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Abstract

Brane-antibrane inflation is an exciting framework in string cosmology that aims
at connecting fundamental physics with the accelerated expansion of the early
universe. However, achieving a successful and viable inflationary phase requires
stabilization of all moduli fields, including the angular directions arising in extra-
dimensional compactifications. This thesis explores how the angular directions can
be stabilized in the context of Type IIB string theory, focusing on warped com-
pactifications and the effects of perturbative and non-perturbative corrections. We
examine how flux compactifications and Kähler moduli stabilization contribute to
a controlled inflationary scenario and analyze their impact on slow-roll inflation.
Our findings contribute to the understanding of moduli stabilization in string cos-
mology, ensuring a consistent and phenomenologically viable realization of brane-
antibrane inflation.
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Chapter 1

Introduction

1.1 Background

Inflation is one of the most important concepts in modern cosmology, explaining
how the universe expanded exponentially in its earliest moments. It helps solve
key problems in the standard Big Bang model, such as why the universe looks so
uniform (horizon problem) and why space appears nearly flat (flatness problem).

Although many models explain inflation using quantum field theory, embed-
ding it within string theory introduces additional challenges. String theory sug-
gests that our universe has extra spatial dimensions, which give rise to many new
fields called moduli. These moduli affect how inflation happens, and if they are
not properly stabilized, they can cause the inflationary scenario to fail.

In these models, inflation is driven by the motion of branes (higher-dimensional
objects) within a compactified space. However, for inflation to work smoothly,
the angular directions need to be stabilized properly. This thesis explores how
to stabilize these directions within Type IIB string theory, focusing on warped
compactifications and the effects of quantum corrections.

1.2 Objectives

This thesis aims to:

• Understand the stabilization of the angular directions in brane-antibrane in-
flation, so removing unnecessary flat directions in the potential, and under-
standing how to prevent slow-roll issues and to ensure a controlled evolution
driven by non-perturbative effects.
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• Explore different ways to stabilize the moduli using techniques from Type
IIB string theory.

• Analyze the interplay between perturbative and non-perturbative effects for
moduli stabilization.

• Identify conditions that allow for stable slow-roll inflation, making the model
consistent with observations.

• Discuss the broader implications of these findings for string cosmology and
future research.

1.3 Outline of the Thesis

This thesis is divided into several chapters, each focusing on different aspects:
Chapter 2: Standard Inflationary Cosmology – Introduces basic problems in
cosmology and how inflation solves them. It also covers different inflation models
and their connection to fundamental physics. Chapter 3: String Inflation –
Explains why inflation needs to be embedded in string theory. It covers various
models, including brane inflation, and discusses the challenges of moduli stabiliza-
tion. Chapter 4: Moduli and their Stabilization – Introduces moduli fields,
explaining why they need to be stabilized, and presents different stabilization
mechanisms used in string theory. Chapter 5: The Brane World – Discusses
the physics of branes, their interactions, and how they lead to brane-antibrane
inflation models. Chapter 6: Angular Moduli Stabilization and Inflation
– The core of the thesis, this chapter explores different ways to stabilize angular
directions in brane inflation models and examines their effects on inflation.
Finally, we discuss and summarize of our findings, highlight the main conclusions
and possible directions for further research.
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Chapter 2

Standard Inflationary Cosmology

2.1 An Expanding Universe

On larger (cosmological) scales, the distribution of matter and radiation in the
Universe exhibits homogeneity, isotropy, and a dynamical state of expansion. This
fundamental assumption dictates that the metric to adopt is of the well-known
Friedmann-Robertson-Walker(FRW) form, which serves as the mathematical foun-
dation for modeling the universe large-scale structure and dynamics:

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2)

]
(2.1)

where a(t) is the scale factor which measures the evolution of the Universe in
cosmological time, and k = −1, 0,+1 for open, flat and closed universes that de-
termines the curvature of the spatial sections at fixed t.
The evolution of the geometry of space-time is controlled by the distribution of
energy-momentum within it, as stated by the Einstein equation of General Rela-
tivity:

Gµν =
1

M2
p

Tµν (2.2)

where Gµν and Tµν are the Einstein and energy-momentum tensors and Mp ≃
2.44× 1018 GeV is the reduced Planck mass.
From injecting the FLRW metric in Eq. (2.1) in the Einstein equation in Eq. (2.2),
we find two Friedman equations:

H2 +
k

a2
=

ρ

3M2
p

, H =
ȧ

a
(2.3)

ä

a
= − 1

6M2
p

(ρ+ 3ρ) (2.4)
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Here, the reduced Planck mass Mp is related to the Newton gravitation constant
GN through M2

p ≡ 1
8πGN

and H is the Hubble constant. Eq. (2.4) can be traded
for the derived energy conservation equation:

ρ̇ = −3H(ρ+ p) = −3(1 + w)Hρ (2.5)

With a simple calculation we can conclude the following:

• For a matter dominated universe, we have ρmatter ∝ a−3

• For a radiation dominated universe, we have ρradition ∝ a−4

• For a dark energy dominated universe, ρvacuum ∝ a0

It encodes how each fluid evolves in an expanding universe:

ρi ∝ a−3(wi+1) , wi =
pi
ρi

(2.6)

where wi is the equation of state parameter. For example: wi = −1, 1
3
, 0,−1

3
,−1

for kination, radiation, matter, curvature and vacuum energy, respectively.
The value of k can be determined experimentally by measuring the parameter Ω,
defined as the ratio of the energy density of our Universe and a critical density:

Ω ≡ ρ

ρc
with ρc ≡

3H2

8πGN

(2.7)

With this definition the Friedmann Equation is rewritten as:

Ω = 1 +
k

H2a2
(2.8)

with a clear connection between the curvature of the spatial sections and the de-
parture from critical density. Then a flat Universe (k = 0) corresponds to Ω = 1
, whereas an open (k = −1) and closed (k = 1) one corresponds to Ω < 1 and
Ω > 1, respectively. In the case of multiple contributions to the energy density of
the universe, we will have Ω = ΣiΩi.
The Cosmic Microwave Background (CMB) is an extraordinary powerful tool for
testing and refining our theoretical models of the early universe. Through CMB
observations, we have learned that the universe was in its early stages, remarkably
homogeneous, with only small, scale-invariant, Gaussian, and adiabatic primordial
temperature fluctuations. These findings align perfectly with the simplest infla-
tionary model.
Before exploring the concept of cosmic inflation, we will first address some of the
key issues in Big Bang cosmology. These include the flatness problem, the horizon
problem, the baryon asymmetry problem, the issue of spacetime singularity, and
the problem of topological defects. However, for the purpose of explaining the in-
flationary model, we will solely focus on the Flatness problem and the Horizontal
problem.
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2.1.1 Flatness Problem

From Eq. (2.8) and using ρ ∝ a−3(w+1), we can rewrite:

Ω(t)− 1

Ω
∝ 1

ρa2
∝ a1+3w . (2.9)

Given that in the standard Big Bang picture the evolution of the universe is charac-
terized by either matter (w = 0) or radiation (w = 1/3) dominance, (Ω(t)− 1)/Ω
increases from the initial Big Bang singularity to today. Hence the present ob-
served value, Ωtoday ≃ 1, can be obtained only by tuning the initial conditions
extremely close to Ω = 1. This is the Flatness problem of standard Big Bang
cosmology.

2.1.2 Horizon Problem

In order to compute how much of the universe is in causal contact, we define the
comoving particle horizon as:

τ =

∫ t

0

dt′

a(t′)
=

∫ a

0

da

ah2
=

∫ a

0

d ln

(
1

aH

)
(2.10)

The parameter τ represents the maximum possible distance that light could have
traveled between an initial time (set to t = 0) and a later time t. If the distance
between two regions exceeds τ , these regions could not have communicated with
each other. Additionally, the comoving Hubble radius, defined as (aH)−1, serves as
the measure of the maximum distance over which particles can interact, accounting
for the expansion of the universe. It is important to note that if the separation
between two particles is greater that (aH)−1, it means that they are not in causal
contact today. However, they could have been in causal contact in the past,
particularly during the era of re-ionization. If we now parametrize the evolution
of the universe by an equation of state,

(aH)−1 = H−1
0 a

1
2
(1+3w) (2.11)

and substituting (2.11) in (2.10), we find,

τ ∝ a
1
2
(1+3w) (2.12)

Eq (2.12) indicates that the comoving horizon increases monotonically over time.
As a result, regions that are coming into causal contact today were not in causal
contact in the past. The CMB reveals that the temperature of the universe is
remarkably uniform across vast regions of the sky, with only tiny fluctuation.
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However, this creates a puzzling problem. If the fluctuations in the CMB are so
strongly correlated, then the regions responsible for these fluctuations must have
been in causal contact in the past. However, if we trace back the history of two
distant points, there was not enough time for them to communicate causally. De-
spite this, these regions exhibit the same temperature which would not be possible
without causal contact. This discrepancy is called the Horizon Problem.

2.2 Inflation

The concept of an inflationary universe has been introduced (see [1] for a review
from the point of view of string/brane cosmology) as a potential solution for several
longstanding issues in cosmology, including the flatness and horizon problems.
Subsequently, it was later understood that inflation could also explain the origin
of CMB anisotropies and, consequently, the formation of the large-scale structures
in the universe. The core idea of the inflation is that, during the early universe,
there existed a brief period of accelerated expansion, often exponential in nature.
If the inflationary phase lasted long enough, it would:

• Quickly flatten the universe, addressing the flatness problem.

• Allow regions that are currently causally disconnected to have been in causal
contact in the past, resolving the horizon problem.

The simplest inflationary model is realized within an effective field theory below
Mp. It consists of a scalar field ϕ with a potential V (ϕ), whose value provides an
effective cosmological constant corresponding to the case w ≃ −1, which causes
the scale factor a(t) to increase exponentially.

2.2.1 Slow-roll Inflation

Starobinsky [2], and Mukhanov and Chibisov [3] showed that quantum fluctua-
tions produced during slow-roll generate a spectrum of inhomogeneities possibly
accounting for the large scale structures in our universe. The simplest possible
inflationary model is that of a single scalar field, whose action is given by (setting
Mp = 1):

S =

∫
d4x

√
−g

[
1

2
R +

1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
(2.13)

We find the stress-energy tensor:

Tµν ≡ − 2√
−g

δSϕ
δgµν

(2.14)
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In a Friedmann-Robertson-Walker metric, the energy density and pressure are
given by:

ρ =
1

2
ϕ̇2 + V (ϕ) (2.15)

p =
1

2
ϕ̇2 − V (ϕ) (2.16)

From energy conservation we get:

ρ̇ = −3H(ρ+ p) (2.17)

ϕ̇ϕ̈+ V ′(ϕ)ϕ̇ = −3Hϕ̇2 (2.18)

ϕ̈+ V ′(ϕ) + 3Hϕ̇ = 0 (2.19)

During inflation the Hubble constant reads (reinstating factors of GN):

H =

√
8πGNρ

3
=

√
8πGN

3

(1
2
ϕ̇2 + V (ϕ)

)
(2.20)

Hence, the time derivative of H2 leads to:

2HḢ =
8πGN

3

(
ϕ̇ϕ̈+ V ′(ϕ)ϕ̇

)
= −8πGNHϕ̇

2 (2.21)

The condition for exponential expansion is
∣∣∣Ḣ∣∣∣≪ H2 so,

∣∣∣Ḣ∣∣∣≪ H2 =
2

3M2
p

(1
2
ϕ̇2 + V (ϕ)

)
(2.22)

where V (ϕ) is the scalar field potential and V ′ ≡ dV
dϕ

. The right side of (2.20)
represents the energy density associated with the scalar field ϕ. When the potential
V dominates over the kinetic energy, and V ∼ Λ > 0, this corresponds to the
equation of state parameter w = −1, leading to an exponential expansion of the
scale factor, expressed as a ∼ eHt ∼ exp

√
Λ
3

in Planck mass units with k = 0,
with similar expressions for the other values for k. The key-point here is that this
exponential growth of the scale factor resolves the flatness and horizon problems
that we have mentioned before. From Eq. (2.19) and Eq. (2.20), we can find the
evolution of the Hubble parameter,

Ḣ = −1

2

ϕ̇2

M2
p

(2.23)
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Then, from Eq. (2.20) and (2.23), we get the slow-roll ϵ parameter:

ϵ = − Ḣ

H2
=

1

2

ϕ̇2

M2
pH

2
=

3
2
ϕ̇2

1
2
ϕ̇2 + V

(2.24)

Inflation occurs as long as the potential energy dominates over the kinetic energy,
so that ϵ < 1. Inflation will continue as long as the acceleration of the field is
small. This is parametrized through a second slow-roll parameter:

η ≡ ϕ̈

Hϕ̇
(2.25)

When ϵ and η are much smaller than 1, we can apply the slow-roll approximation.
The condition ϵ≪ 1 indicates that the kinetic energy is negligible, allowing us to
simplify Eq. (2.20) accordingly:

H2 ≈ V

3M2
p

(2.26)

So, during the slow-roll phase, the Hubble rate can be approximated by the nearly
constant potential energy. The second parameter simplifies the Klein-Gordon equa-
tion in Eq. (2.19) to:

3Hϕ̇ ≈ −V ′ (2.27)

Thus, there is a direct relationship between the slope of the potential and the
velocity of the inflation, with the Hubble parameter remaining approximately con-
stant. Consequently, the slow-roll parameters can be expressed in an approximate
form that depends exclusively on the functional form of the potential,

ϵV =
M2

p

2

(
V

′

V

)2

(2.28)

ηV =M2
p

V
′′

V
(2.29)

Inflation will end when ϵV = 1 or ηV = 1.
If the potential is constant, the universe will undergo a de Sitter expansion, and
the amount of this expansion would be given by the size of H (since a(t) ∼ eHt).
More generally, the total number of e-foldings is expressed as:

N(t) =

∫ tend

tin

H(t
′
) dt

′
=

∫ ϕin

ϕend

H

ϕ̇
dϕ =

1

M2
p

∫ ϕin

ϕend

V

V ′ dϕ (2.30)

For inflation to successfully resolve the horizon problem, it requires at least N ≥ 60
e-foldings. A successful inflation model needs a scalar field potential V that meets
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the slow-roll condition and produces more than about 60 e-foldings (slightly smaller
values are sometimes allowed depending on the scale at which inflation occurs).

Figure 2.1: Example of a slow-roll potential. Inflation occurs in the shaded part
of the potential. In addition to the homogeneous evolution ϕ(t), the inflaton
experiences spatially varying quantum fluctuations δϕ(t, x) [4].

2.3 Effective Theories of Inflation

In case where the UV theory is unknown, it is possible to explicitly derive the
Effective Field Theory (EFT) by integrating out the heavy modes. Instead, our
lack of knowledge about the UV physics is addressed by postulating the symmetries
of the UV theory and formulating the most general effective action consistent with
those symmetries:

Leff [ϕ] = Ll[ϕ] +
∑
i

ci
Oi[ϕ]

Λδi−4
(2.31)

The sum includes all operators Oi[ϕ], with dimensions δi, that are consistent with
the symmetries of the UV theory. The contribution of the higher dimensional
operators are estimated in terms of the cutoff scale Λ, while the coefficient cia re
the dimensionless Wilson coefficients. Eq (2.31) serves as the basis for analyzing
inflation within the framework of EFT.
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Figure 2.2: The EFT of Inflation. The cut-off Λ of the EFT is defined by the
mass of the lightest particle that is not included in the spectrum of the low-energy
theory. Particles with masses above the cut-off are integrated out, correcting the
Lagrangian for the light fields such as the inflaton [4].

2.3.1 Ultraviolet Completion

The sizes of Wilson coefficients in the effective Lagrangian are influenced by the
symmetries of the UV theory. If the symmetry is weakly broken or the light fields
couple weakly to symmetry-breaking terms, the EFT exhibits an approximate
symmetry, leading to small Wilson coefficients for symmetry-breaking parameter
g, and their smallness reflects the approximate UV symmetry. Since the symmetry
is restored in the limit g → 0, the Wilson coefficients of all symmetry breaking
operators must satisfy:

lim
g→0

ci(g) = 0.

The naturalness of the low-energy theory depends on the symmetries assumed in
the UV completion, with guidance from UV-complete theories like string theory
offering additional insights.

2.3.2 Inflation in Effective Field Theory

Inflation, as a phenomenon arising from Quantum Field Theory coupled with Gen-
eral Relativity, is not inherently natural. The Lagrangians suitable for inflation
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represent only a tiny fraction of all possible Lagrangians, and in many models,
inflation requires special initial conditions such as low kinetic energy in small-field
scenarios. Here we will focus on the naturalness of Lagrangians suitable for infla-
tion.
The starting point is the EFT Lagrangian (2.31) minimally coupled to gravity:

Seff [ϕ] =

∫
d4x

√
−g

[
M2

p

2
R + Ll[ϕ] +

∑
i

ci
Oi[ϕ]

Λδi−4

]
(2.32)

where Ll[ϕ] includes the canonical kinetic term −1
2
(∂ϕ)2 as well as any renor-

malizable interactions. As we explained above, the sum over non-renormalizable
terms parameterizes the effects of massive fields on the EFT of the light fields. As
usual, the effects of high-scale physics above some cutoff Λ are efficiently described
by the coefficients of operators in the low-energy effective theory (see Fig. 2.2).
Integrating out particles of mass M ≥ Λ gives rise to operators of the form:

Oδ

M δ−4

where δ denotes the mass dimension of the operator. In inflation, however, the
flatness of the potential in Planck units introduces sensitivity to δ ≤ 6 Planck-
suppressed operators, such as:

O6

M2
p

An understanding of such operators is required to address the smallness of the
η-parameter, i.e. to ensure that the theory supports at least about 60 e-foldings
of inflationary expansion. This sensitivity to dimension-six Planck-suppressed op-
erators is therefore common to all models of inflation.

2.3.3 The Eta Problem

We have seen that quantum corrections tend to drive scalar masses to the cutoff
scale, unless the fields are protected by symmetries. In the case of inflation, this
implies the following quantum correction to the inflaton mass:

∆m2 ∼ Λ2.

Since consistency of the EFT treatment requires that Λ > H, we find a large
renormalization of the inflationary η-parameter:

∆η ∼ Λ2

H2
≥ 1
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and sustained slow-roll inflation appears to be unnatural. This difficulty is known
as the η-problem.
The η-problem in inflation can be addressed using two strategies: fine tuning the
potential or invoking symmetries. However the issue remains challenging because
symmetry-based approaches, such as supersymmetry or global internal symmetries,
have significant limitations and have only achieved partial success. Supersymme-
try only mitigates the problem but cannot resolve it fully, while global symmetries
require precise control over Planck-suppressed symmetry-breaking operators, ne-
cessitating a quantum gravity framework.

In the context of String Inflation, string theory provides tools to manage Planck-
scale corrections and mechanisms like extra-dimensional dynamics or brane config-
urations to construct UV-complete inflationary models, addressing the η-problem
by incorporating natural symmetries and constraints.
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Chapter 3

String Inflation

3.1 Motivations for String Inflation

Ensuring a consistent embedding of inflationary models within string theory is
essential for several reasons, some of which we outline below following [5].

String inflation is motivated by the need to fit inflationary models within string
theory in a way that makes them stable and consistent. One major challenge is
that inflation is highly sensitive to ultra-violet (UV) physics, meaning that without
a proper UV framework, fine-tuning becomes a problem. Some inflation models,
especially those with large tensor-to-scalar ratios, require field values that go be-
yond the Planck scale, raising deep questions about their validity — questions
that string theory is well-equipped to address. Additionally, string theory places
strong constraints on the shape of the inflationary potential, especially in setups
like Calabi-Yau compactifications with stabilized moduli. Beyond theoretical con-
cerns, string inflation provides a way to test high-scale physics, as the inflationary
energy scale is close to the Planck scale, making it possible to extract observational
clues about fundamental physics. Finally, understanding how inflation starts and
how it ends (through reheating) is crucial, and string theory helps to ensure that
the energy from inflation is correctly transferred to known particles without exces-
sive loss to hidden sectors. Together, these factors make string theory an important
framework for inflationary cosmology.

3.1.1 Requirements for String Inflation

Let us briefly discuss what are the main conditions that a perfect working model
of string inflation should satisfy [5].

For string inflation to work properly, several key conditions have to be met.
Moduli stabilization is crucial because, in string theory, extra dimensions come
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with fields that determine their shapes and sizes. If these are not fixed correctly,
they can disrupt inflation or cause unwanted instabilities. A good stabilization
mechanism also helps to guide how the universe evolves after inflation, leading
to a stable vacuum or a slowly changing dark energy phase. Another important
factor is getting the mass scales right — the inflaton mass needs to be below the
Hubble scale during inflation but still within a certain range to avoid interference
from heavier modes like Kaluza-Klein states (m < Hinf < MKK < Ms < Mp).

Computational control is also necessary since string theory involves quantum
effects which are hard to compute, and ensuring the validity of the effective field
theory means keeping control over the various perturbative and non-perturbative
expansions. Additionally, effects like fluxes and instantons need to be handled
carefully to avoid unexpected instabilities. Finally, a proper string embedding, of-
ten in a Calabi-Yau compactification, is essential for constructing a realistic model
that aligns with known particle physics. A well-structured extra-dimensional space
should naturally lead to a Standard Model-like setup and allow a smooth transition
from inflation to the physics we observe today. In short, for string inflation to be
successful, all these elements must work together to ensure stability, consistency,
and a clear connection to real-world physics.

3.1.2 Models of String Inflation

String inflation models explore how the accelerated expansion of the early universe
can be explained within string theory. Since string theory naturally includes extra
dimensions and additional fields (moduli), the challenge is to find the right setup
where inflation can happen smoothly, without leading to unwanted instabilities
[6, 7]. Depending on where the inflaton field comes from, these models can be
divided into open string inflation and closed string inflation [5].
In open string models, the inflaton is linked to a scalar field originating from
open strings attached to D-branes. Essentially, it describes how a D-brane moves
through the compact extra dimensions. In M-theory, a similar mechanism oc-
curs with M5-branes instead of D-branes, producing comparable effects. Well-
known examples of open string inflation models include D-brane inflation, slow-roll
brane/anti-brane inflation, DBI warped D-brane inflation, and M-theory inflation
[8, 9, 10, 11, 12].

In closed string models, the inflaton originates from a closed string modulus.
These models are promising due to their well-defined background, which allows
certain moduli to have nearly flat potentials. Examples of closed string inflation
models include Kähler moduli inflation, axion inflation, Wilson line moduli infla-
tion, and volume modulus inflation [13, 14, 15, 16, 17].

Each inflation model predicts specific values for inflationary observables, repre-
sented as distinct in the (r, ns)-plane. As observations become more precise, many
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models may soon be ruled out, making an important step towards testing string
theory experimentally.

3.2 Different String Theories

Figure 3.1: Different String Theories and Dualities [18].

There exist five distinct yet consistent string theories: Type I, Type IIA, Type
IIB, Heterotic SO(32), and Heterotic E8 ×E8. Theses theories are interconnected
through various dualities, as illustrated in Figure 3.1. At low energy, each string
theory, along with M-theory, is described by a supergravity theory, which provides
useful insights into quantum gravity. We will explore the spectrum of all five string
theories, with a particular focus on Type IIB string theory. This theory is the
primary interest of this thesis due to its significant phenomenological implications.

3.2.1 Type IIA

A low energy limit of Type IIA string theory is described by Type IIA supergravity.
Here we focus only on its bosonic sector. In superstring theory, fields arise from
two sectors based on boundary conditions in the worldsheet. A periodic boundary
condition for worldsheet fermions leads to Ramond-Ramond (RR) sector fields,
while an anti-periodic boundary condition leads to Neveu-Schwarz (NS-NS) sector
fields.

NS-NS Sector: Gµν , B
(2)
µν ,Φ:

In the NS-NS sector, we have the metric Gµν , the anti-symmetric two-form
field which is sometimes called the Kalb-Ramond field B

(2)
µν and the dilaton

Φ.

RR Sector: C1
µ, C

3
µνρ:

In the RR sector, we have a one-form field and a three-form field C1
µ and
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C3
µνρ respectively. Now, we can write the field strength of these form fields

as follows:

F (p) = dC(p−1)

F̃ (2) = F (2)

F̃ (4) = F (4) − C(1) ∧H(3)

; for p = 2, 4 ;H(3) = dB(2) (3.1)

This will help us write the Type IIA action. Let us separate out the NS-NS part
and RR part. The NS-NS part is:

SNS-NS =
1

2κ210

∫
d10x

√
−Ge−2Φ

(
RG+4Gµν∂µΦ∂νΦ−

1

2

1

3!
Gµµ′Gνν′Gρρ′H(3)

µνρH
(3)
µ′ν′ρ′

)
(3.2)

and R-R part is:

SR−R = − 1

2κ210

∫
d10x

√
−G

[
1

4
F (2)
µν F

(2)
µ′ν′G

µµ′Gνν′ +
1

2

1

4!
F̃

(4)
µ′ν′ρ′σ′F̃

(4)
µνρσG

µµ′Gνν′Gρρ′Gσσ′
]

(3.3)
In addition to the two pieces above, there is a third piece which we call the Chern-
Simons term which can be written as:

SCS = − 1

4κ210

∫
B(2) ∧ F (4) ∧ F (4) (3.4)

3.2.2 Type IIB

Type IIB supergravity is the low energy limit of Type IIB string theory. The
model discussed and constructed in this thesis is based on the Type IIB framework.
Similar to Type IIA, we focus on the bosonic sector and examine the field contents
arising from the Ramond-Ramond (RR) and Neveu-Schwarz (NS-NS) sectors.

NS-NS Sector: Gµν , B
(2)
µν ,Φ:

In the NS-NS sector, we have the metric Gµν , the anti-symmetric two-form
field B(2)

µν and the dilaton Φ. This is exactly the same as in Type IIA.

RR Sector: C0, C2
µν , C

4
µνρσ:

The R-R sector is different in this case. We have a 0-form field C0, a 2-form
field C2

µν and a 4-form field C4
µνρσ. We define the field strengths, again, as

follows:

F (1) = dC(0), F (3) = dC(2), F (5) = dC(4); H(3) = dB(2)

F̃ (1) = F (1), F̃ (3) = F (3) − C(0) ∧H(3)

F̃ (5) = F (5) − 1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F (3)

(3.5)
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The NS-NS part is identical to the one of Type IIA:

SNS-NS =
1

2κ210

∫
d10x

√
−Ge−2Φ

(
RG+4Gµν∂µΦ∂νΦ−

1

2

1

3!
Gµµ′Gνν′Gρρ′H(3)

µνρH
(3)
µ′ν′ρ′

)
(3.6)

and the R-R part is:

SR−R = − 1

2κ210

∫
d10x

√
−G

[
1

2
GµνF̃ (1)

µ F̃
(1)
2 +

1

2

1

3!
Gµµ′Gνν′Gρρ′F̃ (3)

µνρF̃
(3)
µ′ν′ρ′

+
1

2

1

5!
Gµµ′G2ν′Gρρ′Gσσ′

Gτττ ′F̃ (5)
µνρστ F̃

(5)
µ′ν′ρ′σ′τ ′

] (3.7)

In addition to the two pieces above, there is a third piece which we call the Chern-
Simons term which takes the following form in Type IIB:

SCS = − 1

4κ210

∫
C(4) ∧H(3) ∧ F (3). (3.8)

There are two moduli fields in the action Φ and C0 (both have no potential term).
We can combine these two into a single piece and observe something interesting.
Let us introduce the following new definitions:

τ ≡ C(0) + ie−Φ, G(3) ≡ F (3) − τH(3) (3.9)

We have written the NS-NS sector 3.6 and 3.7 in string frame, meaning that the
Ricci scalar R appears with the dilaton-dependent prefactor e−2Φ. This frame is
convenient for comparing to the results of string perturbation theory. However, for
many questions involving gravity, it is more practical to work in Einstein frame,
in which the dilaton prefactor is absent. The action can be written in Einstein
frame by performing the Weyl rescaling:

GE,MN ≡ e−Φ/2GMN , (3.10)

in terms of which the action, written in Einstein frame, takes the form:

SIIB =
1

2κ2

∫
d10x

√
−GE

[
RE−

|∂τ |2

2(Im(τ))2
− |G3|2

2Im(τ)
−|F̃5|2

4

]
− i

8κ2

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
.

(3.11)
The action (3.11) is the starting point for our discussion of Type IIB flux com-
pactifications, which we will see in another chapter.
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3.2.3 Type I

Type I string theory is one of the five consistent superstring theories. It includes
both open and closed strings. The presence of open strings allows for the existence
of gauge symmetries and D-branes, which play a crucial role in string interactions.
The field contents in Type I theory are:

• NS-NS Sector: Gµν ,Φ

• R-R Sector: C(2)

• 32 D9-branes (this gives rise to SO(32) gauge fields which are coming from
open strings)

In Type I string theory, the Kalb-Ramond field is absent in the NS-NS sector
because it is not invariant under the worldsheet parity operator. Similarly, most
R-R fields are removed, leaving only C(2). To cancel the negative R-R charge
created by the projection, 32 D9-branes are added, leading to the SO(32) gauge
group from the open string sector. Unlike the other string theories, which involve
only closed strings, Type I is unique as it includes both the open and closed strings,
contributing to its distinct properties. The NS-NS part of the action is:

SNS-NS =
1

2κ210

∫
d10x

√
−Ge−2Φ

[
RG + 4Gµν∂µΦ∂νΦ

]
(3.12)

and the R-R part is:

SR−R = − 1

2κ210

∫
d10x

√
−G

[
1

2

1

3!
Gµµ′Gνν′Gρρ′F̃ (3)

µνρF̃
(3)
µ′ν′ρ′

]
(3.13)

and the gauge theory part is:

Sgauge = − 1

2κ210

CI
2!

∫
d10x

√
−Ge−Φ

[
Gµµ′Gνν′TrV (FµνFµ′ν′)

]
. (3.14)

Here,
F̃ (3) = dC(2) − CIω

(3)(A)

ω(3)(A) = TrV
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
CI =

α′

4
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and Fµν = F a
µνT

a = Fµν is the Yang-Mills field strength. Also, the trace is over

the vector representation of SO(32) with TrV
(
T aT b

)
= δab Using, Gµν = eΦ/2 gµν ,

we can also write the action in canonical form as follows:

SI =
1

2κ210

∫
d10x

√
−g

[
Rg −

1

2
gµν∂µΦ∂νΦ− 1

2

1

3!
eΦgµµ

′
gνν

′
gρρ

′
F̃ (3)
µνρF̃

(3)
µ′ν′ρ′

− CI
2!
eΦ/2gµµ

′

gνν
′

TrV
(
FµνFµ′ν′

) ] (3.15)

3.2.4 Heterotic Theory

There are two heterotic supergravity theories based on two different groups: SO(32)
and E8 × E8. The number of generators of SO(32) is 496. The field contents are:

• NS-NS Sector: Gµν , B
(2)
µν ,Φ

• Gauge Fields: Aaµ a = 1, . . . , 496

The action can be written as:

S =
1

2κ210

∫
d10x

√
−Ge−2Φ

[
RG + 4Gµν∂µΦ∂νΦ− 1

2

1

3!
Gµµ′Gνν′Gρρ′H̃(3)

µνρH̃
(3)
µ′ν′ρ′

− CH
2!
Gµµ′Gνν′TrV (FµνFµ′ν′)

]
(3.16)

where Fµν = F a
µνT

a is the non-Abelian field strength. We have, CH = α
′
/4 for

heterotic supergravity H(3) = dB(2). Thus,

H̃(3) = H(3) − CHω
(3)(A)

ω(3)(A) = Tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
As obvious, the two heterotic theories differ because of the generators T a satisfying
different algebra. In terms of the canonical metric gµν ,

S =
1

2κ210

∫
d10x

√
−g

[
Rg −

1

2
gµν∂µΦ∂νΦ− 1

2

1

3!
e−Φgµµ

′
gνν

′
gρρ

′
H̃(3)
µνρH̃

(3)
µ′ν′ρ′

− CH
2!
e−Φ/2gµµ

′

gνν
′

TrV
(
FµνFµ′ν′

) ]
(3.17)
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Type I and SO(32) Heterotic theories are dual to each other, if we identify:

ΦI = −ΦH

C
(2)
I = B

(2)
H

AI = AH

gIµν = gHµν

The duality can be argued to hold as follows :

ΦI = −ΦH ⇒ eΦI = e−ΦH

⇒ gIS =
1

gHS
.

This implies that when the Type I coupling is small, the Heterotic coupling is
strong.

3.3 String Compactification

We mentioned before that superstring theory is a quantum theory of gravity liv-
ing in 10 spacetime dimensions. So, in string theory we have the existence of
the extra spacetime dimensions and therefore, we need to compactify the extra
dimensions to four dimensions which describes the world around us. We are doing
compactification of the extra dimensions to make a contact with our real world.
The 10-dimensional manifold is roughly compactified as follows:

R1,3 ×X6 (3.18)

where X6 is a compact six-manifold. This is referred to as a compactification of
string theory on X6 [19].

3.3.1 Vacuum Compactification

Vacuum compactification is the process of reducing the 10-dimensional spacetime
of string theory to an effective 4-dimensional theory by compactifying the extra
six dimensions on a compact internal space, such as a Calabi-Yau manifold or an
orbifold. The key requirement for a vacuum configuration is that the 10D metric
GMN satisfies the vacuum Einstein equations, meaning that both the external and
internal Ricci tensors vanish [18]:

Rµν = Rmn = 0
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This ensures that the internal manifold, X6, is Ricci-flat, which is a crucial con-
dition for a stable vacuum solution. The most studied vacuum compactifications
use Calabi-Yau threefolds, which satisfy this Ricci-flatness condition and preserve
a portion of supersymmetry. We begin by examining vacuum solutions, for which
a suitable ansatz is:

GMN dX
MdXN = ηµν dx

µdxν + gmn dy
mdyn (3.19)

where, ym,m = 1, ..., 6, are coordinates on X6, and gmn is a metric on X6.

3.3.2 Warped compactifications

Vacuum configurations solving the vacuum Einstein equations provide a well un-
derstood starting point. However, realistic string compactifications often require
additional ingredients, such as fluxes, branes, and other stress-energy sources.
These non-vacuum solutions modify the Einstein equations by introducing local-
ized energy-momentum sources, leading to a compactification manifold that is
not Ricci-flat. Extended objects like D-branes, NS5-branes, and fluxes contribute
additional terms to the stress-energy tensor, changing the geometry of the extra
dimensions. Instead, the metric 3.19 takes the form of a warped product, where a
warp factor modifies the 4D and internal components:

GMN dX
MdXN = e2A(y)gµνdx

µdxν + e−2A(y)gmndy
mdyn (3.20)

where now gµν is the metric of a maximally symmetric spacetime, the warp factor
A(y) is a function on X6, and the internal metric gmn is not necessarily Ricci-flat
[18].

3.3.3 Supersymmetric compactifications

The supergravity actions in ten dimensions possess N = 1 or N = 2 supersymme-
try, but their solutions do not necessarily preserve it. However, supersymmetric
solutions are the best understood in string theory for several reasons [18]:

1 Geometric Reason: Vacuum solutions require Ricci-flatness, which is linked
to reduced holonomy. For example, Calabi-Yau threefolds with SU(3) holon-
omy preserve one-quarter of ten-dimensional supersymmetry, leading to N =
2 supersymmetry in four-dimensional Type II string compactifications.

2 Theoretical Control: Supersymmetry ensures stability and imposes constraints
on couplings in the effective theory, making calculations more tractable.

3 Phenomenological Interest: Finding solutions for N = 1 supersymmetry,
broken near the electroweak scale, is crucial for addressing the hierarchy
problem in particle physics.
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3.3.4 Kaluza-Klein compactification

In a general four-dimensional N = 1 supergravity theory, the bosonic fields
include: gµν (the metric, describing spacetime curvature), Aαµ (gauge potentials,
associated with gauge interactions), Φi (complex scalar fields, which determine
the dynamics of the theory). On the other hand, the low-energies interactions
are controlled by the superpotential W (Φi), which is a holomorphic functions
that dictates scalar field interactions and potential energy, and by the Kähler
potential K(Φi, Φ̄ī), a real function that defines the kinetic terms and the field
space geometry. In the absence of gauge interactions, the Lagrangian for the scalar
fields is determined solely by these potentials as:

LΦ = Kij̄ ∂
µϕi∂µϕ̄

j̄ − VF (3.21)

where Kij̄ ≡ ∂i∂j̄K is the Kähler metric. The F-term potential VF appearing in
(3.21) is:

VF (ϕ
i, ϕ̄ī) = eK/M

2
p

[
Kij̄DiWDjW − 3

M2
p

|W |2
]

(3.22)

where Kij̄ is the inverse Kähler metric and DiW ≡ ∂iW+M−2
p (∂iK)W . A primary

task in studying a string compactification with N = 1 supersymmetry is to com-
pute the superpotential and Kähler potential in terms of geometric data. Through
(3.21) and (3.22) these data determine the four-dimensional effective theory, to
leading order in the low-energy (derivative) expansion.
To compute the four-dimensional effective action of a string compactification, one
begins with the appropriate ten-dimensional action and performs a Kaluza–Klein
reduction. Consider the ten-dimensional geometry:

GMN dX
MdXN = e−6u(x)gµνdx

µdxν + e2u(x)ĝmndy
mdyn (3.23)

where ĝmn is a reference metric with fixed volume,∫
X6

d6y
√
ĝ ≡ V (3.24)

while e−6u(x) is a “breathing mode” that represents the variations in size of the
internal space X6 as a function of the four-dimensional coordinate xµ. The factor
of e−6u(x) in the first term is a convenient choice for which the gravitational action
in four dimensions will appear in Einstein frame. We now examine the dimensional
reduction of the Einstein–Hilbert term,

S
(10)
EH =

1

2κ2

∫
d10X

√
−Ge−2ΦR10 (3.25)
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where R10 is the Ricci scalar constructed from GMN . We would like to express R10

in terms of R4 and R̂6, the Ricci scalars constructed from gµν and ĝmn, respectively.
For this purpose we note that if two D-dimensional metrics gMN and ḡMN are
related by the conformal rescaling

ḡMN = e2ω(x)gMN (3.26)

then the corresponding Ricci scalars are related by:

e2ωR̄ = R− 2(D − 1)∇2ω − (D − 2)(D − 1)gMN∇Mω∇Nω (3.27)

Similarly, the Laplacians constructed from gMN and ĝMN are related by

e2ω∇̄2 = ∇2 + (D − 2)gMN∇Mω∇N (3.28)

Using these results, we find:

S
(10)
EH =

1

2κ2

∫
d4x

√
−g
∫
X6

d6y
√
ĝe−2Φ

(
R4 + e−8uR̂6 + 12∂µu∂

µu
)

(3.29)

If the string coupling gs ≡ eΦ is constant over the internal space, then the four-
dimensional Einstein–Hilbert term can be written:

S
(4)
EH =

M2
p

2

∫
d4x

√
−g R4 (3.30)

with the four-dimensional Planck mass defined as:

M2
p ≡ V

g2sκ
2

(3.31)

We recognize the combination of derivatives of u(x) appearing in (3.29) as the
kinetic term for a four-dimensional scalar field u(x). This field is a modulus corre-
sponding to a spacetime-dependent deformation of the ten-dimensional solution.
As we will see below, in Calabi–Yau compactifications the breathing mode u cor-
responds to one of the Kähler moduli; the kinetic term for u in (3.29) follows from
the Kähler potential:

K = −3 ln(T + T̄ ) (3.32)
where we have set Mp = 1, and T is a complex scalar field with Re(T ) = e4u.
The Ricci scalar R̂6 in six-dimensional compactification generates a potential for
the scalar field u in four-dimensions. A positive internal curvature (R̂6 > 0) results
in a negative potential (V ∝ −e−8u), driving the compactification toward smaller
volume. Conversely, a negative internal curvature leads to a positive potential(V ∝
+e−8u), causing a decompactification instability. In Ricci-flat compactifications,
the internal curvature term is absent, leaving u with a vanishing potential in
the classical theory. More general Kaluza-Klein reductions involve complex ten-
dimensional actions, including p-form fields and geometric deformations beyond
the simple breathing mode. However, the fundamental principles governing these
reductions remain the same as in the basic example discussed.
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Chapter 4

Moduli and their Stabilization

4.1 Calabi-Yau Moduli

In string theory, compactification on a Calabi-Yau manifold leads to the emer-
gence of moduli fields, which describe the deformations of the internal geometry.
These fields remains massless at tree-level, posing phenomenological challenges
such as unobserved long-range interactions. Therefore, understanding and stabi-
lizing moduli is essential for constructing realistic four-dimensional models. This
chapter introduces different types of moduli in Calabi-Yau compactifications, ex-
plains why they are massless at tree level, and explores mechanisms for their
stabilization. A more detailed discussion of the geometrical foundations - such as
cohomology, holonomy, and the mathematical structure of Calabi-Yau manifolds -
is provided in the Appendix.

4.1.1 Kähler and complex structure moduli

A Calabi-Yau threefold X6 is a complex Kähler manifold with SU(3) holonomy,
satisfying the Ricci-flatness condition Rmn = 0. This ensures the existence of
a nowhere-vanishing holomorphic (3, 0)-form Ω, and the structure of the moduli
space is determined by the deformations of the Kähler form J , and the complex
structure. The moduli fields in four-dimensional effective theories correspond to
these deformations.
To define the fields arising from the compactification, we begin by introducing the
moduli fields. These fields will be expressed in terms of a basis of cohomology
groups, specifically using harmonic forms. The moduli can be characterized in two
different classes:

Kähler Moduli: The Kähler moduli T i parameterize the deformations of the
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Kähler form J , which controls the volumes of two- and four-cycles inside X6:

J = tiωi, ,

here, ωi are harmonic (1, 1)-forms, and Di are the four-cycles of X6. The
internal volume is given by:

V =
1

6
κijkt

itjtk

where κijk are the triple intersection numbers of X6. The Kähler moduli
fields are:

Ti = τi + ibi

where τi is the volume of the corresponding four-cycle, bi is an axion part-
ner from the C4 Ramond-Ramond (RR) potential. At tree-level the Kähler
moduli do not appear in the flux-induced superpotential, leaving them un-
stabilized.

Complex Structure Moduli: The complex scalar moduli za describe deforma-
tions of the complex structure of X6, modifying its shape but not its volume.
These are counted by the number of harmonic (2, 1)-forms forming a basis of
the Dolbeault cohomology group H2,1(X). The metric in the effective theory
is given by the Weil-Petersson metric:

Kzaz̄b = −
∫
X
χa ∧ χ̄b∫

X
Ω ∧ Ω̄

Unlike Kähler moduli, complex structure moduli can be stabilized by fluxes.

So the total geometric moduli space, as stated in the previous subsection, can be
separated into the two independent parts correspondent to Kähler moduli (Kähler
deformations) and Complex Structure Moduli (Complex Structure Deformations)
MModuli = MK ×Mc.s.. In addition to this geometric moduli we have to include
another modulus built up from the dilaton and the 0-form C0: the axio-dilaton
τ = C0 + ie−ϕ, where e−Φ is the dilaton, controlling the string coupling gs, and C0

is the RR scalar. Fluxes generate a potential for τ , stabilizing it at tree-level.

4.1.2 Kähler Potential in 4D Supergravity Models

With all the necessary components in place, we can now formulate a general model
in four-dimensional supergravity. To achieve this, we must construct the appro-
priate Lagrangian, which takes the form:

L = Kij̄(∂µX
i)(∂µX̄ j̄) + gauge, fermion, and other fields, (4.1)
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where Kij̄ = ∂i∂j̄K is the Kähler metric coming from the Kähler potential K and
Xi are the moduli, Kähler, complex structure and axio-dilaton ones. To explicitly
obtain the Lagrangian, we need to define the Kähler potential, incorporating a
term for each type of moduli that we described, while working in Planck units
(Mp = 1) [20].
Kähler potential for Kähler moduli:

KK = −2 lnV (4.2)

Kähler potential for complex structure moduli:

Kc.s. = − ln

(
i

∫
X6

Ω ∧ Ω̄

)
= − ln

(
−iΠTΣΠ

)
= − ln

(
−izaGa(z) + izaGa(z)

)
(4.3)

Kähler potential for the axio-dilaton:

Kdil = − ln(−i(τ − τ̄)) (4.4)

With all these 3 parts we have finally a full Type IIB Kähler Potential which is
quite general and so, for such a 4D Supergravity model:

K = KK(T
i, T̄ j̄) +Kc.s.(z

a, z̄ā)− ln(−i(τ − τ̄)) (4.5)

K = −2 lnV − ln

(
i

∫
X6

Ω3 ∧ Ω̄3

)
− ln (−i(τ − τ̄)) (4.6)

As the Kähler potential is defined, the next crucial step is moduli stabilization,
which ensures that moduli fields acquire a mass and do not lead to undesired
physical effects, such as long-range forces or cosmological instabilities. Now we
move to discuss the details about moduli stabilization.

4.2 Moduli Stabilization in Type IIB

In Calabi-Yau compactifications, moduli fields naturally arise as parameters that
describe the shape and size of the extra-dimensional space. These fields play a
crucial role in both string theory and cosmology, where they can act as inflaton
candidates driving cosmic inflation. However, a significant challenge arises: at tree
level, the Kähler potential does not generate a potential for the moduli, leaving
them as flat directions in field space. This absence of a potential leads to massless
moduli, which in turn can cause long-range fifth forces that contradict observa-
tional constraints.
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To construct a phenomenologically viable model, it is essential to generate a po-
tential that ensures all moduli acquire a positive mass squared, preventing in-
stability and runaway behavior. This process is known as moduli stabilization.
Various mechanisms, such as flux compactifications, non-perturbative effects (e.g.,
instantons, gaugino condensation), and quantum corrections, contribute to mod-
uli stabilization. Popular frameworks include the KKLT scenario, which uses
non-perturbative potentials to stabilize the Kähler moduli, and the Large Vol-
ume Scenario (LVS), where quantum corrections generate a stable vacuum with
large extra-dimensional volumes.
Ultimately, moduli stabilization is a crucial step in string model building, as it
not only ensures a consistent low-energy four-dimensional theory but also affects
supersymmetry breaking, cosmological evolution, and potential connections to ob-
servable physics.

4.2.1 Superpotential

Type IIB compactifications on Calabi-Tau threefolds result in an N = 2 super-
gravity in 4 spacetime dimensions. We then use orientifolds to reduce the amount
of supersymmetry to N = 1. The number of Kähler moduli is controlled by the
Hodge number h1,1. However introducing orientifolds projects out half of their
amount, and so the Kähler moduli are τi where i = 1, 2, 3...., h1,1+ . Also, the com-
plex structure moduli za are counted by h2,1− .
We consider compactifications where the RR and NS gauge field strengths, F3 =
dC2 and H3 = dB2, are non-zero, with a warped metric. These compactifications
involve a combined 3-form flux G3 = F3−SH3 that is imaginary self-dual(ISD),
satisfying ⋆6G3 = iG3, and are therefore called ISD compactifications. Non-zero
field strengths introduce fluxes, characterized by integers n,m ∈ Z, representing
flux quantization [20].

1

2πα′

∫
F3 = 2πn ,

1

2πα′

∫
H3 = 2πm (4.7)

Fluxes play a crucial role in stabilizing the geometry of the compactification man-
ifold. They prevent cycles from shrinking and, when distributed over different
cycles, help stabilize the shape of the manifold. Since complex structure moduli
determine the ratio of 3-cycle volumes, 3-form fluxes stabilize the complex struc-
ture moduli, giving them mass. These fluxes introduce a non-zero superpotential
W0, which depends on the moduli fields in supergravity models. This superpoten-
tial is known as the Gukov-Vafa-Witten (GVW) superpotential [21]. In the
Type IIB case, it has been rigorously derived from both four-dimensional N = 1
supergravity and ten-dimensional string theory. This superpotential takes the
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form:
WGVW = W0 =

∫
X6

G3 ∧ Ω3 (4.8)

The usual formula for the scalar potential is:

V = eK
(
Kij̄(DiW )(Dj̄W̄ ) +Kab̄(DaW )(Db̄W̄ )− 3|W |2

)
(4.9)

where the covariant derivative is defined as Di = ∂i +Ki, where the index i runs
over all Kähler moduli, and the index a runs over complex structure moduli and
the axio-dilaton. The moduli fields are collectively denoted as za = [τ, z1, ..., zh

2,1
].

The axio-dilaton contribution to the Kähler potential is absorbed into the complex
structure term, simplifying it as Kc.s. = Kc.s. +Kdil.
The superpotential W0 depends on these moduli and using the F-term conditions
for supersymmetry, stabilization is achieved by solving:

DaW = 0, for a = 1, . . . , h2,1− + 1 (4.10)

This ensures the stabilization of both the complex structure moduli and the axio-
dilaton, allowing them to be integrated out.

4.2.2 Kähler Potential

At the sphere level, the moduli space of closed string fields in an O3/O7 orientifold
of a Calabi-Yau threefold X6 factorizes into three independent sectors: complex
structure moduli, Kähler moduli and axio-dilaton moduli.

M = Mc.s.(X6)×MK(X6)×Mdil (4.11)

Therefore the metric for the moduli is block diagonal, and the Kähler potential
splits into dilaton, complex structure and Kähler moduli terms :

Ktree = − ln (−i(τ − τ̄))− ln

(
−i
∫
X6

Ω(zi) ∧ Ω̄(z̄i)

)
− 2 ln

(
V(Ta, T̄a)

)
(4.12)

In superpotential stabilization, the Kähler moduli remain unstabilized. As in (4.9),
only the second term of the potential can be integrated out. Consequently, the
scalar potential is given by:

V = eK
(
Kij̄DiWD̄j̄W̄ − 3|W |2

)
(4.13)

where the Kähler moduli remain unfixed, influencing the vacuum structure and
requiring additional mechanisms. This is due to the no-scale structure [22] that
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arises from the Kähler potential KK = −2 lnV , where V is a homogeneous function
of degree 3/2 in τi. This implies that the Kähler moduli have a no-scale potential,
i.e. V (T, T̄ ) ≡ 0. The term "no-scale" reflects that supersymmetry is broken at
an undetermined scale, making it a key feature in string compactifications.

DT̄W ∼ − W

(T + T̄ )
̸= 0 (4.14)

Since the Kähler potential depends on T , which remains unstabilized, the super-
symmetry breaking scale ΛSUSY = m3/2 = eK/2W0 is also not fixed.
So far we have stabilized all moduli except the Kähler moduli, of which we con-
sider there to be only one, the volume modulus. The other moduli were stabilized
by fixing the flux configuration, as they appear in the superpotential. With all
moduli stabilized except the volume modulus, the only relevant contribution from
the Kähler potential is:

K = −3 ln
(
T + T̄

)
(4.15)

As we have seen, the stabilization of the T -moduli is possible only once quantum
corrections to the scalar potential — through one or more of Wnp, Kpert and Knp

— impact the vacuum structure and break the no-scale structure. These effects are
of 2 kinds: perturbative (pert) and non-perturbative (np). The perturbative ones
cannot affect the superpotential due to the non-renormalisation theorem. Hence,
calling the previously written Kähler potential as K → K0:{

K = K0 +Kp +Knp

W = W0 +Wnp
(4.16)

4.2.3 Perturbative Corrections

In string compactifications, perturbative corrections play a crucial role in stabi-
lizing moduli fields, particularly the Kähler moduli, which remain unstabilized at
tree level due to the no-scale structure of the leading-order Kähler potential. These
corrections arise from both α′ (stringy) and loop effects (Kp = δKα′ + δKgs) and
help break the flatness of the moduli potential, leading to stabilized configurations.
The tree-level Kähler potential reads:

Ktree = −2 lnV (4.17)

Here, V is the Calabi-Yau volume. V is related to τ , which is the real part of the
Kähler modulus T , defined as τ = (T + T̄ ), which serves as the appropriate chiral
coordinate in the N = 1 effective field theory (EFT). At tree level, τ = V2/3. So,
now the Kähler potential takes the form:

Ktree = −3 ln τ (4.18)
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α′-Corrections and Loop Corrections:
α′ and gs-corrections which are needed for our further discussions have been re-
cently classified in [23]. In the effective supergravity description α′ corrections
correspond to higher derivative terms. In the 4D theory the leading order α′

correction in the Kähler potential reads [24]:

K

M2
p

= −2 ln

(
V +

ξ

2g
3/2
s

)
= −2 lnV − ξ

g
3/2
s V

+O(1/V2),

with the constant ξ given by:

ξ = −χ(X6)ζ(3)

2(2π)3
.

Here χ(X6) = 2(h1,1 − h2,1) is the Euler number of the Calabi-Yau X6, and the
relevant value for the Riemann zeta function is ζ(3) ≡

∑∞
k=1 1/k

3 ≃ 1.2.
For Type IIB compactifications, string loop corrections take the form:

δKgs = δKKK
gs + δKW

gs

where the two kinds of corrections come from different sources. In fact, δKKK
gs

comes from the exchange of Kaluza-Klein modes and δKW
gs originates by the ex-

change of winding strings. Explicit N = 2 δKKK
gs corrections computed for toroidal

orientifolds extend to Calabi-Yau backgrounds, where they take the form [25, 26]:

KO(g2sα
′2) ≃

gsc1
τ

(4.19)

where c1 is a function of the complex structure moduli. On the other hand, δKW
gs

corrections look like [25, 26]:
KO(g2sα

′4) ≃
c4
τ 2

(4.20)

where c4 depends on the complex structure moduli. Ref. [27] identified the origin
of these corrections as arising from loops of Kaluza-Klein modes of open strings
stretched between intersecting branes. Additionally, similar corrections are ex-
pected to emerge from closed string loop effects [27, 28]. Moduli redefinitions in
string theory arise from higher-order effects at O(α′2) and O(gsα

′2), which mod-
ify the Kähler potential primarily through moduli redefinitions rather than direct
corrections [29]. These effects introduce logarithmic modifications, transforming
the Kähler potential as K = −3 ln(τ − α ln τ) [30, 31, 32]. At O(α′3), further
corrections appear as [24, 33, 34, 35]:

KO(g2sα
′3) = −2 ln

{
1 +

ξ

2(gsτ)3/2

[
1 + g2s

(
c2

(
1− 3T7

2
ln τ

)
+ c3

)]}
(4.21)
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The term proportional to c2 = 2ζ(2)/ζ(3) represents an N = 2 O(g2sα
′3) correction

[36, 37], with logarithmic contributions arising in regions of high localized curvature
[38, 39]. Additionally, the small parameter c3 ∼ 10−4 governs N = 1 effects at the
same order [40, 41]. These contributions stem from localized curvature effects and
influence the scalar potential, scaling as [42, 43]:

VF = c3
√
gs
W 4

0

τ 11/2
(4.22)

4.2.4 Non-Perturbative Corrections

Non-perturbative corrections play a crucial role in moduli stabilization and the de-
termination of the low-energy effective action in string theory compactifications.
While perturbative corrections modify the Kähler potential and gauge kinetic
functions, non-perturbative effects contribute exponentially suppressed terms to
the superpotential, which are essential for stabilizing Kähler moduli. The non-
renormalization theorem ensures that the superpotential does not receive either
α′ or gs corrections [44]. However, it can receive non-perturbative corrections,
and we focus specifically on those affecting the superpotential, expressed as (4.16).
These non-perturbative contributions typically originate from two key mechanisms:
gaugino condensation [45] and Euclidean D3-brane ED3-brane instan-
tons [46]. We are now discuss about these two types:

• Gaugino condensation: In the context of string compactifications, par-
ticularly in type IIB string theory, gaugino condensation plays a crucial role
in generating a non-perturbative superpotential that stabilizes moduli fields.
This mechanism arises when a stack of N D7-branes wraps a rigid four-cycle
Σ4 within a compactification manifold. The rigidity of Σ4 implies that it has
no deformations and does not support charged matter fields, ensuring the
emergence of a pure N = 1 super Yang-Mills theory in the four-dimensional
effective field theory (4D EFT) after dimensional reduction. Since the D7-
brane action includes a Yang-Mills term with a gauge field Aµ in 4D the
low-energy effective dynamics of the theory are significantly influenced by the
condensation of gauginos. At sufficiently low energies, the strongly coupled
gauge theory undergoes gaugino condensation, generating a non-perturbative
superpotential of the form:

Wnp = Ae−aT (4.23)

where a = 2π/N,A = A(za, ρα) ∼M3
p with ρα brane position moduli and T

the Kähler modulus whose real part measures the volume of Σ4. In general,
If multiple D7-brane stacks are present or branes wrap different four-cycles,
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the superpotential generalizes to a sum over contributions from different
wrapped cycles:

Wnp = Winst =
∑
i

Ai e
−aiTi (4.24)

with i runs over all wrapped cycles, allowing for multiple non-perturbative
effects to contribute to the effective theory.

• Euclidean D3-brane instantons: Another key source of non-perturbative
corrections to the superpotential comes from Euclidean D3-brane (ED3) in-
stantons, also known as E3-instantons. These are Euclidean D3-branes that
wrap four-cycles in the compactified space and generate quantum corrections
in the low-energy effective action.
If Σ4 instead is wrapped by a Euclidean D3-brane, then we are dealing with
ED3-brane instantons. They generate non-perturbative contributions to the
path integral.An ED3-brane wrapping a divisor

∑
in the Calabi–Yau com-

pactification contributes a non-perturbative term to the superpotential:

Wnp = Ae−Sinst

Their action includes: real part: Re(Sinst) ∝ VΣp+1(cycle volume) and
imaginary part: Im(Sinst) ∝ SC.S. (Chern-Simons term).
For multiple wrapped cycles, the superpotential is:

Wnp = WE3 =
∑
i

Ai e
−aiTi (4.25)

where ai = 2π and, again, A = A(za, ρα) ∼ M3
p with ρα brane position

moduli. In this case, a rigid cycle ensures a non-zero contribution to the
superpotential. Additionally, the presence of fluxes allows for a slight re-
laxation of this rigidity condition while still maintaining a non-vanishing
contribution. where A depends on fluxes and additional instanton effects. If
multiple instantons contribute, the superpotential may take the form:

W = Wflux +
∑
i

Aie
−aiT

There are two major scenarios for fixing the Kähler moduli. These are the KKLT
construction and the Large Volume Scenario (LVS), which we now describe in
detail.

• The KKLT construction [47] utilizes the ability to tune the vacuum ex-
pectation value of the flux superpotential to small values. This acts as a
small parameter, enabling different contributions from W0 and Wnp to bal-
ance each other. As a result, a supersymmetric AdS minimum is achieved.

37



• The LVS construction [48] relies on the perturbative no-scale breaking
effect from an α′3-correction which depends on the volume V . This correction
competes with non-perturbative effect on a small blow-up-4-cycle, leading to
a non-supersymmetric AdS minimum. At this minimum, the volume scales as
V ∼ e1/gs ≫ 1 in string units, making it exponentially large. Supersymmetry
is broken due to the F-terms of the Kähler moduli.

4.2.5 KKLT Construction

We already saw that in Type-IIB compactification, turning on fluxes generates a
potential for the dilaton, and complex structure moduli, while the Kähler moduli
remain unstabilized. The first step in the KKLT construction [47] is to integrate
out the dilaton and complex structure moduli, reducing the system to a low-energy
effective action for the Kähler moduli. While a realistic model includes multiple
Kähler moduli, we focus on a single modulus to illustrate the key features of this
construction.
The KKLT (Kachru, Kallosh, Linde and Trivedi) proposal is one of the widely
accepted solution of dS construction. We know the non-perturbative correction to
the super-potential from the previous discussion. So:

W = W0 + Ae−aT (4.26)

For a supersymmetric minimum, DTW = 0.

0 = DT

(
W0 + Ae−aT

)
= ∂T

(
W0 + Ae−aT

)
+ (∂TK)

(
W0 + Ae−aT

)
= −aAe−aT − 3

2

1

τ

(
W0 + Ae−aT

)
Thus, for W0 > 0, A > 0 and the axion b fixed at e−iab = −1, we have

W0 = Ae−aτ
(
2

3
aτ + 1

)
(4.27)

Since we are looking at a supersymmetric vacuum, the potential has an AdS min-
imum at:

VAdS = −3eKW 2 = −a
2A2e−2aτ

6τ
(4.28)

Since the obtained vacuum is AdS, an uplift to a dS vacuum is required. In the
famous KKLT paper, the uplifting of the vacuum is done via adding anti-branes,
which explicitly breaks supersymmetry and adds a positive contribution to the
scalar potential.
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Initially, the uplift term was proportional to 1/τ 3, but more recent studies have
also considered terms proportional to 1/τ 2. The final scalar potential takes the
form: V = VAdS+Vup, where the uplift term ensures a stable de Sitter (dS) vacuum.
The potential is of the following form:

V =
aAe−aτ

3τ

(
aAτe−aτ − 2W0 + Ae−aτ

)
+
D

τ 3
(4.29)

Here the uplift term D/τ 3 ensures a de Sitter(dS) vacuum. We present in Figure
4.1 a plot illustrating the transition from an AdS vacuum to an uplifted dS vacuum,
where the real part of T corresponds to τ .

Figure 4.1: (a) The supersymmetric AdS vacuum, and (b) the uplifted dS vacuum
from [49].

In GKP flux compcatifictions, the no-scale structure remains intact, whereas
in KKLT, it is broken during moduli stabilization, leading to a supersymmetric
vacuum where the Kähler modulus acquires a mass exceeding the gravitino mass.
This represents a key distinction between KKLT and LVS, as the no-scale structure
is preserved at leading LVS order, which we now examine.

4.2.6 Large Volume Scenario

The Large Volume Scenario (LVS) [48] begins similarly to KKLT, using the low-
energy effective field theory after integrating out the complex structure moduli and
axio-dilaton. However, LVS requires at least two Kähler moduli, with the Calabi-
Yau manifold exhibiting a "Swiss-cheese" structure where the overall volume is
controlled by one modulus, while additional moduli represent blow-up modes cor-
responding to geometric holes. The simplest case involves two Kähler moduli,
where the Calabi-Yau volume is expressed as:

V = τ
3/2
b − τ 3/2s (4.30)
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Here, τb represents the volume of a large 4-cycle in the Einstein frame, while τs
measures the volume of a blow-up cycle, specifically controlling the volume of an
exceptional del Pezzo divisor that resolves a point-like singularity. Additionally,
the leading α′3 correction to the kähler potential is:

K = −2 ln

(
V +

ξ

2g
3/2
s

)
(4.31)

with ξ ≡ −χ(X6)ζ(3)
2(2π)3

where χ(X6) is the Euler number of the Calabi-Yau and ζ is
the Riemann zeta function. LVS also requires a non-perturbative effect supported
on the small cycle from (4.26).
Working in the limit τb ≫ τs, after fixing the axionic partner of τs at its minimum,
the scalar potential takes the form:

V =
4

3

a2sA
2
s

√
τse

−2asτs

sV
− 2asAs|W0|τse−asτs

sV2
+

3
√
s ξ|W0|2

8V3
(4.32)

Minimizing the potential, one finds a minimum at:

⟨V⟩ ≃
3
√

⟨τs⟩|W0|
4asAs

eas⟨τs⟩ and ⟨τs⟩ ≃
1

gs

(
ξ

2

)2/3

(4.33)

LVS achieves stabilization by balancing the α′3 corrections and non-perturbative
effects, leading to a large overall volume. A high dilaton value ensures that the
effective field theory remains under control, and the scenario is viable for natural
values of W0 in the range O(1 − 10). The LVS vacuum is Anti-de Sitter (AdS),
with a potential at the minimum: VLV S ∼ −m3

3/2Mp. It is non-supersymmetric,
and the dominant F-term contribution scales as F Tb ∼ τbm3/2, inherited from
the no-scale structure. As a result, the Goldstino associated with Tb is absorbed
by the gravitino, giving it a non-zero mass. Overall, the LVS provides a robust
framework for moduli stabilization and plays a crucial role in connecting string
theory to cosmology.
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Chapter 5

The Brane World

5.1 D-brane effective action

A key element in Calabi-Yau flux compactification is the presence of Dp-branes,
which must extend across four-dimensional spacetime to preserve Poincaré. Each
spacetime-fillingDp-brane supports a U(1) gauge theory on its worldvolume. More
generally, a stack of N Dp-branes gives rise to a non-Abelian U(N) gauge the-
ory. Dp-branes are dynamical objects in string theory, emerging naturally from
the boundary conditions of open strings. Just as the Polyakov action describes
the string dynamics, Dp branes also have a corresponding action governing their
behavior. A relevant action named Born-Infeld action, which is a non-linear
alternative to Maxwell theory is written as:

S = −Tp
∫
dp+1x ξ

√
− det(ηab + 2πα′Fab) (5.1)

Here, ξ represents the worldvolume coordinates of the Dp-brane, and Tp denotes
the brane tension. Since Tp acts as an overall factor in the action, it does not
influence the equation of motion. The gauge potential Aa is a function of the
worldvolume coordinates, expressed as Aa = Aa(ξ).
For small field strengths, Fab ≪ 1/α′, the action (5.1) coincides with Maxwell’s
action. To see this, we need simply expand to get:

S = −Tp
∫
dp+1x ξ

(
1 +

(2πα′)2

4
FabF

ab + . . .

)
(5.2)

The leading order term, quadratic in field strengths, is the Maxwell action. Terms
with higher powers of Fab are suppressed by powers of α′.
This Born-Infeld action originates from the one-loop beta function and provides
an exact result for constant field strengths. However, to analyze the dynamics of
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gauge fields with large gradients (∂F ), one must account for higher-loop corrections
to the beta function.

5.2 The DBI Action

We have established that the dynamics of gauge fields on the brane is governed by
the Born-Infeld action. However, to understand the functions of the brane itself,
we need to examine its embedding in spacetime [50]. From this we can see that
the brane action should take the form of the Dirac action. A direct approach to
verifying this involves computing the equations of the beta function for the scalar
fields ΦI on the brane. Activating these scalars corresponds to bending the brane
and modifying its boundary conditions. By analyzing these equations, one can
explicitly show that brane fluctuations are indeed governed by the Dirac action.
More generally, one could consider both the dynamics of the gauge field and the
fluctuation of the brane. This is governed by a mixture of the Dirac action and
the Born-Infeld action, which is usually referred to as the DBI action:

SDBI = −Tp
∫
dp+1x ξ

√
− det(γab + 2πα′Fab) (5.3)

Here, γab is the pull-back of the the spacetime metric onto the worldvolume,

γab =
∂Xµ

∂ξa
∂Xν

∂ξb
ηµν (5.4)

Coupling to Closed String Fields: The DBI action governs the low-energy
dynamics of a Dp-brane in flat space. A natural question arises: How does the
motion of a D-brane change when it moves in a background influenced by closed
string modes, such as the metric Gµν , the B-field Bµν , and the dilaton Φ?
Instead of deriving it explicitly, we will state the result and then justify each term
in the action accordingly. The DBI action in a general curved background takes
the form:

SDBI = −Tp
∫
dp+1ξ e−Φ̂

√
− det(γab + 2πα′Fab +Bab) (5.5)

The background Metric Gµν: Let us start with the coupling to the background
metric Gµν . It us actually hidden in the notation in this expression: it appears in
the pull-back metric γab which is now given by:

γab =
∂Xµ

∂ξa
∂Xν

∂ξb
Gµν (5.6)

The Dilaton field: It us decomposed into a constant part and a varying part,
Φ = Φ0 + Φ̃, where gs = eΦ0 represents the asymptotic string coupling. The
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D-brane tension, scaling as Tp ∼ 1/gs, depends on the local value of the dilaton
rather than its asymptotic value. This explains the e−Φ̃ factor in the action, which
accounts for local dilaton variations. The effective string coupling at a spacetime
point X is given by geffs = eΦ(X) = gs e

Φ̃(X). Consequently, the D-brane tension
varies with the dilation decreasing in regions where geffs is larger.
The Bµν field: This is a 2-form in spacetime. The function Bab appearing in the
DBI action is the pull-back onto the worldvolume:

Bab =
∂Xµ

∂ξa
∂Xν

∂ξb
Bµν

Its appearance in the DBI action is actually required on grounds of gauge in-
variance alone. This can be seen by considering an open string, moving in the
presence of both a background Bµν(X) in spacetime and a background Aa(X) on
the worldvolume of a brane. The relevant terms on the string worldsheet are:

1

4πα′

∫
M
d2σ ϵαβ∂αX

µ∂βX
νBµν +

∫
∂M

dτ AaẊ
a

5.3 The Chern-Simons action

Since we are interested in R-R charged object, let us move on to them. Potentials
in the R-R sector are:

type IIA : C1, C3, C5, C7

type IIB : C0, C2, C4, C6, C8

Dp branes are p-dimensional extended objects which couple to all these via an
electric coupling of the form (thus R-R charged):

µp

∫
Mp+1

Cp+1

In Type IIA string theory there are stable Dp-branes with p even and in Type
IIB string theory there are stable Dp-branes with p odd. The above action is also
called Chern-Simons action and it is the higher dimensional generalization of a
charged particle coupled to a gauge potential. Lastly:

SDp = SDBI + SCS (5.7)
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5.3.1 Brane Cosmology

The discovery of D-branes and the Horava-Witten scenario has led to the devel-
opment of the brane-world scenario in string theory. In Type IIA, IIB and Type
I string theories multiple D-branes can support gauge and matter fields, with at
least one accommodating the Standard Model. Open strings are confined on D-
branes, restricting their endpoints, and closed strings, including gravity and the
dilaton, propagate through the extra dimensions. For space-times with a product
geometry, the four dimensional Planck mass is given by: M2

p ∼M8
sR

6, with R the
size of the extra dimension and Ms the string scale. This is the source to claim
that large extra dimensions allow the possibility of low Ms as long as the Planck
mass is fixed to the experimentally known value.
The Randall-Sundrum model [51] extends the idea of large extra dimensions by
introducing a warp factor in a five-dimensional metric:

ds2 = W (y)gµνdx
µdxν + dy2

Here, y represents the extra dimension, and W (y) is the warp factor, which weights
variations in the metric at different location along y. Branes fixed at different
positions in y experience different metric scales due to W (y). Randall and Sun-
drum found an exponential dependence in W (y), enabling small fundamental
scales even with moderately large extra dimensions. They also showed that, with
5d anti-de Sitter space and fine-tuning of the cosmological constant, gravity can
be localized on the brane, even with infinitely large extra dimensions. These find-
ings sparked significant interest in the physical implications of extra dimensions,
extending beyond the string theory community into cosmology.

5.4 Brane-Antibrane Inflation

String theory as a leading candidate for quantum gravity, has inspired various
inflationary models, particularly those involving Dp-branes. In this framework, D-
branes, as dynamical objects moving through extra dimensions, provide a natural
setting for inflation. Among these models, brane-antibrane inflation is one of
the most promising, where the interbrane distance serves as the inflaton field.
It offers a UV-complete realization of supersymmetric hybrid inflation, but faces
challenges such as the η-problem, where achieving sufficient inflation in flat space
requires an interbrane distance larger than the compactification scale.

Brane-antibrane inflation is a well-established model in string theory, where
Dp-branes interact through Ramond-Ramond (RR) fields [23, 52]. In a system of
two parallel branes with the same charge, the gravitational attraction is exactly
canceled by the repulsive RR interaction, maintaining a static, supersymmetric
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configuration. However, when a brane-antibrane pair is introduced, supersymme-
try is completely broken, leading to a finite energy density that can drive inflation.
In this setup, the RR-mediated interaction becomes attractive, resulting in a net
force between the brane and antibrane, which plays a crucial role in inflationary
dynamics.
The simplest example of brane-antibrane inflation in Type IIB string theory in-
volves a stack of Nc (the number of branes in the stack) D3-branes and Ñc anti-
D3-branes spanning the non-compact directions 0123 and separated by a distance
r in a six-dimensional flat torus with volume V6 = L6.

Figure 5.1: Brane-antibrane inflation is implemented with a stack of branes and a
stack of antibranes separated within a compact space.

Inflation will occur as the brane and antibrane stacks move towards each other
through the higher-dimensional bulk space, with the relative brane-antibrane po-
sition parameterizing the inflaton field ϕ and the inflaton potential V (ϕ) arising
from their interactions. Mainly, the inflaton field corresponds to the interbrane
separation, and its effective potential determines whether the model can produce
the required inflation. We assume inflation starts with interbrane distance r ≫ ℓs,
where ℓs is the fundamental string length. At large separations, the interaction
force between the brane and antibrane, mediated by gravity and Ramond-Ramond
(RR) fields, can be well approximated by a Coulomb-like potential. In this regime,
the effective potential governing the interaction is given by [52]:

V (r) = 2T3

(
1− 1

2π3m8
10,pr

4
T3

)
(5.8)

Here, T3 represents the D3-brane tension, and the 10D Planck mass is defined as
m−8

10,p = 8πG10. The 4D Planck mass Mp is related to the 10D Planck mass through
the relation: M2

p = m−8
10,pL

6, where L6 is the volume of the compact manifold M .
This expression can be reformulated in terms of a canonically normalized scalar
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field ϕ, yielding a potential that, for large field values, can serve as a driving
mechanism for inflation [9]:

V (ϕ) = 2T3

(
1− 1

2π3m8
10,pϕ

4
T 3
3

)
(5.9)

We therefore have a potential that can be responsible for driving inflation.
η-problem: Note that the string scale Ms can be expressed in terms of the 4D
Planck scale Mp as:

Ms =
gsMp√
4πVs

(5.10)

where Vs denotes the Calabi-Yau volume in string frame measured in units of the
string length ℓs. The potential (5.8) however would become flat enough to drive
inflation only at distances larger than the size of the extra dimensions [52]. This
can be easily seen by computing the second slow-roll parameter η:

η =M2
p

Vϕϕ
V

≃ −10

π3

Vs
(rMs)6

(5.11)

Here, the derivatives are taken with respect to the canonically normalized inflaton
ϕ =

√
T3r. If the Calabi-Yau volume is isotropic, the maximum possible value for

r is given by rmax ≈ V
1/6
s M−1

s . This leads to:

|η| ≳ 10

π3
≈ 0.3 (5.12)

which is too large to allow for sufficient e-foldings of inflation. For solving this, we
focusing on Calabi-Yau spaces with a warped throat, which can help by modifying
the potential structure.
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5.4.1 Brane-antibrane inflation in warped compactifications

Figure 5.2: Cartoon of an embedded stack of D7-branes wrapping a four-cycle Σ4,
and a mobile D3-brane, in a warped throat region of a compact Calabi-Yau. [53].

String theory offers a promising foundation for the inflationary paradigm, yet
constructing explicit and well-controlled inflationary models remains a challenge.
This study explores the feasibility of working models within the framework of slow-
roll warped D-brane inflation, where the inflaton field corresponds to the position
of a mobile D3-brane moving within a warped throat region of the compactification
manifold.

Our starting point is a compactification of Type IIB string theory on a Calabi-
Yau orientifold in the presence of fluxes. The metric of the 10D space factorises
and is given by:

ds2 = h−
1
2

(
−dt2 + dx⃗2

)
+ h

1
2

(
dr2 +

r2

R2
g̃abdy

adyb
)

(5.13)

where g̃abdyadyb is the line element on X5, and h(r) is given by

h(r) =
R4

r4
(5.14)

It is easy to check that h(r) is a harmonic function in a six-dimensional space
spanned by r and the directions along X5, with metric

ds26 = dr2 +
r2

R2
g̃abdy

adyb (5.15)

If the warped factor can be written in the form [54]:

e−A(r)

V1/6
≈ R

r
(5.16)
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the dynamics of the brane/antibrane in a warped geometry can be written as [47]:

SDBI = T3

∫
d4x
√

− det (γ̃ab + g̃αᾱ∂azα∂bz̄ᾱ)

=

∫
d4x

(
T3

(
1 +

e−4A(r)

V2/3

)−1

+
1

2
gαᾱ∂µ

(√
T3z

α
)
∂µ
(√

T3z̄
ᾱ
)
+O(∂z)4

)
.

(5.17)

The DBI action for a D3-brane consists of a vacuum energy term and kinetic
terms for the brane position moduli. For D3-branes, the vacuum energy cancels
due to the Chern-Simons action, while for anti-D3-branes, it doubles, creating
a potential. This potential is minimized at the bottom of the warped throat,
where the warp factor is maximized, stabilizing the antibrane in the most strongly
warped region. This mechanism is crucial for brane-antibrane inflation, ensuring
natural stabilization in the extra dimensions. The metric gαᾱ appearing in (5.17)
is therefore given by:

gαᾱ =
∂2k(zα, z̄ᾱ)

∂zα∂z̄ᾱ

The inflaton in brane-antibrane inflaton is the radial distance r between the D3-
brane and the D̄3-brane at the tip of the throat. It correspondence to the complex
coordinate z ∼ z̄ ∼ r3/2, leading to the metric component gαᾱ ∼ r−1. Substituting
this result into the kinetic Lagrangian, the canonically normalized inflaton is found
as ϕ =

√
T3r. A proper supergravity embedding requires incorporating the volume

mode into the three-level Kähler potential, given by:

K = −3 ln[T + T̄ − γk(zα, z̄ᾱ)] (5.18)

The kinetic terms for r can be computed, yielding γ ∼ ⟨(T + T̄ )⟩T3, which aligns
with the kinetic terms obtained from the DBI action. This result plays a key role
in embedding brane-antibrane inflation within supergravity frameworks.
The Coulomb potential in D3-brane inflation arises from the backreaction of the
D3-brane, which modifies the background geometry. When a D3-brane is placed
at position r in the warped compactification, it perturbs the warp factor, leading
to a correction described by a harmonic function. This backreaction generates
an attractive Coulomb-like potential, influencing the motion of the D3-brane and
playing a crucial role in inflationary dynamics.

h(r) =
R4

r4
+ δh(r) or 1 +

e−4A

V2/3
→ 1 +

e−4A

V2/3
+ δh(r) (5.19)

In the conifold case the zero mode of the Laplacian in the angular directions
gives the profile δh(r) = β/(T3r

4), with β = 27/(32π2), while other modes in the
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multipole decomposition give higher orders in 1/r. Including this leading effect in
the DBI action for the antibrane in the perturbed background, one finds:

SDBI =

∫
d4xT3

(
1 +

e−4A(r)

V2/3
+

β

T3r4
)−1 (5.20)

The resulting inflationary potential takes the form:

V (r) = C0

(
1− D0

r4
)

(5.21)

where in terms of the D3-brane tension T3, the string coupling gs and the string
length ℓs = 2π

√
α′ =M−1

s [23]:

C0 ≡ 2T3V2/3e−8πK/(3gsM) and D0 ≡
27

32π2T3
V2/3e−8πK/(3gsM) (5.22)

Note that the string scale Ms can be expressed in terms of the 4D Planck scale
Mp as:

Ms =
gsMp√
4πVs

Here, M represents the quantized flux of F3 (the R-R 3-form field strength) on
the S3 at the tip of the throat, while K is the quantized flux of H3 (the NS-NS
3-form field strength) on its Poincaré dual 3-cycle. The Calabi-Yau volume in the
Einstein frame is denoted by V and is related to the volume in the string frame as
Vs = g

3/2
s V . The new η-parameter can now be easily very small due to the warping

suppression factor:

|η| ≃ 135

8π3

Vs
(rMs)6

V2/3e−8πK/(3gsM) ≪ 1 (5.23)

From the above discussion we can see that, by incorporating the warp-factor, we
can mitigate the η-problem, making slow-roll more viable. However, this analy-
sis does not account for the fact that inflation occurs in a compactified setting,
where closed string moduli must be properly stabilized throughout the inflationary
process.
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Chapter 6

Angular Moduli Stabilization and
Inflation

6.1 Non-perturbative Corrections and Fine-Tuning

In the previous discussion, we looked at how brane-antibrane inflation works. How-
ever, to get a complete picture, we also need to consider moduli stabilization, which
is essential for a consistent setup. In this chapter, we will explore brane-antibrane
inflation while taking into account all the key parameters needed to properly define
the inflation potential. Also in this section we can see the reflection of the famous
work "KKLMMT" [52].
A particularly important field in this context is the overall volume mode V , which
influences the dynamics of the system. The string scale Ms can be expressed in
terms of this modulus as:

Ms =
g
1/4
s Mp√
4πV

(6.1)

so the inflationary potential is a function of both r and V :

Vinf(r,V) =
C0

V4/3

[
1− D0

(rMKK)4

]
(6.2)

where

C0 =
M4

p

4πV4/3
e−8πK/(3gsM) ≡ C0

V4/3

and

D0 ≡
(

3

4π

)3

e−8πK/(3gsM)
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MKK is the Kaluza-Klein (KK) scale given in terms of the stabilised volume ⟨V⟩
when the D3-brane is near the tip of the throat:

MKK =
Ms

⟨Vs⟩1/6
=

Mp√
4π⟨V⟩2/3

Written in terms of the canonically normalized inflaton ϕ, the inflationary potential
(6.2) takes the form:

Vinf(ϕ,V) =
C0

V4/3

(
1− C1

φ4

)
with C1 ≡

D0T
2
3

M4
KK

(6.3)

During inflation, the volume mode V must be stabilized to prevent unwanted run-
away behavior in directions orthogonal to the inflationary trajectory. Previous
attempts, such as those in [52], used non-perturbative corrections to the superpo-
tential to fix V . However, these corrections introduce a large mass contribution
to the inflaton, disrupting the required flatness of the potential. This issue is a
direct consequence of the η-problem, which commonly affects inflationary models
in supergravity and string theory.
The core of this problem lies in the distinction between the holomorphic superfield
T , which appears in the superpotential W , and the physical Calabi-Yau volume
V . The proper relation between these variables is given by:

T + T̄ = V2/3 + γr2 (6.4)

where the γ is proportional to T3⟨T+T̄ ⟩. Consequently, T -dependent non-perturbative
corrections generate a potential Vnp that depends on both V and r, after using (6.4).
In fact, after fixing (T − T̄ ), Vnp looks like:

Vnp(r,V) =
1

V4/3
Unp(T + T̄ ) (6.5)

Using (6.4) and writing (6.2) as Vinf = V−4/3Uinf (r), and for γr2 ≪ (T + T̄ ), the
total scalar potential hence becomes:

Vtot =
1

(T + T̄ )2
[
Unp(T + T̄ ) + Uinf(r)

](
1 +

2γr2

(T + T̄ )

)
(6.6)

At the end of inflation, the D3-brane annihilates with the anti-D3-brane, causing
the inflationary potential to vanish. What remains is a non-perturbative potential
that naturally leads to an AdS vacuum, requiring an additional uplifting term Cup
to achieve a stable vacuum. The late-time potential is minimized at ⟨T + T̄ ⟩,
ensuring Unp + Cup ≈ 0. During inflation, the Kähler modulus shift is negligible,
and the inflationary potential is expressed in terms of the radial distance r. By
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rewriting it using the canonically normalized inflaton ϕ, the potential takes the
form:

Vinf = V0(ϕ)

(
1 +

1

3

ϕ2

M2
p

)
(6.7)

This illustrates how the brane-antibrane interaction governs inflation and post-
inflationary vacuum stabilization.
The inflationary potential is modified by the Planck-suppressed 6D operator, which
introduces a large correction to the slow-roll parameter η, potentially ruining in-
flation with a shift of ∆η = 2/3. However, [52] suggested that non-perturbative
corrections to the superpotential depend on ϕ, requiring an additional subleading
term in the potential. This leads to a revised form of the inflationary potential
with an extra term P (ϕ), defined as the ratio of the subleading correction Usub to
Uinf . If P (ϕ) introduces a correction to η of order −2/3, it cancels the dangerous
Planck-suppressed contribution, allowing for inflection point inflation around a
specific value ϕ0. This tuning enables inflation to occur only in a localized region,
resulting in a finely controlled inflationary scenario.
The fine-tuned microscopic parameters effectively cancel the dangerous contribu-
tion to the inflaton mass over a range of ϕ. This relies on the assumption that
the non-perturbative superpotential prefactor A(ϕ) [53] which contributes to the
inflaton potential, contains a quadratic term in ϕ that stabilizes η. However, it
is observed that the functional form of A(ϕ) does not actually permit a purely
quadratic correction, since A is a holomorphic function of the coordinates zα,
which scales as zα ∝ ϕ3/2. Consequently, the presence of A(ϕ) does not lead to the
required quadratic terms, undermining the possibility of a fine-tuned cancellation
of the inflaton mass across an extended range of ϕ.

6.2 Perturbative Corrections and Slow-Roll

Recent work [23] demonstrates that incorporating perturbative corrections in mod-
uli stabilization for brane-antibrane inflation can help resolve the η-problem. Per-
turbative corrections in moduli stabilization provide a potential resolution to this
issue. The stabilization of moduli fields, particularly the Kähler modulus τ , plays
a fundamental role in controlling the dynamics of the extra-dimensional volume.
Instead of directly working with τ , it is useful to redefine the physical Calabi–Yau
volume σ, which incorporates the D3-brane position modulus r as:

σ = τ − 1

6
(MKKr)

2 (6.8)

The stabilization of σ, rather than τ , during inflation ensures the resolution of the
η-problem. As inflation progresses, r → 0, leading to σ → τ . In a 4D supergravity
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effective field theory (EFT), the expansion in powers of a nilpotent superfield
X allows for a systematic treatment of non-linear supersymmetry. The Kähler
potential and superpotential take the following forms [55, 56, 57]:

K = −3 ln[f(σ)] + (X + X̄)g(σ)−XX̄h(σ) (6.9)

W = W0 +XWX(r) (6.10)

Due to the axionic shift symmetry, K is independent of (T + T̄ ), and perturbative
corrections ensure the superpotential remains independent of T . The functions
f(σ), g(σ), h(σ) can be expanded in powers of 1/σ, with loop corrections provid-
ing logarithmic enhancements. The F-term scalar potential is derived by taking
derivatives with respect to τ , r and X, then setting X = X̄ = 0 and assuming
r ≪M−1

K , leading to the equation:

e−KV =
[
KXX̄W 2

X +W0WX

(
KXĀKA +KX̄AKĀ

)
+W 2

0

(
KABKĀKB − 3

)] ∣∣∣
X=0

(6.11)
where the index A runs just over T and X since Kr ≃ 0 for r ≪ M−1

KK , and we
assumed without loss of generality that WX ∈ R. Using the notation dy/dσ ≡ y′,
the F-term potential becomes:

V =
1

U

[
(f ′WX − 3g′W0)

2 − f ′′ (fW 2
X − 6gWXW0 − 9hW 2

0

)]
(6.12)

where
U ≡ 3f 2

(
2gf ′g′ − fg2 + f ′2h− f ′′(g2 + fh)

)
(6.13)

At tree-level we have f = σ, g = 0 and h = 1. In this case one has therefore f ′ = 1
and g′ = f ′′ = 0, which implies that (6.12) simply reduces to:

V =
WX(r)

2

3σ2
(6.14)

As expected, this is the standard D3-brane uplift contribution if we identify WX

with the warp factor. Introducing also the dependence on r as:

WX(r) = e−2ρ

√
3

4π

(
1− D0

(rMKK)4

)
with ρ ≡ 2πK

3gsM
(6.15)

the potential (6.14) reproduces the inflationary potential (6.2). However σ would
be an unstable runaway direction at tree-level. We need therefore to add quantum
corrections to fix σ.

At the tree level, the potential derived above predicts an unstable trajectory
for σ, which would result in a runaway direction during inflation. To stabilize σ,
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quantum corrections must be incorporated into the function f(σ), leading to a
modified potential of the form:

V ≃ W 2
X

3σ2
+ 3W 2

0

[
α

σ4
−

ξ
√
gs

4cσ9/2

(
lnσ − c

g2s

)]
(6.16)

Here, the additional terms dependent on W0 ensure that the potential remains
stable throughout inflation. These quantum corrections are of similar magnitude
to the late-time minimum τmin, preventing excessive shifts in the minimum during
inflation.
Since the potential is primarily controlled by WX , maintaining a stable minimum
requires WX to remain sufficiently small, such that inflationary and late-time min-
ima remain close to each other. If WX satisfies

WX ≈ e−2ρ ≪ 1

, then the first term in the above potential contributes only a minor correction to
the late-time minimum, resulting in an inflationary vacuum energy given by:

V (σmin) ≃
W 2
X

3σ2
min

≃ e
− 2c

g2s

3λ20
W 2
X (6.17)

Substituting WX as a function of r reproduces the brane-antibrane potential
(6.2), ensuring a well-stabilized volume modulus through perturbative corrections,
thereby solving the η-problem.

6.3 Angular Directions Stabilisation

As mentioned above, in brane-antibrane inflation, the role of the inflaton is played
by the radial distance between the D3-brane and the anti-D3-brane at the tip of the
throat. To ensure stability of this inflationary trajectory, we now investigate where
the angular directions can be appropriately stabilized by exploiting the fact that
the prefactor of non-perturbative corrections introduces a dependence of the scalar
potential on these angular modes. This whole discussion and the mathematical
rigorousness is influenced by this two amazing work [58] and [53].

6.3.1 Warped Volume and Non-perturbative Superpotential

The non-perturbative effects discussed earlier depend exponentially on the warped
volume of the associated four-cycle. This warped volume plays a crucial role in two
contexts: it governs the instanton action for Euclidean D3-branes and determines
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the gauge coupling for strong gauge dynamics on D7-branes.
A warped background metric is given by:

ds2 = h−1/2(Y )gµνdx
µdxν + h1/2(Y )gijdY

idY j (6.18)

where h(Y ) is the warp factor. Additionally, the Yang-Mills coupling g7 for the
7 + 1 dimensional gauge theory on a stack of D7-branes is given by [59]:

g27 = 2(2π)5gs(α
′)2 (6.19)

This expression shows how the gauge coupling is influenced by the string cou-
pling gs and the string length scale α′ emphasizing the impact of warping on
non-perturbative effects in string theory. The action for gauge fields on D7-branes
that wrap a four-cycle Σ4 is [58]:

S =
1

2g27

∫
Σ4

d4ξ
√
gindh(Y ) ·

∫
d4x

√
g gµαgνβTrFµνFαβ (6.20)

Defining the warped volume of Σ4 [60]:

V w
Σ4

≡
∫
Σ4

d4ξ
√
gindh(Y ) (6.21)

we read off the gauge coupling of the four-dimensional theory from (6.20) [61]:

1

g2
=
V w
Σ4

g27
=
T3V

w
Σ4

8π2
(6.22)

In N = 1 super-Yang-Mills theory, the Wilsonian gauge coupling is given by the
real part of a holomorphic function, which receives one-loop corrections but no
higher-order perturbative corrections. In the case of SU(ND7) super-Yang-Mills,
the modulus of the gaugino condensate superpotential depends on the ultraviolet
cutoff MUV and plays a crucial role in non-perturbative effects within the theory.
So, we get [62, 63, 64]:

|Wnp| = 16π2M3
UV exp

(
− 1

ND7

8π2

g2

)
∝ exp

(
−
T3V

w
Σ4

ND7

)
(6.23)

In the case that the non-perturbative effect comes from a Euclidean D3-brane, the
instanton action is:

S = T3

∫
Σ4

d4ξ
√
Gind = T3

∫
Σ4

d4ξ
√
gindh(Y ) ≡ T3V

w
Σ4

(6.24)

The modulus of the non-perturbative superpotential is then:

|Wnp| ∝ exp
(
−T3V w

Σ4

)
(6.25)
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The displacement of a D3-brane in a warped compactification leads to a small
distortion δh in the background, affecting the warped volume of four-cycles. This
correction is expressed as an integral over the four-cycle Σ4, allowing the extraction
of its dependence on the D3-brane position. The change in volume is related to a
holomorphic function ζ(X), whose imaginary part comes from the integral of the
Ramond-Ramond four-form perturbation.
The displacement of a D3-brane in the compactification creates a slight distortion
δh of the warped background, and hence affects the warped volumes of four-cycles.
The correction takes the form:

δV w
Σ4

≡
∫
Σ4

d4Y
√
gind(X;Y ) δh(X;Y ) (6.26)

This correction modifies the non-perturbative superpotential, which, in the case
of gaugino condensation on D7-branes, takes the form:

A(X) = A0 exp

(
−T3ζ(X)

ND7

)
(6.27)

For Euclidean D3-branes, the change in the instanton action is directly propor-
tional to the warped volume [54], leading to a similar expression with ND7 = 1. A
unified expression for both cases is given by:

A(X) = A0 exp

(
−T3ζ(X)

n

)
(6.28)

where n = ND7 for D7-brane gaugino condensation and n = 1 for Euclidean
D3-brane instantons. This result demonstrates how the position of the D3-brane
influences non-perturbative effects, affecting moduli stabilization and the inflation-
ary dynamics.
We now recall some relevant geometry. The singular conifold is a non-compact
Calabi-Yau threefold defined as the locus in C4:

4∑
i=1

z2i = 0 (6.29)

After a linear change of variables (w1 = z1+ iz2, w2 = z1− iz2, etc.), the constraint
(6.29) becomes:

w1w2 − w3w4 = 0 (6.30)

The Calabi-Yau metric on the conifold is:

ds26 = dr2 + r2ds2T 1,1 (6.31)
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The base of the cone is the T 1,1 coset space (SU(2)A × SU(2)B)/U(1)R whose
metric in angular coordinates θi ∈ [0, π],Φi ∈ [0, 2π], ψ ∈ [0, 4π] is:

ds2T 1,1 =
1

9

(
dψ +

2∑
i=1

cos θidϕi

)2

+
1

6

2∑
i=1

(
dθ2i + sin2 θidϕ

2
i

)
(6.32)

A stack of N D3-branes placed at the singularity wi = 0 back-reacts on the geom-
etry, producing the ten-dimensional metric:

ds26 = dr2 + r2ds2T 1,1 (6.33)

where the warp factor is:

h(r) =
27πgsN(α′)2

4r4
(6.34)

This describes the AdS5 × T 1,1, background in Type IIB string theory, which
is dually related to an N = 1 supersymmetric conformal gauge theory. The dual
field theory consists of an SU(N)×SU(N) gauge group coupled to bi-fundamental
chiral superfields A1, A2, B1, B2, each with an R-charge of 1/2, and transforming
as doublets under the SU(2)A × SU(2)b global symmetry.
The complex coordinates zi are related to the real coordinates

r ∈ [0,∞], θi ∈ [0, π], Φi ∈ [0, 2π], ψ ∈ [0, 4π] (6.35)

via:

z1 =
r3/2√
2
etψ
[
cos

(
θ1 + θ2

2

)
cos

(
ϕ1 + ϕ2

2

)
+ i cos

(
θ1 − θ2

2

)
sin

(
ϕ1 + ϕ2

2

)]
,

z2 =
r3/2√
2
etψ
[
− cos

(
θ1 + θ2

2

)
sin

(
ϕ1 + ϕ2

2

)
+ i cos

(
θ1 − θ2

2

)
cos

(
ϕ1 + ϕ2

2

)]
,

z3 =
r3/2√
2
etψ
[
− sin

(
θ1 + θ2

2

)
cos

(
ϕ1 − ϕ2

2

)
+ i sin

(
θ1 − θ2

2

)
sin

(
ϕ1 − ϕ2

2

)]
,

z4 =
r3/2√
2
etψ
[
− sin

(
θ1 + θ2

2

)
sin

(
ϕ1 − ϕ2

2

)
− i sin

(
θ1 − θ2

2

)
cos

(
ϕ1 − ϕ2

2

)]
.

The complex coordinates wi can be written as:

w1 = r3/2e
i
2
(ψ−ϕ1−ϕ2) sin

θ1
2
sin

θ2
2
, (6.36)

w2 = r3/2e
i
2
(ψ+ϕ1+ϕ2) cos

θ1
2
cos

θ2
2
, (6.37)

w3 = r3/2e
i
2
(ψ−ϕ1+ϕ2) cos

θ1
2
sin

θ2
2
, (6.38)

w4 = r3/2e
i
2
(ψ−ϕ1+ϕ2) sin

θ1
2
cos

θ2
2
. (6.39)
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It was shown in [65] that the following holomorphic four-cycles admit supersym-
metric D7-branes:

f(wi) ≡
4∏
i=1

wpii − µP = 0 (6.40)

Here pi ∈ Z, P ≡
∑4

i=1 Pi, and µ ∈ C are constants defining the embedding of the
D7-branes. Now if we moving the D3-brane to X from some reference point X0.
If we choose the reference point X0 to be at the tip of the cone, r = 0, then:

δh =
27πgs(α

′)2

4r4

[∑
i

cifi(θ1, θ2, ϕ1, ϕ2, ψ)

r∆i

]
(6.41)

Integrating (6.41) term by term as prescribed in (6.26), we find that the final result
for a general embedding (6.40) is:

T3δV
w
Σ4

= T3 Re (ζ(wi)) = −Re

(
log

[
µP −

∏4
i=1w

pi
i

µP

])
(6.42)

so that:

A = A0

(
µP −

∏4
i=1w

pi
i

µP

)1/n

(6.43)

6.3.2 F-term Potential Dependence on the Angular Direc-
tions

Before examining how the F-term potential depends on the angular directions, we
first need to understand the form of the Kähler potential in terms of the angles.
According to [53], the combined Kähler potential for the volume modulus ρ and
the three open string moduli (D3-brane positions) zα follows the form proposed
by De Wolfe and Giddings:

κ2K(T, T̄ , zα, z̄α) = −3 ln[T + T̄ − γk(zα, z̄α)] ≡ −3 lnU (6.44)

where in general k(zα, z̄α) denotes the Kähler potential of the Calabi-Yau manifold.
The normalization constant γ is: (we find out that value in the Appendix)

γ ≡ σ0T3
3M2

P

(6.45)

σ0 is the stabilized value of σ when the D3-brane is at its stabilized configuration.
We can represent Eq. (6.43) in the form:

A(zα) = A0

[
f(zα)

f(0)

]1/n
(6.46)
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where A0 depends on the stabilized complex structure moduli and has mass di-
mension 3. The dependence on the position of D3-branes shows up through the
embedding function f(zα) = 0 of the four cycle in the Calabi-Yau space, where f(0)
represents the value of the embedding function when the D3-brane is stabilized.
The total superpotential:

W = W0 + A0

[
f(zα)

f(0)

]1/n
e−aT (6.47)

and the Kähler potential (6.44) give rise to the F-term contribution to the scalar
potential which depends on the Kähler moduli and the D3-positions:

VF = eκ
2K [KΣΩDΣWDΩW̄ − 3κ2|W |2

]
(6.48)

The Kähler metric KΩΣ ≡ K,ΩΣ assumes the form:

KΩΣ̄ =
3

κ2U2

(
1 −γkβ̄

−γkα Uγkαβ̄ + γ2kαkβ̄

)
(6.49)

Substituting the general superpotential (6.47) as well as the explicit expression
for the inverse metric KΣΩ (see [52, 58]) into (6.48), the explicit form for the
non-perturbative F-term scalar potential Vnp(σ, zα) is given by:

Vnp(σ, zα) =
κ2

3U2

[ (
T + T̄ + γ(kγk

γ̄βkβ̄ − k)
)
|WT |2 − 3(W̄W,T + c.c.)

+
(
kαδ̄kδ̄WTWα + c.c.

)
+

1

γ
kαβ̄WαW̄β̄︸ ︷︷ ︸

∆Vnp

]
. (6.50)

We assume that the mobile D3-brane and the fixed D7-branes are positioned far
from the tip of the throat, allowing us to neglect the deformation parameter ϵ.
By choosing zα = z1, z2, z3 as the three independent coordinates, the conifold
constraint enables us to express z4 as:

z4 = ±i

(
3∑

α=1

z2α

)1/2

. (6.51)

Using this basis and the Kähler potential from k = 3
2

(∑4
i=1 |zi|2

)2/3
= 3

2
r2 = τ̂ 2,

we then derive the conifold metric:

kαβ̄ =
3

2

∂2

∂zα∂z̄β

(
3∑

γ=1

|zγ|2 +
3∑

γ=1

z2γ

) 2
3

=
1

r

[
δαβ̄ +

zαz̄β
|z4|2

− 1

3r3

(
zαz̄β + zβ z̄α −

z4
z̄4
zαz̄β −

z̄4
z4
zαzβ

)]
. (6.52)
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Its inverse assumes the simple form:

kαβ̄ = r

[
δαβ̄ +

1

2

zαz̄β
r3

− zβ z̄α
r3

]
(6.53)

This expression, together with U(σ, r) = T + T̄ − 3γ
2
r2, kγ̄δ̄kδ =

3
2
γ, kαk

ᾱβ̄kβ =
k, can be inserted into (6.50) to simplify the non-perturbative scalar potential.
This potential should be added to the inflationary one generated by perturbative
effects, and given by (6.17). Hence the total potential takes the form:

V =
W 2
X

3σ2
min

+ Vnp(σ, zα) (6.54)

6.3.3 Kuperstein Embedding

The holomorphic embedding proposed by Kuperstein [66] is defined by the equa-
tion:

f(z1) = µ− z1 = 0 (6.55)

This embedding preserves an SO(3) subgroup of the SO(4) global symmetry, which
acts on the coordinates of the deformed conifold. It has been shown to be super-
symmetric not only for the singular conifold but also within the fully warped
deformed conifold background with three-form fluxes.
In a non-compact throat, introducing a mobile D3-brane does not break supersym-
metry, ensuring that its interaction with D7-branes vanishes in this limit. However,
when the throat is embedded in a compactification, the D3-brane potential can
receive contributions from non-perturbative superpotential terms.
The inflaton potential V (σ, r, zi) generally depends on the Kähler modulus as well
as the D3-brane radial and angular coordinates. By systematically integrating
out all fields except the radial coordinate, an effective single-field potential for the
radial inflaton can be obtained.
Equation (6.55) implies:

A(z1) = A0

(
1− z1

µ

)1/n

(6.56)

So the potential ∆Vnp can be written as:

∆Vnp =
κ2a |A(z1)|2 e−a(ρ+ρ̄)

3U(ρ, r)2
(
− 3Re(αz1z1) +

r

aγ

(
1− |z1|2

2r3

)
|αz1 |2

)
(6.57)

where
αz1 ≡

Az1
A

= − 1

n(µ− z1)
(6.58)
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and:
Re(αz1z1) = − 1

2n

µ(z1 + z̄1)− 2|z1|2

|µ− z1|2
(6.59)

We integrated out the imaginary part of the Kähler modulus by setting T = τ+ ib,
and so the whole non-perturbative F-term potential of (6.50) can be written as:

Vnp =
κ2a|A|2e−2aτ

3U2

[
(2aτ + 6) + 6W0e

aτ Re

(
eiab

A

)
− 3Re(αz1z1) +

r

aγ

(
1− |z1|2

2r3

)
|αz1|2

]
(6.60)

Note that this potential only depends on the τ , r and z1. Therefore, it is invariant
under the SO(3) that acts on z2, z3, z4.

6.3.4 Angular Moduli Stabilization

The position of the D3-brane is determined by the radial coordinate r and five
angular coordinates Ψi on the base of the cone. Since these angles are periodic in
a compact space, the potential in Ψi is either constant or has discrete minima at
specific values Ψ∗

i . To simplify the motion, we focus on trajectories that are stable
in the angular directions, ensuring that the brane moves only along the radial
direction. This allows us to fix the angular coordinates at their potential minima,
effectively reducing the number of degrees of freedom in the system. We will find
out the trajectory now by doing some explicit calculation.
Trajectory: As previously mentioned, our goal is to extremize the potential in
the angular directions, which requires that dV

dΨi
= 0 for all r. To achieve this,

we need to identify specific points in T (1,1) that satisfy this condition, ensuring
that the motion of the D3-brane is stable in the angular directions while allowing
dynamics along the radial direction. So,

∂|z1|2

∂Ψi

= 0 =
∂(z1 + z̄1)

∂Ψi

(6.61)

The coordinates are introduced in the vicinity of a fiducial point given by z0 =
(z′1, z

′
2, z

′
3, z

′
4). The local coordinates are governed by the five generators of SO(4)

acting non-trivially on z0, given by:

z(r,Ψi) = exp(T )z0 (6.62)

The transformation matrix for this stability group is:

T =


0 α2 α3 α4

−α2 0 β3 β4
−α3 −β3 0 0
−α4 −β4 0 0

 (6.63)
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where Ψi = (αi, βi) are the local coordinates of the cone.
Equation (6.62) indicates that under a small variation, the change in z1 (denoted
as δz1) can be written as:

δz1 =
4∑
i=2

αiz
′
i (6.64)

This equation means that a small change in the coordinates leads to a shift in z1,
which is a linear combination of z′2, z′3, z′4 weighted by αi. The squared norm of z1
is given by :

|z1|2 = z1z̄1 (6.65)

By applying the product rule we found out that:

δ|z1|2 = (δz1)z̄1 + z1(δz̄1) (6.66)

Using the expression for 6.64:

δ|z1|2 =
4∑
i=2

αiz
′
iz̄1 +

4∑
i=2

αiz̄
′
iz1. =

4∑
i=2

αi(z
′
iz̄1 + z̄′iz1). (6.67)

For extremal trajectories, the variation must vanish:

4∑
i=2

αi(z
′
iz̄1 + z̄′iz1) = 0. (6.68)

To satisfy this for arbitrary αi, we require:

z′iz̄1 + z̄′iz1 = 0, ∀i = 2, 3, 4. (6.69)

Rewriting this in terms of real and imaginary parts:

z′i = iρiz
′
1, (6.70)

where ρi ∈ R, we know the conifold equation z21 + z22 + z23 + z24 = 0. By setting
β3 = β4 = 0, we keep ρ2 finite. The constraint then simplifies to z′21 + z′22 = 0.
Since z′2 = iρ2z

′
1, squaring both sides:

z′21 + (iρ2z
′
1)

2 = 0. (6.71)
z′21 − ρ22z

′2
1 = 0. (6.72)

z′21 (1− ρ22) = 0. (6.73)

This implies ρ2 = ±1 so:
z′2 = ±iz′1 (6.74)
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while the requirement is :

δ(z1 + z̄1) = a2(z
′
2 + z̄2) = 0 (6.75)

This makes z′2 purely imaginary and z′1 real. This proves that the following is an
extremal trajectory of the brane potential for the Kuperstein potential:

z′1 = ± 1√
2
r3/2 (6.76)

Stability Now we examine the matrix of second derivatives, ∂2V
∂Ψi∂Ψj

, and find the
conditions under which these extrema are stable minima. So, we start with taking
small perturbations of (6.62), and we expand exp(T ) to first order:

exp(T ) ≈ I + T +
1

2
T 2 + . . .

and using the transformation matrix T from (6.63), the first-order correction to z1
from (6.64) and from (6.74), and applying it to the expansion, we get:

z1 = z′1

[
1− 1

2
(α2

2 + α2
3 + α2

4) +
i

2
ρ2(2α2 − α3β3 − α4β4) + . . .

]
(6.77)

Adding z1 and z̄1, we have:

z1 + z̄1 = z′1

[
1− 1

2
(α2

2 + α2
3 + α2

4) + . . .

]
+ z′1

[
1− 1

2
(α2

2 + α2
3 + α2

4) + . . .

]
.

= 2z′1

[
1− 1

2
(α2

2 + α2
3 + α2

4) + . . .

]
. (6.78)

Now computing: |z1|2 = z1z̄1 and substituting 6.77 we get:

|z1|2 = z′1

(
1− 1

2
(α2

2 + α2
3 + α2

4) + . . .

)
× z′1

(
1− 1

2
(α2

2 + α2
3 + α2

4) + . . .

)
.

Expanding:
|z1|2 = (z′1)

2
[
1− (α2

3 + α2
4) + . . .

]
(6.79)

Since the Kuperstein potential (6.60) depends only on r, z1 + z̄1 and z1z̄1, and
because

∂|z1|2

∂Ψi

∣∣∣∣
0

=
∂(z1 + z̄1)

∂Ψi

∣∣∣∣
0

= 0 (6.80)

where
(
...
)
|0 denotes evaluation at z0, we find:

∂V

∂Ψi

∣∣∣∣
0

= 0 (6.81)
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and
∂2V

∂Ψi∂Ψj

∣∣∣∣
0

=

[
∂V

∂|z1|2
∂2|z1|2

∂Ψi∂Ψj

+
∂V

∂(z1 + z̄1)

∂2(z1 + z̄1)

∂Ψi∂Ψj

] ∣∣∣∣∣
0

(6.82)

The first derivative of (6.78) reads:

∂i(z1 + z̄1) = 2z′1

(
−1

2
∂i(α

2
2 + α2

3 + α2
4)

)
= −z′1∂i(α2

2 + α2
3 + α2

4). (6.83)

while the second derivative is:

∂i∂j(z1 + z̄1) = −z′1∂i∂j(α2
2 + α2

3 + α2
4) (6.84)

Since α2
2, α

2
3, α

2
4 are Kronecker deltas:

∂i∂j(α
2
2 + α2

3 + α2
4) = 2(δi2δj2 + δi3δj3 + δi4δj4) (6.85)

we have:
∂i∂j(z1 + z̄1) = −2z′1(δi2δj2 + δi3δj3 + δi4δj4) (6.86)

Similarly if we take the first and second derivative of (6.79) we get:

∂i∂j|z1|2 = −(z′1)
2(δi3δj3 + δi4δj4) (6.87)

Substituting z′1 = ± r3/2√
2
, we obtain:

∂i∂j|z1|2
∣∣
0
= ±r

3/2

√
2
∂i∂j(z1 + z̄1)|0 + r3δi2δj2 = −r3δi3δj3 − r3δi4δj4 (6.88)

Substitute the result of (6.86) and (6.87) into (6.82):

∂2V

∂Ψi∂Ψj

∣∣∣∣
0

= −r3 ∂V

∂|z1|2
(δi3δj3 + δi4δj4)±

2r3/2√
2

∂V

∂(z1 + z̄1)
(δi2δj2 + δi3δj3 + δi4δj4)

This gives two terms:

Y = −r3 ∂V

∂|z1|2
(6.89)

and

X = ∓
√
2r3/2

2

∂V

∂(z1 + z̄1)
(6.90)
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Hence, the angular mass matrix at z0 has the form:

∂2V

∂Ψi∂Ψj

∣∣∣∣
0

=


X 0 0 0 0 0
0 X + Y 0 0 0 0
0 0 X + Y 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




α2

α3

α4

β3
β4

 (6.91)

The flat directions in the β3, β4 angles parameterize the symmetry group SO(3)/SO(2)
that leaves the Kuperstein embedding z1 = µ invariant. The angles α3 and α4 have
degenerate eigenvalues.
To calculate the eigenvalues X and Y we note that the non-perturbative F-term
potential (6.60) may be written as:

Vnp = C(r, τ)G1/n

[
(2aτ + 6)− 6 eaτ |W0|

|A0|
G−1/2n

+
3

2n

(
1

µ
(z1 + z̄1)−

2

µ2
|z1|2

)
G−1 +

4c

n

r

rµ

(
1− |z1|2

2r3
G−1

)]
(6.92)

Where:

C(r, τ) ≡ κ2a|A0|2e−2aτ

3U2
> 0, ∂z1+z̄1C = ∂z1C = 0,

G ≡ |A|
|A0|

=

∣∣∣∣1− z1
µ

∣∣∣∣2 , ∂z1+z̄1G =
1

µ
, ∂z1G

∣∣∣
z1
=

1

µ2
,

G0 ≡ G
∣∣∣
0
=
∣∣1± x3/2

∣∣2 = g(x)2. (6.93)

and the variable:
x ≡ r

rµ
=

ϕ

ϕµ
(6.94)

After a lengthy calculation of the derivative of (6.89) and (6.90), we obtain:

X = ±2C
n

x3/2

|1± x3/2|2(1−1/n)

[
2aτ +

9

2
− 3eaτ

|W0|
|A0|

1

|1± x3/2|1/n

∓3

(
1− 1

n

)
x3/2(1± x3/2)

|1± x3/2|2
− 3c

(
1− 1

n

)
x

|1± x3/2|2

]
, (6.95)

and

X + Y = (1∓ x3/2)X

+
2Cc
n

x

|1∓ x3/2|2(1−1/n)

(
1 +

3

2c
x2
)
. (6.96)
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where

c ≡ 9

4naσmin

ϕ2
µ

M2
P

(6.97)

The stability of the trajectory z1 = ± r3/2√
2
, for both positive and negative real

z1, only requires X > 0. From (6.96), this automatically ensures that X + Y > 0
within the relevant range r < rµ. Therefore, using (6.95), a simple numerical check
can determine whether a given scenario remains stable in the angular directions.
For all potential inflationary trajectories, this stability test has been systematically
performed.
So, the the angular mass matrix δ2V shows that the trajectory along z1 = + r3/2√

2

is unstable, whereas the trajectory along z1 = − r3/2√
2

remains stable in all angular
directions.
So along the trajectory z1 = − r3/2√

2
, we can obtain the final non-perturbative

potential as:

Vnp(ϕ, τ) =
a|A0|2

3

e−2aτ

U2(ϕ, τ)
g(ϕ)2/n

[
2aτ + 6

− 6eaτ
|W0|
|A0|

1

g(ϕ)1/n
+

3c

n

ϕ

ϕµg(ϕ)2

− 3

n

1

g(ϕ)

ϕ3/2

ϕ
3/2
µ

]
. (6.98)

Due to (6.4), which can be rewritten as τ = σ + γr2, Vnp depends on the inflaton
r, and so the non-perturbative potential (6.98) could reintroduce an η-problem,
unless it is subdominant with respect to the inflationary potential (6.17).
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Chapter 7

Results and Discussion

By incorporating non-perturbative corrections, we introduced a dependence on
the angular directions in the potential and successfully stabilized them, leading
to the final potential. However, an important question arises: Will these non-
perturbative corrections introduce an η-problem in inflation?
For answering this question, we need to compare the non-perturbative potential
(6.98) with (6.17) whose value is ≈ 10−13 for WX =

√
10−7 and σmin = 370,

according to [23]. When σmin ≫ 1 and γr2 ≪ (T + T̄ ), the non-perturbative scalar
potential (6.98) can very well be approximated as:

Vnp(ϕ, σmin) ≃ −2a|A0||W0|g(ϕ)1/n

σ2
min

e−aσmin (7.1)

By taking the values as g(ϕ) = 1 +
(
ϕ
ϕµ

)3/2, ϕµ = 0.25, A0 = 1, a = 2π
n
, n = 8,

W0 = 0.16 and σmin = 370 and by substituting the values into the expression, we
find that the contribution from the non-perturbative correction is negligibly small
compared to the reference value in (6.17) since:

Vnp(ϕ, σmin) ≃ − 2π

σ2
min

(
1 + 8ϕ3/2

)1/8 × 10−132 (7.2)

This confirms that adding this term does not significantly impact the inflation-
ary potential and does not disrupt the slow-roll inflation condition. Therefore,
the correction remains well within acceptable limits, ensuring the stability of the
inflationary dynamics.
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Chapter 8

Conclusion and Future Work

In this thesis, alongside stabilizing the moduli fields, we focused on stabilizing the
angular directions to ensure a more consistent inflationary model and to avoid
the η-problem which can hinder slow-roll inflation. We first examined how per-
turbative corrections or fine-tuned non-perturbative effects contribute to build a
viable inflationary model. Then, we explored ways to avoid fine-tuning, aiming
to create a more robust and naturally stabilized framework for brane-antibrane
inflation within Type IIB string theory. While this thesis lays the groundwork for
understanding angular directions stabilization, there are still open questions and
directions for future research:

• Exploring other Compactifications: Our study focused on Type IIB
warped compactifications, but it would be interesting to see if the same
stabilization methods work in F-theory or M-theory setups.

• Extending to Multi-Field Inflation: We mainly looked at a single-field
dynamics, but brane inflation models often involve multiple evolving fields.

By exploring these areas, future research can strengthen our understanding of
angular directions stabilization and its role in string cosmology and observational
physics.
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Appendix A

Cohomology And Homology

The Appendix contains the summary of the mathematical contents needed as a
basis for this thesis. This discussion is based on [18, 67, 68, 69, 70, 71].

A.1 Holonomy

The holonomy group at a point p in a differentiable manifold M describes how
tangent vectors are transformed when they undergo parallel transport along closed
loops that start and end at p. It is defined for a given connection Γ on the tangent
bundle of M , which has dimension k.
Mathematically, the holonomy group consists of all transformations acting on the
tangent space at p, forming a subset of the general linear group GL(k,R), which
represents all invertible linear transformations in k-dimensional space:

Holp(Γ) = {Gc : TpM → TpM} ⊂ GL(k,R)

If two points p and q in a connected manifold M are linked by a path, their
holonomy groups are related by a conjugation transformation:

Holp(Γ) = gHolq(Γ) g−1

When the connection Γ is compatible with a metric, parallel transport preserves
lengths, restricting the holonomy group to SO(n) or a subgroup. A key case of
interest is when Γ is the Levi-Civita connection for a Riemannian metric on M ,
leading to the Riemannian holonomy group, denoted as Hol(M).
Berger’s classification provides a systematic way to understand holonomy groups
in Riemannian manifolds, particularly in physics. It states that if M is a sim-
ply connected Riemannian manifold, then it falls into one of three categories: A
product of lower-dimensional manifolds, A symmetric space, represented as a coset
space G/H or One of a specific set of exceptional holonomy groups:
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1. Hol(M) = SO(n)

2. Hol(M) = U(k) ⊂ SO(2k) for n = 2k

3. Hol(m) = Sp(k) ⊂ SO(4k) for n = 4k

4. Hol(M) = Spp(k) ⊂ S0(4k) for n = 4K

5. Hol(M) = Spp(k)Sp(1) ⊂ S0(4k) for n = 4K

6. Hol(M) = G2 ⊂ SO(7) for n = 7

7. Hol(M) = Spin(7) ⊂ SO(8) for n = 8

This classification is crucial for understanding the geometry and symmetry prop-
erties of manifolds, especially in contexts like string theory and supergravity.
Now we will see how each of these classes is relevent for the string compactification:

• A manifold with holonomy U(k), case (2), is a Kähler manifold. In this case
the Christoffel symbols have only holomorphic (or only antiholomorphic)
indices, and hence parallel transport does not transform holomorphic vectors
into antiholomorphic vectors.

• A manifold with holonomy SU(k), case (3), is a Calabi–Yau manifold. Such
a manifold admits a Ricci-flat Kähler metric, i.e. a Kähler metric for which
the Ricci tensor vanishes, Rij = 0. Taking k = 3, one has the celebrated case
of Calabi–Yau threefolds.

• A manifold with holonomy Sp(k) ⊆ SU(2k), case (4), is a hyper-Kähler
manifold. Such a manifold admits a Ricci-flat Kähler metric, and is a special
case of a Calabi–Yau manifold.

• A manifold with holonomy Sp(k)Sp(1), case (5), is a quaternionic Kähler
manifold. The corresponding metric is neither Kähler nor Ricci-flat.

• Manifolds with holonomy G2 or Spin(7), cases (6) and (7), are said to have
exceptional holonomy. The corresponding metrics are Ricci-flat.

A.1.1 Homology

A k-cycle is a k-dimensional subspace Ck of a manifold M that has no boundary,
meaning ∂Ck = 0. For example, a 1-cycle is a closed curve on a manifold, which
may be contractible (can shrink to a point) or non-contractible.
A k-cycle is called exact if it is the boundary of a higher-dimensional subspace
Bk+1, written as Ck = ∂Bk+1. Since the boundary of a boundary always vanishes,
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two k-cycles that differ only by a boundary are considered equivalent, forming a
homology class.
This defines the homology group Hk(M), which classifies topological features of
a space. A practical example shows how two distinct boundaries can cancel out,
reinforcing the concept of homology equivalence.

A.1.2 Differential forms and Cohomology

String theory contains several differential form fields, such as B2 from the bosonic
string and (C2, C4) in Type IIB string theory. Even scalars like ϕ and C0 can be
viewed as 0-forms in differential geometry.
Since these fields play a fundamental role, differential geometry becomes an essen-
tial tool for analyzing string theory physics, particularly in compactifications. To
facilitate this, we summarize key concepts, focusing on the relationship between
harmonic forms, cohomology, and homology groups in a compact space, which are
crucial in understanding the topological properties of string compactifications.
A differential r-form wr on a manifold M is a completely antisymmetric tensor of
type (0, r), defined as:

ωr =
1

r!
ωµ1µ2...µrdx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµr

The space of such r-forms at a point p ∈ M is denoted Ωr
p(M). The exterior

product between two forms ξq and ηr produces a (q + r)-form:

ξq ∧ ηr =
1

q!r!
ξµ1...µqην1...νrdx

µ1 ∧ · · · ∧ dxµq ∧ dxν1 ∧ · · · ∧ dxνr

which is nonzero only if q+r ≤ m, where m = dim(M). A top form wm ∈ Ωm
p (M)

is the only type of form that can be integrated over M .
The exterior derivative operator d acts on a smooth r-form wr ∈ Ωr(M), mapping
it to an (r + 1)-form:

dω =
1

(r + 1)!
∂νωµ1...µrdx

ν ∧ dxµ1 ∧ · · · ∧ dxµr

If a metric g is defined on M , we can introduce the Hodge star operator ∗, which
maps an r-form to an (m− r)-form:

⋆ω =

√
|g|

(m− r)!

(
1

r!
ωµ1...µr

)
ϵµ1...µrνr+1...νm

dxνr+1 ∧ · · · ∧ dxνm

where ϵµ1...µm is the Levi-Civita symbol satisfying:

ϵµ1...µm = gµ1ν1 ...gµmνmϵν1...νm , gµν = g−1
µν
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This formulation provides a natural way to define inner products on differential
forms, which is essential in cohomology, duality, and field theory applications.
In differential geometry, r-forms wr, ηr ∈ Ωr(M) are antisymmetric tensors on a
manifold M , and their inner product is given by:

(ω, η) ≡
∫
ω ∧ ⋆η =

1

r!

∫
ωµ1...µrη

µ1...µr
√
|g|dx1 . . . dxm

For a Riemannian metric, this inner product is positive definite, ensuring (w,w) ≥
0, and equals zero only if w = 0.
The adjoint exterior derivative d† is defined using the inner product:

(dω, η) = (ω, d†η)=⇒d† ≡ (−1)1+m(r+1) ⋆ d ⋆ .

The Laplacian operator ∆ is defined in terms of d and d† as:

∆ = dd† + d†d

For a o-form w, the Laplacian expression in terms of covariant derivatives, Riemann
tensor, and Ricci tensor is:

∆ωm1...mp = −∇q∇qωm1...mp + pRq[m1ω
q
m2...mp]

− 1

2
p(p− 1)Rqr[m1m2ω

qr
m3...mp]

.

Differential forms can be classified based on how they behave under d, d†, and ∆:

• Closed: dω = 0

• Exact: ω = dη

• Co-closed: d†ω = 0

• Co-exact: ω = d†ξ

• Harmonic: ∆ω = 0

A form is harmonic if it is both closed and co-closed: ∆w = 0 ⇔ dw = 0 and d†w =
0 de Rham Cohomology: From d2 = 0 and (d†) = 0, any co-exact form is also
co-closed. However, the reverse is not always true globally. Some closed forms
may not be exact, meaning dw = 0 but w ̸= dη.
This leads to the definition of the equivalence class of forms:

[ωp] = {ω̃p : ω̃p = ωp + dηp−1} ∈ Hp(M)

where Hp(M) is the de Rham cohomology group, classifying forms that differ by
exact forms. Homology and Cohomology: The homology group is defined
similarly to cohomology but through the boundary operator δ, which maps Cp

submanifolds to their boundaries in Cp−1. The definitions follow:
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• Closed (cycles): δCp = ∅

• Exact (boundaries): Cp = δCp+1

Since δ is nilpotent (δ2 = 0), all boundaries are cycles, but not all cycles are
boundaries. Homology equivalence classes group cycles that differ by a boundary:

[Cp] = {C̃p : Cp + δCp+1} ∈ Hp

A p-form wp and a p-dimensional submanifold Cp can be paired through integra-
tion:

(Cp, ωp) =

∫
Cp

ωp

By Stokes’ theorem, this inner product is well-defined in Hp(M)×Hp(M) since
elements differing by exact components yield the same integral. This leads to de
Rham’s theorem.
de Rham’s Theorem: For a compact manifold M, the cohomology group
Hp(M) and the homology groupHp(M) finite-dimensional and dual vector spaces.
They are isomorphic:

Hp(M) ≃ Hm−p(M)

This means we can study topology via homology to understand cohomology classes
[wp]. Hodge Decomposition Theorem: For a compact Riemannian manifold
(M, g) without a boundary, any differential r-form w can be uniquely decomposed
as:

ω = dη + d†ξ + γ, where γ is a harmonic form

This decomposition is fundamental because it connects the space of harmonic
forms on M with the cohomology group Hp(M), highlighting the structure of
differential forms in geometry and physics. Hodge’s Theorem: Hodge’s theorem
states that on a compact orientable Riemannian manifold (M, g), the cohomology
group Hp(M) is isomorphic to the space of harmonic p-forms, denoted as:

Hp(M) ∼= Harmp(M)

This result is significant because it relates the solutions of differential equations
to the topology of the manifold. Specifically, the number of harmonic forms is
equal to the Betti numbers bp, which count the independent cycles that cannot be
continuously deformed into one another.

∆ωp = 0⇐⇒dimHd−p(M) = bd−p

These Betti numbers are topological invariants and contribute to the Euler char-
acteristic:

χ(M) =
m∑
p=0

(−1)pbp(M)
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Poincaré Duality: Poincaré duality establishes a relationship between coho-
mology and homology classes on a compact manifold. It states that for a given
cohomology class Hp(M), there exists a corresponding class in Hm−p(M), defined
via the inner product:

⟨ω, η⟩ =
∫
M
ω ∧ η

This implies the isomorphism:

Hp(M) ∼= Hm−p(M)

Furthermore, a (m− p)-form wm−p is said to be Poincaré dual to a p-cycle Cp if:∫
Cp

ηp =

∫
M
ηp ∧ ωm−p.

This establishes a deep connection between differential forms and homology cycles,
showing how topology and geometry are intertwined in mathematical physics and
string theory.
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Appendix B

Kähler and Calabi–Yau geometry

B.1 Complex manifolds

Complex manifolds are even-dimensional real manifolds locally modeled on Ck.
Similar to how complex analysis refines real analysis, the study of complex man-
ifolds imposes additional structure, making them a crucial tool in mathematical
physics. They are important in string theory for two main reasons: (1) they serve
as moduli spaces in supersymmetric theories, and (2) they play a key role in Ricci-
flat compactifications, such as vacuum solutions. While not all Ricci-flat manifolds
are complex, complex structures simplify construction and analysis.
A complex manifold M is a real manifold of even dimension n = 2k where coordi-
nate charts transition holomorphically. The structure group of the tangent bundle
is a subgroup of GL(2k,R), distinguishing it from general Riemannian manifolds.
A useful definition involves an almost complex structure J a tensor field of type
(1,1) that satisfies J 2 = −1. This structure acts as a map on the tangent bundle:

J : TM → TM

When M is fully complex, the complexified tangent space is defined as:

TpM
C = {X + iY | X, Y ∈ TpM}

This allows the splitting of the space into holomorphic and antiholomorphic com-
ponents. In terms of local holomorphic coordinates zµ = xµ + iyµ, a basis for
TpM

C consists of: ∂
∂zµ

∂
∂z̄µ̄

The complex structure operator J acts on these basis
vectors as:

J
(

∂

∂zµ

)
= i

∂

∂zµ
, J

(
∂

∂z̄µ̄

)
= −i ∂

∂z̄µ̄

Thus, the tangent space is naturally divided into a holomorphic eigenspace spanned
by ∂

∂zµ
and an antiholomorphic eigenspace spanned by ∂

∂z̄µ̄
. These eigenspaces play
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a crucial role in defining complex structures and are essential in string theory and
compactifications.

B.1.1 Complex differential forms

In the context of complex manifolds, we extend differential forms to include complex-
valued forms. A complex r-form is defined as a sum of real r-forms with complex
coefficients:

γr ≡ αr + iβr

Where αr and βr are real r-form. The vector space of such forms is denoted as
Ωr

C(M), and the conjugate of γr is:

γ̄r ≡ αr − iβr

A complex differential form can be further decomposed into (r, s)-form, where r
and s denote the number of holomorphic and anti-holomorphic indices, respec-
tively. A general (r, s)-form is written as:

dzµ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs ≡ dzM ∧ dz̄N̄

where the multi-indices are defined as:

M = (µ1, . . . , µr), N = (ν1, . . . , νs)

The space of all complex k-forms is then expressed as a direct sum:

Ωk
C =

⊕
r+s=k

Ωr,s

Dolbeault Operators: To respect the complex structure, we refine the exterior
derivative d into the Dolbeault operators:

• The holomorphic Dolbeault operator ∂ acts as:

∂γr,s =

(
∂

∂zκ
γMN

)
dzκ ∧ dzM ∧ dz̄N̄ .

• The anti-holomorphic Dolbeault operator ∂̄ acts as:

∂̄γr,s =

(
∂

∂z̄κ
γMN

)
dzM ∧ dz̄N̄ ∧ dz̄κ.
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These satisfy the fundamental relations:

d = ∂ + ∂̄, ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0

A holomorphic (r, 0)-form satisfies:

∂̄γr,0 = 0

This ensures that a holomorphic zero-form is simply a holomorphic function.

B.1.2 Dolbeault cohomology

The Dolbeault cohomology group is defined similarly to the de Rham cohomology
but using the Dolbeault operator ∂̄. the space of ∂̄-closed (r, s)-forms is denoted as
Zr,s

∂̄
(M), while the space of ∂̄-exact forms is Br,s

∂̄
(M). The Dolbeault cohomology

group is then:

Hr,s

∂̄
(M,C) ≡

Zr,s

∂̄
(M)

Br,s

∂̄
(M)

Hodge theory for complex manifolds extends the real case by defining an inner
product on the complexified tangent space, using the Hodge star operator. This
allows the introduction of adjoint operators ∂† and ∂̄†. Two Laplacians are defined:

∆∂ = ∂∂† + ∂†∂

∆∂̄ = ∂̄∂̄† + ∂̄†∂̄

The set of ∂̄-harmonic (r, s)-forms, denoted as Hr,s

∂̄
(M), consists of forms annihi-

lated by ∆∂̄. Hodge’s theorem states:

Hr,s

∂̄
(M,C) ∼= Hr,s

∂̄
(M)

The Hodge numbers hr,s represent the dimensions of the Dolbeault cohomology
groups:

hr,s = dimHr,s

∂̄
(M,C)

By applying the Hodge star operator, one finds a symmetry relation:

hr,s = hk−r,k−s

for a complex manifold of dimension k. This plays a crucial role in understanding
the topology of Kähler and Calabi-Yau manifolds.
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B.2 Kähler and Calabi–Yau geometry

Kähler manifolds are a special class of complex manifolds with significant proper-
ties that make them fundamental in string theory. They serve as the foundation for
vacuum solutions in string compactifications, particularly Calabi–Yau manifolds.
In supersymmetric theories, the moduli space of a theory with N = 1 supersymme-
try is always a Kähler manifold, and higher supersymmetry theories (N > 1) also
often exhibit Kähler structure in their moduli spaces. This makes them essential
in understanding the geometric aspects of string compactifications and supersym-
metric field theories.

B.2.1 Kähler Manifold

A Kähler manifold is a special type of Hermitian manifold where the Kähler form
J ia closed dJ = 0. Equivalently, a complex manifold M of complex dimension k
is Kähler if its holonomy group satisfies Hol(M) = U(k). The Kähler metric can
be locally expressed in terms of a Kähler potential k, stisfying:

J = i∂∂̄k, gµν̄ = ∂µ∂ν̄k

It remains invariant under Kähler transformations of the form: k → k + f(zi) +
f̄(z̄i). On a Kähler manifold, the Ricci tensor is derived from the Christoffel sym-
bols:

Rµν̄ρσ̄ = −∂ρΓσµν̄
The Ricci form is then defined as:

R = iRµν̄dx
µ ∧ dz̄ν̄

where the Ricci tensor components satisfy:

Rµν̄ = −∂µΓν̄

and the Ricci form follows:
R = ∂∂̄ ln g

The Ricci form defines a de Rham cohomology class, known as the first Chern
class:

c1 ≡
1

2π
[R] ∈ H2(M,C)

On a Kähler manifold, the Laplacians for d, ∂, ∂̄ are relted:

∆ = 2∆∂ = 2∆∂̄
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The Hodge numbers satisfy:
hr,s = hs,r

The Betti numbers bk, which count the dimensions of the cohomology groups
Hk(M,R), are related to Hodge numbers as:

bk =
∑
r+s=k

hr,s

An important consequence is that odd Betti numbers on Kähler manifolds are
even:

b2k−1 = 2×
∑

r+s=2k−1,r<s

hr,s

Finally, the Euler characteristic is given by:

X (M) =
∑
r,s

(−1)r+shr,s

B.2.2 Calabi–Yau manifolds

A Calabi-Yau k-fold is a compact Kähler manifold M of complex dimension k
satisfies the following equivalent conditions:

1. M has a Kähler metric with holonomy in SU(k).

2. There exists a nowhere-vanishing (k, 0)-form Ω on M .

3. M has a Kähler metric with vanishing Ricci curvature.

4. The first Chern class c1(M) vanishes.

Variations in definitions exist; some do not require compactness, while others
require Hol(M) = SU(k), not a subgroup. The existence of a Ricci-flat metric on
a Calabi-Yau k-fold implies that compactification of string theory on M (for k ≤ 4)
satisfies the vacuum Einstein equations RMN = 0. For Calabi-Yau threefolds
(k = 3), compactification preserves N = 1 supersymmetry in four dimensions
because the holonomy SU(3) ⊂ SO(2K) is small enough to leave a single invariant
spinor. The decomposition of the six-dimensional spinor representation under
SU(3) follows:

4 = 3 + 1

The Hodge numbers of a Calabi-Yau threefold are:

h0,0 = 1, h3,0 = h0,3 = 1, h2,1 = h1,2
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The Euler characteristic is given by:

X (CY3) = 2(h1,1 − h2,1)

This characterization of Calabi-Yau manifolds makes them significant in string
compactifications due to their role in preserving supersymmetry.

B.3 Moduli space

The moduli space of a Calabi-Yau three-fold, a Ricci-flat Kähler manifold with
SU(3) holonomy, consists of two independent deformations: Kähler and complex
structure moduli. To preserve Ricci-flatness, deformations of the metric δg must
satisfy the condition: ∇(δg) = 0. For Kähler moduli ti, which correspond to
harmonic (1, 1)-forms, the deformations satisfy:

∆δgmn̄ = 0

and can be expanded as:
δgmn̄ = iti(D̂i)mn̄

where D̂i forms a basis of H1,1(X). To ensure the positivity of the new metric, the
conditions: ∫

C

J > 0,

∫
S

J ∧ J > 0,

∫
X

J ∧ J ∧ J > 0

must hold.
For complex structure moduli Uα, the deformations correspond to harmonic (2, 0)-
forms, which are related to the holomorphic (3, 0)-form Ω by:

δgmn =
i

|Ω|2
Ūa(χ̄a)mnp̄g

p̄q

where χ̄a is a basis of H1,2(X). The complex moduli space is also a special Kähler
manifold with a tree-level Kähler potential:

Kcs = − ln

(
−i
∫
X

Ω ∧ Ω̄

)
and metric:

gab =
∂2KCS

∂Ua∂Ū b̄

The total moduli space factorizes as:

M = MCS
h1,2

×MK
h1,1

These metric deformations generate massless scalar fields in four dimensions, cru-
cial for understanding the dynamics of moduli stabilization in string compactifi-
cations.
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B.4 Mirror symmetry

Mirror symmetry is a duality in string theory that relates pairs of Calabi-Yau
threefolds, exchanging their Hodge numbers and moduli spaces. It corresponds to
a reflection about the diagonal axis in the Hodge diamond, interchanging odd and
even cohomologies. Specifically, for a given Calabi-Yau manifold X, there exists a
mirror manifold X̃ with reversed Hodge numbers:

h1,1(X) = h1,2(X̃), h1,2(X) = h1,1(X̃).

Mirror symmetry also exchanges the Kähler and complex structure moduli spaces:

Mcs
h1,2

(X) ≡ MK
h1,1

(X̃), MK
h1,1

(X) ≡ Mcs
h1,2

(X̃).

This leads to the equality of their prepotentials:

F(X) = F(X̃)

In type II string theories, mirror symmetry manifests as a T -duality, relating type
IIA on X to type IIB on X̃:

IIA in background R3,1 ×X ≡ IIB in background R3,1 × X̃.

This symmetry plays a crucial role in understanding string compactifications, al-
lowing insights into type IIB setups by studying their type IIA mirrors.
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Appendix C

Type IIB Flux Compactifications

C.1 N=2 type IIB compactifications

This section presents Calabi-Yau compactifications of type IIB string theory, which
preserve N = 2 supersymmetry (or 8 supercharges) in four dimensions. The low-
energy effective action follows N = 2 supergravity, including vector, hyper, and
tensor multiplets.

C.1.1 The Spectrum

The compactification is performed on a Calabi-Yau three-fold X, leading to the
background metric:

ds2 = gµνdx
µdxν + gmn̄dy

mdyn̄

where gµν is the Minkowski metric, and gmn̄ is the Calabi-Yau metric.

• The low-energy spectrum is obtained by keeping massless bosonic fields.

• The ten-dimensional metric leads to a four-dimensional metric tensor
gµν , a scalar dilaton ϕ̂, and a one-form vector V 0.

• The NS-NS sector includes:

ϕ̂ = ϕ(x), B̂2 = B2(x) + bi(x)D̂i

• The R-R sector includes:

Ĉ0 = C0(x), Ĉ2 = C2(x) + ci(x)D̂i

Ĉ4 = Q2
i (x) ∧Di + V a(x) ∧ αa − Va(x) ∧ βa + ρa(x)D̂

a

These fields assemble into N = 2 multiplets.
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C.1.2 Tree-Level Effective Action

The tree-level four-dimensional low-energy effective action is given by:

S
(4D)
IIB = −

∫
1

2
R ∗ 1− 1

4
Re(Mab)F

a ∧ F b − 1

4
Im(Mab)F

a ∧ ∗F b

−gabdUa ∧ ∗dU b + hIJdq
I ∧ ∗dqJ

• The gauge kinetic functions Mab(U) are determined by the holomorphic
prepotential F(U).

• The Kähler metric gab and quaternionic metric hIJ define the moduli
space structure.

The total moduli space is a product of:

M = Mcs
h1,2 ×MQ

2(h1,1+1)

Where,

• Mcs is the special Kähler manifold of complex structure moduli.

• MQ is a quaternionic manifold of hypermultiplet scalars.

Since the N = 2 moduli space contains geometrical moduli, it is entirely deter-
mined by two prepotentials F(U) and V , which are mirror symmetric.
This formalism plays a crucial role in type IIB flux compactifications, providing a
well-defined low-energy theory in four dimensions.

C.2 N = 1 Type IIB Compactifications

This section discusses compactifications of Type IIB string theory that preserve
N = 1 supersymmetry. These arise from breaking N = 2 supersymmetry in
ten-dimensional string theory through an orientifold projection.

C.2.1 Orientifold Projection

A four-dimensional N = 1 orientifold is derived from an N = 2 compactification
by gauging a discrete symmetry:

(−1)FLΩpσ

Where, Ωp denotes world-sheet parity, FL left-moving fermion number, σ An invo-
lution on the Calabi-Yau space X, which preserves its isometry and holomorphy
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but leaves the four-dimensional Minkowski space untouched. The projection acts
on the fundamental forms of the Calabi-Yau as:

σ∗J = J, σ∗Ω = (−1)ϵΩ

Depending on the value of ϵ, there are two classes of models to consider:

1. ϵ = 0: theories with O5/O9 orientifold planes, in which the fixed point set
of σ is either one or three complex dimensional;

2. ϵ = 1: theories with O3/O7-planes, with σ leaving invariant zero or two
complex dimensional submanifolds of X.

The focus is on the second case (O3/O7-planes), leading to a four-dimensional
N = 1 low-energy spectrum, which can be expressed in terms of geometrical and
topological properties of the orientifold.

C.2.2 Spectrum

The N = 1 spectrum is derived by truncating the N = 2 theory, keeping only
fields invariant under the orientifold action. The surviving Kähler deformations
satisfy:

J = ti+(x)D̂i+ , i+ = 1, . . . , h+1,1

Similarly, the complex structure deformations kept in the spectrum belong to H1,2
− :

δgmn =
i

|Ω|2
Ūa−(χ̄a−)mpq̄ Ω̄

p̄q̄
n , a− = 1, . . . , h1,2

where χ̄a− are defined using a basis of H1,2
− .

The orientifold constraints enforce:

σ∗ĝ = ĝ, σ∗ϕ̂ = ϕ̂, σ∗B̂2 = −B̂2,

σ∗Ĉ0 = Ĉ0, σ∗Ĉ2 = −Ĉ2, σ∗Ĉ4 = Ĉ4,

The NS-NS sector contains:

ϕ̂ = ϕ(x), B̂2 = bi−(x)D̂i− , i− = 1, . . . , h1,1− ,

The RR-sector contains:

Ĉ0 = C0(x), Ĉ2 = ci−(x)D̂i− , i− = 1, . . . , h1,1− ,

Ĉ4 = Q
i+
2 (x)∧ D̂i+ + V a+(x)∧αa+ − Ṽa+(x)∧ βa+ + ρi+(x)D̃

i+ , a+ = 1, . . . , h1,2+ ,

here, D̂a is a basis of H2,2 dual to D̂i.
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C.2.3 Effective Action

The low-energy action for orientifold compactifications is derived from the N = 2
action:

S
(4D)
IIB = −

∫
1

2
R⋆1+KIJ̄DΦI ∧⋆DΦ̄J̄+

1

2
Re(fab)F a∧⋆F b+

1

2
Im(fab)F

a∧F b+V.

where F a = dV a, and the moduli space factorizes as:

M = Mcs
h1,2−

×MK
h1,1+ +1

,

indicating a product of the complex structure moduli space and a quaternionic
hyper-multiplet space. Kähler Moduli and Volume
The Kähler moduli are defined as:

Ti = τi + ibi, i = 1, . . . , h1,1(X).

where:
τi =

∂V
∂ti

=
1

2

∫
X

D̂i ∧ J ∧ J =
1

2
kijkt

jtk,

Using these moduli, the tree-level Kähler potential takes the form:

Ktree

M2
p

= −2 ln
[
V(T + T̄ )

]
− ln(S + S̄)− ln

(
−i
∫
X

Ω(U) ∧ Ω̄(U)

)
where Ω is the Calabi-Yau holomorphic (3,0)-form.

C.3 Background fluxes

Here we will discuss the stabilization of scalar fields in Type IIB Calabi-Yau ori-
entifold compactifications. It explains that the tree-level superpotential vanishes,
but a potential can be generated by turning on background fluxes. This stabilizes
the axio-dilaton and complex structure moduli, while the Kähler moduli remain
unfixed due to no-scale structure.

C.3.1 Type IIB fluxes

Type IIB flux compactifications, focusing on the role of background fluxes in shap-
ing the low-energy supergravity theory. The flux of a p-form field strength Fp
through a p-cycle γpi in the compact space X is given by:∫

γpi ∈X
Fp = ni ̸= 0.
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This generalizes the concept of electromagnetic flux. A more geometrical un-
derstanding of fluxes arises from expanding Fp in terms of harmonic forms ωip, such
that:

Fp = ⟨Fp, ωip⟩ωip, ωip ∈ Hp(X).

Due to Poincaré duality, the flux integral is related to the expansion coefficients,
ensuring that fluxes are quantized as:

1

2πα′

∫
γpi ∈X

Fp = ni ∈ Z.

In the context of Type IIB Calabi-Yau compactifications, the three-form field
strengths F3 (from the Ramond-Ramond sector) and H3 (from the NS-NS sector)
are expanded in terms of a symplectic basis (αa, β

b):

F3 = mRR
a αa + nRRb βb, H3 = mNS

a αa + nNSb βb.

A key result is that the fluxes define a combined three-form G3:

G3 = F3 − iSH3 = (mRR
a − iSmNS

a )αa + (nRRb − iSnNSb )βb.

These fluxes generate a potential energy term that lifts the vacuum degeneracy
and can lead to spontaneous breaking of N = 1 supersymmetry. The tree-level
superpotential, derived from the Gukov-Vafa-Witten form, is given by:

Wtree(S, U) ∼
∫
G3 ∧ Ω.

Furthermore, the presence of background fluxes modifies the internal geometry,
introducing a warp factor in the metric:

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)gmn̄dy

mdyn̄,

This warping is particularly relevant for addressing the hierarchy problem, as it
induces red-shifting effects in strongly warped regions, potentially localizing chiral
matter at the end of a warped throat. However, in the regime of exponentially
large compactification volumes, the effect of warping can often be neglected.

Thus, the presence of background fluxes plays a crucial role in moduli stabi-
lization, vacuum structure, and supersymmetry breaking within Type IIB string
compactifications.
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