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Sommario

Questa tesi esamina tecniche di ottimizzazione vincolata finalizzate a ottenere una
manipolazione tempo-ottimale di contenitori riempiti di liquido. In particolare, l’obiet-
tivo è sviluppare algoritmi per la pianificazione di traiettorie tempo-ottimali per più
contenitori cilindrici trasportati da un robot industriale. Le traiettorie considerate
sono 4-dimensionali, comprendenti 3 dimensioni di traslazione combinate con una
rotazione unidimensionale attorno alla direzione verticale.
Quando un contenitore riempito di liquido subisce un moto, il liquido al suo interno
esibisce un movimento, un fenomeno noto come sloshing. Gli algoritmi proposti si
concentrano sul controllo degli effetti dello sloshing durante il movimento del con-
tenitore.
Vengono presentati due approcci di ottimizzazione: nel primo, l’obiettivo è determina-
re la legge di moto ottimale su un percorso predefinito che il vassoio che ospita i con-
tenitori deve seguire; nel secondo, solo alcuni punti di passaggio, sia con una posizione
assegnata sia con una posizione variabile all’interno di un volume assegnato, sono vin-
colati, mentre i segmenti di percorso rimanenti e la legge di moto sono trattati come
variabili nel processo di ottimizzazione. I risultati vengono poi confrontati in simu-
lazione. La procedura più efficace per condurre il processo di ottimizzazione viene
identificata, tenendo conto anche della riduzione del tempo di calcolo. Infine, viene
realizzata e discussa una campagna di validazione sperimentale per valutare e con-
frontare l’efficacia pratica di queste tecniche.





Abstract

This thesis investigates constrained-optimization techniques aimed at achieving time-
optimal handling of containers filled with liquid. In particular, the objective is to de-
velop algorithms for planning time-optimal trajectories for multiple cylindrical con-
tainers carried by an industrial robot. The considered trajectories are 4-dimensional,
comprising 3-dimensional translations combined with a 1-dimensional rotation about
the vertical direction.
When a container filled with liquid is moved, the liquid inside exhibits motion, a phe-
nomenon known as sloshing. The proposed algorithms focus on controlling the effects
of sloshing during the container movement.
Two families of optimization approaches are presented: in the first, the objective is to
determine the optimal motion law on a predefined path that the tray hosting the mul-
tiple containers must follow; in the second, only certain waypoints, either with an as-
signed position or with a position variable within an assigned volume, are constrained,
while the remaining path segments and the motion law are treated as variables in the
optimization process. The results are then compared in simulation. The most effective
procedure for conducting the optimization process is identified, including consider-
ations for minimizing computational time. Finally, an experimental validation cam-
paign is carried out and discussed to assess and compare the practical effectiveness of
these techniques.
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Chapter 1

Introduction

1.1 The sloshing phenomenon

Sloshing refers to the oscillatory motion of a liquid within a partially filled container.
This phenomenon plays a crucial role in various fields. In aerospace engineering, the
movement of propellant inside fuel tanks can lead to structural and flight-stability is-
sues, requiring advanced control techniques and the design of specific containment
baffles [1, 2]. Similarly, in automotive and offshore industries, especially in vehicles
used for liquid transport, such as tank trucks and cargo ships, sloshing can gener-
ate significant forces due to the liquid oscillatory movement, which impacts vehicle
dynamics and must be effectively controlled [3, 4]. In civil engineering, the effect of
sloshing inside storage tanks is studied in order to enhance the seismic response of
structures, hence using the liquid movement as an energy absorber [5, 6].
This thesis investigates techniques for controlling sloshing in industrial packaging ap-
plications. In many processes, it is common to transport bottles, vials, and other con-
tainers that are partially filled with liquid. The oscillatory movement of the liquid
inside these containers can cause problems, including spillage, inconsistent fill lev-
els, and even structural damage during transit. In the pharmaceutical industry, this
phenomenon is particularly critical, as even slight variations in fill levels can affect
the dosage and, consequently, the effectiveness of the medication. Moreover, slosh-
ing poses an additional concern in the transport of freeze-dried containers, as liquid
residues on the container walls, caused by sloshing, can compromise the freeze-drying
process, making it imperative to minimize such disturbances. Similarly, in the food
and beverage industry, maintaining product integrity during transport is essential to
ensure safety and quality standards. The containers are typically transported in groups
by means of an industrial robot, which executes pick-and-place operations from a sta-
tion to another.

1.2 Targets

The target of this thesis regards the development of techniques aimed at planning
pick-and-place trajectories executed by an industrial serial robot, for the simultane-
ous transport of multiple cylindrical containers. The trajectories must be performed in
minimal time, while ensuring that the peak (hereafter referred as maximum sloshing
height) reached by the liquid inside each container remains under a specified thresh-
old. The considered trajectories are 4-dimensional, with the 3-dimensional translation
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combined with a 1-dimensional rotation about a vertical axis. Being mounted on the
same rigid tray attached to the robot end-effector, each container is subjected to a dif-
ferent motion depending on the distance from the instantaneous rotation axis. A key
constraint in this study is the limitation of rotation only around the vertical axis, since
this is a typical constraint in many pick-and-place operations occurring in automated
lines; accordingly, the system cannot rely on tilting motions to stabilize the liquid in-
side the containers.

1.3 State of the art

Before analyzing the sloshing-control techniques that can be retrieved from the litera-
ture, it is fundamental to provide an overview of how the sloshing phenomenon can be
effectively modeled for these applications. Computational Fluid Dynamics (CFD) anal-
yses can be used for this purpose, as detailed in [7] and [8]. These techniques, which
solve the Navier–Stokes equations under prescribed boundary conditions, enable the
study of complex phenomena such as turbulence, wave breaking, and nonlinear in-
teractions. However, high-fidelity CFD simulations are computationally demanding,
often requiring hours or days to complete, especially as domain complexity and res-
olution increase. Alternatively, methods like Smoothed Particle Hydrodynamics (SPH)
[9, 10] discretize the fluid into particles to reduce computation time. However, this ap-
proach still remains computationally intensive to support real-time applications. Con-
sequently, simplified models have been developed to reproduce sloshing dynamics
with considerably lower computational effort. A robust and efficient strategy involves
the formulation of equivalent discrete mechanical models, in which the computation
of the sloshing height runs in fractions of a second. In [11], two of these discrete me-
chanical models for describing sloshing dynamics are presented, and they represent
the two most widely used models in the literature. The first consists of a spherical pen-
dulum, where angular variables indicating the position of the pendulum mass are used
as generalized coordinates to describe the sloshing behavior. This approach is highly
effective from an intuitive standpoint (see [12,13]), as the inclination of the free surface
of the liquid during motion is represented by the inclination of the pendulum. How-
ever, when precise knowledge of the liquid peak is required, this model has limitations.
Indeed, in [14], [15], and [16], the sloshing height is estimated by applying a tangent
function to the generalized coordinates, and when the dynamic conditions become
severe, meaning the container is subjected to high accelerations, the angle may ap-
proach 90◦, resulting in non-physical outputs from the tangent function. The second
model presented in [11], although less intuitive, maintains physical consistency even
under high dynamic conditions. For this reason, it is the model adopted in this thesis.
This model represents sloshing dynamics through some masses, each representing the
modal mass of a sloshing mode, whose motion is governed by a spring-damper sys-
tem [17]. Using this model, denoted as mass-spring-damper model, the generalized
coordinates are represented by the position of the mass with respect to its initial con-
figuration. Based on this model, a novel method for estimating sloshing height was
proposed in [18] and validated for 1-dimensional motions. An extension to planar mo-
tions is presented in [19], and the experimental verification is provided in [20], where
a cylindrical container and accelerations up to 9.5m/s2 are considered. An extension
to the 3-dimensional case is proposed in [21], which considers an additional vertical
acceleration up to 5m/s2. The extension of the aforementioned technique to the case
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of 4-dimensional motions considering the additional rotation about the vertical axis is
object of a concurrent study, whose content is in preparation and will be employed in
this thesis, too [22]. Other applications of the mass-spring-damper model can be found
in [23] for designing anti-sloshing trajectories and in [24] for a software application that
simulates sloshing in both cylindrical and rectangular containers. Regarding sloshing-
reduction methods, the literature offers several approaches. Trajectory-planning fil-
ters represent a widely used technique to eliminate specific frequency components
and reduce vibrations. Several filters can be applied for this purpose, including finite
impulse response (FIR) and exponential filters, which are employed in [25] and [26],
respectively, and have proven their efficacy in reducing sloshing as well. In [19], a com-
parison among FIR filters, infinite impulse response (IIR) filters, and dynamic model
inversion is provided. A specific class of FIR filters, known as input shaping and in-
troduced in [27], is the most recommended one for sloshing-reduction purposes. The
most commonly used input shapers are the zero vibration (ZV) shaper, and the zero
vibration and zero derivative (ZVD) one: while the former one grants the elimination
of residual vibrations as long as the system parameters are precisely known, the latter
one offers greater robustness to model uncertainties. An application of this technique
is presented in [28], where input shaping is utilized to reduce sloshing in a cylindrical
container manipulated by a robotic system along 1-dimensional rectilinear paths, and
further applied to 3-dimentional motions in [12]. In the latter study, a shaper called
ZV2lin, developed in [29] for tower crane applications, is used to filter rotational mo-
tion around the vertical axis. Although shaping techniques are widely used to reduce
sloshing, this thesis does not employ them. This decision relied on the fact that, when
moving multiple containers simultaneously, each with distinct dynamics, determin-
ing the optimal motion profiles on which to apply the filtering becomes both compli-
cated and time-consuming. Furthermore, while these filters can reduce oscillations
during the rest phase (i.e., when the container motion is over), they do not constrain
the maximum allowable sloshing height during container motion (an aspect which, as
discussed in section 1.1, is fundamental to our applications). Additionally, [16] pro-
poses a combination of a damped harmonic smoother filter (see [30]) and tilting. The
latter is another commonly adopted technique to compensate sloshing, as highlighted
in [15]; however, as stated in section 1.2, tilting is not allowed in this work. An alter-
native approach is represented by constrained optimization. In [13], this technique
is applied to a single container in a 3-dimensional motion scenario; however, experi-
mental results are provided only for 1-dimensional motions and sloshing is mitigated
by reorienting the robot end-effector. In [31], a constrained optimization is used to
determine the coefficients that control the profile of a shaper. However, the situation
under consideration is quite different from ours, as it focuses on an overhead crane sys-
tem and does not address the case of multiple containers. In [32], an optimization is
performed to design the duration of the segments of a piecewise motion law, but only
1-dimensional trajectories are considered. [12] performs a constrained optimization
for generating a trajectory, but sloshing suppression is handled separately using shap-
ing techniques. In [23] and [33], for trajectories with an assigned path, and in [34], for
point-to-point motions, constrained optimizations are applied to trajectory planning
problems for container transportation in industrial settings. These optimizations are
solved using a multiple shooting method and implemented with CasADi [35], a soft-
ware framework for nonlinear optimization and optimal control in Matlab. This latter
technique is the one adopted in this work, with the aim of extending the optimization

13
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to complex 4-dimensional trajectories and multiple containers, an aspect that, to the
best of our knowledge, has not been previously addressed in the literature. Indeed, the
three articles cited above have the following limitations: [23] and [33] deals with two-
dimensional trajectories and only a single container, [34] does not constrain the maxi-
mum sloshing height within the optimizer, instead, it determines, using experimental
methods and CFD techniques (both of which are time-consuming), the maximum liq-
uid volume that can be safely contained without spillage during the trajectory.

1.4 Thesis structure

In chapter 2, equivalent mechanical models for replicating sloshing dynamics are pre-
sented. After highlighting the characteristics of each model and providing their equa-
tions of motion, the most suitable models for further analysis are identified. Subse-
quently, the multi-container configuration is described and the key equations linking
sloshing dynamics to each container motion are provided.
Chapter 3 outlines the optimization algorithms employed for time-optimal trajectory
planning along predefined paths. Various scenarios are analyzed, and based on their
results, the most effective optimization strategies are identified.
Based on these findings, chapter 4 introduces optimization algorithms for point-to-
point motion, where the paths are not defined a priori but are determined as part of
the optimization process, along with the motion law.
Finally, the experimental campaign conducted to validate the developed algorithms is
presented in chapter 5. The experimental setup is first described, followed by a detailed
analysis of the experimental results.

For the writing of this thesis work, the generative artificial intelligence software ChatGPT-
4 was used to support text formulation and ensure grammatical accuracy. Details on
its use are provided in appendix D.
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Chapter 2

Equivalent mechanical model

In this chapter, several equivalent mechanical models of sloshing dynamics are pre-
sented. As discussed in section 1.3, a mass-spring-damper model is adopted; hence,
various variants of this model are examined to determine the most appropriate for-
mulation for further study. Each variant considers only the fundamental oscillation
mode, since, as demonstrated in [11], higher-order modes have a negligible impact on
sloshing behavior. After introducing the models, the ones selected for subsequent ap-
plications are identified, the multi-container configuration is presented and the main
geometric and kinematic relationships linking the sloshing dynamics of each container
to its imposed motion are described.

2.1 Model parameters

A cylindrical container with radius R is considered, filled with a liquid of mass mF .
Under static conditions, the liquid height inside the container is h. A fixed coordinate
system F0 ≡ X Y Z is defined, along with a moving coordinate system F ≡ x y z attached
to the container. The z-axis of F coincides with the container axis and points upward,
while the x and y axes pass through the static position of the liquid center of gravity
G (see figure 2.1a). The mass-spring-damper model considers a mass m0 that moves
rigidly with the container and a series of masses ms (each one of them representing
the modal mass of a sloshing mode) that move relative to the container (figure 2.1a).
Each mass is connected to a spring-damper system that governs its motion. The spring
stiffness of the ms mass is denoted by ks , while the damping coefficient of the damper
connected to the same mass is denoted by cs . Finally, h0 and hs represent the signed
vertical distances of m0 and ms from G .
To determine the model parameters, equivalences with the continuous model must be
imposed, for instance, the total sum of the sloshing masses must be equal to the liquid
mass mF , namely:

mF = m0 +
∞∑

s=1
ms . (2.1)

More details can be found in chapter 5 of [11]. Below, the natural frequency and modal
mass of the s-th mode are given:

ωs =
√

ks

ms
=

√
g
ξ1s

R
tanh

(
ξ1s

h

R

)
, (2.2)
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(a) Model Parameters. (b) Top view showing
the s-th generalized
coordinates.

(c) Sloshing mass slid-
ing on a parabolic sur-
face.

Figure 2.1: Mass-spring-damper model.

ms = mF
2R

ξ1sh(ξ2
1s −1)

tanh
(
ξ1s

h

R

)
. (2.3)

In (2.3) the parameter ξ1s represents the root of the derivative of the Bessel function of

the first kind [36], and g is the gravity acceleration. The damping ratio ζs = cs

2
√

ksms
can be determined by using the following experimental formula (see [11]):

ζs = 0.92

√
υ/ρ√
g R3

[
1+ 0.318

sinh(ξ1sh/R)

(
1+ 1−h/R

cosh(ξ1sh/R)

)]
, (2.4)

where υ and ρ are the dynamic viscosity and density of the liquid, respectively.
From [11], for a liquid inside a cylindrical container, three dynamic regimes can oc-

cur depending on the excitations applied to the container. The first regime, depicted
in figure 2.2a, is characterized by a planar liquid surface, which occurs under small
oscillations. When the liquid oscillations increase moderately, the system enters the
second regime, in which the surface no longer maintains a planar shape, this scenario
is illustrated in figure 2.2b. Finally, when the motion exhibits strong nonlinearities,

(a) Planar free surface. (b) Nonplanar free surface.

Figure 2.2: Liquid free-surface shapes.
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2.2. Equations of motion

the liquid surface develops instantaneous peaks. This third scenario is not addressed
in this thesis. For the first two cases, two models will be developed in the following
sections to represent the liquid dynamics: one linear and one nonlinear. The linear
model represents the condition of a planar liquid surface, considers the spring stiff-
ness as a constant, and neglects the vertical motion of G . As a result, the mass ms does
not change its vertical component during motion, which remains constant at zs = hs ,
where hs is given by [11]:

hs = 1

2
h
[

1− 4R tanh(ξ1s
h

2R )

ξ1sh

]
. (2.5)

The non-linear model, on the other hand, considers the case of a non-planar liquid
surface, which is described by a first-kind Bessel function [21]. In this case, the sloshing
mass ms slides on a parabolic surface and is restrained by a nonlinear spring of order
w (figure 2.1c) [17]. Therefore, differently from the linear case, there is motion along z,
which can be expressed as a function of xs and ys , namely:

zs = hs + Cs

2R
(x2

s + y2
s ), (2.6)

where

Cs = ξ1s tanh
(
ξ1s

h

R

)
=ω2

s
R

g
. (2.7)

The velocity of ms along z is obtained by differentiating x.r.t. time the equation (2.6),
resulting in:

żs = Cs

R
(ẋs xs + ẏs ys). (2.8)

The nonlinear spring exerts a force given by αsksr 2w−1
s , where rs is given by: rs =√

x2
s + y2

s ; and the parameters w and αs , as suggested in [17], are set as follows: w = 2,
αs = 0.58.
In conclusion, both in the case of the linear model and in the case of the nonlinear
model, the motion of the mass ms is fully described by the parameters xs and ys (figure
2.1b), which will therefore be used as generalized coordinates in the Lagrangian system
of the next section.

2.2 Equations of motion

In this thesis, a 4-dimensional motion is considered, comprising translation along the
three directions and rotation around a vertical axis. The excitations to which the con-
tainer, and therefore the liquid, is subjected can be defined as follows: S̈0 = [ẍ0 ÿ0 z̈0]T

for linear motions, and Ω̇0 = [0 0 θ̈0]T for rotational motions. The subscript 0 indicates
that the quantities are expressed w.r.t. the fixed reference frame. The vector S0 is the
position of the centerpoint O of the container bottom circle, while θ0 is the rotation of
the container around the Z axis.
To obtain the equations of motion (EOMs), the Lagrange equations are used. As men-
tioned at the end of section 2.1, the used generalized coordinates, (q1, q2), are (xs , ys).
The Lagrange equations are:

d

d t

( ∂T

∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
+ ∂D

∂q̇i
= 0, for i = 1,2 (2.9)
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where T is the kineic energy, V is the potential energy and D is the Rayleigh function.
The position vector rs of the s-th sloshing mass can be written as:

0rs =
 x0

y0

z0

+Rz(θl )

 xs

ys
h
2 + zs

=


x0 +xs cosθl − ys sinθl

y0 +xs sinθl + ys cosθl

z0 + h
2 +hs + Cs

2R
(x2

s + y2
s )

 , (2.10)

where Rz(θl ) is the rotation matrix expressing the rotation of angle θl about the vertical
z-axis, namely:

Rz(θl ) =
cosθl −sinθl 0

sinθl cosθl 0
0 0 1

 , (2.11)

By differentiating equation (2.10) w.r.t. time, we obtain:

0ṙs =


ẋ0 + ẋs cosθl −xs θ̇l sinθl − ẏs sinθl − ys θ̇l cosθl

ẏ0 + ẋs sinθl +xs θ̇l cosθl + ẏs cosθl − ys θ̇l sinθl

ż0 + Cs

R
(ẋs xs + ẏs ys)

 . (2.12)

The total kinetic energy can be expressed as the sum of the kinetic energies of the in-
dividual sloshing masses. This takes into account the velocities of the sloshing masses
relative to the container, ṡs = [ẋs ẏs żs]T , and the velocities of the container, Ṡ0 and Ω̇0:

T = T0 +
∑

s
Ts =

= T0 +
∑

s

1

2
ms

[
ẋ2

0 + ẏ2
0 + ż2

0 + ẋ2
s + ẏ2

s +
C 2

s

R2

(
xs ẋs + ys ẏs

)2 + θ̇2
l

(
x2

s + y2
s

)+
+2ż0

Cs

R
(xs ẋs + ys ẏs)−2ẋs ys θ̇l +2ẏs xs θ̇l+

+2(ẋ0 cosθl + ẏ0 sinθl )ẋs +2(−ẋ0θ̇l sinθl + ẏ0θ̇l cosθl )xs+
+2(−ẋ0 sinθl + ẏ0 cosθl )ẏs +2(−ẋ0θ̇l cosθl − ẏ0θ̇l sinθl )ys

]
,

(2.13)

where T0 is the kinetic energy of the mass m0 (which does not depend on xs and ys)
and Ts is the kinetic energy of the s-th sloshing mass.
The potential energy V can be written in the same way; it considers the contribution
of gravity and non-linear spring forces:

V =V0 +
∑

s
Vs =V0 +

∑
s

(
ms g

(
z0 + h

2
+ zs

)+∫ rs

0
αsksr 2w−1

s drs

)
=

=V0 +
∑

s

{
ms g

[
z0 + h

2
+hs + Cs

2R
(x2

s + y2
s )

]
+ αsks

2w
(x2

s + y2
s )w

}
,

(2.14)

where V0 is the potential energy of m0 (which does not depend on xs and ys) and Vs is
the potential energy of the s-th sloshing mass.
The Rayleigh function D considers energy dissipation and it only depends on the sloshing-
mass velocity ṡs = [ẋs ẏs żs]T with respect to the container (the dissipation associated
with the viscous-dragging phenomenon discussed in section 2.3.2 is neglected):

D =∑
s

1

2
cs(ẋ2

s + ẏ2
s + ż2

s ) =∑
s

msζsωs

[
ẋ2

s + ẏ2
s +

C 2
s

R2
(ẋs xs + ẏs ys)2

]
. (2.15)

18



2.3. Sloshing-height estimation

Substituting equations (2.13), (2.14) and (2.15) in the system (2.9) leads to two coupled
EOMs for the non-linear model (described in section 2.1):

(
1+ C 2

s
R2 x2

s

)
ẍs + C 2

s
R2 xs ys ÿs =−C 2

s
R2 (ẋ2

s + ẏ2
s )xs + (2θ̇l ẏs + θ̇2

l xs + θ̈l ys)

−ω2
s xs

[
1+αs(x2

s + y2
s )w−1

]−2ωsζs[ẋs + C 2
s

R2 (xs ẋs + ys ẏs)xs]

−ẍ0 cosθl − ÿ0 sinθl − z̈0
Cs
R xs

(
1+ C 2

s
R2 y2

s

)
ÿs + C 2

s
R2 xs ys ẍs =−C 2

s
R2 (ẋ2

s + ẏ2
s )ys + (−2θ̇l ẋs + θ̇2

l ys − θ̈l xs)

−ω2
s ys

[
1+αs(x2

s + y2
s )w−1

]−2ωsζs[ẏs + C 2
s

R2 (xs ẋs + ys ẏs)ys]

+ẍ0 sinθl − ÿ0 cosθl − z̈0
Cs
R ys

(2.16)

Eliminating the nonlinear terms w.r.t. the generalized coordinates and their derivatives
[xs ys ẋs ẏs ẍs ÿs], the system of linearized EOMs is obtained1:

ẍs = (2θ̇l ẏs + θ̇2
l xs + θ̈l ys)−ω2

s xs −2ωsζs ẋs − ẍ0 cosθl − ÿ0 sinθl − z̈0
Cs
R xs

ÿs = (−2θ̇l ẋs + θ̇2
l ys − θ̈l xs)−ω2

s ys −2ωsζs ẏs + ẍ0 sinθl − ÿ0 cosθl − z̈0
Cs
R ys

(2.17)
The EOMs in (2.17) are linear w.r.t. the state variables, and are thus easier and quicker
to solve.

2.3 Sloshing-height estimation

In the previous section, the equations to determine, starting from the imposed acceler-
ations on the container S̈0 and Ω̇0, the generalized coordinates xs and ys were derived.
In particular, the equations (2.16) represent the nonlinear model, while the equations
(2.17) represent the linearized model. From the knowledge of the generalized coordi-
nates, for both the linearized and non-linear cases, it is possible to derive the maxi-
mum sloshing height (referred to, from now on, as ηs) of the s-th mode, based on the
results presented in [21], as shown below:

• using the generalized coordinates obtained from the non-linear EOMs (2.16):

ηs =
ξ2

1shms

mF R

√
x2

s + y2
s , (2.18)

• using the generalized coordinates obtained from the linearized EOMs (2.17):

ηs =
4hms

mF R

√
x2

s + y2
s . (2.19)

The total sloshing height can be then formulated as the combination of all the s modes
considered. However, it can be shown [18] that the contributions of modes greater

1It should be noted that the system of equations does not represent the previously described linear
model, as that model neglects the motion of G along the z-axis. Therefore, this model should be under-
stood as a linearized version of the non-linear one, making it easier to solve.
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Chapter 2. Equivalent mechanical model

than the first one are often negligible, hence justifying the only employment of the first
sloshing mode. In [21], the rotational motion was not considered, and therefore, the
two EOMs, both for the linearized and nonlinear cases, were functions of only the two
unknowns xs and ys , and could therefore be solved directly. In our case, the equations
have an additional unknown, which is the rotation of the liquid around the vertical
axis, θl . It is therefore necessary to introduce new equations or assumptions in order to
solve the two equations of motion with the three unknowns xs , ys , and θl . Below, three
different methods are presented to establish new relationships between the variable θl

and the motion conditions imposed on the container.

2.3.1 Sloshing model considering θl = θ0

In this model, referred to as NL if EOMs (2.16) are considered and the condition θl = θ0

is enforced or L if EOMs (2.17) are considered and the condition θl = θ0 is imposed, the
EOMs are solved by simply assuming that the rotation of the liquid θl is equal to the
rotation of the container θ0, the latter being known a priori as an input to the system.
Thus, the following equations are obtained.

• For the NL model:

(
1+ C 2

s
R2 x2

s

)
ẍs + C 2

s
R2 xs ys ÿs =−C 2

s
R2 (ẋ2

s + ẏ2
s )xs + (2θ̇0 ẏs + θ̇2

0 xs + θ̈0 ys)

−ω2
s xs

[
1+αs(x2

s + y2
s )w−1

]−2ωsζs[ẋs + C 2
s

R2 (xs ẋs + ys ẏs)xs]

−ẍ0 cosθ0 − ÿ0 sinθ0 − z̈0
Cs
R xs

(
1+ C 2

s
R2 y2

s

)
ÿs + C 2

s
R2 xs ys ẍs =−C 2

s
R2 (ẋ2

s + ẏ2
s )ys + (−2θ̇0ẋs + θ̇2

0 ys − θ̈0xs)

−ω2
s ys

[
1+αs(x2

s + y2
s )w−1

]−2ωsζs[ẏs + C 2
s

R2 (xs ẋs + ys ẏs)ys]

+ẍ0 sinθ0 − ÿ0 cosθ0 − z̈0
Cs
R ys

(2.20)

The two equations only involve the two unknowns xs and ys ; therefore, they can
be solved. The maximum sloshing height is determined through the equation
(2.18), in which only the first sloshing mode is considered:

ηN L = ξ2
11hm1

mF R

√
x2

1 + y2
1 . (2.21)

• For the L model:
ẍs = (2θ̇0 ẏs + θ̇2

0 xs + θ̈0 ys)−ω2
s xs −2ωsζs ẋs − ẍ0 cosθ0 − ÿ0 sinθ0 − z̈0

Cs
R xs

ÿs = (−2θ̇0ẋs + θ̇2
0 ys − θ̈0xs)−ω2

s ys −2ωsζs ẏs + ẍ0 sinθ0 − ÿ0 cosθ0 − z̈0
Cs
R ys

(2.22)
The two equations only involve the two unknowns xs and ys ; therefore, they can
be solved. The maximum sloshing height is determined through the equation
(2.19):

ηL = 4hm1

mF R

√
x2

1 + y2
1 . (2.23)
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2.3. Sloshing-height estimation

2.3.2 Sloshing model with the viscous-dragging approach

In the viscous-dragging approach, the sloshing masses are assumed to move on a liq-
uid ’disk’ spinning with angular velocity θ̇l , so that each sloshing mass is subjected to a
centripetal acceleration proportional to θ̇2

l . The relation between the angular velocity

of the liquid ’disk’, θ̇l , and the angular velocity of the container, θ̇0, is inferred by con-
sidering the former dragged by the latter through a viscous torque proportional to their
relative velocity, namely:

J θ̈l = kvd
(
θ̇0 − θ̇l

)
, (2.24)

where J is the moment of inertia of the liquid w.r.t. the axis of the container (assumed
constant), and kvd is the viscous friction parameter, which depends on the properties
of the fluid and the container. For determining this coefficient, there is limited liter-
ature, with some references regarding the fluid delay time in reaching 95−99% of the
container velocity. For example, in [37], an equation is provided to determine this time
in the case of a container starting from rest and reaching a certain angular velocity:

t99% = R2

ν
, (2.25)

where ν is the kinematic viscosity of the fluid.
By using equation (2.25), and integrating equation (2.24), it is possible to determine an
approximate value of kvd

2.
Based on these considerations, the equations of the models with a viscous-dragging
approach are reported below, referred to as: NLvd and Lvd .

• The NLvd model is given by the following equations:

(
1+ C 2

s
R2 x2

s

)
ẍs + C 2

s
R2 xs ys ÿs =−C 2

s
R2 (ẋ2

s + ẏ2
s )xs + (2θ̇l ẏs + θ̇2

l xs + θ̈l ys)

−ω2
s xs

[
1+αs(x2

s + y2
s )w−1

]−2ωsζs[ẋs + C 2
s

R2 (xs ẋs + ys ẏs)xs]

−ẍ0 cosθl − ÿ0 sinθl − z̈0
Cs
R xs

(
1+ C 2

s
R2 y2

s

)
ÿs + C 2

s
R2 xs ys ẍs =−C 2

s
R2 (ẋ2

s + ẏ2
s )ys + (−2θ̇l ẋs + θ̇2

l ys − θ̈l xs)

−ω2
s ys

[
1+αs(x2

s + y2
s )w−1

]−2ωsζs[ẏs + C 2
s

R2 (xs ẋs + ys ẏs)ys]

+ẍ0 sinθl − ÿ0 cosθl − z̈0
Cs
R ys

J θ̈l = kvd
(
θ̇0 − θ̇l

)

(2.26)

The system consists of three equations with three unknowns: xs , ys , and θl ,
which can, therefore, be solved. The generalized coordinates obtained can then
be used to determine the maximum sloshing height using equation (2.18):

ηN L,vd = ξ2
11hm1

mF R

√
x2

1 + y2
1 . (2.27)

2To avoid redundancy, further analyses regarding the determination of the parameter kvd are not
provided, since this model was not used for the subsequent analyses.
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• The Lvd model is given by the following equations:

ẍs = (2θ̇l ẏs + θ̇2
l xs + θ̈l ys)−ω2

s xs −2ωsζs ẋs − ẍ0 cosθl − ÿ0 sinθl − z̈0
Cs
R xs

ÿs = (−2θ̇l ẋs + θ̇2
l ys − θ̈l xs)−ω2

s ys −2ωsζs ẏs + ẍ0 sinθl − ÿ0 cosθl − z̈0
Cs
R ys

J θ̈l = kvd
(
θ̇0 − θ̇l

)
(2.28)

As with the NLvd model, we have three equations with three unknowns. The
generalized coordinates obtained from the system can be used to determine the
maximum sloshing height using equation (2.19):

ηL,vd = 4hm1

mF R

√
x2

1 + y2
1 . (2.29)

2.3.3 Sloshing model with forced-vortex motion approach

Forced-vortex motion refers to the scenario in which a container filled with liquid un-
dergoes pure rotational motion around its vertical axis. Under these motion condi-
tions, the liquid surface assumes the shape of a paraboloid centered on the rotation
axis. Therefore, considering a cylindrical container rotating around its axis at a con-
stant angular velocity (i.e., θ̈0 = 0 and θ̇0 ̸= 0) and without translation, referring to [38],
the following equation for the surface of the paraboloid (which refers to figure 2.3) can
be written:

zs(r ) = hc +
θ̇2

0r 2

2g
, (2.30)

where hc represents the vertical height of the paraboloid vertex, which is the lowest
point of the liquid surface. The other term of equation 2.30 represents the contribution
to the height, as a function of r , that is added due to the parabolic profile. Looking at
figure 2.3, it is clear that the maximum height is assumed by the liquid in contact with
the walls, and it is obtained by substituting r = R into (2.30), yielding:

zs(R) = hc +
θ̇2

0R2

2g
. (2.31)

Therefore, it is possible to determine the maximum sloshing height of the liquid under
this type of motion, that is, the difference between the highest point of the liquid zs(R)
and the static liquid height h, called ηp :

ηp = zs(R)−h = (hc −h)+ θ̇2
0R2

2g
. (2.32)

The volume of the liquid below the paraboloid is:

V =
∫ R

0
2πzs(r )r dr =

∫ R

0
2π

(
hc +

θ̇2
0r 2

2g

)
r dr =πR2

(
θ̇2

0R2

4g
+hc

)
. (2.33)

The liquid volume must be conserved, therefore, by equating (2.33) to the expression
for the volume at rest, V0 =πR2h, the following relationship can be obtained:

(hc −h) =− θ̇2
0R2

4g
. (2.34)
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(a) 3-dimensional view. (b) Front view.

Figure 2.3: Schematic of a liquid under forced-vortex motion in a cylindrical container.

Substituting equation (2.34) into (2.32), the expression for the contribution of the para-
boloid to the sloshing height exclusively as a function of the angular velocity θ̇0 is ob-
tained:

ηp = θ̇0
2
R2

4g
. (2.35)

Starting from the presented results, the models addressed in this section are referred
to as NLp for the non-linear case and Lp for the linearized case. The underlying idea
of these models is to determine the maximum sloshing height using the superposition
principle, i.e., by summing the maximum sloshing height obtained considering only
translational motion and the maximum sloshing height obtained considering a steady-
state rotational motion. Therefore, the EOMs (2.16) (for the non-linear case) and (2.17)
(for the linearized case) are solved considering only translational motion (i.e., impos-
ing θl = θ̇l = θ̈l = 0), thereby determining the sloshing height due only to translation.
The sloshing height obtained with the parabolic term from equation (2.35), which only
considers rotation, is then added. The models are therefore presented below.

• For the NLp model, the motion equations are obtained by setting θl = θ̇l = θ̈l = 0
in equation (2.16):

(
1+ C 2

s
R2 x2

s

)
ẍs + C 2

s
R2 xs ys ÿs =−C 2

s
R2 (ẋ2

s + ẏ2
s )xs −ω2

s xs
[
1+αs(x2

s + y2
s )w−1

]
−2ωsζs[ẋs + C 2

s
R2 (xs ẋs + ys ẏs)xs]− ẍ0 − z̈0

Cs
R xs

(
1+ C 2

s
R2 y2

s

)
ÿs + C 2

s
R2 xs ys ẍs =−C 2

s
R2 (ẋ2

s + ẏ2
s )ys −ω2

s ys
[
1+αs(x2

s + y2
s )w−1

]
−2ωsζs[ẏs + C 2

s
R2 (xs ẋs + ys ẏs)ys]− ÿ0 − z̈0

Cs
R ys

(2.36)
The two equations involve only the two unknowns xs and ys , and, therefore,
can be solved. From the obtained coordinates xs and ys , the maximum slosh-
ing height is determined through equation (2.18), to which, by superposition of
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effects, the term ηp from equation (2.35) is added:

ηN L,p = ξ2
11hm1

mF R

√
x2

1 + y2
1 +

θ̇2
0R2

4g
. (2.37)

For the Lp model, the motion equations are obtained by setting θl = θ̇l = θ̈l = 0
in equation (2.17): 

ẍs =−ω2
s xs −2ωsζs ẋs − ẍ0 − z̈0

Cs
R xs

ÿs =−ω2
s ys −2ωsζs ẏs − ÿ0 − z̈0

Cs
R ys

(2.38)

The two equations involve only the two unknowns xs and ys , and, therefore,
can be solved. From the obtained coordinates xs and ys , the maximum slosh-
ing height is determined through equation(2.19), to which, by superposition of
effects, the term ηp from equation (2.35) is added:

ηL,p = 4hm1

mF R

√
x2

1 + y2
1 +

θ̇2
0R2

4g
. (2.39)

2.4 Equivalent mechanical models used for optimizations

Among all the models discussed, two different models have been used for the subse-
quent analyses:

• The linearized model with parabolic contribution, denoted as Lp
3, of section

2.3.3, is used in chapters 3 and 4. This model, which presents linearized EOMs
(2.38), is simpler and faster for the optimizer to solve compared to the non-linear
one (2.16). In the two aforementioned chapters, the objective is to determine the
best strategies for performing simulations. For this purpose, numerous scenar-
ios were compared to identify the most effective choices. To report a significant
number of results for each scenario, a large number of optimizations were per-
formed. Therefore, to accelerate the process, the use of a simpler model proved
to be the best choice. Regarding the addition of the parabolic term in the calcu-
lation of the sloshing height, this was included for two main reasons. The first
reason is that, in this thesis, we aim to determine the best optimization strate-
gies for 4-dimensional motions, which also consider the effect of the container
rotation θ0 around its vertical axis. However, for the considered motions and
the small dimensions of the used containers, the effect of this rotation is barely
noticeable using the viscous-dragging approach (section 2.3.2). Therefore, the
addition of the parabolic term makes the effect of rotation more significant on
the optimization results, allowing us to clearly observe its effect and tailor our
strategies to effectively integrate this component. The second reason for adding
the parabolic term is that it slightly overestimates the sloshing height. Since the
Lp model provides a less accurate estimation compared with the non-linear one,
the parabolic term provides a safety margin to the solution, mitigating the defi-
ciencies caused by the approximation of the Lp model and ensuring compliance
with the maximum imposed sloshing-height limits;

3As discussed, in this model the liquid rotation θl is considered equal to zero.
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• The non-linear model considering the liquid rotation θl equal to the container
rotation θ0, denoted as NL, of section 2.3.1, is used in chapter 5, where the al-
gorithms for the experimental tests are developed. It is adopted because it has
proven to be the most accurate in modeling the liquid dynamics for this type of
applications, thus making it the most suitable choice for developing trajectories
aimed at experimental validation.

An example of the sloshing-height trends predicted by the two models mentioned above,
compared with the experimental trend, is shown in figure 2.4. As explained in the pre-
vious chapter, it is recalled that the sloshing-height trend related to the Lp model is
obtained from equation 2.39, comprising the generalized coordinates derived from the
linearized equations in which the liquid rotation is set to zero (equations (2.38)), and
the term related to the paraboloid (2.35). On the other hand, the trend of η for the NL
model is obtained from equation (2.21), where xs and ys are obtained by solving the
general equations (2.16), in which the liquid rotation θl is considered equal to that of
the container θ0. It can be observed that the NL model is more accurate, while the Lp

model overestimates the values of η, in accordance with the previous discussion. In
any case, the NL model still provides an overestimation of the maximum value of η and
this ensures that, even employing the NL model in the optimization, the obtained re-
sults will likely remain on the side of safety.

Figure 2.4: Comparison between sloshing models.

Since in both models used, the liquid rotation θl is assumed to be equal to the con-
tainer rotation θ0, from now on, reference will be made solely to θ as the vertical rota-
tion angle of both the liquid and the container.

2.5 Multi-container configuration

Given a generic number of containers mounted in a row on a rigid support, let Ox y z
be a fixed reference frame and O′x ′y ′z ′ a reference frame attached to the tray hosting
the containers. Recalling that, in our analysis, the containers always maintain their
axis oriented vertically, the z ′ axis is always parallel to the z axis, and θ is defined as the
angle between the x ′ axis and the x axis. Figure 2.5 illustrates this configuration.
Considering the i -th container4, let Oi (which lies on the x ′ axis) be the intersection

4For clarity, it is important to emphasize that all the containers are identical and filled with the same
amount of liquid, consequently, they have the same radius, liquid static height, natural frequency and
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Figure 2.5: Multi-container configuration.

point between the base cirle and its axis. The position vector between Oi and O′ can
be expressed w.r.t. the moving reference system as:

′di = ′ (Oi −O′)=
di

0
0

 , (2.40)

where di is the signed distance from the z ′ axis to the i -th container axis.
Let r be the position vector of O′ w.r.t. the fixed reference system. The position of Oi

w.r.t. the fixed system can be written as:

ri = r+Rz(θ)′di = r+
cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

di

0
0

= r+di . (2.41)

By differentiating (2.41) w.r.t. time, the velocity and acceleration of the i -th container,
according to rigid body kinematics [39], can be written as follows:

ṙi = ṙ+ω×di , (2.42)

r̈i = r̈+α×di +ω× (ω×di ), (2.43)

where ω and α are, respectively, the angular velocity and angular acceleration of the
tray.
Considering the models described in section 2.4, the sloshing height of the i -th con-
tainer can be expressed as follows:

damping coefficient. Therefore, the analyses conducted for the i -th container are valid in general for
each container.
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• for the Lp model:

ηi =
4hm1

mF R

√
x2

i + y2
i +

R2θ̇2

4g
, (2.44)

where the generalized coordinates xi and yi , referring to the first sloshing mode
of the i -th container, are obtained by solving (2.38), provided below for conve-
nience: 

ẍi =−ω2
1xi −2ω1ζ1ẋi − r̈i ,x − r̈i ,z

C1
R xi

ÿi =−ω2
1 yi −2ω1ζ1 ẏi − r̈i ,y − r̈i ,z

C1
R yi

(2.45)

• for the NL model:

ηi =
ξ2

11hm1

mF R

√
x2

i + y2
i , (2.46)

where the generalized coordinates xi and yi , referring to the first sloshing mode
of the i -th container, are the solution of the EOMs (2.20), provided below for
convenience:

(
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1
R2 x2

i

)
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1
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i + ẏ2
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−ω2
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[
1+α1(x2

i + y2
i )w−1
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C1
R xi
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R2 y2
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ÿi + C 2

1
R2 xi yi ẍi =−C 2

1
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i + ẏ2
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−ω2
1 yi

[
1+α1(x2

i + y2
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]−2ω1ζ1[ẏi + C 2
1

R2 (xi ẋi + yi ẏi )yi ]

+r̈i ,x sinθ− r̈i ,y cosθ− r̈i ,z
C1
R yi

(2.47)

A key aspect of the proposed optimizations is determining the time-optimal trajectory
while ensuring that the sloshing height of each container remains within a specified
limit for the entire duration of the trajectory. The sloshing-height limit is therefore a
constraint in the optimization process and must be carefully formulated.
Let ηl i m be the imposed sloshing-height limit; the following inequality must be satis-
fied:

ηi ≤ ηl i m . (2.48)

By employing the formulation expressing ηi , i.e. equations (2.44) and (2.46), we obtain
equation (2.49) for the Lp model, and equation (2.50) for the NL model:

4hm1

mF R

√
x2

i + y2
i +

R2θ̇2

4g
≤ ηl i m , (2.49)

ξ2
11hm1

mF R

√
x2

i + y2
i ≤ ηl i m , (2.50)

which can be elaborated to attribute the sloshing constraint to the generalized coordi-
nates xi , yi : √

x2
i + y2

i ≤ mF R

4hm1

(
ηl i m − R2θ̇2

4g

)
, (2.51)
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√
x2

i + y2
i ≤ mF R

ξ2
11hm1

ηl i m , (2.52)

where (2.51) refers to the Lp model and (2.52) refers to the NL model.
In conclusion, in this section, a chain of dependencies among the involved variables
has been highlighted. In fact, equations (2.51) and (2.52) link ηl i m (which represents
a constraint of the problem) to the generalized coordinates xi and yi , which are func-
tions of the i -th container acceleration from equations (2.45) and (2.47). The accelera-
tion of the i -th container is a function of the motion imposed on the tray, namely r(t )
and θ(t ), as provided by equations (2.41), (2.42), and (2.43). Therefore, starting from
the imposed tray motion, the i -th sloshing height can be determined; consequently,
given a constraint on the sloshing height, it is possible to design a motion law that sat-
isfies such a constraint, which is precisely the objective of the optimizations presented
in this thesis.
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Chapter 3

Time-optimal trajectory planning for
assigned paths

This chapter provides a detailed explanation of the developed algorithms for trajecto-
ries with a predefined path. The parameters that influence the optimization, including
the control inputs, the initial input solution, and the number of constrained contain-
ers, are analyzed.
The aim of this chapter is to identify the most suitable strategy for performing the sim-
ulations in order to obtain the best possible solution, in terms of computational time
and optimization efficacy; for this reason, in this exploration phase, the kinematics of
the robot responsible for handling the containers is not considered. It will be addressed
in chapter 5, in which the trajectory-planning algorithms for experimental tests will be
developed, and maximum joint velocity limits will constitute an additional constraint
for the optimization.

3.1 Trajectory definition

For the problem at hand, the path that the containers must follow is predefined; there-
fore, the objective of the optimization problem is to determine the optimal motion
law that allows the execution of the trajectory in minimal time, while at the same time
binding the sloshing height of the constrained containers under a specified threshold.
For practical reasons, the path is parameterized in terms of a path parameter s, whose
motion law s(t ), ṡ(t ), s̈(t ) describes the temporal evolution of the path, i.e, the time tra-
jectory.
The vector r expressing the position of point O′ can be written as:

r = r(s), s ∈ [0,1]. (3.1)

A graphical representation of r(s) is shown in figure 3.1. Given the motion law s(t ) (to
be sought by the optimization), the trajectory can be defined as follows:

ṙ(s, ṡ) = r′(s)ṡ, (3.2)

r̈(s, ṡ, s̈) = r′′(s)ṡ2 + r′(s)s̈, (3.3)

where the symbology ()′ = ∂()/∂s represents the derivative w.r.t. s. The relationship
between r and s has been defined using B-spline basis function (see [40], [41]). These
functions are particularly suitable and advantageous, for the proposed applications, as
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Figure 3.1: Schematic of the prescribed path.

they allow the definition of the 3D path as a function of s by simply specifying control
points, i.e., points in space around which the path is intended to pass. Through B-
spline functions, these points are connected, defining a path already parameterized as
a function of s. The definition of r(s) using these functions is provided as follows:

r(s) =
m∑

j=0
B d

j (s)p j , s ∈ [0,1], (3.4)

where B d
j (s) are the B-spline basis functions of degree d , in our case d = 4, and p j

represent the m +1 control points.
From equation (3.3), and recalling equation (2.43), the acceleration of each container
can be determined as a function of s and θ by means of the following equation:

r̈i (s, ṡ, s̈,θ, θ̇, θ̈) = r̈(s, ṡ, s̈)+α(θ, θ̇, θ̈)×di (θ)+ω(θ, θ̇)× (
ω(θ, θ̇)×di (θ)

)
, (3.5)

where ω and α are, respectively, the angular velocity and angular acceleration of the
container tray, and di represents the vector (Oi −O′) (figure 2.5) w.r.t. the fixed refer-
ence frame. From equation (3.5), it can be observed that the trajectory of each con-
tainer, ri (t ), is uniquely defined by the functions s(t ) and θ(t ).

3.2 Control input

Considering a system, described by the state vector x(t ), the objective of time-optimal
trajectory planning is to find the optimal control input u(t ) that enables the trajectory
to be executed in minimum time (by minimizing a cost functional), while satisfying all
constraints imposed on both u(t ) and the system state x(t ) (see [42,43]). In this section,
an investigation is conducted regarding which variables to use as control inputs for the
problem and their influence on the final solution.
As discussed in chapter 2, the trajectory followed by each container, denoted by ri (t ),
depends on two quantities, s and θ, so that ri (t ) = ri (s(t ),θ(t )). By determining these
two functions, it is possible to completely describe the system.
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The chosen control input is:

u =
[

us

uθ

]
=

[ ...
s...
θ

]
. (3.6)

The jerk of the two variables is chosen as control input and it is included in the cost
functional; this way, minimizing the jerk ensures a smooth trajectory [40].
Alternatively, one can only select the jerk of the path parameter as control input, namely:

u = ...
s . (3.7)

hence defining θ as a linear function of s, i.e.:

θ = θ0 + s · (θend −θ0), s ∈ [0,1], (3.8)

where θ0 and θend denote the values (which are determined a priori) at the beginning
and at the end of the trajectory, respectively.

3.2.1 Problem Formulation with u = [
...
s ,

...
θ ]T

This case refers to the control input defined in (3.6). Considering nc containers, the
system state is defined by a vector x ∈R6+4nc , namely:

x = [s ṡ s̈ θ θ̇ θ̈ x1 y1 ẋ1 ẏ1 ... xnc ync ẋnc ẏnc ]T . (3.9)

The optimization problem can be formulated as:

min
tend ,u

[∫ tend

0
(1+ksu2

s +kθu2
θ)d t

]
(3.10a)

subject to

ẋ = f(x,u) (3.10b)

x(0) = [0 0 0 θ0 0 0 0 0 0 0 ... 0 0 0 0]T (3.10c)

x(tend ) = [1 0 0 θend 0 0 0 0 − − ... 0 0 − −]T (3.10d)

ηi (t ) ≤ ηl i m i = 1, ...,nc ; t ∈ [0, tend ] (3.10e)

ηi (t ) ≤ 0.2ηl i m i = 1, ...,nc ; t > tend (3.10f)

|us | ≤ us,max ; |uθ| ≤ uθ,max . (3.10g)

The cost functional in (3.10a) represents a trade-off between minimizing the trajec-
tory duration and reducing jerk. The jerk terms are weighted by two constants, ks and
kθ, which must be properly tuned (as k decreases, tend decreases, but maximum ac-
celerations increase). Typically, these constants are chosen within the range: ks,θ ∈
[10−5,10−2].
The function f in (3.10b) includes the integration chain of s and θ from u (3.11a) and
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the sloshing dynamics of each container (3.11b), i.e.:

d

d t



s
ṡ
s̈
θ

θ̇

θ̈

=



ṡ
s̈

us

θ̇

θ̈

uθ

 , (3.11a)

d

d t


xi

yi

ẋi

ẏi

=


ẋi

ẏi

−2ζ1ω1ẋi −ω2
1xi − r̈i ,x −

(
ω2

1
g xi

)
r̈i ,z

−2ζ1ω1 ẏi −ω2
1 yi − r̈i ,y −

(
ω2

1
g yi

)
r̈i ,z

 i = 1, ...,nc . (3.11b)

The constraints in (3.10c, 3.10d) define the initial and final states of x. In (3.10d), it can
be observed that the symbols "-" appear in correspondence of ẋi (tend ) and ẏi (tend )
(i = 1, ...,nc ), indicating that no final condition has been imposed on these variables.
The constraint ensuring that the sloshing height of each container remains below ηl i m
is represented by the inequality constraint in (3.10e), while (3.10f) limits the residual
liquid oscillations to 0.2ηl i m after the trajectory time tend .

3.2.2 Problem Formulation with u = ...
s and θ = θ(s)

This case refers to the control input of equation (3.7).Considering nc containers, the
system state is defined by a vector x ∈ R3+4nc (smaller by three dimensions compared
to the previous case), namely:

x = [s ṡ s̈ x1 y1 ẋ1 ẏ1 ... xnc ync ẋnc ẏnc ]T . (3.12)

The optimization problem can be formulated as:

min
tend ,u

[∫ tend

0
(1+ku2)d t

]
(3.13a)

subject to

ẋ = f(x,u) (3.13b)

x(0) = [0 0 0 0 0 0 0 ... 0 0 0 0]T (3.13c)

x(tend ) = [1 0 0 0 0 − − ... 0 0 − −]T (3.13d)

ηi (t ) ≤ ηl i m i = 1, ...,nc ; t ∈ [0, tend ] (3.13e)

ηi (t ) ≤ 0.2ηl i m i = 1, ...,nc ; t > tend (3.13f)

|u| ≤ umax . (3.13g)

The same considerations from section 3.2.1 can be applied regarding the cost func-
tional (3.13a) and the formulated constraints (3.13c-3.13g). For completeness, the equa-
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Figure 3.2: Considered path for control-input comparison.

tions of the integration chain represented by the function f in (3.13b) are provided:

d

d t

s
ṡ
s̈

=
 ṡ

s̈
u

 , (3.14a)

d

d t


xi

yi

ẋi

ẏi

=


ẋi

ẏi

−2ζ1ω1ẋi −ω2
1xi − r̈i ,x −

(
ω2

1
g xi

)
r̈i ,z

−2ζ1ω1 ẏi −ω2
1 yi − r̈i ,y −

(
ω2

1
g yi

)
r̈i ,z

 i = 1, ...,nc . (3.14b)

3.2.3 Comparison between different control inputs

The two control-input choices, presented in sections 3.2.1 and 3.2.2, are analyzed by
comparing the corresponding optimization results, in terms of trajectory duration (ob-
tained from the algorithm) and computational time. The prescribed path is shown in
figure 3.2 and the following parameters are considered:

• container radius: R = 49 mm;

• liquid static height: h = 80 mm;

• number of containers: nc = 4;

• containers center-to-center distance: ic = 120 mm;

• cost-functional constants: ks = 10−3
[
s6

]
, kθ = 10−4

[
s6/rad2].

Table 3.1 shows the results of the optimizations with the two different control inputs,
and by imposing different sloshing-height limits ηl i m . It can be noted that, for the same
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value of ηl i m , the strategy with u = [ ...
s ,

...
θ

]
, despite increasing the algorithm complex-

ity, only provides a minimal reduction in trajectory duration. Therefore, from this point
onward, reference will be made to the optimization model described in section 3.2.2,
where the control input is represented by u = ...

s and θ is a linear function of s (see
(3.8)). Moreover, by analyzing the computation times tcalc , it can be observed that in
some cases they even double when using u = [ ...

s ,
...
θ

]
instead of u = ...

s . For this reason,
since a very large number of optimizations were performed in the subsequent analy-
ses, u = ...

s was used also to accelerate the process.

Table 3.1: Comparison between control inputs.

ηl i m u = [
...
s ,

...
θ ] u = ...

s

10 mm tend = 2.82s tend = 3.07s

tcalc = 244.60s tcalc = 125.83s

20 mm tend = 2.29s tend = 2.45s

tcalc = 149.15s tcalc = 86.52s

30 mm tend = 2.08s tend = 2.18s

tcalc = 76.68s tcalc = 104.04s

3.3 Considerations on local/global minima

Regarding the resolution of the optimization algorithm, an aspect that has to be taken
into account is that, depending on the chosen initial-guess motion law si nput , the
achievement of a global solution is not granted a priori (a detailed analysis of this as-
pect is provided in section 3.3.1). Since the main objective of this thesis is to provide
fast and efficient methods for the time-optimal trajectory planning of high-complexity
problems, the thorough analysis of globalization techniques lies beyond the scope of
the presented work. It is worth mentioning that the literature offers various techniques
for obtaining global minima, such as multi-start algorithms [44] or particle swarm op-
timization [31]. In particular, in the latter case, a computational time of 1006.1 s is
reported in the determination of 5 optimal values. In our case, the problem at hand is
more complex, and this can be attributed to:

• the large-dimension arrays involved, due to the fact that the continuum time
domain has to be discretized in a sufficient number of time steps;

• the EOMs reproducing the liquid sloshing behavior introduce strong non-linearities
inside the dynamical system that is incorporated within the optimization algo-
rithm.

Notwithstanding the aforementioned limitations, the proposed resolution algorithms
offer acceptable solutions within reasonable computational times, of just tens of sec-
onds. This comparison underscores the advantage of our approach: despite dealing
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Figure 3.3: Trajectory parameters.

with a problem of much higher dimension and more complex constraints, our method
achieves convergence in a fraction of the time.

3.3.1 Initial attempt trend of s

Since a global solution is not obtained, it is necessary to identify the parameters for
which the optimizer converges to a local minimum or another. In order to initiate the
optimization process, the optimizer must be provided with an initial trend of s, de-
noted as si nput , from which it will iteratively converge to the final solution. Therefore,
the trend si nput may influence the obtained results. In this section, we analyze the ef-
fect of si nput on the final solution. Numerous simulations have been performed for
this purpose, considering the following scenario:

• a single container, for simplicity, centered at point O′ (figure 2.5);

• the semicircular path in figure 3.3, characterized by a radius r and an inclination
angle with respect to the horizontal plane equal to γ;

by varying the following parameters:

• the container radius R;

• the imposed sloshing-height limit ηl i m ;

• the path radius r (figure 3.3);

• the angle γ (figure 3.3).

For each parameter set, an optimization was performed by providing six different si nput

trends to the algorithm, to assess whether varying this trend could lead to a different
solution. Should this occur, the objective was to evaluate which specific si nput most
frequently resulted in a better solution, i.e., a solution characterized by a smaller tend .
For the initial guess si nput , the ratio is to choose, among the ones available, the motion
law that satisfies the following conditions: the path parameter s needs to start from 0
and to increase monotonically to 1. Based on the most common motion laws, different
candidate initial guesses si nput of the algorithm can be considered: the ones used for
our analysis are illustrated in figure 3.4. In particular:
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• s(t) as a linear function, figure 3.4a;

• s̈(t) as a piecewise constant function, figure 3.4b;

• s̈(t) as a linear function, figure 3.4c;

• s̈(t) as a 5th-degree polynomial function, figure 3.4d;

• s̈(t) as a 7th-degree polynomial function, figure 3.4e;

• s̈(t) as a modified trapezoidal function, figure 3.4f.

Each si nput was chosen with a duration of 5 s, in any case, no significant differences
were observed when varying this value around this setting.

(a) (b) (c)

(d) (e) (f)

Figure 3.4: si nput trends.

For instance, the results obtained with the following parameter set are shown in fig-
ure 3.5: R = 49 mm, r = 400 mm, γ = π/2, and ηl i m = 30 mm. Specifically, the figure
presents the trends of the optimized motion laws obtained starting from the six differ-
ent si nput values, along with the trajectory duration tend for each optimization. The
corresponding si nput to each sub-figure in 3.5 is the counterpart in figure 3.4, mean-
ing that, for example, the optimized trends in 3.5a are obtained by choosing the trends
shown in 3.4a as si nput , and so on.
It can be observed that, depending on the choice of si nput , the optimizer may con-
verge to a motion-law type or another: the first motion-law type has a duration of
tend = 1.7239s and it is obtained with the si nput trends illustrated in figures 3.4a, 3.4c,
3.4d, 3.4f, whereas the second motion-law family is characterized by a tend = 1.5319s
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and it is obtained with the si nput trends of figures 3.4b, 3.4e. Therefore, depending on
which si nput trend is used, the percentage difference in the obtained final time is equal
to:

∆tend ,% = 100
1.7239 s−1.5319 s

1.7239 s
= 11.14%. (3.15)

Since it has been verified that the initial attempt trend influences the obtained final
solution, we now aim to determine whether one of these trends generally yields a so-
lution with the smaller tend as the four parameters (R, r , γ, ηl i m) vary. To this end, for
each si nput , the tend values obtained for every parameter set were summed. A total of
77 different parameter sets were analyzed. Thus, if one si nput consistently produces a
lower tend compared to the others across most parameter sets, the sum of the 77 tend

values obtained with that particular si nput should be significantly lower than the sums
corresponding to the other si nput trends. The sums of the 77 times obtained for each
si nput are shown in table 3.2.
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Figure 3.5: Optimized s trends.

Table 3.2: Total times with different si nput .

si nput Linear Triangular Cubic Poly 5 Poly 7 Trapezoidal

tT OT =∑77
i=1 tend ,i 133.45s 134.08s 134.66s 134.41s 134.52s 133.70s

By examining table 3.2, it can be observed that no total time is noticeably lower than
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the others. In fact, although the difference between the tend values obtained with dif-
ferent si nput trends can be around 10% for a single optimization, as shown by equation
(3.15), this difference is reduced when considering all the optimization cases, dropping
to 0.89%. This suggests that, among the candidate ones, there is no si nput trend that
generally leads to a lower tend .
Therefore, in conclusion, if the goal is to achieve the minimum possible time, it is ad-
visable to perform all the tests with the different si nput trends for each individual case
to identify the one that makes the algorithm converge to the minimal-time motion law.
This multi-start exploration is feasible and can be performed in a reasonable amount
time, since each simplified optimization (the robot kinematics is not considered and
only a container is taken into account) runs in a very short computational time. In any
case, if multiple solutions are obtained with different inputs, the difference is never
significant.

3.3.2 Effectiveness of optimized motion law

To demonstrate the effectiveness of the optimized motion laws presented in the previ-
ous section compared to the non-optimized ones, this section presents a comparison
of the sloshing-height trends obtained using the optimized motion law in figure 3.5b,
with those obtained using standard motion laws of equal duration tend . Specifically,
the comparison includes a 7th-degree polynomial motion law and a modified trape-
zoidal motion law. The resulting profiles for these three motion laws are shown in fig-
ure 3.6. It is important to recall that the optimization was performed by imposing a
constraint of ηl i m = 30 mm.
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Figure 3.6: Comparison among sloshing-heights trends resulting from optimized and
non-optimized motion laws.

It can be observed that non-optimized motion laws result in greater sloshing heights
compared to the optimized one, exceeding the imposed limit ηl i m . The advantage of
using the optimized motion law becomes more evident when reducing ηl i m . Figure 3.7
presents the results obtained by imposing ηl i m = 10 mm. Specifically, figure 3.7a shows
the sloshing-height trends, while figure 3.7b shows the comparison between the mo-
tion laws (specifically, the accelerations s̈) used to obtain the sloshing-height trends.
In this second case the benefit of employing the optimized motion law is evident. The
difference between optimized and non-optimized motion laws becomes even more
pronounced when considering the case of multiple containers, further highlighting the
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necessity of optimization. Chapter 5 will present the results obtained from both simu-
lations and experiments using optimized and non-optimized motion laws with multi-
ple containers. In such cases, non-optimized motion laws lead to sloshing heights up
to 70% higher than those obtained with optimized laws.
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(a) Sloshing-height trends.
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Figure 3.7: Comparison among sloshing heights and motion laws in optimized and
non-optimized cases.

3.3.3 Remarks

Taking as a reference the results discussed in section 3.3.1, we provide below some con-
siderations that further justify the choice not to adopt a global solution search strategy
for these applications. We will highlight the complexity of the problems addressed and
the resulting computational difficulties. In the graphs shown in figure 3.5, as previ-
ously explained, two possible solutions for the analyzed problem are represented. To
better understand the nature of these solutions and the concept of a problem mini-
mum, we consider figure 3.8. This figure represents the set of possible solutions for
a 2-dimensional problem. Each point on the surface corresponds to a solution, de-
fined by its two coordinates in the x y plane, while its height along the z axis represents
the value of the functional F associated with that solution, i.e. the value pf F (x, y). It
can be observed that, as the chosen point on the surface varies, the functional value
changes accordingly. The objective of our optimizations is to identify the point on the
surface that has the lowest elevation along the z axis, i.e., the minimum of the func-
tional. Drawing an analogy with figure 3.8, we can interpret the two solutions repre-
sented in figure 3.5 as two local minima of the surface in 3.8. From a visual perspec-
tive, it is evident that the choice of the starting point influences convergence towards
one minimum rather than another: depending on the initial position on the surface,
the optimization algorithm may lead to one valley or another. These starting points
are nothing more than the si nput previously analyzed. The adoption of a multistart
strategy for searching the global minimum consists of considering a certain number
of si nput distributed over the entire surface. If these initial points are chosen with suf-
ficient density, some of them will be close to the deepest valley, thereby allowing the
identification of the global minimum. However, this strategy becomes very difficult
when dealing with high-dimensional problems. The simplicity of the representation
in figure 3.8, which refers to a 2-dimensional problem, is no longer applicable in our

39



Chapter 3. Time-optimal trajectory planning for assigned paths

0
6

6

5
F
(x

,y
)

4

y

4

x

10

2 2
0 0

Figure 3.8: 2-dimensional minimization problem.

case. In fact, the problem under analysis has a dimensionality of 151 (the given si nput

is an array of 151 components), far greater than 2. This means that each point on the
surface is not characterized by only two coordinates, x and y , but rather by 151 com-
ponents along 151 distinct axes. Consequently, applying a multistart algorithm, which
would need to distribute the si nput in the space R151, becomes extremely difficult and
expensive in computational terms. In conclusion, given the high complexity of the
problem, determining the global minimum solution would require an enormous com-
putational effort, making it infeasible for the purposes of the applications for which
the developed algorithms are designed. For this reason, global optimization is not the
objective of this thesis.

3.4 Influence of the container number

As the number of containers increases, the complexity of the problem also increases,
as for each additional container, the system state x increases by 4 dimensions, and two
inequality constraints are added, represented by inequalities (3.13e, 3.13f). However, it
may not be necessary to consider all the containers a priori in the optimization. In this
section, an analysis will be carried out to determine the minimum number of contain-
ers to include in the optimization, while still satisfying the maximum sloshing-height
limit for each container. For this purpose, numerous simulations have been conducted
considering different scenarios, in terms of:

• the number of containers: configurations with 4, 6, and 8 containers are consid-
ered, as shown in figure 3.9, which also includes the naming conventions used
to refer to each container from now on: IC and EC denote the internal and ex-
ternal containers at the initial time of the trajectory, respectively; the remaining
containers follow the numbering from 2, ..., (nc −1);

• the trajectories: considering the two paths r(s) shown in figures 3.10 and 3.11, the
three considered trajectories are defined as follows:
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– Trajectory 1A: it is inherited from Path 1 by setting θ0 = 0, θend =π; as shown
in figure 3.12 where, for the sake of clarity, the configuration with 4 contain-
ers is represented, the tray performs a total rotation equal to π.

– Trajectory 1B: it is inherited from Path 1 with θ0 = 0, θend = 2π; as shown in
figure 3.13 where, for the sake of clarity, the configuration with 4 containers
is represented, the tray performs a total rotation equal to 2π.

– Trajectory 2: it is inherited from Path 2 with θ0 = 0, θend = π; as shown in
figure 3.14 where, for the sake of clarity, the configuration with 4 containers
is represented, the tray performs a total rotation equal to π.

For each trajectory and for each container configuration, three optimization strategies
will be investigated, namely:

• constraining the sloshing height on all containers;

• constraining the sloshing height on a single outer container (e.g., EC);

• constraining the sloshing height on both the outer containers (e.g., IC, EC).

The optimizations will be performed by imposing ηl i m = 15 mm, and considering a
center-to-center distance between the containers of ic = 150 mm.

Figure 3.9: Container configurations.

Figure 3.10: Path 1. Figure 3.11: Path 2.

In the following figures, the results of the optimizations described in section 3.4 are
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Figure 3.12: Trajectory 1A.

Figure 3.13: Trajectory 1B.

presented. Specifically, the trends of the sloshing heights for each container during
the trajectories are shown. The results for Trajectory 1A are reported in figure 3.15,
in particular in figure 3.15a the sloshing heights of all the containers have been con-
strained, in figure 3.15b the sloshing height of only EC has been constrained, and in
figure 3.15c the sloshing heights of both IC and EC have been constrained. Similarly,
the results are also reported for Trajectory 1B (figure 3.16) and Trajectory 2 (figure 3.17).
The mentioned figures present the results only for the configuration with 8 containers;
the results for the configurations with 4 and 6 containers are reported in appendix A.
For clarity, each figure caption specifies the specific case to which it refers, in terms of:
trajectory, number of containers, and on which container the sloshing height has been
constrained.
By analyzing the graphs, the following considerations can be made. First, it is observed
that constraining all the sloshing heights always ensures compliance with the maxi-
mum limit for all the containers. On the other hand, constraining only the sloshing
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Figure 3.14: Trajectory 2.

height of EC allows to satisfy these conditions for all the containers only if EC is sub-
jected to the highest accelerations throughout the entire trajectory. This phenomenon
occurs exclusively for Trajectory 1A (figures A.1b, A.2b, 3.15b), in which EC remains
external throughout the entire trajectory (figure 3.12), thus experiencing the highest
accelerations and representing the worst case for the specific trajectory to be opti-
mized. However, for a generic trajectory, it is unlikely that a single container will be
subjected to this condition throughout the entire motion, making this strategy less ad-
vantageous.
In contrast, constraining both internal and external containers proves beneficial be-
cause it ensures compliance with the sloshing-height limits for all containers while
requiring less computational time compared to constraining all containers. The only
exception to this statement is the case illustrated in figures 3.17a and 3.17c, where the
optimization on all containers not only results in lower computational time but also
leads to a slight reduction in the trajectory duration. This phenomenon can be at-
tributed to the fact that, as discussed in section 3.3, the optimizer may converge to a
local minimum. However, in most of the analyzed cases, the optimization constraining
only the IC and EC sloshing heights proves to be the most efficient strategy, and even
in the one scenario where this is not the case, the solution obtained is still very similar
(tend differs by only 0.01s, which represents a negligible value), and the computational
time remains limited.
Another advantage of limiting the optimization on IC and EC is the scalability of the
algorithm w.r.t. the number of containers. Indeed, as the number of containers in-
creases, it is sufficient to increase the distance between IC and EC without the need to
modify the size of the system state or introduce new constraint equations.
An additional consideration is that, although constraining only the IC and EC sloshing
heights allows the sloshing limit to be satisfied for all containers, in some graphs this
property appears not to be met. For example, in figure 3.16c, the limit is violated for
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container 7. However, this is due solely to a computational approximation. Indeed, the
curve shown is not a direct result of the optimizer but it is recalculated afterward based
on the optimized profiles of IC and EC. These profiles are returned as arrays with 151
components, a relatively limited sampling rate. Consequently, when calculating the
profiles of the other containers, which involves solving a second-order differential sys-
tem, the solver applies interpolation to the available data, introducing an error that
alters the profile trends. A confirmation of this statement can be found by comparing
the curves in figure 3.16c with those in figure 3.16a: the values of tend and the profiles
of IC and EC are indeed exactly the same, thus representing the same solution, and in-
dicating that the discrepancy in the sloshing-height profiles is due to numerical error
in solving the differential equations. Since the solution is the same, the sloshing-height
trend for each container must also be the same.
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Figure 3.15: Trajectory 1A, 8 containers.
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Figure 3.16: Trajectory 1B, 8 containers.
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Figure 3.17: Trajectory 2, 8 containers.
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Chapter 4

Time-optimal trajectory planning for
point-to-point motion

Starting from the results of chapter 3, in this chapter, algorithms and results related
to time-optimal trajectory planning along paths that are not assigned a priori will be
analyzed. Only fixed points (section 4.2) or points whose position can vary within
fixed volumes (section 4.3) will be assigned to the optimizer, and the task of the op-
timization will be to find the optimal path passing through these points, along with
the optimal motion law. The first case, where the path must pass through the assigned
points, will be referred to as point-to-point motion with assigned waypoints. The sec-
ond case, where the points through which the path must pass can vary within assigned
volumes, will be referred to as point-to-point motion with assigned way-volumes, and
in this case, the optimal position of each point within its assigned volume will also be
determined by the optimizer. As in the previous chapter, the robot kinematics is not
included within the considered optimization algorithms.
The same container configurations and nomenclature used in figure 3.9 will be ap-
plied to these analyses. Based on the results presented in section 3.4, only the sloshing
heights of IC and EC will be constrained. The paths from section 3.4 (figures 3.10 and
3.11), will be used as references to define the waypoints and way-volumes, allowing a
meaningful comparison of results.

4.1 Control input

Unlike the models presented in sections 3.2.1 and 3.2.2, since no path is predefined, a
path parameter s cannot be used. For this reason, the system state x directly includes
the position array r ∈R3, which identifies the position of O′ w.r.t. the fixed frame Ox y z
(figure 2.5). Given the absence of the parameter s, the angle θ is treated as an indepen-
dent variable. Therefore, based on the same considerations made in section 3.2, the
control input is defined as:

u =
[

ur

uθ

]
=

[ ...
r...
θ

]
=


...
rx...
ry...
rz...
θ

 , (4.1)

therefore, the optimizer will provide the optimal trends of r(t ) and θ(t ).
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Figure 4.1: Point-to-point with assigned waypoints generic trajectories.

4.2 Assigned waypoints

Figure 4.1 shows a graphical representation of the problem at hand. It can be observed
that multiple paths are possible, as in these optimizations only meaningful waypoints
(highlighted in red in the figure) are assigned and the path is free.

4.2.1 Problem formulation

The state of the system is represented by the array x ∈R20, namely:

x = [rT ṙT r̈T θ θ̇ θ̈ xIC yIC ẋIC ẏIC xEC yEC ẋEC ẏEC ]T . (4.2)

The optimization problem can be formulated as:

min
tend ,u

[∫ tend

0
(1+kr uT

r ur +kθu2
θ)d t

]
(4.3a)

subject to

ẋ = f(x,u) (4.3b)

x(0) = [ rT
0 0T 0T θ0 0 0 0 0 0 0 0 0 0 0]T (4.3c)

x(tend ) = [rT
end 0T 0T θend 0 0 0 0 − − 0 0 − −]T (4.3d)

ηi (t ) ≤ ηl i m i = IC , EC ; t ∈ [0, tend ] (4.3e)

ηi (t ) ≤ 0.2ηl i m i = IC , EC ; t > tend (4.3f)

|ur | ≤ ur,max ; |uθ| ≤ uθ,max (4.3g)

r(t j ) = r j j = 1, ...,np ; t j ∈ (t0, tend ) (4.3h)

rz ∈ [rz,mi n , rz,max]. (4.3i)
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4.2. Assigned waypoints

The function f in (4.3b) includes the integration chain of r and θ from u (4.4a) and the
sloshing dynamics of each container (4.4b), namely:

d

d t



r
ṙ
r̈
θ

θ̇

θ̈

=



ṙ
r̈

ur

θ̇

θ̈

uθ

 , (4.4a)

d

d t


xi

yi

ẋi

ẏi

=


ẋi

ẏi

−2ζ1ω1ẋi −ω2
1xi − r̈i ,x −

(
ω2

1
g xi

)
r̈i ,z

−2ζ1ω1 ẏi −ω2
1 yi − r̈i ,y −

(
ω2

1
g yi

)
r̈i ,z

 i = IC ,EC . (4.4b)

The constraints in (4.3c, 4.3d) define the initial and final states of x. In (4.3d), it can
be observed that the symbols "-" appear in correspondence of ẋIC (tend ), ẏIC (tend ) and
ẋEC (tend ), ẏEC (tend ), indicating that no final condition was imposed on these variables.
The constraint ensuring that the sloshing height of the external containers remains
below ηl i m is represented by the inequality constraint in (4.3e), while (4.3f) limits the
residual liquid oscillations to 0.2ηl i m after the trajectory time tend . Condition (4.3g)
constrains the maximum absolute value that each component of u can assume. The
waypoints are imposed in equation (4.3h), where np represents the number of selected
points1, the latter being represented by r j . No condition is imposed on θ at time t j .
Condition (4.3i) ensures that the computed path does not assume forbidden vertical
positions.

4.2.2 Considered trajectories and selected points

Referring to the paths shown in figures 3.10 and 3.11, figures 4.2 and 4.3 display the
same paths, on which specific points are selected, representing the waypoints for the
point-to-point optimizations, i.e., the r j of equation (4.3h). These waypoints are se-
lected along the original paths to ensure that the optimized paths remain similar to
the initial ones, thereby enabling a meaningful comparison of the results.
The considered trajectories are defined as follows:

• Trajectory Points 1A: determined by the optimizer based on the waypoint on Path
1 (highlighted in the figure 4.2) and by imposing θ0 = 0, θend =π;

• Trajectory Points 1B: determined by the optimizer based on the waypoint on Path
1 (highlighted in the figure 4.2) and by imposing θ0 = 0, θend = 2π;

• Trajectory Points 2: determined by the optimizer based on the 8 waypoints on
Path 2 (highlighted in the figure 4.3) and by imposing θ0 = 0, θend =π.

1The waypoints in (4.3h) do not include the initial and final points of the trajectory, which are im-
posed by (4.3c) and (4.3d).
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Figure 4.2: Waypoints on Path 1.

Figure 4.3: Waypoints on Path 2.

4.2.3 Optimization results

This section presents the results from the optimizations obtained by considering the
three container configurations (figures 3.9), the three aforementioned trajectories, and
by constraining only the sloshing height of IC and EC .
In addition to the graphs representing the sloshing height trends, which are reported
as in chapter 3, the figures related to the optimized paths are also provided. Indeed,
as repeatedly emphasized, unlike the optimizations proposed in chapter 3, the opti-
mizations for point-to-point motion provide, in addition to the optimal motion law,
the optimal 3D path and the optimal trend of θ. Therefore, the optimal paths obtained
from the assigned waypoints are presented below2 together with the assigned paths,
allowing for a comparison of their differences, specifically: figure 4.4 shows the com-
parison between the assigned path of Trajectory 1A (section 3.4) in red and the optimal
path of Trajectory Points 1A (section 4.2.2) in blue; figure 4.5 shows the comparison
between the assigned path of Trajectory 1B (section 3.4) in red and the optimal path of
Trajectory Points 1B (section 4.2.2) in blue; figure 4.6 shows the comparison between
the assigned path of Trajectory 2 (section 3.4) in red and the optimal path of Trajectory

2To avoid redundancy, only the graphs related to the configuration with 4 containers are shown; very
similar results are obtained with 6 and 8 containers as well.
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Points 2 (section 4.2.2) in blue. Observing these figures, one can notice the strategies
applied by the optimizer in order to reduce the motion duration and limit the sloshing
heights. In particular, from figures 4.4 and 4.5, it is evident that the optimizer seeks to
connect the central waypoint with the initial and final positions via the shortest pos-
sible path. This results in an optimized path that is shorter than the initial one, which
can be traversed more quickly. Regarding figure 4.6, it is observed that, for this path,
the optimizer adopts an opposite strategy compared to the previous cases, namely, the
optimized path is longer than the initial one. This is due to the fact that the initial path,
although shorter, presents abrupt changes in direction, i.e., very tight curves. Travers-
ing these tight curves at high speeds induces significant centripetal accelerations on
the containers, which consequently result in increased sloshing. To mitigate this ef-
fect, the optimizer determines a path that, at the cost of an increased length, presents
smoother and more rounded curves, which can be traversed more rapidly without ex-
citing the containers with high centrifugal forces. For completeness, the optimized
trends of θ, θ̇, and θ̈ for these three cases are also reported. Specifically, figure 4.7a
shows the trends related to the path in figure 4.4; figure 4.7b shows the trends related
to the path in figure 4.5; finally, figure 4.7c shows the trends related to the path in figure
4.6. It can be observed that, as expected, the higher the ratio between ∆θ = (θend −θ0)
and the path length, the greater the maximum angular accelerations θ̈. It is interest-
ing to observe the strategy adopted by the optimizer in defining the trends in figure
4.7c. It can be seen that the rotation is almost entirely performed in the first part of the
motion, remaining nearly constant in the second part, which results in a purely trans-
lational motion of the tray.
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Figure 4.4: Comparison of Trajectory Points 1A, 4 containers case.

Regarding the graphs of the sloshing-height trends:

• figures 4.8 show the sloshing-height trends for Trajectory Points 1A;

• figures 4.9 show the sloshing-height trends for Trajectory Points 1B;

• figures 4.10 show the sloshing-height trends for Trajectory Points B.

It can be observed that, even in this case, constraining the sloshing heights only for
IC and EC proves to be a successful choice, as the sloshing-height limits for each con-
tainer are satisfied. The aforementioned figures also report the duration of the opti-
mized motion tend and the computation time tcalc . For convenience, these times are
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Figure 4.5: Comparison of Trajectory Points 1B, 4 containers case.
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Figure 4.6: Comparison of Trajectory Points B, 4 containers case.
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Figure 4.7: Comparison of θ trends.

summarized in the following tables, which also include the times related to the op-
timizations with assigned paths from chapter 3, allowing for a comparison and the
determination of the optimal strategy. Specifically:

• table 4.1 presents the times for Trajectory 1A;

• table 4.2 presents the times for Trajectory 1B;
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• table 4.3 presents the times for Trajectory 2;

Table 4.1: Comparison Trajectories 1A.

Optimization type 4 containers 6 containers 8 containers

Assigned path tend = 2.28s tend = 2.45s tend = 2.63s

tcalc = 11.89s tcalc = 12.45s tcalc = 13.02s

Assigned points tend = 2.20s tend = 2.37s tend = 2.53s

tcalc = 16.22s tcalc = 18.19s tcalc = 22.11s

Table 4.2: Comparison Trajectories 1B.

Optimization type 4 containers 6 containers 8 containers

Assigned path tend = 2.87s tend = 3.33s tend = 3.71s

tcalc = 11.75s tcalc = 10.18s tcalc = 13.18s

Assigned points tend = 2.54s tend = 2.95s tend = 3.33s

tcalc = 20.23s tcalc = 25.23s tcalc = 69.56s

Table 4.3: Comparison Trajectories 2.

Optimization type 4 containers 6 containers 8 containers

Assigned path tend = 4.73s tend = 4.87s tend = 5.01s

tcalc = 89.70s tcalc = 71.57s tcalc = 129.89s

Assigned points tend = 4.95s tend = 4.95s tend = 4.95s

tcalc = 20.19s tcalc = 18.48s tcalc = 15.33s

From tables 4.1 and 4.2, it can be observed that the point-to-point optimization leads
to a slight but beneficial reduction of tend . However, it is important to note that, unlike
the first two cases, in table 4.3, optimizing the path with assigned waypoints does not
offer any advantage compared to optimizing with a predefined path. In fact, it even
results in a higher tend for the cases with 4 and 6 containers. This can be attributed
to the fact that, following the formulation of this problem in section 4.2.1, the times t j

at which the waypoints must be reached are predetermined, and these assigned times
may not be the optimal times for reaching the positions r j . Therefore, by imposing
both the waypoint and the time for the passage, we are limiting the optimizer. This
limitation becomes more pronounced as the number of imposed waypoints increases,
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which is why for trajectories 1A and 1B, where only one waypoint is imposed, this effect
is not evident. To address this limitation, the idea is to impose way-volumes instead of
waypoints, hence giving the optimizer more freedom in determining the exact position
in space at time t j . This new strategy is presented in section 4.3.
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Figure 4.8: Sloshing heights for Trajectory Points 1A.
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Figure 4.9: Sloshing heights for Trajectory Points 1B.
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Figure 4.10: Sloshing heights for Trajectory Points 2.
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Figure 4.11: Point-to-point with assigned way-volumes generic trajectories.

4.3 Assigned way-volumes

Figure 4.11 shows a graphical representation of the problem at hand. It can be ob-
served that multiple paths are possible, as in these optimizations only meaningful way-
volumes (highlighted in red in the figure) are assigned and the path is free.

4.3.1 Problem formulation

The problem formulation is identical to the one presented in section 4.2.1, except for
condition (4.3h), which is modified as follows:(

r(t j )− r j
)T (

r(t j )− r j
)≤ ρ2 j = 1, ...,nv ; t j ∈ (t0, tend ), (4.5)

where nv represents the number of way-volumes. Spheres have been utilized, with ρ

denoting the radius set to ρ = 50 mm.

4.3.2 Considered trajectories and selected volumes

Referring to the paths in figures 3.10 and 3.11, figures 4.12 and 4.13 illustrate the same
paths now provided with specific volumes, which represent the way-volumes for the
optimizations. As in section 4.2.2, these way-volumes are selected along the original
paths to ensure that the optimized paths remain similar to the initial ones, thereby
enabling a meaningful comparison of the results.

The considered trajectories are defined as follows:

• Trajectory Volumes 1A: determined by the optimizer based on the way-volume
on Path 1 and by imposing θ0 = 0, θend =π;

• Trajectory Volumes 1B: determined by the optimizer based on the way-volume
on Path 1 and by imposing θ0 = 0, θend = 2π;

• Trajectory Volumes 2: determined by the optimizer based on the 8 way-volumes
on Path 2 and by imposing θ0 = 0, θend =π.
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Figure 4.13: Way-volumes on Path 2.

4.3.3 Optimization results

As in section 4.2.3, this section presents the results from the optimizations obtained by
considering the three container configurations (figures 3.9), the three trajectories just
described, and by constraining only the sloshing height of IC and EC .
The optimal paths obtained from the assigned way-volumes are shown3, specifically:
figure 4.14 shows the comparison between the assigned path of Trajectory 1A (section
3.4) in red and the optimal path of Trajectory Points 1A (section 4.3.2) in blue; figure
4.15 shows the comparison between the assigned path of Trajectory 1B (section 3.4)
in red and the optimal path of Trajectory Points 1B (section 4.3.2) in blue; figure 4.16
shows the comparison between the assigned path of Trajectory 2 (section 3.4) in red
and the optimal path of Trajectory Points 2 (section 4.3.2) in blue. As in the previous
section, the strategies adopted by the optimizer to reduce tend in the definition of the
optimized trajectory can be observed. In particular, for the cases shown in figures 4.14
and 4.15, it can be seen that the optimal trajectory is tangent at the innermost point of
the imposed way-volume. This ensures that the optimized path is as short as possible,
allowing it to be traversed in a shorter time. In the case shown in figure 4.16, exactly as

3To avoid redundancy, only the graphs related to the configuration with 4 containers are shown, very
similar results are obtained with 6 and 8 containers as well.
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Chapter 4. Time-optimal trajectory planning for point-to-point motion

in the previous section, the optimizer adopts another strategy: it defines an optimized
path that is longer than the initial one. Despite its increased length, this new path
presents smoother curves, which result in lower centripetal accelerations compared to
the tight turns of the initial path. Consequently, these smoother curves allow for higher
traversal velocity. For completeness, the optimized trends of θ, θ̇, and θ̈ for these three
cases are also reported. Specifically, figure 4.17a shows the trends related to the path in
figure 4.14; figure 4.17b shows the trends related to the path in figure 4.15; finally, figure
4.17c shows the trends related to the path in figure 4.16. It can be observed that, as
expected, the higher the ratio between ∆θ = (θend −θ0) and the path length, the greater
the maximum angular accelerations θ̈. It is interesting to observe the strategy adopted
by the optimizer in defining the trends in figure 4.17c. As in section 4.2.3 it can be seen
that the rotation is almost entirely performed in the first part of the motion, remaining
nearly constant in the second part, which results in a purely translational motion of
the tray.
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Figure 4.14: Comparison of Trajectory Volumes 1A, 4 containers case.
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Figure 4.15: Comparison of Trajectory Volumes 1B, 4 containers case.

The graphs of the sloshing-height trends are shown, in particular:

• figure 4.18 shows the sloshing-height trends for Trajectory Volumes 1A;

• figure 4.19 shows the sloshing-height trends for Trajectory Volumes 1B;

• figure 4.20 shows the sloshing-height trends for Trajectory Volumes 2.
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Figure 4.16: Comparison of Trajectory Volumes B, 4 containers case.
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Figure 4.17: Comparison of θ trends.

Observing the trends of the sloshing heights, it can be seen that, even for this type
of optimization, optimizing only the external containers allows compliance with the
maximum sloshing-height limit for each container. It is important to analyze the tend

of the optimizations, which are reported along with the computation times in the sloshing-
height graphs. Indeed, in the previous section, it was shown that the point-to-point
optimization with assigned waypoints was not advantageous for Trajectory 2, as as-
signing both the waypoints and the passage times t j limited the optimizer. This limi-
tation has been addressed in this section by assigning volumes instead of points. Let
us now analyze the obtained times. For comparison purposes, the times related to
the optimizations with assigned paths and point-to-point optimization with assigned
waypoints are also reported in the following tables, specifically:

• table 4.4 presents the times for Trajectories 1A;

• table 4.5 presents the times for Trajectories 1B;

• table 4.6 presents the times for Trajectories 2.

From tables 4.4 and 4.5, it can be observed that optimizing the path by assigning way-
volumes always leads to a reduction in trajectory duration (tend ) compared to the case
with an assigned path, the same applies comparing the way-volume case with the case
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Chapter 4. Time-optimal trajectory planning for point-to-point motion

Table 4.4: Comparison Trajectories 1A.

Optimization type 4 containers 6 containers 8 containers

Assigned path tend = 2.28s tend = 2.45s tend = 2.63s

tcalc = 11.89s tcalc = 12.45s tcalc = 13.02s

Assigned points tend = 2.20s tend = 2.37s tend = 2.53s

tcalc = 16.22s tcalc = 18.19s tcalc = 22.11s

Assigned volumes tend = 2.15s tend = 2.33s tend = 2.49s

tcalc = 16.68s tcalc = 15.11s tcalc = 13.63s

Table 4.5: Comparison Trajectories 1B.

Optimization type 4 containers 6 containers 8 containers

Assigned path tend = 2.87s tend = 3.33s tend = 3.71s

tcalc = 11.75s tcalc = 10.18s tcalc = 13.18s

Assigned points tend = 2.54s tend = 2.95s tend = 3.33s

tcalc = 20.23s tcalc = 25.23s tcalc = 69.56s

Assigned volumes tend = 2.51s tend = 2.93s tend = 3.32s

tcalc = 22.00s tcalc = 49.70s tcalc = 44.94s

Table 4.6: Comparison Trajectories 2.

Optimization type 4 containers 6 containers 8 containers

Assigned path tend = 4.73s tend = 4.87s tend = 5.01s

tcalc = 89.70s tcalc = 71.57s tcalc = 129.89s

Assigned points tend = 4.95s tend = 4.95s tend = 4.95s

tcalc = 20.19s tcalc = 18.48s tcalc = 15.33s

Assigned volumes tend = 4.14s tend = 4.14s tend = 4.14s

tcalc = 26.55s tcalc = 15.73s tcalc = 18.03s

of point-to-point optimization with assigned waypoints, although the time reduction
is negligible for Trajectory 1A and 1B. This difference is even more pronounced in ta-
ble 4.6, where, in the case with 8 containers, optimizing the path with assigned way-
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volumes results in a 17.37% reduction in tend compared to the first optimization, and
in a 16.36% reduction in tend compared to the point-to-point with assigned waypoint
optimization. It can therefore be concluded that point-to-point optimization with as-
signed way-volumes not only provides a better solution in cases where optimization
with assigned waypoints failed (e.g., in the case of Trajectory 2), but it achieves this
result with a significant margin. Therefore, point-to-point optimization with assigned
way-volumes appears to be the most advantageous strategy to adopt when no prede-
fined path is assigned.
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Figure 4.18: Sloshing heights for Trajectory Volumes 1A.
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Figure 4.19: Sloshing heights for Trajectory Volumes 1B.
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Figure 4.20: Sloshing heights for Trajectory Volumes 2.
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Chapter 5

Experimental campaign

This chapter presents the experimental analysis conducted to validate the optimiza-
tions described in the previous chapters. The geometry of the selected components
and the robot used to execute the trajectories will be introduced. The optimization al-
gorithms employed to generate the robot trajectories will be provided, and finally, the
experimental results will be presented.

5.1 Experimental setup

For the experimental tests, containers with a radius R = 35 mm were selected, and
a static liquid height of h = 40 mm was chosen. A modular support structure was
designed, consisting of commercial components and parts produced via rapid pro-
totyping, capable of holding nc = 8 containers, as shown in figure 5.1. The support
was designed so that the center-to-center distance between two adjacent containers
is ic = 90 mm. The support presents an interface capable of engaging with the robot
end-effector (EE). The robot chosen for the trajectory execution is a 6-DOF serial ma-
nipulator, specifically a Comau SMART-SiX (see figure 5.2). To determine the sloshing
height of the liquid during motion, the videos recorded by two GoPro Hero8 cameras
were used, positioned as shown in figure 5.3. As seen in the figure, to correctly position
one of the cameras and ensure a correct recording, the two containers adjacent to the
one being recorded had to be removed. By appropriately repositioning the other GoPro
and removing two different containers, it is possible to correctly record all the contain-
ers. Additionally, two white backgrounds were mounted on the opposite sides, relative
to the GoPro cameras, of the container; these elements were necessary to isolate the
liquid in the video frames and prevent background objects from interfering with the
detection of the liquid.

Figure 5.1: Multi-container setup.



Chapter 5. Experimental campaign

Figure 5.2: Comau SMART-SiX.

Figure 5.3: GoPro setup.
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5.2 Problem formulations for the experiments

This section illustrates the algorithms implemented for experimental purposes. Based
on the results reported in chapter 3, simulations are carried out by constraining only
the sloshing height of the outer containers IC and EC . Differently from the problem
formulations discussed in the previous chapters, in those presented in this section, the
joint positions and velocities of the robot will be included among the problem con-
straints. The robot, in fact, through the appropriate movement of its six joints, allows
control over the position and orientation of the support. However, there are certain
limitations:

• position limits: the entire desired path must be contained within the robot work-
space;

• velocity limits: each joint has its own maximum angular velocity, therefore, the
trajectory velocity profile, in order to be executed, must not require joint veloci-
ties that are beyond the permissible limits.

In order to appropriately justify the influence of these two aspects on the optimiza-
tion codes, a brief overview of serial manipulators kinematics is required [45], and it is
provided in appendix B.

5.2.1 Assigned-path optimization

The formulation is identical to the one described in section 3.2.2, with the difference
that, as stated above, only the outer containers IC and EC are considered in the state
vector and in the constraints. Considering the control input1:

u = ...
s , (5.1)

the system state is defined by a vector x ∈R11, namely2:

x = [s ṡ s̈ xIC yIC ẋIC ẏIC xEC yEC ẋEC ẏEC ]T . (5.2)

The optimization problem can be formulated as:

min
tend ,u

[∫ tend

0
(1+ku2)d t

]
(5.3a)

1As seen in chapter 3, with this control input, θ is defined as a linear function of s, namely: θ =
θ0 + s · (θend −θ0).

2The robot joint variables were not included in the state vector to simplify the problem by reducing
its dimensions. Instead, they were directly expressed as functions of s and ṡ and considered among the
constraints.
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subject to

ẋ = f(x,u) (5.3b)

x(0) = [0 0 0 0 0 0 0 0 0 0 0]T (5.3c)

x(tend ) = [1 0 0 0 0 − − 0 0 − −]T (5.3d)

ηi (t ) ≤ ηl i m i = IC ,EC ; t ∈ [0, tend ] (5.3e)

ηi (t ) ≤ 0.2ηl i m i = IC ,EC ; t > tend (5.3f)

|u| ≤ umax (5.3g)

|q j | ≤ q j ,max j = 1, ...,6 (5.3h)

|q̇ j | ≤ q̇ j ,max j = 1, ...,6. (5.3i)

The function f in (5.3b) includes the integration chain of s from u (5.4a) and the slosh-
ing dynamics of each container (5.4b) and (5.4c), expressed by the NL model equations
(2.20), namely:

d

d t

s
ṡ
s̈

=
 ṡ

s̈
u

 (5.4a)

d

d t

[
xi

yi

]
=

[
ẋi

ẏi

]
i = IC ,EC (5.4b)

d

d t

[
ẋi

ẏi

]
=

1+ C 2
1

R2 x2
i

C 2
1

R2 xi yi
C 2

1
R2 xi yi 1+ C 2

1
R2 x2

i

−1 [
fi ,x

fi ,y

]
i = IC ,EC (5.4c)

where:

fi ,x =−C 2
1

R2
(ẋ2

i + ẏ2
i )xi + (2θ̇ ẏi + θ̇2xi + θ̈yi )−ω2

1xi
[
1+α1(x2

i + y2
i )w−1]

−2ω1ζ1
[
ẋi +

C 2
1

R2
(xi ẋi + yi ẏi )xi

]− r̈i ,x cos(θ)− r̈i ,y sin(θ)− r̈i ,z
C1

R
xi ,

fi ,y =−C 2
1

R2
(ẋ2

i + ẏ2
i )yi + (−2θ̇ẋi + θ̇2 yi − θ̈xi )−ω2

1 yi
[
1+α1(x2

i + y2
i )w−1]

−2ω1ζ1
[

ẏi +
C 2

1

R2
(xi ẋi + yi ẏi )yi

]+ r̈i ,x sin(θ)− r̈i ,y cos(θ)− r̈i ,z
C1

R
yi .

(5.4d)

The constraints in (5.3c, 5.3d) define the initial and final states of x. In (5.3d), it can
be observed that the symbols "-" appear in correspondence of ẋIC (tend ), ẏIC (tend ) and
ẋEC (tend ), ẏEC (tend ), indicating that no final condition has been imposed on these vari-
ables. The constraint ensuring that the sloshing height of the external containers re-
mains below ηl i m is represented by the inequality constraint in (5.3e), while (5.3f) lim-
its the residual liquid oscillations to 0.2ηl i m after the trajectory time tend . Condition
(5.3g) constrains the maximum absolute value of u. Finally, (5.3h) and (5.3i) represent
the two conditions expressed at the beginning of section 5.2. In particular, condition
(5.3h) ensures that, throughout the motion, the position of each robot joint remains
within permissible limits, thus ensuring that the trajectory stays within the robot work-
space. Given s, the optimizer determines the pose of the EE, and by solving the inverse
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kinematics, it determines the joint variables q, which must satisfy this constraint. It is
important to clarify that ensuring this constraint is not the responsibility of the opti-
mizer. In fact, the trajectory is predetermined, and therefore, the robot joint variables
q are defined a priori from the trajectory. Hence, condition (5.3h) is only an indicator
that the trajectory has been correctly chosen, and if not satisfied, another suitable tra-
jectory has to be defined. The condition expressed by (5.3i) ensures that the velocities
of each joint, determined by the optimizer, assume permissible values. Starting from
s and ṡ, the optimizer determines the linear and angular velocities of the EE, and by
using equation (B.10), verifies that the values of q̇ lie within the allowable range.
As an example, figure 5.4 presents the optimization results for Trajectory 2, consider-
ing 8 containers and a sloshing height limit of ηl i m = 15 mm. Specifically, figure 5.4a
illustrates the sloshing-height trends for each container, while figure 5.4b displays the
normalized joint velocity profiles of the robot. It can be observed that the joint veloc-
ities remain significantly below their limits. This occurs because the constraints that
reach saturation in the optimization are those on sloshing heights. Indeed, as shown
in figure 5.4a, these values frequently reach ηl i m .
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Figure 5.4: Trajectory 2 results.

5.2.2 Point-to-point motion optimization

Starting from the results of chapter 4, the formulation of the optimization problem for
point-to-point motion with assigned passing volumes is presented below. In fact, as
shown in section 4.3.3, assigning way-volumes proves to be the best choice for these
types of motion. Given the control input:

u =
[

ur

uθ

]
=

[ ...
r...
θ

]
=


...
rx...
ry...
rz...
θ

 , (5.5)

the state of the system is represented by the array x ∈R20, namely:

x = [rT ṙT r̈T θ θ̇ θ̈ xIC yIC ẋIC ẏIC xEC yEC ẋEC ẏEC ]T . (5.6)
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The optimization problem can be formulated as:

min
tend ,u

[∫ tend

0
(1+kr uT

r ur +kθu2
θ)d t

]
(5.7a)

subject to

ẋ = f(x,u) (5.7b)

x(0) = [ rT
0 0T 0T θ0 0 0 0 0 0 0 0 0 0 0]T (5.7c)

x(tend ) = [rT
end 0T 0T θend 0 0 0 0 − − 0 0 − −]T (5.7d)

ηi (t ) ≤ ηl i m i = IC , EC ; t ∈ [0, tend ] (5.7e)

ηi (t ) ≤ 0.2ηl i m i = IC , EC ; t > tend (5.7f)

|ur | ≤ ur,max ; |uθ| ≤ uθ,max (5.7g)

ρ2 ≥ (
r(t j )− r j

)T (
r(t j )− r j

)
j = 1, ...,nv ; t j ∈ (t0, tend ) (5.7h)

rz ∈ [rz,mi n , rz,max] (5.7i)

|q j | ≤ q j ,max j = 1, ...,6 (5.7j)

|q̇ j | ≤ q̇ j ,max j = 1, ...,6. (5.7k)

The function f in (5.7b) includes the integration chain of r and θ from u (5.8a) and
the sloshing dynamics of each container (5.8b) and (5.8c), expressed by the NL model
equations (2.16), namely:
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ṙ
r̈

ur

θ̇

θ̈

uθ

 (5.8a)

d

d t

[
xi

yi

]
=

[
ẋi
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(5.8d)

The way-volumes are imposed in equation (5.7h), where nv represents the number of
spherical way-volumes, with ρ = 50 mm. Condition (5.7i) ensures that the computed
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path does not assume forbidden vertical positions. Regarding the joint variables con-
straint of equation (5.7j), the following considerations can be made. Unlike the previ-
ous section, where constraint (5.3h) merely served as an indicator that the trajectory
had been correctly chosen within the robot workspace, without depending on the so-
lution found by the optimizer; here, constraint (5.7j) is influenced both by the selection
of the way-volumes and by the optimizer itself. In particular, it is necessary to define
way-volumes that lie within the robot workspace to ensure that the constraints on q
are satisfied at the time instants t j . However, the optimizer must also enforce this con-
straint throughout the remaining portion of the computed trajectory. Furthermore,
after the optimization process, it is advisable to perform a Jacobian analysis of the ma-
nipulator during motion, ensuring that its determinant does not approach zero, thus
avoiding configurations of singularity. Regarding the remaining equations of (5.7), the
same considerations made in section 5.2.1 apply.
As an example, figure 5.5 presents the optimization results for Trajectory Volumes 2,
considering 8 containers and a sloshing height limit of ηl i m = 15 mm. Specifically,
figure 5.5a illustrates the sloshing-height trends for each container, while figure 5.5b
displays the normalized joint velocity profiles of the robot. It can be observed that the
joint velocities remain significantly below their limits. This occurs because the con-
straints that reach saturation in the optimization are those on sloshing heights. Indeed,
as shown in figure 5.5a, these values frequently reach ηl i m .
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Figure 5.5: Trajectory Volumes 2 results.

5.3 Experimental results

This section presents the experimental results, specifically showing the trends of the
sloshing heights of the IC and EC containers for different trajectories and various im-
posed values of ηl i m . The predicted sloshing heights from the model will be compared
with the experimental ones obtained from the image-processing algorithm. To demon-
strate the effectiveness of the optimized motion laws, for each prescribed path, experi-
ments were conducted using also a standard motion law, specifically a modified trape-
zoidal law in acceleration, shown in figure 5.6. The standard motion law was defined
by imposing the same duration of the corresponding optimized motion law.
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Figure 5.6: Modified trapezoidal motion-law.

Figure 5.7: Trajectory 1A.

5.3.1 Trajectory 1A

The results for the first considered trajectory, called Trajectory 1A in accordance with
what was presented in the previous chapters, are reported below. The trajectory is
shown in figure 5.7, where the tray undergoes a total rotation of π. Figure 5.8 shows
the trends of the sloshing heights with the optimized motion law considering ηl i m =
15 mm (figure 5.8a) and trapezoidal law with the same duration (figure 5.8b); whereas
in figure 5.9, the same trends are shown for the ηl i m = 25 mm case. In the aforemen-
tioned figures, the continuous blue line represents the trend of η for the IC container
predicted by the mass-spring-damper NL model whereas the dashed blue line indi-
cates the experimentally obtained η for the same container. It can be observed that
the two trends are very similar, demonstrating the accuracy of the NL model in pre-
dicting the sloshing height. Similarly, the red curves refer to the EC container, with
the solid line representing the NL-model prediction and the dashed line showing the
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experimentally obtained trends. It is evident that using the optimized motion laws
ensures that the sloshing heights do not exceed the imposed limit, within a certain
tolerance of a few millimeters (due to the fact that the liquid model is approximate,
and some errors may occur in sloshing-height detection by the GoPro cameras). On
the other hand, looking at the modified trapezoidal motion law graphs, it is noticeable
that, for the same tend , the sloshing heights far exceed the limit, nearly doubling it. To
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Figure 5.8: Sloshing-height comparison for Trajectory 1A with ηl i m = 15 mm in the
optimized case.
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Figure 5.9: Sloshing-height comparison for Trajectory 1A with ηl i m = 25 mm in the
optimized case.

further highlight the effectiveness of the optimized motion law compared to the non-
optimized one, the percentage difference between the maximum peak of η obtained
with the non-optimized motion law and the maximum peak of η obtained with the
optimized motion law with the same tend is defined:

γη,% = 100
ηmax,Nopt −ηmax,Opt

ηmax,Nopt
. (5.9)
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In table 5.1, the four ratios γη,% obtained by considering IC , EC , tend = 2.01 s, and
tend = 1.72 s are reported.

Container tend = 2.01 s tend = 1.72 s

IC γη,% = 19.0% γη,% = 13.9%

EC γη,% = 37.4% γη,% = 43.0%

Table 5.1: Ratios between sloshing-height peaks obtained with non-optimized and op-
timized motion law for Trajectory 1A.
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Figure 5.10: Trajectory 1B.

5.3.2 Trajectory 1B

The results for the second trajectory, called Trajectory 1B in accordance with what was
presented in the previous chapters, are reported below. The trajectory is shown in fig-
ure 5.10, the tray undergoes a total rotation of 2π. The change of the tray orientation
in the three configurations shown in the figure can be better appreciated by noting
the position of the GoPro, circled in red. Figure 5.11 shows the trends of the slosh-
ing heights with the optimized motion law considering ηl i m = 15 mm (figure 5.11a)
and the trapezoidal law with the same duration (figure 5.11b); in figure 5.12, the same
trends are shown for the case with ηl i m = 25 mm. Again, it can be observed that the
optimized motion laws allow the imposed limits to be respected within a small toler-
ance. Regarding the non-optimized cases, they show maximum sloshing heights even
higher than those observed in Trajectory 1A, further highlighting the benefits of using
the optimized motion laws. As in previous section, the percentage differences be-
tween the maximum peak of η obtained with the non-optimized motion law and the
the maximum peak of η obtained with the optimized motion law with the same tend ,
defined by equation 5.9, are reported in table 5.2. The ratios presented in the table, for
the cases with tend = 2.10 s, would actually be even higher. The peaks corresponding to
the experimental trends of η, for both the IC and EC containers in figure 5.12b, would
indeed be higher. In fact, by analyzing the videos recorded with the GoPro cameras, it
can be observed that, at the instant of the maximum peak (shown in figures 5.13), the
liquid impacts against the lid sealing the container. As a result, the η value computed
from the post-processing of the videos is limited to the height of the lid.

79



Chapter 5. Experimental campaign

0 0.5 1 1.5 2 2.5 3

t [s]

0

5

10

15

2
[m

m
]

IC model IC exp. EC model EC exp.

tend = 2:52 s

(a) Optimized motion law.

0 0.5 1 1.5 2 2.5 3

t [s]

0

10

20

30

2
[m

m
]

IC model IC exp. EC model EC exp.

tend = 2:52 s

(b) Non-optimized motion-law with the
same tend .

Figure 5.11: Sloshing-height comparison for Trajectory 1B with ηl i m = 15 mm in the
optimized case.
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Figure 5.12: Sloshing-height comparison for Trajectory 1B with ηl i m = 25 mm in the
optimized case.
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Container tend = 2.52 s tend = 2.10 s

IC γη,% = 52.8% γη,% = 53.4%

EC γη,% = 54.1% γη,% = 47.1%

Table 5.2: Ratios between sloshing-height peaks obtained with non-optimized and op-
timized motion law for Trajectory 1B.

(a) IC. (b) EC.

Figure 5.13: Instantaneous frame at the moment of maximum η for Trajectory 1B with
a non-optimized motion law of duration tend = 2.10 s.

5.3.3 Trajectory 2

The results for the third trajectory, called Trajectory 2 in accordance with what was pre-
sented in the previous chapters, are reported below. The trajectory is shown in figure
5.14, with the tray undergoing a total rotation of π. The change of the tray orienta-
tion in the two configurations shown in the figure can be better appreciated by noting
the position of the GoPro on the tray. The sloshing-height trends obtained with the
optimized motion law with ηl i m = 15 mm are shown in figure 5.15, while the sloshing-
height trends obtained with the optimized motion law with ηl i m = 25 mm are shown
in figure 5.16. Before presenting the trends obtained with the non-optimized motion
law, it is necessary to make some considerations regarding figures 5.15 and 5.16. Un-
like the trends of η with optimized motion laws for Trajectory 1A and Trajectory 1B, in
this case, it can be observed that the experimental trends exceed the value of ηl i m by a
few millimeters at certain points. Specifically, for the container IC , in the case shown
in figure 5.15, the maximum recorded value of η is 20.6 mm, compared to an expected
ηl i m = 15 mm. Similarly, in figure 5.16, the same container IC registers a maximum
value of η of 36.0 mm, against an expected ηl i m = 25 mm. These errors, significantly
larger than those recorded for the previous two trajectories, are due to the shape of
the assigned path for this trajectory. In fact, as shown in figure 5.14, the imposed path
presents sharp turns, almost at right angles. Traversing these curves causes instan-
taneous centripetal accelerations, which act similarly to impacts on the liquid. The
optimizer still attempts to manage these abrupt changes in direction, and indeed, the
computational trends (represented by the continuous lines) in figures 5.15 and 5.16
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Figure 5.14: Trajectory 2.
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Figure 5.15: Trajectory 2 sloshing height: optimized motion-law with ηl i m = 15 mm.
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Figure 5.16: Trajectory 2 sloshing height: optimized motion-law with ηl i m = 25 mm.

remain below the imposed limit. The issue arises in the experimental trends, which
remain undetectable to the optimizer, because the repeated impacts caused by these
directional changes establish a motion regime in the liquid that the NL model is un-
able to capture. As explained in section 2.1, three different motion regimes can occur
for a liquid inside a cylindrical container. The first, caused by low excitations, results in
a planar liquid surface (figure 2.2a) and is described by the L model. The second, oc-
curring under intermediate excitations, results in a liquid surface described by a Bessel
function (figure 2.2b) and is modeled by the NL model. The third regime is character-
ized by strong nonlinearities, causing instantaneous peaks in the liquid surface. For
these optimizations, the NL model is being used, which allows modeling of the second
motion regime but not the third. By analyzing the GoPro footage, particularly for the
optimizations with ηl i m = 25 mm (figure 5.16), it can be observed that, at certain mo-
ments, the liquid surface exhibits a shape that falls into the third regime. An example
of this observation is shown in figure 5.17. In conclusion, the peaks exceeding ηl i m are
not caused by the optimizer but rather by the limitations of the NL model, which fails
to capture strong nonlinearities in the liquid. However, this does not pose an issue for
our applications. Indeed, the algorithms developed in this thesis are specifically de-
signed to optimize simple pick-and-place motions, such as those in Trajectory 1A and
Trajectory 1B, where the optimizer shows its efficacy, as demonstrated in sections 5.3.1
and 5.3.2. Trajectory 2 has been used throughout the thesis as an extreme case, pre-
senting a highly challenging scenario for the optimizer. However, it does not represent
a realistic industrial pick-and-place motion. Despite this, the optimizer has consis-
tently provided acceptable results even for this trajectory. Except in cases where the
NL model fails, the optimizer still delivers highly suitable solutions compared to non-
optimized cases. Based on this observation, the following section presents the results
obtained using a modified trapezoidal motion law, which is non-optimized. Unlike in
sections 5.3.1 and 5.3.2, results are not reported for two non-optimized motion laws
with the same tend of the optimized cases for ηl i m = 15 mm and ηl i m = 25 mm. For
this trajectory, it was not feasible to use a trapezoidal motion law with tend = 4.24 s
or tend = 3.76 s since executing trajectories with these values would result in exceed-
ing the robot joint acceleration limits. The sharp turns in Trajectory 2, when executed
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Figure 5.17: Instant peak of the liquid: third regime of motion; EC container during
optimized motion-law with tend = 3.76 s.

at excessive velocity, generate high centripetal accelerations. To address this, a single
non-optimized motion law with an extended duration of tend = 6 s was used, this tend

is 29.3% longer than tend = 4.24 s (figure 5.15) and 37.3% longer than tend = 3.76 s (fig-
ure 5.16). The sloshing heights obtained with this motion law are shown in figure 5.18.
Despite the significantly increased tend , the sloshing heights are very high. The graph
reveals that after the initial peak, the experimental trends diverge from the predicted
ones. As previously explained in relation to figure 5.12b, this occurs because the liq-
uid impacts the container lid, altering its subsequent dynamics. Similarly to what was
done in the previous sections, table 5.3 reports the percentage differences between the
maximum sloshing heights recorded using a non-optimized motion-law (figure 5.18)
and the maximum sloshing heights obtained with the optimized motion-law (figures
5.15 and 5.16), defined by equation 5.9. Unlike previous sections, as previously men-

Container
tend ,Nopt = 6.00 s
tend ,Opt = 4.24 s

tend ,Nopt = 6.00 s
tend ,Opt = 3.76 s

IC γη,% = 60.2% γη,% = 30.5%

EC γη,% = 71.2% γη,% = 50.7%

Table 5.3: Ratios between sloshing-height peaks obtained with non-optimized and op-
timized motion law for Trajectory 2.

tioned, the two η values used for the ratios in table 5.3 were not obtained using mo-
tion laws with equal durations, as shown in the first row of the table, where the upper
number represents the tend of the non-optimized motion law, while the lower number
represents the tend of the optimized motion law. In conclusion, in this section it was
shown that, for this trajectory, the optimizer was not able to produce a motion law that
perfectly complied with the constraints. However, by comparing the results obtained
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Figure 5.18: Non-optimized motion-law with tend = 6 s.

with a non-optimized motion law of even longer duration, it can be observed that the
optimizer still achieves a significant reduction in η, as well as in tend .

5.3.4 Trajectory Volumes 2

This section presents the results obtained from point-to-point optimizations with as-
signed way-volumes. Optimizations with assigned waypoints have not been imple-
mented, since, as discussed in chapter 4, they are not advantageous in certain cases.
Unlike the previous sections, the results will not be compared with those obtained us-
ing non-optimized motion laws. The purpose of the previous sections was to high-
light the benefits of optimizations over a non-optimized motion. Instead, this section
aims to emphasize the advantages of point-to-point optimizations over those with a
predefined path, demonstrating that they can, within certain limits, overcome the lim-
itations observed in the results of the experiments with assigned path optimizations.
Specifically, as shown in section 5.3.3, the maximum limits imposed on the sloshing
height were exceeded at certain brief moments during the execution of Trajectory 2.
This was due to the complex shape of the path, which induced strong motion nonlin-
earities in the liquid that could not be accurately represented by the NL model. For this
reason, in this section, only the results for Trajectory Volumes 2 are reported (in accor-
dance with the nomenclature introduced in chapter 4), for completeness, the results
for Trajectory Volumes 1A and 1B are provided in appendix C. This trajectory is defined
based on way-volumes placed along Trajectory 2, which is the trajectory where issues
were identified. As observed in section 4.3.3, Trajectory Volumes 2 exhibits significantly
wider curves compared to Trajectory 2. The presence of sharp curves was the primary
factor responsible for the motion nonlinearities in the liquid, leading to model fail-
ure. Thus, this section aims to highlight that not only the computed trajectories have a
shorter duration than those with a predefined path, but also that the newly smoothed
paths do not introduce nonlinearities that the NL model is unable to handle. Conse-
quently, these new trajectories ensure better compliance with the maximum sloshing-
height constraints. Figure 5.19 illustrates the trajectory, where the tray undergoes a
total rotation of π. It is evident that the trajectory features much wider curves com-
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pared to the one depicted in figure 5.14. The sloshing-height trends obtained with the

Figure 5.19: Trajectory Volumes 2.

optimized motion law with ηl i m = 15 mm are shown in figure 5.20, while the sloshing-
height trends obtained with the optimized motion law with ηl i m = 25 mm are shown
in figure 5.21. Comparing the results with those obtained in the previous section, it
is evident that for ηl i m = 15 mm, the point-to-point optimization with assigned way-
volumes (figure 5.20) results in a lower tend compared to the optimization with a prede-
fined path (figure 5.15), while also correctly satisfying the constraints on the maximum
sloshing heights. This is due to the fact that, as previously explained, the trajectory
computed through point-to-point optimization does not include curves that induce
motion regimes beyond the modeling capabilities of the NL model. In conclusion, for
the analyzed case, this optimization approach provides a significant advantage both
in terms of trajectory duration and compliance with ηl i m . Regarding the results ob-
tained for the optimization with ηl i m = 25 mm (figure 5.21), it can be observed that,
similarly to the previous case, the trajectory is not only shorter than that obtained with
the predefined path optimization (figure 5.16), but also results in lower sloshing-height
peaks, ensuring better compliance with the constraints on η. However, unlike the case
with ηl i m = 15 mm, at the end of the trajectory, the imposed limit of ηl i m = 25 mm is
slightly exceeded, with recorded values of ηmax,IC = 28.1 mm and ηmax,EC = 29.5 mm.
An even more critical issue is the sloshing-height trend of container IC after the end of
the motion, which significantly exceeds the imposed limit of 0.2ηl i m = 5 mm. As dis-
cussed in section 5.3.3, this discrepancy between simulated and experimental trends
is attributed to the nonlinearities of the liquid surface, which give rise to a third-type
motion regime. To support this statement, figure 5.22 presents an instantaneous frame
of container IC at the end of the motion, where a peak is visible (even though of lower
magnitude than the one in figure 5.17), contributing to the larger residual oscillations
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Figure 5.20: Trajectory Volumes 2 sloshing height: optimized motion-law with ηl i m =
15 mm.
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Figure 5.21: Trajectory Volumes 2 sloshing height: optimized motion-law with ηl i m =
25 mm.
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Figure 5.22: Instant peak of the liquid, container IC at the end of Trajectory Volumes 2
wuth ηl i m = 25 mm.

after tend . In conclusion, for this second case, where ηl i m = 25 mm was imposed, the
issues discussed in the previous section were still observed, but with lower sloshing-
height peaks and for shorter trajectory durations, ultimately confirming the advantage
of the point-to-point optimization with assigned way-volumes in this scenario as well.

5.3.5 Trajectory instant frame

Figure 5.23 shows frames from videos recorded during the execution of Trajectory 1A,
1B, and 2. The free surfaces of the liquid in the various containers can be observed.
As expected from the sloshing-height trends presented in this thesis, for Trajectory 1A
(figure 5.23a), the highest sloshing heights are recorded in the outer container (the one
on the right). In Trajectory 1B (figure 5.23b), the maximum sloshing heights appear
at both the external containers, whereas for Trajectory 2 (figure 5.23c), the sloshing
heights in the various containers are approximately the same in that frame. This is be-
cause, for this trajectory, translational motion is predominant over rotational motion.

(a) Trajectory 1A. (b) Trajectory 1B. (c) Trajectory 2.

Figure 5.23: Instantaneous frames of robot trajectories.
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Conclusions

In this thesis, several optimization approaches were developed for time-optimal trajec-
tory planning for anti-sloshing robotic manipulation of multiple liquid-filled contain-
ers. The objective was to determine the shortest trajectory to simultaneously transport
multiple liquid-filled containers using a robotic manipulator while ensuring that the
sloshing height of the liquid in each container remained within a specified threshold.
Four-dimensional trajectories were considered, including 3-dimensional translations
and a 1-dimensional rotation about a vertical direction. After analyzing the state of
the art, a mass-spring-damper model was selected to represent the sloshing dynamics
within the containers, adopting constrained optimization as the technique to mitigate
it.
Two families of optimizations were developed. In the first family, presented in chapter
3, the optimal motion laws were determined to follow pre-assigned paths. This chapter
included numerous analyses aimed at identifying the best strategy for performing the
optimizations. It was concluded that, with multiple containers mounted in line on a
rigid support, it is sufficient to impose a constraint on the sloshing height of the two
outer containers, indicated as IC and EC . This conclusion enabled the development of
algorithms independent of the number of containers, thus ensuring high application
flexibility. The second family of optimizations, analyzed in chapter 4, focused on point-
to-point motions and was aimed at determining both the optimal motion law and the
optimal path. In these cases, the path was not predefined; instead, only waypoints or
way-volumes were assigned. These optimizations were implemented to identify trajec-
tories even faster than in the first case. By allowing the path to vary in addition to the
motion law, the optimizer faced fewer constraints, and consequently, it was able to find
better solutions. For point-to-point optimizations with a single assigned waypoint, a
reduction in trajectory duration was observed. However, as the number of waypoints
increased, the advantage of this approach decreased, and in some cases, it resulted in
worse outcomes compared to the optimization with a predefined path. This issue was
resolved by adopting point-to-point optimizations with assigned way-volumes, which
led to a significant improvement in trajectory duration, even in cases where the ap-
proach with waypoints was ineffective. Chapter 5 described the experimental cam-
paign aimed at validating the algorithms presented in the previous chapters. A sup-
port structure capable of holding 8 containers was designed, mounted on the EE of a
6-DOF industrial serial robot. Using a camera system fixed on the tray hosting the con-
tainers, the liquid behavior in the outer containers during motion was recorded, and
the sloshing-height experimental trends were measured through post-processing of
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the videos. For the optimizations with a predefined path, experiments were conducted
on three 4-dimensional trajectories. The first two trajectories represented simple pick-
and-place movements, while the third was a highly complex motion, characterized by
numerous curves, in order to represent a limiting application case. The results of the
first two trajectories fully confirmed the simulations: the optimized motion laws not
only ensured sloshing heights within the imposed limit, but also reduced these heights
to a maximum of 54% compared to those obtained with a non-optimized motion law,
while keeping the path and trajectory duration unchanged. Regarding the third tra-
jectory, the optimized motion law produced significantly lower sloshing heights com-
pared to those obtained with an even slower non-optimized one, with differences ex-
ceeding 70%. From this perspective, the optimization proved successful even for the
third trajectory. However, some minor issues arose in complying with the constraint
on the maximum sloshing-height value: although the optimized trajectory led to a
significant reduction of sloshing heights, there were moments when peaks exceeded
the imposed limit. This was due to the fact that, because of the strong nonlinearities
of the motion resulting from the complex path shape, the liquid assumed a dynamic
regime that the employed mass-spring-damper model was unable to adequately rep-
resent. Therefore, it can be concluded that, even for the third trajectory, the optimiza-
tion yielded positive results, ensuring significant reductions in sloshing heights, and
in cases where the limit was exceeded, the issue was attributed to the adopted liquid
model rather than to the optimizer. Actually, this issue does not represent an obstacle
for the applications for which the optimizations were developed, namely, for simple
pick-and-place movements in industrial settings, as represented by the first two tra-
jectories, where both the model and the optimizer provided highly acceptable results.
These issues encountered in the experiments with predefined path optimizations are
significantly minor, and sometimes entirely resolved, when point-to-point optimiza-
tions with assigned way-volumes are performed. In chapter 5, the results of these op-
timizations were presented for cases where the predefined-path optimization failed.
A significant improvement in constraint satisfaction was observed, with lower maxi-
mum sloshing heights recorded as a result of trajectories with even shorter durations.
Point-to-point optimization with assigned way-volumes thus emerged as the best op-
tion from all perspectives and is therefore the recommended optimization strategy to
achieve the best results in terms of trajectory duration and constraint satisfaction.
Regarding future developments, a further analysis could focus on techniques for global
optimization, aimed at determining even faster trajectories. As explained throughout
the thesis, the main obstacle in adopting these techniques lies in the resulting compu-
tational time, as the studied problems have a high computational complexity. An in-
teresting study could involve combining the constrained optimizations presented with
input-shaping techniques. Indeed, as observed, when dynamics become high and the
paths are complex, the used model fails in certain points, as it cannot accurately model
the liquid when the motion conditions become highly nonlinear. Applying a filtering
technique, such as input shaping, to the motion law obtained through optimization
could help compensate for the model errors by eliminating frequency components
close to the sloshing modes. A final interesting aspect to explore and integrate into the
optimization is tilting. Integrating tilting compensatory motions for very simple tra-
jectories could bring benefits without excessively increasing the computational time
of the problem.
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Appendix A

Additional sloshing-height trends

The trends of the sloshing heights for Trajectories 1A, 1B, and 2 are presented below.
The trends for each container are shown considering the configurations with 4 and 6
containers. Each figure presents the optimization results by constraining the sloshing
height of: each container, only EC , both IC and EC .
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Figure A.1: Trajectory 1A, 4 containers.
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Figure A.2: Trajectory 1A, 6 containers.
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Figure A.3: Trajectory 1B, 4 containers.
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Figure A.4: Trajectory 1B, 6 containers.
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Figure A.5: Trajectory 2, 4 containers.
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Figure A.6: Trajectory 2, 6 containers.
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Appendix B

Robot motion analysis

B.1 Serial manipulator kinematic

Given the reference frame attached to the robot EE, Oe xe ye ze , its position and orienta-
tion w.r.t. a fixed reference frame Ob xb yb zb can be determined using the transforma-
tion matrix:

bTe =
[bRe

br
0 1

]
=

[bne
bse

bae
br

0 0 0 1

]
, (B.1)

where ne , se , ee are the unit vectors of the xe , ye , ze axes, respectively, which form the
columns of the rotation matrix Re , r is the position vector of Oe w.r.t. Ob , and finally
b( ) indicates the vector projection on reference frame b.
Since the position and orientation of the EE depend on the angles assumed by each
individual joint, the matrix Tbe can be written as a function of these angles. For this
purpose, the Denavit-Hartenberg notation is used. Referring to figure B.1, four param-
eters can be identified:

• di : distance between the axes Xi−1 and Xi , along the axis Zi−1;

• ϑi : the clockwise rotation angle between the axes Xi−1 and Xi around the axis
Zi−1;

• ai : the distance between the axes Zi−1 and Zi , along the axis Xi−1;

• αi : the clockwise rotation angle between the axes Zi−1 and Zi around the axis
Xi−1.

If the i -th joint is a revolute joint (as in our case), the joint parameter (qi ) is represented
by ϑi , while it is represented by di if it is prismatic. The other parameters are constants
that characterize the manipulator. The transformation matrix from the reference frame
i to i −1 can be written as:

i−1Ti (qi ) =


cϑi −sϑi cαi sϑi sαi cϑi ai

sϑi sϑi cαi −cϑi sαi sϑi ai

0 sαi cαi di

0 0 0 1

 . (B.2)

The overall transformation matrix of the manipulator can thus be written, from the ref-
erence frame 0 to the frame 6 of the last link (in our case, we have a 6-DOF manipulator,



Appendix B. Robot motion analysis

Figure B.1: Denavit Hartemberg parameters, from [45].

meaning 6 joints and moving links):

0T6(q) =
6∏

i=1

i−1Ti (qi ), (B.3)

where q = [
q1 ... q6

]T ∈R6 is the vector containing the joint variables.
The matrix in equation (B.1) can thus be written as a function of the joint variables, as
required:

bTe (q) =b T0 ·0 T6(q) ·6 Te , (B.4)

where bT0 and 6Te are constant homogeneous transformation matrices that describe,
respectively, the pose of the frame 0 w.r.t. a fixed base frame b, and the pose of the
frame e, attached to the EE, w.r.t. frame 6.
The procedure described thus far is known as forward kinematics, meaning that the
pose of the robot EE is determined based on the joint variables. Inverse kinematics
describes the opposite problem, i.e., starting from the transformation matrix, the joint
variables must be determined. If the manipulator has a spherical wrist, as in our case,
it is possible to decouple the position problem from the orientation problem, greatly
simplifying the task, because the position is only determined by the first three joints,
and the orientation is only determined by the last three.

B.2 Serial manipulator differential kinematic

In this section, the joint velocities of the robot will be determined, i.e., the vector q̇ =[
q̇1 ... q̇6

]T
, starting from the linear and angular velocities of the robot EE.

Referring to the translational and rotational part of equation (B.1), the following are
defined:

• the linear velocity of the EE w.r.t. the reference frame b:

b ṙ(q, q̇) = d br(q)

d t
= d br(q)

dq
q̇, (B.5)
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B.2. Serial manipulator differential kinematic

• the angular velocity of the EE w.r.t. the reference frame b:

bω=
ωxb

ωyb

ωzb

 , (B.6)

where the three components of bω are defined starting from bRe (q):

bω̃=
 0 −ωzb ωyb

ωzb 0 −ωxb

−ωyb ωxb 0

= bṘe (q, q̇) bRT
e (q), (B.7)

hence:
bω= bω(q, q̇). (B.8)

Therefore, from the knowledge of q and q̇, it is possible to determine the velocities of
the EE, and vice versa. The relationship between the following quantities is given by
the geometric Jacobian (whose definition is provided in [45]):

bv =
[ b ṙ

bω

]
= J(q)q̇, (B.9)

from which:
q̇ = J−1(q) bv. (B.10)
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Appendix C

Experimental results for Trajectory
Volumes 1A and 1B
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Figure C.1: Trajectory Volumes 1A.
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Figure C.2: Trajectory Volumes 1B.



Appendix C. Experimental results for Trajectory Volumes 1A and 1B

Considering the trajectories referred to, in accordance with what was stated in chapter
4, as Trajectory Volumes 1A and Trajectory Volumes 1B, the results obtained by impos-
ing a sloshing height limit of both ηl i m = 15 mm and ηl i m = 25 mm are reported below.
In each subplot of figure C.1 (for Trajectory Volumes 1A) and figure C.2 (for Trajectory
Volumes 1B), the sloshing heights of the IC (blue line) and EC (red line) containers are
shown. The continuous lines represent the trends predicted by the NL model, while the
dashed lines correspond to the experimental measurements. It can be observed that
the trends predicted by the model and those obtained experimentally are very similar,
indicating that the NL model performs well for these applications. Additionally, it is
noted that the sloshing height limits are respected, within a margin of a few millime-
ters, for each trajectory.
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Appendix D

Generative AI tools usage statement

During the preparation of this work, the generative artificial intelligence tool ChatGPT-
4 (version released in March 2024) was used. This tool was primarily employed be-
tween September 2024 and March 2025, with the aim of enhancing the clarity and
grammatical accuracy of certain paragraphs and assisting in the creation of graphs,
specifically in chapters 3 and 4. However, it did not replace the critical, analytical, and
creative contribution of the author to the development of this thesis.
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