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Abstract

In questa tesi spiego e implemento un metodo computazionale quantistico per la risoluzione
dell’equazione di Schrödinger della molecola di idrogeno. In particolare, determino lo stato
fondamentale (ground state) e l’energia minima ad esso associata, generando la distanza
internucleare corrispondente. Nel primo capitolo espongo le basi del modello a circuiti della
computazione quantistica, cioè il qubit, i sistemi di qubit e le operazioni quantomeccaniche
e logico-circuitali che è possibile eseguire su di essi. Fatto questo, è necessario "tradurre"
le funzioni d’onda e l’Hamiltoniana relative alla modellizzazione quantomeccanica della
molecola di idrogeno in oggetti propri del framework della computazione quantistica, cioè
qubit, porte logiche quantistiche e osservabili misurabili su computer quantistici. Questo
viene esposto nel secondo capitolo. Nel terzo capitolo commento il programma che codifica
ed esegue quanto presentato nel secondo capitolo, seguendo le regole stabilite nel primo.
Il programma è scritto utilizzando la libreria open-source PennyLane, che fornisce un
framework specifico per la computazione quantistica.

This thesis aims to solve the Schroedinger equation for molecular Hydrogen via a quantum
computational approach. It is to find the ground state and its minimum energy, yielding
the ground state’s internuclear distance. In the first chapter, I explain the fundamentals
of the circuit model of quantum computation, namely qubits, multi-qubit systems, and
the quantum-mechanical circuit operations that can be performed on them. Once this is
done, it is necessary to "translate" the wave functions and the Hamiltonian related to the
quantum mechanical modeling of the hydrogen molecule into objects specific to the quantum
computing framework, namely qubits, quantum logic gates, and observables measurable
on quantum computers. This is presented in the second chapter. In the third chapter, I
comment on the program encoding and executing what is presented in the second chapter,
according to the rules established in the first. The program is written using the open-source
library PennyLane, which provides a dedicated framework for quantum computing.





Introduction

This thesis aims to explore how quantum algorithms can be used to solve optimization
problems that are interesting in physics and chemistry, such as finding a molecule’s ground
state. In the first chapter, I introduce the basis of quantum computing, starting from the
framework’s fundamental object, the qubit. The two-level quantum system is formalized
and exposed in its main quantum-mechanical characteristics. The circuit model of quantum
computation is provided with "quantum gates"; those are the operators acting on the
qubit, or system of more than one qubit, to manipulate them. To physically realize
quantum computers, the correspondent quantum hardware, it’s crucial to have "quantum
universal gates," through which it is possible to express any quantum gate and, thus, any
possible sequence of these implementing algorithms. As physicists started to apply quantum
mechanical models to computational problems and swapped digital bits for qubits, the
fields of quantum mechanics and computer science began to converge. Over the years,
experimentalists have constructed small-scale quantum computers using trapped ions,
superconductors, photons, topological qubits, etc. Any of these qubit’s physical realization
faces different challenges, depending on the characteristics of the physical objects involved.
For example, topological quantum qubits seem to be resilient to decoherence, i.e., the
phenomenon that makes the quantum mechanical features of the system fragile due to
interaction with the environment.

In the second chapter we will consider molecular hydrogen, a quantum system that cannot
be solved analytically, instead requiring computational methods to estimate its ground-
state energy. The Variational Quantum Eigensolver (VQE) is employed for this purpose,
optimizing a parameterized quantum circuit to minimize the expectation value of the
Hamiltonian. The molecular wave functions are encoded using qubits and Jordan-Wigner
mapping, starting from the Hartree-Fock state as an initial approximation. The VQE is a
hybrid protocol that exploits a quantum computer to prepare a variational state according
to some specific ansatz, and a classical computer that performs the optimization process
then refines the ansatz to approximate the molecule’s ground state.



In the final part of the thesis, I describe the program that encodes and executes the
tasks presented in Chapter 2 according to the framework described in Chapter 1. The
implementation was done using the PennyLane library, a fundamental resource for quantum
computing applied to various fields. The computation results align with the experimental
data of the hydrogen molecule.
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1
Basics of Quantum Computation

In this chapter, I introduce the basis of quantum computing, starting from the framework’s
fundamental object, the qubit. The two-level quantum system is formalized and exposed in
its main quantum-mechanical characteristics. The circuit model of quantum computation is
provided with "quantum gates"; those are the operators acting on the qubit, or system of
more than one qubit, to manipulate them. Such operators ensure probability conservation by
preserving the qubit’s normalization; this condition is the operator’s unitariness requirement.
To physically realize quantum computers, the correspondent quantum hardware, it’s crucial
to have "quantum universal gates," i.e., through which it is possible to express any quantum
gate and, thus, any possible sequence of these (algorithms). Quantum universal gates
constitute the elementary, fundamental building blocks of circuital modules, built in quantum
computers (similarly to classical ones). Finally, I present the measurement of observables,
which is fundamentally different from the classical case. The measurement of an observable
is the procedure that, when repeated a significant number of times, allows us to determine
the state of the prepared qubit system; it is the statistical approach necessary when dealing
with quantum systems. A thorough introduction to these topics can be found in [1].

1.1 Quantum bits

The fundamental building block of quantum computation is the two-level quantum system.
A two-level quantum system is a system that can access two distinct states. This translates
into a wave function that describes the system in a binary superposition. We will denote it:

|ψ⟩ = α|0⟩+ β|1⟩ (1.1)

The wave function assumes, in quantum mechanics context, the role of an element in a
Hilbert space, that is, a vector space equipped with an inner product. Thus, the qubit case
has two basis vectors, matching the dimension of the space where the qubit "resides." The
qubit is described by a linear combination of these basis vectors with complex coefficients.
Since |α|2 + |β|2 = 1, we may rewrite eq.(1.1) as

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ (1.2)

1



CHAPTER 1. BASICS OF QUANTUM COMPUTATION

h

Figure 1.1. Bloch sphere, image taken from [1]

where θ ∈ [0, π[, φ ∈ [0, 2π]. The condition on the coefficients α, β arises from the nature
of the wave function, the latter being a probability density function. This leads to the
result that every basis of the state ket space corresponds one-to-one with the unit vectors
of the unit sphere in R3, the so-called Bloch sphere fig.(1.1).

1.1.1 Multiple qubits

When there are more objects, each one behaving like a 2-state quantum system, we want
the wave function to encode the information of more than one qubit. For example, for two
qubits, we have:

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩. (1.3)

Similar to the case for a single qubit, the measurement result x = 00, 01, 10, or 11 occurs
with probability |αx|2, with the state of the qubits after the measurement being |x⟩. More
generally, a state of N qubits is a vector of the tensor Hilbert space HN = H⊗· · ·⊗H = H⊗N .
We’re basically operating on the composed Hilbert space of the qubits involved, which
requires the tensor product formalism. Given two Hilbert spaces V and W (finite dimensional
ones, respectively n and m) we define the vector space of these as V ⊗W which happens to
be mn dimensional. The elements of V ⊗W are linear combinations of ‘tensor products’
|v⟩ ⊗ |w⟩ of elements |v⟩ of V and |w⟩ of W . In particular, if |i⟩ and |j⟩ are orthonormal
bases for the spaces V and W , then |i⟩ ⊗ |j⟩ is a basis for V ⊗W . This is still a Hilbert
space, with all the features like linearity.

2



1.2. QUANTUM CIRCUITS

1.2 Quantum circuits

In analogy to the classical case of a bit, logical operations can be performed on a qubit
to change its state. As mentioned earlier, the wave function represents a probability
distribution. In order to preserve probability, a generic operation should be unitary:

U |ψ⟩ = |ψ′⟩ ⟨Uψ,Uψ⟩ = ⟨ψ,U †Uψ⟩ = 1 =⇒ U †U = I (1.4)

Unitary matrices thus take on the role of quantum logic gates, which take an input state
vector and output the result of the operation, that is, a different state. This is the theoretical
framework for analyzing and constructing quantum algorithms: a series of operations on
one or more qubits with various functions. For example, let’s fix the computational basis
|0⟩, |1⟩ and apply the linear unitary operator X.

X ≡

(
0 1

1 0

)
(1.5)

X

(
α

β

)
=

(
β

α

)
(1.6)

Figure 1.2. A circuit with the X gate, image taken from [1]

1.2.1 Single qubit gates

Let’s now take a brief dive that will help us understand operations on the qubit. Since the
state ket space is two-dimensional, the operator algebra is four-dimensional [2]. Specifically,
every linear operator can be expressed as :

Â = am1̂ + a · σ̂ (1.7)

where a · σ̂ =
∑3

i=1 aiσ̂i , σ̂i being the pauli operators. Â is self-adjoint if and only if
am ∈ R and a ∈ R3. Once a basis for R3 is fixed, a matrix expression for the Pauli operators
exists. We will call this basis "auxiliary basis." If we take the Cartesian basis, so that

3



CHAPTER 1. BASICS OF QUANTUM COMPUTATION

a = (ax, ay, az), the matrix representation of the Pauli operators is:

σx =

[
0 1

1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0

0 −1

]
. (1.8)

By exploiting the property of A being self-adjoint, we can take the eigenket basis that
results from it. It is fundamental, therefore, to solve the eigenvalue problem for operators
of the self-adjoint type Â. Throughout this discussion, we fix the auxiliary basis as the
Cartesian basis and take the computational basis |0⟩, |1⟩ as the basis corresponding to the
eigenkets of σz. I want to emphasize that every operation can be expressed as the linear
combination of the identity and the Pauli matrices; in particular, if the coefficients are real,
then the resulting operator is self-adjoint and can be interpreted as an observable. Linear
combinations with complex coefficients also exist; even if they do not represent observables,
they function as quantum logic gates, provided they are unitary. The Pauli matrices give
rise to three useful unitary matrix classes when exponentiated (see appendix (A.1)). These
are the rotation operators about the x̂, ŷ, and ẑ axes, defined by the equations (we have
fixed the cartesian auxiliary base):

Rx(θ) ≡ e−i θ
2
σx = cos

(
θ

2

)
I − i sin

(
θ

2

)
σx =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ] (1.9)

Ry(θ) ≡ e−i θ
2
σy = cos

(
θ

2

)
I − i sin

(
θ

2

)
σy =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ] (1.10)

Rz(θ) ≡ e−i θ
2
σz = cos

(
θ

2

)
I − i sin

(
θ

2

)
σz =

[
e−i θ

2 0

0 ei
θ
2

]
(1.11)

where θ ∈ [0, π[. We can then show that every qubit operation can be written as:

U = eiαRx(β)Ry(γ)Rz(δ) (1.12)

with α, β, γ δ ∈ R Given n = (nx, ny, nz) a versor, we can set:

Rn̂(θ) ≡ exp

(
−iθ

2
n · σ

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
(nxσx + nyσy + nzσz) (1.13)

and
U = eiαRn̂(θ) (1.14)

That is, each unitary operator corresponds to a direction, an orientation, and an angle. In
other words, if such an operator transforms a state vector, it is rotated around n̂ by an

4



1.2. QUANTUM CIRCUITS

angle θ. This correspondence also reflects on the possible basis for the ket state space. It is
indeed true that given U, a unitary operator acting on that space, this can be diagonalized,
finding an orthonormal basis composed of eigenvectors of U (these are determined up to an
overall phase factor eiα).

1.2.2 Multiple qubit gates

Now, let us generalize from one to multiple qubits. The prototypical multi-qubit quantum
logic gate is the controlled-NOT or CNOT gate. This gate (fig. 1.3) has two input qubits,
the control and target qubit. The gate’s action may be described as follows: if the control
qubit is set to 0, then the target qubit is not changed; if the control qubit is set to 1, then
the target qubit is flipped. In equations:

|00⟩ → |00⟩, |01⟩ → |01⟩, |10⟩ → |11⟩, |11⟩ → |10⟩

Figure 1.3. Circuital representation of CNOT gate, the control and target qubit are
respectively the first and second wire. Image taken from [1]

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The controlled-NOT and single qubit gates are the prototypes for all other gates because of
the following remarkable universality result: any multiple qubit logic gate can be expressed
in terms of CNOT and single-qubit gates. The proof of this result can be found in the next
section. If the circuit we’re studying is composed of multiple wires, that is, the system has
more than one qubit, what sorts of linear operators act on the correspondent tensor space?
Suppose |v⟩ and |w⟩ are vectors in V and W , and A and B are linear operators on V and

5



CHAPTER 1. BASICS OF QUANTUM COMPUTATION

W , respectively. Then we can define a linear operator A⊗B on V ⊗W by the equation

(A⊗B)(|v⟩ ⊗ |w⟩) ≡ (A|v⟩)⊗ (B|w⟩). (1.15)

The tensor product of the Pauli matrices σx and σy is

σx ⊗ σy =

[
0 · σy 1 · σy
1 · σy 0 · σy

]
=


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 .

Not all operators are of the types Ai⊗Bi, but in general they can be written as
∑

iAi⊗Bi.

1.2.3 Universal Quantum gates

Two-level unitary gates are universal [1] Consider a unitary matrix U which acts on
a d-dimensional Hilbert space. In this section, we explain how U may be decomposed into
a product of two-level unitary matrices; that is, unitary matrices that act non-trivially only
on two or fewer vector components. The essential idea behind this decomposition may be
understood by considering the case when U is 3× 3, so suppose that U has the form:

U =

a d g

b e h

c f j

 . (1.16)

We will find two-level unitary matrices U1, U2, . . . , U3 such that

U3U2U1U = I. (1.17)

It follows that
U = U †

1U
†
2U

†
3 . (1.18)

U1, U2, and U3 are all two-level unitary matrices, and it is easy to see that their inverses,
U †
1 , U

†
2 , U

†
3 , are also two-level unitary matrices. Thus, if we can demonstrate (1.17), then

we will have shown how to break U up into a product of two-level unitary matrices. To
construct U1: if b = 0, then set

U1 ≡

1 0 0

0 1 0

0 0 1

 . (1.19)

6



1.2. QUANTUM CIRCUITS

If b ̸= 0, then set

U1 ≡


a∗√

|a|2+|b|2
b∗√

|a|2+|b|2
0

b√
|a|2+|b|2

− a√
|a|2+|b|2

0

0 0 1

 . (1.20)

In either case, U1 is a two-level unitary matrix. When we multiply the matrices out, we get

U1U =

a d g

0 e h

c f j

 . (1.21)

The key point to note is that the middle entry in the left-hand column is zero. We denote
the other entries in the matrix with a generic prime; their actual values do not matter.
Now apply a similar procedure to find a two-level matrix U2 such that U2U1U has no entry
in the bottom-left corner. That is, if c = 0, we set

U2 ≡

1 0 0

0 1 0

0 0 1

 . (1.22)

If c ̸= 0, then set

U2 ≡


a∗√

|a|2+|c|2
0 c∗√

|a|2+|c|2

0 1 0
c√

|a|2+|c|2
0 − a√

|a|2+|c|2

 . (1.23)

In either case, when we carry out the matrix multiplication, we find that

U2U1U =

1 d g

0 e h

0 f j

 . (1.24)

Since U,U1, and U2 are unitary, it follows that U2U1U is unitary, and thus d = g = 0, since
the first row of U2U1U must have norm 1. Finally, set

U3 ≡

1 0 0

0 e∗ f∗

0 h∗ j∗

 . (1.25)

7



CHAPTER 1. BASICS OF QUANTUM COMPUTATION

It is now easy to verify that U3U2U1U = I, and thus

U = U †
1U

†
2U

†
3 ,

which is a decomposition of U into two-level unitaries. More generally, suppose U acts on a
d-dimensional space. Then, in a similar fashion to the 3 × 3 case, we can find two-level
unitary matrices U1, . . . , Ud−1 such that the matrix

Ud−1Ud−2 · · ·U1U

has a 1 in the top-left-hand corner and all zeroes elsewhere in the first row and column. We
then repeat this procedure for the (d−1)×(d−1) unitary submatrix in the lower-right-hand
corner of Ud−1Ud−2 · · ·U1U , and so on, with the end result that an arbitrary d× d unitary
matrix may be written

U = V1 · · ·Vk, (1.26)

where the matrices Vi are two-level unitary matrices, and k ≤ (d− 1) + (d− 2) + · · ·+ 1 =
d(d−1)

2 .

Single qubit and CNOT gates are universal So, any quantum gate can be expressed
with at most d(d−1)

2 two-level quantum gates, where d is the dimension of the state space
the quantum acts on. Using Gray codes [1], we can implement any two-level quantum gate
using only single-qubit gates (the coefficients of which are the coefficients of the two-level
unitary matrices we use to express the arbitrary unitary matrix) and CNOTs. In other
words, any unitary matrix can be implemented using single qubit gates and CNOTs.

A discrete set of universal operations We’ve established that any quantum gate
can be expressed and implemented using single-qubit gates and CNOTs. Now, let’s find a
discrete set of gates that allows us to approximate all other gates, i.e., any unitary operator,
with sufficient accuracy. We’ll immediately include the CNOT gate in this set, and we’re
left to show how any single-qubit gate can be approximated using a discrete set of gates.
Consider the following discrete set of gates:

• H is the Hadamard gate,

• T is a π/4 rotation around the z-axis, defined as:

T =

(
1 0

0 eiπ/4

)
.

8



1.3. MEASUREMENTS

The general reasoning is structured as follows:

• T is a π/4 rotation around the z-axis, and HTH is a π/4 rotation around the x-axis:

Rz(π/4) = T, Rx(π/4) = HTH. (1.27)

• composing these two rotations, we can identify a rotation around a specific axis n by
a specific angle θ:

exp
(
−iπ

8
σz

)
exp
(
−iπ

8
σz

)
=
[
cos

π

8
I − i sin

π

8
σz

] [
cos

π

8
I − i sin

π

8
σx

]
= cos2

π

8
I − i

[
cos

π

8
(σx + σz) + sin

π

8
σy

]
sin

π

8
= Rn̂(θ) (1.28)

where n =
(
cos π

8 , sin
π
8 , cos

π
8

)
through an angle θ defined by cos

(
θ
2

)
≡ cos2 π

8 .

Such a rotation, when iterated, gives rise to different rotations on the Bloch sphere. The
question is: how many of the infinitely many possible rotations are there? The key lies in
the angle θ. Indeed, it can be shown to be an irrational multiple of 2π. Consequently, a
series of rotations around n by that angle "never closes," managing to approximate any
rotation on the Bloch sphere arbitrarily, that is, any single-qubit gate. In other words,
the rotations obtained by iterating T and HTH indefinitely are arbitrarily close to any
single-qubit unitary operator.

1.3 Measurements

The qubit’s wave function is designed to highlight its potential measurement results. For
instance, in a state represented as in eq.(1.1), the probability of measuring zero is |α|2,
assuming that the measurement basis "aligns" with the one used for the preparation of
the qubit. Quantum theory postulates that any observable is in one-to-one correspondence
with self-adjoint linear operators.

1.3.1 Measurements in bases other than the computational basis

Imagine a measurement device being "rotated" relative to the computational basis. This
means that the states detectable by this device differ from the standard computational
states. The following expressions provide a means of expressing an arbitrary single-qubit
basis.

9
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|0⟩θ,φ = |0⟩ cos
(
θ

2

)
+ |1⟩ sin

(
θ

2

)
eiφ (1.29)

|1⟩θ,φ = −|0⟩ sin
(
θ

2

)
e−iφ + |1⟩ cos

(
θ

2

)
(1.30)

By re-expressing the qubit’s superposition in this new basis, we can determine the corre-
sponding probability amplitudes:

α|0⟩+ β|1⟩ = |0⟩θ,φ(α cos
θ

2
+ β sin

θ

2
e−iφ) + |1⟩θ,φ(−α sin

θ

2
eiφ + β cos

θ

2
)

This result extends to systems of multiple qubits, such as those described by the Bell basis
[1].

1.3.2 POV measurement

Projective measurements are an essential class of operators encoding measurement in
quantum systems. It is a general tool that allows one to describe any observable (its
distribution of outcomes) on qubit systems. This fact stems from the property of selfadjoint
operators, which possess an orthonormal basis composed of their eigenvectors. Here’s the
definition [1]:
A projective measurement is described by an observable, M , a self-adhoint operator on the
state space of the observed system. The observable has a spectral decomposition:

M =
∑
m

λmPm (1.31)

where Pm are called "projectors"; they project onto the respective eigenvector subspace.
Given a self-adjoint operator (on a finite dimensional Hilbert space) it is always possible to
create the projectors determining the POV measurement. λm is the eigenvalue correspondent
to the eigenvector; if a measurement procedure yields a state belonging to that eigenspace,
λm is the numerical value measured. The probability of getting result λmis

p(m) = ⟨ψ|Pm|ψ⟩ (1.32)

Given that outcome λm occurred, the state of the quantum system immediately after the
measurement is

10
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Pm|ψ⟩√
p(m)

(1.33)

The average value of M turns out to be

E(M) =
∑
m

λmp(m) =
∑
m

λm⟨ψ|Pm|ψ⟩ = ⟨ψ|M |ψ⟩. (1.34)
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2
VQE for molecular Hydrogen

Molecular Hydrogen [3] is a quantum system that is not analytically solvable. Therefore,
we need to use computational methods to obtain the information we want to compare
with the experimental data. Specifically, we are looking for an estimate of the value of the
ground-state energy of the H2 molecule, assuming that the nuclei are at rest. A variational
method, the Variational Quantum Eigensolver (VQE) [4] is chosen to achieve the goal. In
the VQE algorithm, a parametrized circuit is optimized to minimize the expectation value of
a Hamiltonian. On paper, we could perform a measurement in the eigenbasis of H, but this
requires knowledge of the transformation that diagonalizes it, which is at least as hard as
computing the ground-state energy [5]. We first need to encode the molecule wave functions
into the quantum computing framework, using qubits and Jordan-Wigner mapping [6, 7, 8].
Then, starting from a reasonable hypothesis, the Hartree-Fock state, the circuit yields a
parameterized superposition of electrons states [9]. We will then evaluate a cost function:
the observable, namely the Hamiltonian, we want to minimize. The optimization process of
this circuit generates the ansatz of the molecule.

2.1 The H2 molecule

Our goal is to solve the time-independent, non-relativistic Schrödinger equation for molecular
hydrogen, which is given by:

ĤΨ = EΨ (2.1)

where Ĥ is the Hamiltonian operator, Ψ is the wavefunction, and E is the total energy
of the system. The Hamiltonian consists of the kinetic and potential energy terms for all
electrons and nuclei:

Ĥ = − ℏ2

2mp

(
∇2

A +∇2
B

)
− ℏ2

2me

(
∇2

1 +∇2
2

)
+
e2

R
− e2

rA1
− e2

rB1
− e2

rA2
− e2

rB2
+
e2

r12

where:

• The first and second terms represent the kinetic energy of the two nuclei (protons),
with masses mp;
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• The third and fourth terms represent the kinetic energy of the two electrons, with
mass me;

• The fifth term accounts for the repulsion between the two nuclei, separated by a
distance R;

• The sixth-to-ninth terms represent the Coulomb attraction between each electron
and each nucleus, where rAi, rBi is respectively the distance between electron i and
nucleus A and B;

• The tenth term accounts for the repulsion between the two electrons, separated by a
distance r12.

This Hamiltonian fully describes the quantum mechanical interactions in the H2 molecule.
Since solving this equation exactly is impossible due to electron correlation and the
complexity of the interactions, various approximations and computational methods are
employed, which we will discuss in the next sections:

• The Born-Oppenheimer Approximation (BOA), which separates nuclear and elec-
tronic motion. The mathematical encoding of this approximation is the factorization
of the wave function. (Independence ⇔ factorization).

• The Nuclei are at rest, this enables us to neglect the kinetic energy contribution of
the nuclei on the total energy of the system

• Hartree-Fock (HF) Theory, which approximates the wave function as a single
Slater determinant.

2.1.1 Born-Hoppeneimer & Electronic Hamiltonian

To simplify the problem, we apply the BOA in which we treat the nuclei as stationary
classical particles. This is justified as the ratio of electronic to nuclear mass is roughly
1:1000, leading to a separation in the time scale of their dynamics. Thus, the molecule
wave function can be factorized (the coordinates are referred to as the center-of-mass frame
of reference):

ψ(r,R) = ψn(R)ψ(R)
e (r) (2.2)

Here r,R encode respectively the electrons and nucleis coordinates shown in fig.2.1 and
R is considered a parameter within ψe. The functions ψe and ψn separately satisfy the
eigenvalue equations for He and Hn, respectively:
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2.1. THE H2 MOLECULE

Figure 2.1. Coordinates, image taken from [3]

Hnψn(R) =

(
−1

2

(
∇2

A +∇2
B

)
+

1

R

)
ψn(R) = Enψn(R) (2.3)

He(R)ψ
(R)
e (r) =

{
−1

2

(
∇2

1 +∇2
2

)
− 1

rA1
− 1

rB1
− 1

rA2
− 1

rB2
+

1

r12

}
ψ(R)
e (r)

= [E − En(R)]ψ
(R)
e (r) = Ee(R)ψ

(R)
e (r)

(2.4)

The nuclear energy contribution is thus encoded in Ee(R) and since the nuclei are assumed
to be at rest, there is no contribution from the kinetic part of eq.(2.3). Within the Hartree-
Fock approximation, the system is described using the independent particle model. In other
words, we treat the molecule as being "split" into the two molecular ions H+

2 that compose
it. Consequently, we assume that the ground state of the molecule is a superposition of the
ground states of these molecular hydrogen ions. In the ground state, the single electron in
a molecular hydrogen ion is described by two orbital wavefunctions called "Gerade" and
"Ungerade" [3]:

Φi
g(rAi, rBi) =

1√
2
[ϕ1s(rAi) + ϕ1s(rBi)]

Φi
u(rAi, rBi) =

1√
2
[ϕ1s(rAi)− ϕ1s(rBi)]

i = 1, 2 (2.5)

where ϕ1s(r) = ϕn=1,l=0,ml=0(r) = π−1/2 exp{(−r)} is the normalized ground state wave
function for atomic hydrogen. (n, l,ml) are respectively the principal, orbital and magnetic
quantum number; s is the symbol for the atomic orbital with l = 0. χS,MS

are the spin
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CHAPTER 2. VQE FOR MOLECULAR HYDROGEN

operators eigenvectors of a two-spin system.

χ0,0(1, 2) =
1√
2
[α(1)β(2)− β(1)α(2)]

χ1,1(1, 2) = α(1)α(2)

χ1,0(1, 2) =
1√
2
[α(1)β(2) + β(1)α(2)]

χ1,−1(1, 2) = β(1)β(2)

(2.6)

where α(1)β(2) = | ↑⟩| ↓⟩. The independent particle approximation allows us to factorize
the initial wave function as a product of individual electron wave functions. Molecular
hydrogen differs from the ion by the presence of an additional electron. Therefore, we treat
the system as a simple superposition of the two electrons, each interacting with both nuclei
A and B. The lowest states of H2 are four slater determinants (the others vanish):

ΦA(1, 2) = Φg(1)Φg(2)χ0,0(1, 2) (2.7a)

ΦB(1, 2) = Φu(1)Φu(2)χ0,0(1, 2) (2.7b)

ΦC(1, 2) =
1√
2
[Φg(1)Φu(2) + Φg(2)Φu(1)]χ0,0(1, 2) (2.7c)

ΦD(1, 2) =
1√
2
[Φg(1)Φu(2)− Φg(2)Φu(1)]χ1,Ms(1, 2), Ms = 0,±1 (2.7d)

where χS,MS
are the (??). This follows from the Pauli exclusion principle, according to

which the 2 electron wave function is a Slater determinant Ψ(q1, q2), or in other words,
an antisymmetric product of individual electron spin orbitals (wave functions with both
orbital and spin part). It is important to note that the basis for the ground state of the
molecule, or the accessible spin-orbitals for each of the two electrons, is chosen to be:

{Φgα,Φgβ,Φuα,Φuβ} (2.8)

.

2.2 Second Quantization

How can the wave functions of quantum systems be represented on a quantum computer?
The basic building blocks of quantum computation are controllable two-level systems, which
we called qubits. How the expectation value of an observable (e.g. the Hamiltonian) can
be computed on a quantum computer? We need to translate it into quantum computing
observable. Starting from the first question, we must translate the wave function basis
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2.2. SECOND QUANTIZATION

given in (2.8). We associate every spin-orbital in (2.8) to a qubit; consequently, we have
a 4-qubit basis. Each of these qubits is |0⟩ if the correspondent spin-orbital is empty, |1⟩
if it’s occupied. What if there are more than one electron, for example two, in a certain
spin-orbital? This is impossible because of the fermionic nature of the electron; thus the
maximum number of electrons in a system with 4 possible states is 4, one for each state
(spin-orbital), allowing us to represent the system with 4 qubits, so that we have 16 possible
combinations:

0 electrons : |0000⟩

1 electrons : |0001⟩ , |0010⟩ , |0100⟩ , |1000⟩

2 electrons : |0011⟩ , |0101⟩ , |0110⟩ , |1001⟩ , |1010⟩ , |1100⟩

3 electrons : |0111⟩ , |1011⟩ , |1101⟩ , |1110⟩

4 electrons : |1111⟩

Since the Hydrogen molecule conservs the number of electrons (two) in the system, we
can consider the kets with only two "1" (equivalently two "0"); in this way, the subspace
spanned by such a basis is a 6th-dimensional space. This representation thus enables us
to link each computational basis state |i1i2i3i4⟩ to a Slater determinant in eq.(2.7). Each
ij = 1 if the spin-orbital j is occupied and 0 otherwise. In this case j = {gα, gβ, uα, uβ}:

ΦA(1, 2) = Φg(1)Φg(2)χ0,0(1, 2) ⇔ |1100⟩ (2.9a)

ΦB(1, 2) = Φu(1)Φu(2)χ0,0(1, 2) ⇔ |0011⟩ (2.9b)

ΦC(1, 2) =
1√
2
[Φg(1)Φu(2) + Φg(2)Φu(1)]χ0,0(1, 2) ⇔ |1001⟩ (2.9c)

Φ0
D(1, 2) =

1√
2
[Φg(1)Φu(2)− Φg(2)Φu(1)]χ1,0(1, 2) ⇔ |0110⟩ (2.9d)

Φ1
D(1, 2) =

1√
2
[Φg(1)Φu(2)− Φg(2)Φu(1)]χ1,1(1, 2) ⇔ |1010⟩ (2.9e)

Φ−1
D (1, 2) =

1√
2
[Φg(1)Φu(2)− Φg(2)Φu(1)]χ1,−1(1, 2) ⇔ |0101⟩ (2.9f)

2.2.1 Annihilation and creation operators for fermions

Consider n sites (numbered 1 through n), each of which can be either empty or occupied
by a spinless fermionic particle. Such sites will be called spin-orbitals. The Hilbert space
H of this system, known as Fock space, is spanned by 2n basis vectors |i1, . . . , in⟩, where
ij = 0, 1 is the occupation number of the jth site. Everything related to fermions can be
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CHAPTER 2. VQE FOR MOLECULAR HYDROGEN

expressed in terms of fermions annihilation and creation operators aj , a
†
j (j = 1, . . . , n).

The operator aj acts on basis vectors as follows [6]:

aj |i1, . . . , ij−1, 1, . . . , in⟩ = (−1)
∑j−1

s=1 is |i1, . . . , ij−1, 0, . . . , in⟩. (2.10a)

aj |i1, . . . , ij−1, 0, . . . , in⟩ = 0. (2.10b)

a†j |i1, . . . , ij−1, 0, . . . , in⟩ = (−1)
∑j−1

s=1 is |i1, . . . , ij−1, 1, . . . , in⟩. (2.10c)

a†j |i1, . . . , ij−1, 1, . . . , in⟩ = 0. (2.10d)

(−1)
∑j−1

s=1 is represents the parity of the j-th orbital: it is positive when there is an even
number of occupied spin-orbitals between ϕ1 and ϕj−1, and negative if they are odd in
number. The annihilation and creation operators have the following anticommutation
rules[6]:

ajak + akaj = 0 a†ja
†
k + a†ka

†
j = 0 aja

†
k + a†kaj = δjk

so that, for k > j:

a†jak| . . . , 0, ij+1, . . . , ik−1, 0, . . .⟩ = 0,

a†jak| . . . , 0, ij+1, . . . , ik−1, 1, . . .⟩ = (−1)
∑k−1

s=j+1 is | . . . , 1, ij+1, . . . , ik−1, 0, . . .⟩,

a†jak| . . . , 1, ij+1, . . . , ik−1, 0, . . .⟩ = 0,

a†jak| . . . , 1, ij+1, . . . , ik−1, 1, . . .⟩ = 0.

2.2.2 Second-Quantized Hamiltonian

When simulating a molecule, it is easier to use the second-quantization Hamiltonian rather
than the first-quantization Hamiltonian (2.4).

H(R) =
∑
pq

hpq(R)a
†
paq +

∑
pqrs

hpqrs(R)a
†
paqa

†
ras. (2.11)

The constants hpq(R) and hpqrs(R) are evaluated using an initial Hartree-Fock calculation
and relate the second-quantized Hamiltonian to the first quantized Hamiltonian. They are
calculated as follows:

hpq ≡
∫
dqΦ∗

p(q)

(
−1

2
∇2

r −
1

|RA − r|
− 1

|RB − r|

)
Φq(q) (2.12)

hpqrs =

∫
dq1 dq2Φp(q1) Φq(q2)

Φr(q1)Φs(q2)

r12
. (2.13)

qi denoting both the spatial and spin coordinates and p, q, r, s = gα, gβ, uα, uβ as in (2.5).
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2.3 Mapping the problem onto the quantum computer

In this section, we focus on the process of mapping the hydrogen molecule problem onto
a quantum computer. The goal is to translate the quantum description of the hydrogen
molecule into a quantum computing framework, where the system’s states and interactions
are represented using qubits and quantum operations. By applying quantum mechanical
principles, we aim to simulate the molecule’s behavior accurately. We will cover the steps
required to model the hydrogen molecule’s electronic structure, utilizing quantum algorithms
to perform calculations that are essential for understanding chemical bonding and molecular
properties. We lay the foundation for utilizing quantum computing to study molecular
systems that are intractable with traditional methods.

2.3.1 Representing the molecular Hamiltonian in terms of quantum bits:
Jordan Wigner transformation

To map the Hamiltonian (2.11) into the quantum computing object we want to measure is
to express it through Pauli operators. We can use the (2.10). The Jordan-Wigner transform
is used to express fermionic operators in terms of the Pauli operators {σx, σy, σz, 1}. The
Jordan-Wigner transform is given by [10]:

aj ⇔ σz
⊗(j−1) ⊗ σ+ ⊗ 1⊗(N−j)

=

[
1 0

0 −1

]⊗j

⊗

[
0 1

0 0

]
⊗

[
1 0

0 1

]⊗(N−j)

(2.14a)

a†j ⇔ σz
⊗(j−1) ⊗ σ− ⊗ 1⊗(N−j)

=

[
1 0

0 −1

]⊗(j−1)

⊗

[
0 0

1 0

]
⊗

[
1 0

0 1

]⊗(N−j)

(2.14b)

where
σ+ ≡ σx + iσy

2
= |0⟩⟨1|, σ− ≡ σx − iσy

2
= |1⟩⟨0|.

The qubit state |0 . . . 0⟩ corresponds to the vacuum state, and the string of σz operators
preserves the commutation relations in (2.10) since σz and σ± anti-commute. The qubit
operators associated with the creation and annihilation operators acting on the H2 molecule,
according to the Jordan-Wigner transform, are given by:
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a1 ⇔σ+ ⊗ 1⊗ 1⊗ 1 (2.15a)

a2 ⇔σz ⊗ σ+ ⊗ 1⊗ 1 (2.15b)

a3 ⇔σz ⊗ σz ⊗ σ+ ⊗ 1 (2.15c)

a4 ⇔σz ⊗ σz ⊗ σz ⊗ σ+ (2.15d)

a†1 ⇔σ− ⊗ 1⊗ 1⊗ 1 (2.16a)

a†2 ⇔σz ⊗ σ− ⊗ 1⊗ 1 (2.16b)

a†3 ⇔σz ⊗ σz ⊗ σ− ⊗ 1 (2.16c)

a†4 ⇔σz ⊗ σz ⊗ σz ⊗ σ− (2.16d)

The Jordan-Wigner transformation ensures that the fermionic operators satisfy the cor-
rect anti-commutation relations by introducing a string of σz operators. Since σz|0⟩ =

|0⟩, σz|1⟩ = −|1⟩, it acts as a counter for the occupation of the preceding spin-orbitals,
which corresponds to the parity (2.10) discussed in the previous section.
Substituting (2.15), (2.16) into (2.11) we get the qubits Hamiltonian. It can be computed
for an arbitrary value of R. For example:

H(R = 0.74 Å) =

− 0.10I(0) + 0.17σz(0) + 0.17σz(1) + 0.17(σz(0)⊗ σz(1))

− 0.22σz(2) + 0.12(σz(0)⊗ σz(2)) + 0.17(σz(1)⊗ σz(2))

+ 0.05(σy(0)⊗ σx(1)⊗ σx(2)⊗ σy(3))

− 0.05(σy(0)⊗ σy(1)⊗ σx(2)⊗ σx(3))

− 0.05(σx(0)⊗ σx(1)⊗ σy(2)⊗ σy(3))

+ 0.05(σx(0)⊗ σy(1)⊗ σy(2)⊗ σx(3))

− 0.22σz(3) + 0.17(σz(0)⊗ σz(3)) + 0.12(σz(1)⊗ σz(3)) + 0.17(σz(2)⊗ σz(3))

(2.17)

where σz(i) with i = 0, 1, 2, 3 means the σz gate acting on the i-th qubit. Now, in order
to apply the variational method, we have to choose an initial wave function (now finally
turned into a Fock vector space, i.e., expressed in qubit basis) tailored for our goal, which
is to find ground state energy. We naturally choose this to be |1100⟩, i.e. (2.9a); that is,
the spin-orbitals Φgα Φgβ are occupied in a spin-singlet.
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2.3.2 Givens rotations

Any transformation must conserve the number of particles because the number of electrons
in a molecule is fixed. A class of transformations of this type exists that, while preserving
the number of particles in the system, maps a certain state into a superposition of the state
itself and a state with higher energy. These transformations are called "excitations."

• the number of "ones" is conserved,

• the transformed state differs in terms of energy; more specifically, it is a superposition
containing an excited state with respect to the initial one.

Let’s give an example:

G(θ) =


1 0 0 0

0 cos(θ/2) − sin(θ/2) 0

0 sin(θ/2) cos(θ/2) 0

0 0 0 1


which is an example of a Givens rotation: a rotation in a two-dimensional subspace of
a larger Hilbert space. In this case, we perform a Givens rotation in a two-dimensional
subspace of the four-dimensional space of two-qubit states. This gate allows us to create
superpositions by exchanging the particles between the two qubits. Such transformations
can be interpreted as a single excitation, where we view the exchange from |10⟩ to |01⟩ as
exciting the electron from the first to the second spin-orbital. In our 16th-dimensional space
of four qubit states, we consider Givens rotations applied on the Hartree-Fock state (2.9a)
because the gates of the parameterized circuit act on it, since it is the starting circuit state.

G1(θ)|1100⟩ = cos

(
θ

2

)
|1100⟩+ sin

(
θ

2

)
|0110⟩ (2.18)

G2(θ)|1100⟩ = cos

(
θ

2

)
|1100⟩+ sin

(
θ

2

)
|1001⟩ (2.19)

G(2)(θ)|0011⟩ = cos

(
θ

2

)
|0011⟩+ sin

(
θ

2

)
|1100⟩ (2.20)

G(2)(θ)|1100⟩ = cos

(
θ

2

)
|1100⟩ − sin

(
θ

2

)
|0011⟩ (2.21)

(2.18) and (2.19) are single excitations exchanging, respectively, the first and third qubit,
and the second and fourth qubit. (2.20), (2.21) represent the same Givens rotation, acting
on two different qubit states. We note that |1001⟩ → |0101⟩ is not an excitation because
the energy of the configurations, before and after the transformation, is the same since the
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spin state does not influence the energy. Givens rotations parameters are the ones we’re
going to optimize to find the ground state energy. Indeed, we calculate the Hamiltonian
expectation value on the quantum state generated from the givens rotations.

2.3.3 VQE

Let’s summarize everything that has been discussed in this section:

• We have mapped the four spin-orbitals of the trial ground state, where two electrons
reside, onto a qubit basis (2.9).

• We have mapped the second quantization Hamiltonian (2.11) into a computable
observable (1.34), (2.17) on a quantum circuit.

• We have developed a class of quantum gates that generates a parametrized wavefunc-
tion.

The VQE is a quantum variational algorithm, that is, an algorithm iteratively run until the
output satisfies the criteria the problem requires. The initial wave function, in our case,
is the Hartree Fock wave function for the ground state hydrogen molecule (2.9a), i.e. a
guess of the ground-state wave function. Through Givens Rotations (particle preserving
gates), we generate a family of states, parameterized by an array of angles, on which we
will estimate the Hamiltonian average. These rotations are implemented via a quantum
circuit. The optimization of the parameters is then executed with a classical algorithm (on
a classical computer), and the iteration of the procedure with those new parameters is the
essence of the hybrid variational method. It will estimate the H2 molecule ground state.
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3
VQE implementation for molecular

Hydrogen

PennyLane is an open-source Python framework for quantum programming, built by
researchers, for research. It supports quantum computing, quantum machine learning,
and quantum chemistry, enabling researchers to build circuits, train models, and run on
simulators or hardware[11]. In this chapter, I describe how I used it to accomplish what is
described in the previous section. The function encoding the VQE is described; another
function is defined to run the VQE for different values of internuclear distance to find the
one that minimizes the ground state energy.

3.1 Pennylane program

The program is available at this link: https://github.com/alepsq/vqe/blob/main/vqe_H2.
py. It consists of two main components:

• Variational Quantum Eigensolver (VQE): Implements the methodology de-
scribed in Section 2.3, utilizing the Pennylane library to construct the Hamiltonian,
define the Hartree-Fock state, and optimize the ansatz parameters.

• Nuclear distance minimization: Defines a function that determines the nuclear
separation that minimizes the ground-state energy by evaluating different distances
iteratively.

3.2 Variational Quantum Eigensolver (VQE)

The function run_VQE is the core component responsible for computing the ground state of
the molecular Hamiltonian. The structure is defined as follows:

def run_VQE(coordinates, output="all"):

This function executes the standard VQE protocol, which consists of:

1. Defining the molecular Hamiltonian based on the coordinates of the nuclei.
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2. Constructing a variational ansatz.

3. Optimizing the parameters to minimize the energy expectation value.

The molecular Hamiltonian is of the kind of (2.17), a quantum-computable observable. It
is constructed via Jordan-Wigner mapping (sec. 2.3), starting from the second-quantized
Hamiltonian (2.11). The ansatz is the result of the applications of Givens rotations (2.3) to
the Hartree-Fock state (2.9a).

3.2.1 Definition of the Hamiltonian

The hydrogen molecule’s Hamiltonian is generated using Pennylane’s quantum chemistry
module:

• The function hydrogen_hamiltonian constructs the molecular Hamiltonian using
atomic coordinates.

• The Hartree-Fock (HF) reference state is initialized via hf, which defines the electronic
configuration.

• The possible single and double excitations are identified using qml.qchem.excitations.

3.2.2 Quantum Circuit Ansatz

The variational circuit applies excitations to the HF state:

• The ansatz is constructed using qml.AllSinglesDoubles, which applies parameter-
ized single and double excitations.

• The cost function, implemented as a quantum node (qml.qnode), computes the
expectation value of the Hamiltonian.

3.2.3 Optimization Procedure

The parameters are optimized iteratively:

• An Adam optimizer (qml.AdamOptimizer) updates the parameters at each iteration.

• The optimization terminates when the relative energy change is below a threshold
(10−5).
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3.2.4 Function Output

The function can return various results based on the output argument:

• ground_state: The optimized quantum state.

• final_energy: The minimum energy obtained.

• optimized_parameters: The final ansatz parameters.

• all: A dictionary containing all the above.

For example, we call the function run_VQE with a specific set of atomic coordinates for
the hydrogen molecule. The function computes the ground state energy and optimized
parameters. The function call is:

coordinates = np.array([[0.0, 0.0, -0.8], [0.0, 0.0, 0.8]])
result = run_VQE(coordinates)

The output of this function call contains multiple elements: The computed ground state in
the computational basis is:

|ψ⟩ = −0.1418 |0011⟩ − 0.00002 |0110⟩ − 0.0029 |1001⟩+ 0.9899 |1100⟩ (3.1)

The optimized energy value is:
Emin = −1.128Ha (3.2)

where Ha is the "Hartree", the energy unit in the atomic unit system. The length unit in
the atomic unit system is the Bohr, which relates to the angstrom as: 1Bohr ≈ 0.529Å.

3.3 Exploration of Energy as a Function of Distance

The function qa_ray explores the dependence of ground-state energy on the internuclear
distance.

def qa_ray(R):

This function scans a range of distances and calculates the corresponding energy values to
identify the equilibrium bond length.

3.3.1 Process Description

• A list of nuclear separations R is provided.

25



CHAPTER 3. VQE IMPLEMENTATION FOR MOLECULAR HYDROGEN

• For each value of R, the hydrogen molecule’s coordinates are updated.

• The function run_VQE is called to determine the ground-state energy and optimal
parameters for that specific R.

• The results are stored, and the distance corresponding to the minimum energy is
identified.

Stopping Criterion

The iteration stops when the relative energy difference between two consecutive calculations
is below a threshold:

|Ei − Ei−1|
Ei−1

< 10−5. (3.3)

3.3.2 Final Results

The function outputs:

• A list of ground-state wavefunctions for each R.

• The corresponding energy values.

• The optimized parameters for each distance.

3.4 Results

Implementing the VQE algorithm allows for an effective approximation of the ground state
of the hydrogen molecule. Figure 3.1 summarizes the results on the energy of the ground
state as a function of the internuclear distance R. The energy first decreases and then
increases toward a horizontal asymptote. The analysis of energy as a function of distance
reveals that the minimum energy occurs at:

Rmin = 0.735 Å (3.4)

The correspondent energy is:
Emin = −1.137Ha (3.5)

while the state is:

|ψ⟩ = −0.114 |0011⟩ − 0.003 |0110⟩ − 0.002 |1001⟩+ 0.993 |1100⟩ (3.6)
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3.4. RESULTS

Figure 3.1. Energy as a function of internuclear distance
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Conclusion

The objective of this thesis is to demonstrate a straightforward application of quantum
computing in the field of condensed matter physics. The results align with both theoretical
predictions and experimental measurements, offering an alternative approach to achieving
the same outcomes. Computing is a crucial tool in physical research and beyond, with
quantum computing providing solutions to specific problems, as exemplified in this work.
The Pennylane library serves as an excellent tool for learning how to develop quantum
algorithms while simultaneously deepening one’s understanding of quantum mechanics,
as it offers practical applications of fundamental concepts. The physical realization of
quantum hardware remains in development, facing numerous challenges, particularly in
maintaining a sufficiently large number of qubits for an adequate period. Despite these
ongoing difficulties, many prominent researchers are actively advancing the field, promising
significant future progress.
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A
Appendix

A.1 Pauli matrices exponentiated

Let x be a real number and A a matrix such that A2 = I. We want to show that

exp(iAx) = cos(x)I + i sin(x)A. (A.1)

Proof: The exponential of a matrix A is defined by its power series expansion:

exp(iAx) =

∞∑
n=0

(iAx)n

n!
. (A.2)

Since A2 = I, we have:

An =

I if n is even,

A if n is odd.
(A.3)

Thus, we can rewrite the power series as follows:

exp(iAx) =
∞∑
n=0

inAnxn

n!
. (A.4)

Now, separate the terms for even and odd powers of n:

• for even n = 2k, A2k = I, and the sum becomes:

∞∑
k=0

i2kx2k

(2k)!
=

∞∑
k=0

(−1)kx2k

(2k)!
= cos(x). (A.5)

• for odd n = 2k + 1, A2k+1 = A, and the sum becomes:

∞∑
k=0

i2k+1x2k+1

(2k + 1)!
= iA

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= iA sin(x) (A.6)

Therefore, combining these results:

exp(iAx) = cos(x)I + i sin(x)A. (A.7)
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APPENDIX A. APPENDIX

Since X,Y, Z are such that X2 = 1 this result holds for them as well.
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