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Chapter 1

Introduction

1.1 Background and Motivation

In May 2023, Emilia-Romagna experienced in just 36 hours an unprecedented downpour, equi-
valent to the typical rainfall of seven months. The disaster resulted in 17 fatalities and an estim-
ated €10 billion in damages. In the province of Ravenna alone, 27,775 people were evacuated,
with infrastructure, farmland, roads, rail lines, and the broader economy suffering extensive
damage still awaiting full assessment [1], [2].
One year later Bologna, capitol city of region, faces renewed floodings. The causes of the floods
are several and of different nature, with climate change and global warming at the top of the
list.

This scenario, along with other extreme weather events and climate catastrophes, is becoming
increasingly common worldwide, and it stresses the urgency to address modern climate chal-
lenges. A viable approach is to increase the share of renewable sources in the total primary
energy consumption, complemented by high-efficiency systems.
In line with this focus European countries signed and ratified the Paris Agreement in 2015,
committing at reaching net-zero greenhouses gas emissions by 2050. The strategies to achieve
climate neutrality were outlined in the European Green Deal, launched in 2019, with key ac-
tions including energy saving, diversification of energy supplies and clean energy production
[3]. Specifically, the target for 2030 is to bring renewable energy sources to 42.5% of the
European Union’s final energy use (they represented an estimated 24.1% in 2023) [4].

Figure 1: Total Final Energy Consumption in Europe for the year 2022 [4]

The residential sector accounted for 24.6% of the final energy use in 2022 [5]; around 80%
of this share is consumed for space and water heating [6]. In light of this, renewable sources
heat pumps, such as ground source ones, are playing an increasingly central role in the energy
sustainability of the residential sector.
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Figure 2: Energy Consumption in EU Households for the year 2022 [7]

Ground source heat pumps (GSHPs) allow extraction of geothermal energy stored under the
Earth’s surface, and continuously produced by the decay of particles in the core. This techno-
logy is widely implemented in northern European countries, where winters are particularly cold.
In Sweden geothermal energy is dominated by low temperature systems, and more than 95%
are GSHPs for space and domestic hot water heating for single-family buildings. On the 31st
of December 2019 there were more than 590000 geothermal heat pumps installed, for a total
capacity of 6680 MWt [8].

In Italy the total number of GSHPs registered in 2018 is about 15000, resulting in 800 MWt
capacity installed. The data, provided by GSE and EurObserv’ER(2018), is based on collec-
ted information from the main heat pumps producers and sellers, but it lacks accuracy, due
to difficulties on obtaining updated and homogeneous data. The most widespread technologies
within the Italian geothermal sector are district heating and ground source heat pumps, that have
doubled their capacity since 2010. This trend has been enhanced during the last few years by sev-
eral factors. Legislative requirements to increase renewable energy share of buildings together
with the strong interest in protecting the air quality, especially in northern Italy, are promoting
the conversion of fossil fuel-based heating (and cooling) systems to low-enthalpy geothermal
systems. The combination of geothermal systems with other energy renewable sources, such as
already installed photovoltaic systems, largely diffused in the territory, is perceived as an easy
solution to be promoted in this regard. Furthermore, the development of innovative and various
solutions in geothermal field is creating new contexts where the use of GSHPs is possible.
In conclusion, Italian ground source heat pumps market is not as developed as in other european
countries, but conditions are favorable for its expansion [9], [10].

1.2 Significance of Data Processing in Geothermal Research

Knowledge of local geology and borehole properties is essential for accurate system dimension-
ing and performance optimization.
Prior to GSHP system installation and configuration choices, thermal response tests (TRTs)
are conducted to investigate the ground properties. Conducting a thermal response test is both
time-consuming and expensive, similar to other methods aiming at characterizing geothermal
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sources. Unlike solar, hydro, or other renewable resources, the potential of geothermal energy
sources is not easy to assess. On the other hand, once the data is collected, it can be applied to
multiple projects over long periods, providing valuable insights for future developments [11].
Data collection is essential for the creation of data-driven models that can replace more complex
mathematical models. These models enable dynamic analysis, performance evaluation and the
prediction of various potential scenarios. Physical models require the formulation of equations
governing the system, a challenging task due to difficulties in estimating necessary paramet-
ers. Accordingly, data-driven models are gaining more and more popularity, dragged by the
advancements in Big Data processing and storage.
The main limitation of data-driven models lies in the quality and quantity of available data. For
data to be truly useful and accessible, it must be well-structured, easily understandable, securely
stored and preserved. The lack of well-organized and comprehensive data prevents data-driven
models from expressing their full potential [12]. Moreover, a weak data management frame-
work can increase costs and limit opportunities within the geothermal sector. On the contrary,
reliable, accurate and standardize data enable researchers to set realistic energy targets, attract-
ing investments, supporting and enhancing the sector’s ability to compete with other renewable
energy sources [13].
In conclusion, effective management and proper data handling are critical for the sustainable
development of geothermal resources at economically viable costs [14].

This project aims to create a strong, reliable process for collecting ground temperature measure-
ments produced in the last five years. The measurements were taken along the lengths of two
boreholes, located within the same borehole field.
The goal is to organize and process this data, making it clear, structured, and ready for use.
Secondly, the focus will be on analyzing the available data to estimate the interference between
the two close boreholes and evaluate the temperature profiles over time. By doing so, a method
to post-process the data, extracting the desired information, will be provided.

1.3 Objectives of the Thesis

A distributed temperature sensing system (DTS) has been installed in 2016 in two different
boreholes. It has been detecting the ground temperature of the two close boreholes, at different
depths, at each time step. One of the two boreholes has been actively used along this period of
time, while the second one was only used for experimental porposes, rarely subjected to heat
injection or extraction.
Building upon the significance of accurate data management in geothermal research, the object-
ives of this thesis are:

1. To develop a structured and reproducible methodology for processing borehole temper-
ature data.

2. To analyze temperature patterns and the historical interaction between two boreholes of
the same field.

3. To lay the groundwork for future testing and system optimization.
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Chapter 2

Background on GSHP Systems and DTS Technology

2.1 Ground-Source Heat Pumps

Heat pumps operate by transferring heat from a source to a sink, which is at higher temperature
than the source. This is obtained thanks to the work of the compressor (𝑊 in Figure 3), allowing
the working fluid, a refrigerant, to reach a state of high temperature and pressure (point 2 in
Figure 3). The refrigerant is directed into the condenser, where it releases heat to the sink
(𝑄2 in Figure 3). Eventually the fluid is fully condensed and in the liquid phase (point 3 in
Figure 3). The liquid refrigerant, still under high pressure, then flows through an expansion
valve or throttling device. This component reduces the refrigerant’s pressure and temperature,
returning it to a biphasic stage of low pressure and temperature (point 4 in Figure 3). In a
second heat exchanger, the evaporator, the remaining liquid part is completely vaporized thanks
to the heat provided by the source (𝑄1 in Figure 3). At this point, the refrigerant is back to its
original condition (point 1 in Figure 3). and can enter the compressor restarting the cycle. The
exchanged energies are linked: 𝑄1 + 𝑊 = 𝑄2.
These technologies could eventually be used for cooling purposes, working as refrigerators. In
the latter case, the source would be in place of the sink, while the sink is the environment that
provides heat for the evaporation phase.

Figure 3: Refrigeration cycle Diagram

The efficiency of the heat pump is measured by the ratio of the desired output (heat) to the
work (energy) required to produce it and, in accordance with Figure 3, it’s called Coefficient of
Performance and expressed as follows: 𝐶𝑂𝑃 = 𝑄2

𝑊 = 𝑄2
𝑄1−𝑄2

.
The generated heat is larger than the energy used by the compressor, leading to COP values
greater than 1 and on average around 3.5 [15].
HPs can be classified according to the heat source and the sink, the most common types being
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air-source HPs (air-to-water and air-to-air), water source HPs (water-to-air and water-to-water)
and ground (brine) source HPs (ground-to water and ground-to-air). In most of the worldwide
installed heat pumps, the heat source is ambient air. In this setup the external unit in contact
with the source, is generally small and easy to install even in pre-existing buildings, making
air source heat pumps a practical solution, especially in dense urban areas. Ground source heat
pumps use the heat stored underground as a source, to be extracted through copper or plastic
tubes buried in the ground. Therefore, GSHPs require a sufficient large available land, as well as
a high initial investment. The field size depends on the type of soil, characterized by its thermal
conductivity, and the installation setup. Open-loop systems directly extract water from natural
sources such as aquifers, lakes or rivers, which typically offer a stable and moderate water tem-
perature (5–10°C), enhancing the heat pump’s performance. However, resource availability is
limited and often restricted by environmental regulations, and the system’s components are eas-
ily subjected to corrosion. The most common setups are closed-loop systems, where horizontal
or vertical collectors are filled with water and anti-freeze mixture, which transfers heat from
the borehole to the refrigerant loop in the heat pump. Multiple vertical wells containing heat ex-
change tubes, collectively forming a borehole field, can maximize the collectors’ surface while
requiring relatively little land. This makes them a popular choice, particularly in areas with
limited space.

Figure 4: GroundSource Heat Pump connected to a vertical borehole

The heat pump performance is related to several factors. The temperature difference (Δ𝑇 )
between the outlet temperature (to the sink) and the ground source temperature. Lower (Δ𝑇 )
leads to higher COP.
Low-temperature heating systems and proper sizing of the ground collectors are critical, and
their inadequate design can lead to efficiency losses. GSHPs with vertical boreholes tend to
have better performance due to stable ground temperatures at deeper levels compared to shallow,
horizontal configurations. These factors expose a key drawback of air source HPs compared to
GSHPs.
The earth’s underground temperature stability makes GSHPs effective year-round, regardless of
external weather fluctuations [16]. Therefore, the underground temperature profiles at different
times of the year have been modeled as shown in the following figure.
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Figure 5: Underground Temperature Profiles [16]

As a result, GSHPs deliver higher COP and SCOP values over the year and typically achieve bet-
ter values even under standard operating conditions, since air volumetric specific heat capacity
is significantly lower than that of soil or water [15], [17].

2.2 Overview of Distributed Temperature Sensing (DTS) Technology

As already mentioned, thermal response tests (TRTs) are the most popular method to estimate
the ground thermal properties, especially the ground thermal resistance and its thermal con-
ductivity, which are essential design and optimization parameters of geothermal heat pump
systems.

Response tests involve imposing a known thermal load on the borehole and analyzing the tem-
perature response over time, allowing the determination of key factors such as ground thermal
conductivity, thermal resistance, ground diffusivity, or the influence of groundwater flow on
heat transfer efficiency. An essential metric revealed through TRTs is the undisturbed ground
temperature, which reflects the baseline temperature of the ground and determines the temperat-
ure gradient. This drives heat transfer and influences overall performance, as efficiency depends
on the difference between the ground temperature and the working fluid temperature [18].

The borehole thermal resistance per unit length is defined as 𝑅𝑏 = 𝑇𝑚−𝑇𝑏
𝑞𝑙

where 𝑇𝑚 is the
mean temperature of the fluid inside the borehole (usually water or a water-antifreeze mixture),
𝑇𝑏 is the mean temperature at the borehole’s external surface and 𝑞𝑙 is the average thermal
power exchanged per unit length between the ground and the fluid. Thermal resistance can be
determined through analytical approximations or numerical simulations. Analytical methods
rely on the line source model, treating the pipes as infinitely long thermal sources placed at the
pipe axes.
Typical TRT consists of two main phases: first, the measurement of the undisturbed ground
temperature, and second, the heating phase, where heat is generated, mainly through electrical
resistances, and injected, while the inlet and outlet temperatures of the circulating fluid are
recorded. The second phase is approximately 36 to 48 hours long. After completing the test,
the recorded data is analyzed and fitted to the temperature evolution equation 𝑇𝑚 − 𝑇𝑔 =
𝐴 ln(𝑡) + 𝐵, allowing the constants 𝐴 and 𝐵 to be determined through linear interpolation.
From these constants, the thermal conductivity of the ground is calculated as 𝑘𝑔 = 𝑞𝑙

4𝜋𝐴 and
the borehole thermal resistance is determined using 𝑅𝑏 = 1

𝑞𝑙
(𝐵 − 4𝛼𝑔

𝑘𝑔
ln(𝑎)), where 𝛼𝑔 is the

thermal diffusivity of the ground [19], [20], [21].
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Figure 6: Setup for a Thermal Response Test [22]

Standard TRTs only measure the borehole inlet and the borehole outlet fluid temperatures, us-
ing the mean as averaging method. This approximation assumes uniform heat flux along the
borehole, prioritizing horizontal conduction as the dominant heat transfer mechanism over ver-
tical conduction and groundwater flow advection. The resulting effective borehole capacity and
thermal conductivity estimates often lead to an overestimation of the borehole length.

Higher precision can be obtained with Distributed Thermal Response Tests (DTRTs).
DTRTs measure the entire vertical fluid temperature profiles using fiber optic cables placed
along the boreholes, eliminating reliance on mean temperature approximations. This approach
allows local estimation of thermal properties, directly utilizing the spatial and temporal dis-
tribution of temperatures. The spacial variations in subsurface heat transfer can be derived.
Generally, DTRTs enable more accurate, detailed, and reliable evaluations [23], [24].

The optical fibers mentioned are part of Distributed Temperature Sensing (DTS) systems. DTS
technology implements Raman optical time domain reflectometry, specifically leveraging the
Raman scattering phenomenon. This refers to the frequency scattering of laser light pulses in-
jected from an optical fiber, and subsequently reflected, re-emitted and detected. The frequency
of the output signal has one part at lower frequencies (stokes) and one part at higher frequencies
(anti-stokes) than the original laser lights [25]. The frequency difference is correlated to the en-
ergy gap between the scatter lights. The incident photon may turn into a phonon (a molecular
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quantum vibration), resulting in lower frequency, or it may capture a phonon energy, resulting
in higher frequency [26].

The ratio between stokes and anti-stokes intensity is related to the Temperature in accordance
with Bose-Einstein statistics:

𝑃𝑆
𝑃𝐴𝑆

∝ 𝑒 Δ𝐸
𝑘𝐵𝑇 (1)

Where 𝑘𝐵 is the Boltzman constant, 𝑇 is the temperature, 𝑃𝑆 and 𝑃𝐴𝑆 are, respectively, the
Stokes and anti Stokes intensities and Δ𝐸 = ℏΔ𝜔 is the energy difference between incident
and scattered light [27].

The temperature may be explicitly inferred [28]:

𝑇 (𝑧, 𝑡) = 𝛾
ln( 𝑃𝑆(𝑧,𝑡)

𝑃𝐴𝑆(𝑧,𝑡)) + 𝐶(𝑡) − Δ𝑅(𝑧) − Δ𝛼𝑧
(2)

Where 𝑧 is the distance from the fiber, 𝑡 is the time and 𝛾 = Δ𝐸
𝑘𝐵

. The equation accounts
through the term 𝐶 for the fraction of light back-scattered to the instrument and the instrument
detector effciency. The potential step lossesΔ𝑅 represent the concentrated losses that might be
caused by different sections’ connection, or local strains, fiber damages… Finally, the termΔ𝛼
accounts for the difference in the power attenuation coefficients for the Stokes and anti-Stokes
signals.
DTS instruments average temperature readings over continuous fiber sections. The measure-
ments accuracy depends on the fiber’s refractive index, the density of data captured by the in-
strument and the size of the measured section. Better accuracy is obtained when more photons
are observed per unit time. Longer sections or distances reduce the photon density and therefore
the precision. The user can set the time steps duration at which the measurements are performed,
affecting the quality of output temperatures, which results from the trade-off between the preci-
sion in time and space. Longer integration times improve temperature resolution, but resolution
decreases with distance due to signal attenuation. Calibration procedure ensures reliable results
by correcting offsets and differential losses. This is often done by placing fibers in environments
with known temperatures, such as ice baths. There are two types of setups: single-ended and
double-ended. Most measurements are performed in single-ended mode, sending laser pulses in
one direction, but double-ended mode, where pulses are sent from both ends, allows compens-
ation for differential losses and attenuations. The uncertainty of the temperature values arises
from a variety of factors and it’s not easy to estimate. The calibration procedure, mainly the
number and placement of bath, directly influences the accuracy changingΔ𝑅 andΔ𝛼. Temper-
ature fluctuations in the environment can induce fictitious drifts in the measurements, as well
as variations in fiber materials and installation errors, leading to systematic deviations. Addi-
tionally, the flow regime plays a role: laminar flow introduces systematic uncertainty due to
uneven temperature profiles near pipe walls [25], [29], [30], [31], [32].

Temperature is a significant element for different entities’ observation and/or evaluation. The
DTS systems’ capability to monitor it in real time, makes the technology effective and useful
in various applications, especially, but not exclusively, in the hydraulic and geothermal fields.
Such applications include studies on surface hydraulic properties [33], soil moisture content
[34], tree species influencing forest canopy temperatures [35] or boundary layer height [36].
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Regarding geothermal investigations, DTRTs are just an example of practical DTS implement-
ation. In a recent case study, a DTS system was employed to analyze the thermal performance
of district-scale geothermal borefields and to understand subsurface heat transfer mechanisms.
The data provided was critical for identifying variations in thermal properties across depths and
lithological layers, which standard models often oversimplify [37]. Variations in streambed
temperature, measured using a distributed temperature sensor (DTS) were the key to identify
discrete groundwater discharge zones in a stream [38]. DTS was also used for groundwater
flow characterization in an aquifer [39]. By detecting temperature variations of geothermal
wells, temperatures by DTS enable to identify distinct flow zones, providing insights into flow
contribution and flow assurance issues, enhancing production strategies [40].
Nevertheless, DTS is helpful in monitoring the general performance of a large-scale GSHP.
It captures dynamic variations in temperature reflecting the subsurface heat transfer patterns,
whose knowledge is a validation criterion of Borehole Heat Exchanger (BHE) numerical mod-
els. Additionally, the system’s ability to detect thermal anomalies helps in identifying ineffi-
ciencies, such as uneven heat distribution or operational faults in the GSHP [41]. Assessing the
local soil’s thermal response, thanks to DTS technology, during the operation of a Dual-Source
Heat Pump (DSHP) in ground-source mode, helped the estimation of the soil’s recovery rate
after heat extraction. It also validated the potential of undersized BHE configurations to meet
heating demands across varying operational scenarios [42].

2.3 Data Processing Methods for GSHPs and DTS systems

Sensornet and Silixa are the main manufacturers for Distributed Temperature Sensing Techno-
logies.
The raw data produced is typically stored in folders in the form of configuration files (CFG)
and text files (DDF), which are automatically created at every new measurement. The volume
of data can be very large and it is stored in a format that is not directly meaningful, making
detailed analysis and evaluation challenging and difficult to manage.

In most case studies, the temperatures are used to train data-driven simulation models, always
requiring steps to process and refine the data. Literature offers limited content focused on tech-
niques for handling DTS data.
A Research on detecting pipeline leaks was carried out using DTS data collection. It involved
several days of temperature monitoring along the pipeline, resulting in daily datasets contain-
ing more than 50000 samples. To manage the data effectively, the raw information was or-
ganized in different datasets, after a preprocessing procedure which involved transforming the
2D temperature-time data into 3D temperature-time-distance images. Machine learning mod-
els, including Long Short-Term Memory, Convolutional Neural Networks, and Autoencoders,
were explored to analyze the DTS data [43]. A similar approach was performed to improve
the accuracy of the model of an aquifer, monitored with DTS system, using Assisted History
Matching method. Due to the high amount of data, a part of it could be used for history match-
ing, while a different part was set aside for validating the updated models. In this case study
data preprocessing involved identifying and excluding poor-quality data, as well as assessing
and adjusting the observation error [44]. A different investigation combined the temperature
data with Distributed Acoustic Sensing to estimate the flow profiles and assess the dynamics
of a wellbore. Finite-element and multiphase flow simulators were used to interpret DTS data,
later presented as temperature profiles or spatial maps [40].
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DTS data is often combined with other sensors to provide a more comprehensive view of the
study subject. It is the case for HP systems, usually equipped with temperature sensors, flow
meters, pressure sensors, and power meters. As part of an analysis conducted on GSHP per-
formance, DTS temperature measurements were taken at high frequency. A centralized Build-
ing Management System was used to log data from all sensors, including the corresponding
uncertainties, while raw data was periodically backed up. Missing or inconsistent data was in-
terpolated or imputed, and statistical and numerical techniques were used to analyze patterns,
trends, and system performance [41].
Building Management Systems (BMS) is an integrated real-time management framework that
monitors and controls smart buildings. It is one of the available tools to handle systems net-
work, including GSHPs. A comprehensive data model for GSHP systems should include static
details (e.g., equipment specifications) and dynamic time series data (e.g., flow, temperature,
and power) [45]. Industry-standard tagging systems like Project Haystack can be adopted for
this purpose. Project Haystack is an open source tool that provides standardized tags to help
define the relations between different entities [46]. Haystack tags can be enhanced using Brick,
a schema designed for representing metadata about buildings’ subsystems, which are graphic-
ally represented in hierarchical classes. The semantic interoperability ensures extensibility and
integration with BMS [47]. An alternative effective solution to store organized data is offered
by online databases, such as PostgreSQL or InfluxDB, where data and metadata are stored in
relational tables or time-series databases linked via unique identifiers.

Tools are available for managing data specifically produced by DTS devices [48].
The CTEMPs MATLAB DTS Toolbox provides multiple graphical user interfaces designed to
calibrate DTS data and process it, in order to parse the files into MATLAB compatible data-
sets. Users need to specify the files formats and the directory where they are saved, additional
information regarding fiber length limits, temperature reference and few other parameters are
required for the calibration procedure [49]. Nonetheless, if files are spread across multiple
folders, users must organize them beforehand. Overall, the manual interventions required can
be time-intensive, especially with large amount of data, not to mention that incorrect selections
can significantly degrade the data output quality.
An additional limitation is the significant increase in processing time as dataset size expands,
together with the user’s need to be familiar with MATLAB, being able to customize the script
as desired. DTSGUI is public software that implements tools mainly from Python libraries to
import, manage fiber-optic distributed temperature sensor data and visualize it in the form of
heat maps of temperature versus distance and time. The loaded data must come from a DDF
files folder, trimmed adjusting the minimum distance value and can therefore be automatically
displayed, and eventually exported for further use [50]. Once again, if files are distributed in
multiple subfolders they must be re-arranged, in spite of that, the software is intuitive and dir-
ectly provides a variety of plots.
Finally, two Python libraries exist that are dedicated to DTS data calibration and processing.
Python DTS Calibration Toolbox was developed by Delft University of Technology as a calib-
ration tool. It expects raw data files as inputs and the fiber section used as calibration reference.
The output consists of different types of graphs displaying the temperature uncertainties com-
puted at each length value [51].
The University of Bayreuth Micrometeorology is responsible for the creation of Python DTS
Data Processing Toolbox, designed for processing large and long-term DTS setups specifically
for Silixa devices. It automates calibration, leveraging the dts calibration Python package de-
scribed above, and mapping of data. It focuses on data conversion into netCDF format, where
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the outputs are physically labeled data along with temperature and intensity metrics [52].

This thesis presents an alternative method, similar to those mentioned, for transforming DDF
files content into more readable and accessible data, primarily using Julia programming lan-
guage.
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Chapter 3

System Description and Data Acquisition

3.1 Boreholes and Setup Description

3.1.1 Boreholes Description

The boreholes monitored with the DTS system are part of a larger borehole field loated on
the Royal Institute of Technology (KTH) main Campus, in Stockholm, in 2016. This field
consists of 12 boreholes, 11 of which follow the common single U-tube setup and serve as
ground source heat exchangers for a GSHP system. This system consists of three heat pump
units, each containing two vapor compression cycle, and provides space heating and domestic
hot water for three student accommodation buildings. Stockholm is characterized by a cold
climate, making heating the predominant need, while cooling is not actively provided.

Unlike standard commercial systems, this borehole field incorporates unique design features.
One of the boreholes, the 100-meter coaxial one, referred to as number 1, is dedicated exclus-
ively to research. It is part of a project at Live-in Lab, a research platform at KTH, serving as
testbed for smart and sustainable building technologies. The latter BHE is made of a central
rigid tube in High Density PolyEthylene (HDPE), with a double wall filled with air, ensuring in-
sulation between upward and downward flows, reducing the mutual heat exchange (the thermal
shunt). The outer tube is a membrane, called Energy Capsule, which is kept in direct contact
with the borehole walls by static pressure.
Moreover, the boreholes vary in length, ranging from 100 to 350 meters, and are not perfectly
vertical but rather inclined and spread in different directions, as illustrated in Figure 7. This
geometric distribution optimizes heat exchange with the ground while minimizing thermal in-
terference between neighboring boreholes at deeper levels [22], [53].

Figure 7: Top view of the borehole field [22]
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Two boreholes are equipped with optical fibers part of a distributed temperature sensing sys-
tem:

• Borehole 1

– Length: 100 meters
– Orientation: Straight
– Configuration: Coaxial
– Status: mainly inactive (briefly used for tests)
– Fiber position: Inside the inner pipe (undetermined distance from the central axis)
– Borehole Diameter: 115 mm
– Inner Diameter: 35.2 mm
– Outer Diameter:114 mm
– Middle Diameter:50 mm
– Pipe characteristics: Inner tube in HDPE, outer tube is an Energy Capsule
– Borehole filling material: Groundwater and air
– Secondary fluid type: Water-ethanol mixture (concentrations varied based on the
tests performed during that period)

– Design effective thermal resistance: 0.05 mK/W
• Borehole 10

– Length: 350 meters
– Orientation: Inclined
– Configuration: Single U-tube
– Status: Active
– Fiber position: Between the pipe and the borehole wall (undetermined location
within this space).

– Borehole Diameter: 115 mm
– Pipe characteristics: PEM DN40 PN8
– Borehole filling material: Groundwater and grout
– Secondary fluid type: Water-ethanol 28%-wt
– Design effective thermal resistance: 0.05 mK/W

The field is situated in an area with relatively low groundwater level (43 meters below the
surface) [54], due to its location on a 42-meter-high hill [55]. The deeper part of the boreholes
was filled by groundwater, while, to ensure efficient heat transfer, the boreholes were grouted
over the dry section, except for the research borehole, which uses a coaxial design to minimize
thermal shunt.
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Figure 8: 3D view of the buildings heated by GSHPs connected to the borehole field [55]

This coaxial borehole is also integrated into a test rig that includes a Thermia heat pump,
piping system, pumps, valves, heat exchangers, a water tank, sensing devices, and a control
system. The system allows for heat pump operation in both extraction and injection modes,
with controlled power modulation. While the test rig is still being optimized, this borehole
has only been used briefly in the past few years and is to be considered inactive. However,
its distinct features make the setup ideal for further research, performance evaluations, and
investigations [56].

For the characterization of the ground, the main parameters are reported below [22]:
- Loop type: Closed loop
- Ground composition: Metamorphic rocks
- Groundwater level below ground: 43 m
- Undisturbed ground temperature: 9.8 °C
- Design ground thermal conductivity: 3.4 W/(mK)
- Design volumetric heat capacity: 2.2 MJ/(kgK)

The borehole position was determined based on Figure 7 (a drawing from the design phase)
and cross-checked with the design coordinates listed on the Geological Survey of Sweden web-
site [54]. Based on available data, the recorded position aligns with reality. Additionally, the
deviation measurements were conducted using a DevDrill (“Peewee” model) Devico machine,
which has an integrated survey system that continuously records inclination and tool orientation
in real time. The data are available in the form of CSV tables with North, East and Elevation
data detected every 10 meters along each borehole [57]. This data allows for a complete recon-
struction of the 3D geometric distribution of the underground boreholes. The analysis results
are presented in the following figure.
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(a) 3D view

(b) 2D view

Figure 9: 3D and 2D views of the Borehole field.

3.1.2 Data Collection Methods

At KTH campus two out of 12 of the boreholes are provided with a DTS measuring system:
number 1 and 10, respectively referred as channel 1 and 2. The optical fibers were installed in
2016, simultaneously with the drilling of the boreholes. The optical fiber is in the inner pipe for
the coaxial Borehole 1, while it lays outside of the U-tube pipes of Borehole 10. At that time,
few tests were run, but the current final setup, from which continuous and consistent measure-
ments have been produced, dates back to 2020. The data are progressively saved and stored by
HaloDTS software in a computer powered by Windows 2000. This computer, along with the
two connected fibers, was previously located in different areas, and possibly installed in a dif-
ferent system than a borehole. The Distributed Temperature Sensing system, ran by HaloDTS,
is manufactured by Sensornet, a United Kingdom corporate office. It continuously stores the
results from the measurements in files, organized across a hierarchy of folders. The main folder,
called SensornetDTS, consists of 3 subfolders: full data set, latest data and temperature only
(an empty folder). In the first one, data from channel 1 and 2 are divided in many additional
subfolders that refer to different locations, projects, years and months of the year.
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Figure 10: Diagram of the folders’ structure

There’s one folder, named KTH LiL BH10_12, for the ongoing project, where the data produced
since 2020 is safely saved and updated every new measurement. In latest data only the very last
created files are stored, allowing easier and faster access for current tests values.
The data is primarily represented in the form of DDF files, where the first lines contain metadata,
data about the data, while the following section contains columns with length values, corres-
ponding to a position along the fiber, temperature, stokes and anti-stokes values relative to
that position. Other interesting produced files are the configuration ones, providing additional
metadata regarding the current settings and calibration parameters, such as temperature refer-
ence or the reference section of the fiber.

3.2 Data Processing Pipeline

The routine to transform the raw temperature data into actionable insight consists of a reprodu-
cible sequence of steps.

All the metadata and data contained in every DDF file was organized in tables and stored in a
PostgreSQL Database. Once the material was saved, it was possible to select specific inform-
ation from the database, and export them into a local directory. An important step entailed de-
termining the filtering criteria to identify the valuable part of the data. The next step involved
smoothening of the data, reducing the noise effects, followed by an interpolation method to
evaluate the missing values. The processed temperature data was prepared for visualization as
heatmaps, 3D plots, or contour plots, depicting variations over time and distance across different
time intervals.
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Figure 11: Diagram of the Data Processing Pipeline

3.2.1 Collection and Insertion in Database

In this work, a method is developed for data collecting and processing to facilitate the insertion
of the measurements’ results into a PostgreSQL database. The database was designed to store
key information in an architecture that enables efficient storage, retrieval, and analysis of large
volumes of data. The folders were copied from the desktop computer runningWindows 2000 to
a laptop by means of a USB drive. Using Julia programming language, a code was implemented
to crawl through all folders, identify DDF files, extract their contents and structure it into data
frames.
It extracts the metadata section and assigns a value for each line, including the following cat-
egories.
- datetime: Refers to the year-month-day and time of the day at which the file was created.
- Installation: Refers to the folder where the file will be located.
- Differential loss correction: Single-ended or double-ended setups.
- Forward channel: Refers to the tested channel, either channel 1 or 2.
- Forward acquisition time: Time interval for each forward measurement.
- Gamma: Calibration coefficient relating to the differential attenuation of the Stokes and anti-
Stokes signals.
- Default loss term (dB/km): Describes signal attenuation along the fiber due to material prop-
erties.
- Fiber end: Reference to the fiber’s physical termination point.
- T internal reference: Used to calibrate the system, typically from stable temperature baths.

The rest of the data was included in a different table composed of 6 columns:
- datetime: Exported from the corresponding metadata.
- channel: Exported from the corresponding metadata (Forward channel).
- length: Position along the fiber where the measurement was performed.
- temperature: Temperature value measured.
- stokes: Stokes intensity value corrresponding to the measurement.
- anti-stokes: Anti-Stokes intensity value corrresponding to the measurement.

A third table was created to store the content of configuration files. The approach mirrored the
previously described method: the same code was used to crawl through the folders, identify
CFG files, and process each line. The first part of each line was converted into a DataFrame
header, under which it was stored the second part of the line, transformed into a single string
object. These files provided additional calibration parameter and general setting infromation,
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such as:
- spatial averaging: The distance between two following measurement points along the fiber.
- measurement time: The time interval between two following measurements.
- internal reference start: Position along the fiber where the reference section starts.
- internal reference end: Position along the fiber where the referece section ends.
- range: Total length of the fiber section involved in measurements.
- range in points: Number of points in the fiber where the measurements are performed.

Each described table has either the datetime or the filename column, used to sort the data and
trace the source of the measurement, ensuring the interconnectivity of the three tables.

The optical fibers are much longer than the boreholes, with significant portions of the cables
lying outside the ground, mainly before the start of the boreholes, to connect to the computer
located in a basement room, running under the building to accommodate excess length. Tem-
perature values, on the other hand, are generated along the entire length of the fibers. The same
fibers were previously used in different installations at various locations. However, they were
all connected to the same computer and software, meaning the files in the folders refer to all
these installations, not just the most recent one at KTH. As a result, the portion of the fibers
actually along underground varied from one setup to another.
For this reason, the next step focuses on identifying the relevant section of the cable for evalu-
ating the temperature within the boreholes.

HaloDTS software dispenses an interface that automatically displays a plot of the temperature
over the length, enabling prompt visualization of the areas with high instability and inaccurate
temperature readings. Once the dataset was saved and available in the personal device, it was
possible to recreate it.

Figure 12: Temperature over Length Scattered Plot

The figure refers to a measurement of the current Live-In Lab installation, and clearly illus-
trates the unreliability of the temperature values for certain sections of length. Strong, rapid
oscillations and out-of-scale absolute values were the criteria used to identify the relevant por-
tion of the fibers. Specifically, the limits for the absolute values were set at -15.0 °C and 40.0
°C, a wide range considering that the temperature of the ground in Stockholm varies within a
small range around 10 °C [58], [59]. Moreover, the segments where the temperature difference
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between two consecutive readings exceeded 3°C were excluded. The chosen criteria are rel-
atively broad, especially considering that the analysis was applied to all files, including those
from previous projects with a likely different placement of the optical fibers. This approach
was taken to upload all folders from the computer into the database. The widest range was ad-
opted as a filter to store data in the database. As a result, inaccurate values were still selected
and saved, nonetheless some parts could be excluded, reducing memory usage. Considering
that the data in the database can always be post processed and deeper filtered, it is preferable to
store more than needed, avoiding the omission of important values.

To optimize memory usage, each file was analyzed, refined, and inserted into the database one
at a time.
Julia offers a library, called LibPQ, that provides tools for connecting to PostgreSQL databases.
With access credentials (username and password), users can perform various operations, such
as querying tables to retrieve specific columns or modifying table structures, including adding
columns or updating headers. For this work, queries were especially useful for selecting only
the necessary columns from the tables. This approach enhances memory efficiency, allowing
to work with smaller chunks of data at a time.
After selecting, inserting, and removing duplicates, the final size of the dataset (sum of the three
tables) was approximately 8.5GB.

3.2.2 Filtering

This section describes the additional filtering strategy implemented to select the valuable part of
Data, focusing only on the measurements produced in the current installation in KTH campus.
Although the configuration and metadata tables provided information about the beginning
and end point of the fiber, comparing the reported values with the actual measurement data
revealed significant inaccuracies, rendering the information unreliable. The installation setup
document [22] reported the lengths of each borehole, included the ones monitored. Those
values matched the ones of the Geological Survey of Sweden (SGU) [54], the government
authority responsible for the acquisition and collection of geological data of the national
territory. The only reliable information at this point was the total length of the boreholes.
The data in the database still contained inaccurate temperature values that should be dis-
regarded, as explained in the previous section. Given the lack of precise reference, the
identification of the length filters was carried on through direct analysis of the data itself. A
Julia script was developed to extract specific rows and columns from the database based on
channel and datetime values, resulting in a dataframe whose section could be represented by
Table 1a. The temperature, the datetime and the length columns were reshaped by unstacking
them to form a matrix where each column represented temperature values at a specific length
(in ascending order), and each row corresponded to a unique datetime (ordered chronologically).
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Table 1.a: Example of data section extracted from the database
Table 1.b: Matrix obtained by unstacking Table 1

(a) Database Section

datetime length temperature

datetime1 length1 T11
datetime1 length2 T12
datetime1 length3 T13
datetime2 length1 T21
datetime2 length2 T22
datetime2 length3 T23
datetime3 length1 T31
datetime3 length2 T32
datetime3 length3 T33

(b) Unstacked Matrix

datetime length1 length2 length3

datetime1 T11 T12 T13
datetime2 T21 T22 T23
datetime3 T31 T32 T33

Next, a differential matrix was created by calculating the differences between consecutive tem-
perature values along the columns of the original matrix. Consequently, the differential matrix
had the same number of rows but one less column compared to the original, either the first one
or the last one depending on the differential method adopted. As shown in Figure 12, the first
or last column contains discardable values, so no valuable information was lost by excluding
them in this last matrix.

Table 2: Differential Matrix

datetime length2 length3

datetime1 T12 - T11 T13 - T12
datetime2 T22 - T21 T23 - T22
datetime3 T32 - T32 T33 - T32

Subsequently, it generated a Boolean matrix, populating it with true values where the differen-
tial matrix values were less than or equal to a specific threshold, and the absolute temperature
values fell within a range defined by the user. Otherwise, the matrix entries were marked as
false. Finally, it produced an indexes vector by summing the values along each column of
the Boolean matrix, knowing that true was treated as 1 and false as 0. This vector was then
plotted against the length to identify length segments with high index values, indicating where
all the described criteria were satisfied. The longest segment, where the indexes value was at
least 90% of the maximum, was considered as the one corresponding to the actual fiber position.
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Figure 13: Length Filtering Criteria (Channel 2)

This code could be easily applied changing the filtering criteria as wanted. In the current
case, the maximum temperature is set to 30°𝐶 , the minimum temperature to −5.0°𝐶 , and the
threshold for the difference between two consecutive temperatures is 0.8°𝐶 . For Borehole 10,
this resulted in minimum valid length being 62.957m, while maximum being 407.919m, for an
overall segment of 344.962m. This type of approximation is acceptable in the context of purely
qualitative analysis. For the shorter Borehole 1, the minimum valid length was set at 44.694m,
while maximum at 154.271m, for an overall segment of 109.577m. While the end of the fiber is
clearly identifiable in both cases (see Figure 13), determining the beginning is more challenging,
especially considering that the oscillatory behavior near the surface may not be noise related
but rather due to actual interactions with the external air, or between the boreholes. Knowing
the total length fro be useful for deriving the starting point. In the case of Borehole 10, the total
computed length is smaller than the length indicated in the official reports (350m), although
only by a few meters. Therefore the initial value was taken as the final value minus the length
reported in the documents (407.919 − 350.0)m = 57.919m. Similar approach was adopted
for Borehole 1, whose lenght was longer than expected (100.0m), resulting in initial point at
(154.271 − 100.0)m = 54.271m.

3.2.3 Uncertanty Evaluation

The procedure to estimate uncertainty is complex and not singular, as it relies on various factors,
including the calibration method, the experimental setup, and the machine itself, as detailed in
Chapter 2. This thesis evaluates uncertainty using the dtscalibration Python library, which cal-
culates the variance of temperature at each spatial length measurement. These calculations are
performed either through a linear approximation or using Monte Carlo methods. A description
of the steps executed by this package is provided below. The temperature is derived from the
logarithmic ratio of Stokes and anti-Stokes intensities,represented as 𝐼(𝑥, 𝑡), therefore, temper-
ature uncertainty estimation requires the analysis of the variance in the Stokes and anti-Stokes
measurements.

𝑇 (𝑥, 𝑡) = 𝛾
𝐶(𝑡) + 𝐼(𝑥, 𝑡) + ∫𝑥

0 Δ𝛼(𝑥′) 𝑑𝑥′ (3)
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𝐼(𝑥, 𝑡) = ln(𝑃+(𝑥, 𝑡)
𝑃−(𝑥, 𝑡)) = 𝛾

𝑇 (𝑥, 𝑡) − 𝐶(𝑡) − ∫
𝑥

0
Δ𝛼(𝑥′) 𝑑𝑥′ (4)

Where 𝛾 depends on the sensitivity of scattering to temperature which is related to the fiber
material,Δ𝛼 is the differential attenuation, 𝜂 is an additional correction parameter and accounts
for detector sensitivity and attenuation between the detector and the fiber end connected to
the DTS system. A lumped effect parameter, 𝐶(𝑡), addresses gain differences and scattering
intensity dependencies on wavelength, which is constant along the fiber but must be evaluated
at each time step. These parameters are derived during calibration using reference sections
with known temperatures. In single-ended setups, as Stokes and anti-Stokes intensities are
measured in a single direction from one fiber end, Δ𝛼 is assumed to be constant, allowing
further simplification of the temperature expression.

∫
0

𝑥Δ𝛼(𝑥′) 𝑑𝑥′ ≈ Δ𝛼 ⋅ 𝑥 (5)

𝑇 (𝑥, 𝑡) = 𝛾
𝐶(𝑡) + 𝐼(𝑥, 𝑡) + Δ𝛼 ⋅ 𝑥 (6)

The intensity ratio is expressed in a discrete form for each time n and fiber length m.

𝐼𝑚,𝑛 = 𝛾
𝑇𝑚,𝑛

− Δ𝛼𝑥𝑚 − 𝐶𝑛 (7)

This system is reformulated in matrix form for multiple locations and time steps.

𝑦 = 𝑋𝑎 + 𝜖 (8)

𝑦 =
⎡
⎢⎢
⎣

𝐼1,1
𝐼1,2

⋮
𝐼𝑀,𝑁

⎤
⎥⎥
⎦

𝑋 =
⎡
⎢⎢⎢
⎣

1
𝑇1,1

−𝑥1 −1 0 0 ⋯ 0
1

𝑇1,2
−𝑥1 0 −1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1

𝑇𝑀,𝑁
−𝑥𝑀 0 0 0 ⋯ −1

⎤
⎥⎥⎥
⎦

𝑎 =
⎡
⎢
⎢
⎢
⎣

𝛾
Δ𝛼
𝐶1
𝐶2
⋮

⎤
⎥
⎥
⎥
⎦

(9)

The parameters, collected in vector 𝑎, are determined by minimizing the sum of squared re-
siduals using a Python library integrated into dtscalibration. Weights are assigned based on
measurement noise to solve the system. The accuracy of variance estimation improves with the
number of data samples collected from the DTS system.

𝜒2 = (𝑦 − 𝑋𝑎)𝑇 𝑊(𝑦 − 𝑋𝑎)
𝑎 = (𝑋𝑇 𝑊𝑋)−1 𝑋𝑇 𝑊𝑦

(10)

The variance of stokes and anti-stokes measurements is evaluated using the distribution of their
residuals. The latter are computed by fitting the equation to measured values, focusing particu-
larly on the reference sections where the temperature remains approximately constant spatially,
so that Stokes and anti-Stokes intensities are described as products of terms that depend respect-
ively only on time or space.

𝑃+(𝑥, 𝑡) = 𝐺+(𝑡) ⋅ 𝐻+(𝑥)
𝑃−(𝑥, 𝑡) = 𝐺−(𝑡) ⋅ 𝐻−(𝑥) (11)
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Measurements are collected over time, and the terms are determined through optimization tech-
niques, such as least squares, to minimize the differences between measured and modeled in-
tensities. The modeled intensities are calculated using the fitted parameters, while residuals are
the differences between measured and modeled values.

Δ𝑃(𝑥, 𝑡) = 𝑃measured(𝑥, 𝑡) − 𝑃modeled(𝑥, 𝑡) (12)

𝜎2
𝑃 = (Δ𝑃(𝑥, 𝑡))2 (13)

The noise variance is approximated by dividing the residual sum of squares by the degrees of
freedom

𝐼(𝑥, 𝑡) = ln(𝑃+
𝑃−

) → 𝜎2
𝐼 =

𝜎2
𝑃+

𝑃 2
+

+
𝜎2

𝑃−

𝑃 2−
(14)

A normal distribution is assigned to both noise and calibration parameters, with the mean set as
the measured value and the previously calculated variances defining the distribution’s spread.
The probability density functions are propagated through the model using either a linear ap-
proximation or Monte Carlo sampling, following JCGM guidelines. Monte Carlo sampling
generates numerous temperature realizations by repeatedly sampling distributions and comput-
ing values for each location. These realizations approximate the probability density functions
of the estimated temperature at each location and time. Standard uncertainties are derived from
the standard deviations of the temperature realizations, while 95% confidence intervals are de-
termined from the 2.5% and 97.5% percentiles of these realizations. In this work, the linear
approximation approach was adopted, as it required less time and computational effort, with
further refinement planned for a later stage [51].

Figure 14: Temperature Variance for channel 2

Figure 15: Temperature Variance for channel 1
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The described procedure is applied when the functions from the python package are executed,
providing the plots shown and a vector of the temperature variances values for each fiber
length.

Figure 16: Linear and Monte carlo Approximation

3.2.4 Smoothening and Refinement

The procedure described in paragraph 3.2.2 is repeated to obtain the temperature matrix struc-
tured as Table 1b. After removing the first column containing the datetime values, the matrix
contained all the temperature values from the sensors, measured during the time selected when
extracting data from the database. The values are extremely noisy, and when directly plotted
they would reproduce a strong oscillatory behavior, making it difficult to distinguish the actual
dynamics and the random fluctuations.

A Kalman filter was applied to the matrix to reduce noise and provide a more accurate temper-
ature estimate.
The Kalman filter is an algorithm widely used in control systems, robotics, finance, and signal
processing to estimate the state of a system from noisy observations. It works by combining
model-based predictions with noisy measurements, producing an optimal estimate of the sys-
tem’s state. The model equation describes how the system evolves over time, in this case, a
simplified linear model was used:

𝑥𝑡 = 𝐴 ⋅ 𝑥𝑡−1 + 𝑤𝑡 (15)

Here, 𝑥𝑡 represents the system’s state at time 𝑡, and 𝐴 is the transition parameter reflecting the
increasing (𝐴 > 1) or decreasing (𝐴 < 1) trend of the model. However, since temperature
fluctuations were expected to be rapid and inconsistent, predicting a clear overall trend was
challenging, 𝐴 was set to 1.0, assuming the system follows a constant trend in the data unless
corrected by measurements. The parameter 𝑤𝑡, the process noise, represents the uncertainty in
the system’s model, it allows the filter to deviate from the predictions, preventing overconfid-
ence. The measurement model is described by the equation

𝑧𝑡 = 𝑥𝑡 + 𝑣𝑡 (16)

It links the state 𝑥𝑡 to the observed measurement 𝑧𝑡. Where 𝑣𝑡 accounts for measurement
errors introduced by the sensors, already charachterized throught the uncertainty evaluation,
which provided variance values associated with each length.
Initially the algorithm predicts the state at time t 𝑥pred

𝑡 , before considering any measurement,
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as well as the error covariance 𝑃 pred
𝑡 , which forecasts the uncertainty of the next state based on

the system model.

𝑥pred
𝑡 = 𝐴 ⋅ 𝑥est

𝑡−1 (17)

𝑃 pred
𝑡 = 𝐴 ⋅ 𝑃 est

𝑡−1 ⋅ 𝐴𝑇 + 𝑄 (18)

Secondly the Kalman gain is computed:

𝐾𝑡 = 𝑃 pred
𝑡

𝑃 pred
𝑡 + 𝑅𝑡

(19)

𝐾𝑡 determines the weight given to the measurement compared to the prediction: if 𝑅𝑡 is small
(indicating a reliable measurement), 𝐾𝑡 approaches 1, giving more weight to the measurement,
if 𝑅𝑡 is large (unreliable measurement), 𝐾𝑡 gets close to 0, favoring the prediction.
The state estimate is updated, considering the difference of the predictions from the measure-
ment results:

𝑥est
𝑡 = 𝑥pred

𝑡 + 𝐾𝑡 ⋅ (𝑧𝑡 − 𝑥pred
𝑡 ) (20)

Consequently, the uncertainty is reduced and the covariance error updated as shown below [60],
[61], [62]:

𝑃 est
𝑡 = (1 − 𝐾𝑡) ⋅ 𝑃 pred

𝑡 (21)

The measurement system, although capable of capturing significantly more temperature values
than standard non-distributed sensors, still evaluates temperature at discrete spatial points. To
make the dataset 𝑥𝑖, 𝑦𝑖 more meaningful and easier to visualize, it can be interpolated to obtain
a continuous function of temperature over time and space. Various interpolation methods are
available; in this case, splines have been adopted. Splines are piecewise-defined polynomial
functions joined at their endpoints, called knots. The resulting function is continuous and has
continuous derivatives up to a certain order at the knots. The polynomial order determines the
type of functions used to represent the segments between consecutive data points. For cubic
splines, the segment between 𝑥𝑖 and 𝑥𝑖+1 is expressed as:

𝑆𝑖(𝑥) = 𝑎𝑖(𝑥 − 𝑥𝑖)3 + 𝑏𝑖(𝑥 − 𝑥𝑖)2 + 𝑐𝑖(𝑥 − 𝑥𝑖) + 𝑑𝑖 (22)

The implementation of basis splines (B-splines) ensures computational efficiency and numer-
ical stability, enabling the construction of splines S as a linear combination of these basis func-
tions.

𝑆(𝑥) =
𝑛

∑
𝑖=1

𝑐𝑖𝐵𝑖(𝑥) (23)

where 𝐵𝑖(𝑥) is the i-th basis spline function, and 𝑐𝑖 are coefficients that determine the contri-
bution of each basis function. Each basis function is nonzero only within a specific interval of
the domain, by combining B-splines of different orders, one can construct splines of varying de-
grees (e.g., linear, quadratic, cubic). By default, splines are configured to pass through all given
data points, providing a true interpolation. In this case, the smoothness coefficient 𝑠 is 0, and
the knot locations coincide with the data points. An approximation can be achieved by allow-
ing the splines to deviate from some data points in a trade-off between accuracy (fidelity to the
data) and smoothness, particularly suited for noisy datasets. Julia offers the Dierckx package,
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which facilitates spline approximation or interpolation over a given dataset. It supports multi-
dimensional splines through Spline2D and SplineND. Users can dynamically adjust the level of
accuracy by modifying the number of knots, the smoothness coefficient s, and the polynomial
order. When 𝑠 > 0, the number of knots is automatically reduced, resulting in fewer degrees
of freedom for the spline and greater noise suppression, therefore reducing computational cost.
Moreover, it is possible to concentrate knots in regions of rapid data variation (high curvature),
but the knots selection and setting must be performed manually.

Figure 17: Example of Spline Interpolation and Approximation

The parameter s balances the residual error and the smoothness, determining how closely the
splines fits the data and overall aiming at minimizing the penalized residual sum of squares
𝑃 :

𝑃 = ∑
𝑖

𝑤𝑖(𝑦𝑖 − 𝑆(𝑥𝑖))2 + 𝑠 ∫ (𝑆(𝑘−1)(𝑥))2 𝑑𝑥 (24)

where ∑𝑖 𝑤𝑖(𝑦𝑖 − 𝑆(𝑥𝑖))2 represents the weighted sum of squared residuals fp, where 𝑤𝑖 is

the weight assigned to the i-th squared residual. The term ∫ (𝑆(𝑘−1)(𝑥))2 𝑑𝑥 acts as smooth-
ness penalty, larger value indicates a more oscillatory spline, because it corresponds to greater
changes in the (k−1)-th derivative of 𝑆(𝑥). As 𝑠 increases, the smoothness term dominates,
leading to a larger fp.
The difference between fp and 𝑠 governs the fitting process: |fp−𝑠|

𝑠 < tol, where tol is the con-
vergence tolerance. The optimal value of 𝑠 depends on the dataset structure (its noise level) and
the spline degree 𝑘. Choosing an appropriate 𝑠 requires testing multiple values for each dataset
segment. An excessively high 𝑠may result in low fidelity to the actual temperature data, erasing
critical dynamics of borehole heat transfer. Conversely, a very small 𝑠 may lead to high noise
levels, causing the plotted data to misrepresent real dynamics and become difficult to interpret.
Additionally, when 𝑠 is too small, the spline-fitting algorithm may fail to converge within the
maximum number of iterations set by the program. This happens because the weighted sum of
squared residuals does not meet the convergence criterion, |fp−𝑠|

𝑠 < tol. A small 𝑠 forces the
spline to follow the data too closely, leading to numerical instability in the optimization process,
especially for high-order splines [63], [64], [65].

Starting from the temperature matrix obtained after the application of the Kalman filter, Dierckx
2D splines were performed. The output object is a function that returns the approximated and
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interpolated temperature value for any possible combination of time and length. The error in-
troduced by this approximation method was calculated as the difference between each element
of the Kalman matrix and the corresponding element of the spline object. Both the mean and
maximum absolute errors, along with the fp value, were used to guide the selection of the s
parameter. Essentially, an iterative approach is employed to find the optimal balance between
sufficient smoothness, to eliminate abrupt temperature fluctuations, and minimizing excessive
errors.

3.2.5 Plotting

The splines are the objects being plotted, with the advantage that they can be plotted for any
chosen time or length value, even if they do not align with the original data points. For this
reason, a time vector with more points than the original was created, to obtain a complete and
uniform time span for plotting. A major challenge was that each year had several months with
missing sensor data. To improve the interpretabilit of the plots, functions were implemented to
identify the intervals where the sensors had correctly recorded data and return NaN for periods
with missing data. This way, the resulting graphs avoid the display of spline approximations for
months with missing data, replacing them with empty spaces, preventing confusion. The plots
generated for each year and each month, for both channels, include surface plots, heatmaps,
and contour plots. In the first case, temperature is represented in 3D as a function of space and
time (with the x-axis for time, y-axis for space, and z-axis for temperature). Heatmaps work
similarly, but instead of a 3D representation, temperature values are indicated using a colour
gradient. Contour plots represent temperature using contour lines, where each line connects
points of equal temperature, allowing for an intuitive visualization of temperature gradients
over time and space. Below are some examples.

(a) 2022 BH1 (b) Oct 2022 BH1

Figure 18: Surface Plots of year 2022 and October (Oct) 2022 relative to Borehole 1 (BH1).
The Temperature is in °C, while Depth values are in meters.

31



(a) 2022 BH10 (b) Oct 2022 BH10

Figure 19: Surface Plots of year 2022 and October (Oct) 2022 relative to Boreholes 10
(BH10). The Temperature is in °C, while Depth values are in meters.

(a) 2022 BH1 (b) Oct 2022 BH1

Figure 20: Contour Plots of year 2022 and October (Oct) 2022 relative to Boreholes 1 (BH1).
The temperature (°C) is represented by the color scale in the colorbar.
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(a) 2022 BH10 (b) Oct 2022 BH10

Figure 21: Contour Plots of year 2022 and October (Oct) 2022 relative to Boreholes 10
(BH10). The temperature (°C) is represented by the color scale in the colorbar.

(a) 2022 BH1 (b) Oct 2022 BH1

Figure 22: Heatmaps of year 2022 and October (Oct) 2022 relative to Boreholes 1 (BH1).
The temperature (°C) is represented by the color scale in the colorbar.
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(a) 2022 BH10 (b) Oct 2022 BH10

Figure 23: Heatmaps of year 2022 and October (Oct) 2022 relative to Boreholes 10 (BH10).
The temperature (°C) is represented by the color scale in the colorbar.

These types of graphs are useful for intuitive visualization and qualitative considerations. Gen-
eral trends and initial observations helped identify valuable areas for deeper study and invest-
igation. Further analysis, reported in Chapter 4, were carried on focusing on the identification
of temperature patterns and general trends, along with heat transfer modeling, to examine how
neighboring boreholes interact with one another.

3.3 Implementation and Tools

The programming language used to develop the code and data-handling algorithms was Ju-
lia. Julia is particularly well-suited for this purpose, with over 8,000 registered packages and
applications in machine learning and numerical computing. Thanks to its just-in-time (JIT)
compilation, Julia achieves execution speeds comparable to C++, eliminating the need for a
dual-language approach where Python is used for ease of development and C++ for perform-
ance. The multiple dispatch system in Julia selects the most specific function based on input
types, optimizing execution. It also supports multithreading and distributed computing, making
it ideal for large-scale data processing. In conclusion, Julia is a flexible and dynamic language
with a rich ecosystem and strong community support, making it a powerful tool for scientific
computing and data-intensive applications [66], [67], [68].

An additional implemented tool was the PostgreSQL Database, an open source relational data-
base management system. It supports different data types, functions, operators and indexing
method for fast and easy access. The tables can be created, selected, exported and modified dir-
ectly from the code with specific queries, while PGAdmin is a support application that provides
a user friendly interface to achieve the same results [69], [70], [71].
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3.4 Challenges and Solutions

One of the main challenges encountered was dealing with an outdated Windows system that
lacked up-to-date protocols, making file and folder retrieval both complicated and slow. To ad-
dress this, HFS (HTTP File Server) was installed, allowing dynamic sharing of selected folders.
However, files could only be easily fetched if their full path, down to the exact file, was spe-
cified. Given that 11GB of files needed to be retrieved, manually accessing them one by one
was not feasible. However, HFS still proved useful in scenarios where only the most recently
produced file was needed, such as for real-time investigations or ongoing tests. For bulk trans-
fers, USB sticks were used to copy and paste the folders generated by HaloDTS onto another
device. From there, they were stored in a local directory to establish the necessary connection
to the database. This process was extremely slow due to the system’s limitations and patience
was the only adopted approach.

Adding to the complexity, the file contents were diverse, some contained multiple sections
mixed together, while others varied in format, making organization difficult. Arranging data
and metadata in separate tables, sorting the data by channel, datetime, temperature and depth
proved to be effective, since the time and channel acted as selection criteria while length and
temperature were the main analysis objects.

An additional challenge consisted in determining the criteria to correctly identify the cable seg-
ment that measured borehole temperature, rather than picking up readings from elsewhere. An-
other issue arose when plotting data with missing values. Simply interpolating across gaps was
not reliable, so different approximation and interpolation techniques were explored, identifying
splines as the most flexible and suited one.

Distinguishing between actual temperature fluctuations and noise in the data was another chal-
lenge. Since detailed information about the heat pump’s load and activation periods was lack-
ing, pinpointing exact variations was tricky. Fortunately, for a qualitative analysis, extreme
precision was not necessary. The general temperature trends remained intact with splines, even
without perfect accuracy.
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Chapter 4

Data Analysis and Heat Transfer Modeling

4.1 Qualitative Analysis of Borehole Temperature Data

Due to the lack of important entities such as flow rate and loads values, only qualitative analsis
is feasible. Nevertheless, it is possible to study various aspects related to soil temperature vari-
ations. All the results and plots produced in the following paragraphs, are obtained starting
from the spline objects described in the previous chapter.

4.1.1 Temperature Patterns and Trends

One of the most interesting aspects lies in recognizing seasonal temperature trends. In this
regard, the first observations can be made based on temperature over time graphs, considering,
for a clear visualization, the average temperature over the depth.

36



(a) Average Temperature of BH10

(b) Average Temperature of BH1

Figure 24: Average Boreholes Temperature from the 1st of January 2020 to the 14th of
October 2024.

The graphs display large gaps corresponding to periods without data collection. Unfortunately,
the missing measurements always refer to the same part of the year. However, it is possible
to observe a sinusoidal pattern that repeats approximately annually (the longest uninterrupted
period ranges fromNovember 2021 to October 2022 and shows an almost complete temperature
cycle).
Figure Figure 24b shows periods of unexpected oscillations at the beginning of 2020 and in
2024. These are likely due to the fact that the research heat pump connected to Borehole 1 was
operated for temporary tests (in 2024, it is confirmed that these tests occurred). The annual
trend, as expected, aligns with the annual alternation between summer and winter. In fact, the
boreholes temperature decreases during the heating operation periods of connected heat pumps,
which occurs throughout the Swedish winter, and subsequently, the soil temperature increases
during the summer period. This pattern is more visible in the case of Borehole 10, which is
effectively connected to heat pumps and therefore directly susceptible to variations in external
temperature. Borehole 1, on the other hand, exhibits the same periodicity but less distinctly,
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as its temperature decrease or increase is a reflection of the heat extracted or injected by the
neighboring boreholes, not directly by the heat pumps.
For this reason, it is reasonable to expect a delay in temperature change between Borehole 1
and 10, as well as its compression.

To further investigate the relationship between ground temperature and external air temperature,
air temperature data from Stockholm corresponding to the period of DTS data collection has
been gathered from the Open-Meteo API, which integrates observations from weather stations,
aircraft, buoys, radar, and satellites, along with mathematical models to estimate missing values
[72]. The temperature values retrieved from the website represent the daily average temperature
for each day. Cubic spline interpolation is applied to the three datasets (the outdoor temperat-
ure, and the two Boreholes’ temperatures), with the smoothening parameter set to zero. The
following graph shows the external temperature and the average temperature (averaged along
the entire length of the boreholes) over time.

(a) From January 2020 to October 2024
(b) From November 2021 to October 2022

Figure 25: Average Boreholes Temperature and Air Temperature in Stockholm.

It is evident that when the external temperature drops below a certain value, the heat pumps are
activated, extracting heat from the ground to transfer it to the buildings. Although Borehole
1 is not involved in heating or domestic hot water production, it quickly follows the trend of
Borehole 10, but with a certain delay and to a lesser extent. This indicates that there is mutual
interaction between the various components of the borehole field.

To quantify and better evaluate some properties of the temperature profiles, the data were ap-
proximated using simple sinusoidal functions, reflecting the dominant periodic behavior ob-
served after removing daily and hourly fluctuations. It is reasonable to assume a dominant
period of one year, a full seasonal cycle. The temperature profiles were modeled using the sine
function

𝑇 (𝑡) = 𝐴 + 𝐵 ⋅ 𝑠𝑖𝑛(𝐶 ⋅ 𝑡 + 𝜙) (25)

where 𝑇 is the temperature, 𝑡 is time, 𝐶 is known and equal to one year period
𝐶 = 2𝜋

365⋅24⋅3600𝐻𝑧, while 𝐴, 𝐵 and 𝜙 are obtained using the least squares method by
fitting the sine function to the real data. A deeper, quantitative study regarding periodicity and
phases of the temperature signals is reported in paragraph 4.2. The best-fit sinusoidal functions,
resulting from this early-stage analysis, are shown in the following figures.

38



(a) Best Sin Fit to BH10 data (b) Best Sin Fit to BH1 data

(c) Best Sin Fit to Outdoor data

(d) Best Sin Fits

Figure 26: Best Sinusoidal Fits to Temperature Data.

The amplitude (𝐵) of the various signals provides insights into the damping effect in Borehole
1 compared to Borehole 10. The sinusoidal function representing Borehole 1 has a total amp-
litude of approximately 2.245°𝐶 , while Borehole 10 exhibits a larger amplitude of 4.035°𝐶 .
The external air temperature fluctuates with an amplitude of 9.77°𝐶 . The soil proves to be a
natural damper in the transfer of temperature shifts; although it follows the outdoor temperature
variations, these shifts are always compressed and remain closer to the soil’s mean temperature
value. This effect is even more pronounced when considering the temperature of Borehole 1,
which is further damped due to the heat transferred from adjacent soil zones, making its tem-
perature variations more attenuated.
Regarding the phase shift (𝜙), the Outdoor temperature serves as leading signal, as expected.
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Borehole 10 is delayed by only 8.5 days, while Borehole 1 phase shift relative to the outdoor
temperature is 40.18 days.
The mean values (𝐴) of the three fitted sinusoidal functions are very close to one another, re-
spectively, 8.70°𝐶 for Borehole 1, 7.66°𝐶 for Borehole 10 and 7.78°𝐶 for the outdoor temper-
ature. The small difference could be related to several factors. First of all, the length difference
between the boreholes plays a role, as the shallower borehole is more sensitive to surface temper-
ature fluctuations and the dry section constitutes almost half of its well. Secondly, the research
borehole is the only one featuring a coaxial pipe structure, influencing the heat transfer. Ad-
ditionally, at greater depths, the soil’s thermal inertia is higher, meaning it resists temperature
changes more effectively. This makes the temperature profile in the deeper borehole more stable
and reflective of the external temperature, which explains the alignment with the air temperat-
ure. Moreover, the influence of the other boreholes might play a role that is not quantifiable,
not to mention that this analysis is still an approximation.

The files related to the deviation measurements provided, in addition to the borehole inclination
and their position every 10 meters, an associated temperature value. The measurements were
taken 1–2 days after the drilling of the borehole field, on May 12, 2016. Therefore, we can con-
sider this temperature value as the pre-operation baseline, representing the undisturbed ground
temperature. Regarding the instrumentation, it is important to note that it was not intended,
required, or well-suited for providing accurate temperature measurements, and no specification
on that accuracy is provided. The sensors were in a pressure housing, delaying the outside tem-
perature’s effect. Depending on the surface-to-borehole temperature difference, stabilization
could take 5–10 minutes, by which point, a large borehole section might already have been
surveyed. Despite these uncertainties, the data could still provide interesting insights. The fol-
lowing plots enable the comparison between the recorded temperature values with those from
the two boreholes at the time corresponding to the sine function peak in 2022, as evaluated
previously, as well as at the minimum immediately preceding it.

(a) BH10 (b) BH1

Figure 27: Undisturbed Temperature and estimated minimum and maximum Temperature
profiles.

Since Borehole 1 (BH1) is inactive, meaning it reflects the natural temperature heterogeneity of
the ground, it provides a clearer signal. From Figure 27b, it can be inferred that the temperature
is gradually decreasing, due to the heat extraction of the heat pumps from the borehole field.
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4.1.2 Comparative Overview of Boreholes 1 and 10

The active borehole is influenced by heat pump operations, causing temperature oscillations that
match the operational intervals of the heat pump. These fluctuations can be observed on a daily,
if not hourly, scale. Conversely, the temperature of the inactive borehole remains much more
stable, producing a series of significantly smoother plots (Figure 18, Figure 20, Figure 22).
To better illustrate the thermal interactions between boreholes within the field, animations were
created to relate the temperature derivative over time (𝑑𝑇 /𝑑𝑡) to its absolute temperature (𝑇 ).
In the first approach, the average temperature along the borehole length was considered. Each
animation frame represents a specific point associated with the (dT/dt, T) pair, and a temporary
trace of the point’s trajectory is shown. In the second approach, the entire borehole length was
analyzed, resulting in a curve instead of a single point. Selected frames from the animations are
shown below, with the active borehole (Borehole 10) marked in red and the inactive borehole
(Borehole 1) in blue.

Figure 28: Time evolution of average Temperature.
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Figure 29: Time evolution of Temperature along the length.

The analysis reveals that the blue marker (Borehole 1) follows the red marker (Borehole 10)
with a certain delay but moves more slowly. As a result, its trajectory is not clearly visible,
showing minimal variations in dT/dt, especially when compared to the red marker in Figure 28.
This suggests that the activity of Borehole 10 influences Borehole 1, but only in terms of long-
term temperature trends. Short-term fluctuations, corresponding to brief operational cycles, are
not transmitted.
Similar conclusions emerge from the full-length plot analysis presented in Figure 29.

4.1.3 Subsurface Variability and Water Table Effects

Temperature profiles over depth can provide valuable insights into lithological characterist-
ics.

There is an unexpected temperature peak near the surface of Borehole 1, which is clearly visible
in Figure 29, as well as in the contour plots and heatmaps from the previous chapter (Figure 20,
Figure 22) at approximately 10 meters below the surface. The cause of this anomaly remains
unidentified but is consistently present throughout the entire analysis period. It might be interest-
ing to investigate the lithology at this depth, as the presence of a specific material or geological
feature could explain this temperature anomaly.

A notable feature, especially evident in heatmaps and contour plots, is a distinct behavioral
change around −45m, which can be reasonably attributed to the water table. It is important to
mention that the water table level varies over time due to rainfall, snowmelt, and other atmo-
spheric or geological events [73], [74]. However, for this analysis, we refer to documented data
indicating the water table at −43m [22], [72].
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Figure 30: Contour plots of the upper part of Borehole 10 with water level Line. The
temperature (°C) is represented by the color scale in the colorbar.

Figure 31: Contour plots of Borehole 1 with water level Line. The temperature (°C) is
represented by the color scale in the colorbar.

The presented contour plots cover the period from November 2021 to October 2024, although
they contain several gaps. A black line indicates the presumed water level. The plots provide
greater insight in the case of inactive Borehole 1, where temperature variations decrease near the
water table and never reach extreme values, indicating lower thermal conductivity of the ground.
In contrast, for Borehole 10 (BH10), the temperature profile is much more uniform due to the
action of pumps circulating water through the pipes. This circulation introduces advection as an
additional heat transfer mechanism, resulting in a more homogeneous thermal distribution. As a
consequence, the distinct behavior observed in BH1 is not present here. However, although heat
transfer generally depends on depth, in this case, the sharp transition suggests with reasonable
certainty that the observed thermal behavior is primarily caused by the presence of the water
table. The dry section, which is grouted rather than filled with water, does not exhibit behavior
significantly different from the wet section. Although the transition line between the sections
is visible, the temperature profiles above and below it are relatively simmetrical. The only not-
able exception is the shallow layer just below the surface, which shows significant temperature
fluctuations, with extremes of both heat and cold. This suggests the possibility of imperfect
insulation from the ground surface.
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Additionally, Borehole 1 exhibits an unusual, sharp temperature change above the expected wa-
ter level, the cause of which is challenging to determine. Important considerations include the
construction characteristics of the borehole, as it is an ungrouted coaxial borehole, as well as
the positioning of the fiber optic cable, both of which could affect the recorded temperature
profile.

Aside from the groundwater level, there are other depths where more abrupt changes are ob-
served. Such observations may provide insights into the different geological layers and their
varying characteristics.

The following plots refer to the same time span as Figure 30 and Figure 31. They are produced
by subtracting the average temperature value over the borehole length from the measured tem-
perature at each time step.

Figure 32: Contour plots of Borehole 10 Temperature Deviation from the Average Over
Depth. The colorbar indicates 𝑇 − 𝑇𝑎𝑣𝑒.

Figure 33: Contour plots of Borehole 1 Temperature Deviation from the Average Over Depth.
The colorbar indicates 𝑇 − 𝑇𝑎𝑣𝑒.
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The results show how much each area of the ground deviates from the average, and especially
for how long. It is thus possible to evaluate recovery times, indicating that some zones in the soil
recovermore slowly than others. In the surface layer (0-50 depth) rapid temperature fluctuations
due to external influences can be observed, with notable anomalies in early and mid-2022. The
mid layer (100–250) shows moderate stability with persistent cool anomalies. In the deeper
levels (250–349) prolonged warm anomalies from mid-2022, indicating slow thermal changes
and heat retention.

Regarding thermal recovery, surface layers quickly return to average temperatures but are highly
sensitive to external conditions. While deeper layers exhibit prolonged temperature deviations,
suggesting slower heat dissipation due to higher thermal inertia or material differences. This
may be due to differences in the lithology of the various layers at different depths, such as the
presence of water below 43 m. Other influencing factors could be that in the more superficial
part, insulation from external conditions (some sections are beneath buildings, others under an
external cemented garden) might not be perfect, thus affected by external temperature, as well
as the closer proximity between boreholes in the upper section.

4.2 Discrete Fourier Transform Analysis

4.2.1 Seasonal and Periodic Behavior

The frequency analysis performed using Fourier Transforms confirmed that seasonal cycles
are the primary drivers of the periodic temperature variations observed in both boreholes and
external air. The first peak, which corresponds to the lowest frequency and longest period,
is the same across all three datasets, with a period of approximately 350 days, just under a
year. This alignment reinforces the connection between external temperature variations and the
ones of borehole 10, as well as the connection between the two boreholes’ temperature. For
simplicity and lack of specific data, Borehole 10 is assumed as representative of the other 10
active boreholes in the field, neglecting the length difference and assuming the loads are equally
distributed. Borehole 1, influenced by 11 similar neighboring boreholes, exhibits the same
seasonal pattern as Borehole 10. This suggests that low-frequency oscillations are transmitted
effectively from nearby boreholes.

At higher frequencies, the correlation between Borehole 10 and external temperature remains
strong, with a nearly perfect parallel trend. However, Borehole 1 does not show similarly intense
peaks at high frequencies, essentially, the 350-days period is the shortest among the dominant
ones. When analyzing frequencies corresponding to daily periods, with a tolerance of 3 hours,
a significant difference in amplitude is observed between the two boreholes. Specifically, the
amplitude, determined by averaging the amplitudes of frequencies corresponding to periods of
24 ± 3 hours, for Borehole 10 is 0.010213 °C, whereas for Borehole 1, it is only 0.000787 °C,
representing a two orders of magnitude difference. This stark contrast highlights a stronger
thermal response in BH10, which is likely due to its direct interaction with the heat source, while
BH1 exhibits a more attenuated response. This indicates that the soil acts as a low-pass filter,
allowing long-term (annual) temperature variations to propagate while attenuating short-term
fluctuations. This conclusion aligns well with temperature plots, which show significantly more
frequent oscillations in Borehole 10, whereas Borehole 1 reveals a much smoother temperature
profile.

45



Phase values provide insight into the time lag between different signals, allowing for a com-
parison with the qualitative results discussed in the previous section. The phase relative to the
common dominant frequency of 350 days is equal to 1.83654 rad for Borehole 10, 1.33391 rad
for Borehole 1 and 2.03643 rad for the outdoor temperature, meaning that the boreholes temper-
ature profiles are delayed. The phase difference between the active borehole and the external
temperature is (2.03643−1.83654)⋅349.599

2𝜋 days ≈ 11 days, slightly more than 8.5 days as pre-
viously estimated; while Borehole 1 is shifted of (2.03643−1.33391)⋅349.599

2𝜋 days ≈ 39 days in
respect to outdoor air, closely aligned with the estimated value.

The fact that the dominant period is not exactly a year but few days shorter is unexpected, since
seasons follow an yearly cycle. Although the borehole temperature data’s frequency spectrum
could be distorted by the linear interpolation applied to fill in gaps, the periodicity is also con-
firmed for external temperature data. In this regard, several aspects need to be considered: slow
and gradual variations in temperatures could influence the main periodicity, and especially an-
omalies or climatic events (such as particularly warm winters or shorter summers) may slightly
alter the annual cycle. Calendar variations such as leap years also play a role. Moreover, the
sampling frequency (daily) can introduce aliasing that shifts the dominant component. Most
importantly, with 4 years of data, the spectral resolution might not be perfect due to the limited
time span, leading to an imperfect estimation of the dominant frequency. The analyzed data
confirms the primary influence of the seasonal periodicity, however, a 365-day period remains
the most reasonable one.

4.2.2 Frequency Domain Insights

The Discrete Fourier Transform was applied to the complete dataset for both boreholes, as well
as for external temperature data in Stockholm referring to the same time span. The Fourier
Transform is a mathematical tool, widely used in signal processing, that expresses any com-
plex signal as a sum of sinusoids and decomposes any time-domain signal into its frequency
components [75], [76]. The result is a spectrum that shows the amplitude of each frequency
component, helping to identify dominant periodicities and periodic patterns within the data. Ju-
lia’s FFT (Fast Fourier Transform) package, built on top of FFTW (Fastest Fourier Transform
in the West), was used to apply the Discrete Fourier Transform to the temporal variations in
temperature (again averaged over depth for the boreholes) and to extract the frequency com-
ponents, their amplitudes and phases [77]. In this case, the average over each length value was
computed from the matrix of values filtered with Kalman filter. The spline approximation was
introduced on the resulting vector, however, in correspondence with the intervals of missing
values, the interpolation proved to be very inaccurate, both in absolute terms and in terms of
trend. Therefore, a simple linear interpolation was adopted for the Fourier analysis to prevent
stronger approximations from distorting the frequency spectrum, although this method still car-
ries the risk of altering the frequency spectrum. Moreover, the same analysis was conducted
by limiting it to the interval between November 2021 and October 2022 (the longest uninter-
rupted period), and, as expected, all the lowest frequencies did not appear. However, the main
frequency of 350 days was close to the one obtained in this case, which was around 360 days.
The difference could be due to the fact that the considered interval was still shorter than a full
period and not sufficient to reveal precise frequencies. Meanwhile, the phase shift between the
various signals was almost confirmed. The following plots display the amplitudes of the three
signals’ frequency components.
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(a) Frequency Spectrum of BH10 Temperature
signal

(b) Frequency Spectrum of BH1 Temperature
signal

Figure 34: Frequency Spectrum of Boreholes Temperature signals

(a) Full Frequency Spectrum of Outdoor
Temperature signal

(b) Low Frequency Spectrum of Outdoor
Temperature signal

Figure 35: Frequency Spectrum of Outdoor Temperature signals

Once the initial peak, related to an infinite period, was excluded and only the positive frequen-
cies (as the negative ones are symmetrical) were considered, the amplitudes, frequencies, and
phases of the first four peaks in terms of amplitude were evaluated and are shown in the follow-
ing table.

Source

Peak
Frequency
(Hz)

Peak Phase
(rad)

Peak
Amplitude
(°C)

Peak Period
(sec)

Peak Period
(days)

Air 3.30877e-8 2.04601 4.67674 3.02227e7 349.8
Air 2.64702e-8 -0.738257 1.18075 3.77784e7 437.25
Air 3.97052e-8 1.89249 0.76593 2.51856e7 291.5
Air 1.32351e-8 -0.608862 0.56193 7.55568e7 874.5
BH10 3.31068e-8 1.83654 1.19432 3.02053e7 349.599
BH10 1.32427e-8 -2.13009 0.75692 7.55133e7 873.997
BH10 1.98641e-8 1.03478 0.46874 5.03422e7 582.664
BH10 4.63495e-8 2.3331 0.41415 2.15752e7 249.713
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Source

Peak
Frequency
(Hz)

Peak Phase
(rad)

Peak
Amplitude
(°C)

Peak Period
(sec)

Peak Period
(days)

BH1 3.31068e-8 1.33391 0.71230 3.02053e7 349.599
BH1 1.32427e-8 -2.02322 0.46701 7.55133e7 873.997
BH1 1.98641e-8 0.306362 0.39331 5.03422e7 582.664
BH1 6.62135e-9 2.0009 0.33380 1.51027e8 1747.99

The dominant period, which is the strongest among the three datasets, is common to all three
and is approximately 350 days. The other periodicities, consistently with harmonic patterns
exhibit a degree of interdependence: 874 days is twice 437 days, and 437 days corresponds
to 291 × 3

2 days. Overall, these secondary periodicities are associated with nearby frequen-
cies, suggesting the possible presence of frequency leakage. This phenomenon can cause the
primary period to produce prominent neighboring peaks that are not genuinely distinct periodic
components.

4.3 Borehole Heat Transfer Modeling

4.3.1 Borehole Heat Transfer Model

In order to verify and validate the results obtained, a physiscal model was developed to evaluate
the temperature signal at a certain distance from a heat source. This analysis involves a simple
infinite solid with homogeneous properties, and a heat source modeled as a point source. In
this case, heat transfer is governed by the pure conduction equation, also known as the heat
diffusion equation:

𝜕𝑇
𝜕𝑡 = 𝛼∇2𝑇 (26)

where 𝛼 = 𝑘
𝜌𝑐𝑝

is the thermal diffusivity, dependent on the material properties: thermal con-
ductivity 𝑘, density 𝜌 and specific heat capacity 𝑐𝑝. Documentation provides values for design
ground thermal conductivity 𝑘 = 3.4W/(mK) and design volumetric heat capacity 𝜌𝑐𝑝 =
2.2MJ/(kgK), while the density was set to the typical value 𝜌 = 800.0𝑘𝑔/𝑚3 [22].

For a point source in an infinite medium, the solution to the heat equation is provided by the
Green’s function, which represents how the temperature varies over time in response to the
impulse. For a unit heat pulse at 𝑡 = 0, the temperature change 𝑇 (𝑟, 𝑡) at distance 𝑟 is given
by:

𝑇 (𝑟, 𝑡) = 1
(4𝜋𝛼𝑡)3/2𝜌𝑐𝑝

exp(− 𝑟2

4𝛼𝑡) (27)

The goal is to model the heat injection or extraction as a sinusoidal function. The representa-
tion is chosen to match the daily load profile of a heat pump, with the period set to 24 hours:
𝑞(𝑡) = sin 2𝜋

24⋅3600𝑡, or the seasonal variation, with a second simulation where
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𝑞(𝑡) = sin 2
𝜋365 ⋅ 24 ⋅ 3600𝑡.

The applied heat load is not a single impulse but it varies with time. By the principle of
superposition, applicable since the heat diffusion equation is linear, the temperature response
at any point in the system results from the cumulative effect of all past heat inputs.
Mathematically, this is expressed as the convolution of the heat load with the impulse
response.

In the developed model, 𝑞(𝑡) is approximated by a piecewise constant function, which places
the system in the discrete domain. In this context, the corresponding expression for the impulse
response is the differential of the step function 𝑇𝑠𝑡𝑒𝑝.
The step function represents the temperature response of a unit step load, and is obtained integ-
rating the Green’s function over time.

𝑇𝑠𝑡𝑒𝑝(𝑟, 𝑡) = ∫
𝑡

0

1
(4𝜋𝛼𝜏)3/2𝜌𝑐𝑝

exp(− 𝑟2

4𝛼𝜏 ) 𝑑𝜏 (28)

This integral can be solved by recognizing the complementary error function, defined as:

erfc(𝑡′) = 2√𝜋 ∫
∞

𝑡′
exp(−𝑢2) 𝑑𝑢 (29)

By replacing 𝑢 = 𝑟√
4𝛼𝜏 and 𝑡′ = 𝑟√

4𝛼𝑡 , the function limit 𝑡′ → ∞ becomes 𝑡 = 0 and the
equation is expressed as:

erfc( 𝑟√
4𝛼𝑡

) = 2√𝜋 ∫
𝑡

0

2𝑟𝛼
(4𝛼𝜏)3/2 exp(

𝑟√
4𝛼𝜏

) 𝑑𝜏 (30)

Thus, the solution for the temperature distribution when a unit step heat load is applied can be
derived directly from the complementary error function.

𝑇𝑠𝑡𝑒𝑝(𝑟, 𝑡) = 1
4𝑟𝜋𝑘 erfc( 𝑟√

4𝛼𝑡
) (31)

Finally, the temperature variation over time can be expressed as:

𝑇 [𝑛, 𝑟] = 𝑞[𝑛] ∗ (𝑇𝑠𝑡𝑒𝑝[𝑛 + 1, 𝑟] − 𝑇𝑠𝑡𝑒𝑝[𝑛, 𝑟]) (32)

The difference operator for discrete convolution 𝐷, is defined as 𝐷𝑇 [𝑛] = 𝑇 [𝑛 + 1] − 𝑇 [𝑛],
leading to the final temperature expression:

𝑇 [𝑡, 𝑟] = 𝑞[𝑡] ∗ 𝐷𝑇𝑠𝑡𝑒𝑝[𝑟] (33)

49



4.3.2 Distance-Based Temperature Attenuation

The results from the previously described simulations are presented for distances of
[0.05, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 10.0, 20.0]meters in the following graphs.

(a) Temperature variations at various distances from the heat source

(b) Temperature variations and load over time

(c) Logarithmic scale of the
Amplitudes (A) of the
temperature variations at
different radial distances

Figure 36: Temperature Profiles for 24-hour periodic sinusoidal heat load
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(a) Temperature variations at various distances from the heat source

(b) Temperature variations and load over time

(c) Logarithmic scale of the
Aamplitudes (A) of the
temperature variations at
different radial distances

Figure 37: Temperature Profiles for 1-year periodic sinusoidal heat load

Figure 36 corresponds to the temperature response of a daily sinusoidal load application, while
Figure 37 represents the response of an yearly sinusoidal load. In Figure 36b and Figure 37b,
the applied load is plotted alongside the temperature variation at various distances, represented
by different colors. It is evident that only two temperature signals are distinguishable, the one
at 0.05m and 0.5m, while the others have significantly lower amplitudes, making them difficult
to observe.
In the long-term analysis, more distances become visible, as the damping effect is reduced, but
it remains a dominant factor in heat transfer attenuation.
Figure 36c and Figure 37c display the amplitudes of the temperature signals at each considered
distance, on a logarithmic scale, mantaining the same color scheme as in the temperature and
heat load plots. As expected, the amplitude decreases rapidly with distance. This highlights the
strong attenuation of heat transfer through the soil.

In the real temperature data provided by the DTS, the correlation between active and inactive
boreholes remains quite strong, particularly for input signals with long periods. It is important to
note that the damping effect, along with the phase shift (introducing a delay), is clearly present
and visible. However, it does not reduce the temperature amplitude to near zero: Borehole 10
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and Borehole 1 still show comparable values.
This can likely be attributed to the fact that real soil is neither perfectly homogeneous nor ideal,
as assumed in the model. Additionally, near the surface, the boreholes are relatively close to
each other, and there is more than just one point source of heat, leading to thermal interference.
A distance distribution analysis reveals that the closest borehole to Borehole 1 is Borehole 5,
with a separation of only 1.63m at a depth of 4m. In comparison, the shortest distance to
Borehole 10 occurs at 66m depth, where the distance is 2.32m away.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presents a reproducible method for processing data from Sensornet DTS systems.
The approach enables the transformation of raw text file data into interpolated and smoothed
data matrices using a PostgreSQL database, JuliaLang, and Python.

Distributed temperature sensing systems (DTS) are based on the Raman scattering effect. They
include optical fibers that send light signals at various lengths, and detectors receiving the
scattered ligths from which the temperature is derived.
HaloDTS, the software that runs the temperature distributed sensing systems, based on optical
fibers and raman scattering methos, processes each temperature measurement and stores it in a
text file. A new file is produced with every measurement, resulting in unstructured, noisy and
often not directly meaningful dataset.
For the data to be analyzed effectively, it is useful to organize it, specifically, by datetime and
the depth of the fiber corresponding to each temperature reading. Typically, handling large
amounts of data is necessary, making database storage crucial. In this case, all the files pro-
duced from the beginning of 2020 to October 2024 were uploaded to PostegrSQL database, as
three different tables: one for the metadata section, containing reference information; one for
the actual temperature data; and one for configuration files with calibration parameters.
The recorded temperature values must be filtered to properly capture the portion of the fiber
within the object of interest. This thesis presents a method to identify that meaningful section,
evaluate temperature inaccuracies, and offer a solution for smoothing the results when precise
measurements are not required, but rather a qualitative observation. The application of Kal-
man Filtering techniques provides a method for noise reduction, while spline fitting allows an
additional, controlled smoothing.

Additionally, temperature data collected from 2020 to 2024 relative to two boreholes at KTH
campus in Stockholm, despite time gaps in the dataset, provided valuable insights into temper-
ature patterns, periodicity, and subsurface variability.

The twomonitored boreholes are part of the same borehole field, consisting of 11 closely spaced
boreholes near the surface, which diverge at greater depths. Since one of the two was not con-
nected to any active heating system, unlike all the others, it was possible to study the interaction
between undisturbed ground (represented by this inactive borehole) and the borehole field. This
setup is uncommon, as the ground is rarely equipped with deep distributed sensors.
The datasets from the two monitored boreholes exhibit a sinusoidal seasonal pattern. The act-
ive borehole shows much faster temperature variations, but its seasonal profile remains clearly
recognizable, as for the inactive Borehole. Comparing this profiles to the daily average outdoor
temperature in Stockholm provided a visual representation of their correlation. The heat pumps
activate when temperature reduces, typically in Autumn, causing the borehole temperature to
decrease with a certain delay.
For this reason, these three raw temperature datasets were fitted to sinusoidal functions with a
one-year period to estimate amplitudes and phase shifts.
To better quantify the correlation between the two boreholes, and between the boreholes and
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the outdoor temperature, a Discrete Fourier Transform analysis was performed.
It revealed that the dominant frequency is identical in both boreholes and in the external air,
confirming that outdoor temperature is the primary driving signal, although indirectly, as heat
pump operations mediate its effect.
There is a delay of slightlymore than a week between outdoor temperature variations and subsur-
face temperature fluctuations. However, the soil acts as a thermal buffer, reducing the amplitude
of these fluctuations by approximately 50%. These results align with the sinusoidal functions
mentioned earlier.
The inactive borehole can be considered representative of undisturbed ground. In this case, the
temperature response exhibits a delay of over a month, with a more pronounced damping effect,
yet it still follows the seasonal temperature trend. The soil prevents the daily and hourly temper-
ature fluctuations observed in active boreholes from propagating fully to the inactive borehole,
despite their proximity.
Various plots, such as contour plots and heatmaps, were produced, revealing a sharp local
change in heat transfer dynamics at the water table level. However, this did not significantly
affect the overall heat transfer, only locally, where the soil type changes. Moreover, the soil is
inherently heterogeneous, as evidenced by the non-uniform temperature variations across differ-
ent depths. Some parts recover faster than others, though the specific reasons for this behavior
remain to be identified.
Finally, a numerical model was developed to investigate how ground temperature responds to
a point heat source. The model was simplified by assuming an idealized, homogeneous, and
infinite soil medium. The results indicate that for daily temperature variations, the thermal re-
sponse remains significant only within a 1-meter radius. For annual sinusoidal heat loads, the
temperature effect extends further but remains notable only up to a distance of approximately 2
meters. This closely aligns with the real data, where only long-term trends are transmitted over
to the inactive borehole and dampened.

5.2 Future Research Directions

The thesis describes a data processing framework, offering a method to easily store and manip-
ulate data produced by similar systems. This is reproducible and can be adopted in the future
for similar setup.
Specifically, the historical temperature data can be compared with current measurements when
the borehole is active, serving as a reference for analysis.

Having information on the thermal load and mass flow rate would enable the direct correlation
of temperature variations with the amount of heat excahnged, bypassing the outdoor temper-
ature, which adds a level of abstraction. In general, equipping the research borehole with a
comprehensive sensor set, including a flow meter and a power meter, would provide a more
detailed perspective and enable deeper analyses, including comparative studies of U-tube and
coaxial layouts.

Moreover, extending the data collection period beyond five years would allow for a more robust
evaluation of long-term temperature trends and help determinewhether there is a gradual decline
in subsurface temperature.

The integration of machine learning techniques, based on collected data, would constitute a
powerful instrument to develop predictive models specific for that installation, based on real
data.
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