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Abstract

In this work, we investigate the role of chemotaxis in acute inflammation, with a partic-
ular focus on mathematical modeling approach. Starting from standard diffusion models
in biomedical fields, we firstly discuss the classical Keller-Segel system and its recent
modifications, incorporating reaction terms and logistic type in order to account for
environmental constraints and also prevent the non-physiscal blow-up of solutions. As
an immediate generalization, we present an attraction-repulsion chemotaxis model for
Alzheimer’s disease (AD) and investigate conditions leading to aggregation of microglia
and formation of accumulations of chemical observed in (AD) senile plaques.
Next we investigate two recent reaction-diffusion-chemoltaxis systems that describe the
immune response during an inflammatory attack.
We carry out a linear stability analysis of such reaction-diffusion type compartmental
models, with multiple interacting species, in both parabolic and hyperbolic frameworks,
for some medical applications, just ranging from AD to acute inflammations.
Besides a linear stability analysis, we also employ a generalized energy method to ob-
tain decay bounds in the model. Additionally, stability analysis is performed using
not only Fourier modes but also algebraic criteria such as the Gershgorin theory and
the Routh-Hurwitz criterion. We then generalize these models to describe macrophage-
driven inflammatory responses, introducing additional chemokine dynamics and studying
the emergence of stationary and traveling wave solutions. The final part of this thesis
explores the connection between chemotaxis and neurodegenerative processes, specifi-
cally Alzheimer’s disease, where microglial activation follows chemotactic principles. We
suggest modifications to existing models, incorporating memory effects (via the Cat-
taneo correction) and nonlocal interactions to better capture the complex interplay of
cellular and chemical species. Our findings provide new insights into the mathematical
structures underlying inflammation and neurodegeneration, with potential implications
for therapeutic strategies.
Key words: Dynamical systems and reaction- diffusion models, chemotaxis, Alzheimer
and inflammation models, stability analysis, energy arguments, spatial pattern forma-
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tion, Turing and wave instability.
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Introduction

Neurodegeneration refers to a range of neurological disorders characterized by the pro-
gressive degeneration of neurons, with devastating impacts on the central nervous system.
Common neurodegenerative diseases include Alzheimer’s, Parkinson’s, Amyotrophic Lat-
eral Sclerosis (ALS), frontotemporal dementia, and Huntington’s disease. These con-
ditions, despite having different pathogenic mechanisms, share a key feature: chronic
neuroinflammation. Neurodegenerative diseases affect specific populations of neurons in
particular areas of the brain, disrupting their function and leading to the progressive
deterioration of cognitive, motor, and psychological abilities. A central aspect of neu-
rodegeneration is the accumulation of abnormal proteins, such as amyloid-beta (Aβ) and
tau, which play a key role in the pathology of many diseases, particularly Alzheimer’s.
Amyloid-beta is a protein that aggregates into plaques that interfere with neuronal com-
munication, while tau forms tangles inside neurons, damaging cellular structures and
promoting cell death. The presence of these two proteins is crucial for diagnosis and un-
derstanding the development of the disease. Alzheimer’s, in particular, is characterized
by the formation of extracellular Aβ plaques and intracellular tau neurofibrillary tan-
gles. The accumulation and aggregation of these proteins profoundly impact brain cell
structure and function, causing irreversible damage over time. Another essential element
of neurodegeneration is the inflammatory response associated with these diseases. Glial
cells, which normally support and protect neurons in a healthy brain, become hyper-
active in response to damage caused by abnormal proteins. Specifically, microglia and
astrocytes are involved in the inflammation of the central nervous system. Microglia, the
immune cells of the brain, become activated in response to foreign substances, such as Aβ
plaques, and attempt to remove them. However, in the presence of chronic Aβ accumula-
tion, microglia fail to effectively clear the plaques, becoming reactive and contributing to
neuronal damage. Astrocytes, which typically regulate synaptic communication between
neurons, proliferate as the disease progresses, further contributing to the inflammatory
process. Inflammation plays a complex role in neurodegeneration. In the early stages
of the disease, microglia activation may have a protective effect, aiding in the clearance
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of Aβ plaques. However, as the disease advances, chronic inflammation and continuous
microglia activation seem to contribute to worsening brain damage by increasing Aβ
deposition and tau phosphorylation. This persistent inflammatory process is one of the
primary mechanisms driving neurodegeneration.
In Alzheimer’s disease specifically, the condition generally manifests after the age of 60,
although in rare cases, it can occur earlier. The prevalence of the disease is rapidly
increasing, with estimates predicting that by 2050, the number of affected individuals
globally could rise to 131 million. This growing number of cases presents a significant
public health challenge. The disease was first described over a century ago by Dr. Alois
Alzheimer, who identified distinctive signs such as amyloid plaques and neurofibrillary
tangles in the brain of a deceased patient.
Currently, research is focused on finding treatments to stop or slow down the progres-
sion of the disease. While several medical tools and technologies have been developed for
the diagnosis and treatment of neurodegenerative diseases, many fundamental aspects of
Alzheimer’s pathogenesis remain unclear. Promising therapeutic strategies include anti-
inflammatory drugs, such as non-steroidal anti-inflammatory drugs (NSAIDs), which in
some studies have shown the ability to reduce the risk of developing Alzheimer’s and
limit Aβ deposition. However, more clinical and preclinical studies are needed to de-
termine whether these treatments can effectively slow down or stop neurodegeneration.
Despite progress in research, neurodegeneration remains one of the primary challenges
in medicine, with Alzheimer’s continuing to be one of the leading causes of dementia
worldwide. The increasing incidence of the disease and the aging population highlight
the urgent need for more effective treatments, as well as a deeper understanding of the
biological mechanisms behind neurodegeneration. Ongoing research is crucial for de-
veloping prevention strategies, early diagnostics, and targeted therapies to slow or stop
the progression of the disease. Here we refer to Inflammatory process in Alzheimer’ s
Disease [12], Role of neuroinflammation in neurodegeneration development [13], Neu-
roinflammation, Its Role in Alzheimer ’ s Disease and Therapeutic Strategies [14], Non-
local models in the analysis of brain neurodegenerative protein dynamics with application
to Alzheimer’s disease. [26] and Modeling Aggregation of Proliferating Microglia in Re-
sponse to Amyloid-beta in Dementia[4].
From a mathematical perspective, chemotaxis models provide an interpretative frame-
work for describing cell migration induced by chemical signals. The Keller-Segel model
[3], originally developed to describe bacterial behavior in response to attractants, has
been widely applied in biomedicine to study the dynamics of immune cells in inflamed
tissues. The generalization of this model, incorporating reactive terms and environ-
mental regulation, allows for the analysis of more complex phenomena such as cellular
aggregation and the propagation of inflammatory activation waves. In addition to the
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Keller-Segel model, other mathematical approaches have been employed to describe brain
inflammation and neurodegeneration. Reaction-diffusion models, for example, help to
understand how immune cells and chemical mediators interact in space and time. Specif-
ically, the introduction of memory terms and nonlocal interactions has improved the
representation of the complexity of the inflammatory response and microglial activation
dynamics in Alzheimer’s disease. These models provide insights into how inflammatory
processes spread spatially and how interventions can alter disease progression.
In the first chapter, after introducing preliminary concepts useful for understanding the
paper, we have firstly focused on the analysis of the classical Keller-Segel model (1970),
a model that concerns the diffusion of slime mold amoebas. This is a reaction- diffusion
model consisting of a system of two partial differential equations (PDEs) that describe
the evolution of cellular concentration and chemical concentration. The first equation is
of the diffusion-transport type, including a term that represents the random movement
of particles (diffusion) and a term modeling ’attractive’ chemotactic movements, which
occur in response to a positive gradient of the chemical. This term is also responsi-
ble for the nonlinearity of the model; a reaction term, such as a logistic-type reaction,
may be included. The second equation, on the other hand, is of diffusion-reaction type,
encompassing a diffusion term and terms that represent the chemical’s production and
degradation. We analyze the linear stability of the solutions, by applying the standard
Fourier Method. This allows us to find sufficient conditions for the formation of chemo-
tactic collapse. In the second part of this chapter we focus on a model for Alzheimer’s
disease developed by Luca et al. [7]; this model is very similar to the Keller-Segel
model, but it is composed by a system of three PDEs, due to the presence of two inter-
acting chemicals: the first one represents the chemoattraction and the second one the
chemorepulsion. We analyze in detail the model, firstly in its one-dimensional version
and determine, through the Routh-Hurwitz stability criterion, the conditions providing
a critical threshold for stability, in order to guarantee no patterns formation. By an in-
teresting comparison, we introduce an Energy type argument, to obtain decay estimates
for the two-dimensional version of the model. We use also the Fourier method and we
find conditions which avoid to have Hopf bifurcations. The second chapter focuses on
developing mathematical models for acute inflammation, concerning in particular the
interaction between macrophages and chemokines. The models, developed by Penner et
al. [9] and by Giunta et al. [10], describe how macrophages respond to inflammatory sig-
nals and how different chemoattractants influence their movement. A detailed stability
analysis for these models is performed using classical methods from linear algebra and
perturbation theory. Special attention is given to the role of environmental constraints,
modeled through logistic growth terms, and their impact on the formation of inflamma-
tory clusters. The conditions for Turing instability are explored, providing insights into
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how spatially heterogeneous inflammatory patterns emerge in biological tissues. From
this analysis we have some useful information about the effects of therapeutic strategies.
At the end in the third chapter we generalize the model presented in [5]. In fact, to
modify the Alzheimer’s model in light of the observations in Chapter 2 regarding acute
inflammation, we could introduce several key changes, including additional logistic ef-
fects to the first PDE, introducing memory effects through the Cattaneo correction, and
creating a hyperbolic ”reaction-diffusion-drift” model. Furthermore, we could consider
non-local behaviors and the division of attractive and repulsive chemicals into ”healthy”
and ”toxic” cells.
The main objectives of this research are:

• Analyze mathematical models of chemotaxis with a focus on their application to
inflammatory phenomena.

• To study the stability of reaction-diffusion models in biological contexts, evaluating
the conditions for spatial pattern formation and traveling waves.

• To develop and generalize the Luca model for Alzheimer’s disease by introducing
memory effects and nonlocal interactions.

• To provide a mathematical perspective on brain inflammatory processes, with po-
tential implications for the development of therapeutic strategies.
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Chapter 1

Preliminaries

1.1 Basic Notions

In this subsection we introduce some basic notions useful for understanding the paper,
having unified the notations to our needs. We refer to the following books: Partial
Differential Equations of John [1] and An Introduction to Partial Differential Equation
of Renardy and Rogers [2].

Definition 1.1.1. Given a smooth set Ω ⊆ Rn, a partial differential equation (PDE)
for a function u(x) of class Ck(Ω,R), with k > 1, is a differential equation with a finite
number of partial derivatives of u presented as:

F (x, u(x), Du(x), ..., Duk(x)) = 0 (1.1)

where F is a given function of the indipendent variable x ∈ Ω, of the ”unknown” function
u(x) and of a finite number of partial of its partial derivatives until order k.
We call u the solution of (1.1), if substituting u and its partial derivatives, (1.1) is iden-
tically satisfied in a certain region Ω of the space.

Definition 1.1.2. We define order of a PDE the order of the highest derivative that
occurs.
We define the principal part of a PDE the highest-order derivatives of the equation.
A PDE is said to be stationary if there are no temporal partial derivatives, in the other
case evolutionary.

To simplify the notation we only consider only scalar PDEs whose classification
depends on the coefficients.
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Definition 1.1.3. A PDE is said to be linear if it is linear in the unknown functions
and their derivatives, with coefficients depending on the indipendent variable and it has
the form: ∑

|α|=k

aαD
αu = f(x),

where f and aα are (at least) continuous functions.

Definition 1.1.4. A scalar PDE is said to be semi-linear if it is:∑
|α|=k

aαD
αu+ a0(D

k−1, ..., Du, u, x) = 0

Definition 1.1.5. A scalar PDE of order k is said to be quasi-linear if it is linear in
the derivatives of order k, whose coefficients depends on the indipendent variable and
derivatives of order < k. The general form is:∑

|α|=k

aα(D
k−1, ..., Du, u, x)Dαu+ a0(D

k−1, ..., Du, u, x) = 0

Definition 1.1.6. A scalar PDE is said to be fully non linear if it isn’t quasi-linear.

Now we introduce I and II order PDEs, where we denote x and y two indipendent
variables such that (x, y) ∈ Ω ⊆ R2; we suppose y > 0, for its possible role of time
towards evolutionary 1D models. We distinguish three different type of I order PDEs
supposing that u ∈ C1(Ω,R):

• A PDE is said linear if it is:

a(x, y)ux + b(x, y)uy + c(x, y)u = d(x, y)

Moreover it is also homogeneous if d(x, y) = 0;

• it is said semi-linear if it is:

a(x, y)ux + b(x, y)uy = c(·);

where (·) = (x, y, u(x, y)). So it is homogeneous if c(·) = 0.

• it is said quasi-linear if it is:

a(·)ux + b(·)uy = c(·),

where (·) = (x, y, u(x, y)). In this case it is also homogeneous if c(·) = 0 and u = 0
is a solution of this equation;
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where a, b, c ∈ C1(Ω
′′
,R), with Ω

′′ ⊂ R.

Definition 1.1.7. Given a scalar II order PDE, depending on the indipendent variables
(x, y), considering:

a(·)uxx(x, y) + 2b(·)uxy(x, y) + c(·)uyy(x, y) = d(·),

with a, b, c, d ∈ C1(Ω
′′
,R) with Ω

′′ ⊆ R5. It is said:

• quasi-linear if
(·) = (x, y, u(x, y), ux(x, y), uy(x, y));

• semi-linear if
a = a(x, y), b = b(x, y), c = c(x, y), d = d(·);

• linear if
(·) = (x, y),

so in that case we can rewrite the PDE as:

a(·)uxx(x, y) + 2b(·)uxy(x, y) + c(·)uyy(x, y) = d(·)ux + e(·)uy + f(·)u+ g(·).

Furthermore it is also homogeneous if and only if g(·) = 0.

Definition 1.1.8. In presence of a nearly II order linear PDE, we can define a symmetric
matrix 2×2 associated to the principal part, called the characteristic matrix of the model,
denoted by A and defined as:

A =

[
−a(·) −b(·)
−b(·) −c(·)

]
whose determinant is det(A) = a(·)c(·)− b(·)2.

A II order PDE is said:

• elliptic if det(A) > 0,∀ (x, y, u(x, y), ux(x, y), uy(x, y));

• hyperbolic if det(A) < 0,∀ (x, y, u(x, y), ux(x, y), uy(x, y));

• parabolic if det(A) = 0, ∀ (x, y, u(x, y), ux(x, y), uy(x, y)).

Remark 1.1.9. Elliptic models describe stationary models, while parabolic and hyper-
bolic models describe evolutionary models.
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1.1.1 Fourier modes analysis

This method, which we will use in the next subsections, allows us to determine solutions
to linearized models. Thinking of a single population diffusion-reaction model with
ρ = ρ(x, t) being the positive valued density of individuals, the method applies to the
linearized version of the model around a stationary and homogeneous solution, denoted
by ρ0/ρc .
A Fourier mode solution has form:

ρ(x, t) = ρ1e
i(kx−ωt) if x ∈ R (1.2)

or
ρ(x⃗, t) = ρ1e

i(k⃗·x⃗−ωt), if x ∈ Rn (1.3)

where:

• k⃗ ∈ Rn is the real wave vector (k2 > 0) and in the 1D case k is the wave number;

• ω is the frequency, real or complex, which depends on the wave number through
the so-called dispersion equation;

• Vf =
ω
k
is the phase velocity;

• ρ1 is the non null amplitude.

Then we define the so called growth rate parameter σ = −iω, which is important to
analyze the behavior of the solution:

• if ω ∈ R , then σ ∈ C and the solution of (1.3) or (1.2) has an oscillatory behavior
over time,

• if ω = Re(ω)+ i Im(ω) ∈ C, with Im(ω) ̸= 0, then σ = −iω = −iRe(ω)+ Im(ω),

so in that case the sufficient condition for having exponential time growth is: Im(ω) > 0.
So, after a linearization of the model around the equilibrium solution ρ0 > 0, we may
seek a non null perturbation solution, in the scalar 1D case, defined as:

0 ̸= δρ = ρ1e
i(kx−ωt), (1.4)
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or in the vectorial 3D case:
0 ̸= δρ⃗ = ρ⃗1e

i(k⃗·x⃗−ωt). (1.5)

So we have the following identities:

1. δ
δt
δρ = −iωρ

2. δ
δt
δρ⃗ = −iωρ⃗

Further, if we denote by n⃗ = k⃗
k
the wave versor, the following identities hold:

∇δρ = δρik⃗ = ik δρ n⃗ (1.6)

∇δρ⃗ = δρ⃗ ⊗ i⃗k = ik δρ⃗⊗ n⃗ (1.7)

where we used the tensor product indicated with ⊗, which is linear and not invertible
tensor defined as:

(u⃗⊗ v⃗)w⃗ = (v⃗ · w⃗)u⃗ ∀u⃗, v⃗, w⃗ ∈ R3.

For completeness, we add the identities:

∇ · δρ⃗ = δρ⃗ · i⃗k = ik δρ⃗ n⃗ (1.8)

∇ × δρ⃗ = i⃗k × δρ⃗ = k(in⃗× δρ⃗) (1.9)

∆δρ = −k2δρ (1.10)

∆δρ⃗ = −k2δρ⃗ (1.11)

In order to analyze the behavior of a homogeneous and stationary solution ρ0, we choose
a perturbation (1.4) and (1.5) and then we study the dispersion equation ω = ω(k) using
the stability parameter σ. For this reason, we have to apply the Ljapunov stability, closely
related to the definition of stability and asymptotic stability in the sense of Ljapunov.

Definition 1.1.10. Given an equilibrium solution ρ0, it is said to be stable in the sense
of Ljapunov iff:

∀ ϵ > 0 ∃δϵ > 0 : ∀ρ(x, 0) ∈ B(ρ0, δϵ) ∥ ρ(x, t)− ρ0 ∥< ϵ ∀t > 0.

Moreover ρ0 is said to be asymptotically stable if :

lim
t→∞

ρ(x, t) = ρ0.

In short, we put into evidence the following special cases:
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• if σ ∈ R+ there is instability

• if σ ∈ R− there is asymptotic stability

• if σ ∈ C with Re(σ) = 0, there is only stability

• if σ ∈ C and Re(σ) ̸= 0, stability / instability depends on the sign of Re(σ).

1.1.2 Fick’s law as the constitutive equations for reaction and
diffusion models.

In this section, following [24] and [25], we have to consider the main characteristics
of reaction-diffusion type models. First of all we assume that x⃗(t) = x⃗(0) ∀ t ≥ 0.
We take Ω ⊂ R3 a bounded (or unbounded) spatial domain, fixed in time, namely
Ω(t) = Ω(0) ∀t ≥ 0. Furthermore, it is required that the domain has a sufficiently
smooth boundary δΩ to allow the application of Gauss Theorem. Finally the space
time domain is indicated with Ω+

t := Ω×{t > 0}. Let us consider, then, an evolutionary
diffusion model for a generic species that spreads freely in space, described by the density
ρ = ρ(x⃗, t) ∈ C2(Ω+

t ,R+). The classical diffusion model, in its 3D version, will be
described by the following second-order parabolic PDE:

ρt −D∆ρ = 0 ∀(x⃗, t) ∈ Ω+
t (1.12)

which can be written in 1D dimension:

ρt −Dρxx = 0 ∀(x, t) ∈ Ω+
t

where the constant D is called diffusive mobility and it is positive. In this model we
can also introduce a supply term r(ρ), which may depend (linearly/ non linearly) on the
species density:

ρt = Dρxx + r(ρ) ∀(x, t) ∈ Ω+
t .

This reaction term accounts for any degradation or growth phenomena of the species; in
order to reflect an environmental control we highlight the following logistic type form:

r(ρ) = aρ(1− ρ

b
)
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where a and b are two positive constants, which represent the proliferation parameter
and the carrying capacity respectively. In literature the diffusion models are known as
the ”flux-gradient” type models, since the constitutive equation for the flux vector Jρ
associated to the density ρ is the experimental Fick’s law which, in its 3D formulation,
is expressed as follows:

J⃗ρ(x⃗, t) = −D∇ρ(x⃗, t) ∀(x⃗, t) ∈ Ω+
t

It is worth to note that Fick’s law, analogously to Fouries’s law for heat diffusion is
stationary and istantaneous. So the local balance equation for a reaction and diffusion
model reads as:

ρt = −∇ · J⃗ρ + r(ρ) ∀(x⃗, t) ∈ Ω+
t . (1.13)

The last two equations in 1D dimension, can be written ∀(x, t) ∈ Ω+
t as:{

Jρ(x, t) = −Dρx(x, t)
ρt = −(Jρ)x + r(ρ)

(1.14)

In this way it is evident the so called ”flux-gradient” nature of such mathematical mod-
eling. In particular in the 3D case, we have the following system:{

ρt = −∇ · J⃗ρ + r(ρ)

J⃗ρ = −D∇ρ
(1.15)

Since that D could be a function depending on ρ, from (1.15)1 we can get a quasi-linear
second order PDE, which in its 3D version is given by:

ρt = D(ρ)∆ρ+D′(ρ)∇ρ · ∇ρ+ r(ρ) ∀(x⃗, t) ∈ Ω+
t

and for the 1D case we have the following equation:

ρt = Dρρxx +D
′
(ρ)ρ2x + r(ρ) ∀(x, t) ∈ Ω+

t

Given the static and instantaneous aspects of the classical Fick’s law, which can lead
to an experimental contradiction, the following subsections will examine key extensions
that not only resolve this contradiction but also take into account potential interactions
with other species involved in the phenomena being modeled mathematically.
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1.1.3 Fick’s law: the Cattaneo correction towards hyperbolic
models

It has been observed experimentally that the instantaneous nature of Fick’s law in its
classical form, out of equilibrium, is an unrealistic approximation for diffusive phenom-
ena. Therefore, it was deemed appropriate to introduce a kind of memory effect into the
law in order to account for the so-called delayed response. Hence the Fick’s law for the
flux can be written as:

J⃗ρ(x⃗, t+ τ) = −D∇ρ(x⃗, t) ∀(x⃗, t)

and then the 1D case becomes:

Jρ(x, t+ τ) = −Dρx(x, t) ∀(x, t)

where the diffusive mobility D could be or not constant and 0 < τ ≪ 1 represents a very
short relaxation time. Hence we can consider a first order Taylor expansion, in order to
find the following rate type constitutive equation:

J⃗ρ(x⃗, t) + τ(J⃗ρ(x⃗, t))t = −D∇ρ(x⃗, t) ∀(x⃗, t), (1.16)

which in the 1D version reads:

Jρ(x, t) + τ(Jρ(x, t))t = −Dρx(x, t) ∀(x, t).

The general model for diffusion and reaction is now represented by the following system
of two first-order PDEs, both evolutionary, in the 3D form:{

ρt = −∇ · J⃗ρ + r(ρ)

J⃗ρ + τ(J⃗ρ)t = −D∇ρ
(1.17)

where the couple (ρ(x⃗, t), J⃗(x⃗, t)) is said the state of the model. In particular, when
τ = 0 we obtain (1.15). A quasi-linear or semilinear first-order evolutionary system is
thus obtained, depending on whether D = D(ρ) or not, with r(ρ) potentially being non
linear. In the 1D case, assuming for simplicity a constant diffusive mobility, deleting
the flux dependence in equation (1.17) through simple steps, and under the appropriate
regularity conditions, differentiating the first PDE with respect to t and the second with
respect to x, namely:

ρtt = −(Jρ)xt + r(ρ)t (1.18)
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and

τ(Jρ)xt + (Jρ)x = −Dρxx =⇒ (Jρ)t.x =
1

τ
(−Dρxx − (Jρ)x). (1.19)

By requiring a C2 regularity for both the species density ρ and the associated flux Jρ, we
can apply Schwarz theorem, which leads to the equality of mixed derivatives: ρxt = ρtx
and (Jρ)xt = (Jρ)tx. Substituting (1.19) in (1.18), we find:

ρtt =
1

τ
(Dρxx + (Jρ)x) + r(ρ)x (1.20)

and using that (Jρ)x = −ρt + r(ρ), we arrive at the desired equation:

ρtt =
Dρxx
τ

− ρt
τ
+
r(ρ)

τ
+ r(ρ)t. (1.21)

We immediately notice that the main term of this equation is given by ρtt − Dρxx
τ

, so
that, through the correction to the Maxwell-Cattaneo equation, we have moved from
the second-order parabolic PDE (1.12) to the new second-order PDE (1.1.3), which is
now classified as hyperbolic type. Thus, the nature of the diffusion and reaction model
has been changed, transitioning from parabolic to hyperbolic. In fact, if we consider the
model with r(ρ) = 0, the original diffusion model could be described by an hyperbolic
system of two first order PDEs: {

ρt = −(Jρ)x

(Jρ)t = −D
τ
ρx − Jρ

(1.22)

1.1.4 Another generalization of the Fick’s law: the introduction
of ’cross-diffusion’ effects.

In the case where multiple interacting species coexist in a system, it often happens that
a concentration gradient of one species can induce the flux of a second species. The
diffusion of the second species will no longer be purely spatial and free, but instead will
be ’chemotactically’ driven by its interaction with the other species. This phenomenon
is referred to as ’chemotaxis’ , and it gives rise to the so-called ’cross-diffusion’. To
mathematically account for this type of diffusion, ’drift’ terms are introduced into the
diffusion model. Let us now see how, starting from a completely general case, we can
describe chemotaxis within a diffusion and also reaction model. Imagine we want to
describe the dynamics of a species with density ρ1 in the presence of an interacting
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species with density ρ2. In this case as well, we resort to a generalized Fick’s law for the
flux associated with the species with density ρ1 which, in the 3D form, is given by:

J⃗ρ1(x⃗, t) = −D∇(C(ρ2)ρ1),

where D > 0 might depend on both species, whereas C = C(ρ2) > 0 is a function of class
at least C1. Expanding the expression above, it follows that the ”effective” flux vector
associated with ρ1 can be written as the sum of two contributions: a ”self-diffusive” one
and a ”chemotactic” one, due to the presence of the species with density ρ2, as follows:

Jρ1 = Jdiff
ρ1

+ Jchem
ρ1

(1.23)

where:
Jdiff
ρ1

:= −DC(ρ2)∇ρ1 (1.24)

and
Jchem
ρ1

=: −Dρ1C
′
(ρ2)∇ρ2 (1.25)

Now, defining all the parameters:

• Dρ1 := DC(ρ2) > 0, the classic diffusive mobility of the species with density ρ1.

• χ0 := −DC ′
(ρ2), the positive (or negative) chemosensitivity according as the

species ρ1 be attracted (or repelled) by the second species ρ2.

• Dρ1ρ2 := χ0ρ1, the drift mobility associated with the cross-diffusion of the species
ρ1 due to the chemotactic effect exerted by the species ρ2.

The constitutive equation for the flux associated with the species of density ρ1, in the
presence of ’cross-diffusion’ effects due to the species ρ2, can be rewritten in 3D as follows:

J⃗ρ1 = −Dρ1∇ρ1 +Dρ1ρ2∇ρ2 (1.26)

and, analogously in the 1D case:

Jρ1 = −Dρ1ρ1x +Dρ1ρ2ρ2x (1.27)

The equations (1.26) and (1.27) just written, therefore, represent the generalizations, in
3D and 1D versions respectively, of Fick’s law in the case where the model in question
needs to describe not only the simple spatial diffusion of species with density ρ1 but
also the ’cross-diffusion’ effect due to the presence of a second species with density ρ2,
which is capable of exerting ’chemotaxis’ on the first one. Finally, in the more general
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case where the species with density ρ1 interacts chemotactically with n other species,
the constitutive equations for the flux can be generalized in the 3D case as follows:

Jρ1 = −Dρ1∇ρ1 +
n∑

m=2

Dρ1ρm∇ρm (1.28)

and in 1D case:

Jρ1 = −Dρ1ρ1x +
n∑

m=2

Dρ1ρmρmx (1.29)

Returning for simplicity to the case with only two interacting species, the evolution-
ary equation for the species with density ρ1 in the 3D diffusion model (assuming, as
previously done, that the reaction term for this species is zero) will be given by:

ρ1t = −∇ · J⃗ρ1 = ∇ · (Dρ1∇ρ1)−∇ · (χ0ρ1ρ2) (1.30)

It consists of a quasi-linear second-order parabolic PDE (due to the presence of the
drift mobility) of the diffusion-drift type. Naturally, the mathematical model should be
completed by adding a suitable PDE governing the evolutionary behavior of the second
species, and both PDEs can also include interacting reaction effects.

1.2 The Keller-Segel model for chemotaxis and its

consequences

The term chemotaxis frequently occurs in biology and refers to phenomena of chemically
directed movements. A very much studied chemotaxis process in mathematical biology
is that of the formation of Amoebae into a slime mold. Herein, we firstly describe the
parabolic Keller-Segel theory developed by Keller-Segel in their pioneristic paper [3], and
then we address a parabolic-elliptic Keller-Segel system, with a logistic source, recently
proposed by Tanaka- Yokota [8]. The movement of the Amoeba si influenced by Acrasin,
which works like the chemical signal that directs the aggregation process, just viewed
as a disruption stability. For this reason our attention is mainly focused on stability
analysis.

1.2.1 Formulation of the mathematical model

Let us denote by ρ and c the amoebae density and the concentration of the chemoattrac-
tant secreted by the amoebae, the so called cyclic-AMP (cAMP), respectively. Later for
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mathematical reasons and for simplifications in the search of solutions we will restrict our-
selves to two- dimensional space domains. From now on, we address a bounded/unbounded
three-dimensional space domain Ω, fixed in time, where the notation x⃗ = (x1, x2, x3)
stands for the spatial point.
Henceforth the cell density ρ = ρ(x⃗, t) and the chemical concentration c = c(x⃗, t) are
positive value functions of class at least C2 in Ω+

t = Ω × {t > 0}. In the phenomenon,
Acrasina, the attractive chemical, and Acrasinase, the enzyme that breaks down Acrasina
in an enzyme-substrate reaction, come into play. Acrasinase decays quickly, causing the
disappearance of the chemical according to the reaction:

c+ η ⇌ C → η + product

where η represents the concentration of the enzyme and C is the concentration of the
enzyme-substrate complex. Keeping in mind that our goal is to build a system of differ-
ential equations that describe the interaction and movement, we can neglect the chemical
reaction and focus on a mean degradation function of the chemical, which we know is
due to the enzymatic reaction. We will denote this function as Λ(ρ, c). This allows us to
examine only two equations, one for the amoeba and the other for the chemical, rather
than four. We can assume the following:

1. Acrasina is produced by the amoeba according to a function h(ρ, c) and is degraded
according to a function Λ(ρ, c), which is proportional to the substance itself. The
functions h(ρ, c) and Λ(ρ, c) can be assumed to be constants, as will be the case in
the following;

2. Birth and death of the amoeba can be neglected since they occur at times that are
significantly shorter compared to those related to chemotactically driven movement;

3. Acrasina diffuses with a diffusion coefficient Dc;

4. The changes in the concentration of the amoeba are due to chemotactic movement
in the direction of a positive Acrasina gradient, with random motion (which can
be treated as diffusive motion with a diffusion coefficient Dρ);

5. The interactions between the amoeba and the bacteria can be neglected.

The generalized Keller-Segel model is composed by a system of two PDEs ∀(x⃗, t):{
ρt = ∇ · (Dρ(ρ, c)∇ρ)−∇ · (χ0ρ∇c) + aρ(1− ρ

b
)

ct = ∇ · (Dc(ρ, c)∇c)− Λc+ hρ
(1.31)
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where (1.31)2 is a quasi-linear second order reaction and diffusion type parabolic PDE,
when the chemical mobility Dc = Dc(ρ, c) is a positive valued function; the Λ-term,
Λ > 0, constant or not, is a degradation term whereas the h-term, h > 0, constant or
not, represents a proliferation term.
The PDE for the chemical is a linear parabolic equation if Dc,Λ and h are positive con-
stants; indeed if its RHS is null, with Dc = 1, we find the elliptic PDE investigated in
[8]. In fact the chemical is produced by bacteria with a rate h and it is degraded with a
rate Λ > 0.
(1.31)1 is a reaction and diffusion-drift type parabolic equation, and it is always
quasi-linear, even in the case of a constant bacterial mobility Dρ > 0; the last term
represents the reaction term of logistic type, with a > 0 and b > 0, playing the role of
carrying capacity, as suggested in [8], but not present in the classical Keller-Segel model.

1.2.2 Linear stability analysis

Linear stability analysis follows some steps:

1. We firstly determine the equilibrium solutions ρc and cc, which are stationary and
homogeneous, so that they make null the reaction terms. In our model we impose
the following conditions: {

aρ(1− ρ
b
) = 0

−Λc+ hρ = 0
(1.32)

from which we get two different cases:

• u⃗c = (0, 0)

• u⃗c = (b, hb
Λ
)

Remark 1.2.1. The first one is not relevant from a biological point of view because
it represents the null equilibrium state, where the concentrations of bacteria and
chemicals are both null; the second one, biologically interesting, is a coexistence
state, with cc =

hρc
Λ

for ρc = b. It is worth to note that, in the absence of the logistic
type reaction term, the system (1.32) reduces to the second algebraic relation and
hence for any ρc > 0 one finds cc =

hρc
Λ
.

Consequently (1.31)1 is always satisfied when ρ and c are constants.

Remark 1.2.2. We note that if Λ = Λ(ρ, c) and h = h(ρ.c) the equilibrium condi-
tion would become: Λ(ρc, cc)cc + h(ρc, cc)ρc = 0
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2. we introduce a small instantaneous perturbation denoted by δs(x⃗, t) = (δρ(x⃗, t), δc(x⃗, t))
and ∀(x⃗, t) we have: {

ρ(x⃗, t) = ρc + δρ(x⃗, t)

c(x⃗, t) = cc + δc(x⃗, t)

Replacing that in (1.31) we find the perturbed system:{
δρt = ∇ · (Dρ(ρc + δρ, cc + δc)∇δρ)−∇ · (χ0(ρc + δρ)∇δc) + a(ρc + δρ)(1− (ρc+δρ)

b
)

δct = ∇ · (Dc(ρc + δρ, cc + δc)∇δ)− Λ(cc + δc) + h(ρc + δρ)

(1.33)

3. we linearize the model to apply Fourier method and to find the linearized version
of the system we take the first-order truncated Taylor expansion for the mobility
diffusions:{
Dρ(ρc + δρ, cc + δc) ≃ Dρ(ρc, cc) +

∂
∂ρ
Dρ(δρ+ ρc, cc + δc)|(ρc,cc) +

∂
∂c
Dρ(ρc + δρ, cc + δc)|(ρc,cc)

Dc(ρc + δρ, cc + δc) ≃ Dc(ρc, cc) +
∂
∂ρ
Dc(δρ+ ρc, cc + δc)|(ρc,cc) +

∂
∂c
Dc(ρc + δρ, cc + δc)|(ρc,cc)

where we have canceled higher order terms derivative. We define:{
Dρ(0) := Dρ(ρc, cc)

Dc(0) := Dc(ρc, cc)

Subsequently canceling all the quadratic terms, considering (1.32)2 we obtain the
linearized version of the perturbed system:{

δρt = Dρ(0)∆δρ− χ0ρc∆δc− aδρ

δct = Dc(0)∆δc− Λδc+ hδρ
(1.34)

4. We search small perturbations (δρ(x⃗, t) ,δc(x⃗, t)) of (1.34) made up of two homo-
geneous linear parabolic PDEs with constant coefficients in this form:{

0 ̸= δρ(x⃗, t) = ρei(k⃗x⃗−ωt)

0 ̸= δc(x⃗, t) = cei(k⃗x⃗−ωt)
(1.35)

Later substituting (1.35) in (1.34), deleting the exponential factor, we get the
following homogeneous Cramer system:{

(σ +Dρ(0)k
2 + a)ρ1 − χ0ρck

2c1 = 0

−hρ1 + (σ +Dc(0)k
2 + Λ)c1 = 0

(1.36)
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Using the Cramer theorem, the necessary and sufficient condition to have non triv-
ial solutions is related to the following dispersion matrix D:

D =

[
σ +Dρ(0)k

2 + a −χ0ρck
2

−h σ +Dc(0)k
2 + Λ

]
By imposing det(D) = 0, we arrive at the desired dispersion equation for σ:

σ2 + ((Dρ(0) +Dc(0))k
2 + Λ+ a)σ + (Dρ(0)k

2 + a)(Dc(0)k
2 + Λ)− χ0ρck

2 = 0

After, we discuss about the stability/ instability by analyzing the sign of its known
term, since: {

σ1 + σ2 = −((Dρ(0) +Dc(0))k
2 + Λ+ a)

σ1σ2 = (Dρ(0)k
2 + a)(Dc(0)k

2 + Λ)− χ0ρchk
2

(1.37)

The necessary and sufficient condition for asymptotic stability is given by:

(Dρ(0)k
2 + a)(Dc(0)k

2 + Λ)− χ0ρ0hk
2 > 0

Now we analyze two different cases:

1. a = 0, corresponding to the classical Keller-Segel model.

In this case we have to introduce two critical thresholds defined as:

• k2KS := hρ0χ0

Dρ(0)Dc(0)
> 0

• k2KSΛ := k2KS − Λ
Dc(0)

< k2KS

After, by experimental data, we have Dc(0) >> Dρ(0) and supposing that k2KS −
Λ

Dc(0)
> 0, then the sufficient condition to have chemotactic instability reads:

k2 < k2KSΛ.

Remark 1.2.3. We underline the important role of Λ: in fact if Λ > hρ0χ0

Dρ(0)
we

wouldn’t have instability.

At the end we could observe that if Λ = 0, then the condition instability would
become k2 < k2KS. In conclusion thanks to Λ we recover stability in the range:
k2KSΛ < k2 ≤ k2KS.
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2. a > 0, corresponding to the generalized Keller-Segel model.

In this case the known term is:

Dρ(0)Dc(0)k
4 + k2(Dρ(0)Λ +Dc(0)a− χρch) + aΛ

Then the necessary and sufficient condition to have asymptotic stability reads as follows:

k4 − k2(k2KS −
Λ

Dc(0)
− a

Dρ(0)
) +

aΛ

Dρ(0)Dc(0)
> 0 (1.38)

from which, substituting k2KSΛ into (1.38), we have:

k4 − k2(k2KSΛ − a

Dρ(0)
) +

aΛ

Dρ(0)Dc(0)
> 0.

Defining a new smaller critical threshold k2KSΛa := k2KSΛ − a
Dρ(0)

> 0

⇒ k4 − k2k2KSλa +
aΛ

Dρ(0)Dc(0)
> 0.

From these equations we get the following solutions:

• k2+ =
k2KSΛa+

√
∆

2

• k2− =
k2KSΛa−

√
∆

2

where ∆ = k2KSΛa− 4a
Dρ(0)Dc(0)

. Since that the solutions are positive ⇒ k2− < k2+ < k2KSΛa,

so we recover more stability ∀k: k2 < k2− and in the range k2+ < k2 ≤ k2KSΛ.

1.2.3 Analysis of the model without diffusions

We consider the following dynamical system:{
dρ
dt

= aρ(1− ρ
b
)

dc
dt

= −Λc+ hρ
(1.39)

from which we get the same equilibrium states found before and evaluating:[
a− 2aρ

b
0

h −Λ

]
⇒ M(u⃗c) =

[
−a 0
h −Λ

]
⇒ u⃗c is an equilibrium asymptotic equilibrium state. Then for

the presence of the spatial diffusion we don’t have stability ∀ k2 < k2+, k
2
− < k2 < k2+.

Moreover thank to the presence of positive chemotaxis χ0 the asymptotic stability gives
the instability.
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Definition 1.2.4. An equilibrium state u⃗c satisfies the Turing instability if it is asymp-
totic stable for the dynamic system without diffusion terms, but it will become for the
presence of these terms.

If a = 0 ⇒ we get: {
ρt = 0

ct = −Λc+ hρ

⇒M(u⃗c) =

[
0 0
h −Λ

]
so the 2 eigenvalues are: λ = 0 and λ = −Λ; then the formation of chemotactic collapse
leads to the formation of cellular aggregates.

1.3 Luca model for Alzheimer disease

One of the most prevalent neurodegenerative disease of our time is Alzheimer disease,
which causes a degeneration of neurons and eventually their death. This neurodegener-
ative disease is characterized by the presence of a large amount of (A β), amyloid-beta,
which is a protein, whose aggregation, alters the cell makeup of the brain. Moreover
dementia pathogenesis is marked by the presence of tau proteins undergo misfolding
and detach from microtubules, resulting in the disintegration of the microtubules and
ultimately causing cell death. In a healthy brain there are glial cells and neurons, but
microglia and astrocytes are impacted during the degradation of neurons. Microglia cells
are the immune response cells and they have a chemotatctic behavior as chemoattrac-
tant and chemorepellent. The Luca et al. model [7] presented below, emphasizes the
presence of reactive microglia to gain a deeper understanding of the movement and its
relationship with Aβ.
This model is a generalization of the previous one. Henceforth we refer to [7].
The 1D version (with Ω = (0, L)) of the Luca model is described by the following system:

ρt = (Dρρx)x − (χ1ρc1x − χ2ρc2x)x

c1t = (Dc1c1x)x − Λ1c1 + h1ρ

c2t = (Dc2c2x)x − Λ2c2 + h2ρ

(1.40)

The parameters used in (1.40) are found and commented in [4]:
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Variable Description Value

Dρ Microglia random motility 33 µm2 min−1

χ1 Chemoattraction 6-780 µm2 nM−1min−1

χ2 Chemorepulsion Not provided
Dc1 IL-1 β diffusion 900 µm2 min−1

Dc2 TNF- α diffusion 900 µm2 min−1

h1 IL- 1 β production rate 6.25 ∗ 10−6 pg min−1

h2 TNF- α production rate 8.33 ∗ 10−6 pg min−1

Λ1 IL-1 β decay rate 0.003-0.03 min−1

Λ2 TNF- α decay rate 0.002-0.03 min−1

ρ̄ Average cell density 10−6 − 10−4 cells µm−3 min−1

In these equations ρ , c1, c2 are the density of microglia, the concentration of the at-
tractant interleukin-1 , IL-1β and the repellent (tumour necrosis factor- α), denoted by
TNF- α, respectively. For the sake of simplicity, all the parameters in play are assumed
positive constants.

Remark 1.3.1. We firstly note that (1.40)2 and (1.40)3 are two linear and homogeneous
second order parabolic PDEs of reaction and diffusion type with decay rates Λi and
production rates hi, while (1.40)1, is always a quasi-linear second order PDE due to the
presence of the density of microglia ρ, within the two ”drift terms”.

Remark 1.3.2. Since the proliferation term is negligible in an adult brain, it is not
present in (1.40)1; indeed a generalization of the model might include a logistic type
proliferation term, as previously introduced for the Keller-Segel model.

Now we rewrite the model in a dimensionless form, introducing the sizes ρ̄ and hiρ̄
Λi

respectively for microglia density and chemical concentrations. Furthermore we use the

spatial scales for the attractant L1 and repellent L2 defined as Li =
√

Dci

Λi
for i = 1, 2,

meaning the distance over which chemicals disperse during the characteristic decay time.

We finally take τ =
L2
2

Dρ
as our time scale, which occurs for a cell to move over one unit.

Let us introduce the dimensionless variables:

x∗ = x
x̃
, t∗ = t

t̃
, ρ∗ = ρ

ρ̃
and c∗i =

ci
c̃i

where the scales are:

t̃ = τ , ρ̃ = ρ̄ , x̃ = L2 , c̃i =
hiρ̄
Λi

for i = 1, 2

27



Replacing all these quantities in (1.40) and dropping the stars for notational convenience,
we obtain the following non dimensional system:

ρt = ρxx − [(A1c1x − A2c2x)ρ]x

ϵ1c1t = c1xx + a2(ρ− c1)

ϵ2c2t = c2xx + ρ− c2

(1.41)

where the five non dimensional parameters are defined in this way:

A1 =
χ1h1ρ̄
DρΛ1

, A2 =
χ2h2ρ̄
DρΛ2

, a = L2

L1
and ϵi =

Dρ

Dci
for i = 1, 2

Remark 1.3.3. a represents the ratio between the spatial scales. In addition the param-
eter A = χ1h1Dc2

χ2h2Dc1
denotes the ratio of the effective strengths of attraction and repulsion,

and it will be useful in a later discussion.

1.3.1 The spectral Fourier Method applied to AD

In this subsection we develop the linear stability of the model (1.41).

1. We have to determine the homogeneous steady state imposing:{
a2(ρ− c1) = 0

ρ− c2 = 0
(1.42)

From this system we obtain the critical solution u⃗c = (ρ, c1, c2) with ρ = c1 = c2 =
1, due to our dimensionless procedure, which represents the homogeneous steady-
state distribution of cells and chemicals.

2. Hence,we consider the following perturbed densities, for any (x, t):
ρ(x, t) = 1 + δρ(x, t)

c1(x, t) = 1 + δc1(x, t)

c2(x, t) = 1 + δc2(x, t)

(1.43)

Subsequently we replace the perturbed densities in (1.41) getting the perturbed
system: 

δρt = δρxx − [(A1δc1x − A2δc2x)(1 + δρ)]x

ϵ1δc1t = δc1xx + a2(1 + δρ− 1− δc1)

ϵ2δc2t = δc2xx + (1 + δρ− 1− δc2)

(1.44)
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3. After some simple simplifications we obtain the linear perturbation system:
δρt = δρxx − [(A1δc1x − A2δc2x)]x

ϵ1δc1t = δc1xx + a2(δρ− δc1)

ϵ2δc2t = δc2xx + (δρ− δc2)

(1.45)

4. We now use the Fourier method. In particular we search perturbations in this
form: 

0 ̸= δρ(x, t) = ρ
′
eikx+σt

0 ̸= δc1(x, t) = c
′
1e
ikx+σt

0 ̸= δc2(x, t) = c
′
2e
ikx+σt

where σ represents the growth rate parameter, k = nπ is the wavenumber of the
perturbation with n a positive integer number and finally ρ

′
and c

′
i are the non null

amplitudes of the perturbations.
Replacing these equations in (1.45) ,deleting the exponential factor and rearranging
all the terms we get the following Cramer system:

ρ
′
(σ + k2)− A1k

2c
′
1 + A2k

2c
′
2 = 0

a2ρ
′ − c

′
1(a

2 + ϵ1σ + k2) = 0

ρ
′ − c

′
2(k

2 + ϵ2σ + 1) = 0

(1.46)

Now we consider the dispersion matrix D in order to discuss the Cramer system:

D =

 σ + k2 −A1k
2 A2k

2

a2 −(a2 + ϵ1σ + k2) 0
1 0 −(k2 + ϵ2σ + 1)


Hence we compute the determinant of this matrix, in order to find a cubic equation
for the ”eigenvalues” σ, which is the dispersion equation of our model, by imposing
det(D) = 0; we have

det(D) = (A2k
2)(a2+ ϵ1σ+k

2)+(k2+ ϵ2σ+1)[(σ+k2)(a2+ ϵ1σ+k
2)−A1a

2k2], namely

det(D) = A2a
2k2+A2ϵ1σk

2+A2k
4+a2k2σ+ϵ1k

2σ2+σk4+a2k4+ϵ1σk
4−A1a

2k4+ϵ2σ
2a2+ϵ1ϵ2σ

3+

+ϵ2σ
2k2 + ϵ2σ

2k2 + ϵ2σa
2k2 + ϵ1ϵ2σ

2k2 + ϵ2σk
4 − A1ϵ2σa

2k2 + σa2+

+ϵ1σ
2 + σk2 + a2k2 + ϵ1σk

4 + k4 − A1a
2k2.
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Imposing det(D) = 0 , dividing for ϵ1ϵ2 and rearranging all the terms, we obtain the
desired dispersion equation:

σ3 + a1σ
2 + a2σ + a3 = 0 (1.47)

where:

• a1 = k2 + (1 + k2) 1
ϵ2
+ (a2 + k2) 1

ϵ1

• a2 = [ 1
ϵ1
(a2 + k2) + A2

ϵ2
− a2A1

ϵ1
+ 1

ϵ2
(1 + k2)]k2 + 1

ϵ1ϵ2
(a2 + k2)(1 + k2)

• a3 =
k2

ϵ1ϵ2
[A2(a

2 + k2)− A1a
2(1 + k2) + (1 + k2)(a2 + k2)]

Necessary and sufficient conditions for the asymptotic stability of our equilibrium state,
in view of the Routh-Hurwitz criterion, read as follows:{

ai > 0 ∀i = 1, 2, 3

a1a2 > a3

Remark 1.3.4. We note easily that a1 is always positive, while a2, and a3 are decreasing
function of A1 so the system above reads:

[ 1
ϵ1
(a2 + k2) + A2

ϵ2
− a2A1

ϵ1
+ 1

ϵ2
(1 + k2)]k2 + 1

ϵ1ϵ2
(a2 + k2)(1 + k2) > 0

k2

ϵ1ϵ2
[A2(a

2 + k2)− A1a
2(1 + k2) + (1 + k2)(a2 + k2)] > 0

k2 + (1 + k2) 1
ϵ2
+ (a2 + k2) 1

ϵ1
([ 1
ϵ1
(a2 + k2) + A2

ϵ2
− a2A1

ϵ1
+ 1

ϵ2
(1 + k2)]k2 + 1

ϵ1ϵ2
(a2 + k2)(1 + k2)) > a3

Remark 1.3.5. Since that the cubic equations (1.47) has real coefficients, then we have
at least one real solution; the other two can be real or complex conjugate.

Remark 1.3.6. If there aren’t chemotactic interactions (meaning A1 = A2 = 0), then:
R1 := k2

R2 :=
1
ϵ1
(a2 + k2)

R3 :=
1
ϵ2
(1 + k2)

So the equation (1.47) becomes:

σ3 + (R1 +R2 +R3)σ
2 + (R1R2 +R1R3 +R2R3)σ +R1R2R3 = 0

So in that case the three solutions are: σ1 = −R1, σ2 = −R2, σ3 = −R3, hence the above
conditions are easily satisfied, which means the asymptotic stability of the equilibrium
state and, consequently no pattern formation.
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Remark 1.3.7. If A1 = 0, then the criterion is trivially satisfied too.

There are also two special cases:

• if one of the three real roots is zero and the other two are negative (σ1 = 0, σ2 <
0, σ3 < 0) then a1 = −(σ1 + σ2) > 0, a2 = σ1σ2 > 0, a3 = 0. This situation
provides a bifurcation.

• if one root σ is a negative real solution and the other two are pure imaginary
solutions, then we have a Hopf bifurcation.

Furthermore, we can underline that the expression (a1a2 − a3) plays an important role
in the onset of bifurcations. In fact, if all roots σi have negative real part this implies
that (a1a2−a3) = −σ2

1σ2−σ2
1σ3− 2σ1σ2σ3−σ1σ

2
2 −σ3σ

2
2 −σ1σ

2
3 −σ2σ

2
3 > 0. Conversely,

if a3 > 0 and also (a1a2 − a3 > 0), then all three roots have negative real parts, a result
that follows from continuity and the above arguments about bifurcation behavior. At
the end we have to consider two possible bifurcation scenarios:

• when A1 =
(a2+k2)(1+k2+A1)

a2(1+k2)
, then a3 = 0 and a2 > 0. In that case a real root (1.47)

must be equal to zero. At a greater value of A1, this root becomes positive.

• At a critical value of A1, then a3 > 0, a2 > 0 and (a1a2 − a3) = 0. Hence in that
case, a pair of imaginary conjugate roots of equation (1.47) exist. At a greater
value of A1, these complex roots will have a positive real part.

From this analysis the instability condition is obtained when a3 < 0, that is:

k2

ϵ1ϵ2
[A2(a

2 + k2)− A1a
2(1 + k2) + (1 + k2)(a2 + k2)] < 0

⇒ A1(1 + k2)a2 − A2(a
2 + k2)− (1 + k2)(a2 + k2) > 0 (1.48)

and noticing that:

χ1h1ρ̄

DρΛ1

Dc2Λ1

Dc1Λ2

(k2 + 1) =
χ2h2ρ̄

DρΛ2

χ1h1Dc2

χ2h2Dc1

(k2 + 1) = AA2(1 + k2) (1.49)

⇒ A

(a2 + k2)
− 1

(1 + k2)
>

1

A2

obtained replacing (1.49) in (1.48), and taking into account the previous definition of A.
Since that the behavior of the system is determined by the left-hand side of (1.49), then
we analyze the closely related function:

H(x) =
A

x+ a2
− 1

x+ 1
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where x = k2. Since H(x) depends on A and a we have a distinct stability behavior
for different values of these two parameters. In particular using the following properties
there are some regions where the instability occurs. In fact:

1. H(x) → 0 as x→ ∞

2. if A ̸= 1, then there is a critical point

x =
a2 −

√
A√

A− 1

3. H(0) = A
a2

− 1. Then H(0) > 0 when a <
√
A, H(0) < 0 when a >

√
A

1.3.2 Energy method

Here we analyze the fully non linear stability which allows us to find a critical threshold
providing that aggregation of microglia will not occur. We follow Decay bounds in a
model for aggregation of microglia: application to Alzheimer disease senile plaques., [5]
and Decay for a Keller-Segel chemotaxis model. [6].
We indicate with < ·, · > and ∥ · ∥ respectively the inner product and the norm in
L2(Ω), where Ω ⊂ R2 is now a bounded and simply connected domain. We introduce
the Energy defined as:

E(t) =
1

2
∥ ρ ∥2 +βϵ1

2
∥ ∇c1 ∥2 +

β2ϵ2
2

∥ ∇c2 ∥2 (1.50)

where β and β2 represent two optimal positive constants.
First of all we rewrite the dimensionless perturbed system in two dimension (without
using δ to simplify the notation):

ρt = ∆ρ− A1∆c1 + A2∆c2 − A1∇ · (ρ∇c1) + A2∇ · (ρ∇c2)
ϵ1c1t = ∆c1 + a2(ρ− c1)

ϵ2c2t = ∆c2 + ρ− c2

(1.51)

Remark 1.3.8. We denote with Γ the boundary of Ω and we assume homogeneous
Neumann type boundary conditions:{

∇c1 · n = ∂c1
∂n

= 0

∇c2 · n = ∂c2
∂n

= 0
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where n is the outward normal to Γ. In particular, having zero flux through Γ requires
in (1.41)1 that:

∂ρ

∂n
− A1ρ

∂ρ

∂n
+ A2ρ

∂ρ

∂n
= 0 on Γ

and for the previous conditions we must have ∂ρ
∂n

= 0 on Γ.

Moreover equations (1.51) are to be solved under prescribed initial conditions for
the functions ρ, c1, c2, corresponding to assigned initial perturbations and using some
standard identities and then the Gauss Theorem, in view of homogeneous Neumann
type boundary conditions, we obtain:

d

dt

1

2
∥ ρ ∥2= − ∥ ∇ρ ∥2 +A1 < ∇c1,∇ρ > −A2 < ∇c2,∇ρ > +A1

∫
Ω

ρ∇c1 · ∇ρ dx

−A2

∫
Ω

ρ∇c2 · ∇ρ dx (1.52)

After multiplying (1.51)2 for −∆c1 and (1.51)3 for −∆c2 and, like before, using the
Neumann boundary conditions and integrating we find:

d

dt

1

2
ϵ1 ∥ ∇c1 ∥2= − ∥ ∆c1 ∥2 +a2 < ∇ρ,∇c1 > −a2 ∥ ∇c1 ∥2 (1.53)

d

dt

1

2
ϵ2 ∥ ∇c2 ∥2= − ∥ ∆c2 ∥2 + < ∇ρ,∇c2 > − ∥ ∇c2 ∥2 (1.54)

Now we choose β2 = A2 in (1.50) and we compute d
dt
E(t):

d

dt

1

2
∥ ρ ∥2 + d

dt

1

2
ϵ1β ∥ ∇c1 ∥2 +A2

d

dt

1

2
ϵ2 ∥ ∇c2 ∥2= − ∥ ∇ρ ∥2 +A1 < ∇c1,∇ρ > −A2 < ∇c2,∇ρ >

+A1

∫
Ω

ρ∇c1 · ∇ρ dx− A2

∫
Ω

ρ∇c2 · ∇ρ dx− β ∥ ∆c1 ∥2 +a2β < ∇ρ,∇c1 >

−βa2 ∥ ∇c1 ∥2 −A2 ∥ ∇c2 ∥2 +A2 < ∇ρ,∇c2 > −A2 ∥ ∆c2 ∥2

Remark 1.3.9. Since that A2 < ∇ρ,∇c2 > can be removed, then we won’t gain the
stability effect of the chemorepellent.
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⇒ d

dt
E(t) = −(∥ ∇ρ ∥2 +β ∥ ∆c1 ∥2 +A2 ∥ ∆c2 ∥2 +A2 ∥ c2 ∥2)−βa2 ∥ ∇c1 ∥2 +(A1+a

2β) < ∇ρ,∇c1 >

+A1 < ρ∇ρ,∇c1 > −A2 < ρ∇ρ,∇c2 > (1.55)

In order to improve our estimation we have to use:
(A1 + βa2) < ∇c1,∇ρ > ≤ (A1+βa2)

2α
∥ ∇c1 ∥2 +1

2
α(A1 + βa2) ∥ ∇ρ ∥2

β ∥ ∆c1 ∥2= βϵ ∥ ∆c1 ∥2 +β(1− ϵ) ∥ ∆c1 ∥2

∥ ∆c1 ∥2 ≥ β1 ∥ ∇c1 ∥2
(1.56)

where:

• (1.56)1 is the arithmetic-geometric mean inequality and the constant α > 0 is
determined in [4];

• (1.56)3 is the Poincaré inequality, and β1 = β1(Ω) found in [6];

• in (1.56)2 ϵ is a real number such that: 0 < ϵ < 1.

Now using the integration by parts theorem and boundary conditions, for the cubic term,
we have:

< ρ∇c1,∇ρ >=
1

2

∫
Ω

2ρ∇c1·∇ρ dx =
1

2

∫
Ω

∇c1·∇ρ2 dx = −1

2

∫
Ω

∆c1ρ
2 dx+

1

2

∫
Γ

∂c1
∂n

ρ2 dσ

= −1

2
< ∆c1, ρ

2 >

and the same holds for the other term. Then:

dE

dt
≤ −r ∥ ∇ρ ∥2 −[βϵβ1 + βa2 − (A1 + βa2)

2α
] ∥ ∇c1 ∥2 −β(1− ϵ) ∥ ∆c1 ∥2

−A2(∥ ∆c1 ∥2 + ∥ ∆c2 ∥2)−
1

2
A1 < ∆c1, ρ

2) +
1

2
A2 < ∆c2, ρ

2 > (1.57)

in which r := 1− 1
2
α(A1 + βa2) > 0.
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Subsequently calling N := −1
2
A1 < ∆c1, ρ

2 > +1
2
A2 < ∆c2, ρ

2 > and using the Cauchy-
Schwarz inequality we have:

N ≤ 1

2
A1 ∥ ∆c1 ∥ (

∫
Ω

ρ4 dx)
1
2 +

1

2
A2 ∥ ∆c2 ∥ (

∫
Ω

ρ4 dx)
1
2 . (1.58)

Furthermore we apply the Sobolev inequality:∫
Ω

ρ4 dx ≤ C1

∫
Ω

ρ2 dx

∫
Ω

| ∇ρ |2 dx

for a suitable positive constant C1, depending on the geometry of the domain Ω, see [6]
for its valuation. Later, using all the estimations above, we derive the value of dE

dt
:

dE

dt
= −D +

A1

2

√
C1 ∥ ∆c1 ∥∥ ρ ∥∥ ∇ρ ∥ +

A2

2

√
C1 ∥ ρ ∥∥ ∆c2 ∥∥ ∇ρ ∥ (1.59)

where the dissipative D is defined as follows:

D = r ∥ ∇ρ ∥2 +[βϵβ1 + βa2 − (A1 + βa2)

2α
] ∥ ∇c1 ∥2 +β(1− ϵ) ∥ ∆c1 ∥2

+A2(∥ ∆c2 ∥2 + ∥ ∇c2 ∥2)

Hence from (1.59), in view of the definitions of E(t) and D(t), we arrive at the final
Energy inequality:

dE

dt
≤ −D(1−QE1/2) (1.60)

where Q := A1

√
C1

2
√

2β(1−ϵ)r
+

√
A2C1

2
√
2r

.

Remark 1.3.10. Now, in order to have an energy decay, we must require two conditions
on (1.60), which guarantee that ρ→ 0, ∇c1,∇c2 → 0, that is microglia concentration re-
turns to its steady state value, both the chemoattractant and the chemorepellent become
constant:

• D > 0

• E1/2(0) < 1
Q
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which means to require;
(∥ρ(0)∥

2

2
+ βϵ1∥∇c1(0)∥2

2
+ A2ϵ2∥∇c2∥2

2
)1/2 <

2
√

2−α(A1+βa2)

[A1
√
c1/

√
β(1−ϵ)]+

√
A2c1

α(A1+βa2)
2

< 1

(A1+βa2

2α
) < β(ϵβ1 + a2)

Hence the last two conditions imply that:

(A1 + βa2)

2β(ϵβ1 + a2)
< α <

2

(A1 + βa2)

⇒ (A1 + βa2)2 < 4β(ϵβ1 + a2)

⇒ A1 < 2
√
β(ϵβ1 + a2)− βa2 := f(β) (1.61)

Hence f(β) has its maximum value at β = ϵβ1+a2

a4
, then replacing that in (1.61) we get

A1 < 1 + ϵβ1
a2
.

This computation provides the decay of E(t), that is we have not microglia aggregation
under these last two constraints. At the end if we substitute the optimal value β within
the first inequality, we find:

(
∥ ρ(0) ∥2

2
+
βϵ1 ∥ ∇c1(0) ∥2

2
+
A2ϵ2 ∥ ∇c2(0) ∥2

2
)1/2 <

2[2− α{A1 + (ϵβ1 + a2)/a2}]1/2
√
c1A2 +

√
c1A1a2/[(1− ϵ)

√
ϵβ1 + a2]

<
2
√

1− A1/[1 + ϵβ1/a2]√
c1A2 +

√
c1A1a2/[(1− ϵ)

√
ϵβ1 + a2]

(1.62)

obtained choosing α = (1 + βϵ1
a2
) in accordance to the previous equation. Moreover we

can see that A1 < 1+ ϵβ1
a2

is consistent with the previous equation and, since that in one
dimension β1 = (πL2

L1
)2, then the condition on A1 is : A1 < 1 + ϵ(πL1

L2
)2. Replacing the

original value of A1 we obtain:

χ1h1ρ̄

DρΛ1

< 1 + ϵ(
πL1

L2

)2 ⇒ ρ̄ <
DρΛ1

χ1h1
[1 + ϵ(

πL1

L2

)2].

This is the threshold below which the aggregation doesn’t occur.
Looking for new mathematical models for Alzheimer’s, in view of recent clinical studies,
we can ask ourselves whether acute neuroinflammation is responsible for its onset and
progression.
Alzheimer disease model could be seen as a more generalized model of acute cerebral
inflammation?
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Chapter 2

Chemotaxis modeling of Acute
Inflammation

2.1 Introduction

In this chapter, we study the properties of a model describing Acute inflammations, in
which, the first part of the essay, we refer to Pattern formation in a model of acute in-
flammation. [9], Chemotaxis and cross-diffusion models in complex environments: Mod-
els and analytic problems toward a multiscale vision., [11], and in the second part Pattern
formation and transition to chaos in a chemotaxis model of acute inflammation.,, [10],
where we will see how logistical effects can affect the stability analysis and the other
properties of the model. An immune system can be affected by an inflammation, which
represents a biological response of the organism to an harmfuli stimuli. There exist
some different types of disgregulation such as: trauma, obesity, atherosclerosis, asthma
allergy, autoimmune disorders, cancer and also neurodegenerative disease (as Alzheimer
disease seen in the previous chapter). Each inflammation is a result of multiple and
complex interactions between cell types and molecules. In that chapter, we will see a
simplified model: it consists on a fixed population of immune cells (as macrophages),
and there are two molecules: the first one is denoted as inflammatory chemokine and
the other is the anti-inflammatory cytokine. These two acts indifferently: chemokine are
chemoattractant for immune cells, the other serve as inibithor. The author assume that
macrophages produce these molucules, and the dynamics of anti- inflammatory cytokine
is controlled by a fixed parameter τ which reduces the movement with respect to the
other mulecules. In fact this choice is due, through a biological point of view, to the fact
that immune cells produces anti-inflammatory cytokine with some delay to speed up the
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immune response. Indeed,if higher concentrations of chemoacttractant engage more and
more immune cells, so that there is an increased production of cytokines, on the other
and, at the same time, anti-inflammatory cytokine inhibit the production.

2.1.1 Formulation of the model

The model of an acute inflammation is described through an interaction between three
species of the inflammatory system represented as: inflammatory cells (macrophages),
a chemokine and an anti-inflammatory cytokine denoted respectively by ρ, c1, c2. The
authors assume that cytokine and chemokine are produced by macrophages with differ-
ent dynamics: in fact the second one are slower than the first one, but they have the
same kinetics. Last assumption is related to macrophages: attraction rate decreases as
the concentration of c1 increases, because the cell’s signal receptors become saturated,
preventing the macrophages from detecting the gradient. We denote the spatial do-
main Ω ⊂ R2 which is simple connected and bounded, and we call respectively ρ(x⃗, t),
c1(x⃗, t), c2(x⃗, t) the concentration of macrophages, inflammatory chemokine and anti-
inflammatory chetokine. Using these assumptions we get a three-variable PDE problem:

ρt = ∇ ·
(
Dρ∇ρ− χρ

(1+αc1)2
∇c1

)
c1t = Dc1∆c1 − c1 +

ρ
1+βcη2

c2t =
1
τ
(Dc1∆c2 − c2 +

ρ
1+βcη2

)

(2.1)

where χ represents the maximal chemotactic rate of the immune cells, Dρ is the diffusive
mobility for the macrophages, and Dc1 is the diffusion for both chemokine and cytokine
are constant. Let’s assume Dρ < Dc1. The quantity 1/(1+αc1)

2 reflects the saturation of
chemokine receptors, which leads to a reduction in chemoattraction as the concentration
of c1 rises. The other two parameters β and η are introduced to study the constraining
effects of anty-inflammatory chemokine. As before the authors assume to have Neumann
type homogeneous boundary conditions: ∇ρ · n = ∇c1 · n = ∇c2 · n = 0 on Γ, which is
the boundary of Ω and n is the external normal unit vector to Γ.

Remark 2.1.1. When τ = 1, this model can be reduced to Keller-Segel model, in which
the two chemicals follows the same dynamics and receptors saturation doesn’t provide
any blow- up of the solutions. Infact, cytokines could blocks chemotactic effect, but this
is not considered in the model.

Remark 2.1.2. In the second part of the chapter, studying traveling waves, it is also
assumed that the density of macrophages is constant, that is: M :=

∫
Ω
ρ(x, t) dx.
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Remark 2.1.3. Before proceeding with the analysis of the model, we underline some
important aspects of the model. Starting from the equation (2.1)1, this is a quasi-linear
second order parabolic equation due to the presence of ρ/(1 + αc1)

2 in the second term,
whereas (2.1)2,3 are also second-order parabolic PDEs, with the same proliferation term
degraded by h(c2) := 1/(1 + βcη2) which makes them semi-linear.

2.1.2 Stability analysis

As for the previous models we determine the nontrivial homogeneous steady solution
(ρ, c1, c2) = (ρc, c1c, c2c) of (2.1), where ρc is exactly the total cells population M divided
by the domain magnitude.

• Thus we impose: −c1 + ρ
(1+βcη2)

= 0

1
τ

(
− c2 +

ρ
(1+βcη2)

)
= 0

(2.2)

Hence c1 = c2 =
ρ

1+βcη2
⇒ (ρc, c1c, c2c) = (ρc,

ρc
(1+βcη2c)

, c2c), for any ρc > 0.

Remark 2.1.4. It is shown that (2.2)2 has a unique positive solution c2c, in terms
of ρc for all η and β, leading to a positive solution c2c in view of (2.2)1.

As a special example, if we take η = 1, we find c2c =
−1+

√
(1+4βρc)

2β
, for all β > 0,

which in turn leads to c1c, via (2.2)1.

• We now introduce the following perturbation ∀(x⃗, t):
ρ(x⃗, t) = ρc + δρ(x⃗, t)

c1(x⃗, t) = c1c + δc1(x⃗, t)

c2(x⃗, t) = c2c + δc2(x⃗, t)

• Replacing these in (2.1) we obtain the perturbed system:
δρt = ∇ · (Dρ∇δρ− χ(ρc+δρ)

(1+α(c1c+δc1))2
)∇δc1

δc1t = Dc1∆δc1 − c1c − δc1 +
ρc+δρ

(1+β(c2c+δc2)η)

δc1t =
1
τ
(Dc1∆δc2 − c2c − δc2 +

ρc+δρ
(1+β(c2c+δc2)η)

)

(2.3)

• Then we linearize the system (2.3), by neglecting δρ and δc1 within the ”drift
mobility” in (2.3)1 and δc2 in the last term of (2.3)2 and (2.3)3; finally, taking into
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account the equilibrium conditions (2.2), we find:
δρt = Dρ∆δρ− χρc

(1+αc1c)2
∆δc1

δc1t = Dc1∆δc1 − δc1 +
1

(1+βcη2c)
δρ

δc2t =
1
τ
(Dc1∆δc2 − δc2 +

1
(1+βcη2c)

δρ)

(2.4)

• We now use the classical Fourier method and we seek perturbations with small
amplitudes as follows: 

0 ̸= δρ(x⃗, t) = ρ̄ei(k⃗·x⃗−ωt)

0 ̸= δc1(x⃗, t) = c̄1e
i(k⃗·x⃗−ωt)

0 ̸= δc2(x⃗, t) = c̄2e
i(k⃗·x⃗−ωt)

where the vector k⃗, ω and σ = −iω preserve the same meaning as previously seen.
Replacing these in (2.4), canceling the exponential term, we finally recover the
Cramer system for the amplitudes:

σρ̄ = −Dρk
2ρ̄+ χρc

(1+αc1c)2
k2c̄1

σc̄1 = −Dc1k
2c̄1 − c̄1 +

1
(1+βcη2c)

ρ̄

σc̄2 =
1
τ
(−Dc1k

2c̄2 − c̄2 +
1

(1+βcη2c)
ρ̄)

(2.5)

namely: 
(σ +Dρk

2)ρ̄− χρ̄
(1+αc1c)2

k2c̄1 = 0

(σ + k2Dc1 + 1)c̄1 − 1
(1+βcη2c)

ρ̄ = 0

− 1
τ(1+βcη2c)

ρ̄+ c̄2(σ + 1
τ
(Dc1k

2 + 1)) = 0

(2.6)

Remark 2.1.5. It is worth to note that in the 1D case, when Ω is an interval of length
L, under no-flux boundary conditions, we work with a subclass of periodic perturbations
in x of the following type cos kx, with k2 = n2π2. Hence we seek solutions of the form:
(δρ, δc1, δc2)(x, t) = (ρ̄eσt cos(kx), c̄1e

σt cos(kx), c̄2e
σtcos(kx)). Hence the linear stability

reads as the following eigenvalue problem:

σ

 ρ̄c̄1
c̄2

 = Ã(k)

 ρ̄c̄1
c̄2

 (2.7)
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where:

Ã(k) =

 −k2Dρ
k2χc2c(1+βc

η
2c)

(1+αc2c)2
0

1
1+βcη2c

−1− k2Dc1 0
1

τ(1+βcη2c)
0 −k2Dc1

τ

 (2.8)

2.1.3 Gershgorin Theory

For the linear stability tool, the eigenvalue problem is related to the following ”Disper-
sion matrix”:

D(k2) =

σ +Dρk
2 −χρck2

(1+αc1c)2
0

− 1
(1+βcη2c)

σ +Dc1k
2 + 1 0

− 1
τ(1+βcη2c)

0 σ + (Dc1k2+1)
τ


with σ playing the role of an eigenvalue.
Hence, by the standard Turing analysis, for a general reaction-diffusion system we have
that, if the dispersion matrix has an eigenvalue σ(k) with Re(σ) > 0 follows that there
is a spatially periodic perturbation of the homogeneous steady state having wavelength
2π/k which has an exponential growth, which entails having an instability of the system.
Otherwise if Re(σ) < 0 ∀σ, k then the homogeneous steady state becomes asymptotically
stable.
For this reason, in this subsection, we investigate better the role of the eigenvalues
introducing the classical Gershgorin theory to make very fast deductions about their
locations. This allows us to ensure to have a set of necessary conditions in order to
determine the instability of the system. Hence, we determine the Gershgorin discs for
the rows i = 1, 2, 3 of D:

i = 1 :| σ +Dρk
2 |≤ χk2ρc

(1 + αc1c)2
,

i = 2 :| σ + k2Dc1 + 1 |≤ 1

(1 + βcη2c)
,

i = 3 :| σ +
(Dc1k

2 + 1)

τ
|≤ 1

τ(1 + βcη2c)

We have to underline the role of each interval. In fact, the infimum of each interval ,in

which the eigenvalue stays, (which is, respectively, −Dρk
2, −k2Dc1 − 1 and − (Dc1k2+1)

τ
)

lies on the negative part of real axis. Therefore if 0 is inside of each disc, then D can
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have some eigenvalues with positive real part, otherwise all the eigenvalues have negative
real part. In particular, choosing η = 1, as before, we may have the condition in the
discs i=2,3 becomes:

| σ + k2Dc1 + 1 |≤ 1

1 + βc2c
;

| σ +
(Dc1k

2 + 1)

τ
|≤ 1

τ(1 + βc2c)

⇒ − 1

(1 + βc2c)
− k2Dc1 − 1 ≤ σ ≤ 1

(1 + βc2c)
− k2Dc1 − 1

Hence the second extreme is negative and 0 is not inside the discs for all the parame-
ters fixed in the model. Considering the first Gershgorin disc we will find a condition
guaranteeing that 0 is inside the interval:

χk2c2c(1 + βcη2c)

(1 + αc2c)2
−Dρk

2 > 0 ⇔ χc2c(1 + βcη2c)

(1 + αc2c)2
−Dρ > 0 ⇔ χc2c(1 + βcη2c)

Dρ(1 + αc2c)2
−Dρ > 1.

The condition above shows that if c2c and consequently ρc are smaller and smaller, then
0 is not contained in the third disc, meaning that there are no pattern formation. At
the same time the ratio χ

Dρ
plays an important role: in fact if it is small (that is the

chemoattraction is weak) then there are also no pattern formation.
Finally, taking ρ = 1, the above inequality gives us a critical threshold to get the insta-
bility :

χ

Dρ

>
(1 + αc2c)

2

Dρ(1 + βc2c)
∀ c2c > 0

⇒ χ

Dρ

> min
a>0

(1 + αa)2

Dρ(1 + βa)
=

{
4(α− β) if α > β

α2/β if α ≤ β

2.1.4 Routh-Hurwitz theory

In this subsection we analyze in detail the Routh-Hurwitz criterion to determine the
stability of the system. Following [9], we firstly rewrite the dispersion matrix as:

D =

σ + u −p 0
−q σ + r 0
−v 0 σ + ω


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where we called u := Dρk
2, p := χρck2

(1+αc1c)2
, q = 1

(1+βcη2c)
, r := k2Dc1 + 1, v = 1

τ
( 1
(1+βcη2c)

),

ω = (Dc1k2+1)
τ

. Then we evaluate the determinant of D:

det(D) = (σ+ω)[(σ+r)(σ+u)−pq] = σ3+σ2u+σ2r+σru−σpq+σ2ω+σuω+σrω+ωru−ωpq

= σ3 + σ2(u+ r + ω) + σ(ru+ rω + uω − pq) + (ωru− ωpq)

Defining now N := u+ r+ω, P := (ru+ rω+ uω− pq), Q = (ωru−ωpq), we study the
following dispersion equation:

σ3 +Nσ2 + Pσ +Q = 0 (2.9)

As we have seen in Alzheimer disease model, the conditions that provide the stability of
the equilibrium state are:

• N > 0;

• Q > 0;

• R := NP −Q > 0.

Remark 2.1.6. Let’s note that N = k2(Dρ+Dc1) +
(Dc1k2+1)

τ
+1 > 0 for all parameters

chosen, but R,Q can be negative due to the presence of negative terms.

Remark 2.1.7. If k = 0, namely for the dynamical system, in the absence of self/cross
spatial diffusion, then:

D =

 σ 0 0
− 1

(1+βcη2c)
σ + 1 0

− 1
τ(1+βcη2c)

0 σ + 1
τ


Since D is a lower triangular matrix, then det(D) = σ(σ+1)(σ+ 1

τ
), which implies that

one eigenvalue is 0, that corresponds to have a uniform steady state ∀c2c.
Remark 2.1.8. Now we underline the importance of the following two special cases.

1. Q = 0 and σ ̸= 0. This condition is verified when ru = pq and implies that (2.9)
can be written as: det(D) = σ3 + Nσ2 + Pσ = σ(σ2 + Nσ + P ) = 0; so that
one eigenvalue must be 0, which means having a bifurcation into stationary spatial
patterns.
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2. When R = 0, that is NP = Q, then (2.9) becomes:

σ3 +Nσ2 + Pσ +NP = 0

⇒ (σ +N)(σ2 + P ) = 0

Hence the eigenvalues are: σ1 = −N, σ2,3 = ±i
√
P . Since there are two complex

conjugate eigenvalues, we have a bifurcation into spatial-temporal patterns ( as the
traveling waves which we study later).

We focus on finding conditions where nonzero values of k cause the second or third Routh-
Hurwitz criterion to be violated, as we are interested in pattern-forming instabilities.
The following analysis, after fixing all the parameters, is based on the values of the
maximum degree of chemotaxis χ and the time scale of the inflammatory cytokines τ ,
which vary since that there are no effect on the equilibrium steady state, but only on
stability.
From now on, let us denote with K =: k2 and we rewrite Q(K) as product of three linear
terms to make in evidence the importance of the wave number:

Q(K) =
KDρ

τ
(Dc1K + 1)2 − χc2cK

τ

(KDc1 + 1)

(1 + αc2c)2

⇒ Q(K) =
K

τ
(KDc1 + 1)

[
Dρ(Dc1K + 1)− χc2c

(1 + αc2c)2

]
. (2.10)

Imposing now Q(K) = 0 yields:[
Dρ(Dc1K + 1)− χc2c

(1 + αc2c)2

]
= 0

⇒ K∗ =
χc2c

DρDc1(1 + αc2c)2
− 1

Dc1

.

Remark 2.1.9. We note that the first two linear terms of Q are positive ∀K > 0, hence
Q is positive if and only if the root above is positive, that is:

χc2c
DρDc1(1 + αc2c)2

− 1

Dc1

> 0 ⇐⇒ χ > χT :=
Dρ(1 + αc2c)

2

c2c
;

then Q(K) < 0 ∀ χ > χT , 0 < K < K∗.
Moreover when c2c → o then χT → ∞. Hence the instability occurs at a value of χ > χT .
In particular χT is the smallest value for which there is a Turing bifurcation.
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Now we have to consider the term R(K). In terms of K it becomes:

R(K) = (DρK)2(KDc1 + 1) +
DρK

τ
(KDc1 + 1)2 +

(DρK)2

τ
(Dc1K + 1)− χc2cK

2Dρ

(1 + αc2c)2

+K2Dc1Dρ(KDc1 + 1) +
KDc1

τ
(KDc1 + 1)2 +

DρDc1(Dc1K + 1)K2

τ

−χc2cDc1K
2

(1 + αc2c)2
+KDρ(KDc1 + 1) +

(KDc + 1)2

τ
+
DρK(Dc1K + 1)

τ
− χc2cK

(1 + αc2c)2

DρK(KDc1 + 1)2

τ
+

(KDc1 + 1)3

τ 2
+
DρK(KDc1 + 1)2

τ 2

−χc2cK
2(KDc + 1)

τ(1 + αc22c)
− K

τ
(KDc1 + 1)

[
Dρ(Dc1K + 1)− χc2c

(1 + αc2c)2

]
.

Thus, collecting all the terms, we get R(K) = a0+a1K+a2K
2+a3K

3. Furthermore, all
the coefficients bj depend both on χ and τ , and b0, b3 are positive ∀χ, τ , so that, in order
to obtain instability, we have to require b1 and / or b2 must be negative. According to
Descartes’ Rule of signs, there can be at most two positive roots, and if so, one or both
of b1, b2 must be negative.
Following the authors, it is shown, by experimental data, that for each τ there exist
χi(τ) such that if χ > χi(τ):

χ1(τ) =
Dρ(1 + αc2c)

2

c2c

(τ 2 +B11τ +B12τ

τ(τ +B13)

)
;

χ2(τ) =
Dρ(1 + αc2c)

2(2Dc1 +Dρ)

c2c(Dρ +Dc1)
+
B21

τ
+
B22

τ 2
;

where all the coefficients Bij are strictly positive, which depends on all parameters and
χi is a decreasing function of τ and χH(τ) = min(χ1(τ), χ2(τ)). Moreover we can observe

that when τ → ∞, χH → χ1(∞) := Dρ(1+αc2c)2

c2c
. As χT > χ1(∞), for sufficiently slow

dynamics of the inflammatory cytokine, there exist values of χ such that Q(K) > 0 for

all K > 0, but R(K) < 0 for some K. Finally for τ ≈ 0, then R(K) ≈ B(K)
τ2

+ O( 1
τ
),

where B(K) = (KDc1+1)2

τ2
[K(Dc1 +Dρ) + 1]. In that case we observe that both

B(K) > 0, R(K) > 0 ∀K. We conclude that to have instability because of anti-
inflammatory cytokine, we must require τ → ∞.
Following [9] fixed all the coefficients in terms of χ and τ , the authors has shown, nu-
merically, that choosing:

[Dρ Dc1 α β ρc η] = [0.45 1 0.5 0.4 10 1]
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for each value of τ :

1. if χ > χT , there are many wave numbers K, representing Turing instability;

2. if χ > χH (where χH = χ1 for the choice of parameters), then there are different
values ofK such that an oscillatory perturbation occurs with an exponential growth
of the amplitude, which corresponds to have an Hopf bifurcation.

2.1.5 Stationary solutions

In this subsection we consider equilibrium solutions of the system (2.1) which are sta-
tionary, but not homogeneous; we suppose to work in a one-dimensional spatial domain
of length L and, hereafter, we choose the parameter η = 1. As before, we consider either
flux or periodic boundary conditions. The one-dimensional stationary version of (2.1)
reads: 

0 = (Dρρx − χρc1x
(1+αc1)2

)
x

0 = Dc1c1xx − c1 +
ρ

(1+βc2)

0 = Dc1c2xx − c2 +
ρ

(1+βc2)
.

(2.11)

We focus on the equation (2.11)1 and we integrate with respect to x to obtain:

k0 = Dρρx −
χρc1x

(1 + αc1)2
. (2.12)

Due to our hypothesis we have respectively that: under homogeneous Neumann boundary
conditions, we set k0 = 0; if we impose periodic boundary conditions, the homogeneity
of the equations implies that, by a translation, the peaks in ρx and c1x occur at 0, and
again we can set k0 = 0. Now, under the assumption that ρ ̸= 0, we can integrate (2.12):∫

Dρρ(x)x dx =

∫
χρ(x)c1(x)x
(1 + αc1(x))2

dx

and using the method of separation of variables, it yields:

Dρ

∫
dρ

ρ
= χ

∫
dc1

(1 + αc1)2

after defining u(x) := (1+αc1(x)), we use this substitution in the right-hand side to get:

χ

∫
dc1

(1 + αc1)2
=
χ

α

∫
1

u2
du
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⇒ Dρ log(ρ) = − χ

α(1 + αc1)
+ C

⇒ ρ = ρ(c1) = k1 exp
( −χ
Dρα(1 + αc1)

)
. (2.13)

for a suitable positive constant k1.
From this algebraic relation between ρ and c1, we note that ρ is an increasing function
of c1, whose limit is k1 when c1 → ∞. We emphasize that the constant k1 is a parameter
associated with the total number of macrophages in the spatial domain by integrating
c1 over the domain, but this can only be done once the function c1 is known.
Now let’s consider the equations (2.11)2 and (2.11)3. Subtracting from the third the
second equation we get: Dc1(c1−c2)xx = (c1−c2). In view of no-flux boundary conditions,
this second order ODE admits the unique solution c1 = c2. Thus, considering (2.13),
substituting the value in (2.11)2, setting c1 = C(x), we find:

Dc1Cxx = C − ρ(C)

1 + βC

which can be written as an autonomous dynamical system in R2 of form:{
dC
dx

= U,

Dc1
dU
dx

= C − ρ(C)
1+βC

.
(2.14)

We can rescale space in (2.14)2 and assume Dc1 = 1, without any loss in generality.
Furthermore our stationary solutions must satisfy the following boundary conditions:
Cx(0) = Cx(L) = 0, i.e. U(0) = U(L) = 0. Periodic solutions must have at least one
point in the domain such that Cx vanishes, so they can be translated to obey the same
conditions.

2.1.6 Traveling Wave topic

In this subsection, we will study the behavior of Traveling Waves type solutions which
depend on time. A traveling Wave may be defined as a periodic wave distribution that
moves at a constant velocity along a specific direction, herein in the x direction, without
changing its shape. By experimental data, it is seen that when τ is big, then the system
(2.1) is well described by a signal representing traveling waves. First of all, we introduce
the constant velocity V of a traveling wave, in order to look for solutions of this type:
(ρ(x, t), c1(x, t), c2(x, t)) = (M(z), C1(z), C2(z)), where z = x−V t. Using this assumption
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within the one-dimensional version of (2.1), we find:
−VMz = DρMzz −

(
χMC1z

(1+αC1)2

)
z
,

−V C1z = Dc1C1zz − C1 +
M

1+βC2
,

−V C2z =
1
τ

(
Dc1C2zz − C2 +

M
1+βC2

)
.

(2.15)

A first integration of (2.15)1, yields:

V (M −M0) +DρMz =
χMC1z

(1 + αC1)2
. (2.16)

Let’s note that the parameter M0 represents the limit concentration of immune cells
in solitary wave where Mz, C1z → 0 as z → ±∞. Let’s rewrite the system composed
by (2.16) and (2.15)2,3 as a five-dimensional first-order system choosing the variables
(M,C1, U, C2,W ): 

Mz =
1
Dρ

(
− V (M −M0) +

χMU
(1+αC1)2

)
,

C1z = U,

Uz =
(
− V U + C1 − M

(1+βC2)

)
/Dc1,

C2z = W,

Wz =
(
− V τW + C2 − M

(1+βC2)

)
/Dc1

(2.17)

Hence each solution of the above system must depend also on M0 and the velocity V .
This autonomous Dynamical system admits one constant solution, parametrized by the
equilibrium value of C2. The Jacobian of this system, evaluated at this equilibrium state
reads:

J =


− V
Dρ

0 χC2c(1+βC2c)
Dρ(1+αC2c)2

0 0

0 0 1 0 0

− 1
Dc1(1+βC2c)

1
Dc1

− V
Dc1

βC2c

Dc1(1+βC2c)
0

0 0 0 0 1

− 1
Dc1(1+βC2c)

0 0 1+2βC2c

Dc1(1+βC2c)
− V τ
Dc1


In the case of τ = 1, then C1, C2 follow the same dynamic. Hence the five- dimensional
system (2.17) will be reduced to a three-dimensional system, whose solutions are traveling
waves of a Keller-Segel type chemotaxis model:

Mz =
1
Dρ

(
V (M0 −M + χMU

(1+αC1)2

)
,

C1z = U,

Uz =
1
Dc1

(
− V U + C1 − M

(1+βC1)

)
.

(2.18)
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In this case the Jacobian will be:

J =

 − V
Dρ

0 χC1c(1+βC1c)
Dρ(1+αC2c)2

0 0 1

− 1
Dc1(1+βC2c)

1+2βC2c

Dc1(1+βC2c)
− V
Dc1


Computing the characteristic polynomial we get:

(− V

Dρ

− σ)
[
− σ +

(
− V

Dc1

− σ
)
− 1 + 2βC2c

Dc1(1 + βC2c)

]
− χC1c(1 + βC1c)σ

DρDc1(1 + βC2c)(1 + αC2c)2
= 0

from which, rearranging all the terms, we find:

σ3 + σ2
( V

Dc1

+
V

Dρ

)
− σ

( χC1c(1 + βC1c)

DρDc1(1 + βC2c)(1 + αC2c)2
+

1 + 2βC2c

Dc1(1 + βC2c)
+

V 2

Dc1Dρ

)
− V (1 + 2βC2c)

DρDc1(1 + βC2c)
= 0 (2.19)

So, this equation has the form:

σ3 + s1σ
2 + σs2 + σs3 = 0

We assume V > 0, we reuse the Routh-Hurwitz criterion, in order to find the stability.
We require that: 

s1 > 0;

s3 > 0;

r := s1s2 − s3 > 0.

We get that:

s1 =
V

Dρ

+
V

Dc1

;

s3 = − V (1 + 2βC2c)

DρDc1(1 + βC2c)
;

r := V 2
( 1

(Dρ)2Dc1

+
1

(Dc1)2Dρ

)
+( χC1c(1 + βC1c)

Dc1(Dρ)2(1 + βC1c)(1 + αC2c)2
+

χC1c(1 + βC1c)

(Dc1)2(Dρ)(1 + βC1c)2(1 + αC2c)
+

(1 + 2βC2c)

Dc1(1 + βC2c)

)
From this analysis, we note that r, s1 are positive, but s3 is negative. Then J has an
eigenvalue with a positive real part and an eigenvalue with a negative real part, which
means that the reduced system doesn’t admit Hopf bifurcations.
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2.2 A generalization of the model with a logistic

term

In this section, to describe macrophages recruitment during the inflammatory response,
we generalize the previous model, introducing a logistic term in the macrophages equa-
tion. There is, in fact, experimental evidence that, after the tissue- resident macrophages
have initiated the inflammatory cascade, activation of the immune cells persists with the
goal to amplify the inflammatory response. After recognition of the microbial challenge,
resident macrophages also favored by the proinflammatory activity performed by the
chemokines, drive the influx of monocyte- derived macrophages as a source of further
inflammation. Thus, including the activation term in the model allows us to describe the
early stages of the inflammatory response, namely, the cascade of both proinflammatory
and anti-inflammatory species following the initial insult and their corresponding spatial
dynamics. In particular, we get the possibility to investigate the effect of varying the
strength of the activation rate on the system dynamics: since identification and regu-
lation of the activation status of macrophages is believed to be useful diagnostic and
therapeutic tool for various disease; in fact this analysis may provide valuable infor-
mation about the effects of aberrant and impaired activation on inflammation and the
effect of therapeutic strategies. The generalized model, recently investigated in [10], is
described by the following system:

ρt = ∇ · (Dρ∇ρ)−∇ ·
(

ψρ∇c1
(1+αc1)2

)
+ rρc1

(
1− ρ

ρ̃

)
;

c1t = ∇ · (Dc1∇c1) + h1
ρ

(1+βcη2)
− Λ1c1;

c2t = ∇ · (Dc2∇c2) + h2
ρ

(1+βcη2)
− Λ2c2.

(2.20)

where the values of parameters are:
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Parameter Description Value Source

Dρ Macrophages random motility 800 µm2

min
[15]

Dc1 Chemokine random motility 900 µm2

min
[7]

ψ Chemoattraction [5× 109; 176× 109] pg
min cells

[15]

α Receptor-binding constant 3× 106 µm3

pg
[15]

r Macrophages activation rate 1.7× 105 µm3

pg min
[18]

ρ̃ Average resident macrophages density 3× 10−5 cells
µ m3 [16, 21]

Λ1 Chemokine production rate [5.7× 10−6; 1.96× 10−5] pg
min cells

[19, 20]

β Inhibition rate 3× 106 µm
3

pg
Estimated

η Inhibition rate 1 [17]

h1 Chemokine decay rate [0.001; 0.03] min−1 [20]

Here we analyze the main differences between this model and the previous one: start-
ing from (2.20)1, the second term models the chemoattraction of macrophages along the
gradient of chemical signal. The sensivity χc1 =

ψ
(1+αc1)2

that describes the rate of attrac-
tion has been derived in the so-called receptor-binding model and displays saturation for
increasing values of c1 . The parameter ψ represents the maximal chemotactic rate ; α
modulates the saturation of the chemokine receptors. In the third term, which represents
the novelty term, the number of activated immune cells, imposed by the initial condi-
tion, was held fixed after activation. We want to consider the effects of macrophages
activation driven by inflammation, which might concur to the settling of a recurrent or
persistent inflammatory state. In fact, it is well known that, due to the presence of proin-
flammatory chemical species, macrophages release toxins, such as oxygen-free radicals.
Such toxicants, on the one hand, could kill bacteria and destroy foreign bodies; on the
other hand , they can also damage hosting tissue, inducing more inflammation with the
consequent recruitment of more immune cells. Hence cytokines and macrophages act to
amplify the inflammatory signal, promoting the activation of more immune cells. Here r
and ρ̃ are, respectively, the growth rate coefficient and the carrying capacity of the acti-
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vated macrophages. The carrying capacity ρ̃ has the meaning of the average density of
the resting macrophages; the resting macrophages act as a cellular pool for the activated
macrophages , so that, when ρ = ρ̃, all the resting immune cells have turned into their
active state. As in the previous model, the initial insult that triggers the immune sys-
tem is described by the initial conditions, assuming that the pathogen has already been
eliminated, as a typical runaway inflammations. In (2.20)2 and (2.20)3 the parameters
h1 and h2 represent the production rates per macrophages, while β and η control the
inhibitory effects of the cytokines. Finally the last terms in both equations is the natural
decay of both molecules. with decay rates Λ1 and Λ2, respectively. Since the production
of anti- inflammatory mediators is relatively late compared to the production of proin-
flammatory chemicals, we shall set Dc2 =

Dc1

τ
, h2 =

h1
τ

and Λ2 =
Λ1

τ
, where τ is a small

parameter which regulates the slower time scale of the anti-inflammatory molecules.
First of all, let’s introduce a set of dimensionless variables:

ρ∗ =
ρ

ρ̃
, c∗1 =

Λ1c1
h1ρ̃

, c∗2 =
Λ2c2
h2ρ̃

, D∗ =
Dρ

Dc1

, t∗ = Λ1t,

x∗ =

√
Λ1

Dc1

, r∗ =
ρ̃h1r

Λ2
1

, χ =
ψh1ρ̃

Λ1Dc1

, α∗ =
αρ̃h1
Λ1

, β∗ =
ρ̃βh2
Λ2

With this non-dimensionalization, we have chosen the chemokines’ average lifetime as
the reference time scale and the average distance traveled by a proinflammatory molecule
during its average lifetime as the reference spatial scale. The adimensional version of
(2.20) reads as follows:

ρt = D∆ρ−∇ ·
(

χρ∇c1
(1+αc1)2

)
+ rρc1(1− ρ),

c1t = ∆c1 +
ρ

(1+βcη2)
− c1,

c2t =
1
τ

(
∆c2 +

ρ
(1+βcη2)

− c2

)
.

(2.21)

2.2.1 Stability analysis

First of all we determine the homogeneous steady states, by imposing:
rρc1(1− ρ) = 0

ρ
(1+βcη2)

− c1 = 0
ρ

(1+βcη2)
− c2 = 0

(2.22)

from which we get the following equilibrium states:
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1. u⃗c = (0, 0, 0) for ρ = c1 = 0 from (2.22)1;

2. u⃗c = (1, 1
(1+βcη2)

, 1
(1+βcη2)

) for ρ = 1 from (2.22)1.

Remark 2.2.1. If we limit our discussion to the case η = 1, from (2.22)3 we find the

constant value c2 = −−1+
√
1+4β

2
which in turn yields the constant value c1 via (2.22)2.

As before we claim the perturbed densities:
ρ(x⃗, t) = 1 + δρ(x⃗, t);

c1(x⃗, t) = c1c + δc1(x⃗, t);

c2(x⃗, t) = c2c + δc2(x⃗, t).

Then we substitute these relations in (2.21) to recover the perturbed system:
δρt = D ∆δρ−∇ ·

(
χ(ρc+δρ)∇δc1
(1+α(c1c+δc1)2

)
+ r(ρc + δρ)(1− ρc − δρ)(c1c + δc1);

δc1t = ∆δc1 +
(ρc+δρ)

(1+β(c2c+δc2)η)
− c1c − δc1;

δc2t =
∆δc2
τ

+ 1
τ

(
(ρc+δρ)

(1+β(c2c+δc2)η
− c2c − δc2

)
.

(2.23)

Using that the reaction of the proinflammatory and anti- inflammatory chemicals are
non zero, then in a neighborhood of an equilibrium point we have to consider the first
order Taylor developments.

So the linearized perturbation system will become:

∂

∂t

 δρδc1
δc2

 =

D −χ
(1+αc2c)2

0

0 1 0
0 0 1

τ

∆

 δρδc1
δc2

+

 −rc2c 0 0
1

1+βc2c
−1 − β

(1+βc2c)2

1
τ(1+βc2c)

0 −
(

1
τ
+ β

τ(1+βc2c)2

)

 δρδc1
δc2


(2.24)

= D̂∆[δρ, δc1, δc2]
T +K[δρ, δc1, δc2]

T (2.25)

where K represents the matrix of linearized kinetics and D̂ is the diffusion matrix. We
consider the one-dimensional version of the model, with Ω = (0, L) and we still search
Fourier modes type solutions according to the subclass:

δρ(x, t) = ρ1e
σtϕk(x)

δc1(x, t) = c1e
σtϕk(x)

δc2(x, t) = c2e
σtϕk(x)
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where the functions ϕk(x) = cos(kx) represent the eigenfunctions of the 1D Laplacian
with Neumann homogeneous boundary conditions. So this problem is reduced to the
eigenvalue problem:

σ

ρ1c1
c2

 = A(k)

ρ1c1
c2

 (2.26)

in which:

A(k) =


−k2D − rc2c

k2χ
(1+αc2c)2

0
1

1+βc2c
−1− k2 − β

(1+βc2c)2

1
τ(1+βc2c)

0 −k2

τ
−
(

β
τ(1+βc2c)2

+ 1
τ

)
 = −k2D̂ +K (2.27)

Remark 2.2.2. When k = 0, meaning that there are no self-cross spatial effects, we
reduce to the stability matrix for the associated dynamical system:

A(0) =

 −rc2c 0 0
1

1+βc2c
−1 − β

(1+βc2c)2

1
τ(1+βc2c)

0 −
(

β
τ(1+βc2c)2

+ 1
τ

)


Hence there are three negative eigenvalues: σ1 = −rc2c, σ2 = −1, σ3 = −
(

β
τ(1+βc2c)2

+ 1
τ

)
,

which corresponds to have asymptotic stability for the homogeneous steady state, and
this creates the basis for Turing type instability. Moreover, in case of Im(σ) ̸= 0, there
is a wave instability, instead when Im(σ) = 0, there is a Turing instability.

Now we study how the linear diffusion of chemotaxis influences the homogeneous
steady state. There are some theorems that allows us to determine the instability of an
equilibrium state. We refer to [22].

Definition 2.2.3. Given a real matrix A = (aij) of order n and D = diag(d1, d2, ..dn) a
real diagonal matrix. Then A is said to be :

• strongly stable (strongly semistable) if A−D is stable (semistable) ∀ D ≥ 0;

• D-stable or (D-semistable) if DA is stable (semistable) ∀ D > 0;

• Volterra-Ljapunov stable if there exists D > 0 so that: AD +DAT < 0.

Moreover if A is Volterra-Ljapunov stable, then it is D-stable and strongly stable.
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Definition 2.2.4. For any subset of integers 1 ≤ i1 < i2 < ... < ij ≤ n the principal sub-
matrix Ai1,...,ij is the matrix obtained canceling all rows and all columns except those with
indices i1, i2, ..ij. Moreover the corresponding principal minor Mi1,...,ij = det(Ai1,...,ij).
The minors Mii are indicated by aii.

Definition 2.2.5. The signed principal minors of A are (−1)jMi1,...,ij . Moreover the
characteristic polynomial of A can be written as:

det(A− σI) = σn + d1σ
n−1 + ...+ dn−1σ + dn;

where ∀j:
dj =

∑
1≤i1<i2<...ij≤n

(−1)jMi1,...,ij .

represents the sum of all signed principal minors of order j.

Definition 2.2.6. Let’s denote with P the set of matrices whose signed principal minors
are all positive and P+

0 the set of matrices whose signed principal minors are all
non-negative, with at least one of each order positive.

Theorem 2.2.7. Given a real 3× 3 matrix B, it is said:

• strongly stable if and only if B is stable and B ∈ P+
0 ;

• D-stable if and only if − det(B) is dominated by B ∈ P+
0 and (−b11,M23), (−b22,M13),

(−b33,M12);

• Volterra-Lyapunov stable if and only if B ∈ P and the following inequalities are
satisfied at the same time:

p1(z) = (b31 + b13z)
2 − 4z b11b33 < 0;

p2(z) = (a2 + a1z)
2 − 4z M12M13 < 0;

in which a1 = b12b23 − b22b13 and a2 = b21b32 − b22b31.

Definition 2.2.8. Three pairs of nonnegative real numbers (pj, qj), j = 1, 2, 3 are said
to dominate a positive real number γ if:( 3∑

j=1

√
pjqj

)2

≥ γ

with equality implying that at least one of the pairs (pj, qj) has exactly one member
equal to zero. .
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Theorem 2.2.9. If χ = 0, then the homogeneous steady state is linearly stable.

Proof.

We firstly note that the eigenvalues of the matrix K are: −rc2c,−1,−
(

β
τ(1+βc2c)2

+ 1
τ

)
,

so K is stable. Moreover, by definition 2.2.5 we have that all signed principal minors
belong to P+

0 . Hence by the Theorem 2.2.7, K is a strongly stable matrix, meaning
that by definition 2.2.3 ∀ D̄ = diag(d1, d2, d3), real diagonal and positive semidefinite
matrix, the matrix K − D̄ is stable. By assumption χ = 0, so the matrix D defined in
(2.24) is real, diagonal and positive semidefinite; hence for all k we have that: K − k2D
is stable.

Remark 2.2.10. From this result, it follows that chemotaxis is the only potentially
destabilizing mechanism, so that we will assume χ ̸= 0.

2.2.2 Wave instability

In this section, we will analyze the necessary and sufficient conditions for the occurrence
of Turing instability for the system (2.21). We set K̃ := k2. Now, let P (σ) := σ3 +
N(K̃)σ2 + P (K̃)σ +Q(K̃) the characteristic polynomial of A(K̃), where:

• N(K̃) =
(
D + 1 + 1

τ

)
K̃ +

(
1 + β

(1+βc2c)2

)
1
τ
+ rc2c + 1;

• P (K̃) =
(
D(τ+1)+1

τ

)
K̃2+

(
−β2χ

(α−β)2(1+βc2c)+
αχ(c2cαβ−α+2β)
(α−β)2(1+αc2c)2+

β(D+1)
τ(1+βc2c)2

+ (τ+1)(c2cr+D)+2
τ

)
K̃+

c2c(c2cβ(r(τ + 1)(βc2c + 2) + β) + 2β + r(β + τ + 1)) + β + 1

τ(1 + βc2c)2

• Q(K̃) = D
τ
K̃3 + 1

τ

(
− χ

(αc2c+1)2(c2cβ+1)
+D

(
β

(βc2c+1)2
+ 2

)
+ c2cr

)
K̃2+

(c2c(c2c(αc2cβ(αβDc2c + 2D(α + β) + αr) +D(α2 + (α + 4)αβ + β2) + 2αβr))

(αc2c + 1)2(c2cβ + 1)2
+

c2c(2D(αβ + α + β) + β(r − χ) + βD +D − χ

(αc2c + 1)2(c2cβ + 1)2
+2c2cr

)
K̃+

c2cr(c2cβ(c2cβ + 2) + β + 1)

τ(c2cβ + 1)2
.

Hence, referring to [23], we state and prove the following theorems:
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Theorem 2.2.11 (Conditions for Turing instability). There exists a critical value
χT > 0 such that, at χ = χT , the system (2.24) experiences a Turing bifurcation.

Proof. By the Routh-Hurwitz criterion we know that all the roots have negative real part
if and only if these conditions hold: N(K̃) > 0, Q(K̃) > 0 and R(K̃) := N(K̃)P (K̃) −
Q(K̃) > 0. The first condition is always satisfied, because N(K̃) = −tr(A(K̃)) and
N(K̃) is positive for all choices of the parameters and for all K̃ ′s. If Q(K̃) > 0, then the
associated polynomial will either have no roots with a positive real part, or two roots with
a positive real part. Consequently, to have just one root with positive real part, we must
require thar Q(K̃) < 0. When Q(K̃) > 0, we have to exclude the case that two real roots
changes simultaneously the sign. In fact, given that Q(K̃) = −σ1σ2σ3 is the product
of the three roots, then if N(K̃)P (K̃)−Q(K̃) changes the sign, necessary would imply
that two of the roots are complex. Hence Turing bifurcation occurs when Q(K̃) changes
its sign, from positive to negative, indipendently from the sign of N(K̃)P (K̃) − Q(K̃).
Directly the only mechanism that can make Q(K̃) < 0 is the chemotactic term χ.
Moreover, given that Q is a monotonously decreasing function of χ, there exists a unique
value χ = χT , where Q(K̃) switches its sign, from positive to negative.

Remark 2.2.12. From this result, it follows that given the polynomial Q(K̃) we can
find a critical value χT such that for χ > χT we have Q(K̃) < 0 in a compact interval
[K̃1, K̃2], with K̃1 > 0.

Remark 2.2.13. The violation of the third condition is not sufficient to ensure the
presence of wave instability. In fact the conditions such that N > 0 ,Q > 0 and R < 0
ensure the existence of a couple of roots with positive real parts, but they can be complex.
In order to have the wave instability we have to introduce the following result.

Definition 2.2.14. Let f(z) a monic polynomial of order 3, namely f(z) = z3 + a1z
2 +

a2z + a3. Its Bezoutiant matrix is defined as:

B =

 3 −a1 a21 − 2a2
−a1 a21 − 2a2 −a31 − 3a3 + 3a1a2

a21 − 2a2 −a31 − 3a3 + 3a1a2 4a1a3 − 4a2a
2
1 + 2a22 + a41


Proposition 2.2.15. Let f(z) be a monic polynomial of degree 3 and B its Bezoutiant
matrix. Then every real root of f corresponds to a positive eigenvalue of B and every pair
of complex conjugates roots of f corresponds to a pair of eigenvalues of B with opposite
sign.

Remark 2.2.16. An immediate consequence of this result is that the Bezoutiant matrix
of a monic polynomial of degree 3 can have signature (3, 0) ( corresponding to have all
roots real), or (2, 1), when only one root is real and two are complex conjugate
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Theorem 2.2.17 (Conditions for wave instability). System (2.21) admits a wave
instability if and only if there exists K̃ > 0, compatible with the boundary conditions,
such that:

1. Q(K̃) > 0;

2. det(B(K̃)) < 0;

3. R(K̃) < 0;

where B(K̃) is the Bezoutiant matrix associated to the characteristic polynomial P (σ).

Proof. Since N(K̃) is always positive, the Routh-Hurwitz criterion guarantees that P (σ)
has at least one negative root. Therefore, to state necessary and sufficient condition for
the occurrence of a wave bifurcation, we have to impose the remaining eigenvalues to be
complex conjugate and with a positive real part. The first of the above requirements is
satisfied by the second hypothesis, i.e. det(B) < 0. In fact, this condition with the above
remark, immediately gives us that the signature of the Bezoutiant is (2, 1), corresponding
to the occurrence of two complex conjugate roots of P (σ). Hence, the Routh-Hurwitz
criterion, together with the hypothesis (1) and (3), provides that the two complex roots
have positive real part.

In particular, in these figures, we will make in evidence the importance of these
theorems. In fact, following the authors are focused on the emergence of Turing and
wave instabilities in system (2.21), with particular emphasis on the variation of three
key parameters: the macrophage activation rate r, the chemotactic coefficient χ, and the
timescale of the cytokine dynamics τ , while keeping all other parameters constant. We
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can see that in Figures 1(a) and 1(b) are fixed the value of r, (respectively r = 2.4, r =
100) and are plotted in the (τ, χ)-plane Turing bifurcation curve χT (τ), represented by
the red line above which system (2.21) displays a Turing instability, and wave instability
regions, represented by the grey regions; in Figure 1(c) the instability regions are plotted
in the (r, χ)-plane for a fixed value of τ = 100. As it can be seen in Figures 1(a)
and 1(b), the threshold value of the chemotaxis χT (τ), which provides Turing patterns,
is indipendent from τ : from a biological perspective, this suggests that if chemotaxis
is strong enough, stationary clusters associated with sustained sites of inflammatory
activity could form independently of the timescale of the anti-inflammatory response;
instead for wave instability, that takes place following on the onset of structures whose
local density oscillates in time, is significantly affected by the value of τ . In fact, the
are more oscillations in corrispondence of high values of τ . Consequently, in the case
of wave instability, if the anti-inflammatory mechanism is triggered with a delay long
enough to allow the development of a full inflammatory response, a temporal resolution
of the inflammation may occur. This situation aligns with the documented periodic
occurrence of localized skin outbreaks, referred to as recurrent erythema multiforme , an
acute, self-limiting inflammatory condition of unknown cause. An increased activation
rate r results in an upward shift of both the Turing bifurcation threshold χT (τ) and
the regions of wave instability. This is consistent with the expectation that a higher
activation rate promotes the stability of the homogeneous state, thereby necessitating
a stronger chemotactic response for aggregation. The effect of r on the development of
stationary and oscillatory localized inflammation is clearly observed in Figure 1(c): it is
evident that, for a constant value of χT (τ), the homogeneous steady state remains stable
when r is high, but loses stability as r decreases.Figures 1(a) to 1(c) also illustrate which
of the two competing instabilities emerges first as χ is increased, demonstrating that
the order of occurrence of a Turing or wave instability is influenced by both τ and r.
Specifically, from Figures 1(a) and 1(b), it can be seen that very small values of τ promote
stationary structures, while higher values of τ favor the onset of a wave instability; the
critical value of τ is dependent on r. In Figure 1(c), where τ is fixed, it is evident that
increasing rfavors the occurrence of Turing bifurcation over wave instability.
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Chapter 3

Future directions for Alzheimer’s
models

3.1 First generalization of AD model: introduction

to a logistic term

In the first chapter, we analyzed the Alzheimer’s model based on chemotaxis, emphasizing
the importance of the interaction between microglia, cytokines, and neurodegenerative
proteins. Now, in light of the observations from Chapter 2 on acute inflammations, we
propose a structural modification of the model to better describe the neuroinflammatory
dynamics associated with the disease. One of the most relevant aspects in the progression
of Alzheimer’s is the uncontrolled activation of microglia, which plays both a protective
and detrimental role. To model this duality, we introduce a logistic term in the first
equation of the model presented in [5] to account for the system’s carrying capacity and
the environmental constraints on microglial proliferation:

ρt = ∇ · (Dρ∇ρ)−∇ · (χ1ρ∇c1) +∇ · (χ2ρ∇c2) + nρ
(
1− ρ

b

)
where n represents the microglia proliferation rate and b the carrying capacity of the
environment. This modification allows us to study the effect of microglial population
saturation in response to the presence of amyloid-beta and inflammatory cytokines. The
introduction of the logistic term prevents unlimited microglial growth and enables us
to observe emerging phenomena related to interactions with other system components,
such as pro-inflammatory cytokine. Adding the logistic term not only enhances the real-
ism of the model but also allows us to explore system stability conditions and threshold
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phenomena, where the level of microglial activation determines disease progression. Pre-
vious studies have shown that microglia can assume different functional states depending
on cytokine concentrations, and our model can be used to investigate such transitions.
We have to consider the following system in R3, referring to [5]:

ρt = ∇ · (Dρ∇ρ)−∇ · (χ1ρ∇c1) +∇ · (χ2ρ∇c2) + nρ
(
1− ρ

b

)
c1t = ∇ · (Dc1∇c1)− Λ1c1 + h1ρ

c2t = ∇ · (Dc2∇c2)− Λ2c2 + h2ρ

(3.1)

For this system, we carry out the stability analysis:

• We determine the homogeneous steady state by imposing:
nρ

(
1− ρ

b

)
= 0

−Λ1c1 + h1ρ = 0

−Λ2c2 + h2ρ = 0

(3.2)

From (3.2) we get the following steady states: u⃗c = (0, 0, 0) obtained when ρ = 0
from (3.2)1 and this is the trivial steady state; the other one is u⃗c = (b, bh1

Λ1
, bh2
Λ2

) for
any b > 0. Hereafter we impose b = 1.

• We, now, consider the perturbed densities, for any (x⃗, t):
ρ(x⃗, t) = 1 + δρ(x⃗, t)

c1(x⃗, t) = c1c + δc1(x⃗, t)

c2(x⃗, t) = c2c + δc2(x⃗, t)

(3.3)

Next, we substitute the perturbed densities in (3.1), finding the perturbed system:
δρt = ∇ · (Dρ∇δρ)−∇ · (χ1(1 + δρ)∇δc1) +∇ · (χ2(1 + δρ)∇δc2) + n(1 + δρ)(1− (1 + δρ))

δc1t = ∇ · (Dc1∇δc1)− Λ1(c1c + δc1) + h1(1 + δρ)

δc2t = ∇ · (Dc2∇δc2)− Λ2(c2c + δc2) + h2(1 + δρ)

(3.4)

• After some simple simplifications we obtain the following linearized system:
δρt = Dρ∆δρ− χ1∆δc1 + χ2∆δc2 − nδρ

δc1t = Dc1∆δc1 + h1δρ− Λ1δc1

δc2t = Dc2∆δc2 + h2δρ− Λ2δc2

(3.5)
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• Hence we address the following Fourier modes type perturbations ∀(x⃗, t):
0 ̸= δρ(x⃗, t) = ρ1e

ik⃗·x⃗+σt

0 ̸= δc1(x⃗, t) = c1e
ik⃗·x⃗+σt

0 ̸= δc2(x⃗, t) = c2e
ik⃗·x⃗+σt

(3.6)

Replacing (3.6) in (3.5), deleting the exponential factor and rearranging all the
terms, we get the following Cramer system:

ρ1(σ + k2Dρ + n)− χ1c1k
2 + χ2k

2c2 = 0

c1(σ + k2Dc1 + Λ1)− h1ρ1 = 0

c2(σ + k2Dc2 + Λ2)− h2ρ1 = 0

(3.7)

Now we consider the dispersion matrix D in order to discuss the Cramer system:

D =

σ + u p q
−h1 σ + r 0
−h2 0 σ + s


where we have defined: u := k2Dρ + n, p := −χ1k

2, q := χ2k
2, r := k2Dc1 + Λ1 and

s := k2Dc2 + Λ2. Then we compute the determinant of D imposing:

det(D) = h2q(σ + r) + (σ + s)[(σ + u)(σ + r) + ph1]

from which, rearranging all the terms, we find the desired dispersion equation:

σ3 + σ2(u+ r + s) + σ(h2q + ru+ h1p+ us+ rs) + h2qr + rus+ h1ps = 0 (3.8)

Denoting with N̂ := (u+r+s), Q̂ := h2qr+rus+h1ps and P̂ := h2q+ru+h1p+us+rs, in
view of the Routh-Hurwitz criterion, we have to require the following conditions providing
asymptotic stability: 

N̂ > 0

Q̂ > 0

R̂ := N̂P̂ − Q̂ > 0

(3.9)

We see that N̂ := k2(Dρ +Dc1 +Dc2) + n+ Λ1 + Λ2 > 0 for all the parameters in play.

With respect to Q̂, we have to require:

−χ2h2k
2(k2Dc1 + Λ1) + (k2Dρ + n)(k2Dc1 + Λ1)(k

2Dc2 + Λ2)− χ1h1k
2(k2Dc2 + Λ2) > 0
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from which we obtain the following stability condition:

χ2 <
(k2Dc2 + Λ2)((k

2Dρ + n)(k2Dc1 + Λ1)− χ1h1k
2)

h2k2
(3.10)

Regarding on R̂ we have to require:

(k2Dc2+Λ2+k
2Dρ+n)(h2χ2k

2+(k2Dc1+Λ1)
2)+2(k2Dρ+n)(k

2Dc1+Λ1)(k
2Dc2+Λ2)+

(k2Dρ+n)
2(k2Dc1+Λ1)(k

2Dc2+Λ2) > (k2(Dc1+Dρ)+Λ1+n)((k
2Dc2+Λ2)

2−χ1h1k
2)

from which we obtain the following stability condition which allows us, as before, to find
a threshold for χ2, ∀ k2 such that:

χ2 >
2(k2Dc2 + Λ2 + k2Dρ + n)(k2Dc1 + Λ1) + 2(k2Dρ + n)(k2Dc1 + Λ1)(k

2Dc2 + Λ2)+

(k2Dc2 + Λ2 + k2Dρ + n)h2k2

(k2Dρ + n)2(k2Dc1 + Λ1)(k
2Dc2 + Λ2) + [(k2(Dc1 +Dρ) + Λ1 + n)(k2Dc2 + Λ2)

2−
(k2Dc2 + Λ2 + k2Dρ + n)h2k2

(k2(Dc1 +Dρ) + Λ1 + n)χ1h1k
2]

(k2Dc2 + Λ2 + k2Dρ + n)h2k2
(3.11)

Remark 3.1.1. We observe that if k = 0, then:

D(0) =

σ + n 0 0
h1 σ + Λ1 0
h2 0 σ + Λ2


This implies that the eigenvalues are: σ1 = −n, σ2 = −Λ1, σ3 = −Λ2, hence there is
asymptotic stability for the homogeneous steady state and, as in the model for acute
inflammations and as in the Keller-Segel model with the logistic effect, this leads to
having Turing instability. Moreover, considering a quick comparison with the model
(2.20), the possibility of a logistic type reaction term for the microglia, including the
chemoattractant chemical c1, has to be evaluated. In fact in D(0) instead of having n,
we have nc1c and as before, in the case of Im(σ) ̸= 0, there is a wave instability.

3.1.1 Gershgorin theory applied to AD

Using the Gershgorin theory as in the previous chapter, we determine which are the
conditions providing the stability.

i = 1 : | σ + k2Dρ + n |≤ (χ1 + χ2)k
2
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i = 2 : | σ + k2Dc1 + Λ1 |≤ h1

i = 3 : | σ + k2Dc2 + Λ2 |≤ h2

From the condition in the first disc we get:

−(χ1 + χ2)k
2 − k2Dρ − n ≤ σ ≤ (χ1 + χ2)k

2 − k2Dρ − n

The infimum of this interval is negative, but the maximum can be positive or negative;
henceforth to have stability we have to require the following:

(χ1 + χ2 −Dρ)k
2 − n < 0 ⇒ k2 <

n

(χ1 + χ2 −Dρ)
(3.12)

Assuming that: χ1 + χ2 > Dρ (otherwise (3.12) would never be satisfied) we make in
evidence that we recover greater stability as the microglia growth rate n increases, with
the denominator fixed.
From the conditions in the second and third discs we find respectively:

−k2Dc1 − h1 − Λ1 ≤ σ ≤ h1 − k2Dc1 − Λ1

−k2Dc2 − h2 − Λ2 ≤ σ ≤ h2 − k2Dc2 − Λ2

As before the infimum is negative, then in order to provide stability we require:

k2 >
h1 − Λ1

Dc1

k2 >
h2 − Λ2

Dc2

where we observe that after fixing hi − Λi > 0 for i = 1, 2, the stability increases the
smaller Dc1 and Dc2 are. At the end of this discussion the conditions satisfying the
stability are: 

k2 < n
(χ1+χ2−Dρ)

k2 > h1−Λ1

Dc1

k2 > h2−Λ2

Dc2
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3.1.2 Wave topic applied to AD

Here, following the same procedure as in the chapter 2, we will determine the conditions
to have wave instability.
We can rewrite the linearized system (3.5) as follows:

∂

∂t

 δρδc1
δc2

 =

Dρ −χ1 χ2

0 Dc1 0
0 0 Dc2

∆

 δρδc1
δc2

+

−n 0 0
h1 −Λ1 0
h2 0 −Λ2

 δρδc1
δc2


= D∆[δρ, δc1, δc2]

T + L[δρ, δc1, δc2]
T (3.13)

Now calling A(k) := −k2D + L we have:

A(k)− σI3 =

−(k2Dρ + n+ σ) χ1k
2 −χ2k

2

h1 −(Λ1 +Dc1k
2 + σ) 0

h2 0 −(Λ2 +Dc2k
2 + σ)

 (3.14)

Now calling K̂ := k2, we compute the characteristic polynomial of A(k):

det(A(k)− σI3) = −h2[χ2K̂(Dc1K̂ + Λ1 − σ)]−

(Dc2K̂ + Λ2 + σ)[(K̂Dρ + n+ σ)(Dc1K̂ + Λ1 + σ)− χ1h1K̂] = 0 (3.15)

from which, rearranging all the terms we finally get the desired cubic equation in σ:

σ3 + σ2(Dc2K̂ + n+ Λ1 +Dc1K̂ + K̂Dρ + Λ2) + σ(Dc1Λ2K̂ + K̂Λ2Dρ + Λ2n+

Λ2Λ1 + K̂2DρDc2 + K̂Dc2n+ Λ1K̂Dc2 +Dc1Dc2K̂
2 + K̂DρΛ1 + K̂2DρDc1 +Dc1K̂n−

χ1h1K̂ + χ2K̂h2 + Λ1n) + K̂2Λ2DρDc1 + Λ2K̂DρΛ1 + Λ2Λ1n+Dc1K̂nΛ2−

Λ2χ1h1K̂ +Dc2DρΛ1K̂
2 +Dc2DρDc1K̂

3 + Λ1nDc2K̂ +Dc1Dc2nK̂
2 −Dc2χ1h1K̂

2+

χ2h2Λ1K̂ + χ2h2Dc1K̂
2 = 0 (3.16)

Remark 3.1.2. Following the theorems 2.2.9 and 2.2.7 and definitions 2.2.5 and 2.2.3
and noticing that the three eigenvalues of the matrix L are: −n,−Λ1,−Λ2, then if
χ1, χ2 = 0, then the homogeneous steady state is always linearly stable, as we expect in
view of the stabilizing role of classica diffusion aspects.
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Remark 3.1.3. If we rewrite (3.16) as:

σ3 + ã1σ
2 + ã2 + ã3 = 0 (3.17)

Then defining the Bezoutiant matrix associated to the characteristic polynomial we have:

B̃ =

 3 −ã1 ã21 − 2ã2
−ã1 ã21 − 2ã2 −ã31 − 3ã3 + 3ã1ã2
ã21 − 2 −ã31 − 3ã3 + 3ã1ã2 4ã1ã3 − 4ã2ã

2
1 + 2ã22 + ã41


then for the theorem 2.2.17 the conditions providing wave instability are:

ã3 > 0

ã1ã2 − ã3 < 0

det(B̃) < 0

(3.18)

3.2 Introduction of memory effects via the Cattaneo

correction

One of the main limitations of classical diffusion models is the assumption of instan-
taneous transport of information. To overcome this drawback, we apply the Cattaneo
correction to Fick’s law, leading to hyperbolic type systems, introducing 0 < τρ ≪ 1 on
Jρ, 0 < τc1 ≪ 1 on Jc1 and 0 < τc2 ≪ 1 on Jc2 , to obtain firstly the delayed Fick’s laws,
for any fixed x: 

Jρ(t+ τρ) = −Dρρx + χ1ρc1x − χ2ρc2x

Jc1(t+ τc1) = −Dc1c1x

Jc2(t+ τc2) = −Dc2c2x

(3.19)

and then, by first order Taylor developments, we recover the new ”rate type” constitutive
equations: 

τρ(Jρ)t + Jρ = −Dρρx + χ1ρc1x − χ2ρc2x

τc1(Jc1)t + Jc1 = −Dc1c1x

τc2(Jc2)t + Jc2 = −Dc2c2x.

(3.20)

By inserting these equations into the parabolic model described in (1.40), we now
arrive at a hyperbolic-type model which, in the 1D case, consists on the following six
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first-order quasi-linear PDEs:

ρt = −(Jρ)x + nρ
(
1− ρ

b

)
(Jρ)t = −Dρ

τρ
ρx − Jρ

τρ
+ χ1ρc1x

τρ
− χ2ρc2x

τρ

c1t = −(Jc1)x − Λ1c1 + h1ρ

(Jc1)t = −Dc1

τc1
c1x − Jc1

τc1

c2t = −(Jc2)x − Λ2c2 + h2ρ

(Jc2)t = −Dc2

τc2
c2x − Jc2

τc2

(3.21)

In the 1D version, the model can be written in a compact form:

u⃗t = Au⃗x + R⃗(u⃗)

where u⃗(x, t) and A(u⃗(x, t)) and R(u⃗(x, t), are respectively:

u⃗(x, t) =


ρ(x, t)
Jρ(x, t)
c1(x, t)
Jc1(x, t)
c2(x, t)
Jc2(x, t)



A(u⃗(x, t)) =



0 −1 0 0 0 0

−Dρ

τρ
0 χ1ρ

τρ
0 −χ2ρ

τρ
0

0 0 0 −1 0 0
0 0 −Dc1

τc1
0 0 0

0 0 0 0 0 −1
0 0 0 0 −Dc2

τc2
0


R(u⃗) =



nρ
(
1− ρ

b

)
−Jρ
τρ

−Λ1c1 + h1ρ
−Jc1
τc1

−Λ2c2 + h2ρ
−Jc2
τc2


The hyperbolicity test is therefore related to the eigenvalue problem for the characteristic
matrix:

det(A− λI6) = 0 ⇐⇒
(
λ2 − Dρ

τρ

)(
λ2 − Dc1

τc1

)(
λ2 − Dc2

τc2

)
= 0

From this, six real and distinct eigenvalues are obtained, corresponding, according to the
method of characteristic curves, to three pairs of progressive and regressive waves that
propagate, in the simple 1D case we consider, with respective velocities:

λ±1 = ±

√
Dρ

τρ
, λ±2 = ±

√
Dc1

τc1
, λ±3 = ±

√
Dc2

τc2
.
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The correction of the Fick’s law towards Maxwell-Cattaneo type rate equations, applied
to the initially parabolic diffusion-reaction model, allows us to obtain a strongly hy-
perbolic system or simply hyperbolic one, depending on whether the real eigenvalues
obtained for the characteristic matrix A are all distinct or not.
This formulation allows for a more realistic description of microglial behavior in response
to chemical signals, such as avoiding instantaneous diffusion and introducing memory ef-
fects.
From a biological perspective, memory in diffusion processes is crucial to representing
the adaptive behavior of microglia. Experimental studies indicate that microglial cells
can retain a ”memory” of their previous activation, thus influencing future responses
to inflammatory stimuli. ”Memory” helps to represent how microglial responses can
persist over time. Furthermore, the introduction of memory effects makes the model
more suitable for analyzing instabilities and dynamic bifurcations. Indeed, hyperbolic
models like the one derived from the Cattaneo correction exhibit wave propagation prop-
erties of information, which can be analyzed to better understand the spatial spread of
neuroinflammatory reactions.

3.3 Nonlocal models in the analysis of brain neu-

rodegenerative protein dynamics applied to AD

In this subsection, we present a multiscale approach to examine how the concentrations
of tau and amyloid-beta spread across the brain’s connectome. In particular, we apply
a modified heterodimer model to understand protein-protein interactions. High toxic
levels of amyloid-beta and tau proteins result in brain cell destruction. We have to an-
alyze the spread of these concentrations in both primary and secondary tauopathies, as
well as in their mixed forms. The damage to brain cells is modeled by considering the
nonlocal effects of these toxic substances within the cells. Through detailed analysis, we
evaluate the stability of the stationary points related to the homogeneous system. When
we incorporate brain connectome data into the model, we find that although the patterns
of toxic concentration spread are similar throughout the brain, their levels differ across
various regions. Furthermore, the time it takes for the damage to spread varies in each
part of the brain connectome.
First of all, let Ω ⊂ R3 a given spatial domain. Now, for x⃗ ∈ Ω and time t ∈ R+, we
denote with u and ũ, respectively, the healthy and toxic Aβ protein, while v and ṽ repre-
sent the health and toxic tau- protein. From now on, we will refer to the following very
recent articles: Protein-protein interactions in neurodegenerative diseases: A conspiracy
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theory [27], A comparison of modeling approaches for the spread of prion diseases in
the brain [28], Pathology dynamics in healthy-toxic protein interaction and the multiscale
analysis of neurodegenerative diseases [29] and Nonlocal multiscale interactions in brain
neurodegenerative protein dynamics and coupled proteopathic processes [30]. Hence we
address a non local model described by the following set of coupled integro-differential
equations: 

ut = ∇ · (Du∇u) + a0 − a1u− a2u
1+cuu

ϕ ∗ ũ
ũt = ∇ · (Dũ∇ũ)− ã1ũ+ a2ũ ϕ ∗

(
u

1+cuu

)
vt = ∇ · (Dv∇v) + b0 − b1v − b3ũvṽ − b2v

1+cvv
ϕ ∗ ṽ

ṽt = ∇ · (Dṽ∇ṽ)− b̃1ṽ + b3ũvṽ + b2ṽϕ ∗
(

v
1+cvv

) (3.22)

where the first two equations represent the healthy and toxic variants of the protein Aβ
and the last two play the same role for tau protein. Moreover b0 and a0 are the mean
production rates of healthy proteins, while a1, b1, ã1, b̃1 are the mean clearance rates of
healthy and toxic proteins, and a2, b2 represent the mean conversion rates of healthy
to toxic proteins. The parameter b3 is the coupling between the two proteins and it
is considered due to the fact that the amyloide enhances the seeding of new toxic tau
concentration. Like previous models, the parameters Du, Dũ, Dv, Dṽ characterize the
spreading of each proteins. The coefficients cu, cv have units of the reciprocal concentra-
tions of healthy proteins of amyloide and tau. For simplicity sake, all the parameters in
play are considered positive constants.

Remark 3.3.1. For any fixed time t, the convolution term ϕ ∗ ũ at the spatial point
x⃗ = (x1, x2, x3) is given by:

(ϕ ∗ ũ)(x⃗, t) :=
∫
Ω

ϕ(x⃗− z⃗)ũ(z⃗, t)dz

ϕ represents the kernel function and it describes the conversion efficiencies between the
points x⃗ , z⃗. We assume that the kernel is a non - negative and even function and it has
compact support in R3. Moreover ϕ satisfy the following condition:∫

Ω

ϕ(x⃗)dx = 1

In analogous manner we define the other convolutions within (3.22).

Following In vivo rate-determining steps of tau seed accumulation in Alzheimer’s
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disease [31] we can modify the model by introducing logistic type reactions as follows:
ut = ∇ · (Du∇u) + u(a0 − a1u)− a2u

1+cuu
ϕ ∗ ũ

ũt = ∇ · (Dũ∇ũ)− ã1ũ+ a2ũ ∗
(

u
1+cuu

)
vt = ∇ · (Dv∇v) + v(b0 − b1v)− b3ũvṽ − b2v

1+cvv
ϕ ∗ ṽ

ṽt = ∇ · (Dṽ∇ṽ)− b̃1ṽ + b3ũvṽ + b2ṽϕ ∗
(

v
1+cvv

) (3.23)

with appropriate initial and no-flux boundary conditions for all the components.
The system described above governs the distribution of two variants of the proteins
(one healthy and the other toxic) across the domain Ω. The rise in the density of toxic
proteins at a specific spatial point x⃗ disrupts the extracellular environment around x⃗
and triggers intracellular activities. The full extent of the effects of these toxic variants
remains unclear. However, Thompson et al. [27] identified a correlation and introduced a
general measure of regional neuronal damage, represented by the function f(x⃗, t) ∈ [0, 1]
at a spatial point x and a time t. In particular we impose that:{

f(x⃗, t) = 0 if the neuron is healthy

f(x⃗, t) = 1 otherwise

Hence we can describe the evolution of the damage through the following equation:

ft = (h1ũ+ h2ṽ + h3ũṽ + h4ψ ∗ q)(1− q)

in which the initial condition is f(x⃗, 0) = 0, while:

• h1 represents the damage effect due to toxic Aβ;

• h2 represents the same effect of h1 due to toxic τ protein;

• h3 represents the damage due to the combined presence of both toxic loads;

• h4 is the rate of transneuronal damage propagation. In particular, it reflects ag-
gregate neuronal damage from regional neighbors.

We also assume that all hi’s are non negative functions.

70



3.3.1 Analysis of the continuous model

For simplicity sake, in this subsection we focus only on the temporal dynamics of the
model (3.23). Firstly we have to ignore all the spacial dependencies; hence the diffusion
terms will become 0 and the convolution term ϕ ∗n = n for any n > 0. Thus the model,
with these assumptions will be represented as a dynamical system:

ut = u(a0 − a1u)− a2u
1+cuu

ũ

ũt = −ã1ũ+ a2u
1+cuu

ũ

vt = v(b0 − b1v)− b3ũvṽ − b2v
1+cvv

ṽ

ṽt = −b̃1ṽ + b3ũvṽ +
b2v

1+cvv
ṽ

(3.24)

In order to find all the equilibrium points, we have to impose:
u(a0 − a1u)− a2u

1+cuu
ũ = 0

−ã1ũ+ a2u
1+cuu

ũ = 0

v(b0 − b1v)− b3ũvṽ − b2v
1+cvv

ṽ = 0

−b̃1ṽ + b3ũvṽ +
b2v

1+cvv
ṽ = 0

(3.25)

After some straightforward algebraic calculations, we find:

• E1 = (0, 0, 0, 0)

• E2 =
(
a0
a1
, 0, 0, 0

)
• E3 =

(
0, 0, b0

b1
, 0
)

• E4 =
(
a0
a1
, 0, b0

b1
, 0
)

• E5 =
(

ã1
a2−cuã1 ,

a0(a2−cuã1)−ã1a1
(a2−cuã1)2 , 0, 0

)
• E6 =

(
0, 0, b̃1

b2−cv b̃1
, b0(b2−cv b̃1)−b1b̃1

(b2−cv b̃1)2

)
• E7 =

(
ã1

a2−cuã1 ,
a0(a2−cuã1)−a1ã1

(a2−cuã1)2 , b0
b1
, 0
)

• E8 =
(
a0
a1
, 0, b̃1

b2−cv b̃1
, b0(b2−cv b̃1)−b1b̃1

(b2−cv b̃1)2

)
71



These equilibrium states can be free from the toxic substances or from the healthy ones
of the two chemicals.

Remark 3.3.2. E1 is the trivial equilibrium point. In fact, generally, it doesn’t occur
in the living brain cell, but only in the dead brain cell. All the other equilibrium points
depend on all parameters, where at least one component is zero. The concentration in
each of the component can’t be negative, and this creates threshold effects. Moreover for
the existence of the equilibrium points E5 and E8 we have to require that the following
conditions must hold: {

a2 > cuã1
a0
a1

≥ ã1
(a2−cuã1) .

Similarly for the feasibility of the equilibrium points E6 and E7 we must have:{
b2 > cv b̃1
b0
b1

≥ b1
(b2−cv b̃1)

.

Remark 3.3.3. We denote a stationary state healthy Aβ (healthy τ) if the second
(fourth) component of the equilibrium point is zero; otherwise it is toxic. We easily
note that E2 and E3 contain either healthy Aβ or healthy τ concentrations and these
are healthy Aβ and healthy τ , respectively, stationary states. Moreover we call the
equilibrium point E4 the disease-free stationary state, since it does not have any of the
toxic loads Aβ or τ . All the other equilibrium points are brain disease states since these
brain states have either amyloid plaques or neurofibrillary tau tangles.

Now we want to find an equilibrium point where both toxic loads are present. If we
denote by E∗ = (u∗, ũ∗, v∗, ṽ∗) a positive equilibrium point, then we have that:

1. u∗ =
ã1

(a2−cuã1)

2. ũ∗ =
(a0a2−a1ã1−cua0ã1)

(a2−cuã1)2

3. ṽ∗ =
(b0−b1v∗)(cvv∗+1)
(b3cvũ∗v∗+b3ũ+b2)

where v∗ satisfy the following quadratic equation:

b3cvũ
∗v2∗ + (b2 − b3ũ∗ − b̃1cv)v∗ − b̃1 = 0 (3.26)

For the feasibility conditions we must require:
a2 > cuã1
a0
a1
> ã1

(a2−cuã1)

b0 > b1v∗
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where v∗ is the positive solution of (3.26). In this case the equilibrium point E∗ becomes
”toxic A β- toxic τ” stationary state since it contains both amyloid plaques and neu-
rofibrillary tau tangles. Now we will analyze the stability of the equilibrium points of the
system (3.24). In particular,as for the previous models, the stability behavior depends on
the eigenvalues of the Jacobian matrix, evaluated in correspondence of the equilibrium
point in study. Given a fixed equilibrium point, if all the real parts of the eigenvalues of
the Jacobian matrix are negative, the equilibrium point is stable; otherwise it is unstable.
We denote the equilibrium point P = (uc, ũc, vc, ṽc), then the Jacobian is:

J =


J11 J12 0 0
J21 J22 0 0
0 J32 J33 J34
0 J42 J43 J44


where we have called: J11 := a0 − 2a1uc − a2ũc

(1+cuuc)2
, J12 := − a2uc

(1+cuuc)
, J21 :=

a2ũc
(1+cuuc)2

,

J22 := −ã1 + a2uc
(1+cuuc)

, J32 := −b3vcṽc, J33 := −b0 − 2b1vc − b3ũcṽc − b2ṽc
(1+cvvc)2

,

J34 := − b2vc
(1+cvvc

− b3ũcvc, J42 := b3vcṽc, J43 := b3ũcṽc +
b2ṽc

(1+cvvc)2
,

J44 := −b1 + b3ũcvc +
b2vc

(1+cvvc
. Thus, computing the characteristic polynomial we get:

(J11−σ)(J22−σ)[(J33−σ)(J44−σ)−J34J43]−J12J21[(J33−σ)(J44−σ)−J34J43] = 0 (3.27)

from which collecting all the terms:

[(J11 − σ)(J22 − σ)− J12J21][J33J44 − J33σ − J44σ + σ2 − J34J43] = 0 (3.28)

Now, calling T := −(J11 + J22), D := J11J22 − J12J21 , T̂ := −(J33 + J44),

D̂ := J33J44 − J34J43 then equation (3.28) reduces to the splitting form:

(σ2 + σT̂ + D̂)(σ2 + σT +D) = 0

which yields:

σ4 + σ3(T + T̂ ) + σ2(D̂ +D + T̂ T ) + σDT̂ +DD̂ = 0

Therefore the eigenvalues of the matrix J are: σ1,2 = −(T ±
√
T 2 − 4D)/2 and σ3,4 =

−(T̂ ±
√
T̂ − 4D̂)/2. Depending on the parameters the stability of stationary points

is different. The stability/ instability analysis of the stationary points is particularly
intriguing and leads to very different topological classifications.
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The nonlocal extension of the model introduces notable mathematical challenges, par-
ticularly in the treatment of spatial diffusion. Replacing local differential operators with
integral terms complicates both the analytical and numerical analysis, affecting stabil-
ity assessment and solution characterization. In particular, long-range interactions can
lead to emergent behaviors that are not present in the local framework, requiring ad-
vanced mathematical techniques for a rigorous understanding. More research is needed
to explore the full implications of these non-local effects on the dynamics of the system.
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Conclusions

The study presented in this thesis has extensively explored the intricate role of chemo-
taxis in acute inflammations, drawing from mathematical models and their applications
in biological and medical contexts. A key component of our work has involved the study
of partial differential equations (PDEs) to model the spatial and temporal dynamics
of inflammatory responses. By delving into fundamental diffusion laws, such as Fick’s
law and its generalizations, we have demonstrated the necessity of incorporating non-
local and memory effects to refine classical models. These modifications are particularly
crucial in neurodegenerative conditions, where spatial and temporal delays significantly
influence disease progression.
The first chapter has provided a rigorous introduction to mathematical modeling with
PDEs, focusing on reaction-diffusion equations and stability analysis. A significant part
of this chapter has been dedicated to the Keller-Segel model, which serves as a foundation
for many subsequent chemotaxis-driven mathematical models. Originally formulated to
describe bacterial aggregation, the pionieristic Keller-Segel model has been widely ap-
plied to various biological systems, including inflammatory and neurodegenerative pro-
cesses. This model consists of coupled PDEs that describe the temporal evolution of
cellular concentration and chemical concentration through self-diffusion and chemotac-
tic interactions. By employing linear/ non linear stability analysis, via Fourier mode
technique and Energy type methods, we have characterized the stability conditions gov-
erning cellular aggregations and pattern formation. Furthermore, the Keller-Segel model
has provided the basis for the Luca model for Alzheimer disease, which introduces ad-
ditional complexities by incorporating chemoattractive and chemorepulsive interactions.
In turn, the Luca model may be generalized by incorporating suitable logistic type reac-
tion terms, memory effects via the Cattaneo correction of the Fick’s law, accounting for
cross-diffusion aspects and also non local properties, better encapsulating the complexi-
ties inherent to inflammatory responses.
Then we have applied our mathematical tools to acute inflammation models, incorpo-
rating macrophages, inflammatory cytokines, and anti-inflammatory responses. Using
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PDEs-based models consisting of coupled reaction-diffusion equations, we have analyzed
the role of chemotactic coefficients and activation rates in determining the stability of
inflammatory sites to model Alzheimer’s disease. The application of Gershgorin’s theory
and Turing instability analysis have allowed us to have conditions under which inflam-
mation can persist, oscillate, or resolve. Notably, we have demonstrated that wave
instability and traveling wave solutions play a crucial role in understanding the spread
of inflammatory signals within biological tissues. A significant advancement in our re-
search has been the adaptation of these mathematical frameworks to model Alzheimer ’s
disease. Building upon the Luca model discussed in Chapter 1, we further have modified
it by incorporating logistic effects, memory-driven diffusion terms, which lead to hy-
perbolic reaction-diffusion equations. These extensions have allowed us to explore how
environmental factors and external regulatory mechanisms influence cellular behavior in
inflammatory and neurodegenerative contexts. Through the application of the Routh-
Hurwitz criterion and Fourier analysis, we have identified critical thresholds for stability
and the onset of oscillatory behaviors, offering new insights into potential strategies for
mitigating the effects of chronic neuroinflammation. A particularly compelling result
of our research has been the determination of critical thresholds where small variations
in chemotactic parameters significantly affect inflammatory outcomes. We have demon-
strated how targeted modulation of chemotactic factors could potentially serve as a viable
strategy for controlling inflammation and slowing disease progression. These insights are
particularly relevant for the development of novel therapeutic approaches aimed at miti-
gating the effects of chronic neuroinflammation in conditions such as Alzheimer’s disease.
Our findings suggest that the integration of multi-scale modeling approaches, bridging
molecular-level interactions with macroscopic inflammatory patterns, could significantly
enhance our understanding of these complex systems. The inclusion of fractional-order
PDEs and nonlocal interactions could also provide new insights into long-range effects in
chemotactic responses. In conclusion, this thesis has demonstrated that mathematical
modeling, particularly through the use of PDE-based approaches, serves as a power-
ful tool for unraveling the mechanisms of chemotaxis-driven inflammation. By refining
and extending existing frameworks, we have contributed to the broader understanding
of inflammatory processes in both acute and chronic settings. Our findings pave the
way for future interdisciplinary research combining mathematics, biology, and medical
sciences to develop innovative strategies for managing inflammation-related diseases. Ul-
timately, these insights hold significant potential for improving therapeutic interventions
and patient outcomes, emphasizing the need for a continued synergy between theoretical
modeling and experimental validation. The implications of this research extend beyond
the immediate applications in neuroinflammation and acute inflammatory responses.
The mathematical tools and techniques developed here can be applied to a wide range
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of biomedical problems. Chemotactic mechanisms are fundamental to many physiolog-
ical and pathological processes, and a deeper understanding of these dynamics could
lead to breakthroughs in multiple areas of medical science. Furthermore, this research
underscores the necessity of a multidisciplinary approach to tackling complex biological
problems. The intersection of mathematics, computational modeling, and biomedical
research represents a rapidly evolving field with immense potential. As computational
power continues to increase and experimental techniques become more refined, the in-
tegration of these disciplines will likely yield even more precise and predictive models
of inflammatory and neurodegenerative diseases. Ultimately, the work presented in this
thesis lays the foundation for continued exploration of chemotaxis-driven inflammation
and its implications for human health. Through ongoing collaboration between math-
ematicians, biologists, and medical researchers, we can further refine these models and
translate theoretical insights into tangible medical advancements. By embracing this
interdisciplinary approach, we can contribute to the development of more effective treat-
ments for inflammatory diseases, ultimately improving the quality of life for worldwide
patients.
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