2.4.2], see [TV13, Theorem 3.26]. Moreover, the space

H1(C,NC/Xy
) is an obstruction space for the functor HilbXy and the object C ∈ HilbXy (κ(y)),

because C is a local complete intersection in Xy, see [TV13, Theorem 5.21]; note that we may

also consider the deformation category HilbC↪→Xy
associated to the category HilbXy

and the

object C ∈ HilbXy
(κ(y)), as in [TV13, §2]. The category HilbC↪→Xy

contains only objects of

HilbXy that restrict to C over Specκ(y).

By above arguments and Equation (4) we have that T[C]HilbXy
= 0 and thus [C] is a reduced

isolated point of the scheme HilbXy
. Again by above arguments and Equation (4) it follows

that the deformation problem HilbC↪→Xy
is unobstructed (Definition [TV13, Definition 5.1]).

It follows that the scheme HilbXy is smooth in a neighbourhood of [C], and moreover that

π : H → Y is smooth in a neighbourhood of [C] by [Kol96, Theorem 2.10].

https://stacks.math.columbia.edu/tag/0CZX
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In particular, one can show that there exists an open neighbourhood V of [C] in H such that

π|V : V → π(V ) is étale. We choose V sufficiently small such that points of V corresponds to

(−1)-curves of some fibres near to Xy. The fact that C deforms to (−1) curves follows from the

fact that C ≃ P1
κ(y) and P1

κ(y) is rigid, having H1(P1
κ(y), TP1

κ(y)
) = 0 [Ser06, Corollary 1.2.15 and

Example 1.2.16]; while the self-intersection of a deformation of C remains −1 because of the

invariance of the self-intersection under deformations, see also [Ser06, Example 3.4.24]. Since

étale maps are open, then π(V ) is open in Y . Equivalently, Ymin is closed in Y .

(2): Suppose now that the geometric fibres of f have non-negative Kodaira dimension.

Working locally, we may assume that Y is affine. By an argument of noetherian approximation,

we may also assume that Y is noetherian, see also the proof of Lemma 3.22. To show that Y ′

is open in Y , it is sufficient to show that Y ′ is stable under generization by Proposition 3.10.

Moreover, by [Stacks, Lemma 0CM2] it is sufficient to consider the case in which Y = SpecR is

the spectrum of a discrete valuation ring, see also the proof of Lemma 3.25. Then the statement

follows by [Art74a, Lemma 2.1] or by [Alp24, Proposition B.2.17] using Lemma 2.31. □

3.3. Families

In this chapter, we will define categories whose objects are morphisms of schemes, or more

generally, morphisms of algebraic spaces from an algebraic space X to a scheme T . We study

here some properties that will hold in all categories that we consider.

Consider the following list of properties of morphisms of schemes or algebraic spaces.

P1: proper;

P2: flat;

P3: of finite presentation;

P4: smooth.

We now define an example category which is representative of all the categories that we

will consider in this chapter.

Definition 3.30. Let Pmor ⊆ {P1, P2, P3, P4} and let Pfib be a finite set of properties of

schemes over a field. We define a category C as follows:

• objects of C are morphisms (X → T ) of schemes with properties in Pmor and such

that each geometric fibre has properties in Pfib over the base field;

• an arrow (X ′ → T ′)→ (X → T ) between two objects is a pair (f, g) where f : X ′ →
X, g : T ′ → T are morphisms of schemes such that the diagram

X ′ X

T ′ T

f

g

is cartesian, i.e. a pullback.

Proposition 3.31. With notation as above, there exists a forgetful functor

F : C → Sch

(X → T ) 7→ T

(f, g) 7→ g

which makes C fibred in groupoids over Sch.

Proof. First, we prove that C is fibred over Sch, Definition A.45. Let T ∈ Sch and

(a : X → T ) ∈ C. Let g : T ′ → T be a morphism of schemes, i.e. an arrow in Sch. We have

to show that there exists a cartesian arrow (f, g) : (X ′ → T ′) → (X → T ) in C such that

F ((f, g)) = g. Consider the cartesian diagram of schemes

https://stacks.math.columbia.edu/tag/0CM2
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X ′ = X ×T T
′ X

T ′ T.

f

a′ a

g

Observe that a′ is a morphism of schemes with properties in Pmor because these properties

are stable under base change by Proposition 3.6. Moreover, each geometric fibre of a′ is in

particular a geometric fibre of a as we have a cartesian diagram as follows

(X ′)k = Xk X ′ X

Spec k T ′ T

f

a′ a

g

for all geometric points Spec k → T ′ of T ′. It follows that geometric fibres of (a′ : X ′ → T ′)

have properties Pfib and thus a′ is an object of C. It is clear that (f, g) is a cartesian arrow,

as it is given by a cartesian diagram.

To prove that C is fibred in groupoids over Sch (Definition A.50) we have to show that for all

schemes T the fibre category C(T ) is a groupoid. This follows from the fact that an arrow of

C(T ) is (f, id), i.e. is a morphism of schemes f : X ′ → X such that the diagram

X ′ X

T T

f

id

is cartesian. Then f is necessarily an isomorphism. □

The same fact holds if we consider categories in which objects are morphism of algebraic

spaces from an algebraic space X to a scheme T .

Definition 3.32. Let Pmor ⊆ {P1, P2, P3, P4} and let Pfib be a finite set of properties of

schemes over a field. We define a category C ′ as follows:

• objects of C ′ are morphisms (X → T ) of algebraic spaces from an algebraic space X

to a scheme T with properties in Pmor and such that each geometric fibre is a scheme

and has properties in Pfib over the base field;

• an arrow (X ′ → T ′)→ (X → T ) between two objects is a pair (f, g) where f : X ′ →
X is a morphism of algebraic spaces, and g : T ′ → T is a morphism of schemes such

that the diagram

X ′ X

T ′ T

f

g

is cartesian.

Proposition 3.33. With notation as above, there exists a forgetful functor

F ′ : C ′ → Sch

(X → T ) 7→ T

(f, g) 7→ g

which makes C ′ fibred in groupoids over Sch.

Proof. The proof is the same as in Proposition 3.31. □
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Proposition 3.34. With above notation, suppose that C (resp. C ′) is a category in which

Pfib are properties which are stable under a base change which is a field extension. Let (X → T )

be a morphism of schemes (resp. of algebraic spaces from an algebraic space X to a scheme

T ). Then the following are equivalent:

(1) (X → T ) is an object of C;

(2) (X → T ) has properties Pmor and for all points t ∈ T the geometric fibre Xt over the

geometric point Specκ(t)→ T has properties Pfib.

Proof. The fact that (2) implies (1) is clear. To prove that (2) implies (1), consider a

geometric point

σ : Spec k → T

and let t ∈ T be the unique point in the image of σ. Then σ induces an homomorphism of

rings α : κ(t)→ k between fields. Thus, the morphism σ factors as

Spec k → Specκ(t)→ T.

Since k is algebraically closed, the homomorphism of rings α factors as

κ(t)→ κ(t)→ k

and we obtain another factorization of σ as

Spec k → Specκ(t)→ T.

It follows that we have a commutative diagram

Xk Xt X

Spec k Specκ(t) T

in which the external square and the right square are cartesian. Thus also the square on the

left is cartesian by Lemma A.3. By hypotheses, properties Pfib are stable under a base change

which is a field extension. Thus, Xk has properties in Pfib. It follows that (X → T ) is an

object of C. □

Definition 3.35. With notation as above, we will say that an object (X → T ) of C or C ′

is a family, and we will say that X is the total space of the family, while T is the base scheme

of the family. Indeed an object (a : X → T ) of C or C ′ must be interpreted as a family of

schemes, namely the fibres of a, parametrized by the base scheme T .

3.4. The stack of canonical models of minimal surfaces of general type

In what follows, χ,K2 are two fixed integers.

Definition 3.36. Let T be a scheme. A family of canonical surfaces with invariants χ,K2

over T is a proper, flat and finitely presented morphism of schemes X → T such that for all

geometric points σ : Spec k → T , the fibre Xk is an integral (which implies connected) normal

scheme of dimension 2, with at most Du Val singularities and ample dualizing sheaf ωXk
such

that χ(OXk
) = χ and K2

Xk
= K2.

In other words, a family of canonical surfaces is a (proper, flat and finitely presented)

morphism of schemes such that every geometric fibre is the canonical model of a minimal

surface of general type by Proposition 2.62.

Proposition 3.37. Let X → T be a morphism of schemes. Then the following are equiv-

alent:
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(1) X → T is a family of canonical surfaces with invariants χ,K2;

(2) X → T is a proper, flat and finitely presented morphism of schemes such that for all

points t ∈ T the geometric fibre Xt is an integral normal scheme of dimension 2, with

at most Du Val singularities and ample dualizing sheaf ωXt
such that χ(OXt

) = χ

and K2
Xt

= K2.

Proof. This is clear by Proposition 3.34 because the properties of being an integral

normal scheme of dimension 2 with at most Du Val singularities, ample dualizing sheaf, Euler

characteristic χ and self-intersection of the canonical bundle K2 are stable under a base change

which is a field extension by Lemma 3.3, Lemma 2.51, Proposition 3.5, Proposition 3.4 and

Corollary B.3. □

Remark 3.38. Let p : X → T be a family of canonical surfaces and let t ∈ T be a point.

Even if κ(t) is not algebraically closed, we have a cartesian diagram

Xt Xt X

Specκ(t) Specκ(t) T.

Then Xt is a Gorenstein geometrically integral scheme of dimension 2 with ample canonical

bundle ωXt
by Lemma 3.3, Lemma 2.52 Proposition 3.4 and Proposition 3.5. Then the relative

canonical sheaf ωX/T exists, is a line bundle by Proposition B.13, and is p-ample (Definition

B.8) by Corollary B.11.

Definition 3.39. We define the categoryMcan
χ,K2 as follows.

• Objects are families of canonical surfaces with invariants χ,K2.

• An arrow (X ′ → T ′)→ (X → T ) between two objects is a pair (f, g) where f : X ′ →
X, g : T ′ → T are morphisms of schemes such that the diagram

X ′ X

T ′ T

f

g

is cartesian.

Proposition 3.40. The forgetful functor

F : Mcan
χ,K2 → Sch

(X → T ) 7→ T

makesMcan
χ,K2 a category fibred in groupoids over Sch.

Proof. This follows immediately by Proposition 3.31. □

Proposition 3.41. The categoryMcan
χ,K2 is a stack over Schét.

Proof. We will prove thatMcan
χ,K2 is a stack in the fpqc topology, which implies the state-

ment by Remark A.30. We prove that the hypotheses of [Vis08, Theorem 4.38] are satisfied.

First we show that families of canonical surfaces with fixed invariants χ and K2 form a class

of morphisms P which is stable (Definition A.59) in the fpqc site Schfpqc. Given an object

(p : X → T ) ∈Mcan
χ,K2(T )

and isomorphisms X ′ ≃ X, T ≃ T ′, then the morphism p′ : X ′ → T ′ given by the compositions

is again a family of canonical surfaces with invariants χ,K2. Indeed p′ is a proper, flat and

finitely presented morphism of schemes, because it is the composition of p with two isomor-

phisms. Moreover, geometric fibres of p′ are isomorphic to geometric fibres of p, so that the
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conditions on the fibres are satisfied.

The condition (ii) on the base change in the definition of a stable class of arrows (Definition

A.59) is satisfied, because we have already proved thatMcan
χ,K2 is fibred over Sch. Hence being

a family of canonical surfaces with fixed invariants χ,K2 is a stable condition.

In order to prove that P is local (Definition A.60), let X → T be any morphism of schemes.

Let {Ti → T}{i∈I} be an fpqc covering, and suppose that Xi = Ti ×T X → Ti is a family of

canonical surfaces with fixed invariants χ,K2 for all i ∈ I. We have to show that also X → T is

a family of canonical surfaces with the same invariants χ,K2. The properties of being proper,

flat and finitely presented for a morphism of schemes are fpqc local properties on the base,

see [Stacks, Lemma 02L1], [Stacks, Lemma 02L2] and [Stacks, Lemma 02L0]. It follows that

X → T is a proper, flat and finitely presented morphism of schemes. By Proposition 3.37, we

have to show that for all points t : Specκ(t) → T , if κ(t) is an algebraic closure of κ(t), then

the geometric fibre over κ(t) is a canonical surface with invariants χ,K2. By surjectivity of∐
i Ti → T there exists a point t′ ∈ Ti for some i ∈ I which is sent to t. Thus we obtain a

morphism of schemes

Specκ(t′)→ Ti → T

whose image is t ∈ T . Pre-composing with an algebraic closure κ(t′) of κ(t′) we obtain a

geometric point of T

σ : Specκ(t′)→ T

which factorizes as

(5) Specκ(t′)→ Specκ(t)→ T

as proved in Proposition 3.34.

Observe that we have a commutative diagram

(Xi)κ(t′) Xi X

Specκ(t′) Ti T

in which the squares on the right and on the left are cartesian. Thus, also the external square

is cartesian, Xκ(t′) ≃ (Xi)κ(t′) and Xκ(t′) → Specκ(t′) is a geometric fibre of X → T . Since

Xi → Ti is a family of canonical surfaces with fixed invariants χ,K2, then this geometric fibre

is a canonical surface with invariants χ,K2.

By Equation (5) it follows that we have a cartesian diagram

Xκ(t′) Xt X

κ(t′) Specκ(t) T.

But then also Xt is a canonical surface with invariants χ,K2 by Lemma 3.3, Lemma 2.52,

Proposition 3.5 and Proposition 3.4. Then X → T is a family of canonical surfaces with

invariants χ,K2 by Proposition 3.37. This shows that being a family of canonical surfaces is a

local condition in the fpqc topology.

For each object p : X → T of Mcan
χ,K2(T ) we have an invertible sheaf ωX/T which is ample

relative to the morphism p, see Remark 3.38. Moreover, formation on ωX/T is compatible with

base change, i.e. if we have a cartesian diagram of schemes

https://stacks.math.columbia.edu/tag/02L1
https://stacks.math.columbia.edu/tag/02L2
https://stacks.math.columbia.edu/tag/02L0
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Q R X

V U T

f g

whose columns are objects ofMcan
χ,K2 , then the diagram

f∗g∗ωX/T (g ◦ f)∗ωX/T

f∗ωR/U ωQ/V

of invertible sheaves on Q commutes, see [Con00, Theorem 3.6.1]. ThenMcan
χ,K2 is a stack over

Schfpqc by [Vis08, Theorem 4.38] and then also over Schét. □

Definition 3.42. We define the stack of canonical models as

Mcan =
∐
χ,K2

Mcan
χ,K2 .

as χ,K2 runs in Z and define families of canonical surfaces to be the objects of Mcan. An

object (X → Spec k) ∈ Mcan(k) over an algebraically closed field k is the canonical model of

a minimal surface of general type over k (Definition 2.63).

Let f : S → k be a minimal surface of general type over an algebraically closed field

k of arbitrary characteristic (Definitions 2.6 and 2.20). By Theorem 2.60(3) we know that

H1(S, ω⊗5
S ) = H2(S, ω⊗5

S ) = 0. We now prove the same vanishing for canonical surfaces.

Lemma 3.43. Let X → Spec k be a canonical surface over an algebraically closed field k.

Let m ≥ 1 be an integer. Then

H1(X,ω⊗5m
X ) = H2(X,ω⊗5m

X ) = 0.

Proof. This is just an application of the Leray spectral sequence (Theorem B.15) and

Lemma B.16. We will spell out the result in this particular case. Let π : S → X be the

minimal desingularization of X (Definition 2.40, so that S is a minimal surface of general type

and X is its canonical model, see also Proposition 2.62.

We know that π∗ω⊗n
X ≃ ω⊗n

S for all n ∈ Z by Proposition 2.59. It follows that for all

integers i ≥ 0 we have

(6) Riπ∗ω
⊗(−5m+1)
S = Riπ∗π

∗ω
⊗(−5m+1)
X ≃ ω⊗(−5m+1)

X ⊗OX
Riπ∗OS ,

where the last isomorphism is given by projection formula [Stacks, Lemma 01E8]. Recall that

R1π∗OS = 0 by Proposition 2.47. Moreover, the fibres of π have dimension ≤ 1, being only

points or curves, so that the higher direct images Riπ∗OS are zero for all i ≥ 2 by [GW23,

Corollary 23.146] (observe that π is proper and hence also of finite presentation because X and

S are noetherian schemes). We conclude by Equation (6) that

Riπ∗ω
⊗(−5m+1)
S = 0 for all i ≥ 1 and

π∗ω
⊗(−5m+1)
S ≃ ω⊗(−5m+1)

X .

It follows that the second page of the Leray spectral sequence for ω
⊗(−5m+1)
S is all 0 except

from the first column. This spectral sequence converges to Hp+q(S, ω
⊗(−5m+1)
S ), so that

(7) Hp(X,ω
⊗(−5m+1)
X ) = Hp(X,π∗ω

⊗(−5m+1)
S ) ≃ Hp(S, ω

⊗(−5m+1)
S ).

https://stacks.math.columbia.edu/tag/01E8


52 3. STACKS OF SURFACES

By Theorem 2.60 we have H1(S, ω
⊗(−5m+1)
S ) = 0 for all m ≥ 1 and thus by Equation (7) for

p = 1 we immediately obtain

H1(X,ω⊗5m
X ) ≃ (H1(X,ω

⊗(−5m+1)
X ))∨ = 0.

Again by Theorem 2.60 we have H0(S, ω
⊗(−5m+1)
S ) = 0 for all m ≥ 1 and thus by Equation (7)

with p = 0 it follows that H0(X,ω
⊗(−5m+1)
X ) = 0. Then

H2(X,ω⊗5m
X ) ≃ (H0(X,ω

⊗(−5m+1)
X ))∨ = 0. □

Corollary 3.44. Let X → T be a family of canonical surfaces and let m ≥ 1 be an

integer. Then for every point t : Specκ(t)→ T we have

H1(Xt, ω
⊗5m
Xt

) = H2(Xt, ω
⊗5m
Xt

) = 0.

Proof. If κ(t) is an algebraically closed field, then everything is clear by Lemma 3.43.

Otherwise, consider κ(t) to be an algebraic closure of κ(t). Then the statement follows by

Lemma 3.43, because by Corollary B.3, we have that hi(Xt, ω
⊗5m
Xt

) = hi(Xt, ω
⊗5m
Xt

) for i =

1, 2. □

Lemma 3.45. Let p : X → T be an object ofMcan
χ,K2 . Then

(i) p∗OX ≃ OT ;

(ii) p∗(ω
⊗5
X/T ) is a locally free sheaf on T of rank χ+ 10K2;

(iii) for any morphism g : T ′ → T , the natural map

g∗p∗ω
⊗5
X/T → p′∗ω

⊗5
X′/T ′

is an isomorphism, where

p′ : X ′ = X ×T T
′ → T ′

denotes the base change of p to T ′.

Proof. For every point t : Specκ(t) → T of T we have that the fibre Xt over κ(t) is

geometrically connected and geometrically reduced by Remark 3.38.

It follows that H0(Xt,OXt) = κ(t) by [Stacks, Lemma 0FD2]. Then the natural map

β0(κ(t)) : p∗OX ⊗OT
κ(t)→ H0(Xt,OXt

) = κ(t)

of cohomology and base change (Theorem B.5) is surjective, and by cohomology and base

change (Theorem B.5(2)) we have that p∗OX is locally free sheaf of finite rank. We can

compute the rank of p∗OX on geometric fibres of X → T over geometric points of the form

Specκ(t)→ T . In particular, we see that p∗OX is a line bundle because

h0(Xt,OXt
) = dimκ(t) κ(t) = 1.

If t : Specκ(t) → T is a point of T , then the natural map OT → p∗OX induces a map of

κ(t)-modules

κ(t)→ p∗OX ⊗OT
κ(t),

which is surjective because post-composing with β0(κ(t)) is the identity. It follows that OT →
p∗OX is a surjective homomorphism of line bundles, hence it is an isomorphism and (i) is

proved.

Let t : Specκ(t) → T be a point of T and consider the first map of cohomology and base

change

β1(κ(t)) : R1p∗(ω
⊗5
X/T )⊗OT

κ(t)→ H1(Xt, ω
⊗5
Xt

),

which is surjective because H1(Xt, ω
⊗5
Xt

) = 0 by Corollary 3.44. By cohomology and base change

(Corollary B.6) it follows that R1p∗(ω
⊗5
X/T ) = 0, because this holds over a neighbourhood of

the point in the image of t, and t was any point of T .

https://stacks.math.columbia.edu/tag/0FD2
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Again by cohomology and base change (Corollary B.6) we have that p∗ω
⊗5
X/T is a locally free

sheaf of finite rank. We can compute the rank of this locally free sheaf on fibres. By Corollary

3.44 we have in particular that h1(Xt, ω
⊗5
Xt

) = h2(Xt, ω
⊗5
Xt

) = 0. Then

h0(Xt, ω
⊗5
Xt

) = χ(ω⊗5
Xt

) =

= χ(OXt
) +

(5KXt)(5KXt −KXt)

2
=

= χ+
5KXt

· 4KXt

2
= χ+ 10K2.

Finally, (iii) follows by cohomology and base change because again by Corollary B.6, formation

of p∗ω
⊗5
X/T commutes with base change [GW23, Definition 23.138]. □

Lemma 3.46. Let p : X → T be an object ofMcan
χ,K2 . Then the map

p∗p∗ω
⊗5
X/T → ω⊗5

X/T

is surjective, and the resulting T -map

X → P(p∗ω⊗5
X/T )

is a closed embedding.

Proof. By Lemma 3.45.(iii) and cohomology and base change (Theorem B.5), up to

restricting to geometric fibres over geometric points Specκ(t) → T , it is sufficient to verify

the statement when T = Spec k is the spectrum of an algebraically closed field k, see [Ols16,

Lemma 8.4.6]. Then the statement follows by the fact that ω⊗5
X/k is very ample in this case by

Theorem 2.60(6). □

Lemma 3.47. Let A→ B a morphism of rings such that B is flat as an A-module. Let M

be a B-module which is flat over B. Then M is flat over A.

Proof. See [Mat89, Transitivity, p.46, §3.7]. □

We will now to prove the algebraicity of the stackMcan
χ,K2 . Recall that a stack X is algebraic

if there exists a smooth surjective morphism U → X where U is a scheme. We will prove the

algebraicity ofMcan
χ,K2 by exhibiting an isomorphism ofMcan

χ,K2 with a quotient stack.

Theorem 3.48. The stackMcan
χ,K2 is an algebraic stack over Schét.

Proof. Define N = χ+ 10K2 and let

M̃ can
χ,K2 : Schop → Set

be the functor which sends any scheme T to the set of isomorphism classes of pairs

(p : X → T, σ : ON
T ≃ p∗ω⊗5

X/T ),

where (p : X → T ) is an object ofMcan
χ,K2(T ), and an isomorphism of two pairs

(p′ : X ′ → T, σ′ : ON
T ≃ p′∗ω⊗5

X′/T )→ (p : X → T, σ : ON
T ≃ p∗ω⊗5

X/T )

is given by an isomorphism of T -schemes α : X ′ → X such that the diagram

ON
T

p′∗ω
⊗5
X′/T p∗ω

⊗5
X/T

σ′ σ
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commutes, where the horizontal arrow is the one induced by α.

Let (p : X → T, σ) ∈ M̃ can
χ,K2(T ) be an isomorphism class of a pairs as above. Thus by

Lemma 3.46 we have a closed embedding

X P(p∗ω⊗5
X/T ) ≃ PN−1

T

T

ι

where the isomorphism in the top right corner is the one induced σ. By the construction of

the closed embedding ι, we also have an isomorphism

(8) τ : ι∗OPN−1
T

(1)→ ω⊗5
X/T .

If Xt → Specκ(t) is a geometric fibre of the family p : X → T , then the very ample line bundle

ω⊗5
Xt/κ(t)

(Theorem 2.60(6)) induces a closed immersion Xt ↪→ PN−1
κ(t)

with Hilbert polynomial

P (m) = χ(ω⊗5m
Xt

)

= χ(OXt
) +

(5mKXt
)(5mKXt

−KXt
)

2

= χ+
5m(5m− 1)

2
K2.

We fix the polynomial P = P (m) and consider the Hilbert scheme

H = HilbP (PN−1
Z )

parametrizing closed subschemes of PN−1
Z with Hilbert polynomial P (Example A.11), with

respect to OPN−1
Z

(1). The scheme HilbP (PN−1
Z ) represents the functorHilbP (PN−1

Z ) of Example

A.11 and we can consider the universal object in HilbP (PN−1
Z )(H) given by

Z PN−1
H = PN−1

Z ×Z H

H.

π

Observe that by definition of the Hilbert functor, π is flat and finitely presented. Moreover π

is projective, hence proper.

We claim that there exists a maximal open subscheme H1 ⊆ H such that the restriction XH1

of Z to H1 has the following property: for all geometric points Specκ(h) → H1, the fibre

Xh → Specκ(h)

(a) is geometrically integral;

(b) is geometrically normal;

(c) has at most Du Val singularities;

(d) has invariants χ,K2.

In order to prove the claim, it is sufficient to show that conditions (a) − (d) are open condi-

tions. This follows for (a) and (b) by Proposition 3.11. Once we assume (a) and (b), having

Gorenstein singularities is an open condition by Lemma 3.19 and then condition (c) is open by

Corollary 3.26. The Euler characteristic is locally constant by Theorem B.4 and once we as-

sume conditions (a), (b), (c), also the self-intersection of the canonical bundle is locally constant

by Proposition 3.13 and the claim is proved. Observe further that every fibre has dimension

2, because the Hilbert polynomial has degree 2. In other words, XH1 → H1 is a family of
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canonical surfaces with invariants χ,K2.

Moreover, there exists a maximal open subscheme H ⊆ H1 where the embedding

XH PN−1
H

H

i

satisfies the following condition. The sheaf L = i∗OPN−1
H

(1) is strongly ample, i.e. for all points

Specκ(h)→ H, the pullback LXh/κ(h) of L to the fibre is very ample and

Hi(Xh,L⊗m
Xh/κ(h)

) = 0 ∀ i,m > 0.

The fact that this is an open condition follows by [Kol23, §8.4]. It follows that we have a

diagram

XH Z PN−1
H

H H

f

where (f : SH → H) is an object of Mcan
χ,K2(H) and L is strongly ample. Moreover, by

cohomology and base change (Corollary B.6), we have that f∗L is a locally free sheaf whose

formation commutes with base change and it has rank N because on each fibre Xh → Specκ(h)

defines the embedding in PN−1
κ(h) .

If we have a pair (X → T, σ) ∈ M̃ can
χ,K2(T ), it follows that X → T is given by the pullback of

the universal family XH → H through a unique morphism X → H as in the following diagram

X XH

T H

f

because the isomorphism of equation (8) shows that ι∗OPN−1
T

(1) is strongly ample by Lemma

3.43. It follows that we have a natural transformation of functors

F : M̃ can
χ,K2 → H

sending (X → T, σ) ∈ M̃ can
χ,K2(T ) to the unique morphism of schemes T → H.

Consider now the following functor

H̃ : (Sch /H)op −→ Set

(g : T → H) 7−→

{
isomorphisms of sheaves

λ : g∗f∗(ω
⊗5
XH/H) ≃ g∗f∗(L)

}
.

We claim that H̃ is representable by an affine smooth H-scheme. It is sufficient to verify the

claim locally around any point h ∈ H. Let

h ∈ Spec(A) ⊆ H

be an affine neighbourhood of h such that both f∗(ω
⊗5
XH/H) and f∗(L) are trivial, and choose a

trivialization for these locally free sheaves of rank N . It follows that the functor H̃ restricted

to the category of schemes over Spec(A) is identified with the functor which to any A-scheme

T → Spec(A) associate the set

GLN (Γ(T,OT )),
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and this functor is representable by an affine scheme by Example A.14. We also denote by H̃

the H-scheme representing the functor H̃.

We claim now that the natural transformation of functors F lifts to a natural transformation

of functors

F : M̃ can
χ,K2 → H̃.

To prove this, recall that F maps (f ′ : X → T, σ) to the unique morphism of schemes g : T → H

as above. We have to show that the morphism g : T → H factors through H̃. In other words,

by the definition of H̃, we have to exhibit an isomorphism of sheaves g∗f∗(ω
⊗5
XH/H) ≃ g∗f∗(L).

In order to do this, consider the following diagram

PN−1
T PN−1

H

X XH

T H.

ι

g′

f ′

i

f

g

We have

g∗f∗(ω
⊗5
XH/H) ≃ f ′∗ω⊗5

X/T ≃ f
′
∗ι

∗ON−1
T (1) ≃ g∗f∗L,

where the second isomorphism is given by Equation (8).

Next we show that the morphism of functors F identifies M̃ can
χ,K2 with a closed subscheme

of H̃. Let

XH̃ PN−1

H̃

H̃

e

f̃

be the universal object over H̃. The identity morphism on the scheme H̃ corresponds to an

isomorphism of sheaves

λu : f̃∗ω
⊗5

XH̃/H̃
→ f̃∗e

∗OPN−1

H̃

(1)

by the definition of H̃. Let T → H̃ be a morphism of schemes, and let p : XT → T be

the pullback of XH̃ to T . Let j : XT ↪→ PN−1
T be the induced closed immersion, and define

L′ = j∗OPN−1
T

(1). The isomorphism λu induces a diagram of sheaves on XT

p∗p∗ω
⊗5
XT /T p∗p∗L′

ω⊗5
XT /T L′

where the surjectivity of the left vertical arrow follows by Lemma 3.46 and the same proof of

Lemma 3.46 works also for the surjectivity of the right vertical arrow. This way, the functor

M̃ can
χ,K2 is identified with the subfunctor of H̃ which to any morphism of schemes T → H̃

associates the unital set if there exists a dotted arrow filling in this diagram, and the empty

set otherwise.

This condition is represented by a closed subscheme of H̃. Indeed, denote by K the kernel of

the map

f̃∗f̃∗ω
⊗5

XH̃/H̃
→ ω⊗5

XH̃/H̃
,
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and for every T → H̃ denote by KT the kernel of the map

p̃∗p̃∗ω
⊗5
XT /T → ω⊗5

XT /T .

Then a dotted arrow filling in the diagram exists over T → H̃ if and only if the composite map

(9) KT ↪→ p∗p∗ω
⊗5
XT /T → p∗p∗L′ → L′

is zero. Let r be an integer such that the map

f∗f∗(K ⊗ L⊗r)→ K ⊗ L⊗r

is surjective, and such that f∗(K ⊗ L⊗r) is a locally free sheaves on H̃ whose formation

commutes with arbitrary base change on H̃. Then the condition that the map in Equation (9)

is zero over some T → H̃ is equivalent to the condition that the map of locally free shaves on

H̃

f∗(K ⊗ L⊗r)→ f∗L⊗r+1

pulls back to the zero bundle on T . This condition is represented by a closed subscheme of H̃

by Example A.15. This shows that M̃ can
χ,K2 is representable by a quasi-projective scheme.

Observe now that there is an action of the group scheme G = GLN (Example A.14) on

M̃ can
χ,K2 . Namely, if T is a scheme, the action of g ∈ G(T ) = GLN (Γ(T,OT )) on (X → T, σ) ∈

M̃ can
χ,K2(T ) is

g · (X → T, σ) 7→ (X → T, σ ◦ g).
Consider the map of stacks

α : M̃ can
χ,K2 →Mcan

χ,K2

which maps (X → T, σ) to (X → T ) ∈ Mcan
χ,K2(T ). For any scheme T and morphism f : T →

Mcan
χ,K2 corresponding to a family of canonical surfaces X → T , the diagram

M̃ can
χ,K2 ×Mcan

χ,K2
T M̃ can

χ,K2

T

is a principal G-bundle. Indeed the action of an element g ∈ G(T ) on an object ((X →
T, σ), (X → T )) ∈ M̃ can

χ,K2 ×Mcan
χ,K2

T only changes the isomorphism σ. It follows that we have

an isomorphism

Mcan
χ,K2 ≃ [M̃ can

χ,K2/G].

In particular,Mcan
χ,K2 is an algebraic stack by Proposition A.85. □

Remark 3.49. We will prove the algebraicity of Mcan
χ,K2 also in §3.8 using a different

method. Namely, we will verify that hypotheses of Artin’s axioms (Theorem A.119) are satis-

fied.

Theorem 3.50. The stackMcan is algebraic.

Proof. We have

Mcan =
∐
χ,K2

Mcan
χ,K2

and eachMcan
χ,K2 is algebraic by Theorem 3.48. In particular, for all χ,K2 there exists a smooth

presentation M̃ can
χ,K2 →Mcan

χ,K2 . It follows that∐
χ,K2

M̃ can
χ,K2 →Mcan

is a smooth presentation. □
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Proposition 3.51. For every K2 and χ, the stackMcan
χ,K2 is of finite type over SpecZ.

Proof. We know by the proof of Theorem 3.48 thatMcan
χ,K2 ≃ [M̃ can

χ,K2/G] where M̃ can
χ,K2 is

a quasi-projective scheme over SpecZ and G is an affine group scheme. It follows in particular

that M̃ can
χ,K2 is of finite type over Z, and then also Mcan

χ,K2 is of finite type over Z (Definition

A.91 and Remark A.92). □

Remark 3.52. By Proposition 3.51 it follows that Mcan
χ,K2 is noetherian, because M̃ can

χ,K2

is of finite type over SpecZ and we use [Stacks, Lemma 01T6].

Remark 3.53. However,Mcan is not a Deligne-Mumford stack. Indeed condition (iii) of

Theorem A.101 is not satisfied by Remark 2.73.

If we work in characteristic zero however, the stackMcan is a Deligne-Mumford stack. We

use the following notation:

Mcan,Q =Mcan ×Z SpecQ.

Proposition 3.54. The stackMcan,Q is a Deligne-Mumford stack.

Proof. Since Mcan
χ,K2 is an algebraic stack by Theorem 3.50, then also Mcan,Q is an

algebraic stack. By Theorem A.101 we have to show that for every canonical surface X over

a field k of characteristic 0, the group scheme AutX is discrete and reduced. This is what we

proved in Proposition 2.72. □

3.5. The stack of algebraic spaces

We now introduce the more general stack of proper, flat and finitely presented morphisms

of algebraic spaces. The main reference is [Stacks, Section 0D1D].

Definition 3.55. We define the category Spaces′ as follows.
• Objects are proper, flat and finitely presented morphisms of algebraic spaces X → T

from an algebraic space X to a scheme T .

• An arrow (X ′ → T ′)→ (X → T ) between two objects is a pair (f, g) where f : X ′ →
X is a morphism of algebraic spaces and g : T ′ → T is a morphism of schemes such

that the diagram

X ′ X

T ′ T

f

g

is cartesian.

Lemma 3.56. The forgetful functor

F : Spaces′ → Sch

(X → T ) 7→ T

makes Spaces′ a category fibred in groupoids over Sch.

Proof. It follows immediately by Proposition 3.33. Observe that Pfib is the empty set

here. □

Lemma 3.57. The diagonal

∆ : Spaces′ → Spaces′ ×SpecZ Spaces′

is representable by algebraic spaces.

https://stacks.math.columbia.edu/tag/01T6
https://stacks.math.columbia.edu/tag/0D1D
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Proof. Let α : T → Spaces′ ×SpecZ Spaces′ be a morphism of algebraic spaces from a

scheme T . By 2-Yoneda’s lemma A.58, α corresponds to two objects of Spaces′ over T , say
(x : X → T ) and y : (Y → T ). By Proposition A.80, it is sufficient to show that the sheaf

HomT (x, y) (Definition A.61) is an algebraic space (see also [Stacks, Lemma 045G]). This

follows from the fact that the diagram of functors

HomT (x, y) T

HomT (x, y)×HomT (y, x) HomT (x, x)×HomT (y, y)

is cartesian, where the bottom arrow is given by (ϕ, ψ) 7→ (ψ ◦ ϕ, ϕ ◦ ψ), and the right vertical

arrow is just (id, id). The morphism functors HomT (−,−) are all algebraic spaces, by [Stacks,

Proposition 0D1C]. Then the statement follows from the fact that fibre products exist in the

category of algebraic spaces, see Remark A.90. □

Allowing the total space to be an algebraic space in the definition of an object of Spaces′
allow us to prove that Spaces′ is a stack over Schfppf and thus also over Schét. The philosophy

here is that an fppf descent data for algebraic spaces is effective. This is one of the reason why

algebraic spaces have been introduced.

Lemma 3.58. The category Spaces′ is a stack over Schfppf.

Proof. We know that Spaces′ is a category fibred in groupoids over Schfppf by Lemma

3.56. We prove that conditions of Definition A.67 of a stack hold. First observe that morphisms

glue by Lemma 3.57. Suppose now that {Ti → T}i∈I is an fppf covering in Schfppf. LetXi → Ti
be an object of Spaces′ for all i ∈ I, and αij : Xi×T Tj → Xj×T Ti isomorphisms over Ti×T Tj
for each i, j ∈ I, such that the cocycle condition on Ti ×T Tj ×T Tk is satisfied. We have to

show that there exists an object X → T of Spaces′ which is compatible with restrictions. The

existence of an algebraic space over T compatible with restrictions follows by [Stacks, Lemma

0ADV.(2)], because if (f : X → T ) ∈ Spaces′, then f is in particular of finite type. To show

that this is an object of Spaces′ we use the fact that for a morphism of algebraic spaces,

the properties of being proper, flat and of finite presentation are local properties in the fppf

topology by [Stacks, Lemma 041W], [Stacks, Lemma 0422], [Stacks, Lemma 041V]. It follows

that (X → T ) is an object of Spaces′ and we are done. □

Remark 3.59. One could also define the category Spaces whose objects are morphisms

from an algebraic space X to a scheme T and morphisms are defined as for Spaces′. This also
satisfies conditions (i) and (ii) of a stack, as proved in [Stacks, Lemma 04UA].

Remark 3.60. The category Spaces is not an algebraic stack. The reason is that Artin’s

axioms (Theorem A.119) are not satisfied. Indeed, consider for example the object (ξ : A1
k →

Spec k) ∈ Spaces. Consider the functor AutA1
k
of Example A.64. By deformation theory, the

tangent space at the identity to AutA1
k
is H0(A1

k, TA1
k
) ≃ k[x], which is an infinite dimensional

k-vector space. Thus condition (d) of Artin’s axioms (Theorem A.119) is not satisfied.

Remark 3.61. The category Spaces′ is not an algebraic stack. Indeed the effectiveness

axiom (f) of Artin’s axioms (Theorem A.119) is not satisfied, and this is a necessary condition

for the algebraicity, see [Stacks, Lemma 07X8]. The reason why this condition is not satisfied

is, for example, that there exists a formal object of K3 surfaces (Section §3.9) which is not

effective, see [Stacks, Section 0D1Q], [Ser06, Example 2.5.12] and [TV13].

https://stacks.math.columbia.edu/tag/045G
https://stacks.math.columbia.edu/tag/0D1C
https://stacks.math.columbia.edu/tag/0ADV
https://stacks.math.columbia.edu/tag/0ADV
https://stacks.math.columbia.edu/tag/041W
https://stacks.math.columbia.edu/tag/0422
https://stacks.math.columbia.edu/tag/041V
https://stacks.math.columbia.edu/tag/04UA
https://stacks.math.columbia.edu/tag/07X8
https://stacks.math.columbia.edu/tag/0D1Q
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3.6. The stack of smooth surfaces

Definition 3.62. We define the category Surfacessm as the full subcategory of Spaces′
(i.e. we consider some objects of Spaces′, but all possible morphisms between them) whose

objects are families of smooth surfaces, i.e. proper, smooth and finitely presented morphisms

f : S → T of algebraic spaces, where T is a scheme and for all geometric points σ : Spec k → T

the geometric fibre of f given by a cartesian diagram

Sk S

Spec k T

f

σ

is an integral scheme of dimension 2.

In other words, if Sk → Spec k is a geometric fibre of a family of smooth surfaces, then Sk

is a smooth surface over k.

By the definition of the category Surfacessm, we have a fully faithful embedding

(10) Surfacessm ⊂ Spaces′.

Remark 3.63. If f : S → T is a family of smooth surfaces, then f is also flat by [Stacks,

Lemma 04TA].

Remark 3.64. If S is an algebraic space of dimension 2, smooth and of finite type over

a field k, then S is a scheme, by [Art73, Théorème 4.7]. Thus, in the definition of a family of

smooth surfaces it is not restrictive to assume that fibres are schemes. We will use this result

also when we discuss fibres of the stack of minimal surfaces of general type.

Proposition 3.65. Let S → T be a morphism of algebraic spaces where T is a scheme.

Then the following are equivalent:

(1) S → T is a family of smooth surfaces;

(2) S → T is a proper, smooth and finitely presented morphism of algebraic spaces such

that for every point t : Specκ(t)→ T , the fibre St over an algebraic closure κ(t)/κ(t)

of κ(t) is an integral scheme of dimension 2;

(3) S → T is a proper, smooth and finitely presented morphism of algebraic spaces such

that for every point t : Specκ(t)→ T , the fibre St is a geometrically integral scheme

of dimension 2.

Proof. The equivalence between (1) and (2) is clear by Proposition 3.34 because the

property of being an integral scheme of dimension 2 is stable under base change which is a field

extension by Lemma 3.3 and Proposition 3.4. The equivalence between (2) and (3) follows

again by the fact the properties of being geometrically integral and of dimension 2 are stable

under a base change which is a field extension. □

Lemma 3.66. Let f : S → T be a proper and flat morphism of algebraic spaces from an

algebraic space S to a scheme T . Suppose that the fibres of f are schemes. Let t : Specκ(t)→ T

be a point of T and let κ(t)/κ(t) be an algebraic closure. Then ft : St → Specκ(t) is smooth if

and only if ft : St → Specκ(t) is smooth.

Proof. The morphisms ft and ft are both flat morphisms of finite type of locally noe-

therian schemes, being the pullback of a proper and flat morphism. Then ft is smooth if and

only if St is regular by [GW20, Corollary 6.28] and this happens if and only if St → Specκ(t)

is smooth, again by [GW20, Corollary 6.28]. □

https://stacks.math.columbia.edu/tag/04TA
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Lemma 3.67. Let f : S → T be a flat and locally of finite presentation morphism of

algebraic spaces where T is a scheme and such that for all points t : Specκ(t)→ T the fibre St

is a scheme which is smooth over κ(t). Then f is smooth. Moreover, it is sufficient to require

that every geometric fibre is smooth.

Proof. By definition of a smooth morphism of algebraic spaces [Stacks, Definition 03ZC]

we have to prove that there exists a commutative diagram

U S

V T

a

h f

b

where U, V are schemes, a, b are étale and a is surjective, and h is smooth.

Since T is a scheme, we consider b to be id : T → T which is obviously an étale morphism.

Choose a : U → S to be an étale presentation, i.e. a surjective étale morphism from a scheme U ,

which exists because S is an algebraic space. Thus we only have to show that the composition

h : U
a−→ S

f−→ T

is smooth. Observe that h is flat and locally of finite presentation because f is flat and locally

of finite presentation by hypotheses, see definitions in [Stacks, Definition 03ML] and [Stacks,

Definition 03XP]. Finally over any point t : Specκ(t)→ T of T we have a diagram

Ut U

St S

Specκ(t) T

where Ut is the pullback of U to St. Hence the two squares are cartesian, and then also the

external diagram is cartesian (Lemma A.3). Thus, the fibre Ut is smooth over κ(t), being the

composition of a smooth morphism St → κ(t) with an étale morphism Ut → St. Observe that

by Lemma 3.66, this holds even if we only assume that geometric fibres are smooth. It follows

that h is smooth by [Stacks, Lemma 01V8] and we are done. □

Lemma 3.68. The forgetful functor

F : Surfacessm → Sch

(S → T ) 7→ T

makes Surfacessm a category fibred in groupoids over Sch.

Proof. Follows immediately by Proposition 3.33. □

Proposition 3.69. The cateogory Surfacessm is a stack over Schfppf.

Proof. We know that Spaces′ is a stack over Schfppf, and that Surfacessm ⊂ Spaces′.
In particular, morphisms in Surfacessm glue because they glue in Spaces′. We now prove that

objects glue in the fppf topology. Since Spaces′ is a stack by Lemma 3.58, we only have to

prove that if S → T is an object of Spaces′ and {Ti → T}i∈I is an fppf covering, the following

are equivalent:

(1) S → T is an object of Surfacessm;

(2) for each i, the base change Si → Ti is an object of Surfacessm.

https://stacks.math.columbia.edu/tag/03ZC
https://stacks.math.columbia.edu/tag/03ML
https://stacks.math.columbia.edu/tag/03XP
https://stacks.math.columbia.edu/tag/01V8
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The fact that (1) implies (2) is clear, since fibres of each pullback are in particular fibres of

the family S → T . To see the converse, assume (2) and recall that we have already proved

in the previous section that S → T is proper and finitely presented (Lemma 3.58). Moreover,

S → T is smooth because being smooth is a fpqc local property on the base by [Stacks, Lemma

0429] (see [Stacks, Definition 03YH]). Then by Proposition 3.65 we only have to prove that

for each point t : Specκ(t)→ T of T , the geometric fibre St → Specκ(t) is an integral scheme

of dimension 2.

Denote also by t ∈ T the unique point in the image of the morphism t. By surjectivity of∐
i Ti → T there exists a point t′ ∈ Ti for some i ∈ I which is sent to t. Thus we obtain a

morphism of schemes

Specκ(t′)→ Ti → T

whose image is t ∈ T . Pre-composing with an algebraic closure κ(t′) of κ(t′) we obtain a

geometric point of T

σ : Specκ(t′)→ T

which factorizes as

(11) Specκ(t′)→ Specκ(t)→ T

as proved in Proposition 3.34.

Observe that we have a commutative diagram

(Si)κ(t′) Si S

Specκ(t′) Ti T

in which the squares on the right and on the left are cartesian. Thus, also the external square

is cartesian, Sκ(t′) ≃ (Si)κ(t′) and Sκ(t′) → Specκ(t′) is a geometric fibre of S → T . Since

Si → Ti is an object of Surfacessm, then this geometric fibre is an integral scheme of dimension

2.

By the factorization in Equation (11) it follows that we have a cartesian diagram

Sκ(t′) St S

κ(t′) Specκ(t) T.

But then also St is an integral scheme of dimension 2 by Lemma 3.3 and Proposition 3.4. Then

S → T is a family of smooth surfaces. It follows that S → T is a family of smooth surfaces

over T . □

Proposition 3.70. The diagonal

∆ : Surfacessm → Surfacessm ×SpecZ Surfaces
sm

is representable by algebraic spaces.

Proof. We know that the diagonal of Spaces′ is representable by algebraic spaces by

Lemma 3.57. It follows that also the diagonal of Surfacessm is representable by algebraic

spaces, because the proof of Lemma 3.57 only uses the properties of morphisms of algebraic

spaces, and Surfacessm is a full subcategory of Spaces′, see Equation (10). □

Remark 3.71. However, Surfacessm is not an algebraic stack. See Remark 3.61.

https://stacks.math.columbia.edu/tag/0429
https://stacks.math.columbia.edu/tag/0429
https://stacks.math.columbia.edu/tag/03YH
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3.7. The stack of minimal surfaces of general type

Definition 3.72. Let T be a scheme. A family of minimal surfaces of general type over T

is a proper, smooth and finitely presented morphism of algebraic spaces S → T such that for

all geometric points σ : Spec k → T , the geometric fibre Sk is an integral scheme, of dimension

2 such that the canonical line bundle ωSk
is big and nef.

Remark 3.73. Recall that by Remark 3.64 it is not restrictive to assume that each fibre

is a scheme, as for Surfacessm.

Remark 3.74. If S is a smooth surface over an algebraically closed field k, requiring

ωS = ωS/k to be big and nef it means that S is a minimal surface of general type by Corollary

2.34. Thus, geometric fibres of a family of minimal surfaces of general type are precisely

minimal surfaces of general type.

Proposition 3.75. Let S → T be a morphism of algebraic spaces where T is a scheme.

Then the following are equivalent:

(1) S → T is a family of minimal surfaces of general type;

(2) S → T is a proper, smooth and finitely presented morphism of algebraic spaces such

that for every point t : Specκ(t)→ T , the fibre St over an algebraic closure κ(t)/κ(t)

of κ(t) is an integral scheme of dimension 2 such that the canonical line bundle ωSt

is big and nef;

(3) S → T is a proper, smooth and finitely presented morphism of algebraic spaces such

that for every point t : Specκ(t)→ T , the fibre St is a geometrically integral scheme

of dimension 2 such that the canonical line bundle ωSt
is big and nef.

Proof. The equivalence between (1) and (2) follows immediately by Proposition 3.34

because the properties of being integral, of dimension 2 with canonical line bundle big and nef

are stable properties under a base change which is a field extension by Lemma 3.3, Proposition

3.4, and Proposition 3.5.

The equivalence between (2) and (3) is clear because for every point t ∈ T we have a cartesian

diagram

St St S

Specκ(t) Specκ(t) T

and the properties required on the fibres are stable under field extensions as we have already

explained before. □

Definition 3.76. We define the categoryMmin as follows.

• Objects are families of minimal surfaces of general type.

• An arrow (S′ → T ′)→ (S → T ) between two objects is a pair (f, g) where f : S′ → S

is a morphism of algebraic spaces, g : T ′ → T is a morphism of schemes and they are

such that the diagram

S′ S

T ′ T

f

g

is cartesian.
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Remark 3.77. The category Mmin is a subcategory of Surfacessm. More precisely it is

the full subcategory whose objects are families of smooth surfaces (S → T ) whose geometric

fibres have big and nef canonical line bundle. It follows that we have a fully faithful embedding

(12) Mmin ⊂ Surfacessm,

and in particular by Equation (10) a fully faithful embedding

(13) Mmin ⊂ Surfacessm ⊂ Spaces′.

Remark 3.78. In the definition of a family of minimal surfaces of general type we allow

the total space to be an algebraic space, as forM1 (Definition 1.28). The reason is that, unlike

forMcan, we do not have a natural choice of an ample line bundle. Indeed, on each geometric

fibre we require the canonical line bundle only to be big and nef. For this reason, descent data

of families of minimal surfaces of general type may fail to glue to a family in which the total

space is a scheme. Thus we consider families in which the total space is an algebraic space.

Lemma 3.79. The forgetful functor

F : Mmin → Sch

(X → T ) 7→ T

makesMmin a category fibred in groupoids over Sch.

Proof. Follows immediately by Proposition 3.33. □

The next proposition shows that allowing the total space to be an algebraic space in the

definition of a family of minimal surfaces of general type, enables to prove thatMmin is a stack

in the étale topology.

Proposition 3.80. The categoryMmin is a stack over Schét.

Proof. The fact that morphisms glue follows from the fully faithful embedding in Equa-

tion (13) and the fact that Surfacessm is a stack (Proposition 3.69). To see that objects glue,

let {Ti → T}i∈I be an étale covering of T , which is in particular an fppf covering, and let

Si → Ti be a family of minimal surfaces of general type for all i ∈ I.
Since Surfacessm is a stack, we only have to prove that if S → T is an object of Surfacessm

and {Ti → T}i∈I is an fppf covering, the following are equivalent:

(1) S → T is an object ofMmin;

(2) for each i, the base change Si → Ti is an object ofMmin.

The fact that (1) implies (2) is clear, since fibres of each pullback are in particular fibres of the

family S → T . The proof of the fact that (2) implies (1) is the same as the proof of Proposition

3.69. Observe that we are able to reply the proof of Proposition 3.69 thanks to Proposition

3.75. □

We want now to prove the algebraicity of the stack Mmin. In order to do that, we will

verify the hypotheses of Artin’s axioms (Theorem A.119). The reader can find definitions in

§A.6.

Lemma 3.81. The diagonal

∆ :Mmin →Mmin ×SpecZMmin

is representable by algebraic spaces.

Proof. By Proposition 3.70 the diagonal of Surfacessm is representable by algebraic

spaces and Mmin is a full subcategory of Surfacessm. Thus the same proof of Proposition

3.70 works here. □
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Lemma 3.82. Let W → W ′ be a thickening in the category of schemes (i.e. W → W ′

is a closed immersion of schemes which is a homeomorphism) and let W → T be an affine

morphism of schemes. Consider the pushout in the category of schemes as in [Stacks, Lemma

07RT]

W W ′

T T ′.

Then the functor p of groupoids completing the diagram

Mmin(T ′)

Mmin(T )×Mmin(W )Mmin(W ′) Mmin(W ′)

Mmin(T ) Mmin(W )

p

is an equivalence of groupoids.

Proof. The same fact holds for Spaces′ by [Stacks, Lemma 0D1J]. Thus we have an

equivalence of categories

p̃ : Spaces′(T ′)→ Spaces′(T )×Spaces′(W ) Spaces′(W ′).

MoreoverMmin is a full subcategory of Surfacessm which is a full subcategory of Spaces′. It
follows that we only have to prove the following. Given S′ → T ′ an object of Spaces′, then
S′ → T ′ is inMmin if and only if T ×T ′ S′ → T and W ′ ×T ′ S′ →W ′ are inMmin.

Suppose first that (f : S′ → T ′) is an object of Mmin(T ′). Then the pullbacks of f over T

and W ′ are objects of Mmin(T ) and Mmin(W ′) respectively, because the geometric fibres of

the pullbacks are in particular geometric fibres of f and being smooth is preserved under base

change by Proposition 3.6.

Suppose now that T ×T ′ S′ → T and W ′ ×T ′ S′ → W ′ are in Mmin(T ) and Mmin(W ′)

respectively. Observe that T → T ′ is also a thickening by [Stacks, Lemma 07RT]. Then

the statement follows from the fact that the fibres of S′ → T ′ are the same as the fibres of

T ×T ′ S′ → T (see also [Stacks, Lemma 0D56]). In particular, S′ → T ′ is smooth by Lemma

3.67 and we are done. □

Corollary 3.83. The stackMmin satisfies the Rim-Schlessinger condition.

Proof. The (RS) condition (Definition A.105) is just a particular case of Lemma 3.82. □

Lemma 3.84. The category Mmin satisfy openness of versality over SpecZ. Similarly,

after base change openness of versality holds over any noetherian base scheme T .

Proof. The same fact holds for Spaces′ by [Stacks, Lemma 0D3X]. Then the statement

follows from the fully faithful embeddingMmin ⊂ Spaces′ of Equation (13), because if U is a

scheme of finite type over Z and x ∈Mmin(U) is an object, then in particular x ∈ Spaces′(U)

and we use that Spaces′ satisfy openness of versality over SpecZ. See also [Stacks, Lemma

0D59]. □

Lemma 3.85. Let k be a field of finite type over Z and let x0 = (S → Spec k) be an object

ofMmin(Spec k). Then the k-vector spaces

TFMmin,k,x0
and Inf(FMmin,k,x0

)

are finite dimensional.

https://stacks.math.columbia.edu/tag/07RT
https://stacks.math.columbia.edu/tag/07RT
https://stacks.math.columbia.edu/tag/0D1J
https://stacks.math.columbia.edu/tag/07RT
https://stacks.math.columbia.edu/tag/0D56
https://stacks.math.columbia.edu/tag/0D3X
https://stacks.math.columbia.edu/tag/0D59
https://stacks.math.columbia.edu/tag/0D59
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Proof. The fact holds for Spaces′ by [Stacks, Lemma 0D1K]. Then the statement fol-

lows from the fully faithful embedding Mmin ⊂ Spaces′ of Equation (13). Indeed the spaces

TFMmin,k,x0
and Inf(FMmin,k,x0

) only depends on the morphisms of the objects, see Definitions

A.106 and A.107. See also [Stacks, Lemma 0D57]. □

Lemma 3.86. Every formal object ofMmin is effective.

Proof. Let R be a noetherian complete local Z-algebra such that k = R/mR is a field

of finite type over Z. For all n ≥ 1 let ξn = (Sn → Spec(R/mn
R)) ∈ Mmin(Spec(R/mn

R)) be

an object and fn : ξn → ξn+1 be morphisms inMmin over Spec(R/mn
R)→ Spec(R/mn+1

R ). In

other words, we are given cartesian diagrams

fn :

Sn Sn+1

Spec(R/mn
R) Spec(R/mn+1

R ).

Denote by ξ = (R, ξn, fn) the given formal object and let Tn = Spec(R/mn
R). We have to show

that ξ is effective.

Consider first the base change of S1 → Spec k to an algebraic closure

S′ S1

Spec k Spec k.

It follows that S′ → Spec k is a minimal surface of general type, because it is a geometric

fibre of ξ1, which is a family of minimal surfaces of general type. By Theorem 2.54 and

Proposition 2.61 we have that the linear system |ω⊗5
S′ | defines a morphism S′ → PN

k
(where

N = h0(S′, ω⊗5
S′ )− 1 = χ(OS′) + 10K2

S′ − 1), whose image is the canonical model X ′ of S′, i.e.

X ′ is a normal surface birational to S′, having at most Du Val singularities. The morphism

S′ → X ′ is given by sections s0, . . . , sN ∈ H0(S′, ω⊗5
S′ ).

We can extend this morphism to a morphism S1 → X1 where X1 is projective over k, i.e. there

exists a morphism filling in the diagram

S′ S1

X ′ X1

k k

with X1 projective over k. Indeed, by Corollary B.3 we have

H0(S1, ω
⊗5
S1

)⊗k k ≃ H0(S′, ω⊗5
S′ ).

It follows that sections si lift to sections s′i ∈ H0(S1, ω
⊗5
S1

). By Nakayama’s lemma, the sections

s′i are also base point free. This implies that there exists a morphism h1 : S1 → PN
k which

restricts to S′ → X ′. Then we restrict h1 to its image X1.

We want now to show that the map S1 → X1 also extends to infinitesimal deformations. In

other words, we have to show that for all n ≥ 2 the diagram

https://stacks.math.columbia.edu/tag/0D1K
https://stacks.math.columbia.edu/tag/0D57
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S1 Sn

X1 Xn

T1 Tn

can be filled in by a projective morphism Xn → Tn. Arguing by induction, suppose that we

have constructed Xn, so that we have

Sn → Xn ↪→ PN
Tn
→ Tn,

where the morphism Sn → Xn is given by sections s0,n, . . . , sN,n ∈ H0(Sn, ω
⊗5
Sn/Tn

) which are

lifting of s0, . . . , sN to Sn. Observe that Si are infinitesimal thickenings of S1, hence they are

schemes with the same underlying topological space. The kernel of the morphism of rings

R/mn+1
R → R/mn

R

is Vn = mn
R/m

n+1
R , which is a finite dimensional k-vector space, being annihilated by mR. Thus

we have a short exact sequence

0→ Vn → R/mn+1
R → R/mn

R → 0

of R/mn+1
R -modules. Tensoring with the flat R/mn+1

R -module OSn+1
we get

0→ Vn ⊗k OS1
→ OSn+1

→ OSn
→ 0.

Finally, we tensor again by the flat OSn+1-module ω⊗5
Sn+1/Tn+1

and we get an exact sequence

0→ (ω⊗5
S1/T1

)⊕ dimk Vn → ω⊗5
Sn+1/Tn+1

→ ω⊗5
Sn/Tn

→ 0.

Passing in cohomology, we get

. . .→ H0(Sn+1, ω
⊗5
Sn+1/Tn+1

)
φ−→ H0(Sn, ω

⊗5
Sn/Tn

)→ (H1(S1, ω
⊗5
S1/T1

))⊕ dimk Vn .

It follows that φ is surjective, because H1(S1, ω
⊗5
S1/T1

) = 0 by Theorem 2.60. Thus we lift

s0,n, . . . , sN,n to sections s0,n+1, . . . , sN,n+1 ∈ H0(Sn, ω
⊗5
Sn/Tn

).

Moreover Sn ↪→ Sn+1 is a closed immersion which is a homeomorphism. It follows that the

residue fields at the points of Sn and Sn+1 are the same. By Nakayama’s lemma, it follows

that the sections si,n+1 are also base point free. This implies that there exists a morphism

hn+1 : Sn+1 → PN
Tn+1

which restricts to S1 → X1. We restrict hn+1 to its image Xn+1. The

morphism Xn+1 → Tn+1 is projective, because it is projective when restricted to Xn and we

argue as in the proof of Proposition 1.36 using Corollary 1.35.

Thus, for all n ≥ 2 we have a projective scheme Xn filling in the commutative diagram

S1 Sn

X1 Xn

T1 Tn.

For all n ≥ 1, let in : Xn ↪→ PN
Tn

be the closed immersion in the projective space, and let

Ln = i∗nOPN
Tn

(1). We have a formal object (R,Xn, gn) given by
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S1 S2 . . . Sn Sn+1

X1 X2 . . . Xn Xn+1

Spec(R/mR) Spec(R/m2
R) . . . Spec(R/mn

R) Spec(R/mn+1
R ).

fn

gn

By Grothendieck existence theorem (see [Alp24, Theorem C.5.8] for a reference) the formal

object (R,Xn, gn) is effective. It follows that there exists a projective morphism X → Spec(R),

an ample line bundle L on X and compatible isomorphisms Xn ≃ X ×SpecR Spec(R/mn
R) and

Ln ≃ L|Xn
. Moreover, the formal object ξ is a formal object for the resolution functor (see

[Art74a]), i.e. for all n ≥ 1, Sn is a resolution of Xn. Since every formal object of this form

is effective by [Art74a, Lemma 2.2], it follows that there exists a scheme S and a morphism

S → X → Spec(R) completing the diagram

S1 S2 S3 . . . S

X1 X2 X3 . . . X

Spec(R/mR) Spec(R/m2
R) Spec(R/m3

R) . . . SpecR.

This shows that the formal object ξ is effective. □

Lemma 3.87. The stackMmin is limit preserving.

Proof. Let T be an affine scheme which is the limit T = limTi of a directed inverse system

of affine schemes over a directed set I. We have to show that colimMmin(Ti) →Mmin(T ) is

an equivalence of categories. The properties of being proper, flat and finitely presented descend

to limits; in other words, the stack Spaces′ is limit preserving, see [Stacks, Lemma 0D1I]. Also

the property of smoothness descends to limits by [Stacks, Lemma 0CN2]. Thus it is sufficient

to prove the following. Let 0 ∈ I and let f0 : S0 → T0 ∈ Spaces′(T0) such that f0 is smooth.

Suppose that f : S = S0 ×T0
T → T ∈ Mmin(T ). We have to show that there exists an index

i ∈ I, i ≥ 0, such that fi : Si = Ti ×T0
S0 → Ti is an object ofMmin(Ti). Observe first that fi

is smooth for all i ≥ 0 by Proposition 3.6, being the base change of f0 which is smooth.

It remains to verify that the geometric fibres of some fi, i ≥ 0, are minimal surfaces of general

type. For every i ≥ 0 consider Ei ⊆ Ti made out of points t ∈ ti such that the fibre (Si)t
satisfies the following properties:

(1) (Si)t is integral;

(2) (Si)t has dimension 2;

(3) (Si)t has big canonical bundle;

(4) (Si)t has nef canonical bundle.

These conditions do not depend on the base field; i.e. they hold over κ(t) if and only if they hold

over some (every) field extension K of κ(t) by Lemma 3.3, Proposition 3.4, and Proposition

3.5.

Property (1) gives an open condition by Proposition 3.11. By Proposition 3.12 the dimension

of the fibres is locally constant, hence condition (2) is open. Finally, properties (3) and (4)

both give an open condition by Proposition 3.15 and Proposition 3.29 up to restricting to

an ind-constructible set where the Kodaira dimension is non-negative, which is possible by

Corollary 3.28.

https://stacks.math.columbia.edu/tag/0D1I
https://stacks.math.columbia.edu/tag/0CN2
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Since the limit of ind-constructible subsets Ei, i ≥ 0, coincides with the limit of Ti’s according

to [Gro67, Corollaire IV.8.3.5], there exists an index i ≥ 0 such that Ei = Ti and we are

done. □

Theorem 3.88. The stackMmin is an algebraic stack over Schét.

Proof. We prove that conditions of Theorem A.119 are satisfied. Conditions (b),(d),(e),(f)

and (g) are proved in Lemmas 3.87, 3.85, 3.81, 3.86 and 3.84. Condition (a) is given by Propo-

sition 3.80 and finally condition (c) is proved in Corollary 3.83. □

Remark 3.89. The stackMmin is not a Deligne-Mumford stack. Indeed condition (iii) of

Theorem A.101 is not satisfied as forMcan by Remark 2.73.

As forMcan, if we work in characteristic zero we obtain a Deligne-Mumford stack. Define

Mmin,Q =Mmin ×Z SpecQ.

Proposition 3.90. The stackMmin,Q is a Deligne-Mumford stack.

Proof. SinceMmin is an algebraic stack by Theorem 3.88, then alsoMmin,Q is an alge-

braic stack. By Theorem A.101 we have to show that for every minimal surface of general type

S over an algebraically closed field k of characteristic 0, the group scheme AutS is discrete and

reduced. This is what we proved in Proposition 2.72. □

3.8. Algebraicity of the stack of canonical models with Artin’s axioms

Throughout this section we give an alternative proof of the algebraicity of the stackMcan.

Recall that in Theorem 3.50 we have already proved the algebraicity ofMcan, using the theory

of Hilbert schemes. We will now verify that Artin’s axioms (Theorem A.119) are satisfied.

Remark 3.91. The key point here is thatMcan is a subcategory of Spaces′. More precisely,

it is the full subcategory whose objects are families of canonical surfaces (Definition 3.36).

Hence we have a fully faithful embedding

(14) Mcan ⊂ Spaces′.

Indeed in both cases, arrows are given by cartesian diagrams. Observe that we do not fix

the Euler characteristic χ and the self-intersection of the canonical bundle K2, because we

consider the stackMcan as in Definition 3.42. Observe further that the total space of a family

of canonical surface is a scheme.

Remark 3.92. We already know thatMcan is a stack over the étale topology, see Propo-

sition 3.41 and Definition 3.42.

The diagonal

∆ :Mcan →Mcan ×SpecZMcan

is representable by algebraic spaces because the diagonal of Spaces′ is representable by algebraic
spaces (Lemma 3.57) and we argue as in Proposition 3.70.

The fact that the categoryMcan satisfy openness of versality over SpecZ is clear as in Lemma

3.84 by the fully faithful embedding of Equation (14).

Finally, if k is a field of finite type over SpecZ and x0 = (S → Spec k) is an object of

Mcan(Spec k), the k-vector spaces TFMcan,k,x0 and Inf(FMcan,k,x0) are finite dimensional, as

in Lemma 3.85, again by the fully faithful embedding of Equation (14).

Thus we only have to prove thatMcan satisfy the Rim-Schlessinger condition, effectiveness

of formal objects and the property of being limit preserving.
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Lemma 3.93. Let W → W ′ be a thickening in the category of schemes (i.e. W → W ′

is a closed immersion of schemes which is a homeomorphism) and let W → T be an affine

morphism of schemes. Consider the pushout in the category of schemes as in [Stacks, Lemma

07RT]

W W ′

T T ′.

Then the functor p of groupoids completing the diagram

Mcan(T ′)

Mcan(T )×Mcan(W )Mcan(W ′) Mcan(W ′)

Mcan(T ) Mcan(W )

p

is an equivalence of groupoids.

Proof. The same fact holds for Spaces′ by [Stacks, Lemma 0D1J]. Thus we have an

equivalence of categories

p̃ : Spaces′(T ′)→ Spaces′(T )×Spaces′(W ) Spaces′(W ′).

Moreover Mcan is a full subcategory of Spaces′. It follows that we only have to prove the

following. Given X ′ → T ′ an object of Spaces′, then X ′ → T ′ is in Mcan if and only if

T ×T ′ X ′ → T and W ′ ×T ′ X ′ →W ′ are inMcan.

Suppose first that (f : X ′ → T ′) is an object ofMcan(T ′). Then the pullbacks of f over T and

W ′ are objects ofMcan(T ) andMcan(W ′) respectively, because the fibres of the pullbacks are

in particular fibres of f .

Suppose now that T ×T ′ X ′ → T and W ′ ×T ′ X ′ → W ′ are in Mcan(T ) and Mcan(W ′)

respectively. Observe that T → T ′ is also a thickening by [Stacks, Lemma 07RT]. Thus,

T ×T ′ X ′ → X ′ is also a thickening by [Stacks, Lemma 09ZX]. In particular, X ′ is a scheme

by [Stacks, Lemma 05ZR], because T ×T ′ X ′ is a scheme. Then the statement follows from the

fact that the fibres of X ′ → T ′ are the same as the fibres of T ×T ′ X ′ → T (see also [Stacks,

Lemma 0D56]). □

Corollary 3.94. The stackMcan satisfies the Rim-Schlessinger condition.

Proof. The (RS) condition (Definition A.105) is just a particular case of Lemma 3.93. □

Lemma 3.95. Every formal object ofMcan is effective.

Proof. Let R be a noetherian complete local Z-algebra such that k = R/mR is of finite

type over Z. For all n ≥ 1 let ξn = (Xn → Spec(R/mn
R)) ∈ Mcan(Spec(R/mn

R)) be an object

and fn : ξn → ξn+1 be morphisms in Mcan over Spec(R/mn
R) → Spec(R/mn+1

R ). In other

words, we are given cartesian diagrams

fn :

Xn Xn+1

Spec(R/mn
R) Spec(R/mn+1

R ).

Denote by ξ = (R, ξn, fn) the formal object and let Tn = Spec(R/mn
R). We have to show that

ξ is effective.

https://stacks.math.columbia.edu/tag/07RT
https://stacks.math.columbia.edu/tag/07RT
https://stacks.math.columbia.edu/tag/0D1J
https://stacks.math.columbia.edu/tag/07RT
https://stacks.math.columbia.edu/tag/09ZX
https://stacks.math.columbia.edu/tag/05ZR
https://stacks.math.columbia.edu/tag/0D56
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We define, for all n ≥ 1 the dualizing sheaf Ln = ωXn/Tn
which is a line bundle because each

fibre of Xn → Tn is a canonical surface (Proposition B.13). If we consider an algebraic closure

k/k of k, then the pullback of X1 to k given by

X̃ X1

Spec k Spec k

φ

is a canonical surface over an algebraically closed field k, because ξ1 is an object ofMcan. It

follows that ωX̃/k = φ∗ωX1/k = φ∗L1 is ample by Theorem 2.60(6). Thus, also L1 is ample by

[Gro67, Corollaire 2.7.2], becauseX1 → Spec k is in particular quasi-compact, being proper. By

Grothendieck existence theorem [Alp24, Theorem C.5.8], it follows that there exists a projective

morphism p : X → SpecR and an ample line bundle L on X and compatible isomorphisms

Xn ≃ X ×SpecR Tn and Ln ≃ L|Xn
. Since p is projective over a noetherian scheme, then

p is in particular proper and of finite presentation. Moreover, p is flat by [Stacks, Lemma

0D4G], because every morphism Xn → Tn is flat. To conclude, it is clear that X → SpecR is

a family of canonical surfaces, because the fibre over the unique point of R is exactly X1 →
Spec(R/mR). □

Lemma 3.96. The stackMcan is limit preserving.

Proof. Let T be an affine scheme which is the limit T = limTi of a directed inverse system

of affine schemes over a directed set I. We have to show that colimMcan(Ti) → Mcan(T )

is an equivalence of categories. The properties of being proper, flat and finitely presented

descend to limits; in other words, the stack Spaces′ is limit preserving, see [Stacks, Lemma

0D1I]. Moreover, it is not restrictive to assume that total spaces are schemes by [Stacks,

Lemma 07SR]. Otherwise, one can also work directly in the category of schemes and show

that being proper, flat and finitely presented are properties that descend through limits by

[Stacks, Lemma 01ZM] and [Stacks, Lemma 04AI]. Thus it is sufficient to prove the following.

Let 0 ∈ I and let f0 : X0 → T0 ∈ Spaces′(T0), where the total space X0 can be assumed to

be a scheme. Suppose that f : X = X0 ×T0
T → T ∈ Mcan(T ). We have to show that there

exists an index i ∈ I, i ≥ 0, such that fi : Xi = Ti ×T0 X0 → Ti is an object ofMcan(Ti).

In other words, it remains to verify that the geometric fibres of some fi, i ≥ 0 are minimal

surfaces of general type. For every i ≥ 0 consider Ei ⊆ Ti made out of points t ∈ ti such that

the fibre (Xi)t satisfies the following properties:

(1) (Xi)t is geometrically integral;

(2) (Xi)t is geometrically normal;

(3) (Xi)t has dimension 2;

(4) (Xi)t has ample canonical bundle;

(5) (Xi)t is a Gorenstein scheme;

(6) (Xi)t has at most Du Val singularities.

These conditions do not depend on the base field; i.e. they hold over κ(t) if and only if they

hold over some (every) field extension K of κ(t) by Lemma 3.3, Proposition 3.4, Proposition

3.5 and Lemma 2.52.

Properties (1),(2) (3) give an open condition by Proposition 3.11, Proposition 3.12. Property

(4) is ind-constructible by Proposition 3.14. Property (5) gives an open condition by Lemma

3.19 and finally property (6) is ind-constructible by Lemma 3.23 (it is also open by Corollary

3.26).

Since the limit of ind-constructible subset Ei, i ≥ 0, coincides with the limit of Ti’s according

https://stacks.math.columbia.edu/tag/0D4G
https://stacks.math.columbia.edu/tag/0D4G
https://stacks.math.columbia.edu/tag/0D1I
https://stacks.math.columbia.edu/tag/0D1I
https://stacks.math.columbia.edu/tag/07SR
https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/04AI
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to [Gro67, Corollaire IV.8.3.5], there exists an index i ≥ 0 such that Ei = Ti and we are

done. □

Theorem 3.97. The stackMcan is an algebraic stack.

Proof. In Remark 3.92, Corollary 3.94 and Lemmas 3.95, 3.96 we proved that conditions

of Theorem A.119 are satisfied. ThusMcan is algebraic. □

Definition 3.98. Let MSmcan be the full subcategory of both Mmin and Mcan whose

objects are proper, smooth and finitely presented morphisms of schemes S → T such that for

all t ∈ T , the geometric fibre St over κ(t), is an integral scheme of dimension 2 with ample

dualizing sheaf ωSt
.

Remark 3.99. Combining Theorem 3.88 and Theorem 3.97 we have that MSmcan is an

algebraic stack over Schét. Thus, bothMmin andMcan containsMSmcan as an algebraic open

substack. Observe thatMSmcan is not a Deligne-Mumford stack by Remark 2.73.

However, we have that

MSmcan,Q =MSmcan ⊗Z SpecQ
is a Deligne-Mumford stack, because bothMcan,Q andMcan,Q are Deligne-Mumford stacks by

Proposition 3.54 and Proposition 3.90.

3.9. The stack of K3 surfaces

Definition 3.100. Let k be an algebraically closed field. A K3 surface over k is a smooth

surface S over k such that the canonical line bundle ωS = ωS/k is trivial and the irregularity

q(S) = dimk H
1(S,OS) is zero.

Recall that every smooth surface is projective, see Remark 2.2.

Definition 3.101. Let T be a scheme. A family of K3 surfaces over T is a proper, smooth

and finitely presented morphism of algebraic spaces S → T such that for all geometric points

σ : Spec k → T , the geometric fibre Sk is an integral scheme, of dimension 2, with trivial

canonical bundle ωSk
≃ OSk

and irregularity q(Sk) zero.

Proposition 3.102. Let S → T be a morphism of algebraic spaces where T is a scheme.

Then the following are equivalent:

(1) S → T is a family of K3 surfaces;

(2) S → T is a proper, smooth and finitely presented morphism of algebraic spaces such

that for all points t : Specκ(t)→ T , the fibre St over an algebraic closure κ(t)/κ(t) of

κ(t) is an integral scheme of dimension 2 with trivial canonical line bundle ωSt
≃ OSt

and irregularity q(St) = 0.

Proof. It follows immediately by Proposition 3.34 because the properties of being inte-

gral, of dimension 2 with trivial canonical line bundle and irregularity zero are stable properties

under a base change which is a field extension by Lemma 3.3, Proposition 3.4, Proposition 3.5

and Corollary B.3. □

Definition 3.103. We define the categoryMK3 as follows.

• Objects are families of K3 surfaces.

• An arrow (S′ → T ′)→ (S → T ) between two objects is a pair (f, g) where f : S′ → S

is a morphism of algebraic spaces, g : T ′ → T is a morphism of schemes and they are

such that the diagram

S′ S

T ′ T

f

g
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is cartesian.

Remark 3.104. The categoryMK3 is the full subcategory of Surfacessm whose objects

are families of smooth surfaces (S → T ) whose geometric fibres have trivial canonical bundle

and irregularity zero.

Lemma 3.105. The forgetful functor

F : MK3 → Sch

(S → T ) 7→ T

makesMK3 a category fibred in groupoids over Sch.

Proof. This is clear by Proposition 3.33. □

Proposition 3.106. The categoryMK3 is a stack over Schét.

Proof. We use the same argument of the proof of Proposition 3.80. Indeed, we can reply

the same proof thanks to Proposition 3.102. □

Remark 3.107. The stackMK3 is not algebraic, as we already discussed in Remark 3.61.

3.10. The stack of del Pezzo surfaces

Definition 3.108. Let k be an algebraically field. A del Pezzo surface over k is a smooth

surface S over k with ample anti-canonical bundle ω∨
S = ω∨

S/k.

As we have seen in the previous sections, the existence of a natural ample line bundle is a

very important geometric tool which allow us to obtain the stack parametrizing families of del

Pezzo surfaces (Proposition 3.114) whose total space is a scheme (Definition 3.109).

Definition 3.109. Let T be a scheme. A family of del Pezzo surfaces over T is a proper,

smooth and finitely presented morphism of schemes S → T such that for all geometric points

σ : Spec k → T , the fibre Sk is an integral scheme, of dimension 2 with ample anti-canonical

line bundle ω∨
Sk
.

Proposition 3.110. Let S → T be a morphism of schemes. Then the following are

equivalent:

(1) S → T is a family of del Pezzo surfaces;

(2) S → T is a proper, smooth and finitely presented morphism of schemes such that

for all points t ∈ T the geometric fibre St is an integral scheme of dimension 2 with

ample anti-canonical line bundle ω∨
St
;

(3) S → T is a proper, smooth and finitely presented morphism of schemes such that for

all points t ∈ T the fibre St is a geometrically integral scheme of dimension 2 with

ample anti-canonical line bundle ω∨
St
.

Proof. The equivalence between (1) and (2) is clear by Proposition 3.34 because the

properties of being an integral scheme of dimension 2 with ample anti-canonical line bundle

are stable under a base change which is a field extension by Lemma 3.3, Proposition 3.5 and

Proposition 3.4.

The equivalence between (2) and (3) follows again by the fact that these properties are stable

under a base change which is a field extension. □

Remark 3.111. Observe in particular that if S → T is a family of del Pezzo surfaces,

by Proposition 3.110 it follows that for all points t : Specκ(t) → T the anti-canonical bundle

L = ω∨
St

is ample. Then there exists a line bundle ω∨
S/T by Proposition B.13 which is p-ample

(Definition B.8 by Corollary B.11).
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Definition 3.112. We define the categoryMdP as follows.

• Objects are families of del Pezzo surfaces.

• An arrow (S′ → T ′)→ (S → T ) between two objects is a pair (f, g) where f : S′ → S

and g : T ′ → T are morphisms of schemes such that the diagram

S′ S

T ′ T

f

g

is cartesian.

Proposition 3.113. The forgetful functor

F : MdP → Sch

(S → T ) 7→ T

makesMdP a category fibred in groupoids over Sch.

Proof. This follows immediately by Proposition 3.31. □

Proposition 3.114. The categoryMdP is a stack over Schét.

Proof. We will prove thatMdP is a stack in the fpqc topology, which implies the state-

ment by Remark A.30. We prove that hypotheses of [Vis08, Theorem 4.38] are satisfied.

First we show that families of del Pezzo surfaces form a class of morphisms P which is stable

(Definition A.59) in the fpqc site Schfpqc. Given an object

(p : S → T ) ∈MdP(T )

and isomorphisms S′ ≃ S, T ≃ T ′, then the morphism p′ : S′ → T ′ given by the compositions is

again a family of del Pezzo surfaces. Indeed p′ is a proper, flat and finitely presented morphism

of schemes, because it is the composition of p with two isomorphisms. Moreover, geometric

fibres of p′ are isomorphic to geometric fibres of p, so that the conditions on the fibres are

satisfied.

The condition (ii) on the base change in the definition of a stable class of arrows (Definition

A.59) is satisfied, because we have already proved thatMdP is fibred over Sch. Hence being a

family of del Pezzo surfaces is a stable condition.

In order to prove that P is local (Definition A.60), let S → T be any morphism of schemes. Let

{Ti → T}{i∈I} be an fpqc covering, and suppose that Si = Ti×T S → Ti is a family of del Pezzo

surfaces for all i ∈ I. We have to show that also S → T is a family of del Pezzo surfaces. The

properties of being proper, smooth and finitely presented for a morphism of schemes are fpqc

local properties on the base, see [Stacks, Lemma 02L1], [Stacks, Lemma 02VL] and [Stacks,

Lemma 02L0]. It follows that S → T is a proper, smooth and finitely presented morphism

of schemes. By Proposition 3.110, we have to show that for all points t : Specκ(t) → T , the

fibre over κ(t) is a geometrically integral scheme of dimension 2 with ample anti-canonical line

bundle ω∨
St
. By surjectivity of

∐
i Ti → T there exists a point t′ ∈ Ti for some i ∈ I which is

sent to t. Thus we obtain a morphism of schemes

α : Specκ(t′)→ Ti → T

whose image is t ∈ T . The morphism α factorizes as

(15) Specκ(t′)→ Specκ(t)→ T.

Observe that we have a commutative diagram

https://stacks.math.columbia.edu/tag/02L1
https://stacks.math.columbia.edu/tag/02VL
https://stacks.math.columbia.edu/tag/02L0
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(Si)t′ Si X

Specκ(t′) Ti T

in which the squares on the right and on the left are cartesian. Thus, also the external square

is cartesian, so that Sκ(t′) ≃ (Si)t′ . Since Si → Ti is a family of del Pezzo surfaces, then (Si)t′

is a geometrically integral scheme of dimension 2 with ample anti-canonical line bundle ω∨
(Si)t′

by Proposition 3.110.

By Equation (15) we have a cartesian diagram

Sκ(t′) St X

κ(t′) Specκ(t) T.

But then also St is a geometrically integral scheme of dimension 2 with ample anti-canonical

line bundle ω∨
St

by Lemma 3.3, Proposition 3.5, Proposition 3.4. Then S → T is a family of

del Pezzo surfaces by Proposition 3.110. This shows that being a family of del Pezzo surfaces

is a local condition in the fpqc topology.

For each object p : S → T ofMdP(T ) we have an invertible sheaf ω∨
S/T which is ample relative

to the morphism p, see Remark 3.111. Moreover, formation on ω∨
S/T is compatible with base

change, i.e. if we have a cartesian diagram of schemes

Q R X

V U T

f g

whose columns are objects ofMdP, then the diagram

f∗g∗ωS/T (g ◦ f)∗ωS/T

f∗ωR/U ωQ/V

of invertible sheaves on Q commutes, see [Con00, Theorem 3.6.1]. ThenMdP is a stack over

Schfpqc by [Vis08, Theorem 4.38] and then also over Schét. □

Theorem 3.115. The stackMdP is an algebraic stack over Schét.

Proof. One can prove this theorem using the theory of the Hilbert scheme, as we have

done forMcan
χ,K2 in Theorem 3.48. The key point here is the existence of a natural ample line

bundle, namely the anti-canonical one.

However, it is also clear that Artin’s axioms (Theorem A.119) are satisfied. Indeed the verifi-

cation of Artin’s axioms is the same as forMcan in §3.8 andMmin in §3.7. □

Remark 3.116. The stackMdP is not a Deligne-Mumford stack. Indeed P2
C is a del Pezzo

surface over C and the automorphism group scheme of P2
C is PGL3,C, and thus it is not discrete.





CHAPTER 4

Canonical models of minimal surfaces of general type in

families

The aim of this chapter is to construct a morphism of stacks

α :Mmin →Mcan

from the stack of minimal surfaces of general type to the stack of canonical models, see Propo-

sition 4.23.

4.1. The relative dualizing sheaf for Deligne-Mumford stacks

First of all, we want to observe that we have a notion of a structure sheaf OX for a

Deligne-Mumford stack X and the notion of OX -modules. Recall that every algebraic space is

in particular a Deligne-Mumford stack, see Remark A.88.

Definition 4.1. Let X be a Deligne-Mumford stack. The small étale site of X is the

category Xét whose objects are schemes étale over X provided with the following Grothendieck

topology. A covering of U → X is a collection of étale morphism of schemes {φi : Ui → U}i∈I

over X such that
⋃

i φi(Ui) = U .

Definition 4.2. Let X be a Deligne-Mumford stack. The structure sheaf OX of X is the

sheaf on Xét defined by

OX : (Xét)
op −→ Ring

(U → X ) 7−→ Γ(U,OU )

for every étale X -scheme U .

Definition 4.3. Let X be a Deligne-Mumford stack over a scheme T . The relative sheaf

of differentials Ω1
X/T is the sheaf on Xét defined by Ω1

X/T (U → X ) = Γ(U,Ω1
U/T ) for every

étale X -scheme U .

We define OX -modules for a Deligne-Mumford stack as module objects over OX .

Definition 4.4. Let X be a Deligne-Mumford stack. A sheaf of OX -modules (or simply

a OX -module) is a sheaf F on Xét which is a module object for OX in the category of sheaves,

i.e. for every étale X -scheme U , F (U → X ) is a module over OX (U → X ) = Γ(U,OU ) and the

module structure is compatible with respect to restrictions along morphisms V → U of étale

X -schemes.

We denote by Mod(OX ) the category of OX -modules. Let F be an OX -module on a

Deligne-Mumford stack X . Let U be an étale X -scheme. We can restrict F|Uét
on the small

étale site of U (Example A.24). Namely, if V → U is an object of Uét, we have

F|Uét
(V → U) = F (V → X ).

Furthermore, we can also consider the restriction of F|UZar
to the small Zariski site of U

(Example A.22).

77
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Definition 4.5. Let X be a Deligne-Mumford stack. An OX -module F is quasi-coherent

if

(i) for every étale X -scheme U , the restriction F|UZar
is a quasi-coherent OUZar

-module;

(ii) for every étale morphism f : U → V of étale X -schemes, the natural morphism

f∗ : (F|VZar
)→ F|UZar

is an isomorphism.

A quasi-coherent OX -module F is a locally free sheaf of rank r (resp. line bundle) if F|UZar
is a

locally free sheaf of rank r (resp. line bundle) for every étale morphism U → X from a scheme.

Example 4.6. If X is a Deligne-Mumford stack over a scheme T , the relative sheaf of

differential Ω1
X/T is quasi-coherent, see [Alp24, Example 4.1.19]. If moreover X → T is smooth,

then Ω1
X/T is a locally free sheaf.

Let (f : S → T ) be an object ofMmin(T ). We know that S is an algebraic space, and in

particular is a Deligne-Mumford stack over T . By Definition 3.72, the morphism f is proper,

smooth and of finite presentation. Moreover, f has relative dimension 2 (i.e. fibres of f are

smooth of dimension 2). It follows that Ω1
S/T is a locally free sheaf of rank 2, see [Stacks,

Lemma 0CK5] and [Stacks, Lemma 02G1].

Definition 4.7. Let (f : S → T ) ∈Mmin(T ). The OS-module

ωS/T = detΩ1
S/T

is defined by ωS/T (U → X ) = detΩ1
U/T for every étale S-scheme U . We will call ωS/T the

relative dualizing sheaf of f .

Remark 4.8. Let (f : S → T ) ∈ Mmin(T ). Observe that the OS-module ωS/T is a line

bundle because for every étale S-scheme U , we have that ωU/T is a line bundle. Moreover, for-

mation of ωS/T commutes with arbitrary base change by [Stacks, Lemma 05ZC]. In particular,

for every point t ∈ T , the pullback of ωS/T to St is isomorphic to the canonical line bundle ωSt

of St.

4.2. Construction of the morphism

In what follows, we fix an object ofMmin. More precisely, we consider a base scheme T ,

and we fix p : S → T to be a family of minimal surfaces of general type parametrized by T .

We recall that the morphism p : S → T is by definition proper, smooth (in particular flat) and

of finite presentation. The dualizing sheaf ωS/T exists and it is a line bundle by §4.1.
Consider now the sheaf

A =
⊕
m≥0

p∗ω
⊗5m
S/T

on T .

Lemma 4.9. The sheaf A is a quasi-coherent sheaf of N-graded OT -algebras.

Proof. To show that A is a quasi-coherent sheaf, it is sufficient to show that for a fixed

m ≥ 0 the sheaf p∗ω
⊗5m
S/T is a quasi-coherent sheaf, since any direct sum of quasi-coherent sheaf

is quasi-coherent. The morphism p : S → T is finitely presented, and in particular is quasi-

compact and quasi-separated. Moreover ω⊗5m
S/T is a line bundle, hence it is a quasi-coherent

OS-module ([Stacks, Definition 03G9]). By [Stacks, Lemma 03M9] it follows that p∗ω
⊗5m
S/T is a

quasi-coherent OT -module. We want now to show that A is a sheaf of OT -algebras. Consider

first the quasi-coherent sheaf

B =
⊕
m≥0

ω⊗5m
S/T

https://stacks.math.columbia.edu/tag/0CK5
https://stacks.math.columbia.edu/tag/02G1
https://stacks.math.columbia.edu/tag/05ZC
https://stacks.math.columbia.edu/tag/03G9
https://stacks.math.columbia.edu/tag/03M9
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on S. This is a sheaf of OS-algebras, where for all m′,m ≥ 0 the product is given by the

natural map

α : ω⊗5m
S/T ⊗OS

ω⊗5m′

S/T → ω
⊗5(m+m′)
S/T .

We now apply the covariant functor

p∗ : ModOS
→ ModOT

to α and we get a morphism of OT -modules

p∗(α) : p∗(ω
⊗5m
S/T ⊗OS

ω⊗5m′

S/T )→ p∗ω
⊗5(m+m′)
S/T .

By adjunction formula it holds that

HomOT
(p∗ω

⊗5m
S/T , p∗ω

⊗5m
S/T ) ≃ HomOS

(p∗p∗ω
⊗5m
S/T , ω⊗5m

S/T )

so that we get a natural morphism of sheaves

β : p∗p∗ω
⊗5m
S/T → ω⊗5m

S/T

on S. Tensoring β with the identity morphism on ω⊗5n
S/T we get a morphism of OS-modules

p∗p∗ω
⊗5m
S/T ⊗OS

ω⊗5m′

S/T → ω⊗5m
S/T ⊗OS

ω⊗5m′

S/T

and applying the functor p∗ to this morphism we obtain

γ : p∗(p
∗p∗ω

⊗5m
S/T ⊗OS

ω⊗5m′

S/T )→ p∗(ω
⊗5m
S/T ⊗OS

ω⊗5m′

S/T ).

Finally observe that by projection formula [Stacks, Lemma 01E8], we have an isomorphism

δ : p∗ω
⊗5m
S/T ⊗OS

p∗ω
⊗5m′

S/T ≃ p∗(p∗p∗ω⊗5m
S/T ⊗OS

ω⊗5m′

S/T ).

The composition

p∗α ◦ γ ◦ δ : p∗ω⊗5m
S/T ⊗OS

p∗ω
⊗5m′

S/T → p∗ω
⊗5(m+m′)
S/T

gives the structure of OT -algebra to the sheaf A. □

Observe that there exists a natural N-graduation on the sheaf A, where the part of degree

m, for m ≥ 0, is Am = p∗ω
⊗5m
S/T .

For every U ⊆ T affine open subset, we have that

Γ(U,A) =
⊕
m≥0

Γ(U,Am)

is a graded Γ(U,OT )-algebra. In particular, for every U ⊆ T as above, there exists a morphism

of schemes

πU : Proj Γ(U,A)→ U.

By [GW20, §13.7] there exists a T -scheme

π : Proj(A)→ T

with U -isomorphisms ηU : π−1(U)
∼−→ Proj Γ(U,A) for all U ⊆ T affine open subset. Moreover,

Proj(A) and ηU are unique up to a unique isomorphism. We will call the scheme Proj(A) the
projective spectrum of A.

Remark 4.10. Formation of Proj(A) is compatible with base change, i.e. if f : T ′ → T is

a morphism of schemes, then

Proj(f∗A) ≃ Proj(A)×T T
′.

See [GW20, Remark 13.27].

https://stacks.math.columbia.edu/tag/01E8
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Lemma 4.11. For all m ≥ 0, the quasi-coherent OT -module Am = p∗ω
⊗5m
S/T is a locally free

sheaf of finite rank whose formation commutes with arbitrary base change [GW23, Definition

23.138].

Proof. We are in hypotheses of cohomology and base change (Theorem B.5), which holds

also for morphisms of algebraic spaces, see [Stacks, Section 073I]. We claim that for every point

t ∈ T the κ(t)-vector space H1(St, ω
⊗5m
St/κ(t)

) is zero. If κ(t) is an algebraically closed field, then

H1(St, ω
⊗5m
St/κ(t)

) = 0 by Theorem 2.60.(3). On the other hand, if t ∈ T is any point of T , then

we consider an algebraic closure of the residue field κ(t)/κ(t). If St and St are the fibres of p

over κ(t) and κ(t) respectively, then H1(St, ω
⊗5m
St

) = H1(St, ω
⊗5m
St

) = 0 by Corollary B.3, and

the claim follows. Finally, by Corollary B.6, it follows that Am is a locally free sheaf of finite

rank whose formation commutes with arbitrary base change. □

In particular it follows that A is a quasi-coherent flat OT -module, because any direct sum

of flat OT -modules is flat, see [Stacks, Lemma 05NG].

Proposition 4.12. Let (p : S → T ) ∈ Mmin(T ) and let A =
⊕

m≥0 p∗ω
⊗5m
S/T . Then the

map π : Proj(A)→ T is flat.

Proof. We know by Lemma 4.11 that Am is in particular a flat OT -module for all m ≥ 0.

Then the statement follows by [Stacks, Lemma 0D4C]. □

Lemma 4.13. Let p : S → T be an object ofMmin(T ). Let m ≥ 3 be an integer. Then the

function

P̃m : T → Z, t 7→ P̃m(t) = dimκ(t) H
0(Xt, ω

⊗m
St

)

is locally constant on T .

Proof. Observe that we are in hypotheses of cohomology and base change (Theorem B.5).

Let t ∈ T be a point. For a fixed integer m ≥ 3 we denote L = ω⊗m
S/T . The natural map

β1(κ(t)) : R1f∗(ω
⊗m
S/T )⊗OT

κ(t)→ H1(St, ω
⊗m
St

)

of cohomology and base change is surjective as we now explain. If κ(t) is an algebraically

closed field, then H1(St, ω
⊗m
St/κ(t)

) = 0 by Theorem 2.60; otherwise we can consider an algebraic

closure κ(t)/κ(t) and we argue as in Lemma 4.11.

Then by Corollary B.6 there exists an open neighbourhood V of t such that R1p∗L|V = 0.

Since t ∈ T was any point of T , it follows by cohomology and base change part (2) that P̃m(t)

is locally constant on T . □

We will need the following algebraic lemma.

Lemma 4.14. Let A be a ring and let B be an N-graded A-algebra such that Bm is a finite A-

module for all m ≥ 0. Suppose that for all algebrically closed field k and every homomorphism

of rings A→ k, B⊗A k is generated by B1⊗A k as a k-algebra. Then B is generated by B1 as

an A-algebra.

Proof. Let {x1 . . . , xs} with xi ∈ B for i = 1, . . . s be a generating set for B1 as an

A-module. We claim that the 0-degree homomorphism of A-algebras

ϕ : A[x1, . . . , xs]→ B

is surjective. In order to prove that, it is sufficient to show that for allm ≥ 0 the homomorphism

of A-algebras

ϕm : A[x1, . . . xs]m → Bm

https://stacks.math.columbia.edu/tag/073I
https://stacks.math.columbia.edu/tag/05NG
https://stacks.math.columbia.edu/tag/0D4C
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is surjective. Let L = coker(ϕm), which is a finite A-module since Bm is a finite A-module.

Fix an algebraically closed field k and a ring homomorphism A→ k. Then B1 ⊗A k is a finite

dimensional k-vector space with generators {x1 ⊗ 1, . . . , xs ⊗ 1}. By hypotheses, for every

m ≥ 1 the k-algebra Bm ⊗A k is generated as a k-vector space by elements of the form

xα1
1 · · ·xαs

s ⊗ 1 with α1 + . . .+ αs = m.

In other words, the k-linear map ϕm ⊗ idk is surjective and L ⊗A k = 0. It follows that for

every p ∈ SpecA

0 = L⊗A κ(p) = (L⊗A κ(p))⊗κ(p) κ(p),

and in particular

0 = L⊗A κ(p) = Lp/pLp

so that Lp = pLp. The maximal ideal of the local ring Ap is pAp and Lp is a finite Ap-module.

By Nakayama’s Lemma, it follow that Lp = 0, and this fact holds for all p ∈ SpecA. Since

being 0 is a local property for modules, it follows that L = 0 and that ϕm is surjective. □

Definition 4.15. Let T be a scheme. We say that a quasi-coherent N-graded OT -algebra

A is (locally) generated by A1 or (locally) generated in degree 1 if there exists an open affine

covering {Ui}i∈I such that the Γ(Ui,OT )-algebra Γ(Ui,A) is generated by Γ(Ui,A1) (equiva-

lently, the Γ(Ui,OT )-algebra Γ(Ui,A) is generated by Γ(Ui,A1) for all open affine subschemes

U ⊆ T ).

Notation 4.16. Let T be a scheme. If A =
⊕

m≥0Am is a quasi-coherent graded OT -

algebra, we denote by A(d) the quasi-coherent graded OT -algebra

A(d) =
⊕
m≥0

Amd.

It is clear that A(d) is a sub-OT -algebra of A.

Notation 4.17. In what follows, we will use the definition of a projective morphism ac-

cording to [Stacks, Section 01W7] and [Gro67, Definition II.5.5]. This definition is slightly

different from the one in Hartshorne’s book [Har77, Definition, p.103]. If a morphism is pro-

jective according to Hartshorne, we say that it is H-projective.

Proposition 4.18. Let (p : S → T ) ∈ Mmin(T ) and let A =
⊕

m≥0 p∗ω
⊗5m
S/T . Then for

every point t ∈ T there exist an open affine neighbourhood U of t in T and an integer d ≥ 1

(which depends on U) such that A(d)
|U is generated in degree 1 as an OU -algebra. Moreover the

associated U -scheme

πU : Proj(A|U ) = Proj(A(d)
|U )→ U

is H-projective.

Proof. The function P̃m defined in Lemma 4.13 is locally constant on T for m ≥ 3. Thus

we can choose an open covering {Ui}i∈I of T such that over any open Ui the functions P̃4, P̃8

and P̃12 are constant. Up to restricting the covering, we may assume that {Ui}i∈I is an affine

open covering of T .

Fix U = Ui = SpecR to be one of the affine opens. Denote by P4, P8 and P12 the values

of the constant functions P̃4, P̃8 and P̃12 respectively on U . Then there exists an integer n ≥ 1

such that 5n ≥ 5P4+4P8+3P12. For such an integer n, consider the N-graded R-algebra given

by

A(24n)(U) =
⊕
m≥0

A120nm(U).

https://stacks.math.columbia.edu/tag/01W7
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For each geometric point t of U we have

A(24n)(U)⊗R κ(t) =

( ⊕
m≥0

p∗ω
⊗120nm
S/T (U)

)
⊗R κ(t) ≃

≃
⊕
m≥0

(p∗ω
⊗120nm
S/T (U)⊗R κ(t)) ≃

≃
⊕
m≥0

H0(St, ω
⊗120nm
St/κ(t)

),

where the last isomorphism is given by Corollary B.6. Since St is a minimal surface of general

type and 5n ≥ 5P4+4P8+3P12, by Proposition 2.83 we have thatA(24n)(U)⊗Rκ(t) is generated

in degree 1 as an R-algebra. By Lemma 4.14 we conclude that A(24n)(U) is generated in degree

1 as an R-algebra. In particular, for d = 24n, we have that A(d)
|U is generated in degree 1 as an

OU -algebra.

Then we use Lemma 4.11 to conclude that the associated U scheme

Proj(A(d)
|U )→ U

is projective by [Stacks, Lemma 0B3U], and hence it is H-projective because U is affine, see

[Har77, §II, Definition p.103]. □

Corollary 4.19. Let (p : S → T ) ∈Mmin(T ) and let A =
⊕

m≥0 p∗ω
⊗5m
S/T . The morphism

of schemes π : Proj(A)→ T is locally projective, and in particular proper.

Proof. By Proposition 4.18, there exists an affine open cover {Ui}i∈I and integers di ≥ 1

for i ∈ I such that the morphism

Proj(A(di)
|Ui

)→ Ui

is projective. As Ui is affine, we have

Proj(A|Ui
) ≃ ProjA(Ui)

and thus the inclusion of sheaves A(di)
|Ui
⊆ A|Ui

induces an isomorphism

Proj(A(di)
|Ui

) ≃ Proj(A|Ui
).

for all i ∈ I. It follows that the morphism

π|Ui
: Proj(A|Ui

)→ Ui

is projective for all i ∈ I by Proposition 4.18. Then π : Proj(A) → T is locally projective

([Stacks, Definition 01W8]). Finally, π is proper by [Stacks, Lemma 01WC]. □

Proposition 4.20. Let (p : S → T ) ∈ Mmin(T ) and let A =
⊕

m≥0 p∗ω
⊗5m
S/T . The map

π : Proj(A)→ T is finitely presented.

Proof. Since by Corollary 4.19 the map π is proper, then it is also quasi-compact and

quasi-separated. Thus to prove that π is of finite presentation it is sufficient to show that it is

locally of finite presentation.

We already know that there exist an affine open covering {Ui}i∈I of T and integers di ≥ 1

for all i ∈ I such that such that A(di)(Ui) is a Γ(Ui,OUi)-algebra generated in degree 1. It

follows in particular that A(di)(Ui) is an Γ(Ui,OUi)-algebra of finite type for all i ∈ I. Fix

U = Ui = SpecR to be one of the affine opens, and let d = di. If R is a noetherian ring, we

conclude that A(d)(U) is a finitely presented R-algebra. If that is the case, by [Stacks, Lemma

0D4D] we conclude that

π|U : Proj(A|U ) ≃ Proj(A(d)
|U )→ U

is of finite presentation.

https://stacks.math.columbia.edu/tag/0B3U
https://stacks.math.columbia.edu/tag/01W8
https://stacks.math.columbia.edu/tag/01WC
https://stacks.math.columbia.edu/tag/0D4D
https://stacks.math.columbia.edu/tag/0D4D
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Suppose now that R is not noetherian. We will use an argument of noetherian approxima-

tion. In order to do that, up to restricting p to an affine open Ui, we suppose that p : S → T

is a family of minimal surfaces of general type with T = SpecR affine and not noetherian

(the noetherian case being already done). Recall that the morphism p is smooth and of finite

presentation by the definition of a family of minimal surface of general type. Consider now the

set

{Rλ | Rλ ⊆ R such that Rλ is of finite type over Z} .
We denote Tλ = SpecRλ. Then by [Stacks, Lemma 01ZM] there exists an index α and a

morphism of finite presentation pα : Sα → Tα such that the diagram

S Sα

T Tα

p pα

is cartesian. Consider now the projective system {Tλ}λ≥α of affine schemes such that Rλ are

subrings of R which are finitely generated extension of Rα. Denote pλ : Xλ → Yλ the base

change of pα to Tλ. Then p is the projective limit of the pλ’s. Denote uλ : T → Tλ and

uλµ : Tµ → Tλ, for µ ≥ λ the morphisms induced by the inclusions. Since p is proper and

smooth, there exists an index β ≥ α such that pβ is proper and smooth by [Stacks, Lemma

08K1] and [Stacks, Lemma 0CN2]. Moreover, pβ is of finite presentation by Proposition 3.6

because it comes from pα by base change.

It remains to verify that the geometric fibres of some pλ, λ ≥ β, are minimal surfaces of general

type. This has already been done in the proof of Lemma 3.87. It follows that there exists an

index λ ≥ β such that pλ : Sλ → Tλ is a family of minimal surfaces of general type. In other

words, we have an arrow between two objects ofMmin, i.e. a cartesian diagram

S Sλ

T Tλ

g

p pλ

f

where Tλ is noetherian. Define

A′ =
⊕
m≥0

(pλ)∗ω
⊗5m
Sλ/Tλ

.

By above arguments it follows that

π′ : Proj(A′)→ Tλ

is a finitely presented morphism. The functor

f∗ : Mod(OTλ
)→ Mod(OTλ

)

commutes with direct sums by [Stacks, Lemma 01AJ] and formation of p∗ω
⊗5m
S/T commutes with

arbitrary base change by Lemma 4.11. It follows that

(16) f∗
( ⊕
m≥0

p∗ω
⊗5m
S/T

)
=

⊕
m≥0

f∗p∗ω
⊗5m
S/T ≃

⊕
m≥0

p′∗ω
⊗5m
S′/T ′ .

It follows by Remark 4.10 and by Equation (16) that we have a cartesian diagram

(17)

Proj(A) Proj(A′)

T Tλ.

π π′

f

https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/08K1
https://stacks.math.columbia.edu/tag/08K1
https://stacks.math.columbia.edu/tag/0CN2
https://stacks.math.columbia.edu/tag/01AJ
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Then π is finitely presented, being the pullback of a finitely presented morphism, see Proposi-

tion 3.6. □

Remark 4.21. For all m ≥ 0 we know that p∗ω
⊗5m
S/T is a locally free sheaf of finite rank

whose formation commutes with arbitrary base change by Lemma 4.11. It follows in particular

that for every geometric point σ : Spec k → T the cartesian diagram

Sk S

Spec k T

pk p

σ

yields an isomorphism⊕
m≥0

(pk)∗ω
⊗5m
Sk

≃
⊕
m≥0

σ∗p∗ω
⊗5m
S/T ≃

⊕
H0(Sk, ω

⊗5m
Sk

)

as in Equation (16). Thus, for every geometric point σ of T , we have a cartesian diagram

X̃k = Proj
(⊕

m≥0 H
0(Sk, ω

⊗5m
Sk

)
)

Proj
(⊕

m≥0 p∗ω
⊗5m
S/T

)
Spec k T.σ

as in Equation (17). The geometric fibre X̃k is isomorphic to the canonical model

Xk = Proj

( ⊕
m≥0

H0(Sk, ω
⊗m
Sk

)

)
,

of Sk, the isomorphism being induced by the inclusion⊕
m≥0

H0(Sk, ω
⊗5m
Sk

) ⊆
⊕
m≥0

H0(Sk, ω
⊗m
Sk

).

In other words, the geometric fibres of π are canonical models of minimal surfaces of general

type.

Corollary 4.22. Let (p : S → T ) ∈ Mmin(T ) and let A =
⊕

m≥0 p∗ω
⊗5m
S/T . Then

(π : Proj(A)→ T ) is an object ofMcan.

Proof. The morphism π is proper, flat and finitely presented by Corollary 4.19, Propo-

sition 4.12 and Proposition 4.20. Moreover, every geometric fibre of π is the canonical model

of a minimal surface of general type by Remark 4.21. □

Proposition 4.23. There exists a morphism of stacks α :Mmin →Mcan.

Proof. Recall that a morphism of stacks is a morphism of fibred categories (Definition

A.71). First, we define the action of α on objects. Given (p : S → T ) ∈ Mmin, we define

α(p) as the object (π : Proj
T
(A)→ T ) ofMcan, where A =

⊕
m≥0 p∗ω

⊗5m
S/T . This is indeed an

object ofMcan by Corollary 4.22.

Suppose now that we are given an arrow inMmin. In other words, we are given a cartesian

diagram of algebraic spaces

ξ :

S′ S

T ′ T

p′ p

where T, T ′ are schemes and (p : S → T ) and (p′ : S′ → T ′) are objects of Mmin. Since

formation of A commutes with arbitrary base change by Lemma 4.11, we obtain a cartesian

diagram of schemes
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η :

Proj(A′) Proj(A)

T ′ T

π π

as in Equation (17), where A′ =
⊕

m≥0 p
′
∗ω

⊗5m
S′/T ′ . In particular, the diagram η is an arrow

of Mcan. We define the action of α on arrows by α(ξ) = η. Since every arrow is cartesian,

it is clear that α sends cartesian arrows in cartesian arrows. Finally, the map α obviously

commutes with the projection to Sch:

Mmin Mcan

Sch .

α

□

Remark 4.24. The morphism α :Mmin →Mcan is clearly a bijection on geometric points,

by Proposition 2.62. However, α is not an isomorphism, because if (p : S → T ) is an object of

Mcan(T ), then a simultaneous resolution of p could not exist. This is due to the work of Artin

in [Art74a].

4.3. Related topics

In this section, we provide a concise exposition on topics related to moduli spaces of sur-

faces.

Connected components and number of moduli. If S is a minimal surface of general

type over C, then the topological space underlying S is an oriented compact real manifold of

dimension 4.

By results of Bombieri [Bom73], it is known that surfaces of general type with fixed numerical

invariants χ = χ(OS) and K2, where K2 is the self-intersection of a canonical divisor of the

minimal model S, belong to a finite number of families.

Moreover, K2 and χ, are invariants under orientation-preserving homeomorphisms of the un-

derlying topological space of S.

As in §3.4 we can consider the Deligne-Mumford stackMmin,C
χ,K2 of complex minimal surfaces of

general type with invariants χ,K2.

Then the isomorphism classes of surfaces S with these invariants χ, K2 are parametrized by

a quasi-projective variety Mmin,C
χ,K2 . According to [Cat84], this moduli space consists of a finite

number of irreducible components M1, . . . ,Mk, and any two points belonging to the same con-

nected component ofMmin,C
χ,K2 correspond to isomorphism classes [S] and [S′] of minimal models

S and S′ that are diffeomorphic to each other, by Ehresmann theorem (see, for example, [Voi07,

Theorem 9.3])

For example, Horikawa in [Hor75] studied the component Mmin,C
5,5 (equivalently K2 = 5, pg =

4, q = 0, by Definition 2.4) and he showed that this moduli space is connected but consists of

two irreducible components, each of dimension 40.

We may also define Mmin,C =
∐

χ,K2 M
min,C
χ,K2 as χ and K2 runs over integers and we may

ask whether the converse of what we said above holds. In other words, let S be an oriented

compact real manifold of dimension 4. Define

MS =
{
[X] ∈Mmin,C ∣∣ X is diffeomorphic to S

}
.
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The space MS may be empty. If not, by Ehresmann theorem, we know that MS is union of

connected components of Mmin,C.

Q: how many connected components does MS have?

Manetti gave an answer to this problem in [Man01, Theorem A]: for all n > 0 there exists

a smooth oriented compact differentiable 4-manifold S, such that MS has at least n connected

components.

Another interesting question concerns the dimension of moduli spaces of surfaces.

Definition 4.25. Let S be a minimal surfaces of general type over C with invariants χ

and K2. The number of moduli of S, denoted by M(S) is the dimension of Mmin,C
χ,K2 at [S], the

isomorphism class of S.

As we said above, for fixed χ andK2, we have thatMmin,C
χ,K2 has a finite number of irreducible

components. It follows in particular that if S is a minimal surface of general type with fixed χ

and K2, the number of moduli M(S) can assume only a finite number of values.

Catanese also gives bounds forM(S) in terms of χ and K2. First of all, deformation theory

for smooth surfaces provides two inequalities as follows: if TS is the tangent bundle of S, then

(18) h1(S, TS) ≥M(S) ≥ h1(S, TS)− h2(S, TS).

See, for example, [Ser06, Corollary 2.4.7]. The statement is true in a more general context:

it holds for smooth projective algebraic varieties, i.e. proper schemes over a field k. Since for

curves the second cohomology groups vanish, this is the reason why for smooth genus g curves,

the dimension of Mg (Remark 1.16) at a point [C] is exactly h1(C, TC) = 3g− 3, as we proved

in Proposition 1.17.

However, h2(S, TS) may be not zero for minimal surfaces of general type, as we observed

in Remark 2.73. In fact, surfaces may be obstructed, as we explain later, because H2(S, TS)
provides an obstruction space for S.

We also have the following bound due to Catanese.

Proposition 4.26. Let S be a minimal surface of general type over C with invariants χ

and K2. Then

M(S) ≤ 10χ+ 3K2 + 108.

Proof. See [Cat84, Theorem B]. □

An example of obstructed surface. We want now to briefly present an example of an

obstructed minimal surface of general type. We will work over the field of complex numbers.

Consider the first Hirzebruch surface

F1 := P(OP1
C
⊕OP1

C
(−1)),

which is a del Pezzo surface (Definition 3.108), i.e. −KF1
is ample. It holds that −KF1

is very

ample, and it realizes a closed immersion of F1 in P8
C, because dimC H0(F1,−KF1

) = 9.

Moreover the anticanonical ring

R = R(F1,−KF1
) =

⊕
m≥0

H0(F1, ω
⊗−m
F1

)

is generated in degree 1. Define

U = SpecR ⊆ A9
C

X = ProjR[t] ⊆ P9
C
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to be the affine cone and the projective cone, respectively, of F1 with respect to the anti-

canonical line bundle ([GW20, §13.9]). A result of Altmann [Alt97] states that the base of

the miniversal deformation of U is Spf C[t]/(t2), i.e. there exists a formal versal couple (R, ξ)

([Ser06, Definition 2.2.6]) such that R = C[ϵ] = C[t]/(t2) and ξ is a formal element over R of

the deformation functor DefU of U ([Ser06, §2.4.1]).

Proposition 4.27. Every formal deformation of U over C[[x]] is trivial.

Proof. Let ξ → Spf C[t]/(t2) be the versal formal deformation of U . Let η → Spf C[[x]] be
a formal deformation of U over C[[x]]. Since ξ is versal, η is induced by a local homomorphism

of local C-algebras
ϕ : C[t]/(t2)→ C[[x]]

so that the diagram

η ξ

Spf C[[x]] Spf C[t]/(t2)
f

is cartesian. Since t2 = 0 in C[t]/(t2) and C[[x]] is a domain, we have that ϕ(t) = 0. Thus, ϕ

factorizes as

C[t]/(t2) C[[x]]

C

ϕ

a

where a(t) = 0. It follows that f factorize through SpecC and the pullback of ξ to SpecC
is simply U . Then the pullback of U to Spf C[[x]] is the trivial deformation, and thus η is

trivial. □

Remark 4.28. Using spectral sequences, it is possible to show that the restriction

DefX → DefU

is an isomorphism. In particular, the base of the miniversal deformation of X is Spf C[t]/(t2).

Consider now a smooth projective surface S ⊆ X obtained by intersecting X with a

general hypersurface in P9
C of sufficiently positive degree m. One can show that the natural

transformation of functors

DefS↪→X

DefXDefS

are smooth. It follows that the base of the miniversal deformation of S is

Spf
C[[t, u1, . . . , ud]]

(t2)

for some d ≥ 0. In particular, S is an obstructed surface.

Moreover, the canonical line bundle of S is ample. Thus, S is a minimal surface of general

type over C and S coincides with its canonical model. In other words, S provides a point that

belongs to bothMmin andMcan. By deformation theory, this implies that neitherMmin nor

Mcan is smooth, and that this property does not hold even in characteristic zero.
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The geography of surfaces of general type. Another fundamental question regards

the geography of surfaces of general type over the field of complex numbers. We can formulate

it as follows.

Q: for which values of χ and K2 is Mmin,C
χ,K2 non empty?

In other words, we are asking for which values of χ and K2 there exists a minimal surface of

general type over C with Euler characteristic χ and self-intersection of the canonical bundle

K2. This problem is constrained by well-known inequalities.

Proposition 4.29. Let S be a minimal surface of general type over the field of complex

numbers. Then the following inequalities holds.

(1) K2
S ≥ 1;

(2) χ(OS) ≥ 1;

(3) K2
S ≥ 2pg(S)− 4;

(4) K2
S ≥ 2χ− 6 (Noether’s inequality);

(5) K2
S ≤ 9χ (Bogomolov-Miyaoka-Yau inequality).

Proof. The first inequality is due to [Kod68, §3]. For (2) see [Bea10, Theorem X.4].

For (3) see [Bea10, Exercise X.13(1)]. Then (4) follows immediately by (3) since χ(S) =

1− q(S) + pg(S). Finally (5) was proved independently by Miyaoka [Miy77] and Yau [Yau77]

after Bogomolov [Bog78] proved a weaker version of it. □

Therefore, the geography of complex minimal surfaces of general type can be represented

as in Figure 1.

χ(OS)

K2
S K2 = 9χ

K2 = 2χ− 6

χ = 1

K2 = 1

Figure 1. The geography of minimal surfaces of general type

Surfaces on the line K2 = 2χ− 6 have been classified by Horikawa [Hor76]. They exist for

every value χ ≥ 4. Persson [Per81, Theorem 2] found a complex minimal surface of general

type for every values of χ and K2 such that 2χ−6 ≤ K2 ≤ 8χ. Moreover, Sommese in [Som84]

proved that the possible ratios of χ/K2 for which a minimal surface of general type exists with

those invariants, form a dense subset of the interval [2, 9].

Compactification. Beyond the moduli space of smooth surfaces, one can construct a com-

pactification of M
min

χ,K2 by considering the projective KSBA (Kollár-Shepherd-Barron-Alexeev)
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moduli space MKSBA
χ,K2 , which parametrizes stable surfaces, including possibly reducible ones.

The moduli space Mmin,C
χ,K2 is an open subset of MKSBA

χ,K2 .

This construction generalizes the Deligne-Mumford compactification of Mg using stable

curves. However, the theory of stable surfaces is significantly more involved, due to the fact

that stable surfaces need not be Gorenstein, which complicates the definition of the canonical

sheaf and stable families. We refer the reader to [Kol23].

Singularity. A theorem of Vakil shows that the stack of smooth surfaces with ample

canonical divisor can have arbitrarily bad singularities, highlighting the complexity of these

moduli spaces.

Theorem 4.30 (Vakil’s “Murphy’s law”). For every singularity type of finite type over Z,
there exists a Gieseker moduli space M can

χ,K2 and a minimal surface of general type S with ample

canonical divisor KS (hence S coincides with its canonical model X) such that (M can
χ,K2 , X)

realizes the given singularity germ, up to a smooth factor.

Proof. See [Vak06]. □





APPENDIX A

Stack theory

We recall basics of stack theory. We will follow [Vis08].

A.1. Representable functors

Let C be a category. We write U ∈ C to denote an object of C. We denote by

Hom(Cop,Set)

the category whose objects are contravariant functors F : Cop → Set and arrows are the natural

transformations.

Notation A.1. More generally, if C and D are two categories, we denote by Hom(C,D)
the set of functors from C to D.
If F,G are two functors between the same categories C and D, we denote by Hom(F,G) the

set of natural transformations of functors from F to G.

Notation A.2. Let C be a category and let (F : Cop → Set) ∈ Hom(Cop,Set). If f : V → U

is an arrow in C, we will denote by

f∗ : F (U)→ F (V )

the corresponding map of sets f∗ = F (f). If u ∈ F (U), we call f∗(u) ∈ F (V ) the pullback of

u on V .

Lemma A.3. Let C be a category which admits fibre products. Suppose that we have a

commutative diagram of morphisms between objects of C
Q P A

D B C.

t

u

r

s f

h g

Then both squares are cartesian if and only if the right hand square and the square

Q A

D C

rt

u f

gh

obtained by composing the rows, are cartesian.

Proof. If both squares are cartesian, then it is clear that also the square obtained by

composing the rows is cartesian.

Suppose now that the right hand square and the external square are cartesian. Let D ×B P

be the pullback of D and P along h and s. Since by hypothesis the diagram

Q A

D C

rt

u f

gh

91
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is cartesian, by the universal property of the pullback there exists a unique dotted arrow making

the diagram

D ×B P

Q A

D C

α

prD

r◦prP

u

rt

f

gh

commutative. It follows that also

D ×B P

Q P

D B

α

prD

prP

u

t

s

h

is commutative, so that the universal property of the pullback is satisfied for Q along the maps

t and u. □

Example A.4. Let C be a category and let U ∈ C be an object. Then there is a functor

hU : Cop → Set

which sends an object V ∈ C to the set hU (V ) = HomC(V,U). If α : V ′ → V is an arrow in

C then hU (α) : hU (V ) → hU (V
′) is defined to be composition with α. Moreover, an arrow

f : U → V defines a morphism hU → hV in a natural way, see [Vis08, §2.1]. We will also

denote by U(V ) the set hU (V ).

Sending an object U of C to hU defines a functor

h− : C → Hom(Cop,Set),

see [Vis08, §2.1.1] for details.

Definition A.5. A representable functor on the category C is a functor

F : Cop → Set

which is isomorphic to a functor of the form hU for some object U of C. If this happens, we

say that F is represented by U .

Lemma A.6 (Yoneda’s lemma). Let C be a category, U ∈ C be an object, and F : Cop → Set

be a contravariant functor.

(1) The function

ϕ : Hom(hU , F ) −→ F (U)

α 7−→ αU (idU )

is a bijection.

(2) The functor

h− : C → Hom(Cop,Set)
is fully faithful.

Proof. Consider the map of sets

ψ : F (U) −→ Hom(hU , F )

p 7−→ ψp
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where ψp is the natural transformation from hU to F such that for every object V ∈ C we have

ψp,V : hU (V ) −→ F (V )

f 7−→ F (f)(p).

It is easy to see that ϕ and ψ are one the inverse of the other. Then, (2) follows immediately

by (1) by considering F = hU ′ for another object U ′ ∈ C. □

Definition A.7. Let F : Cop → Set be a functor. A universal object for F is a pair (U, ξ),

where U ∈ C and ξ ∈ F (U) are such that for each object V of C and each σ ∈ F (V ), there

exists a unique arrow f : V → U such that F (f)(ξ) = σ ∈ F (V ).

In other words, (U, ξ) is a universal object if the morphism hU → F defined by ξ as in

Lemma A.6 is an isomorphism.

We will now give some examples in the category of schemes. If S is a scheme, then the

functor

hS : (Sch)op → Set

is called the functor of points of S. Moreover, if a functor

F : (Sch)op → Set

is represented by a scheme M , we say that M is a fine moduli space for F .

The first point of the theory of stacks is to view a scheme as a functor. Namely, thanks to

Yoneda’s lemma (A.6) we can confuse a scheme S with its functor of points hS .

For a contravariant functor F as above, being representable by some scheme T is in some

sense the best condition that we can ask for. The reason is that there exists a universal object

which induces all of the others via unique morphisms, as in Definition A.7.

Example A.8. Let S = SpecR be an affine scheme. Consider the functor

O : (Sch /S)op → Set

that sends an S-scheme U toO(U). The functorO is represented by SpecR[x] and (SpecR[x], x)

is a universal object, see [Vis08, Example 2.4].

Example A.9. Let S = SpecR be an affine scheme. Consider the functor

O∗ : (Sch /S)op → Set

that sends an S-scheme U to O∗(U) (invertible sections of the structure sheaf). The functor

O∗ is represented by Gm,S = SpecR[x, x−1] and (Gm,S , x) is a universal object, see [Vis08,

Example 2.5].

Example A.10. Let S = SpecR be an affine scheme. It is known that morphisms from

an S-scheme T to PN
S are in one-to-one correspondence with isomorphism classes of tuples

(L, s0, . . . , sN ) where L is a line bundle on T and si ∈ H0(T,L) are global sections generating

L. It follows that the functor

F : (Sch /S)op → Set

sending an S-scheme T to the set of isomorphism classes of tuples defined above, is represented

by PN
S . The universal object over PN

S is (OPN
S
(1), x0, . . . , xN ), see [Vis08, Example 2.6] for

details.
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Example A.11. For every noetherian scheme T and every polynomial P ∈ Q[m], we can

consider Hilbert functor

HilbP (Pn
T ) : (Sch /T )

op −→ Set

sending a morphism (f : S → T ) to the set of closed subschemes Z ⊆ PN
S , flat and finitely

presented over S, such that for all s ∈ S the fibre Zs = f−1(s) is a closed subscheme of Pn
κ(s)

with Hilbert polynomial P .

The Hilbert functor is represented by a projective scheme over T ([Fan+05, Theorem 5.20] or

[Alp24, Theorem 1.1.2]).

We define the Hilbert scheme of T and P to be the scheme representing the functor HilbP (Pn
T ),

and we denote it by HilbP (Pn
T ).

Definition A.12. Let C be a category. A group object of C is an object G of C, together
with a functor Cop → Grp in the category of groups, whose composite with the forgetful

functor Grp → Set equals hG. Equivalently, a group object is an object G, together with a

group structure on G(U) for each object U of C, so that the function f∗ : G(V ) → G(U)

associated with an arrow f : U → V in C is always a homeomorphism of groups. See [Vis08,

Definition 2.11].

Example A.13. Let S = SpecR. For each scheme U , the set O(U) has an additive group

structure. Then Ga,S = SpecR[x] is a group scheme by Example A.8.

Analogously, Gm,S of Example A.9 has an obvious structure of group scheme.

Example A.14. Let S = SpecR, and consider the contravariant functor from Sch /S to Set

which sends each S-scheme U to the set of matrices in Mn(O(U)) with invertible determinants.

This functor is represented by an open subscheme of An2

S , which we denote by GLn,S . Matrices

with invertible determinants form a group, and this gives to GLn,S a group scheme structure.

If S = SpecZ we simply write GLn = GLn,SpecZ, and this scheme is

SpecZ[(xij) | 1 ≤ i ≤ n, 1 ≤ j ≤ n, det(xij)−1].

Example A.15. Let H be a scheme and let f : E → E′ be a morphism of locally free

sheaves on H of finite rank r and s respectively. Let

F : (Sch /H)op → Set

be the functor sending g : T → H to the unital set if g∗(f) : g∗E → g∗E′ is the zero map, and

the empty set otherwise. We claim that F is represented by a closed subscheme of H. To see

this, consider {Ui = SpecAi}i∈I an open affine cover of E on which both E, E′ are trivialized.

Then, for each i ∈ I, the restriction f|Ui
is represented by an s× r matrix(

f
(i)
j,k

)
: O⊕r

Ui
→ O⊕s

Ui

where 1 ≤ j ≤ s, 1 ≤ k ≤ r and f
(i)
j,k ∈ OH(Ui) for all i, j, k. Consider the ideal Ii of Ai

generated by the elements f
(i)
j,k for 1 ≤ j ≤ s and 1 ≤ k ≤ r. Then V (Ii) is a closed subscheme

of Ui and a map g : T → Ui is such that the pullback g∗f|Ui
is zero if and only if g factors

through V (Ii). It follows that glueing the ideals Ii for all i ∈ I we get an ideal sheaf I ⊂ OH ,

and the corresponding closed subscheme represents the functor F .

A.2. Sites, sheaves and algebraic spaces

Definition A.16. Let C be a category, and let C ∈ C be an object. We define the comma

category C/C whose objects are arrows C ′ → C of C with target C, and morphisms from

(f : C ′ → C) to (g : C ′′ → C) are given by morphisms h : C ′ → C ′′ in C such that the diagram
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C ′ C ′′

C

h

f g

commutes.

Definition A.17. Let C be a category. A Grothendieck topology on C is the data, for each

object C of C, of a collection of sets of arrows {Ci → C}i∈I , called coverings of C so that the

following conditions are satisfied.

(i) If C ′ → C is an isomorphism, then {C ′ → C} is a covering.

(ii) If {Ci → C}iıI is a covering and C ′ → C is any arrow, then the fibre products Ci×CC
′

exist, and the collection of projections {Ci ×C C
′ → C ′}i∈I is a covering.

(iii) If {Ci → C}i∈I is a covering, and for each index i we have a covering {Cij → Ci}j
(here j varies on a set depending on i), the collection of composites {Cij → Ci → C}ij
is a covering of C.

Notation A.18. We will simply denote by {Ci → C} a covering (or a set of arrows),

namely we will not write the subscript i ∈ I to avoid making the notation too heavy.

Definition A.19. A site is a pair (C, τ) where C is a category and τ is a Grothendieck

topology. We will also say that C is a site, implicitly assuming that it is equipped with a

Grothendieck topology.

Definition A.20. A set {Ui → U} of functions, or morphisms of schemes, is called jointly

surjective when the set-theoretic union of their images equals U .

Example A.21. If (C, τ) is a site, and C ∈ C is an object, then τ induces an obvious

Grothendieck topology on the comma category C/C.

Example A.22. Let X be a topological space. We denote by Xop the category in which

objects are the open subsets of X, and the arrows are given by inclusions. We define a

Grothendieck topology on Xop by associating with each open subset U ⊆ X the set of open

coverings of U . Note that if U1 ⊆ U and U1 ⊆ U are arrows in Xop, the fibred product U1×UU2

is the intersection U1 ∩ U2.

In particular, if X is a scheme, the Zariski topology on X defines the small Zariski site on X.

Example A.23. Let (Top) be the category of topological spaces. We define the global

étale topology for topological spaces as follows. If X is a topological space, then a covering of

X is a jointly surjective collection of local homeomorphisms Xi → X.

Example A.24. Let X be a scheme. Consider the full subcategory Xét of (Sch /X),

consisting of morphisms U → X locally of finite presentation, that are étale. If U → X and

V → X are objects of Xét, then an arrow U → V over X is necessarily étale. The small étale

site of X on Xét is defined as follows. A covering of U → X is a jointly surjective collection of

morphisms Ui → U .

Let S be a scheme. We now give examples of Grothendieck topologies on the comma

category (Sch /S). If S = SpecZ, this is just (Sch).

Example A.25. The global Zariski topology is defined as follows. A covering {Ui → U}
is a collection of open embeddings covering U . Recall that an open embedding is a morphism

V → U that gives an isomorphism of V with an open subscheme of U , and not simply an

embedding of an open subscheme.

Example A.26. The global étale topology is defined as follows. A covering {Ui → U} is a
jointly surjective collection of étale maps locally of finite presentation.
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Example A.27. The global fppf topology is defined as follows. A covering {Ui → U} is

a jointly surjective collection of flat maps locally of finite presentation. Here fppf stands for

fidèltment plat et de présentation finie.

Definition/Proposition A.28. An fpqc morphism of schemes is a faithfully flat mor-

phism f : X → Y that satisfies the following equivalent conditions.

(i) Every quasi-compact open subset of Y is the image of a quasi-compact open subset

of X.

(ii) There exists a covering {Vi} of Y by open affine subschemes, such that each Vi is the

image of a quasi-compact open subset of X.

(iii) Given a point x ∈ X, there exists an open neighbourhood U of x in X, such that the

image f(U) is open in Y , and the restriction U → f(U) of f is quasi-compact.

(iv) Given a point x ∈ X, there exists a quasi-compact open neighbourhood U of x in X,

such that the image f(U) is open and affine in Y .

Proof. See [Vis08, Proposition 2.33]. □

Here fpqc stands for fidèltment plat et quasi-compact.

Example A.29. The fpqc topology is defined as follows. A covering {Ui → U} is a collection
of morphisms such that the induced map

∐
Ui → U is fpqc.

Remark A.30. The fpqc topology is finer than the fppf topology, which is finer than the

étale topology, which is in turn finer than the Zariski topology. Indeed, an open immersion is

étale, an étale map is flat, and an fppf covering {Ui → U} induces an fpqc map
∐
Ui → U .

See also [Vis08, §2].

Definition A.31. Let C be a category. A presheaf on C is a contravariant functor

F : Cop → Set .

from the category C to the category of sets.

Definition A.32. Let C be a site and let F : Cop → Set be a functor.

(i) F is separated if, given a covering {Ui → U} and two sections a and b in F (U) whose

pullbacks to each F (Ui) coincide, it follows a = b.

(ii) F is a sheaf if the following condition is satisfied. Suppose that we are given a covering

{Ui → U} in C, and a set of elements ai ∈ F (Ui). Denote by pr1 : Ui ×U Uj → Ui

and pr2 : Ui×U Uj → Uj the first and the second projection respectively, and assume

that pr∗1ai = pr∗2aj in F (Ui ×U Uj) for all i and j. Then there is a unique section

a ∈ F (U) whose pullback to F (Ui) is ai for all i.

If F and G are sheaves on a site C, a morphism of sheaves F → G is simply a natural

transformation of functors.

Remark A.33. Let S be a scheme and let F : (Sch /S)op → Set be a presheaf. If F is a

sheaf in the fpqc topology, then it is clear by Remark A.30 that F is also a sheaf in the fppf

topology, in the étale topology and in the Zariski topology.

Theorem A.34 (Grothendieck). Let S be a scheme. A representable functor on (Sch /S)

is a sheaf in the fpqc topology.

Proof. See [Vis08, Theorem 2.55]. □

Remark A.35. In particular, every representable functor on (Sch /S) is a sheaf also in the

étale and fppf topology by Remark A.33.
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Definition A.36. Let α : F → G and β : G′ → G be morphisms of presheaves on a

category C. The fibre product of F and G′ along α and β is the presheaf F ×G G
′ : Cop → Set

such that

F ×G G
′(C) = F (C)×G(C) G

′(C) = {(a, b) ∈ F (C)×G′(C) | αC(a) = βC(b)} .

Definition A.37. A morphism F → G of (pre)sheaves over Schét is representable by

schemes if for every morphism T → G from a scheme T (i.e. from the functor of points of T ),

the fibre product F ×G T is a scheme (i.e. is a representable functor).

Definition A.38. If P is a property of morphism of schemes stable under base change, a

morphism F → G of sheaves representable by schemes has property P if for every morphism

T → G from a scheme T , the morphism of schemes F ×G T → T has property P.

Example A.39. The properties of schemes of being surjective or étale are stable under

base change.

Definition A.40. An algebraic space is a sheaf F : Schop → Set in the étale topology

such that there exist a scheme U and a morphism U → F representable by schemes which is

surjective and étale. The morphism U → F is called an étale presentation.

Example A.41. Every scheme is obviously an algebraic space.

A.3. Fibred categories

Notation A.42. Let pF : F → C be a functor between two categories. We will say that

F is a category over C. We write ξ 7→ U if pF (ξ) = U and by a commutative diagram

ξ η

U V

α

f

we mean pF (α) = f .

Definition A.43. Let F be a category over C. An arrow ϕ : ξ → η of F is cartesian if

for any arrow ψ : ζ → η in F and any arrow h : pF (ζ)→ pF (ξ) in C with pF (ϕ) ◦ h = pF (ψ),

there exists a unique arrow θ : ζ → ξ with pF (θ) = h and ϕ ◦ θ = ψ.

If ξ → η is a cartesian arrow of F mapping to an arrow U → V , we also say that ξ is a pullback

of η to U .

Remark A.44. The pullback is not unique. However, it is unique up to a unique isomor-

phism, in the sense of [Vis08, Remark 3.3].

Definition A.45. Let C be a category. A fibred category over C is a category F over C,
such that given an arrow f : U → V in C and an object η of F mapping to V , there is a

cartesian arrow ϕ : ξ → η with pF (ϕ) = f .

Definition A.46. If F and G are fibred categories over C, then a morphism of fibred

categories F : F → G is a functor such that

• F is base-preserving, i.e. pG ◦ F = pF ;

• F sends cartesian arrows to cartesian arrows.

Definition A.47. Let F be a fibred category over C. Given an object U of C the fibre

F(U) of F over U is the subcategory of F whose objects are the objects ξ of F with pF (ξ) = U ,

and whose arrows are arrows ϕ in F with pF (ϕ) = idU .
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Definition A.48. A cleavage of a fibred category F over C is a class K of cartesian arrows

in F such that for each arrow f : U → V in C and each object η ∈ F(V ) there exists a unique

arrow in K with target η mapping to f in C. In other words, if we choose a cleavage, pullbacks

are uniquely determined.

By the axiom of choice, every fibred category has a cleavage. Given a fibred category

F → C with a cleavage K, we can associate to each object U of C a category F(U) and to each

arrow f : U → V a functor f∗ : F(V )→ F(U) which sends each object η of F(V ) to f∗η = ξ,

if ϕ : ξ → η is the unique arrow in K with target η mapping to f .

Remark A.49. Suppose that F is a fibred category over C. Sending an object U of C
to the category F(U) only defines a pseudo-functor (or lax 2-functor [Vis08, Definition 3.10].

The reason is that pullbacks are only unique up to a unique isomorphism by Remark A.44.

See [Vis08, Proposition 3.11].

Definition A.50. Let C be a category. A category fibred in groupoids over C is a category

F fibred over C, such that the category F(U) is a groupoid for any object U of C.

Proposition A.51. Let F be a category over C. Then F is fibred in groupoids over C if

and only if the followings hold.

(i) Every arrow in F is cartesian.

(ii) Given an object η of F and an arrow f : U → pF (η) of C, there exists an arrow

ϕ : ξ → η of F with pF (ϕ) = f .

Proof. See [Vis08, Proposition 3.22]. □

Definition A.52. Let C be a category. A category fibred in sets over C is a category F
fibred over C, such that the category F(U) is a set for any object U of C.

Proposition A.53. Let C be a category, and let F be a category over C. Then F is fibred

in sets if and only if for any object η of F and any arrow f : U → pF (η) of C, there is a unique

arrow ϕ : ξ → η of F with pF (ϕ) = f .

Proof. See [Vis08, Proposition 3.25]. □

Remark A.54. If F is a category fibred in sets over C, the pullbacks are uniquely deter-

mined. It follows that there is a well-defined functor Cop → Set by sending U to the set F(U),

see [Vis08, §3.4] for details. Moreover, this is an equivalence of the category of categories fibred

in sets over C and the category of functors Cop → Set, see [Vis08, Proposition 3.26].

Example A.55. Given an object U of a category C, the representable functor hU is as-

sociated to the comma category (C/U), which is a category fibred in sets over C through the

forgetful functor (C/U)→ C that forgets the arrow.

Remark A.56. Let C be a category. By Yoneda’s lemma A.6 we have that C is embedded

in the category Hom(Cop,Set), and by Remark A.54 we have that Hom(Cop,Set) is embedded

in the 2-category of fibred categories over C. Combining these two embeddings, we have that

C is embedded in the 2-category of fibred categories over C. This embedding sends an object

U of C into the fibred category (in sets) (C/U)→ C of Example A.55.

Remark A.57. Suppose now that F is a category fibred over C and that U is an object

of C. Let F : (C/U) → F be a morphism of fibred categories over C. We can associate an

object F (idU ) ∈ F(U). Moreover, to each base-preserving natural transformation α : F → G

of functors F,G : (C/U) → F we associate the arrow αidU
: F (idU ) → G(idU ). This defines a

functor

HomC((C/U),F)→ F(U).
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Lemma A.58 (2-Yoneda’s lemma). Let F be a category fibred over C and let U ∈ C be an

object. The functor

HomC((C/U),F)→ F(U)

defined in Remark A.57 defines an equivalence of categories.

Proof. It is sufficient to define the inverse functor. See [Vis08, §3.6.2]. □

Definition A.59. Let C be a category. Let P be a class of arrows of C. We say that P is

stable if the following conditions hold:

(i) If f : C → D is in P, and ϕ : C ′ ≃ C, ψ : D ≃ D′ are isomorphisms, then the

composition

ψ ◦ f ◦ ϕ : C ′ → D′

is in P.
(ii) Given C → D an arrow in P and C ′ → D any other arrow, then a fibred product

C ×D C ′ exists and the projection C ×D C ′ → C ′ is in P.

Definition A.60. Let C be a site, where C is a category with fibred products. Let P be a

stable class of arrows. We say that P is local if the following condition holds. Given a covering

{Ui → U} and an arrow C → U such that the projections Ui ×U C → Ui are in P for all i,

then also C → U is in P.

A.4. Stacks

Definition A.61. Let F → C be a fibred category and let K be a fixed cleavage. Let S

be an object of C and let ξ, η be two objects of F(S). We can define a functor

HomS(ξ, η) : (C/S)op → Set

by sending each object u : U → S to the set HomU (u
∗ξ, u∗η) of arrows in the category F(U).

An arrow f : U1 → U2 from u1 : U1 → S to u2 : U2 → S is sent to

f∗ : HomU2
(u∗2ξ, u

∗
2η)→ HomU1

(u∗1ξ, u
∗
1η).

We also define

AutS(ξ) = HomS(ξ, ξ)

as the automorphism functor of ξ.

Remark A.62. The functor HomS(ξ, η) of Definition A.61 is independent on the choice of

the cleavage K, i.e. different cleavage gives canonically isomorphic functors, see [Vis08, §3.7].

Remark A.63. The functor HomS(ξ, η) of Definition A.61 in [Stacks] is denoted by

Mor(ξ, η), see [Stacks, Definition 02ZB]. We may also define

IsomS(ξ, η) : (C/S)op → Set

as the subfunctor of HomS(ξ, η) which sends each object u : U → S to the set IsomU (u
∗ξ, u∗η) ⊆

HomU (u
∗ξ, u∗η) of isomorphisms between u∗ξ and u∗η in the category F(U). It is clear that

if F is fibred in groupoids over C, then there is no difference between the functors Hom and

Isom, because each fibre F(S) is a groupoid.

Example A.64. Let X be a scheme over a base S. Then we have the automorphism

functor of X defined as

AutX = AutS(X → S) : (Sch /S)op → Set

https://stacks.math.columbia.edu/tag/02ZB
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which maps an object (T → S) to the set of automorphisms over T of the pullback X ×S T .

More generally, if X and Y are two schemes over a base S, we define the functor

HomS(X,Y ) : (Sch /S)op → Set

which maps an object (T → S) to the set morphisms of schemes Hom(X ×S T, Y ×S T ).

Definition A.65. Let C be a site and let U = {Ui → U} be a covering in C. An object with

descent data ({ξi} , {ϕij}) on U , is a collection of objects ξi ∈ F(Ui) together with isomorphisms

ϕij : pr∗2ξj ≃ pr∗1ξi in F(Ui ×U Uj), such that the following cocycle condition is satisfied: for

any triple of indices i, j and k, we have the equality

pr∗13ϕik = pr∗12ϕij ◦ pr∗23ϕjk : pr∗3ξk → pr∗1ξi

where prab and pra are projections on the ath and bth factor, or the ath factor respectively.

Definition A.66. An object with descent data ({ξi} , {ϕij}) on a covering U = {σi : Ui → U}
is effective if there exists an object ξ ∈ F(U), together with cartesian arrows ξi → ξ over

σi : Ui → U , such that the diagram

pr∗2ξj pr∗1ξi

ξj ξi

ξ

ϕij

commutes for all i and j.

Definition A.67. Let C be a category and let F be a fibred category over a site C. We

say that F is a stack if the following conditions are satisfied.

(i) (morphisms glue) For any object S of C and any two objects ξ and η in F(S), the
functor HomS(ξ, η) is a sheaf in the comma topology.

(ii) (objects glue) All objects with descent data in F are effective.

Proposition A.68. Let C be a site and let F : Cop → Set be a functor. We can also

consider it as a category fibred in set F → C. Then F is a stack if and only if it is a sheaf.

Proof. See [Vis08, Proposition 4.9]. □

Example A.69. In the category of schemes, every representable functor in is a stack in

the étale (even fppf) topology by Theorem A.34 and Proposition A.68. This is how we view a

scheme as a stack.

Remark A.70. Every algebraic space is a stack, since every algebraic space is in particular

a sheaf.

Definition A.71. A morphism of stacks is a morphism of fibred categories, between two

stacks.

Definition A.72. Let F be a stack over the category of schemes Sch with the étale

topology. Let k be a field. A morphism x : Spec k → F of stacks is a field-valued point of the

stack F . This corresponds to an object, which we also denote by x, of F(Spec k) by 2-Yoneda’s

lemma (A.58). The automorphism group or stabilizer of x is defined as the sheaf

Gx = AutSpec k(x) = HomSpec k(x, x).
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Definition A.73. Let G → S be a group scheme with multiplication m : G ×S G and

identity e : S → G. An action of G on a scheme p : X → S over S is a morphism a : G×SX →
X of schemes over S such that the following diagrams commute:

G×S G×S X G×S X X G×S X

G×S X G X.

id×a

m×id a

(e◦p,id)

id
a

a

If X,Y are S-schemes with actions aX , aY of G, a morphism f : X → Y of S-schemes is

G-equivariant if aY ◦ (id× f) = f ◦ aX , and is G-invariant if is G-equivariant and Y has the

trivial G action.

Definition A.74. Let G → S be a smooth affine group scheme over a scheme S. A

principal G-bundle over an S-scheme T is a morphism P → T of schemes with an action

σ : G×S P → P of G on P such that P → T is a G-invariant smooth morphism and

(σ, pr2) : G×S P −→ P ×T P

(g, p) 7−→ (g · p, p)
is an isomorphism, where g · p denotes the action of g on p, i.e. g · p = σ(g, p).

Definition A.75. Let G → S be a smooth affine group scheme over a scheme S. The

classifying stack BG is the category over Sch /S whose objects are principal G-bundles P → T

and a morphism (P → T )→ (P ′ → T ′) is the data of a G-equivariant morphism P → P ′ such

that the diagram

P P ′

T T ′

is cartesian.

Definition A.76. Let G → S be a smooth affine group scheme acting on a scheme U

over S. We define the quotient stack [U/G] as the category over Sch /S whose objects over an

S-scheme T are diagrams

P U

T

where P → T is a principal G-bundle and P → U is a G-equivariant morphism of S-schemes.

A morphism between two objects (T ← P → U) → (T ← P → U) is given by a morphism

T → T ′ of schemes and a G-equivariant morphism P → P ′ of schemes such that the diagram

P P ′ U

T T ′

is commutative, and such that the square on the left is cartesian.

Remark A.77. Let G → S be a smooth affine group scheme acting on a scheme U over

S. Consider the trivial principal G-bundle given by

U ×G U

U

σ

pr1
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where σ is the multiplication given by the group action. By 2-Yoneda’s lemma (A.58) we have

a corresponding morphism U → [U/G] of stacks.

Proposition A.78. Let G → S be a smooth affine group scheme acting on a scheme U

over S. Then the quotient stack [U/G] is a stack over the étale topology. In particular, the

classifying stack BG = [S/G] is a stack over the étale topology.

Proof. See [Alp24, Proposition 2.5.13]. □

A.5. Algebraic stacks and Deligne-Mumford stacks

We now work in the category of schemes.

Definition A.79. Let X ,Y be two fibred categories over Sch. A morphism X → Y of

fibred categories is representable if for every morphism T → Y from a scheme T , the fibre

product X ×Y T is an algebraic space.

Proposition A.80. Let X be a category fibred in groupoids over Sch. The following are

equivalent:

(1) the diagonal X → X ×X is representable (by algebraic spaces);

(2) for every scheme T and any x, y ∈ ob(X (T )), the sheaf IsomT (x, y) is an algebraic

space.

Proof. Let x, y ∈ ob(X (T )), and denote also by x, y the two morphisms of fibred cate-

gories over Sch

x : Sch /T → X and y : Sch /T → X
which corresponds to these objects by 2-Yoneda’s lemma A.58. The 2-fibre product

X ×X×X ,(x,y) Sch /T

is a category fibred in setoids over Sch /T which corresponds to the presheaf

IsomT (x, y)

by [Stacks, Lemma 04SI]. □

Definition A.81. Let P be a property of morphisms of schemes. We say that P is étale

(resp. smooth) local on the source if for every étale (resp. smooth) surjection X ′ → X of

schemes, a morphism X → Y satisfies P if and only if X ′ → X → Y does. We say that P is

étale (resp. smooth) local on the target if for every étale (resp. smooth) surjection Y ′ → Y of

schemes, a morphism X → Y satisfies P if and only if X ×Y Y ′ → Y does. We say that P is

étale (resp. smooth) local if for every étale (resp. smooth) surjection of schemes X → Y , then

X has P if and only if Y has P.

Definition A.82. Let P be a property of morphisms of schemes stable under base change

and étale local on the source. We say that a representable morphism X → Y of fibred categories

over Sch has property P if for every morphism T → Y from a scheme T and for every étale

presentation U → X ×Y T by a scheme U , the composition

U → X ×Y T → T

has property P.

Example A.83. The properties of being surjective, étale or smooth are stable under base

change and étale local on the source.

Definition A.84. Let X be a stack over the étale topology. We say that X is an algebraic

stack if there exists a scheme U and a representable morphism U → X which is surjective and

smooth. The morphism U → X is called a smooth presentation.

https://stacks.math.columbia.edu/tag/04SI
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Proposition A.85. Let G be an affine smooth group scheme acting on an a scheme U .

The quotient stack [U/G] is an algebraic stack such that U → [U/G] is a smooth presentation.

Proof. See [Alp24, Theorem 3.1.10]. □

Definition A.86. Let X be a stack over the étale topology. We say that X is a Deligne-

Mumford stack if there exist a scheme U and a representable morphism U → X which is

surjective and étale. The morphism U → X is called an étale presentation.

Remark A.87. Every Deligne-Mumford stack is in particular an algebraic stack.

Remark A.88. Every algebraic space is a Deligne-Mumford stack.

Proposition A.89. The following hold:

(1) the diagonal of an algebraic space is representable by schemes;

(2) the diagonal of an algebraic stack is representable.

Proof. See [Alp24, Theorem 3.2.1]. □

Remark A.90. Fibre products exist for algebraic spaces, Deligne-Mumford stacks, and

algebraic stacks, see [Alp24, Exercise 3.1.9].

Remark A.90 allows us to give the following definition.

Definition A.91. Let P be a property of morphism of schemes. If P is étale local (resp.

smooth local) on the source and target and is stable under composition and base change, a

morphism X → Y of Deligne-Mumford stacks (resp. algebraic stacks) has property P if for all

étale (resp. smooth) presentations V → Y and U → X ×Y V yielding a diagram

U X ×Y V V

X Y
the composition U → V has P. It is enough to check this for specific presentations V → Y
and U → X ×Y V .

Remark A.92. If G → S is a smooth affine group scheme acting on a S-scheme U , then

[U/G]→ S is flat (resp. smooth, surjective, locally of finite presentation, locally of finite type)

if and only if U → S is. Indeed we can use the diagram

U [U/G] S

[U/G] S

where U → [U/G] is the smooth presentation as in Proposition A.85.

Definition A.93. Let P be a property of schemes which is étale (resp. smooth) local. We

say that a Deligne-Mumford stack (resp. algebraic stack) X has property P if for every étale

(resp. smooth) presentation U → X , the scheme U has P. It is enough to check this for a

specific presentation U → X .

We want now to give a characterization of Deligne-Mumford stacks. To do this, we first

recall the definition of an unramified morphism of schemes and the formal criterion for smooth-

ness, unramifiedness and étaleness.
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Definition A.94. A first-order thickening of affine schemes is a closed immersion of

schemes

SpecA/I ↪→ SpecA.

where A is a ring and I ⊂ A is an ideal of A such that I2 = 0.

Definition A.95. A ring map R→ A is unramified if it is of finite type and ΩA/R = 0.

Definition A.96. A morphism of schemes f : X → Y is unramified at x ∈ X if there

exists an affine open neighbourhood SpecA = U ⊆ X of x and an affine open SpecR = V ⊆ Y
with f(U) ⊆ V such that the induced map R → A is unramified. A morphism of schemes

f : X → Y is unramified if it is unramified at every point of X.

Definition A.97. Let f : X → Y be a morphism of schemes. Consider a commutative

diagram

Z0 X

Z Y

i f

where i : Z0 ↪→ Z is a first-order thickening of affine schemes over Y . We say that

(1) f is formally smooth if there exists a dotted arrow making the above diagram com-

mute;

(2) f is formally unramified if there exists at most one dotted arrow making the above

diagram commute;

(3) f is formally étale if there exists exactly one dotted arrow making the above diagram

commute.

Lemma A.98. Let f : X → Y be a morphism of schemes. The following are equivalent:

(i) the morphism f is unramified;

(ii) the morphism f is locally of finite type and formally unramified.

Proof. See [Stacks, Lemma 02HE]. □

Lemma A.99. Let k ⊆ K be a finite field extension. Then k ⊆ K is separable if and only

if, for every (some) algebraically closed extension Ω of k, we have an isomorphism

Ω⊗k K ≃ Ω× · · · × Ω

as Ω-algebras.

Proof. Suppose first that k ⊆ K is separable. By the primitive element theorem, there

exists α ∈ K such that K = k(α). Let p(t) ∈ k[t] be the minimal polynomial of α over k,

so that K ≃ k[t]/p(t). By hypothesis we know that p(t) has distinct roots α1, . . . , αn in an

algebraic closure of k. From K ≃ k[t]/p(t) we have isomorphisms of Ω-algebras:

Ω⊗k K ≃ Ω⊗k k[t]/p(t) ≃ Ω[t]/p(t)

= Ω[t]/((t− α1) · . . . · (t− αn)) ≃
n∏

i=1

Ω[t]/(t− αi)

≃ Ω× . . .× Ω.

Conversely, suppose that there exists an isomorphism ϕ : Ω ⊗k K → Ω⊕n of Ω-algebras,

where n = [K : k]. For i = 1, . . . , n, consider the ith projection pri : Ω⊕n → Ω and the

homomorphism σi : K → Ω defined by σi(a) = (pri ◦ϕ)(1 ⊗ a) for every a ∈ K. Observe

that σ1, . . . , σn are k-linear, being composition of k-linear homomorphism. Moreover, they are

immersions of K into Ω, as they are composition of an isomorphism with a projection. We

https://stacks.math.columbia.edu/tag/02HE
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must show that they are distinct. If σi = σj , then the Ω-linear maps pri ◦ϕ, prj ◦ϕ coincide on

the subset {1 ⊗ a | a ∈ K}, which generates Ω ⊗k K as Ω-vector space; then pri ◦ϕ = prj ◦ϕ,
hence i = j, because ϕ is an isomorphism. □

Proposition A.100. Let f : X → Y be a morphism of schemes which is locally of finite

type. Then the following are equivalent:

(i) f is formally unramified;

(ii) for every point y ∈ Y the fibre Xy = X ×Y Spec k(y) is a disjoint union of spectra of

finite separable field extensions of k(y);

(iii) for every geometric point SpecΩ → Y the fibre product X ×Y SpecΩ is isomorphic

to a disjoint union of copies of SpecΩ;

(iv) ΩX/Y = 0.

Proof. The equivalence between (i) and (iv) follows directly from the definitions A.95

and A.96. The equivalence between (i) and (ii) follows by [Stacks, Lemma 02G7] and does not

require f to be of finite type. Finally the equivalence between (ii) and (iii) follows by Lemma

A.99. □

Theorem A.101. Let X be an algebraic stack over the étale topology. The following are

equivalent:

(i) X is a Deligne-Mumford stack;

(ii) the diagonal X → X ×X is unramified;

(iii) every field valued point of X has discrete and reduced stabilizer group.

Proof. First, observe that the diagonal of an algebraic stack is locally of finite type

([Stacks, Lemma 04XS]). Then the equivalence between (ii) and (iii) follows by Lemma A.98,

Proposition A.100 and by the fact that the stabilizer of a point x : Spec k → X (Definition

A.72) is identified with the fibre product

Gx = AutSpec k(x) Spec k

X X × X

(x,x)

∆

by [Alp24, Exercise 2.4.39]. The equivalence between (i) and (ii) is [LM00, Théorème 8.1]. □

Definition A.102. Let X be an algebraic stack. A morphism π : X → X from X to an

algebraic space X is called a coarse moduli space for X if

(i) for every algebraically closed field k, the induced map

X (k)/∼ → X(k)

from the set of isomorphism classes of objects of X over k is bijective, and

(ii) π is universal for maps to algebraic spaces, i.e. every map X → Y to an algebraic

space Y factors uniquely as

X

X Y.

π

Theorem A.103 (Keel-Mori). Let X be a Deligne-Mumford stack separated and of finite

type over a noetherian algebraic space S. Then there exists a coarse moduli space π : X → X

with OX = π∗OX such that

(1) X is separated and of finite type over S,

https://stacks.math.columbia.edu/tag/02G7
https://stacks.math.columbia.edu/tag/04XS
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(2) π is a proper universal homeomorphism, and

(3) for every flat morphism X ′ → X of algebraic spaces, the base change X ×X X ′ → X ′

is a coarse moduli space.

Proof. See [KM97, Corollary 1.3], [Stacks, Theorem 0DUT], or [Alp24, Theorem 4.4.6].

□

A.6. Artin’s axioms of algebraicity

In this section we recall the necessary definitions to define Artin’s axioms to prove the

algebraicity of a stack. The main result is Theorem A.119. The main reference is [Stacks,

Chapter 07SZ].

Let p : X → Sch be a category fibred in groupoids. Let k be a field of finite type over SpecZ,
and let x0 be an object of X (Spec k). By [Stacks, Lemma 01TA] there exists an affine open

Spec(Λ) ⊂ SpecZ such that the map Z→ k factorizes as Z→ Λ→ k and Λ→ k is finite.

We define the category AΛ whose objects are pairs (A,φ) where A is an artinian local Λ-algebra

and φ : A/mA → k is a Λ-algebra isomorphism. Morphisms f : (B,ψ) → (A,φ) in AΛ are

local Λ-algebra homomorphisms f : B → A such that φ ◦ f̃ = ψ, where f̃ : B/mB → A/mA is

the map induced by f . The category AΛ, up to canonical equivalence, does not depend on the

choice of the affine open SpecΛ ⊂ SpecZ, see [Stacks, Section 07T2].

Definition A.104. We define the category FX ,k,x0
as follows.

• Objects are morphisms x0 → x of X where p(x) = SpecA with A an artinian local

Λ-algebra and p(x0) = Spec k → p(x) = SpecA corresponds to a ring map A → k

which identifies k with the residue field of A.

• Morphisms (x0 → x)→ (x0 → x′) are commutative diagrams

x x′

x0

in X .

Observe that we obtain a functor

(19) FX ,k,x0
→ AΛ

sending an object (x0 → x) to A if p(x) = SpecA and sending a morphism (x0 → x)→ (x0 →
x′) to the corresponding ring map A→ A′. In particular, FX ,k,x0 is cofibred in groupoids over

AΛ and the fibre groupoid FX ,k,x0
(k) over k is equivalent to a set with a single object and a

single morphism, see [Stacks, Lemma 07T5].

Let F : X → Y be a morphism of categories fibred in groupoids over Sch. Let k be a field of

finite type over Z and let x0 be an object of X lying over Spec k. Let y0 = F (x0) which is an

object of Y lying over Spec k. Then F induces a functor

(20) α : FX ,k,x0
→ FX ,k,y0

of cofibred categories over AΛ. An object (x0 → x) of FX ,k,x0
(A) is sent to the object (α(x0)→

α(x)) of FY,k,y0(A).

We now define the Rim-Schlessinger condition of classical deformation theory for a fibred

category in groupoids.

Definition A.105. Let X be a category fibred in groupoids over Sch. We say that X
satisfies the Rim-Schlessinger condition or simply (RS) if for every pushout of schemes

https://stacks.math.columbia.edu/tag/0DUT
https://stacks.math.columbia.edu/tag/07SZ
https://stacks.math.columbia.edu/tag/01TA
https://stacks.math.columbia.edu/tag/07T2
https://stacks.math.columbia.edu/tag/07T5
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X X ′

Y Y ′

such that X,X ′, Y, Y ′ are spectra of local artinian rings of finite type over SpecZ, and X → X ′

is a closed immersion, then the induced functor of fibre categories

X (Y ′)→ X (Y )×X (X) X (X ′)

is an equivalence of categories.

This definition is compatible with classical Rim-Schlessinger condition. Indeed, if X → Sch

is a category fibred in groupoids satisfying (RS), then for any finite type field k over Z (i.e.

Spec k → SpecZ is of finite type) and any object x0 of X over k, the functor FX ,k,x0
→ AΛ

(Equation (19)) satisfies classical Rim-Schlessinger condition [Stacks, Definition 06J2]. See

[Stacks, Lemma 07WU].

Let X → Sch be a category fibred in groupoids, let k be a field of finite type over SpecZ
and let x0 ∈ X (Spec k). Consider the category FX ,k,x0

(Definition A.104).

Definition A.106. We define the tangent space of FX ,k,x0 as

TFX ,k,x0 =

{
isomorphism classes of morphisms

x0 → x of X over Spec k → Spec k[ϵ]

}
where k[ϵ] are the dual numbers (i.e. k[ϵ] = k[t]/(t2)).

Using the natural morphism k → k[ϵ] we define x′0 as the pullback of x0 to Spec k[ϵ]. On

the other hand, we also have a morphism k[ϵ]→ k and a map x0 → x′0 over Spec k → Spec k[ϵ].

In particular, we have a morphism of fibre categories X (Spec k[ϵ]) → X (Spec k) and hence a

map AutX (Spec k[ϵ])(x
′
0) → AutX (Spec k)(x0) from the set of automorphisms of x′0 in the fibre

category X (Spec k[ϵ]) to the set of automorphisms of x0 in the fibre category X (Spec k).

Definition A.107. With notations as above, we define

Inf(FX ,k,x0
) = Ker(AutX (Spec k[ϵ])(x

′
0)→ AutX (Spec k)(x0)).

Remark A.108. If X satisfies (RS) (Definition A.105), the spaces TFX ,k,x0
and Inf(FX ,k,x0

)

are equipped with a natural structure of k-vector spaces, see [Stacks, Lemma 06IH], [Stacks,

Lemma 06JX].

Definition A.109. Let p : X → Sch be a category fibred in groupoids. A formal object

ξ of X is a triple ξ = (R, ξn, fn) where R is a noetherian complete local Z-algebra such that

R/mR is a field of finite type over Z, ξn ∈ X (Spec(R/mn
R)) for all n ≥ 1, and fn : ξn → ξn+1

are morphisms of X over Spec(R/mn
R)→ Spec(R/mn+1

R ) for all n ≥ 1.

A morphism of formal objects a : ξ = (R, ξn, fn) → η = (T, ηn, gn) is the data of morphisms

an : ξn → ηn for all n ≥ 1 such that for every n the diagram

ξn ξn+1

ηn ηn+1

fn

an an+1

gn

is commutative. The category of formal objects of X is the category whose objects are formal

objects of X and arrows are morphisms of formal objects.

Remark A.110. Suppose that ξ = (R, ξn, fn) is a formal object of a category fibred in

groupoids X → Sch. Set k = R/mR and x0 = ξ1. By definition of a formal object, the field

R/mR is of finite type over Z, so that it makes sense to define the category FX ,k,x0
, which is

https://stacks.math.columbia.edu/tag/06J2
https://stacks.math.columbia.edu/tag/07WU
https://stacks.math.columbia.edu/tag/06IH
https://stacks.math.columbia.edu/tag/06JX
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a category cofibred in groupoids over AΛ. Then the formal object ξ defines a formal object ξ

for FX ,k,x0
(see [Stacks, Definition 06H3], [Stacks, Remark 0CXH])).

Suppose now that p : X → Sch is a category fibred in groupoids and R is a noetherian

complete local Z-algebra such that the residue field R/mR is of finite type over Z. Let x ∈ X (R).
For all n ≥ 1 we have a morphism of affine schemes αn : Spec(R/mn

R)→ SpecR so that we can

define ξn = x|Spec(R/mn
R

)
, where for all n ≥ 1 we denote by x|Spec(R/mn

R
)
the choice of a pullback

α∗
nx (Definition A.43). We also have natural compatible morphisms fn : ξn → ξn+1 coming

from transitivity of restrictions

ξn ξn+1 x

Spec(R/mn
R) Spec(R/mn+1

R ) Spec(R).

fn

Thus, ξ = (R, ξn, fn) is a formal object of X . If SpecR → SpecT is a morphism of affine

schemes induced by a local homomorphism of rings R→ T where R, T are noetherian complete

local rings, then for all n ≥ 1 there is a induced morphism of affine schemes Spec(R/mn
R) →

Spec(T/mn
T ). In particular, one can show that the construction of a formal object ξ =

(R, ξn, fn) coming from x ∈ X (SpecR) is functorial in x. In other words, we have a func-

tor

G :


full subcategory of X whose objects

are x ∈ X such that p(x) = Spec(R)

where R is noetherian complete local

with R/mR of finite type over Z

→ (category of formal objects of X ) .

Definition A.111. With notations as above, we say that a formal object ξ = (R, ξn, fn)

of X is effective if it is in the essential image of the functor G.

Example A.112. If X is an algebraic stack over Schfppf, then F is an equivalence of

categories. See [Stacks, Lemma 07X8].

Definition A.113. Let I be a set and ≤ a binary relation on I.

• We say ≤ is a preorder if it is transitive (i.e. i ≤ j and j ≤ k imply i ≤ k) and

reflexive (i.e. i ≤ i for all i ∈ I).
• We say that (I,≤) is a preordered set if ≤ is a preorder.

• We say that (I,≤) is a directed set if it is a preordered set such that I ̸= ∅ and such

that for all i, j ∈ I there exists k ∈ I such that i ≤ k, j ≤ k.

Definition A.114. Let (I,≤) be a preordered set and let C be a category. An inverse

system over I in C is the data of objectsMi of C for every i ∈ I and for every j ≤ i a morphism

fij :Mi →Mj such that fii = id and such that fik = fjk ◦ fij whenever k ≤ j ≤ i. An inverse

system is called a directed inverse system if the preordered set (I,≤) is directed.

Definition A.115. Let X be a category fibred in groupoids over Sch. We say that X is

limit preserving if for every affine scheme T which is a limit T = limTi of a directed inverse

system of affine schemes Ti, we have an equivalence

colim X (Ti)→ X (T )

of fibre categories.

Details about the above notions can be found in [Stacks, Section 07XK].

https://stacks.math.columbia.edu/tag/06H3
https://stacks.math.columbia.edu/tag/0CXH
https://stacks.math.columbia.edu/tag/07X8
https://stacks.math.columbia.edu/tag/07XK
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Recall that in classical deformation theory if F → AΛ is a deformation category and R is a

complete noetherian Λ-algebra, then a formal object ξ of F over R defines a morphism of fibred

categories ξ̃ : R → F over AΛ, where R is the category fibred in sets over AΛ corresponding

to the functor MorAΛ(R,−) : AΛ → Set (see [Stacks, Remark 06HC]). The formal object ξ is

said to be versal if ξ̃ is smooth.

Definition A.116. Let p : X → Sch be a category fibred in groupoids. Let ξ = (R, ξn, fn)

be a formal object of X . Set k = R/mR and x0 = ξ1. We say that ξ is versal if ξ is versal as a

formal object of FX ,k,x0 .

Suppose that A,B are artinian local rings with residue field k and suppose that ξ1 → y → z

is a morphism of X over closed immersions Spec k → SpecA → SpecB. Suppose moreover

that for an integer n ≥ 1 we have a commutative diagram

y

ξn ξ1

over

SpecA

Spec(R/mn
R) Spec k.

If ξ is versal, there exists an m ≥ n and a commutative diagram

z

y

ξm ξn ξ1

over

SpecB

SpecA

Spec(R/mm
R ) Spec(R/mn

R) Spec k.

Suppose now that U is a scheme over Z such that U → SpecZ is locally of finite type. Let

u0 ∈ U be a finite type point of U , i.e. the natural morphism Spec k(u0)→ U is of finite type.

Let k = k(u0). Observe first that the composition

Spec k → U → SpecZ

is of finite type, being composition of finite type morphisms. Let p : X → Sch be a category

fibred in groupoids, let x ∈ X (U) be an object and let x0 be the pullback of x over u0

x0 x

Spec k U.u0

By 2-Yoneda’s lemma (A.58), x corresponds to a morphism of categories fibred in groupoids

x : U → X

where the scheme U corresponds to the category fibred in groupoids (Sch /U) → Sch. Then

by the functoriality as in Equation (20) we have an associated functor

x̂ : FU,k,u0
→ FX ,k,x0

.

Definition A.117. Let X → Sch be a category fibred in groupoids and let U be a scheme

locally of finite type over Z. Let u0 ∈ U be a finite type point and x ∈ X (U). We say that x

is versal at u0 if x̂ is smooth.

Definition A.118. Let X → Sch be a category fibred in groupoids. We say that X satisfies

openness of versality if given a scheme U locally of finite type over Z, an object x ∈ X (U) and

https://stacks.math.columbia.edu/tag/06HC
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a finite type point u0 ∈ U such that x is versal at u0, then there exists an open neighbourhood

u0 ∈ U ′ ⊆ U such that x is versal at every finite type point of U ′.

Theorem A.119 (Artin’s axioms for algebraicity). Let p : X → Sch be a category fibred

in groupoids. Suppose that

(a) X is a stack over Schét;

(b) X is limit preserving;

(c) X satisfies the Rim-Schlessinger condition;

(d) the spaces TFX ,k,x0
and Inf(FX ,k,x0

) are finite dimensional for any finite type field k

over Z and any x0 ∈ X (Spec k);
(e) ∆ : X → X ×X is representable by algebraic spaces;

(f) every formal object of X is effective;

(g) X satisfies openness of versality.

Then X is an algebraic stack.

Proof. See [Stacks, Lemma 07Y4]. See also [Alp24, Section § C.7] and the original paper

[Art74b]. □

Remark A.120. In [Stacks, Lemma 07Y4] everything is done in a more general case with

respect to a scheme S, and it is required that for all finite type point s ∈ S, the local ring

OS,s is a G-ring ([Stacks, Definition 07GH]). In our case, S = Z, which is a G-ring by [Stacks,

Proposition 07PX], and every localization of a G-ring is again a G-ring by [Stacks, Proposition

07PV].

https://stacks.math.columbia.edu/tag/07Y4
https://stacks.math.columbia.edu/tag/07Y4
https://stacks.math.columbia.edu/tag/07GH
https://stacks.math.columbia.edu/tag/07PX
https://stacks.math.columbia.edu/tag/07PV
https://stacks.math.columbia.edu/tag/07PV


APPENDIX B

Some results of cohomology

B.1. Flat base change

Lemma B.1. Consider a cartesian diagram of schemes

X ′ X

T ′ T

g′

f ′ f

g

where f is affine or f is quasi-compact and quasi-separated and g is flat. For every quasi-

coherent OX-module F , there is a natural isomorphism

g∗f∗F ≃ (f ′)∗(u
′)∗F .

Proof. See [GW20, Lemma 22.88]. □

Corollary B.2. Let f : X → SpecR be a quasi-compact and quasi-separated morphism

of schemes and let R → R′ be a flat map of rings. Then for every quasi-coherent OX-module

F the base change morphism induces for all i ≥ 0 isomorphisms

Hi(X,F)⊗R R
′ ≃ Hi(XR′ ,FR′),

where XR′ = X ⊗SpecR SpecR′ and FR′ is the pullback of F to XR′ .

Proof. See [GW20, Corollary 22.91]. □

Corollary B.3. Let k be a field and let X be a proper scheme over k. Let K/k be a field

extension. Then for every quasi-coherent OX-module F the base change morphism induces for

all i ≥ 0 isomorphisms

Hi(X,F)⊗k K ≃ Hi(XK ,FK).

In particular it holds that

hi(X,F) = hi(XK ,FK)

and

χ(X,F) = χ(XK ,FK).

Proof. This is obvious by Corollary B.2, since a proper morphism is separated, and it

is also quasi-compact, being universally closed ([Stacks, Lemma 04XU]). Moreover, any field

extension is a flat map. □

B.2. Cohomology and base change

Consider the following situation:

(△) Let f : X → S be a proper, flat and finitely presented morphism of schemes. Let F
be a line bundle on X.

In situation (△), if s ∈ S is any point of S we can consider the fibre over s given by the

following cartesian diagram of schemes

111
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Xs X

Specκ(s) S

According to [GW23, Section 23.28], for all i ∈ Z we have natural maps

βi(κ(s)) : Rif∗(F)⊗OS
κ(s)→ Hi(Xs,Fs)

where we denoted by Fs the pullback of F to Xs.

Theorem B.4. In situation (△) one has the following assertions.

(1) The Euler characteristic

χF : S → Z, s 7→
∑
i≥0

(−1)i dimκ(s) H
i(Xs,Fs)

is locally constant on S.

(2) For each i ∈ Z the function

S → Z, s 7→ dimκ(s) H
i(Xs,Fs)

is upper semi-continuous and locally constructible, i.e. for all n ≥ 0 the subset{
s ∈ S; dimκ(s) H

i(Xs,Fs) ≥ n
}

is closed and locally constructible in S.

Proof. See [GW23, Thoerem 23.139]. □

Theorem B.5 (Cohomology and base change). In situation (△), fix i ∈ Z and a point

s ∈ S.
(1) The following conditions are equivalent:

(i) The map βi(κ(s)) : Rif∗F ⊗ κ(s)→ Hi(Xs,Fs) is surjective.

(ii) There exists an open neighbourhood U of s such that the formation of Rif∗F|U
commutes with base change.

(2) Assume that βi(κ(s)) is surjective. Then the following conditions are equivalent:

(i) The map βi−1(κ(s)) is surjective (and hence formation of Ri−1f∗F commutes

with base change in an open neighbourhood of s);

(ii) there exists an open neighbourhood V of s such that the OV -module Rif∗FV is

finite locally free.

In this case, the function s 7→ dimκ(s) H
i(Xs,Fs) is locally constant on V .

Proof. See [GW23, Theorem 23.140]. □

Corollary B.6. Let f : X → S be a proper morphism of finite presentation, and let

F be an OX-module of finite presentation that is flat over S (e.g. F is a line bundle and f

is flat). Suppose that there exists an s ∈ S such that H1(Xs,Fs) = 0. Then there exists an

open neighbourhood U of s such that R1f∗F|U = 0, f∗F|U is locally free of finite rank and its

formation commutes with base change.

Proof. See [GW23, Corollary 23.144]. □

B.3. Relatively ample line bundle

Definition B.7. Let X be a quasi-compact and quasi-separated scheme. An invertible

OX -module L is called ample if for every quasi-coherent OX -module F of finite type, there

exists an integer n0 such that F ⊗ L⊗n is generated by its global sections for all n ≥ n0.
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Definition B.8. Let f : X → Y be a finite type morphism of schemes. An invertible

OX -module L is called relatively ample for f or f -ample if L|f−1(U) is an ample line bundle

for all affine open subschemes U of Y .

Proposition B.9. Let f : X → Y be a finite type morphism of schemes and let L be an

invertible OX-module. Then L is f -ample if and only if there exists an open covering {Ui}i∈I

of Y such that L|f−1(Ui) is ample for all i ∈ I.

Proof. See [GW20, Proposition 13.63]. □

Proposition B.10. Let f : X → Y be a proper morphism of schemes and let L be an

invertible OX-module. Let y ∈ Y and assume that Ly is ample on the fibre Xy. Then there

exists an open affine neighbourhood U ⊆ Y of y such that L|f−1(U) is ample.

Proof. See [GW23, Theorem 24.46]. □

Corollary B.11. Let f : X → Y be a proper morphism of schemes and let L be an

invertible OX-module. Assume that for all y ∈ Y the line bundle Ly is ample on the fibre Xy.

Then L is f -ample.

Proof. This is an immediate consequence of Proposition B.9 and Proposition B.10. □

B.4. Quick review of Grothendieck duality

The reader can find details in [Con00], [Har66], [AK70].

Definition B.12. A morphism of schemes is called Cohen-Macaulay with pure relative

dimension n if it is flat, locally of finite presentation and the fibres are Cohen-Macaulay schemes

of pure dimension n.

For every proper Cohen-Macaulay morphism of schemes f : X → Y , we can define a

dualizing sheaf ωf ∈ QCoh(X) and a trace map

γf : Rnf∗(ωf )→ OY

as in [Con00, Chapters 3 and 4]. These constructions are compatible with base change. We

will also use the notation ωX/Y = ωf .

Proposition B.13. Let f : X → Y be a proper Cohen-Macaulay morphism of pure relative

dimension n. Then:

(a) if f is smooth, then ωf ≃ detΩ1
X/Y ;

(b) ωf is flat, of finite presentation;

(c) ωf is invertible if and only if all fibres of f are Gorenstein;

(d) if there exists a factorization

X P

Y

i

f
π

where i is a closed immersion and π is proper, smooth with pure relative dimension

N , then

ωf ≃ ExtN−n
P (i∗OX , ωπ);

(e) γf is surjective;

(f) if f has geometrically reduced and geometrically connected fibres, then γf is an iso-

morphism.

Proof. See [Con00, Chapters 3 and 4]. □
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Theorem B.14 (Grothendieck duality). Let f : X → Y be a proper Cohen-Macaulay

morphism with pure relative dimension n, let F be a locally free OX-module of finite rank, and

let m ∈ Z be an integer. Suppose that Rif∗F is a locally free sheaf of finite rank on Y for all

i > m.

Then, for every G ∈ QCoh(Y ) and every i ≥ m there is an isomorphism

Rn−if∗(F∨ ⊗ ωf ⊗ f∗G) ≃ HomOY
(Rif∗(F),G)

Proof. See [Con00, Theorem 5.1.2]. □

B.5. Leray spectral sequence

For a topological space X, let Sh(X) be the category of sheaves of abelian groups on X.

Let f : X → Y be a morphism of schemes. We have an associated map

f∗ : Sh(X)→ Sh(Y )

and a commutative diagram

Sh(X) Sh(Y )

Ab

f∗

ΓX ΓY

where the Γ’s functions are simply taking global sections.

Theorem B.15 (Leray spectral sequence, [Ler50]). Let f : X → Y be a continuous map

of topological spaces and let F ∈ Sh(X). There is a spectral sequence whose second page is

Epq
2 = Hp(Y,Rqf∗F)

and which converges to

Ep+q = Hp+q(X,F).

Lemma B.16. Let f : X → Y a morphism of schemes. Suppose that Rif∗OX = 0 for all

i ≥ 1 and that f∗OX = OY . Let L ∈ Pic(Y ). Then

Hp(X, f∗L) ≃ Hp(Y,L).

Proof. By the projection formula [Stacks, Lemma 01E8] we have

Rqf∗f
∗L ≃ L⊗OY

Rqf∗OX =

{
0 if q ≥ 1

L if q = 0.

Applying the Leray spectral sequence to f∗L we get

Ep,q
2 = Hp(Y,Rqf∗f

∗L) =

{
0 if q ≥ 1

Hp(Y,L) if q = 0.

The second page of the spectral sequence the only non-zero terms are in the first column, so

that it is already stabilized. Since this spectral sequence converges to the cohomology groups

Hi(X, f∗L) we obtain the result. □

https://stacks.math.columbia.edu/tag/01E8
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der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in

Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of

Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2000, pp. xii+208.

[Man01] Marco Manetti. “On the moduli space of diffeomorphic algebraic surfaces”. In:

Invent. Math. 143.1 (2001), pp. 29–76.



118 BIBLIOGRAPHY

[Mat89] Hideyuki Matsumura. Commutative ring theory. Second. Vol. 8. Cambridge Studies

in Advanced Mathematics. Translated from the Japanese by M. Reid. Cambridge

University Press, Cambridge, 1989, pp. xiv+320.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory. Third. Vol. 34.

Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and

Related Areas (2)]. Springer-Verlag, Berlin, 1994, pp. xiv+292.

[Miy77] Yoichi Miyaoka. “On the Chern numbers of surfaces of general type”. In: Invent.

Math. 42 (1977), pp. 225–237.

[MO67] Hideyuki Matsumura and Frans Oort. “Representability of group functors, and

automorphisms of algebraic schemes”. In: Invent. Math. 4 (1967), pp. 1–25.

[Mum62] David Mumford. “The canonical ring of an algebraic surface”. In: Ann. of Math.

(2) 76 (1962), pp. 612–615.

[Mum69] David Mumford. “Enriques’ classification of surfaces in char p. I”. In: Global Anal-

ysis (Papers in Honor of K. Kodaira). Univ. Tokyo Press, Tokyo, 1969, pp. 325–

339.

[Ols16] Martin Olsson. Algebraic spaces and stacks. Vol. 62. American Mathematical So-

ciety Colloquium Publications. American Mathematical Society, Providence, RI,

2016, pp. xi+298.

[Per81] Ulf Persson. “Chern invariants of surfaces of general type”. In: Compositio Math.

43.1 (1981), pp. 3–58.

[Ray70] Michel Raynaud. Faisceaux amples sur les schémas en groupes et les espaces ho-

mogènes. Vol. Vol. 119. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New

York, 1970, pp. ii+218.

[Ser06] Edoardo Sernesi. Deformations of algebraic schemes. Vol. 334. Grundlehren der

mathematischenWissenschaften [Fundamental Principles of Mathematical Sciences].

Springer-Verlag, Berlin, 2006, pp. xii+339.

[She96] N. I. Shepherd-Barron. “Some foliations on surfaces in characteristic 2”. In: J.

Algebraic Geom. 5.3 (1996), pp. 521–535.

[Som84] Andrew John Sommese. “On the density of ratios of Chern numbers of algebraic

surfaces”. In: Math. Ann. 268.2 (1984), pp. 207–221.

[Stacks] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.

edu.

[Tog40] Eugenio G. Togliatti. “Una notevole superficie de 5o ordine con soli punti doppi

isolati”. In: Vierteljschr. Naturforsch. Ges. Zürich 85 (1940), pp. 127–132.
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