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Abstract

Causal questions are fundamental to scientific pursuit. The study of causality and its
applications has followed a nonlinear trajectory, shaped by diverse methodological de-
velopments and debates about their interpretations. Here, we unravel the evolution of
these approaches, from Judea Pearl’s formal framework of causal inference to methods
based on the reduction of informational surprise, multivariate probability, and dynam-
ical systems. Although principled causal inference ideally relies on Pearl’s framework,
its application is often unfeasible. Instead, methods grounded in information theory,
combined with prior knowledge of the system, are widely used to assist in the causal
inference process. Recent advances include nonlinear, higher-order information-theoretic
approaches. These methods are increasingly applied in Earth and climate sciences to
address questions such as the causes of extreme events and global warming, or to explore
the mutual influences between the ocean and atmosphere in driving the climate system.
A key unresolved question concerns the nature of this interaction. Does atmospheric
weather drive the ocean, does the ocean steer the atmosphere, or does a coupled mode
of variability govern the system?

In this context, we investigate the reciprocal influences of ocean and atmosphere using
a low-order coupled ocean-atmosphere model that includes realistic thermal and mechan-
ical coupling. By applying Transfer Entropy and the Liang-Kleeman Information Flow,
we analyze the dynamical directions within the coupled system. We uncover the directed
dynamics of information exchange, adding insight on the emergence of low-frequency
variability in the atmosphere. These results offer a new perspective on interannual and
decadal-scale climate prediction.
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Introduction

Causality offers a compelling way to unravel interdependent relationships in complex
systems, especially when it is important to understand the direction of influence among
components or to attribute causes to observed events. This approach is particularly
valuable in climate science, where the inherent complexity and multiscale nature of the
climate system pose significant challenges.

The concept of causality has deep philosophical roots and evolved over time amid
debates about its meaning and practical application. Early attempts to use causal
methods often met with limited success. In the 20th century, however, two main ap-
proaches emerged. Clive Granger introduced a data-driven method based on the idea
that a variable X causes Y if incorporating past values of X improves the prediction of
Y . In parallel, Judea Pearl’s influential work in artificial intelligence and probabilistic
reasoning established a formal framework for causality. Pearl’s approach employs inter-
ventions and causal graphs to resolve many of the ambiguities that had long surrounded
the concept, providing a common mathematical foundation across disciplines. Although
Pearl’s interventional framework is not directly applicable to every inference problem —
such as the causal analysis of non-reproducible time series — it has paved the way for
further developments.

The gap between theory and application spurred the evolution of Granger’s ideas into
multivariate and nonlinear methods and inspired other data-driven approaches based on
different principles. Notably, information-theoretic methods have achieved considerable
success. Transfer Entropy (TE) identifies a causal link as the reduction in uncertainty
about one variable’s future provided by another, while the Liang-Kleeman Information
Flow (LKIF) quantifies causality in terms of the increase in a target variable’s entropy
induced by another. Other approaches, such as Convergent Cross Mapping (CCM) and
Empirical Model Reduction (EMR), also show promise by drawing on dynamical systems
theory to capture the physical nature of the problems more closely.

Although these methods often explain causality in different ways, as they stem from
different theoretical principles, some common ground has been found—for instance,
Granger causality and Transfer Entropy are equivalent for Gaussian variables, and sim-
ilarities have been noted between approaches aligned with Pearl’s framework and those
based on information theory. Still, in practical applications such as reconstructing causal
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Introduction

graphs or quantifying the strength of causal links, different methods frequently yield
varying results.

Causal methods are increasingly applied to climate studies, a field defined by nonlin-
ear, complex, and multiscale interactions. Climate research encompasses a wide range of
approaches—from simple models that capture essential dynamics, as pioneered by Ed-
ward Lorenz, to high-resolution Earth System Models (ESMs), at the top of the hierarchy
of models spectrum. In this work, we add a new perspective by applying data-driven
causal methods to explore the nonlinear interactions within a prototypical climate model.

Causal inference is used in climate science for tasks ranging from attributing climate
change and extreme events to disentangling complex interactions among climate com-
ponents. One enduring challenge is to determine the dominant direction of influence
between the ocean and the atmosphere. This issue is often described as “the dog and
the tail” problem, where the scenarios include the ocean driving the atmosphere - the
dog wagging its tail, the atmosphere steering the ocean - the fast movement of the tail
driving the dog, or a coupled mode in which both mutually interact, the dog biting its
own tail.

Motivated by this challenge, we investigate ocean–atmosphere interactions using
MAOOAM, a low-order coupled spectral model. We analyze causal relationships via
multivariate and interregional approaches based on Transfer Entropy and the Liang-
Kleeman Information Flow. We will see that the multivariate TE and LKIF approaches
prove effective at revealing the transition of the system from a strong to a weak cou-
pling configuration. However, the high dimensionality of MAOOAM and the challenges
inherent in interpreting causal links within its spectral formulation limit this approach.

The interregional causal analysis will highlight a strong ocean-to-atmosphere depen-
dency in the strong coupling scenario, and a predominant atmosphere-to-ocean direction
in the weak coupling situation, qualitatively aligning with the physical expectations. TE
and LKIF produce noticeably distinct results, likely reflecting the different principles
underlying each method.

The structure of this thesis is as follows. In Chapter 1, we review the historical de-
velopment of causality and the formal framework established by Judea Pearl. Chapter
2 details methods for causal inference from time series and discusses the current state of
research on their causal foundations. In Chapter 3, we present the climate system as a
complex, multiscale phenomenon, with a focus on ocean–atmosphere coupled variability,
and describe the MAOOAM spectral model. Chapter 4 presents our application of Trans-
fer Entropy and Liang-Kleeman Information Flow to analyze causal relations between
oceanic and atmospheric Fourier modes in MAOOAM. Finally, Chapter 4.4 summarizes
our findings and outlines directions for future research.
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Chapter 1

An overview on causality

Though it is basic to human thought, causality is a puzzling concept, shrouded in con-
troversy and caution, because scientists and philosophers have had difficulties defining
when one event truly causes another. It is well understood that “the rooster’s crow
does not cause the sun to rise” (Judea Pearl, 2009), but even this obvious statement has
long been difficult to express into a mathematical equation. In this chapter we examine
the reasons behind this historical limitation and we review the historical development
of the discipline of causality - from the early debates on the predominance of statistics
to the rise of different causal approaches in the 20th century. We discuss the rise of
methods rooted in time series observation. In parallel, we present the evolution and the
fundamental ideas of the formal framework for causal inference, which has established a
hierarchical structure for framing causal questions, either providing answers when fea-
sible or delineating the mathematical limitations to doing so. We discuss its merits in
addressing the fundamental research question of performing robust causal inference from
time series. We examine the required assumptions, the context-specific limitations, and
the methods developed in this domain.

1.1 Causality: historical setting of a long-lasting prob-

lem

The need to ask why questions and the capacity to find causal explanations came very
early in human development. In the beginning, causality was not problematic. Causes
were generally attributed to angry deities, a naive but clear and unproblematic notion of
causality. Something changed with the rise of engineering: it introduced the possibility
to intervene on a broken piece to make it work again, instead of blaming the problem on
the divine. At that point in history, deities and humans ceased to be the sole agents of
causal forces - lifeless objects and processes began acquiring causal character. Causality
held a dual role: causes were the targets of credit and blame on one side, and the carriers
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CHAPTER 1 1.1. Causality: historical setting of a long-lasting problem

of physical flow of control on the other.
An important rupture was brought about during the Renaissance, with Galileo’s

revolutionary thought. It consisted of two maxims, expounded in his 1638 book Discorsi
(Galilei, 1638): (i) Description first, explanation second, “how” precedes “why”, and
(ii) Description is carried out in the language of mathematics: equations. Instead of
asking if an object falls because it is pulled from below or pushed from above, Galileo
suggested asking how well you can predict the time it takes for the object to travel a
certain distance. Following this hook, physics saw the proliferation of empirical laws,
extremely useful, but mainly ignoring the more fundamental principles that explained
why they worked so well, e.g., Hooke’s law, Ohm’s law and Joule’s law.

While physics was momentarily satisfied with practical success, philosophy kept
searching for the origin and justification of causality. Hume, about one hundred years
after Galileo’s contributions, took his ideas to an extreme. He argued convincingly that
the why is not merely second to the how, but that the why is totally superfluous as
it is subsumed by the how. Causal connections according to Hume are the product of
observations: causation is a learnable habit of the mind. However, this argument could
trick us into thinking that the Sun comes up because of the rooster’s crow. To account
for such an obviously untrue explanation, a new maxima was developed and is still very
popular nowadays: “correlation does not imply causation”. Not every time we observe
correlation between two phenomena those phenomena are found to be causally linked,
or not in the direction that we had guessed based on observation.

So how do we acquire knowledge of causation, without stumbling on spurious corre-
lations and inferring the wrong direction of causal links? It is clear that the regularity
of succession is not sufficient to identify correctly a causal relationship. What would
be sufficient instead? What patterns of experience convince people that a connection
is causal? One line of thought is that if causal information has an empirical meaning
beyond temporal succession, then we would expect it to show up in the laws of physics.

1.1.1 The mechanistic critique

It was first noted by Ernst Mach, and then strongly argued by Bertrand Russell, that,
in fact, this is not true. In 1913, Bertrand Russell wrote “All philosophers imagine that
causation is one of the fundamental axioms of science, yet oddly enough, in advanced
sciences, the word “cause” never occurs... The law of causality, I believe, is a relic of
bygone age, surviving, like the monarchy, only because it is erroneously supposed to do
no harm.” The main argument to support this is that the laws of physics are invariant
for time reversal. If a process can happen in one direction, it can happen in the opposite
direction too - at least in classical mechanics. These laws are not formulated in terms of
cause and effect, they describe the regularity that we observe among phenomena. This
argument makes sense in Russell’s classical mechanistic view, assuming that determinism
holds.
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CHAPTER 1 1.1. Causality: historical setting of a long-lasting problem

However, Russell’s argument does not hold when we face other disciplines of physics,
for instance thermodynamics and statistical mechanics, where determinism does not
hold anymore as it did in classical mechanics. The breakthrough was ignited by the
introduction of the concept of arrow of time: the fact that even if the microscopical laws
that govern the dynamics of single infinitesimal parts of a system are time reversible,
the average behavior of the system inevitably shows a temporal asymmetry, a precise
direction of time (Prigogine and Rysselberghe, 1963). This is true every time we adopt
a macroscopic view of the system at study. Thus, we find out that Russell’s argument is
sound as long as we restrict our study to classical mechanics, but it is incomplete when
we study macroscopic systems: from brain connections to teleconnection phenomena in
the climate system (Contu, 2024).

This argument establishes that causality exists and that it plays an identifiable role
in macroscopic systems, but it does not solve all the problems that concern causality
and the applied search of causal connections. Another important debate took place in
another field of science: statistics.

1.1.2 The debate in Statistics: correlation versus causation

Statistics introduced the concept of correlation largely thanks to the pioneering work of
Francis Galton, who, around the end of the 19th century, investigated the heritability
of physical traits in families. Galton observed that when a father was significantly taller
than average, his son would also tend to be taller than average—but not as extremely so
as the father. This tendency, which applies to any anthropometric characteristic, became
known as regression toward the mean. Today we understand that his is not a natural law
but rather a statistical phenomenon observed in correlated datasets. We explain why
following Contu, 2024.

We know from statistics that to test for a linear relationship, y = Ax + B, between
two random variables x and y we have to perform a regression test on sample data. This
leads us to the best estimates for the coefficients A and B:

A =

∑
x2
∑
y −

∑
x
∑
xy

∆
B =

N
∑
xy −

∑
x
∑
y

∆
, (1.1)

where ∆ = N
∑
x2−(

∑
x)2. At the same time we can compute the linear correlation

coefficient to test the goodness of the linear hypothesis we made: rxy = cov(x,y)
σxσy

= ryx.

The correlation coefficient can be used to express the estimate of A:

A =
cov(x, y)

σ2
x

= rxy
σx
σy
. (1.2)

If we standardize the random variables, that is, transform them to have unit standard
deviation and zero mean, the correlation coefficient remains unvaried: rXY = rxy. This

9



CHAPTER 1 1.1. Causality: historical setting of a long-lasting problem

makes sense, as the standardization of random variables does not change the physical
meaning of their correlation or independence. Assuming the two standardized variables
are related through a linear model, Y = βX, then we also have β = rXY = rxy. Therefore
it’s immediate to see that the regression of X on Y is the same as the regression of Y
on X

E(Y |X) = E(X|Y ). (1.3)

This means that if Y = βX, it is also true that X = βY . Since the correlation coefficient
lives in the [−1, 1] interval, this means that E(Y |X) = rxyX ≤ X.

Now let’s go back to Galton’s investigations. With these tools, he would correctly
note that the height of the sons regresses towards the mean height of the fathers, but
he would find the same thing in the opposite direction, too: E[X|Y ] = rxyY ≤ Y , the
height of the fathers regressing to the mean height of the sons. This confirms the purely
noncausal nature of this phenomenon, as a son’s height cannot causally determine his
father’s. An example is reported in Figure 1.1

Realizing the essentially statistical nature of the phenomenon, Galton abandoned the
search for a causal explanation and instead emphasized that variables are simply “cor-
related.” Galton concluded “It is easy to see that co-relation must be the consequence of
the variations of the two organs being partly due to common causes.” The first objective
measure of how two variables are related to each other, based only on data, clear of
human judgment. This research inspired one of Galton’s student, Karl Pearson, who
would later become one of the central figures in statistics. He interpreted his Professor’s
discoveries to mean that “there was a category broader than causation, namely correla-
tion, of which causation was only the limit”1 (Pearson, 1892) and that would allow to
introduce mathematical approaches to soft disciplines. Pearson firmly believed causes
and effects to be archaic and smoky concepts, to be substituted by the rigorous concept
of correlation. He denied the need for an independent concept of causal relation beyond
correlation. His tall stand in the field consented him to substantially forbid causation
from statistics before it had a chance to take root2.

Statistics followed along the path carved by Pearson and became a powerful and
popular discipline. However, not everything found an easy answer with statistical expla-
nation. A classical example: very high correlation is observed between data of ice-cream
consumption and shark attacks. An easy explanation to this strange correlation might
be that they share a common cause, in this case the month of the year. During warm
summer months ice-cream consumption is higher than during winter, and since more
people go to the beach, it is also more likely that there will be shark attacks. In this

1In 1911 Pearson published the third edition of his book “The Grammar of Science”, containing a
new chapter titled Contingency and Correlation - The Insufficiency of Causation”.

2Only one causal concept would be allowed in the field of statistics, developed years later by Sir
Ronald Fisher: randomized experiments. This technique still plays a fundamental role in testing causal
relationships (Fisher, 1992).
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CHAPTER 1 1.1. Causality: historical setting of a long-lasting problem

Figure 1.1: The scatter plot shows a data set of heights, with each dot representing the
height of a father (on the x-axis) and his son (on the y-axis). The dashed line coincides
with the major axis of the ellipse, while the solid line (called the regression line) connects
the rightmost and leftmost points on the ellipse. The difference between them accounts
for regression to the mean. For example, the black star shows that 72” fathers have, on
the average, 71” sons. (That is, the average height of all the data points in the vertical
strip is 71”.) The horizontal strip and white star show that the same loss of height occurs
in the noncausal direction (backward in time). Source: J. Pearl and Mackenzie, 2018.
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CHAPTER 1 1.1. Causality: historical setting of a long-lasting problem

Figure 1.2: The correlation between the number of shark attacks and ice-cream sales
per month of the year (left). A causal explanation of the strong correlation between the
two variables considering the variable of the season, which acts here as a confounding
variable (right). Left image credits: Candela Iglesias

example the season is a confounding variable: it causes both ice-cream sale and shark
attack numbers, and if not considered it leads to a wrong guess of the causal relationship
between the two. Statistics had a hard time defining what a confounding variable is, and
could not come up with a satisfactory statistics-based definition (J. Pearl and Mackenzie,
2018). To correctly define what a confounding is, one needs to have a causal scheme in
mind, correlation only is not sufficient. The scientific community at the beginning of the
’900 did not have an appropriate language to express this, and would not have it for a
long time, with an exception.

1.1.3 Wright’s coefficients method

In the 1920s Sewall Wright, an American geneticist, introduced the method of path
analysis to study the transmission of traits in populations of guinea pigs. The starting
point of this method is to put on mathematical grounds the relationship between the
variables at study, relating them through an equation. However, his revolutionary idea
was to associate to the mathematical equations a graphical description, able to express a
directionality between the variables, a feature that mathematical equations alone do not
have. An example is found in Figure 1.3. The graphical representation later became the
central point of Pearl’s research on causality, but it would remained neglected for many
years before coming back in vogue. Wright also made an important point at which we
will often hint at in the following chapters: causal conclusions cannot be drawn without
some causal hypotheses on the system. Having some prior hypothesis about the causal
structure of the system makes the problem of inferring the single causal relationships
among variables easier and more sound.
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CHAPTER 1 1.1. Causality: historical setting of a long-lasting problem

Figure 1.3: Sewall Wright’s first path diagram, illustrating the factors leading to coat
color in guinea pigs. D = developmental factors (after conception, before birth), E =
environmental factors (after birth), G = genetic factors from each individual parent, H
= combined hereditary factors from both parents, O, O′ = offspring. The objective of
analysis was to estimate the strength of the effects of D, E, H (written as d, e, h in the
diagram). Source: Wright, 1920

Wright’s experiments with causal graphs went mostly unnoticed when not explicitly
opposed by Pearson and other statisticians (J. Pearl and Mackenzie, 2018).

Statisticians would remain - and still are - very cautious regarding causality. The
reason for this can be partly attributed to the fact that causation is much harder to
measure than correlation. Correlations can be estimated from observational studies,
while the simple way to estimate causality requires controlled experiments, which in
many situations are not viable. Another important reason for the under-development
of causal inference has to be attributed to the substantially separate proliferation of
approaches in different fields. The lack of a shared, complete language to express certain
concepts makes the task of developing scientific activity exceptionally difficult.

Despite the strong views of the Statistics world on causal inference and the other
difficulties, research on the topic spurred in different domains (J. Pearl and Mackenzie,
2018). However, it developed with little organization and it did not build a corpus of
shared definitions to guide researchers from different fields. With these premises, the

13



CHAPTER 1 1.1. Causality: historical setting of a long-lasting problem

discipline of causality was not able to progress much.
The situation changed in the second half of the 20th century, on one side with the

growing interest in artificial intelligence and Bayesian networks, and on the other side
with Clive Granger’s efforts in the development of a practical method to estimate causal
relationships from observational data. The latter line of research would first become
extremely popular in econometrics, and later on in many other disciplines, from neuro-
science to climate sciences. Granger’s approach to causal inference - Granger causality -
states that a time series X is said to Granger-cause Y if it can be shown that X provides
statistically significant information about future values of Y . It has long been argued
that this predictive notion does not correspond to real causality, and we will discuss
in Chapter 2 the possible merits of this critique. The first approach, stemming from
interest in artificial intelligence, took a completely different path. It set itself to rethink
from scratch the categories of statistics and of causality, and propose a formalization
of causality that would be accessible to researchers notwithstanding their specific back-
ground. This framework, initially developed by computer scientist Judea Pearl, led to a
revolution in causal inference and in science in general; it would later extend its appeal
to a broad variety of scientific fields.

1.1.4 Defining causality through interventions on the system

The rising interest in artificial intelligence that was happening in the last decades of the
20th century made it possible to lay the philosophical groundwork that would allow the
causal breakthrough to happen. The effort to build a new type of “intelligent” machine
from scratch, programming every aspect of it, forces us to wonder about the basic blocks
of intelligence: what makes us humans intelligent, in the first place, and how can we
transfer this kind of ability onto a machine? Causal thinking plays an important role in
human intelligence, it was argued by Judea Pearl that the ability to pose causal questions
- and possibly to answer them - is what makes human thought so special and powerful.

The overriding ideas of the new framework proposed by Judea Pearl were

(i) to treat causation as a summary of behavior under interventions, and

(ii) to use equations and graphs as mathematical language within which causal thoughts
can be represented and manipulated.

These two concepts are put together by a third one: interventions act by cutting
specific parts of the equations, as a “surgery”.

An example

We can see the framework’s prescriptions in practice looking at the simple circuit in
Figure 1.4, featuring two independent gates: a multiplier and an adder.

14



CHAPTER 1 1.1. Causality: historical setting of a long-lasting problem

Figure 1.4: A simple visualization of the necessity of a graphical representation to encode
causal information. Source: Pearl, 1996 Judea Pearl, 1996.

We could try to represent what the circuit encodes using the equations on the left,
in the picture. Are the two representations equivalent? They are not, otherwise the two
circuits would be exactly the same, but they clearly do not obtain the same results. The
top circuit tells us that if we manipulate Y , Z will be affected, and X will not. The
bottom one encodes that manipulating Y will affect X, but not Z. The intervention
process is depicted in Figure 1.4, on the right. This directional sense is not present in
the equations on the left, which can be rearranged to implement also actions that are
forbidden on the physical circuits. Moreover, if we performed some additional algebraic
operations on our equations, we could obtain two new equations, shown at the bottom,
which point to no structure at all, and don’t tell us how the variables affect each other.

The interventional definition of causality

The explained model of intervention leads us to a formal definition of causation: “Y
is a cause of Z if we can change Z by manipulating Y ”. Having a clear idea of the
causal diagram is vital in this process: it tells us which equation is to be deleted when
Y is manipulated. This information is lost when the equations are transformed into
algebraically equivalent form, at the bottom of Figure 1.4.

To sum up, the causal model prescribed by the line of research in computer science,
at the end of the past century, contains symmetric equations, a distinction between in
and out, an assumption that each equation corresponds to an independent mechanism
and thus has to be preserved as a separate mathematical sentence, and that interventions
are interpreted as surgeries over those mechanisms. This structure calls for a specific
language, able to implement in mathematical language the act of performing an interven-
tion - a surgery - and to keep together all the relevant information about the system. An
essential element of the language that would have to be developed is the do-calculus tool,
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CHAPTER 1 1.2. Causal Modeling and Learning

which allows to describe mathematically interventions on the system. An example of the
action of this tool in climate modeling is the prescription of sea-surface temperatures to
precise values in climate models to study their effect on atmospheric dynamics.

The language of causality has been developed and formalized in the concept of Struc-
tural Causal Models (SCMs). Hence, SCMs are tools designed by this line of research
as necessary element for a rigorous study of causality. An overview of SCMs has been
given in Judea Pearl (2009), and other references are summarized in Peters, Janzing,
and Schlkopf (2017). In the following section we present the ground theory of Pearl’s
causality framework and some fundamental notions about SCMs, to understand the
wide applicability of these tools and the power of the causal inference discipline this way
formalized.

We note that even when in possession of Pearl’s framework, testing for cause and
effect remains a difficult task, and discovering causes of effects is even more daunting.
The aim of the formalization of causal inference performed in the last decades is to prove
that causality is not a metaphysical concept, instead, it can be understood in terms of
simple processes, and expressed in mathematical language.

1.2 Causal Modeling and Learning

The contemporary view on causal modeling is that a causal structure entails a probabil-
ity model, but it contains additional information not contained in the latter, as reported
in the scheme in Figure 1.5. There are fundamentally two types of research in causality:
causal reasoning, the process of drawing conclusions from a causal model, and causal
learning, also referred to as structure learning or causal discovery: the problem of in-
ferring causal structures from their empirical implications (observational data and/or
interventions) Peters, Janzing, and Schlkopf, 2017. Together, these two categories form
the discipline of causal inference, a larger term that indicates the general effort of de-
scribing causal relationships between variables.

Large interest is dedicated to understanding which parts of the causal structure can be
in principle inferred from the joint distribution, a problem called structure identifiability.
The solution of this problem is in no way trivial, and it requires the dataset to satisfy
strong assumptions. In the following we expose the basics of SCMs and introduce the
assumptions that datasets need to respect so that we can infer causal structures from
data. We note that other popular approaches in causal inference, e.g. Granger causality,
are not tightly bound to the formal structure of SCMs. Nevertheless, they have evolved
to integrate important concepts rooted in such domain. We will further discuss it at the
end of Chapter 2.
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Figure 1.5: A scheme of probabilistic and causal inference. Courtesy of Peters, Janzing,
and Schlkopf, 2017.

1.2.1 Causal Graphs

The language of causality relies on the representation of causal knowledge through
graphs. A graph is a collection of vertices and edges, where edges can be directed or
undirected. In the latter case they convey no designated direction of causal information.

Definition 1.2.1 (Causal Graph). Consider finitely many random variables X =
(X1, . . . , Xd) with index set V := {1, . . . , d}, joint distribution PX, and density p(x). A
graph G = (V, E) consists of (finitely many) nodes or vertices V and edges E ⊆ V2 with
(v, v) /∈ E for any v ∈ V. We further have the following definitions:

• A node i is called a parent of j if (i, j) ∈ E and (j, i) /∈ E and a child if (j, i) ∈ E
and (i, j) /∈ E. The set of parents of j is denoted by PAG

j , and the set of its children

by CHG
j . A node without parents is called a source node, a node without children

a sink node. Two nodes i and j are adjacent if either (i, j) ∈ E or (j, i) ∈ E. We
call G fully connected if all pairs of nodes are adjacent. We say that there is an
undirected edge between two adjacent nodes i and j if (i, j) ∈ E and (j, i) ∈ E. An
edge between two adjacent nodes is directed if it is not undirected. We then write
i→ j for (i, j) ∈ E. We call G directed if all its edges are directed.

• A path in G is a sequence of (at least two) distinct vertices i1, . . . , im, such that
there is an edge between ik and ik+1 for all k = 1, . . . ,m − 1. If ik−1 → ik and
ik+1 → ik, ik is called a collider relative to this path. If ik → ik+1 for all k, we speak
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of a directed path from i1 to im and call i1 an ancestor of im and im a descendant
of i1.

• A graph G is called a partially directed acyclic graph (PDAG) if there is no directed
cycle, that is, if there is no pair (j, k) with directed paths from j to k and from k
to j. G is called a directed acyclic graph (DAG) if it is a PDAG and all edges are
directed.

Any graph structure can be broken down to three essential three-node structures,
shown below: chains (a), forks (b) and colliders (c).

X Y Z(a)

Y

X Z

(b)

Y

X Z

(c)

Figure 1.6: The essential three-node graph structures: chains (a), forks (b) and colliders
(c).

1.2.2 Structural causal models

SCMs have been used for a long time in social sciences, econometrics and agriculture,
before being formalized by the definition we hereby present, following the formulation
of Peters, Janzing, and Schlkopf, 2017. SCMs are the key tools used to formalize causal
reasoning and causal learning. They describe the relevant features of the system and
their reciprocal interactions.

Definition 1.2.2 (Structural Causal Models). A structural causal model (SCM)
C := (S, PN) consists of a collection S of d (structural) assignments

Xj := fj(PAj, Nj) j = 1, ..., d (1.4)

where PAj ⊆ {X1, . . . , Xd} \ {Xj} are called parents of Xj; and a joint distribution
PN = PN1,...,Nd

over the noise variables, which we require to be jointly independent; that
is, PN is a product distribution.
The graph G of an SCM is obtained by creating one vertex for each Xj and drawing
directed edges from each parent in PAj to Xj, that is, from each variable Xk occurring
on the right-hand side of equation 1.4 to Xj (see Figure 1.7). We henceforth assume this
graph to be acyclic.
We sometimes call the elements of PAj not only parents but also direct causes of Xj,
and we call Xj a direct effect of each of its direct causes.
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Figure 1.7: Example of an SCM (left) with the corresponding graph (right). Courtesy
of Peters, Janzing, and Schlkopf, 2017

With the definition of SCM, we are able to describe the system’s behavior under
intervention, and how the system changes when we pose counterfactual questions. In
mathematical terms, we say that the SCM entails an observational distribution, but also
interventional and counterfactual distributions, which are obtained by making modifica-
tions to the SCM C (Peters, Janzing, and Schlkopf, 2017). In the case of interventions,
the SCM is modified through the action of the do-operator.

The do-operator

Intervening on the system amounts to fixing the value of one variable, e.g. imposing
X = x. This operation is denoted by the expression do(X = x), which prescribes the
deactivation of the original causal mechanism of variable X and the imposition of X = x.
On the level of causal graphs, an intervention do(X = x) removes all edges that point
into X, and the intervention’s effect propagates along proper causal paths starting at X.
Essentially, the do-operator is the tool we use to perform interventions “as a surgery”,
as described in Paragraph 1.1.4.

As doing is fundamentally distinct from observing, it is understood that do(X = x)
is distinct from X = x. In terms of probabilities, P (Y = y|X = x) is the probability
that Y = y conditional on finding X = x, while P (Y = y|do(X = x)) is the probability
that Y = y when we intervene to make X = x. In the distributional terminology,
P (Y = y|do(X = x)) represents the population distribution of Y if everyone in the
population had their X value fixed at x (J. Pearl, M. Glymour, and Jewell, 2016).

1.2.3 Graphical causal models

Every SCM is associated with a graphical causal model, informally, a graph (Lauritzen,
1996). Graphical models consist of a set of nodes representing the cause and effect
variables, and a set of edges between the nodes, representing the functions in fj (see
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Figure 1.8: An acyclic graph (a) and a cyclic graph (b).

Eq. 1.4). The most common type of graphical causal model is the directed acyclic graph
(DAG). The association between SCMs and graphical causal models allows to give a
graphical definition of causation: if, in a graphical model, a variable X descends directly
from another variable Y , then Y is a direct cause of X. If X is a descendant of Y , then
Y is a potential cause of X, as it is higher in the graph hierarchy but not necessarily
it will have causal effect on X (J. Pearl, M. Glymour, and Jewell, 2016). Note that in
applications cyclic graphs where arrows exit and enter the same node have also become
popular, even if they cannot directly be handled in this framework, see Figure 1.8.

Graphical models contain less information than SCMs, but they work well in situa-
tions when we only possess information about the presence or absence of a causal link,
rather than the strength of the connection. For instance, the concept of independence
can be expressed visually using DAGs, and the graphical representation allows us to
capture the probabilistic information that is embedded in a structural equation model in
an easy way. As a result, if we have the information about the structure of an SCM, we
can predict patterns of independencies in the data, without relying on any quantitative
information carried by the equations or by the distributions of the errors (J. Pearl, M.
Glymour, and Jewell, 2016). An alternative to graphical causal models are time series
graphs, introduced more recently in Eichler, 2011.

One important tool to study graphical causal models is d-separation, which allows
to predict which dependencies will be shared by all possible data-sets generated by the
graph at study.

d-separation

d-separation, where the d stands for “directional”, allows us to determine, for any pair
of nodes, whether the nodes are d-connected, meaning there exists a connecting path
between them, or d-separated, no such path exists. If a pair of nodes are d-separated
the variables they represent are independent. A pair of nodes are d-connected if they are
possibly, or most likely, dependent. Two nodes X and Y are d-separated if every path
between them is blocked. If even one path between X and Y is unblocked, X and Y are
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Figure 1.9: The ladder of causation. A classification of causal information in terms of
the questions each class is capable of answering.

d-connected (J. Pearl, M. Glymour, and Jewell, 2016).

1.2.4 Framing causal questions: the Ladder of Causation

Causal information can be organized in a hierarchy, in terms of what type of questions
we can give an answer to using a certain type of causal information. In this section, we
study the different levels of this hierarchy and the types of research questions associated
to them, following the schematization elaborated in Jakob Runge, Gerhardus, et al.,
2023.

Association, Intervention and Counterfactuals

Causal information can be sharply classified in terms of classes, and in terms of what
type of questions each class is capable of giving an answer to. The approach was orig-
inally developed by Judea Pearl, 2009. The classification forms a three-level hierarchy,
shown in Figure 1.9, in the sense that questions at level i (i = 1, 2, 3) can only be an-
swered if information from level j (j ≥ i) is available. We call the first level Association,
because it invokes purely statistical relationships, defined by the raw data. For instance,
observing a customer who buys toothpaste makes it more likely that they buy floss; such
association can be inferred directly from the observed data using conditional expecta-
tion. Questions at this layer are placed at the bottom level on the hierarchy, because
they require no causal information. The second level, Intervention, ranks higher than
Association: it involves not just seeing what is, but changing what we see. A typical
question at this level would be: What happens if we double the price? Such questions
cannot be answered from sales data alone, because they involve a change in customers
behavior, in reaction to the new pricing. Customer choices under the new price structure
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may differ substantially from that prevailing in the past. Finally, the top level contains
the Counterfactuals. The term has long philosophical tradition3, and it has been given
structural semantics in the SCM framework, as we have already mentioned. A typical
question in the counterfactual category is “What if I were to act differently?”, a ques-
tion that calls for retrospective reasoning. Counterfactuals are placed at the top of the
hierarchy because they subsume interventional and associational questions. If we have
a model that can answer counterfactual queries, we can also answer questions about
interventions and observations.

The translation does not work in the opposite direction. The ladder of causation
states that interventional questions cannot be answered from purely observational infor-
mation (i.e. from statistical data alone). No counterfactual question involving retrospec-
tion can be answered from purely interventional information, such as that acquired from
controlled experiments. The hierarchy is therefore directional, with the top level being
the most powerful one (Judea Pearl, 2009).

Syntactic signatures of levels

Each layer in the hierarchy has a syntactic signature that characterizes the sentences
admitted into that layer, and synthetically reported in the first column of Figure 1.9.
The associational layer is characterized by conditional probability sentences. At the
interventional layer we find sentences of the type P (y|do(x), z), which denotes “The
probability of event Y = y given that we intervene and set the value of X to x and
subsequently observe event Z = z”. Such expressions can be estimated experimentally
from randomized trials or analytically using Causal Bayesian Networks Judea Pearl,
2009. The last level features expressions of the type P (yx|x′, y′) which stand for “The
probability of event Y = y had X been x, given that we actually observed X to be x′

and Y to be y′”.

1.2.5 Applications of the Ladder of Causation

The possibility to separate causal questions in this sharp hierarchy is helpful both in
theoretical and practical terms. In the latter case, it allows to know exactly what kind of
tools we need to answer a certain type of question: is observational data enough, or do we
need to intervene on the system, or will we have to resort to counterfactual methods? In
Jakob Runge, Gerhardus, et al., 2023 the ladder of causation is used to build a practical
template, the Questions-Assumptions-Data template, which guides researchers to phrase
and solve their problems in the framework of causal inference. In the following we see
the main categories of causal problems.

3One historical counterfactual definition of causality was given by philosopher David Hume: “We
may define a cause to be an object followed by another, where, if the first object had not been, the second
never had existed” Hume, 2004.
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Causal learning / Causal discovery

Causal discovery, causal structure learning or causal network reconstruction (Spirtes, C.
Glymour, and Scheines, 2001; Peters, Janzing, and Schlkopf, 2017; J. Runge, 2018), aims
to reconstruct qualitatively the causal graph, or at least partial information about it,
between a set of variables from samples of the observational distribution p(·) and/or from
interventional data. In section 1.3.3 we will see some approaches at causal discovery.

Causal effects

The goal of causal effect estimation is to quantify the total causal effect of one variable
or set of variables on another. These questions require that we already have knowledge
about the causal graph determining the presence or absence of causal links between
variables. Causal effects can be defined as the quantity

∆X→Y (X
′,X) = E[Y |do(X = x′)]− E[Y |do(X = x)], (1.5)

that is, as the difference in the expected value of Y when setting X by intervention
to x′ as opposed to x. Other definitions, based on post-interventional distributions,
are possible. In addition, also Granger causality-like methods are used to identify the
magnitude of causal effects.

There is no general agreement on which method gives the most accurate answer.
For instance, it has been discussed in Smirnov, 2022 how different methods evaluate
different magnitudes of effects, but similar conclusions are drawn in every study that
compares different methods applying them to the same system (Krakovská et al., 2018).
We expand this point at the end of Chapter 2.

Counterfactual questions

We have seen that counterfactual questions ask what would have happened to Y if X
had been set to a different value, and correspond to the higher step of Pearl’s ladder
of causation. An example of counterfactual questions in climate science is the causal
attribution of weather and climate-related events, which has been explored in A. Hannart
et al., 2016; Alexis Hannart, Carrassi, et al., 2016 Carrassi et al., 2017; Alexis Hannart
and Naveau, 2018. The approach that is there followed is to evaluates the extent to
which a given external climate forcing, for instance solar irradiation, greenhouse gas
emissions, or ozone concentrations, has changed the probability of occurrence of event
Y . The probabilities of the factual world, where the forcing is present (X = 1), and
of the counterfactual world, where the forcing has been removed (X = 0), are then
compared and stored in the fraction of attributable risk indicator, FAR = 1 − p0

p1
. The

FAR is interpreted as the fraction of the likelihood of an event that is attributable to
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the external forcing. The conventional framework of counterfactuals and the FAR were
initially adapted from best practices in epidemiology (Rothman and Greenland, 1998).

Causal claims follow from the FAR and its uncertainty, associated with model and
sampling errors. They result in statements such as “It is very likely that over half the risk
of European summer temperature anomalies exceeding a threshold of 1.6°C is attributable
to human influence” (Stott, Stone, and Allen, 2005). These works apply Pearl’s theory in
its interventional sense, as simulating the counterfactual system amounts to a (simulated)
intervention on the system.

In many applications, including in climate sciences, we find ourselves in this second
category. In the next section we understand the context and the tools of causal inference
from time-series.

1.3 Learning causal models from time series

To learn a causal model it means to estimate the causal model underlying some observa-
tional and/or interventional data. In this work we dedicate particular attention to the
first, and harder, task: can we infer the causal structure of the model by using purely
observational information? We said that this problem is faced when intervening on the
system is not possible, and simulations are too expensive or not accurate enough, which
is often the case in Earth system and climate sciences. Moreover, the ever growing dif-
fusion of data-driven methods increases the appeal of developing safe data-based causal
inference. In some cases, additional physical information about the relationships be-
tween variables is also available, for example the data being time-indexed, and it should
be used to aid the process of causal learning.

Given the compelling nature of the previous question, many different methods, grounded
in different philosophical approaches, have been developed to answer the question of
causal inference from observational data. We have seen that Clive Granger had started
wondering about a solution to this problem already in the 60s. Ever since then, his
method has been improved and extended, and the interest in data-driven causal infer-
ence has become of extremely wide interest. Pearl’s school of thought, instead, strongly
links causality to intervention on the system. Therefore in this framework, strictly speak-
ing and with the ladder of causation in mind, all we can measure from observational data
are the statistical dependencies among the variables and their time lags, more precisely
called conditional independence relations.

Definition 1.3.1 (Conditional independence). Consider three events X, Y and Z.
X and Y are said to be conditionally independent given Z if and only if P (Z) > 0 and

P (X|Y, Z) = P (X|Z) (1.6)

We denote the property as X ⊥⊥ Y |Z and graphically as
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X Z Y

The knowledge about conditional (in)dependencies gives us precious information
about the system at study, and sometimes causal information, too. This possibility has
been practically implemented with the development of conditional independencies-based
causal algorithms, and the literature has grown to be quite vast. It has been proven
that also Granger-like approaches can be re-conducted to this framework (Jakob Runge,
Gerhardus, et al., 2023). The correct application of methods that exploit conditional
independencies in the data requires that the system satisfies a set of assumptions, so
that (part of) the causal structure can be recovered from the data. These assumptions
have a very general meaning, that goes beyond the algorithms we have cited in this para-
graph. They are also valid - even if less faithfully applied - for Granger-derived methods
of causality.

In the next paragraph we see how the inference of causal relationships from condi-
tional dependencies can be formalized.

1.3.1 From correlation to causation: Reichenbach’s principle

Questions that belong to the first level of the ladder of causation in Figure 1.9, are
questions of correlation, and the famous topos recites that correlation is not causation:
statistical properties alone do not determine causal structures. However, it can be argued
that while “one may postulate that while we cannot infer a concrete causal structure, we
may at least infer the existence of causal links from statistical dependencies.” (Peters,
Janzing, and Schlkopf, 2017). This concept was first formulated by the science philoso-
pher Hans Reichenbach.

Principle 1.3.1 (Reichenbach’s common cause principle). If two random variables
X and Y are statistically dependent, then there exists a third variable Z that causally
influences both. (As a special case, Z may coincide with either X or Y .) Furthermore,
this variable Z screens X and Y from each other in the sense that given Z, they become
independent, X ⊥⊥ Y |Z.

In practice, the principles hints that if we find a correlation between two variables,
they will also be causally related, in one of the ways shown in Figure 1.10.

This principle does not end the debate about correlation not implying causation:
the random variables might be conditioned on others, or they might only appear to be
dependent, for example if they both follow an exponential law in time, but do not have
shared physical meaning. This case goes under that of spurious correlations. Nonetheless,
the principle gives us a kind of operative definition, while warning us that we will need
more assumptions to be able to state something about the causal structure between the
variables.
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Figure 1.10: Reichenbach’s common cause principle establishes a link between statistical
properties and causal structures. A statistical dependence between two observables X
and Y indicates that they are caused by a variable Z, a confounder. The figure simplifies
if Z coincides either with X or with Y Peters, Janzing, and Schlkopf, 2017.

A variety of different assumptions have been shown to be sufficient to estimate the
true causal graph from time series. Such assumptions are not necessarily easily re-
spected by datasets in real situations, which further motivates research into whether
alternative assumptions, more naturally encountered in practice, could yield the same
results (Spirtes, C. Glymour, and Scheines, 2001; Peters, Janzing, and Schlkopf, 2017).
We will trace the assumptions for causal discovery from observational time series in the
next section.

1.3.2 Required assumptions

Causal inference from data is an emerging topic in many fields of science. In the case in
which the dataset is represented by time series, we can rely on the fact that the causes
precede the effects, but we have to deal with some difficulties linked to the nature of the
acquisition of the data: for instance the coarse graining of the time series and thus the
possible presence of instantaneous effects or of missing information. In the following,
we present the main assumptions under which the time series graph represents causal
relations, as traced in J. Runge, 2018.

Causal Sufficiency

When trying to infer causal relationships from data, we have to make sure that all the
relevant causal variables have been taken into consideration. It was first suggested by
Clive Granger that methods should consider “the time seriesU−

t representing all available
information [in the universe]” (Granger, 1969), however, we often need much less than
the whole universe

Definition 1.3.2 (Causal sufficiency). A set W ∈ V × Z of variables is causally
sufficient for a process X if and only if in the process every common cause of any two
or more variables in W is in W or has the same value for all units of the population.

In this way no potentially relevant causes for the process X are left out. Indeed, if
the set of causal variables satisfies causal sufficiency, it means there are no unobserved
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Figure 1.11: The problem of unobserved variables. Here, U is a latent confounder and
affects the correct recovery of causal links between (X,Y, Z), leading to spurious links.
All causal links are determined at time lag τ . Courtesy of J. Runge (2018).

variables, which could substantially change the inferred causal graph if not considered
inside the set of causally relevant variables.

In observational time series analysis it is not easy to satisfy causal sufficiency: the
assumption could be violated if one or more variables are forgotten, but also if all vari-
ables are observed but are sampled at too coarse time intervals relative to the causal
links. Research on algorithms that account for sub-sampled is a currently active field
(J. Runge, 2018).

Causal Markov Condition

The second property relates statements about graph separation to conditional indepen-
dencies.

Definition 1.3.3 (Markov property). Given a DAG G and a joint distribution PX,
this distribution is said to satisfy the global Markov property with respect to the DAG
G if

A ⊥⊥ GB|C =⇒ A ⊥⊥ B|C (1.7)

for all disjoint vertex sets A,B,C (the symbol ⊥⊥ G denotes d-separation).

Intuitively, the Causal Markov Condition implies that once we know the values of Yt’s
parents, all other variables in the past (t− τ for τ > 0) become irrelevant for predicting
Yt. If Causal Sufficiency is not fulfilled, also the Markov condition will generally not hold.
Examples of graphs that violate the Markov condition are given in J. Runge (2018).
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A distribution PX1,X2,X3,X4 is Markovian with respect to the graph G shown in Figure
1.7 if according to Definition 1.3.3,

X2 ⊥⊥ X3|X1 and X1 ⊥⊥ X4|X2, X3 (1.8)

This comes for free in the SCM structure: the distributions entailed from an SCM is
Markovian with respect to the graph of the SCM. But what if we want to solve the inverse
problem of inferring the causal graph from the entailed conditional independencies?

Faithfulness

The Causal Markov Condition guarantees that separation in the graph implies inde-
pendence in the process. But something can be concluded from the reverse direction
too, from an estimated conditional independence relation. Faithfulness guarantees that
the graph entails all conditional independence relations that are implied by the Markov
condition.

Definition 1.3.4 (Faithfulness). Consider a distribution PX and a DAG G. PX if
faithful to the DAG G if

A ⊥⊥ B|C =⇒ A ⊥⊥ GB|C (1.9)

for all disjoint vertex sets A,B,C.

The Markov condition and Faithfulness can be used to justify Reichenbach’s common
cause principle. Assuming there exists an SCM over the collection X of random variables
that contains X and Y with graph G, then Reichenbach’s common cause principle follows
from the Markov property. A proof can be found in Peters, Janzing, and Schlkopf
(2017). It has also been shown in Peters, Janzing, and Schlkopf, 2017 that some causal
conclusions can be made from conditional dependencies without using Faithfulness, in
the case of time series data.

An example of a distribution that is Markovian but violates Faithfulness is obtained
by making two paths cancel each other “by accident”, when the computation of a condi-
tional independence vanishes for a numerical coincidence. This creates an independence
that is not implied by the graph structure, and it means that the distribution is not
Faithful.

Intuitively, Faithfulness together with the Causal Markov Condition allow us to con-
clude that, in the limit of infinite sample size, a measured independence, given any set
of conditions, implies that no direct causal mechanisms exists. On the contrary, a mea-
sured statistical dependency is actually due to some causal mechanism, although not
necessarily direct.

This is an important point and a problem in causal network reconstruction. The
Markov condition relates statements about graph separation to conditional independen-
cies. This means that different graphs might encode the exact same set of conditional
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Figure 1.12: The left and center DAGs are Markov equivalent: they entail the same set of
conditional independencies. The graph on the right represents their Markov equivalence
class: all the DAGs sharing the set of conditional independencies. It corresponds to the
structure we would infer from the conditional independencies in a dataset. Courtesy of
Peters, Janzing, and Schlkopf (2017).

independencies (i.e. different graphs can be Markov equivalent). On the other hand,
Faithfulness tells us we can retrieve undirected graphical connections from conditional
independencies. It means that starting from observed conditional independencies, we
rarely end up inferring only one possible causal graph. This might pose a problem if the
direction of the causal links is relevant in the problem at study, which is often the case.
We show this case in Figure 1.12.

Other assumptions

Causal inference from time series requires some additional assumptions. Consider Granger
causality or the definitions of time series graphs: they rely on lagged definitions of causal-
ity.

To make the definitions work, we need to assume that there are no instantaneous
causal effects, i.e. that we can observe a time lag between the cause and the effect.
If we allow instantaneous effects in the system we cannot leverage the advantage of the
direction of time to understand which variable is a cause and which an effect. This
problem becomes particularly relevant in the case of sub-sampling of the time series.

The propriety of stationarity is also often required. A common example of non-
stationarity is found in climate time series, which are subject to many non-stationary
forcings. A classical example is the increasing trend of greenhouse gas emissions in the
atmosphere in the last two centuries. If we don’t consider the prior knowledge that
different variables might be driven by such common signal, we might end up stating that
those variables are causally related, when in reality they just share a common pattern
due to an external forcing J. Runge, 2018. It could be argued that non-stationarity is a
problem of violation of causal sufficiency: we violate causal sufficiency in the greenhouse
gas examples because we do not possess point-wise information on the time-changing
forcings acting on a system. In principle we would solve the problem if we could include
that information in the causal inference process.

Assumptions have to be made also regarding the type of dependency structure
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underlying the system. Knowing if the relationships between variables in a system are
linear or nonlinear, bivariate or multivariate, permits to choose methods that are more
accurate to analyze them. While classical statistical methods are often based on the
assumptions of linearity, modern statistics, the physics community and machine learning
have developed non-parametric or model-free methods that allow to better capture the
nonlinearity of the systems at study, at the cost of weaker theoretical results.

One last but relevant issue is that of measurement error, which contaminates the
variables between which we seek to reconstruct dependencies and makes the causal graph
reconstruction difficult. More details and practical examples about these assumptions
can be found in J. Runge, 2018.

Assumptions on the absence of a causal link

It is very easy to violate causal sufficiency by not measuring or considering a causally
relevant variable; indeed, real situations rarely meet all the requirements above. A con-
clusion on the existence of a causal link, thus, rests on a number of strong assumptions.
Something more straightforward can be said about the absence of a causal link, instead.

Definition 1.3.5. Let X̃ be measurements of a stochastic process X. Assuming Faith-
fulness (Definition 1.3.4) and that all variables in X̃ are measured without error we have
that for X̃, Ỹ , Z̃ ∈ X̃ with X̃, Ỹ /∈ Z̃ if

X̃t−τ ⊥ Ỹt | Z̃ for any subset Z̃ ∈ X̃−
t ⇒ Xt−τ ̸→ Yt, (1.10)

that is, if independence is measured given any subset of conditions, then there is no direct
causal link between Xt−τ and Yt in G.

This assert rests on much weaker assumptions than the existence of a causal link, it
does not require Causal Sufficiency or the Causal Markov Condition J. Runge, 2018.

1.3.3 Learning causal models with SCMs: algorithms

Currently, time-series causal inference counts a large variety of different approaches,
which have been reviewed in Jakob Runge, Gerhardus, et al., 2023. In the next chapter we
will deepen Granger causality, information-theoretic and other data-driven approaches.
However, some methods have been developed based on the framework we have so far
described. These methods have strong theoretical grounds, but they are not free of
limitations. Above all, the assumptions we have reviewed above are not easily met in
datasets.

One category is that of constraint-based approaches, which assume that all considered
data is generated by an SCM. With this hypothesis, the Markov property holds and the
connectivity pattern of the causal graph imprints corresponding marginal and conditional
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Figure 1.13: Causal model reconstruction. Consider a time series dataset (panel A) from
a complex system of which we try to reconstruct the underlying causal dependencies
(panel B), accounting for linear and nonlinear dependencies and including their time
lags (link labels). Causal discovery aims to unveil spurious associations (gray arrows)
which necessarily emerge due to common drivers (e.g., X1 ← X2 → X4) or transitive
indirect paths (e.g., X3 → X2 → X1). (C) The time series graph defined in Definition
1 resolves also the time-dependence structure up to some maximum time lag τmax. A
link Xi

t−τ → Xj
t (black edge) exists if Xi

t−τ and Y j
t are not conditionally independent

on the past of the whole process (gray boxes). Courtesy of J. Runge (2018).

dependencies and independencies into the observational distribution. The basic idea of
these approaches is to perform a sequence of statistical tests of independence for all pairs
of variables (X, Y ) in the system and appropriately chosen sets of conditioning variables
Z. Based on the results of these tests, the structure of the causal graph is constrained,
as shown in Figure 1.13 where the causal graph is inferred from time series.

Notable examples are the Peter-Clark (PC) algorithm (Spirtes, C. Glymour, and
Scheines, 2001), the Fast Causal Inference (FCI) algorithm, which drops the assumption
of causal sufficiency (Spirtes, C. Glymour, and Scheines, 2001), and extensions of these
two techniques specifically designed for time series (Jakob Runge, Gerhardus, et al.,
2023). Constraint-based methods have found large application in numerous Earth sci-
ences problems, for example in Chu, Danks, and C. Glymour, 2005, which also connects
the PC algorithm to Granger causality. Importantly, it can be argued that Granger
causality and information-theoretic extensions also essentially utilize independence rela-
tions (Peters, Janzing, and Schlkopf, 2017; J. Runge, 2018), we will deepen this point in
the next chapter.

Key concepts

• The concept of causality has been widely discussed and has evolved from debates
in philosophy and statistics to the modern approaches used today. One early
contribution was the development of the first graphical method in the early 1900s,
by Sewall Wright.
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• The field gained significant attention in the mid-20th century with the emergence
of the interventional definition of causality, alongside the development of the first
data-driven method, known as Granger causality.

• The formal framework for causality, based on the interventional definition, was
established toward the end of the 20th century. It uses causal graphs as the foun-
dation of Structural Causal Models (SCMs), which describe the causally relevant
features of a system and their interactions.

• Causal questions can be organized into a hierarchy based on the type of causal in-
formation available. The main categories include learning causal models, estimating
causal effects, and addressing counterfactual questions.

• A major challenge in causal inference is reconstructing a causal graph from time
series or observational data, a problem frequently encountered in Earth system
sciences.

• Reichenbach’s principle allows for the inference of partial causal information from
conditional independencies among variables, provided that the key assumptions of
causal sufficiency, the causal Markov condition, and faithfulness are met.
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Chapter 2

Causal inference from time series:
methods in a nutshell

2.1 Granger Causality

The idea of Granger causality was introduced by the econometrist Clive Granger in the
1960s. Granger’s initial interest in causality was ignited by a question regarding a pair
of stochastic processes, which seemed to be inter-related. Was it possible to extract one-
way dependence from the output time series? Granger gave a practical answer, based
also on Norbert Wiener’s work Wiener, 1956, which became extreme successful, first in
econometrics, and later in many other disciplines, including Earth system studies. The
underlying idea of measuring whether X Granger causes Y is that there is some unique
information in X relevant for Y that is not contained in Y ’s past, as well as the whole
system’s past Granger, 1969.

Conditioning on the whole system, if we do not know any better, coincides with
conditioning on the whole universe. This assumption can be substituted by the more
reasonable request of accounting for the minimal sufficient set of variables, recalling
the definition of Causal Sufficiency given in the previous Chapter. However, even this
weakened assumption can be very hard to satisfy in practice. In fact, Granger causality
and all the other methods that are based on observational data strongly suffer from the
violation of the Causal Sufficiency assumption.

The most common framework to operationally compute Granger causality are vector
auto-regressive models (VAR),

Xt =
τmax∑
τ=1

A(τ)Xt−τ + ηt, (2.1)

where Xt = (X1
t , ..., X

N
t ) is an N -dimensional multivariate time series, A(τ) is the

N × N coefficient matrix at lag τ , τmax some maximum time lag, and η denotes an
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independent noise term.
For instance, considering a 2-dimensional system and discrete-time lags, we have(

X1
t

X2
t

)
=

τmax∑
τ=1

(
A11(τ) A12(τ)
A21(τ) A22(τ)

)(
X1

t−τ

X2
t−τ

)
+ ηt (2.2)

If we find A21 ̸= 0 for any time lag τ , A21 is a causal link from X1 to X2.
In general, a variable X i

t in the set Granger causes another variable Xj
t if any of

the coefficients Aji(τ) at lag τ is non-zero. A non-zero component Aji(τ) can then be
denoted as a causal link X i

t−τ → Xj
t at lag τ .

Granger’s method views causality as a form of increased predictability. The definition
relies on two concepts: (i) the cause should occur before the effect, and (ii) the cause should
contain information about the caused that is not available otherwise. A relationship that
fulfills both requirements is thus defined as causal Sun, Taylor, and Bollt, 2015. This view
of causality has seen strong oppositions. Judea Pearl argued that the approach should
be classified as statistical rather than causal, i.e. it belongs on the first level of the ladder
of causation (Judea Pearl, 2009). On more pragmatic grounds, Granger argued “Applied
economists found the definition [of Granger causality] understandable and useable and
applications of it started to appear” (A. Seth, 2007). Indeed, Granger causality has been
applied to a variety of different contexts, and it often gives better insights with respect
to correlation. This highlights an important point: Granger causality may not adhere
to the interventional definition of causality, and it requires certain assumptions about
the set of variables to function properly. However, when these assumptions are met,
it provides information that simple correlation cannot provide, as it yields a directed
measure of influence rather than the symmetric association captured by a correlation
coefficient.

The original mathematical formulation of Granger causality was based on linear re-
gression modeling, involving only two variables. Many extensions of Granger-causality
have been later developed, extending the applicability to more than two variables, to
applications with partial or conditional characteristics (Smirnov, 2022), and making it
possible to study non-linear relationships (Marinazzo, Pellicoro, and Stramaglia, 2008).
In Bueso, Piles, and Camps-Valls, 2020 the kernel nonlinear generalization of Granger
causality is applied to the prototypical climate phenomenon of El Niño Southern Oscil-
lation, disclosing its impact on soil moisture globally.

Nonlinear dependencies have also been modeled using information-theoretic analogs
of Granger causality, in particular transfer entropy. We dedicate the next sections to
information-theoretic based causal inference.
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2.2 (Generalities on) Information theoretic approaches

to causal inference

Information theory is largely used to study complex systems, due also to the increasingly-
popular idea that commonalities between complex systems may be found in the way they
handle information (J. Lizier et al., 2011). The large interest in traditional information-
theoretic measures, such as entropy and mutual information, and in complex systems has
led to the development of more advanced measures suitable to study such complexity,
the characterization of order-chaos phase transitions and measures of network structure.

These measures are used to understand how the global behavior of complex systems
emerges from the collective processing of information between the individual elements
of a system. Therefore, one has to look at mainly three things when studying complex
systems: how information is transferred in the interaction between elements, how it is
stored by elements, and how the information-sources are non-trivially combined (Joseph
T. Lizier, 2014).

A number of measures have been introduced to quantify these aspects. Information-
based causal inference measures represents a systematic way of overcoming the model-
dependent limitation of the linear Granger causality test (Sun, Taylor, and Bollt, 2015).
An advantage of information theoretic measures, as compared to standard Granger
causality, is that they are intrinsically sensitive to nonlinear signal properties and they
do not require a model to be specified for the data. Therefore, they are a natural
domain to measure information transfer. The most diffused information-theoretic mea-
sures is Transfer Entropy, developed by Schreiber (2000), a finite version of the directed
information derived by James Massey a few years before (Massey, 1990).

2.2.1 Transfer Entropy

Schreiber opened this new line of research in causal inference by introducing an informa-
tion theoretic measure that quantifies the statistical coherence between systems evolving
in time, introducing the possibility to retrieve causal information in a system using in-
formation theory tools. This method has been widely applied in several contexts, e.g. in
computational neuroscience, bio-informatics (Sun, Taylor, and Bollt, 2015), and social
sciences (Steeg and Galstyan, 2011). Recently it has seen a considerable diffusion in the
study of climate (Silini et al., 2022; Stramaglia et al., 2024; Delgado-Bonal et al., 2020;
Tongal and Sivakumar, 2021; Dhifaoui et al., 2023).

In stochastic or deterministically chaotic systems one can use entropy to quantify the
information produced in the time evolution of a system. When the system is made of more
than one component, information is diversified. On one side, the components individually
produce or lose information, and they exchange information among themselves on the
other. Measuring the relative rates of these two information types gives us knowledge
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on the structure of the system. From a causal perspective, we are interested in knowing
the rate of information exchange between the components, which is usually identified as
the causal influence of a component on another component, even if this point is object
of controversy as we will discuss in Section 2.5. To address the search of causal links
from the transfer of information, we introduce some information-theoretic quantities
and consider how their characteristics might make them suitable to estimate the rate of
information exchange between variables.

2.2.2 Elements of Information theory

The fundamental quantity in information theory is Shannon entropy, which measures
the average number of bits needed to optimally encode outcomes of a discrete variable
X following a probability distribution p(x):

H(X) =
∑
x

p(x) loga p(x), (2.3)

where the sum extends over all possible states x of the process. The base of the
logarithm determines the units in which information is measured. For example, base
a = 2 leads to information measured in bits. The formulation we use in this section
is valid for discrete variables and for coarse grained states of continuous systems. The
limit for the resolution r going to zero is unproblematic (finite and independent of the
partition) for Transfer Entropy, but has to be handled carefully in general.

In order to construct an optimal encoding that uses just as many bits as given by the
entropy, it is necessary to know the probability distribution p(x). What if we pick another
probability distribution q(x) instead? The excess number of bits that will be encoded if
a different distribution q(x) is used is given by the Kullback entropy or Kullback-Leibler
divergence, which measures how distant the guessed distribution q(x) is different from
from the true one p(x):

K(p(x) || q(x)) =
∑
x

p(x) log
p(x)

q(x)
. (2.4)

The Kullback entropy can be computed also for conditional probabilities p(x|y). In this
case we can compute the Kullback entropy for a single state y with a marginalization:

Ky(p(x|y) || q(x|y)) =
∑
x

p(x|y) log p(x|y)
q(x|y)

, (2.5)

We can also compute the complete Kullback entropy, by also summing over y with respect
to p(y).
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Mutual information as a symmetric measure of common information

The mutual information of two processes X and Y with joint probability pXY (x, y) can
be seen as the excess amount of code produced by making the wrong assumption that the
two processes are independent, i.e. using qXY (x, y) = pX(x)pY (y) instead of the generic
pXY (x, y).

The mutual information is then identified by the corresponding Kullback entropy

K(p(x, y)|p(x)p(y)) = I(X;Y ) =
∑

p(x, y) log
p(x, y)

p(x)p(y)
. (2.6)

Here and in the following we omit the subscripts of the probabilities and the summa-
tion on states x and y. We infer from Eq. 2.6 that Mutual Information is a natural way
to quantify the deviation from independence of two processes. It measures the average
reduction of uncertainty about x that results from knowing the value of y, or vice versa.
I(X;Y ) is symmetric under exchange of the two indices X and Y ; it does not contain
any directional sense. Though it has been used to measure directed information transfer
from one variable to another, this is not to be valid, as MI is a static and symmetric
measure of shared information (J. Lizier et al., 2011).

Mutual information can be given a directional sense in a somewhat ad hoc way
by introducing a time lag in either one of the variables. However, it is more natural
to introduce transition probabilities, that naturally introduce time lags in the system
(Schreiber, 2000), something which is instead naturally implemented in transfer entropy.

Another useful quantity is the conditional mutual information (CMI), I(X;Y |Z), the
MI between X and Y when Z is known:

I(X;Y |Z) =
∑

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
. (2.7)

In terms of Shannon entropies:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z). (2.8)

From another perspective, using the chain rule for the MI from two variables Y1, Y2
jointly to another variable X:

I(X;Y1, Y2) = I(X;Y1) + I(X;Y2|Y1), (2.9)

which can be generalized to multivariate Y if system dimension is greater than 2. The
CMI is always positive for discrete, jointly distributed random variables, and is also non-
negative for continuous random variables under certain regularity conditions. Condition-
ing on a third random variable may either increase or decrease the mutual information:
that is, the difference I(X;Y )− I(X;Y |Z), may be positive, negative, or zero.
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Transfer entropy as a directed measure of information transfer

To incorporate a dynamical structure one needs to study transition probabilities instead
of static probabilities. For example we might want to know what happens if we add
an additional state to the system, once we know all the previous states. To understand
this scenario and compute relevant quantities, let us consider a system that may be
approximated by a stationary Markov process of order k. The conditional probability to
find X in state xn+1 at time n+ 1 is independent of the state in−k:

p(xn+1 | xn, . . . , xn−k+1) = p(xn+1 | xn, . . . , xn−k+1, xn−k). (2.10)

The shorthand notation x
(k)
n = (xn, . . . , xn−k+1) indicates words of length k. The

average number of bits needed to encode one additional state of the system if all previous
states are known is given by the entropy rate

h(X) = −
∑

p(xn+1, x
(k)
n ) log p(xn+1 | x(k)n ). (2.11)

As p(xn+1 | x(k)n ) = p(x
(k+1)
n+1 )/p(x

(k)
n ), this can be shown to corresponds to the dif-

ference between Shannon entropies of the processes given respectively by k + 1 and k
dimensional delay vectors constructed from the process X:

h(X) = HX(k+1) −HX(k) . (2.12)

If X is obtained by coarse graining a continuous system X at resolution r, the entropy
HX (r) and entropy rate hX (r) depend on the partitioning and in general behave like
− log r when r → 0. For the special case of deterministic systems, this limit might
exist and takes the name of Kolmogorov-Sinai entropy. The situation if opposite for the
MI: for generic noisy interdependence, limr→0MIXY(r) is finite and independent of the
partition, but for deterministically coupled processes, MXY(r) grows without bound as
r → 0 (Schreiber, 2000).

To study the dynamics of shared information between processes one needs to general-
ize the entropy rate to more than one system. Therefore, we build a mutual information
rate by generalizing h(X) to the case of two processes (X, Y ). This can be achieved
with the MI, as seen before; however, the resulting Kullback entropy is still symmetric
under the exchange of X and Y . Therefore, to obtain a directed quantity, we measure
the deviation from the generalized Markov property:

p(xn+1 | x(k)n ) = p(xn+1 | x(k)n , y(l)n ). (2.13)

where k and l indicate two possible lengths for yn memory.
If there is no information flowing from Y to X, the state of Y has no influence on the

transition probabilities of process X. We can quantify by how much this assumption is
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violated using a Kullback entropy with the generalized Markov properties, by which we
define the transfer entropy :

Tk,l(Y → X) =
∑

p(xn+1, x
(k)
n , y(l)n ) log

p(xn+1 | x(k)n , y
(l)
n )

p(xn+1 | x(k)n )
. (2.14)

This formula computes the distance between the assumption that state xn+1 is de-
termined both by its past and by process Y , with respect to assumption that the state
nn+1 is only “caused” by its past states. Natural choices for l are l = k or l = 1. Trans-
fer entropy quantifies the information provided by a source node about a destination’s
next state that was not contained in the past of the destination. It can be equivalently
expressed as conditional mutual information, or as the sum of two mutual information
quantities:

Tk(Y → X) = I
(
Y ;Xn+1 | X(k)

n

)
,

beginequation1mm]Tk(Y → X) = I
(
Y ; (Xn+1, X

(k)
n )
)
− I
(
Y ;X(k)

n

)
,

(2.15)

where Xn+1 refers to the next state of the destination, and X
(k)
n refers to its past

k states. TE is computed in the last equation using two mutual information estima-
tors, as developed in Kraskov, Stögbauer, and Grassberger (2004) and Kraskov, 2004.
The resulting quantity Tk(Y → X) is now non-symmetric. It measures the degree of
dependence of X on Y and not vice versa.

Transfer Entropy is usually understood in terms of resolution of un-
certainty. The TE from Y to X is the degree to which Y disam-
biguates the future of X beyond the degree to which X already in-
forms its future.

Unlike mutual information, transfer entropy is designed to ignore static correlations
due to the common history or common input signals Schreiber, 2000, which means that
it is studied to marginalize the impact of confounding variables.

2.2.3 Granger Causality and Transfer Entropy

Granger causality is framed in terms of prediction. On the other hand, we said that
Transfer Entropy is understood in terms of resolution of uncertainty. This indicates an
attractive symmetry between the notions of prediction and that of disambiguation. In
fact, it has been proven that Granger causality and Transfer Entropy are equivalent
for Gaussian variables (Barnett, Barrett, and A. K. Seth, 2009). In practice, numerical
equivalence between the results computed for the two methods will depend on the method

39



CHAPTER 22.2. (Generalities on) Information theoretic approaches to causal inference

used to estimate transfer entropy in sample. Even if the equivalence is restricted to
Gaussian variables, we note that the Gaussian assumption is valid in many cases, and it
is often used as an analytical benchmark even for systems that are not Gaussian.

Both Granger causality and transfer entropy, in turn, are essentially tests for con-
ditional independence (J. Runge, 2018; Peters, Janzing, and Schlkopf, 2017). Tests for
causality are based on checking whether a particular conditional mutual information is
greater than zero. Let us consider the conditional mutual independence of X and Y
given Z (Eq. 2.7). The conditional independent test

X ⊥⊥ Y | Z ⇐⇒ p(x, y | z) = p(x | z)p(y | z) ∀x, y, z (2.16)

substituted in 2.7 then gives

X ⊥⊥ Y | Z ⇐⇒ I(X;Y | Z) = 0, (2.17)

which implies that the TE is zero, based on its definition via CMI (2.15). This
formalization allows to link the three frameworks, which are often considered to be
separate and counter-posed.

2.2.4 Multivariate Transfer Entropy

Transfer entropy was originally developed by Schreiber to be applied only to bivariate
scenarios. This lack of generality entails many limitations for the method. Without
proper conditioning, inference based on bivariate transfer entropy tends to produce sys-
tematic errors due to, for example, the effects of indirect influences and dominance of
neighbors.

Conveniently, the theory permits the extension of information transfer measures to
be achieved trivially, by generalizing the scalar random variables to variables in RN .
Therefore, for the mutual information we have I(X;Y) and the transfer entropy becomes

Tk(Y → X) = I(Y;Xn+1|X(k)
n ), (2.18)

where X and Y are variables in RN , Xn+1 refers to the next state of the destination

and X
(k)
n refers to its past k states. The multivariate mutual information I(X;Y) mea-

sures the amount of information shared between a set of source variables Y and a set
of destination variables X. The multivariate transfer entropy T (Y → X) measures the
amount of information that a set of source variablesY provides about a set of destination
variables X, that was not contained in the past of the destination set.

J. Lizier et al. (2011) describe a method to estimate numerically the TE between
subsystems of a multivariate system, called interregional Transfer Entropy. This im-
plementation accounts for collective interactions resulting from the combined activity
of multiple driving elements, other than directional and non-linear relationships. This
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method is particularly suitable to study the interactions between subsystems of vari-
ables, and we will employ it in Chapter 4 to study the causal relations between ocean
and atmosphere in the MAOOAM model.

In practice, several different approaches have been developed to extend the Trans-
fer Entropy to multivariate systems. Sun, Taylor, and Bollt (2015) have generalized
T (Y → X) to causation entropy taking into account the state of Z as T (Y → X|Z).
A similar approach is used in Ay and Polani, 2008. Smirnov (2022) extends the dy-
namical causal effect formalism to the case of more than two subsystems, also proving
how the causation entropy is naturally produced as a generalization of the TE within
this formalism. Other examples of multivariate extensions are found in and in Jakob
Runge, Heitzig, Marwan, et al. (2012), Jakob Runge, Heitzig, Petoukhov, et al. (2012),
and Jakob Runge, Donner, and Kurths (2015). Joseph T. Lizier, Mikhail Prokopenko,
and Zomaya (2008) and J. T. Lizier and M. Prokopenko (2010) introduce the concept
of complete TE to take into account the state of a third or multiple subsystems, as
opposed to pairwise orapparent TE, which corresponds to bivariate TE. In numerical
experiments, we rename the complete TE as multivariate TE, for better coherence with
other methods.

Another line of research investigates the use of Transfer Entropy to study interactions
in complex systems, where a bivariate approach is not sufficient to capture the overall
behavior of the system. The focus is thus placed on higher-order effects, compared to two
body effects. Transfer Entropy is decomposed in unique, redundant and synergistic atoms
(Rosas et al., 2022; Stramaglia et al., 2024; Mart́ınez-Sánchez, Arranz, and Lozano-
Durán, 2024).

2.3 Liang-Kleeman Information Flow

The Liang-Kleeman information flow (LKIF) was developed in a series of papers, starting
in 2005 with the 2D formulation for deterministic systems (X. San Liang and Kleeman,
2005). Later generalizations formalized and extended the method to multidimensional
stochastic systems (X. San Liang, 2016; X. San Liang, 2021). Recent advancements
developed the tools to compute the information flow between subsystems (X. San Liang,
2022). This line of work has been applied to real world problems in different disciplines,
including applications to the Earth system, such as identifying dynamical dependencies
in the climate system (Stéphane Vannitsem, Carlos A. Pires, and David Docquier, 2024;
S. Vannitsem, X. S. Liang, and C. A. Pires, 2024), the interaction between ocean and
atmosphere (D. Docquier, S. Vannitsem, and Bellucci, 2023; Yang et al., 2024), soil
moisture-precipitation interaction (Hagan et al., 2019), the interaction between the land
surface and the atmosphere (Shao et al., 2024).

The Liang-Kleeman information flow (LKIF) is reputed to be a theoretically moti-
vated, formalism-driven notion, well grounded on the mathematical basis provided by

41



CHAPTER 2 2.3. Liang-Kleeman Information Flow

the Liouville equation and a hydrodynamics basis (Smirnov, 2022).

The rate of information flow, or information flow, from a component
Xj to another componentXi, is defined as the contribution of entropy
from Xj per unit time in increasing the marginal entropy of Xi.

Carlos A. Pires, David Docquier, and Stéphane Vannitsem (2024) developed an ex-
tension of the formalism to non-linear systems. In the following we will present the
method in the general formulation for d-dimensional systems, which we will refer to as
multivariate LKIF. This term is used to indicate the study of the information flow be-
tween two variables, Xi and Xj, in a multi-dimensional system. This is different from
the bivariate approach, as in the multivariate context, the other d − 2 variables also
influence Xi and Xj, thus the information flow between them is different from what we
would compute in the bi-dimensional system, where only these two variables are present.

We also present the extension of the LKIF to the study of complex subsystems, and
discuss the causal interpretation of the general approach.

2.3.1 Information Flow-based causal analysis

The starting point of the information flow-based causal inference framework is a causal
graph, analogue to those we have seen in Chapter 1. The underlying idea of this method
is that the problem of causal inference in a system of variables organized in a causal graph
can be recast within the framework of dynamical systems, and that the causal inference
can be carried forth to that between the coordinated in a dynamical systems. Causality is
then identified by studying a physical quantity, the information flow, which can easily be
cast within the dynamical systems framework. The central physical quantity is Shannon
entropy, which is interpreted as self-information. One can then try to find a related
quantity that measures the propagation of entropy or uncertainty from one component
to another, and interpret is as closely related to causality. We can formalize this in the
following definition.

Definition 2.3.1. In a dynamical system (Ω,Φt) on the d-dimensional phase space Ω,
where Φt may be a continuous-time flow (t ∈ R+) or discrete-time mapping (t ∈ Z+), the
information flow from a component Xj to another component Xi of the variables system
X = (X1, ..., Xd), written Tj→i, is defined as the contribution of entropy from Xj per unit
time (or per step) in increasing the marginal entropy of Xi.

Causality can be defined, at this point, exploiting information flow. The quantitative
definition, given in X. San Liang, 2021 follows.

Definition 2.3.2. Xj is causal to Xi if and only if Tj→i ̸= 0. The magnitude of the
causality from Xj to Xi is measured by |Tj→i|.
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Figure 2.1: Graph reconstruction of the dynamical dependencies among climate indices.
Dependencies between different climatic observables at short (blue arrows) and all time
scales (yellow arrows). The open blue arrows indicate weak dependencies as compared
to the other ones. The label “all” indicates that all local variables are influenced by
AO. The observables in the right box are temperature, precipitation and insolation.
The meaning of the other observables is reported in the Acronyms page. Courtesy of
Stéphane Vannitsem and X. San Liang (2022).

By evaluating the information flow within all the components of a dynamical system,
we are thus able to reconstruct the underlying causal graph.

2.3.2 An overview of the theory

In the following we give an overview of the theory of the Liang-Kleeman Information
Flow (LKIF) as a causal notion. This method considers the continuous flow case, which
implies the differentiability of the vector field that is the object of the analysis that
follows. For discrete-time mappings, the information flow is in a more complicated form.
Furthermore, it is assumed that the noise is well described by a Wiener process (white
noise).

LKIF assumes that the system at study can be approximated by a d-dimensional
continuous-time stochastic system. For X = (X1, . . . , Xd) we have
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dX = F(X, t)dt+B(X, t)dW, (2.19)

Where F = (F1, ..., Fd) may be arbitrary nonlinear functions ofX and t, W is a vector
of standard Wiener processes, and B = (bij) is the matrix of perturbation amplitudes,
which may also be any functions ofX and t. Assume that F and B are both differentiable
with respect to X and t. The following theorem then holds.

Theorem 2.3.1. For the system 2.19, the rate of information flowing from (Xj) to Xi

is

Tj→i = −E
[
1

ρi

∫
Rd−2

∂(Fiρ\j)

∂xi
dx\i\j

]
+

1

2
E
[
1

ρi

∫
Rd−2

∂2(giiρ\j)
∂x2i

dx\i\j

]
,

= −
∫
Rd

ρj|i(xj|xi)
∂(Fiρ\j)

∂xi
dx+

1

2

∫
Rd

ρj|i(xj|xi)
∂2(giiρ\j)

∂x2i
dx,

(2.20)

where dx\i means dx1 . . . dxi−1dxi+1 . . . dxn, E stands for mathematical expectation,
gii =

∑n
k=1 bikbik, ρi = ρi(xi) is the marginal probability density function (pdf) of Xi,

ρj|i is the pdf of Xj conditioned on Xi, and ρ\j =
∫
R ρ(x)dxj. The information flow is

measured in nats per unit time.

The bivariate analysis is based on the following corollary.

Corollary 2.3.1. When d = 2,

T2→1 = −E
[
1

ρ1

∂(F1ρ1)

∂x1

]
+

1

2
E
[
1

ρ1

∂2(g11ρ1)

∂x21

]
. (2.21)

From Theorem 2.3.1 one can derive the following property.

Theorem 2.3.2. If in Definition. 2.3.1 neither F1 nor g11 depend on X2, then T2→1 = 0.

Thus, we see that this formulation of information flow puts on rigorous footing an
important aspect of causality. If the evolution of an event, say X1, is independent of
another one, X2, then the causal information from X2 to X1 is zero. This is the only
quantitatively stated fact about causality, it is also called the principle of nil causality.

Further, it has been established that

Theorem 2.3.3. T2→1 is invariant under arbitrary nonlinear transformation of (X3, X4, ..., Xd).

Invariance under a change of variables is a highly desired property in physics. It
indicates that information flow, being invariant under the representation we choose for
the system, has to be an intrinsic property of it. This result will come in handy when
we will treat causal graph reconstruction using the information flow.

For linear systems, the information can be greatly simplified,
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Theorem 2.3.4. In Eq. 2.19, if F(X) = f+AX and B is a constant matrix, then

Tj→i = aij
σij
σii

(2.22)

Where aij is the (i, j)th entry of A, and σij the population covariance between Xi and
Xj.

From this expression we can see that the vanishing of σij implies Tj→i = 0. But
we can still have Tj→i = 0 even if σij ̸= 0. We can thus say that, in the linear sense,
causation implies correlation, but correlation does not imply causation. This does not
generalize to nonlinear systems.

Exploiting the previous formalism, one can compute the maximum likelihood estima-
tors of the information flow, in the bi-dimensional and in the multi-dimensional cases.
We see the relevant calculations in Appendix C, which reveal how the estimates of the
LKIF can be quite easily computed from data using sample covariances. The reduction
of the problem to the computation of simple statistical objects makes the causal inference
process with this method particularly convenient.

Normalization of the information flow

In many problems it is important to be able to compare the magnitudes of the information
flow between variables, other than verifying if the causal link exists or not. This calls
for the implementation of the normalized information flow, addressed in X. San Liang,
2021. The normalized version of the information flow is

τ2→1 =
T2→1

Z
, (2.23)

where Z is the normalizer. This quantity is defined as

Z ≡
∣∣∣∣dH∗

1

dt

∣∣∣∣+ d∑
j=2

|Tj→1|+
∣∣∣∣dHnoise

1

dt

∣∣∣∣ . (2.24)

The first term, dH∗
1/dt is the information from variable X1 to itself, which corresponds to

a self-loop in the graph. The second element is the contribution from all other variables
to X1, and the remaining one is the effect of noise. The normalized information flow
from X2 to X1 is:

τ12 =
T2→1

Z
. (2.25)

τ2→1 lies on [−1, 1] and is often expressed in percentages. So, when |τ2→1| is 100%, X2

has the maximal impact on X1.
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2.3.3 Information flow between complex subsystems

This section addresses the Information Flow formalism applied to the study of causal
relations between sub-sections of a system, a problem that has been addressed in X. San
Liang (2022). The idea is to consider a system divided in multivariate sub-components,
and measure the information flow between the sub-components. Systems of this type
often emerge in electrical engineering or in climate, where different components, for
example the ocean and the atmosphere, evolve on different time scales. Indeed, we will
use this approach to study the ocea-atmosphere coupling in Chapter 4.

With respect to the multivariate formulation, where we compute the information
flow between the single variables of the multivariate system, this interregional approach
allows to give a “bulk” description of the interaction between subsystems, to capture
collective dynamics and keep the method computationally feasible.

Consider an n-dimensional dynamical system

A :



dx1
dt

= F1(x1, x2, . . . , xn; t) +
m∑
k=1

b1,k(x1, x2, . . . , xn; t) ω̇k,

...

dxr
dt

= Fr(x1, x2, . . . , xn; t) +
m∑
k=1

br,k(x1, x2, . . . , xn; t) ω̇k,

(2.26)

B :



dxr+1

dt
= Fr+1(x1, x2, . . . , xn; t) +

m∑
k=1

br+1,k(x1, x2, . . . , xn; t) ω̇k,

...

dxs
dt

= Fs(x1, x2, . . . , xn; t) +
m∑
k=1

bs,k(x1, x2, . . . , xn; t) ω̇k,

(2.27)



dxs+1

dt
= Fs+1(x1, x2, . . . , xn; t) +

m∑
k=1

bs+1,k(x1, x2, . . . , xn; t) ω̇k,

...

dxn
dt

= Fn(x1, x2, . . . , xn; t) +
m∑
k=1

bn,k(x1, x2, . . . , xn; t) ω̇k,

(2.28)

where x ∈ Rn denotes the vector of state variables (x1, x2, . . . , xn), F = (F1, . . . , Fn)
are differentiable functions of x and time t, and w is a vector of m independent standard
Wiener processes, and B = (bij) is an n × m matrix of stochastic perturbation ampli-
tudes. From the components (x1, . . . , xn), we separate out two sets, (x1, . . . , xr) and
(xr+1, . . . , xs), and denote them as x1, ..., r and xr+1, ..., s, respectively. The remaining
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components (xs+1, . . . , xn) are denoted as xs+1,...,n. The subsystems so distinguished are
referred to as A and B.

The results obtained by extending the information flow formalism to subsystems A
and B are summarized by the following theorem.

Theorem 2.3.5 (Information Flow for subsystems). For the dynamical system Equations
2.26 - 2.28, if the probability density function (pdf) of x is compactly supported, then the
information flow from x1,...,r to xr+1,...,s and that from xr+1,...,s to xr+1,...,s are, in nats
per unit time, respectively,

TA→B =− E

[
s∑

i=r+1

1

ρr+1,...,n

∫
Rn−s

∂Fiρr+1,...,n

∂xi
dxs+1,...,n

]

+
1

2
E

[
s∑

i=r+1

s∑
j=r+1

1

ρr+1,...,s

∫
Rn−s

∂2gijρr+1,...,n

∂xi∂xj
dxs+1,...,n

]
,

(2.29)

TB→A =− E

[
r∑

i=1

1

ρ1,...,r

∫
Rn−s

∂Fiρ1,...,r,s+1,...,n

∂xi
dxs+1,...,n

]

+
1

2
E

[
r∑

i=1

r∑
j=1

1

ρ1,...,r

∫
Rn−s

∂2gijρ1,...,r,s+1,...n

∂xi∂xj
dxs+1,...,n

]
,

(2.30)

where gij =
∑m

k=1 bikbjk, and E signifies mathematical expectation.

When r = 1, s = n = 2, Equation 2.30 reduces to

TB→A = −E
[
1

ρ1

∂F1ρ1
∂x1

]
+

1

2
E

[
1

ρ1

∂2g11ρ1
∂x21

]
, (2.31)

which is precisely the expression for information transfer between two variables previously
obtained in X. San Liang, 2008 in the context of two-dimensional stochastic dynamical
systems. The same holds for Equation 2.29. The maximum likelihood estimators have
also been obtained under a Gaussian assumption in X. San Liang (2022). We will see an
application of this method to the ocean-atmosphere interaction in the MAOOAM model
in Chapter 4.

2.4 Other methods

The application of causal methods to disentangle directed dynamical relations is a grow-
ing research topic. We have studied methods that assume that the interactions in the
system arise from an underlying stochastic or Markov process. Nonlinear state-space
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methods assume that interactions occur in an underlying dynamical system, and at-
tempt to uncover causal relationships using tools rooted in dynamical systems theory.
These methods have better results when it can be shown that a deterministic nonlinear
attractor can be recovered from the data (Jakob Runge, Bathiany, et al., 2019). An
example of state-space method is the Convergent Cross Mapping (CCM). A data-driven
method with strong dynamical foundations is the Empirical Model Reduction. Other
related methods are collected in Jakob Runge, Bathiany, et al. (2019).

Figure 2.2: The convergent cross-mapping (CCM), illustrated for the chaotic Lorenz
system. CCM reconstructs the variables’ state spaces (MX ,MY ) using time-lagged coor-
dinate embedding which lays out the conditions under which a chaotic dynamical system
can be reconstructed from a sequence of observations of the system’s state, creating a
“shadow” of its true dynamics in the form of a topological diffeomorphism. The method
concludes that causality exists in the X → Y direction if points onMX can be predicted
using nearest neighbors in MY (orange ellipse) and the prediction improves the more
points on the attractor are sampled. Courtesy of Jakob Runge, Bathiany, et al. (2019).

Convergent Cross Mapping

The Convergent Cross Mapping (CCM) method, developed in Sugihara et al. (2012),
is a nonlinear state-space method that makes the assumption of an underlying (recon-
structable) deterministic nonlinear dynamical system to the dynamics. CCM looks for
the signature of a time-series variable X in Y ’s time series by seeing whether there is
a correspondence between the points in the attractor manifold built from Y , MY , and
points in the X manifold, MX , where these two manifolds are constructed from lagged
coordinates of the time-series variables Y and X. Essentially, the idea is to see whether
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the time indices of nearby points on the Y manifold can be used to identify nearby points
on MX . If so, then one can use Y to estimate X and vice versa.

CCM measures if points on X’s state space, MX , can be predicted
using nearest neighbors in Y ’s state space, MY , and the prediction
improves with more sampled points. If this happens, we can say that
X causes Y .

when one variable X is a stochastic driver of a population variable Y , information
about the states of X can be recovered from Y , but not vice versa. The CCM method
is depicted in Figure 2.2, as a nonlinear state space method. The delay coordinate
embedding in the caption is a form of state space reconstruction, where one dimensional
data, an observation of the system state, is reconstructed in a higher dimensional space
using lagged observations. This means that each value of the time series, X(t), is plotted
against its value at X(t − τ), X(t − 2τ), ... with τ the lag, in a higher dimensional
embedding space. This idea relies on Taken’s theorem (Takens, 1981)

This method has been applied in the context of climate science, to analyze the same
model that is the object of study in this work, in S. Vannitsem and Ekelmans (2018).

Empirical Model Reduction

The Empirical Model Reduction (EMR) methodology was introduced in S. Kravtsov, D.
Kondrashov, and M. Ghil (2005) to reconstruct nonlinear models from a set of time-series
data, either observational or obtained from large-model simulations. The underlying
idea is to retrieve the simplest possible dynamical model from data, without losing the
complexity of the original dynamical system.

EMR is an implementation of the Mori-Zwanzig formalism of statistical physics for
effectively reducing a complex system to its dominant slow variables (Dmitri Kondrashov,
Chekroun, and Michael Ghil, 2015). It has been applied with success to modeling and
predicting nonlinear climate processes. For instance, it has been used to reconstruct
and forecast atmospheric flow regimes and to develop reduced models for phenomena
like ENSO and air-sea interaction (Sergey Kravtsov, D. Kondrashov, and Michael Ghil,
2010).

The EMR technique iteratively models residual errors through additional regression
levels until the remaining noise is statistically white, accounting also for serial corre-
lations. It uses principal component regression and partial least squares to reduce the
dimensionality of the model underlying the original data, yielding a robust, smaller-
dimensional model.

In the EMR, the evolution of the time series Xi, represented by dXi, is modeled by
linear and quadratic contributions of the variables provided in the time series, including
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a noise residue. The EMR method can be formulated theoretically, in continuous time,
as a stochastic differential equation (SDE):

dZ =

(∑
k

αkZk +
∑
k

∑
j

βjkZjZk

)
dt+ σ dW, (2.32)

here Z = Z(t) is the continuous-time stochastic process that gives rise to a particular
time serie Xj and W = W (t) is a Wiener process. The EMR method in discrete time
can be written as:

∆x
(n)
i =

(
Nijkx

(n)
j x

(n)
k + Lijx

(n)
j + Fi

)
∆t+ r

(n)
0,i ∆t, (2.33)

∆r
(n)
i = L

(1)
ij [X; r]j∆t+ r

(n)
1,i ∆t, (2.34)

... (2.35)

∆r
(n)
L−1,i = L

(L)
ij [X; r; r1; · · · ; rL−1]j∆t+∆ξi(t). (2.36)

Here X is an M -vector with components {xi : i = 1, 2, . . . ,M}, with X observed at
n = 1, 2, . . . , N equidistant points in time, and

∆x
(n)
i = x

(n+1)
i − x(n)i . (2.37)

Equation 2.33 is the main level of this recursive scheme and the only one that includes
explicitly a nonlinearity. The levels ℓ = 1, 2, . . . , L of Eqs. 2.34-2.36 indicate the iterative
procedure that removes the non-white part of the noise from the residues r

(n)
0,i . This

recursion links the EMR to the Mori–Zwanzig principle for decoupling leading, slow
variables from the noisier, fast ones (Dmitri Kondrashov, Chekroun, and Michael Ghil,
2015).

The EMR has been proposed as a causal method (O. de Viron et al., personal commu-
nication, July 2024), where its potential stems from the underlying dynamic foundation
of the model. By analyzing the structure of the regression coefficients - including feed-
back terms - one can infer both direct and indirect causal relationships, accounting for
linear and nonlinear effects, and assess how changes in one part of the system propagate
through its dynamics.

EMR fits a nonlinear model predicting the rate of change of X
(dX/dt) as a function of Y . The method is successful if the coef-
ficient for Y in X’s rate of change is significantly nonzero.
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Method Core idea Structure Key Ref.
Granger Causal-
ity

X Granger-causes Y if X con-
tains some information relevant
for the prediction of Y that is not
contained in Y ’s past.

Linear, with ex-
tensions

Granger, 1969

Transfer En-
tropy

TEX→Y is the amount of uncer-
tainty reduced in future values of
Y by knowing the past values of
X, given past values of Y .

Model free Schreiber, 2000;
J. Lizier et al.,
2011

Liang-Kleeman
Information
Flow

LKIFX→Y is the contribution of
entropy from X per unit time in
increasing the marginal entropy
of Y .

Linear X. San Liang,
2021

Convergent
Cross Mapping

Measures if points on X’s state
space, MX , can be predicted us-
ing nearest neighbors in Y ’s state
space,MY , and the prediction im-
proves with more sampled points.

Nonlinear Sugihara et al.,
2012

Empirical Model
Reduction

Fits a nonlinear model predicting
the rate of change of X (dX/dt)
as a function of Y . The method
is successful if the coefficient for
Y is significantly nonzero.

Nonlinear Dmitri Kon-
drashov,
Chekroun,
and Michael
Ghil, 2015

Table 2.1: A summary of the causal methods described in this chapter that take time
series data as input.

2.5 Reconciling different causal methods: which per-

spectives?

In the previous sections we have seen methods used in causal inference, rooted in different
theoretical grounds. The fact that these methods entail the same notion of causality, or
that they have any causal meaning at all, is not universally agreed upon.

Transfer entropy, for instance, is a measure of information transfer. Is information
transfer akin to causal effect? If not, what is the distinction between them? J. T. Lizier
and M. Prokopenko, 2010. We have understood that causality is a slippery concept, even
more so when the aim is to infer it from observations. The general knowledge seems to
agree that the only operational definition that is able to express the true idea of causality
is given by Pearl’s interventional approach.

In information-theoretic approaches no intervention is performed on the system, in-
stead, they try to address the problem leveraging the fact that if there is a causal link
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between two variables, information is exchanged between the two. Thus, we could hope
to approximate causal relationships by carefully disentangling the transfer of information
between sources and sinks of a system. Several authors have reflected on this matter
and on what kind of causal content data-driven methods are able to retrieve, if any.
Having already hinted at some of these reflections, we expand on the topic in the coming
paragraphs.

2.5.1 Transfer Entropy and Causality

The definition of causal relationship and of information transfer, and even more so the
difference between the two, is subtle. This can be inferred from the confusion that spread
about the interpretation of the Transfer Entropy. Exemplarily, the same quantity has
been interpreted as “information flow” (Bossomaier et al., 2016), “information trans-
fer” (Schreiber, 2000) (J. T. Lizier and M. Prokopenko, 2010), “information transport”
(Schreiber, 2000), or again, “directed statistical coherence” (Mikhail Prokopenko and
Joseph T. Lizier, 2014). This short but eloquent list highlights a broader problem in
the causal community. The proliferation of different concepts, newly introduced often
without proper linkage to previous work, and the interpretation difficulties that hereby
derive.

We follow the clarification effort carried forth in J. T. Lizier and M. Prokopenko
(2010), which explicitly researches the connection between the concepts of causality and
of transfer entropy. The main point made is that causal effect is an intrinsic property of
a system. Since often we do not have previous knowledge about this, we have to infer it
through suitable quantities.

Causal effects can be estimated through the information flow (Ay and Polani, 2008),
which should be used as a primary tool (where possible) to establish the presence of -
and quantify - causal relationships. This quantity (which is different from the LKIF)
essentially derives from Pearl’s intervention-based definition of causality. It results from
considerations on how to measure causal information flow via interventional conditional
probabilities. For instance, an interventional conditional probability p(a|ŝ) considers the
distribution of a resulting from imposing the value of ŝ. Imposing means intervening
intervening in the system to set the value of the imposed variable, and it is very similar
to what the do-operator does in Pearl’s framework.

On the other hand, transfer entropy represents the quantity that one measures when
looking for information transfer, that is, the amount of information that a source variable
adds to the next state of a destination variable1. In this sense, TE remains a measure
of observed (conditional) correlation rather than direct causal effect. In a sense, the
transfer entropy is focused on computation, it does not have direct access to the physically

1A thermodynamic interpretation of transfer entropy, as being proportional to external entropy
production and connected to the concept of irreversibility is given in Faes, Nollo, and Porta (2012) and
Mikhail Prokopenko, Joseph T. Lizier, and Price (2013).
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encoded causal dependencies in a system. Therefore, if we want to measure causal effect,
we should prefer to use information flow.

There are situations where measuring the intervention-derived information flow is not
possible, e.g. where one has no ability to intervene in the system or no knowledge of the
underlying dynamics. Then, under certain parameter settings, i.e. setting the history
length of the process in consideration to include only the causal contributors from the
destination’s past, the complete transfer entropy converges with the information flow,
and may still provide a reasonable inference where these conditions are approximated.

Thus, the quantity measured with transfer entropy might or might not be causal
depending on how we set the computation. J. T. Lizier and M. Prokopenko, 2010 state
that the distinction between this quantity and causal effect has often been neglected, with
the two sometimes problematically directly equated, as in the case of the Liang-Kleeman
Information Flow.

2.5.2 Towards causal inference

We have seen that Transfer Entropy, under certain conditions, can give causal informa-
tion about a system at study. The method has been popularly used in applications even
when those conditions are not fully respected, as sometimes the focus of research is not to
fulfill a definition, but to say something more or better than other methods - for example
to go beyond the information retrieved from correlation studies. As we pose the matter
in these terms, the road is open to improvement, in multiple ways. On one side there is
space for technical improvement, as a part of the limitations are on the implementa-
tion side. For instance, efforts in this sense have brought to the generalization of early
methods to nonlinear or model-free versions, and to multivariate extensions, which are
better suited for nonlinear and complex systems.

In another sense, considerable scope remains for investigating whether different
methods share common roots, how they differ from one another, and whether
these differences can be leveraged to examine distinct aspects or types of
systems. The panorama of fields in which causal inference is pursued is very diverse
in terms of disciplines and applications. Through the years, this has opened the way
to a large proliferation of methods, and consequently to the development of specific
causal jargons. This results in a restricted access to - and understanding of - the results
produced in the various communities. It is likely that it might be considered easier to
implement a new method from scratch rather than going through the painful process
of translating a specific method conceived for applications in a different context. These
problems of language and of communication between fields appear quite clearly in the
context of information theory, as we have argued in this work, and as clearly stated in
J. T. Lizier and M. Prokopenko, 2010.

An important unification attempt has been pursued by the mathematised causality
framework of Judea Pearl. However, despite the development of practical algorithms for
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causal inference from time series in the context of the formal framework, the gauntlet of
having to respect the many assumptions required to correctly apply these methods still
makes it a daunting task. Indeed, the concrete applications of SCMs to physical sciences
are still quite rare. Nevertheless, we argue that even when not directly applicable, Pearl’s
framework holds an important position in the domain of causal inference.

2.5.3 The legacy of Pearl’s framework

Pearl’s framework of causality has largely influenced the whole panorama of causal in-
ference, including those methods that are do not directly refer to the intervention-based
definition. One example of this is the spread of the use of graphical representation of
causal problems. Causal diagrams are now unconsciously employed by researchers be-
longing to any causality school of thought.

Additionally, this is (partly) true for the awareness on the assumptions for causal
inference too, which we have outlined in Chapter 1. Any paper in the field of causal
inference, no matter the methods it uses, will warn its readers about the possible presence
of confounders, which were correctly defined only in Pearl’s framework, or about the
dangers of violating the causal sufficiency requirement. One interesting example of
this natural integration is given by the evolution of Clive Granger’s work after the first
implementation in Granger (1969). For instance, some works dedicate to equipping
the original idea with graphical models (graphical Granger models) Arnold, Liu, and
Abe, 2007, or to the more arguable task of reconciling Granger’s approach with Pearl’s
framework White, Chalak, and Lu, 2011.

Another noteworthy development is the pursuit of novel methods to analyze processes
and time series, while remaining consistent with Pearl’s framework, widely regarded as
the most convincing definition of causality. In this respect, we mention the line of research
on causal effect (Ay and Polani, 2008). In Baldovin, Cecconi, and Vulpiani (2020) it is
argued that a intervention-like quantity can be derived through the fluctuation-response
formalism, with the physical response function quantifying the interventional causal link.
Tian and Judea Pearl (2001) proposes a new method of discovering causal relations in
data, based on the detection and interpretation of local spontaneous changes in the
environment, exploiting dynamic changes in the statistical data distribution.

We recall the line of research on causal inference algorithms developed as direct and
applied consequence of Pearl’s research (Spirtes, C. Glymour, and Scheines, 2001; Peters,
Janzing, and Schlkopf, 2017). These algorithms open the possibility of inferring causal
information from time series, provided the assumptions seen in Section 1.3.2 hold. In
Dechter, Geffner, and Halpern (2010) Spirtes, Glymour, Scheines and Tillman, who have
been at the forefront of the causal framework formalization, summarize the content of
this paragraph:

The discovery of d-separation, and the development of several related no-
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tions, has made possible principled search for causal relations from obser-
vational and quasi-experimental data in a host of disciplines. New insights,
algorithms and applications have appeared almost every year since 1990, and
they continue. We are seeing a revolution in understanding of what is and is
not possible to learn from data, but the insights and methods have seeped into
statistics and applied science only slowly. We hope that pace will quicken.

2.5.4 Comparing causal methods

So far we have largely discussed different methods and the merit of their causal inter-
pretation. Assuming these methods to correctly estimate some aspect of causality, we
would expect them to output equal or similar results when applied to the same datasets.
This is often not the case. Despite the research in this sense being still quite limited,
the works that compare more than one method have to conclude that different methods
give different results, both in terms of which causal links exist or do not exist and in
terms of the magnitude of the retrieved links. In part, this can be attributed to the
fact that methods are not universal, e.g. they might be linear or nonlinear, bivariate or
multivariate. Therefore, they might perform better on certain types of data: “It is im-
portant to choose the right method for a particular type of data. [...] blind application of
any causality test easily leads to incorrect conclusions.” (Krakovská et al., 2018). Some
works that provide comparison of methods in applied cases are Krakovská et al. (2018),
D. Docquier, S. Vannitsem, Ragone, et al. (2022), Jakob Runge, Bathiany, et al. (2019),
Paluš et al. (2018), and Shao et al. (2024) and (O. de Viron et al., pers. comm., July
2024). The contrasting results obtained in this last work are shown in Figure 2.3.

Smirnov (2022) gives a theoretical perspective on the comparison of causal methods,
designing a generative formalism that allows to formulate in a unified manner and inter-
relate a variety of causal inference methods used in time series analysis. A general notion
of dynamical causal effect is implemented with this formalism, with causality intended
in the interventional way. Specific causal quantifiers, which quantitatively estimate the
causal relation between two variables in a system can thus be derived as its realizations.
In this contex, the author provides an example by studying the generalization of Transfer
Entropy and the Liang-Kleeman information flow, which proves necessary in view of the
unclear interpretation of many popular causal methods. It has been noted that different
approaches are prone to estimating different magnitudes for the causal couplings in the
same system, to the point that “any causal coupling in a complex system may be stronger
than couplings in other directions according to one quantifier, and weaker according to
another quantifier. Which of the two information flows is more appropriate and where?”
(Smirnov, 2022). The Transfer Entropy and the Liang Kleeman Information Flow are
shown to be related as opposite limit cases in a specific dynamical causal effect family.
However, their evaluation of causal links magnitudes are shown to differ from each other
essentially, and to describe different manifestations of a directional coupling in dynamics.
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Figure 2.3: Comparison of the causal links obtained with four distinct methods: Condi-
tional Mutual Information (CMI), Granger Causality (GC), Convergent Cross Mapping
(CCM) and Empirical Model Reduction (EMR), in their linear versions. The meaning
of the acronyms is reported in the Acronyms page. Courtesy of O. de Viron, D. Delforge
and M. Ghil, pers. comm., July 2024.

For instance, the general framework is used to analyze the evolution of two overdamped
oscillators X and Y , a simple model for irregular processes. The evaluated coupling
Y → X is arbitrarily strong when evaluated with TE rate and zero when quantified
with the LKIF. On the other hand, in a wide range of situations the two methods result
in similar values, proportional to each other with a moderate factor. We will see the
comparison between these two methods when applied to an ocean-atmosphere coupled
model in Chapter 4.

A note of warning on the application of data-driven causal methods

The uncertainties in the causal interpretation across different methodologies, among
other issues, imply that the application of information-theoretic methods for causal in-
ference remains an evolving field. While interesting results have been achieved, it is
debatable whether the quantitative outputs can be fully trusted without a previous in-
tuition of the underlying physical mechanisms, a well-founded hypothesis regarding the
causally relevant variables, and a critical perspective on the magnitude of the inferred
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causal effects. We will discuss this in practice when studying the causal coupling in
MAOOAM, in Chapter 4.

Key concepts

• Popular methods for causal inference from time series are Granger causality (GC),
Transfer Entropy (TE), the Liang Kleeman Information Flow (LKIF). The Con-
vergent Cross mapping (CCM) and Empirical Model Reduction (EMR) are also
promising data-driven methods rooted in dynamical systems theory.

• Granger causality relies on the idea that X causes Y if X can be shown to increase
the predictability of Y . Initially developed as a linear method, nonlinear extensions
have been developed in the last years.

• Transfer Entropy is a model-free method developed in the context of information
theory. One can say that the TE from Y to X is the degree to which Y disam-
biguates the future of X beyond the degree to which X already informs its future.
Transfer Entropy is equivalent to Granger causality for Gaussian variables, and is
usually understood as a closely related evolution of it. The method is multivariate
and features an interregional implementation.

• The Liang-Kleeman Information Flow is a linear method rooted in stochastic dy-
namical systems. It retrieves the asymmetric information flow from a variable X
to another variable Y as the contribution of entropy from X per unit time in in-
creasing the marginal entropy of Y . The method is multivariate and features an
interregional implementation.

• Other methods for causal inference from time series are the Convergent Cross
Mapping (CCM), which assumes that a deterministic nonlinear attractor underlies
the time-series data and searches for causality in the increment of predictability
that knowing points on theX manifold makes us gain on the points on the manifold
of Y . Another method is the EMR, a data-driven model reduction technique, which
can be used to infer nonlinear causal relationships between model variables.

• Different methods do not always agree among each other in the results they obtain,
particularly in terms of estimated causal effects and reconstructed causal graph.

• There have been several attempts to reconcile the causal meaning of different ap-
proaches. Granger causality has been proven to be equivalent to Transfer Entropy
up to a multiplicative factor 2 for Gaussian variables.

• Methods in this chapter do not leverage the interventional definition of causality,
but they do significantly better than correlation methods in retrieving directed
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relations dependencies in data. Moreover, they incorporate important aspects of
the formal causality framework, despite being rooted in different philosophies.
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Chapter 3

Disentangling the direction of the
Ocean-Atmosphere coupling

In the previous Chapter we described the general framework and the methods of causality,
and in particular the problem of causal inference from time series. We have seen that
this effort has been applied in Earth system and climate sciences. We now expand on
this topic and deepen specific features of climate-related causal research context.

3.1 Outlook on causality in the climate sciences

The climate system is a forced, dissipative, nonlinear, complex and heterogeneous system
that is out of thermodynamic equilibrium (Michael Ghil and Lucarini, 2020). Natural
variability emerges in the system on many scales of motion, in time as well as space, which
also evolves under the action of external forcings, natural as well as anthropogenic. These
features make the study of the climate system an extraordinarily complex and fascinating
task.

Many questions about the complex interactions in the climate system, its evolution
over time, or the attribution of events to climate change are inherently causal questions,
for instance

• What drives the observed variability in the climate system, and how do large-scale
circulations affect local weather patterns?

• Can the global warming trend be attributed to anthropogenic forcing?

• Can specific extreme weather events be attributed to climate change?

• How do key climate components interact to shape regional or systemic behavior?
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The traditional approaches used to answer these questions are often rooted in regres-
sion, also called optimal fingerprinting (Alexis Hannart, Ribes, and Naveau, 2014), and,
more recently in machine learning. The use of causal methods to tackle these questions
has diffused only recently, but it has become quite popular in the last years. The idea is
that better results could be achieved once the listed questions about the functioning of
the Earth system, being causal, are tackled inside the framework of causality.

In this domain, causality has been employed to better understand and identify physi-
cal processes at different scales, large scale atmospheric teleconnections, to evaluate and
improve the development of climate models and for causally robust forecasting. The
social aspect of climate studies also calls for a causal understanding, for example regard-
ing the attribution of climate change and extreme events through counterfactuals, or in
the context of policy making, to determine effective land-use strategies Jakob Runge,
Gerhardus, et al., 2023. Algorithms derived from the formal framework of causality have
recently been applied to Earth system sciences, mainly focusing on the study of the
climate system (Kretschmer et al., 2016; Jakob Runge, Petoukhov, and Kurths, 2014;
Jakob Runge, Nowack, et al., 2019; Ebert-Uphoff and Deng, 2012; Melkas et al., 2021).
Methods rooted in Granger’s idea of predictive causality or derived from information
theory and dynamical systems theory have also found large application in this field (Mc-
Graw and Barnes, 2018; Papagiannopoulou et al., 2017; Silva et al., 2021), and in the
context of climate change attribution (Risser, Ombadi, and Wehner, 2024). The Con-
vergent Cross Mapping method has been applied to climate science in Nes et al. (2015)
and in S. Vannitsem and Ekelmans (2018), for instance.

There are still many open methodological problems in the development and appli-
cation of causal methods for the Earth system. One goal is to improve the handling of
uncertain expert knowledge and the spatio-temporal complexity of the underlying dy-
namical phenomena, and to develop more robust and statistically efficient algorithms
(Jakob Runge, Gerhardus, et al., 2023).

A lively line of research currently aims at the integration of causality in machine
learning. In this context, this cross-fertilization could lead to incorporating large lan-
guage models into the framework of causal hypothesis testing - combined with expert
knowledge and data - could yield deeper insights into the causal structure of the cli-
mate system, improve data-driven forecasting, development of more powerful methods
for process understanding, causal attribution of extreme events, and improvement of the
physics embedded in climate models (Jakob Runge, Gerhardus, et al., 2023; Cohrs et al.,
2025).

An important challenge for the causal endeavor in Earth system science, also seen
in a more general scope in the previous chapter, is the broad language gap between the
methodological and domain science communities with their individual scientific language.
A complete overview of the open problems in causal inference for Earth system science
is given in Jakob Runge, Bathiany, et al. (2019).
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Figure 3.1: Chelton diagram of ocean variability and COMET diagram of atmospheric
variability. Image on the right: courtesy of Michael Ghil and Lucarini (2020)

3.2 Interactions between ocean and atmosphere: the

direction of the coupling

Although significant progress has been achieved (Michael Ghil, 2019), understanding
and predicting the dynamics of the climate system remains challenging. In addition
to the difficulties inherent in any nonlinear, complex system out of equilibrium, several
specific obstacles persist. These include the presence of well-defined subsystems - the
atmosphere, the oceans, and the cryosphere - each characterized by distinct physical
and chemical properties and operating on widely differing spatial and temporal scales;
the complex processes that couple these subsystems; continuously varying natural and
anthropogenic forcings; the absence of scale separation among processes; the lack of
detailed, homogeneous, high-resolution, long-term observations of climatic fields; and
the fact that we have only one realization of the processes driving climate evolution
(Michael Ghil and Lucarini, 2020).

The multiple spatial and temporal scales in the climate system necessitate both model
reduction methods, which retain only the essential physical features, and complex param-
eterizations of subgrid-scale processes in numerical models (Michael Ghil and Lucarini,
2020). The multiscale nature of climate is often summarized with Stommel diagrams,
which capture the spatial-temporal variability of a climate subsystem by associating it
with phenomenologically well-defined dynamical features. Figure 3.1 presents two qual-
itative Stommel diagrams for the ocean and the atmosphere.

Different classes of numerical models - each based on distinct dynamical balances -
can explicitly simulate only one or a few dynamical ranges, which together span approxi-
mately 15 orders of magnitude in space and time. This limitation led to the development
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Figure 3.2: Hierarchy of climate models, ranging from low-order to comprehensive Earth
System Models (ESMs). Lower-order and intermediate-complexity models isolate key
dynamical processes at minimal computational cost, while global climate models (GCMs)
simulate a broad array of physical processes at high spatial and temporal resolutions.
Modern ESMs, building on advances in fundamental scientific knowledge as well as
in computational and data storage capabilities, incorporate an increasing number of
physical, chemical, and biological processes (Michael Ghil and Lucarini, 2020).

of the so-called hierarchy of models (Dijkstra and Michael Ghil, 2005; Michael Ghil and
Lucarini, 2020). The hierarchy begins with the simplest models, such as low-order models
that capture essential dynamics through differential equations. This approach, pioneered
by Barry Saltzman (Saltzman, 1962) and Edward Lorenz (Lorenz, 1963), is reviewed in
Stéphane Vannitsem, Jonathan Demaeyer, et al., 2015. Global Climate Models (GCMs)
and Earth System Models (ESMs), illustrated in Figure 3.2, aim to incorporate as many
physical processes as possible, with ESMs continually extending the spatial and temporal
scales. There is also an increasing effort to achieve “seamless prediction” across scales
(Meehl et al., 2021).

The oceans and the atmosphere dominate the Earth’s hydroclimate system and in-
teract across different scales through various physical processes. The atmosphere in-
fluences ocean dynamics by providing momentum, heat, and moisture fluxes, while the
ocean regulates weather and climate by supplying moisture and heat to the atmosphere.
Understanding these ocean–atmosphere modes is crucial for advancing our comprehen-
sion of the climate system. The atmosphere, ocean, and their coupled system exhibit
many modes of variability, the most well-known being the El Niño Southern Oscillation
(ENSO).

Despite growing knowledge of these variability modes, a comprehensive understanding
remains elusive. In particular, the nature of the coupling between the ocean and the
atmosphere at different latitudes is still unresolved. It remains unclear whether one
medium predominantly drives the other or if both act as a coupled mode. In other
words: does atmospheric weather drive the ocean, does the ocean steer the atmosphere,
or does a coupled mode of variability govern the system? This issue can be illustrated
with a metaphor: imagine the slower, heavier ocean as a dog and the faster, lighter
atmosphere as its tail. The question then becomes whether the dog wags its tail, the tail
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drives the dog, or if the system is better represented by the dog biting its tail.

Aim of this causal research

Is it weather noise driving a passive ocean, the slower
ocean steering the atmosphere, or does a mode of coupled
variability exist? We investigate the nature of the ocean-
atmosphere variability through the use of causal methods.

If atmospheric forcing is dominant, wind stress over the ocean should be the primary
driver. Conversely, if the ocean exerts a stronger influence, its thermal fluxes - through
the release of heat and water vapor - would significantly affect atmospheric temperature
and composition. Alternatively, both media may influence each other through these and
other mechanisms arising from their coupled interaction.

This topic has been extensively studied through observations and modeling. In this
work, we contribute to the understanding of ocean-atmosphere coupling by introducing
a causal inference perspective. Specifically, we apply the Liang-Kleeman and Trans-
fer Entropy methods, as reviewed in the previous chapter, to investigate the directed
dependencies within a low-order coupled ocean–atmosphere model.

3.3 The Modular Arbitrary-Order Ocean-Atmosphere

Model

The Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM), developed by
Vannitsem et al (De Cruz, J. Demaeyer, and S. Vannitsem, 2016), is based on a quasi-
geostrophic atmospheric framework proposed by Jules Charney and David Straus, fur-
ther elaborated in Reinhold and Pierrehumbert, 1982, and on the ocean model of Stefano
Pierini Pierini, 2011. The model solves for the vorticity and the temperature in both
media, and is written in spectral Fourier modes, whose full number can be adjusted to
the desired resolution.

MAOOAM is part of a series of studies in which incremental improvements progres-
sively integrated relevant physical mechanisms, with the last addition being the introduc-
tion of an energy balance between the ocean and the atmosphere. This model is part of
a larger python implementation, qgs, developed by Lesley De Cruz, Jonathan Demaeyer
and Stéphane Vannitsem Jonathan Demaeyer, Cruz, and Stéphane Vannitsem, 2020.

MAOOAM successfully identifies the low frequency variability (LFV) associated with
the coupling between the ocean and the atmosphere. The model allows for an arbitrary
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Figure 3.3: Sketch of the ocean-atmosphere coupled model layers. The ocean is a closed
basin. The atmosphere is a periodic channel. The domain ( β-plane) zonal and merid-
ional coordinates are labeled as the x and y variables. Source.

level of resolution. The LFV structure develops both in the simplest version of the
model, and in the versions with higher resolution. Higher resolution versions are good
candidates when investigating more realistic dynamics. In this work we will refer to
the simplest model formulation, which can be integrated on local machines while, still
interesting physical features (Stéphane Vannitsem, Jonathan Demaeyer, et al., 2015; De
Cruz, J. Demaeyer, and S. Vannitsem, 2016).

3.3.1 Features of MAOOAM

MAOOAM features the dynamics of a two-layer channel atmosphere and a shallow-water
active closed-basin ocean layer, meaning the horizontal length scale is much greater than
the vertical length scale, and the vertical velocity scale is small compared to the horizontal
velocity scale. The dynamics is approximated to take place on a tangent plane to the
Earth at a given latitude ϕ: the Coriolis parameter f is Taylor expanded about a given
latitude ϕ, retaining only the linear terms: f = f0 + βy, with β = (df/dy)|ϕ0 . This
approximation is called β-plane approximation. The atmosphere is described by quasi-
geostrophic equations, meaning that the Coriolis force and pressure gradient forces are
almost in balance, in the limit of small Rossby number, the ratio of the inertial force to
the Coriolis force. A simple sketch of MAOOAM is reported in Figure 3.3.

The atmospheric and ocean components are coupled both thermally andmechanically.
The coupling between the two components includes wind forcings, radiative and heat
exchanges. The model equations for the dynamics, described in Stéphane Vannitsem,
Jonathan Demaeyer, et al. (2015), are reported in the next paragraphs.
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Atmospheric dynamics equations

The atmospheric model is based on the vorticity equations of a two-layer, quasi-geostrophic
flow defined on a β-plane. The dynamical evolution is thus described in pressure co-
ordinates by the equations of motion of the atmospheric streamfunction fields1 ψ1

a at
geopotential height of 250hPa and ψ3

a at 750hPa, and the vertical velocity ω = dp/dt.
The equations read

∂

∂t

(
∇2ψ1

a

)
+ J(ψ1

a,∇2ψ1
a) + β

∂ψ1
a
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= +k′d∇2(ψ1
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f0
∆p

ω − kd∇2(ψ3
a − ψo)

(3.3)

where ∇2 is the horizontal Laplacian, f0 is the Coriolis parameter at latitude ϕ0, with
β = df

dy
its meridional gradient here2. The parameters kd and k′d multiply the surface

friction term and the internal friction between the layers, respectively, and ∆p = 500 hPa
is the pressure difference between the two atmospheric layers. Finally, J is the Jacobian
J(S,G) = ∂xS ∂yG − ∂yS ∂xG. The last term of the second equation accounts for the
presence of a surface boundary velocity of the oceanic flow ( denoted by ψo), which
represents the mechanical contribution of the interaction between the ocean and the
atmosphere. The equations have been nondimensionalized as explained in appendix A
of Ref. Stéphane Vannitsem, Jonathan Demaeyer, et al., 2015.

These equations can also be rewritten in terms of the barotropic and baroclinic
streamfunctions ψa = (ψ1

a + ψ3
a)/2 and θa = (ψ1

a − ψ3
a)/2. The barotropic streamfunc-

tion is linked to the average component of the flux, while the baroclinic streamfunction
represents the shear component of the flux.

1The stream function ψ in a 3-dimensional space is defined as:

ψ(x, y, z) =

∫ P

A

(udy − vdx), (3.1)

where u and v are the x and y components of the flow velocity u, satisfying the continuity equation ∇·u
and A and P are two points in the xy plane (Lamb, 1945; Batchelor, 1967). The streamfunction ψ is
the volumetric flux Q(x, y, t) through the test surface per unit thickness b, where thickness is measured
perpendicular to the plane of flow. The flow velocity components are derived as

u =
∂ψ

∂y
, v =

∂ψ

∂x
. (3.2)

This representation is valid in the case in atmospheric and shallow water oceanic flows, where the
thickness of the atmosphere and of the ocean are very small compared to the zonal and meridional
extensions, in the x and y directions, respectively (Smyth, 2020).

2More precisely, the Coriolis parameter f is linearized around a value f0 evaluated at latitude ϕ0, so
that f0 = fϕ0

, f = f0 + βy, with β the meridional gradient at latitude ϕ0.
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The time evolution of the atmospheric temperature Ta obeys a radiative and heat
flux scheme reflecting the exchanges of energy between ocean and atmosphere:

γa

(
∂Ta
∂t

+ J(ψa, Ta)− σw
p

R

)
= −λ(Ta − To) + Ea,R (3.4)

with
Ea,R = ϵaσBT

4
o − 2ϵaσBT

4
a +Ra. (3.5)

In Eq.3.4, Ea,R is the net radiative flux in the atmosphere, R the gas constant, ω the
vertical velocity in pressure coordinates, and

σ = −R
p

(
∂Ta
∂p
− 1

ρacp

)
(3.6)

is the static stability, here taken to be constant, with p the pressure, ρa the air density,
and cp the specific heat at constant pressure.

As for the radiative flux in the ocean, in Eqs. 3.5, the net radiative flux Ea,R within
the atmosphere is composed of three terms: the ingoing flux ϵaσBT

4
o of radiative energy

effectively absorbed; the outgoing flux −2ϵaσBT 4
a re-emitted to the ocean and to space;

and the shortwave radiative flux Ra absorbed directly by the atmosphere. The rates of
radiative emission and absorption are assumed to be equal. This assumption is strictly
valid only at thermodynamic equilibrium, but it can be safely applied to systems in local
thermodynamic equilibrium, like the lower atmosphere, in which molecular collisional
processes dominate the radiative processes Stéphane Vannitsem, Jonathan Demaeyer,
et al., 2015.

Oceanic dynamics equations

The oceanic component of the MAOOAM model is a shallow-water active ocean layer
superimposed on a deep ocean layer at rest. The dynamics is given by the reduced-
gravity quasi-geostrophic vorticity equation on a β-plane. The equation of motion for
the streamfunction ψo of the active ocean layer reads

∂

∂t

(
∇2ψo −

ψo

L2
R

)
+ J(ψo,∇2ψo) + β

∂ψo

∂x
= −r∇2ψo +

curlzτ

ρh
. (3.7)

The active oceanic layer has density ρ, depth h, the quiescent deep layer has density
ρ∞. g′ = g(ρ∞ − ρ)/ρ is referred to as the reduced gravity felt by the fluid in the active

layer, and LR =
√

g′h
f0

is the reduced Rossby deformation radius. The friction coefficient

at the bottom of the active layer is r, and curlzτ is the vertical component of the curl of
the wind stress. This forcing is provided by the wind stress generated by the atmospheric
component of the coupled system. Assuming, as done in Stéphane Vannitsem, Jonathan
Demaeyer, et al., 2015, that the wind stress is given by (τx, τy) = C(u−U, v−V ), where
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(u = −∂ψ3
a/∂y, v = ∂ψ3

a/∂x) are the horizontal components of the geostrophic wind, and
(U, V ) the corresponding components of the geostrophic currents in the ocean, one gets

curlzτ

ρh
=

C

ρh
∇2(ψ3

a − ψo). (3.8)

The drag coefficient d := C/(ρh) characterizes the strength of the mechanical coupling
between the ocean and the atmosphere. In the next Chapter we will choose two values of
d to study the causal relationship between the two fluids in strong and weak mechanical
coupling conditions. Equation 3.8 is also nondimensionalized as done for the atmospheric
equations.

The temperature To is assumed to be a passive scalar transported by the ocean
currents, interacting with the atmospheric temperature through radiative and heat ex-
change, according to a scheme detailed in Barsugli and Battisti, 1998:

γo

(
∂To
∂t

+ J(ψo, To)

)
= −λ(To − Ta) + Eo,R (3.9)

with
Eo,R = −σBT 4

o + ϵaσBT
4
a +Ro (3.10)

In Eqs. 3.9 and 3.10, Eo,R is the net radiative flux at the ocean surface. Eq. 3.10
contains the outgoing longwave radiation flux, the longwave radiation flux re-emitted
to the ocean and the shortwave radiation entering the ocean, respectively. ϵa is the
emissivity of the atmosphere and σB is the Boltzmann constant. The parameter γo is the
heat capacity of the ocean, and λ is the heat transfer coefficient between the ocean and
the atmosphere that combines both the latent and sensible heat fluxes. It is assumed
that the combined heat transfer is proportional to the temperature difference between
the atmosphere and the ocean. The radiation scheme of the model is graphically depicted
in this documentation.

By decomposing the temperatures as Ta = Ta,0 + δTa and To = To,0 + δTo, where
Ta,0 and To,0 are the climatological reference temperatures, and doing the same for the
short-wave radiation fluxes entering the atmosphere and the ocean, Ra and Ro, one can
also obtain the evolution equations for the temperature anomalies δTa and δTo. The
climatological reference temperatures are set to Ta,0 = 270 K and To,0 = 285 K so to
have the model operating in realistic conditions.

3.3.2 Low-order spectral formulation of the model

The model we described in the previous section is expressed in terms of partial differential
equations (PDEs). The solution of these equations is obtained by projecting them onto a
finite orthogonal basis of functions. From this operation we obtain the spectral expansion
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of the model. The physical fields are expanded in terms of the basis functions and of
Fourier components, e.g. for the atmospheric streamfunction

ψa(x, y) =
na∑
i

ψa,iFi(x, y), (3.11)

where ψa,i is the i
th Fourier component and {Fi(x, y)}i is the set of basis functions used

to expand the physical fields. In this way, one obtains a system of ordinary differential
equations (ODEs) for the spectral coefficients of the fields, in place of the PDEs. This
procedure is sometimes referred to as a Galerkin expansion, and it is explained in detail
in Appendix A. Eventually, the integrated approximated physical fields of the model can
also be retrieved by computing, for instance, Eq. 3.11, and in similar ways for the other
physical fields.

An arbitrary level of resolution can be chosen for the model by setting the number
of Fourier modes in the spectral decomposition. In this work we set na = 10 and no = 8.
The model thus consists of na Fourier components for the baroclinic streamfunction ψa,
namely {ψa,i}na

i=1, na Fourier components for the atmospheric temperature anomaly δTa,
no Fourier components for the ocean streamfunction ψo, and no Fourier components for
the oceanic temperature anomaly δTo. The full coupled model is thus based on a set
of 36 ODEs. The time-dependent solutions of this system are obtained by numerical
integration, using a Runge-Kutta method with a fixed time step of around 11 days, and
an overall integration time of 106 days, approximately.

3.3.3 Dynamical behavior of the system

The dynamical behavior of the system changes depending on the values assigned to
the three main parameters of the model, Co [Wm−2], λ [Wm−2K−1] and d [s−1], we
will focus specifically on the last one. These parameters correspond to the meridional
variation in the radiative input from the Sun, the strength of the ocean-atmosphere
coupling, and the intensity of the heat fluxes, respectively. We focus on two values for
the atmosphere-ocean mechanical coupling parameter d, which is set to d = 1.0e−8 in
the weak configuration, and d = 1.1e−7 in the strong configuration. An illustration of
the long term dynamical behavior of the weak and strong configurations, is given in
Figure 3.4. The panels show the trajectory solution of the model for around 106 days,
projected onto the 3-dimensional portion of the phase space spanned by three key modes
(ψ2

o , θ
2
o, ψ

1
a), i.e. the second Fourier modes of the ocean streamfunction and temperature,

and the first one of the atmospheric streamfunction.
The marked difference between shapes of the attractors in Figure 3.4 manifests the

two mechanical coupling strength scenarios. In the weakly coupled configuration, the
attractor has an approximately regular large scale shape, densely but discontinuously
filled by the trajectory, due to chaos. The solutions of the coupled model are well
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Figure 3.4: Illustration of the MAOOAM attractor in the weak (left) and strong (right)
configurations for the three variables (ψ2

o , θ
2
o, ψ

1
a). The model is integrated forward for

106 days.

localized around small values of ψo,2. The attractor for the strong configuration is still
the one of a chaotic dynamics, however now it features organized trajectories around
an unstable periodic orbit, around which the solution is wandering. The atmospheric
streamfunction in this configuration displays low frequency dynamics, shown in Figure
3.5. This LFV is accompanied by a succession of recurrences in regions of lower or higher
values of the atmospheric streamfunction, ψ1

a, with low and high variability respectively,
the “passive” and “active” regimes, respectively (Tondeur et al., 2020).

The chaotic behavior is still dominated by the LFV on decadal and multi-decadal
time scales, that are typical of oceanic processes. Once the decadal-scale periodic orbits
develop, the coupled system’s short-term instabilities are drastically reduced, indicating
the stabilizing role of the ocean on the atmospheric dynamics. The LFV in the system
is no longer present when d is set to zero, suggesting how the mechanical coupling is
at the origin of the development of the long-periodic oscillation. The Co radiative-flux
parameter plays a partial role too, as the coupled ocean-atmosphere mode is found in
correspondence of high values of both d and Co.

In Chapter 4 we set the heat flux parameter λ to a fixed value of 15.06Wm−2K−1,
an intermediate value with respect to the extremes λ = 0 Wm−2K−1 that produces
very chaotic trajectories, and λ = 100 Wm−2K−1, which corresponds to purely periodic
trajectories, suggesting that the larger is the heat flux, the stabler is the dynamics
Stéphane Vannitsem, Jonathan Demaeyer, et al., 2015. We will also fix the radiative
input meridional variation Co to 310 Wm−2, a high enough value so that the LFV
develops in the d = 1.1e−7 case and does not in the d = 1.0e−8 case.
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Figure 3.5: Time series of the first component of the atmospheric streamfunction, ψ1
a,

for the strong coupling model configuration. The red and green points indicate the start
of active and passive regimes respectively.

Physical features of the model

The model incorporates several key physical ingredients of the coupled ocean-atmosphere
system at mid-latitudes. It shows the presence of dry atmosphere baroclinic instability,
as the solar forcing induces a horizontal North-South temperature gradient in the atmo-
sphere, in turn keeping the vertical gradient of the wind consistent. The wind gradient
then generates a shear force which is responsible for the development of eddies at the
interface of the two layers; causing the instability in the ocean. Concurrently, the ocean
transports the heat to counteract the initial gradient of temperature Tondeur et al., 2020.

The model also features upper-ocean mass and heat transport in a shallow layer, an
energy balance scheme incorporating radiative and heat fluxes, and a mechanical coupling
mechanism between the atmosphere and the ocean. It displays zones of predominant low
and high pressure and a subtropical jet, having some similarity with the Azores High
and the Icelandic Low. These elements recall realistic climatological properties of the
atmosphere over the ocean. The mechanical coupling parameter also allows for the
development of vigorous, albeit smooth oceanic gyres Stéphane Vannitsem, Jonathan
Demaeyer, et al., 2015.
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Key points

• Causality has been increasingly applied to study the climate system, an extraordi-
narily complex, multiscale system. In this context it is used for causal attribution
of climate change and extreme events, and to disentangle complex nonlinear inter-
actions between components of the system.

• Open methodological problems in investigating the climate system with causal
methods include better handling incomplete domain knowledge, developing meth-
ods that can handle high degrees of complexity and data sparsness, and the inte-
gration of causality in machine learning for more powerful forecasting and events
attribution.

• One open problem in the understanding of the climate system is the interaction be-
tween ocean and atmosphere: is it the dog (ocean) that wags its tail (atmosphere),
the tail driving the dog, or does the dog bite its tail (coupled ocean-atmosphere
mode)?

• We study this problem within a low-order ocean-atmosphere coupled spectral
model: MAOOAM. MAOOAM includes realistic thermal and mechanical ocean-
atmosphere coupling.

• Two mechanical coupling configurations are selected: strong and weak coupling.
In the strong coupling configurations MAOOAM develops low frequency variability
(LFV) in the atmosphere.
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Chapter 4

Numerical Results

4.1 Causal analysis of the MAOOAM model

In this chapter, we address the problem of the direction of the atmosphere-ocean coupling
from a causal perspective, using two of the causal methods introduced in the previous
chapters: Transfer Entropy (TE) and Liang–Kleeman Information Flow (LKIF). We
apply these methods to the MAOOAM spectral model to investigate the causal relation-
ships among its Fourier modes. We conduct two types of analysis: the first focuses on
the causal links in pairs of spectral modes in the full multivariate system; the second
examines the interregional causal links between the ocean and the atmosphere, treating
them as distinct subsystems.

In Chapter 2 we have studied the theoretical descriptions of TE and LKIF, whose
mathematical formulations are relatively simple. However, the empirical estimation of
these quantities from N samples of time-series can be challenging, as it depends on the
type of data, it is susceptible to the presence of bias and variance due to finite sample size,
and it suffers from the curse of dimensionality. In the coming paragraphs we give details
of the numerical implementation of the Transfer Entropy and of the Liang-Kleeman
Information Flow.

4.1.1 Numerical estimation of Transfer Entropy

The numerical implementation of the TE relies on the Kraskov-Stögbauer-Grassberger
(KSG) technique (Kraskov, 2004), making it suitable to handle multivariate nonlinear
systems and long time series. In the experiments we adopt the multivariate and the
interregional implementations of the method. The first analyzes pairs of variables in
multivariate contexts. We use it to compute the directional link from mode Xi to mode
Xj, indicating two of the 36 modes of MAOOAM, applying the method to the time-series
that result from the model integration. The interregional approach aims at evaluating
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the TE between two multivariate subsystems within a complex multivariate system, in
our case: the ocean and the atmosphere.

The method for TE estimation is part of the library Java Information Dynamics
Toolkit (JIDT) (Joseph T. Lizier, 2014). JIDT provides an open-source code Java im-
plementation of information-theoretic measures in complex systems, focusing on higher
level measures for information dynamics, such as MI and TE.

KSG estimation builds on the non-linear and model-free capabilities of kernel esti-
mation1. More specifically, the method uses a dynamically altered (box-)kernel of width
r to adjust to the density of samples in the vicinity of any given observation. For each
sample of random variables (x, y), one locates the k-th nearest neighbor in the full (x, y)
space, using the max norm to compare distances in x and y. This yields distances rx and
ry. Two different algorithms are proposed for determining rx and ry from the k-th near-
est neighbor, we report them in Appendix B. In this work we use the second algorithm,
less biased and more accurate for large dimensions of the system.

Using kernel estimation allows to do bias correction, which grants better data effi-
ciency and accuracy, and makes the method effectively parameter-free. As such, it is
widely-used to compute MI, conditional MI and TE for continuous data. The method
is rather computationally expensive, but it can be made faster through fast nearest
neighbor techniques Joseph T. Lizier, 2014.

Interregional Transfer Entropy in JIDT

In many applications we are interested in understanding the TE flow between two or more
regions within the variable space. It is generally impractical to compute this interregional
information transfer as the multivariate TE (see subsection 2.2.4) between the complete
set of variables in the two regions, say Ra and Rb, as these regions might contain a high
number of variables. A practical way to retain the benefits of the TE measure in this
scenario is to compute the interregional information transfer from region to region as

1When we use kernel-estimators, the joint pdfs that we need to compute information-theoretic quan-
tities are estimated with kernel functions, which measure “similarity” between pairs of samples {xn, yn}
and {x′n, y′n} using a resolution r, also referred to as kernel width. For example, suppose we need to
estimate p̂(x, y), this can be computed as

p̂r(xn, yn) =
1

N

N∑
n′=1

Θ(|(xn − x
′
n

yn + y′n
)| − r). (4.1)

There are different possibilities as per the shape of the function Θ and for the norm |·|. JIDT implements
the “box kernel” combination, where Θ is the step kernel: Θ(x > 0) = 0, Θ(x ≤ 0) = 1, and the norm is
the maximum distance. These estimates for the pdfs are then used directly in evaluating a local measure
for each sample n ∈ [1, N ] and averaging over all samples. Kernel estimation can measure non-linear
relationships and is model-free, but it is sensitive to the choice of parameter r, and it is biased and less
time-efficient than other methods like Gaussian estimators.
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Figure 4.1: Multivariate transfer entropy Tk(Y → X) from the set of source variables Y
to the set of destination variables X. Courertsy of J. Lizier et al. (2011).

the multivariate TE averaged over a large number S of samples of pairs of subsets of v
variables in each region:

Tk,v (Ra → Rb) = ⟨Tk (Ra,i → Rb,i)⟩i,j . (4.2)

Here, i and j label the sample subsets Ra,i and Rb,j of size v in each region. Further
technical details can be found in J. Lizier et al., 2011. The method allows to identify the
underlying directed information structure between multivariate regions of the system in
consideration, capturing collective interactions resulting from the combined (nonlinear
and directional) activity of multiple driving elements. The practical implementation of
the method features Kraskov’s method (Kraskov, Stögbauer, and Grassberger, 2004) and
is further discussed in J. Lizier et al., 2011.

Significance testing

In theory, the TE between two unrelated variables are equal to 0. In practice, since
the TE is empirically measured from finite data, there will be some error to take into
account. In JIDT this issue is handled through hypothesis testing. A null hypothesis
H0 is formulated: the state changes x

(k)
n → xn+1 of the destination X have no temporal

dependence on the source Y . A test of statistical significance is made in support of H0 by
generating a number of surrogate time series Y P , permuting the elements of the source
time series yn assuming H0to hold, and then performing a one-sided p-value test.

Significance testing for the multivariate measure Tk(Y → X) is a straightforward
extension. Importantly, in generating the surrogates YP the component time series
Y1, Y2, . . . of Y are not permuted individually, but the vectors yn are permuted at each
time point n in Y as a whole. This ensures that the only difference in making the
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surrogate measurements Tk(Y
P → X) is the temporal relationship p(xn+1|x(k)n ,yn) (J.

Lizier et al., 2011). Significance testing can similarly be extended to the interregional
measure Tk,v(Ra → Rb), though there are some differences that are taken into account
in the code and explained in J. Lizier et al., 2011.

4.1.2 Numerical implementation of the Liang-Kleeman Infor-
mation Flow

The LKIF theoretical approach has been implemented in two versions to study both
bivariate and multivariate system of time series, as seen in Section 2.3. The multivariate
approach is used to compute the information flow between the elements of certain pair of
variables of the multidimensional system, where variables are time series X. San Liang,
2021. The implementation of the multivariate method uses the estimator formula derived
in Appendix C. We use this method to compute the directional link from mode Xi to
mode Xj of the MAOOAM spectral model, analogously to the use of the multivariate
TE. Importantly, we note that unlike the TE, which is model-free, the LKIF is a linear
method.

The LKIF has been further extended to compute the information flow between two
multivariate subsystems within a larger complex system (X. San Liang, 2022). The
goal of the method is analogous to that of the interregional TE, despite the underlying
approach being different. We will refer to this method as interregional LKIF.

In the numerical experiments, we use the normalized LKIF introduced in Paragraph
2.3.2, denoted by τi→j and expressed in nats. When τj→i is statistically different from
0 (either positive or negative), Xj has an influence on Xi, while if τj→i = 0, there is no
influence. A value of |τ | = 100% indicates that Xj has the maximum influence on Xi.
A positive (negative) value τj→i means that the variability in Xj makes the variability
in Xi more uncertain (certain), i.e., it increases (decreases) the variability in Xi (X. San
Liang, 2014). The numerical implementation of this method has been developed by D.
Docquier, S. Vannitsem, Ragone, et al. (2022).

The interregional approach analyzes the interactions between all 36 MAOOAM time
series at the same time. We differentiate the first 20 atmospheric variables from the
other 16 oceanic variables, thereby considering the atmosphere and ocean as distinct
subsystems. For this approach, we use a numerical Python implementation developed
by Daniel Hagan, previously applied in Shao et al. (2024).

The statistical significance of τj→i and for the interregional LKIF is computed via
bootstrap resampling with the replacement of all the terms included in the LKIF max
likelihood estimators.
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4.2 Experimental setup

In Table 4.1 we report the specific settings we used for the multivariate TE, and in Tab.
4.2 those for the interregional TE. The meaning of the parameters is fully explained in
subsection 4.1.1. We consider a significance value of αTE = 0.1.

Properties REORDERINGS CALCULATOR HIST NORM k ALGO

Multivariate 100 Kraskov 1 max norm 2 2

Table 4.1: Set up parameters for the multivariate TE. REORDERINGS: number of surrogate
pairs for statistical significance computation. CALCULATOR: which underlying transfer en-
tropy or mutual information implementation to use for the calculation. HIST: considered
history length. NORM: type of norm used. k: number of nearest neighbors K to use in
KSG estimation. ALGO: which algorithm to select for the computation.

Properties v S REORDERINGS CALCULATOR HIST NORM ALGO

Interregional 3 100 50 Kraskov 1 max norm 2

Table 4.2: Set up parameters for the interregional TE. v: number of joint values to
consider in each region. S: number of subsets of v variables to select from each re-
gion. REORDERINGS: number of surrogate pairs for statistical significance computation.
CALCULATOR: which underlying transfer entropy or mutual information implementation
to use for the calculation. HIST: considered history length. NORM: type of norm used.
ALGO: which algorithm to select for the computation.

For the multivariate LKIF statistical significance computation we used 1000 bootstrap
iterations and a significance level αLKIF,mv = 0.01. For the interregional LKIF we lowered
the reorderings number to 100 and set the significance level to αLKIF,int = 0.05, due to
computational power limitations. We chose less surrogates for the TE iterations, as the
algorithm is slower. We will take this into account when analyzing the results.

4.3 Experiment results: multivariate analysis

In this section we perform numerical experiments using the multivariate TE and the
LKIF, applying them with the parameters specified above. The spectral nature of
MAOOAM makes it appealing to use multivariate methods that output variable-to-
variable results. This type of analysis presents some limitations, as it is not immediate
to retrieve physical meaning from the single Fourier modes. However, we will see that the
multivariate analysis is nonetheless informative about relevant aspects of the problem at
study.

Both methods take as time-series input the 36 modes of MAOOAM, where they
are used to identify the causal links between each pair of variables (Xi, Xj) with i, j =
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1, ..., 36. While the LKIF is able to account for self-interactions (Xi, Xi), the TE is only
implemented to study the information transfer between different variables. The “self-
loop” for information-theoretic quantities is usually referred to as information storage,
and not treated with the TE.

We also compare the results obtained with the TE and the LKIF with the instan-
taneous correlation. The basic difference between the first two methods and correlation
is that the latter is a linear symmetric measure, as can be seen in Figure 4.5, while the
other are directed measures. In all the numerical experiments of this section we take
the absolute value of the measured quantities and we normalize them to the unity, as we
wish to compare only the relative magnitudes of the causal couplings retrieved with the
different methods. We also implement a masking to set non-significant values to zero
based on the respective significance tests.

In the figures, the first 20 variables are atmospheric variables, and the other 16
are oceanic variables. The causation patterns are meant to be read in the following
way, also shown in Figure 4.2: the top-left panel (20 × 20 square) indicates the causal
relations among atmospheric variables aj → ai in the following), the top right panel
(16 × 20 rectangle) shows the causality from the atmospheric variables to the oceanic
ones (aj → oi), the bottom-left (20 × 16 rectangle) shows the causal links from oceanic
modes to atmospheric modes (oj → ai), and the bottom-right (16 × 16 square) gathers
the causal links among oceanic variables (oj → oi).
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Figure 4.2: The structure used to display causal links in the multivariate analysis ex-
periments. a indicates the atmospheric variables and o the oceanic variables. Causality
source (target) variables are represented on the y-axis (x-axis). The same scheme is
applied to all experiments in this section.

Strong and weak coupling comparison: TE, LKIF, correlation

We analyze the output of TE, LKIF and correlation when applied to the strong cou-
pling and weak coupling configurations of MAOOAM. The two causal methods and the
correlation all identify that the system undergoes a marked change when the friction
coefficient changes from strong to weak. TE exhibits the greatest responsiveness to this
change, likely because its nonlinear behavior captures dynamics that linear measures
such as LKIF and correlation cannot.

The TE particularly highlights the difference between the two scenarios, as shown in
Figure 4.3. As said, the self-interactions, corresponding to the diagonal in the plot, are
not computed. The strong coupling analysis indicates strong oj → oi causal links, and
slightly less strong aj → ai interactions. More remarkably, it retrieves strong oj → ai
interactions, which instead are less marked for the causal link from the atmosphere to
the ocean. The weak coupling output shows considerable oj → oi interactions, while
almost zero aj → ai causality. A weak causal interaction is identified in the aj → oi
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direction, almost entirely absent in the opposite direction.

Figure 4.3: Comparison of the bivariate Transfer Entropy in absolute value for
MAOOAM in the strong (left) and weak (right) coupling scenarios; the axes display
the system’s state index. To facilitate direct comparison, the values in both scenarios
are globally normalized to unity, with |TEj→i| = 1 in the picture indicating the global
maximum value obtained with the two computations.

The LKIF method, similarly to the correlation (Figure 4.5) retrieves strong self-
interactions, displayed in the full-colored diagonal in Figure 4.4. While this is an expected
behavior for the correlation, there is no such prescription for the LKIF, although it
is reasonable that variables retain strong information flow from their own past. The
causal links appear to be generally less intense with respect to the TE results, but
we can still identify a clear difference between the strong and weak coupling cases.
For strong coupling, the causal structure is similar to the one retrieved with the TE,
despite displaying a less marked difference in the aj → oi direction with respect to the
oj → ai direction. Similar considerations apply in the weak coupling case. The oj → oi
interactions are marked. Some marked structures are identified in the aj → ai panel,
which were not visible for the TE. Also in this case the aj → oi causality is greater than
in the opposite direction, while still feeble.
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Figure 4.4: Comparison of the normalized Liang–Kleeman information flow τ (in absolute
value) for MAOOAM in the strong (left) and weak (right) coupling scenarios; the axes
display the system’s state index. To facilitate direct comparison, the values in both
scenarios are globally normalized to unity, with |τj→i| = 1 in the picture indicating the
global maximum value obtained with the two computations.

We compare the outputs of the two causal methods with the correlation, shown in
Figure 4.5. Similarly to the LKIF, the diagonal is dominant with respect to the other
correlations, as expected. In this case the picture is symmetric, since the correlation
coefficient is a symmetric scalar. We observe much stronger correlations between the
atmospheric and the oceanic modes in the strong coupling condition with respect to the
weak coupling one. Some interesting hard-colored diagonal structures are observed in
the atmosphere-atmosphere panel. The correlation correctly captures the influence of
the mechanical coupling strength, but does not differentiate the directed oj → ai and
aj → oi interactions.

The causal methods are able to differentiate the oj → ai interactions from the aj → oi
ones, retrieving information the correlation does not have, and they correctly identify the
physical transition from strong to weak coupling in MAOOAM. However, interpreting
causal links between the individual Fourier modes presents significant limitations, for two
main reasons. The first is that the system comprises a very large number of variables,
which might lead to errors in the conditioning mechanisms inside the methods. The
other is that the physical meaning of a causal relationship between Fourier modes is not
straightforward.
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Figure 4.5: Comparison of the instantaneous correlation for the spectral model under
the strong (left) and weak (right) coupling scenarios; the axes display the system’s state
index. To facilitate the comparison with the other methods, the correlation is normalized
to the unity and the absolute value is considered.

Smoothing the atmospheric signal

In Section 3.3 we have seen that the atmospheric streamfunctions display regions of fast
variability on top of the LFV (the active regions in Figure 3.5), in the strong coupling
MAOOAM configuration, and fast chaotic dynamics in the slow coupling configuration.
We are interested in knowing if the ocean-atmosphere causal relations change once we
smooth out the fast variability of the atmosphere. This operation amounts reducing the
evolution time-scales gap between the two media. Therefore, we perform a running mean
with increasing values of the averaging window over atmospheric data (instantaneous
values, 100 days, 1000 days) similarly to what done in Tondeur et al. (2020). We then
apply the TE and the LKIF to the resulting time series. Figure 4.6 displays results when
the coupling is strong, and Figure 4.7 when the coupling is weak.
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Figure 4.6: Comparison of the Liang–Kleeman information flow τ (left), Transfer En-
tropy (center) and correlation (right) for the spectral model in the strong coupling sce-
nario. The top figure shows the instantaneous analysis results; the other figures show
the results for the atmospheric time-averaged values over the averaging period of 100
days (center) and 1000 days (bottom).

We first look at the correlation in the strong coupling scenario. We clearly see the
intensity of the correlation increasing as the size of the running mean window increases.
This increase is particularly marked in the oj − ai areas, showing how the smoothing
operation effectively makes the ocean-atmosphere coupling emerge more clearly. We ob-
serve similar changes for the LKIF, with an increase of the self-causation areas oj → oi
and aj → ai, and an increase in the oj → ai and aj → oi areas too. The difference is
particularly marked in the latter direction, indicating that the smoothing of the atmo-
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spheric fast variability makes the driving of the atmosphere on the ocean emerge more
neatly. The TE appears to increment with the size of the averaging window, too, but
the change from the case with 100 days-window size to the case with window size equal
to 1000 days is not so straightforward. We observe a change in the structure of the
causation in the whole system, which however does not affect the understanding that
the oj → ai causal link is more marked than the opposite direction.

Figure 4.7: Comparison of the Liang–Kleeman information flow τ (left), Transfer En-
tropy (center) and correlation (right) for the spectral model in the weak coupling sce-
nario. The top figure shows the instantaneous analysis results; the other figures show
the results for the atmospheric time-averaged values over the averaging period of 100
days (center) and 1000 days (bottom).
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In the weak coupling scenario, it is interesting to note that in this case the in-
stantaneous values of correlation are close to zero. The progressive smoothing of the
atmospheric variability thus makes the correlation in the oj − ai areas emerge, rather
than increase, as the window size grows. We observe something similar for the causal
methods too, with important differences.

The progressive smoothing makes a considerable oj → ai causal link emerge for the
LKIF, particularly in the 1000 days case, while the opposite-direction link appears to
remain about zero. For the TE, we observe a neat increase in the aj → oi area, limited
to a fraction of the oceanic modes. This increase involves only a part of the atmospheric
modes in the 100 days case, and it extends to all 20 of them in the 1000 days case. The
oj → ai displays zero causation in both scenarios.

We stress the same considerations on the limitations of performing multivariate causal
analysis on MAOOAM. Despite these difficulties, we can say that the smoothing opera-
tion appears to make the ocean-atmosphere coupling emerge more clearly, although the
LKIF and the TE appear to make the causal links emerge in opposite directions, oj → ai
and aj → oi respectively.

4.4 Experiment results: interregional analysis

In this section we report the results of the analysis of the MAOOAM model applying the
interregional TE and LKIF methods. Both methods consider two or more subsystems
of a certain given system, and compute the causal link between them. The natural
choice in the case of MAOOAM is to divide the first 20 atmospheric modes of the
model, subsequently called subsystem A, from the other 16 spectral modes, subsystem
O. Therefore, the interregional methods allow to compute the complex interactions from
A→ O and from O → A, in the different configurations of the model.

Strong and weak coupling comparison

In the first analysis we compare the output of the two methods applied to the strong
coupling scenario and the weak coupling scenario, shown in Figure 4.8. In the strong
coupling scenario (left panel) both the TE and the LKIF identify a strong causal link
O → A. In the opposite direction the TE retrieves a slightly weaker causal link, while
the LKIF finds a non-significant value, corresponding to the absence of the causal link.
This numerical result is compatible with what we expect from the model, where the
ocean reduces the fast variability of the atmosphere in the strong coupling scenario, as
outlined in Chapter 3. In the weak coupling case the situation is reversed. The link
is stronger in the A → O direction for both methods. The TE retrieves a weaker but
significant link in the O → A direction, while the LKIF reports a non-significant link.
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Figure 4.8: Interregional analysis of the ocean-atmosphere coupled system using the TE
output (top) and LKIF output (bottom), in the strong coupling scenario (left), and the
weak coupling scenario (right). The fully opaque arrows indicate significant causal links;
the transparent arrows indicate there is no causation in that direction (non-significant
causal link). The estimated strength of the causal link is reported on each arrow, with
the associated error. The arrow dimensions are normalized with respect to the method
used: dimensions can be compared between the strong-weak coupling scenarios of the
same method, but cannot be compared between LKIF and TE.

From these results we observe how the interregional causal analysis is more informa-
tive with respect to correlation methods, as it allows to separate the causal influence
from the ocean to the atmosphere and vice versa. The TE reports smaller values with
respect to the significant links obtained with the LKIF, which makes nonviable a direct
comparison. The two methods agree in the relative magnitudes of the inferred causal
links: both methods identify a large causal influence from O → A in the strong coupling
scenario, and detect significant A → O causation in the weak coupling scenario. How-
ever, we note that the LKIF is more prone to labeling causal links as non-significant,
while the TE has higher resolution. This could be due to the linear nature of the LKIF,
compared to the model-free approach of the TE. The overall result is the detection of
non-symmetric causation between the O and A systems, with qualitative compatibility
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of the O → A and the A → O causal links in the strong and weak coupling scenarios,
respectively. This indicates that both methods, albeit carrying significant limitations,
agree on the physical content of the model.

We compare the interregional results with the multivariate results reported in the
previous section. In the strong coupling scenario, TE results obtained with the interre-
gional approach are compatible with multivariate TE results, as an approximate estimate
of the causal strength between oj → ai values, compared to the causal strength between
aj → oi values agrees with the bigger dimension of the O → A arrow with respect to
the thinner A → O arrow. The comparison is less clear for the LKIF, as we do not
observe a marked difference between the two areas in the multivariate LKIF, whereas
the interregional approach highlights a strong difference.

In the weak coupling scenario we observe the multivariate and interregional TE results
are again compatible, as the aj → oi causal direction of the multivariate approach is
predominant over the opposite direction, as also reflected by the arrow dimensions in
the interregional case. A similar consideration can be done for the LKIF, since the only
causal links found by the multivariate method appear to be in the aj → oi direction, and
the same result is found with the interregional LKIF.

The interpretation of the TE color intensity in the multivariate case is not straight-
forward, as the sharp reduction of the blue intensity does not correspond to a marked
change in the dimension of the arrows in the interregional approach.

Smoothing the atmospheric signal

We here analyze the TE and LKIF results obtained when a running mean operation
is applied to atmospheric modes, exponentially increasing the values of the averaging
window from instantaneous values to approximately 40 years. The oceanic variables are
not averaged. The rationale behind this operation is to observe how the causal relations
change when the fast variability of the ocean is smoothed out. The results for the TE are
shown in Figure 4.9, LKIF results are shown in Figure 4.10 . The top panels correspond
to the strong coupling case and the bottom panels to the weak coupling case, in the
A→ O and O → A directions, respectively.

In general, we observe that the smoothing of the atmospheric variability affects the
obtained results, and some interesting behaviors are observed both for the TE and the
LKIF. In the strong coupling scenario, the A → O TE causal link smoothly diminishes
as the atmospheric variability is increasingly smoothed out. The values of the causal link
become non-significant, i.e. the error bars of the data points intersect the axis y = 0,
around a widow size of 1 year. This indicates that the influence of the atmosphere on
the ocean goes to zero when the averaging window is larger than 1 year, approximately.
Instead, the LKIF causal link, while initially not significant, progressively stabilizes to
a small but significant strength. In the O → A direction, the TE causal link changes
magnitude abruptly a few times before stabilizing around a value of 0.2 nats. A similar
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behavior is observed for the LKIF, but the causation values for very high averaging
periods stabilize around almost-zero values.

The weak coupling scenario shows an interesting behavior for the A → O link with
both methods. For TE, the connection becomes non-significant following a cusp-like
behavior for a few months of running mean window size, and then becoming significant
with approximately constant values for higher average values. In the opposite direction
O → A, the causal link is initially small but significant, then increases up to a peak,
which is meat around a 1 year running mean over the atmosphere, then slowly decreasing
again while remaining significant. For the LKIF, the entity of the causal link is initially
stable, then enters a region of minima and starts increasing for averaging values larger
than 1 year. It peaks around a running mean window size of 10 years approximately and
starts dropping again. In the opposite direction, the O → A connection is initially not
significant, with large error bars for the first values of running mean window. For higher
values of the averaging window the causal connection becomes small but significant.

The comparison of the two methods as the atmospheric dynamics is progressively
smoothed returns that TE and LKIF is not immediate, as the TE systematically outputs
smaller values with respect to the TE, and the two methods do not always agree on
wether a causal link is significant or not. Also in the case of the multivariate analysis,
we stress that an immediate physical interpretation of the output is hardly achievable,
as the analysis is performed on a simplified spectral model.
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Figure 4.9: Analysis of the ocean-atmosphere coupling using the interregional TE in
function of a running mean over atmospheric modes. The averaging period (in months)
increases exponentially on the x axis, shown in log scale. Results for the strong coupling
scenario are shown in the top panel: A → O (left) and O → A (right). Results for the
weak scenario are shown in the bottom panel: A → O (left) and O → A (right). Error
bars are reported on each data point. Red dashed lines indicate running mean window
sizes of 100 and 1000 days.
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Figure 4.10: Analysis of the ocean-atmosphere coupling using the interregional LKIF in
function of a running mean over atmospheric modes. The averaging period (in months)
increases exponentially on the x axis, shown in log scale. Results for the strong coupling
scenario are shown in the top panel: A → O (left) and O → A (right). Results for the
weak scenario are shown in the bottom panel: A → O (left) and O → A (right). Error
bars are reported on each data point. Red dashed lines indicate running mean window
sizes of 100 and 1000 days.

Similarly to what we did at the end of the previous chapter, we now compare the
results obtained with the interregional and the multivariate approaches. In the strong
coupling case, while the interregional TE approach shows a decreasing trend for the
A→ O causal link, we had observed an apparent intensification of the causal link in the
multivariate approach. Instead, we confirm the stabilization of the pattern in the oj → ai
area with increasing smoothing window value, as we see that the two values belong in a
region of minima in the interregional approach. For the LKIF, the two approaches seem
to find similar results, although in the oj → ai region we don’t clearly observe the drop
shown by the interregional approach.

Moving to the weak coupling scenario, we confirm the increase of TE values in the
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aj → oi region, also observed with the interregional approach. The high values reached
with the interregional approach in the O → A panel, instead, hardly appear with the
multivariate approach. The two LKIF approaches are more in line, as we observe stable
low LKIF values in the aj → oi region as well as in the A→ O panel, and we also observe
a slight increase in the opposite direction, with both methods.

Introducing a time-lag between ocean and atmosphere

We analyze the output of the interregional TE and LKIF with the application of increas-
ing time-lag between the atmosphere and the ocean. The LKIF has not been designed
to work with time lags by default, although they can be used in principle (X. San Liang,
2021). To implement the time-lagged analysis, we can shift in time the time series of the
leading variable and recompute LKIF between oceanic and atmospheric variables based
on the lagged time series. We follow the same approach for the TE. For positive values
of the x-axis the atmosphere is pushed forward with respect to the ocean, while it lags
behind it for negative x values. The goal of this analysis is to study how the causality
in the A → O and O → A directions changes if we increase the temporal separation
between the oceanic and atmospheric dynamics. We reported the results of this analysis
in Figure 4.11 for the TE and in Figure 4.12 for the LKIF.

Notably, the behavior for positive and negative values of the atmospheric lag with
respect to the ocean appears to be approximately symmetric. In general the presence
of a lag does not change the strength of the retrieved causal link up until high values
of the time lag (both positive and negative). An exception to this is represented by the
weak coupling LKIF scenario, where the evaluated links are not symmetric with respect
to the y-axis for small to medium values of the time lag, and stabilize only after a lag of
several months. In the strong coupling case we observe a drop followed by an increase
around 100 months of lag, in the results of both methods.

An overall look at the results of both methods says something similar to what we
observed in the multivariate analysis in Figure 4.8 : the two methods agree in finding
strong O → A causal link in the strong coupling case and both retrieve very small to
non-significant link in the weak O → A scenario. However, the TE has generally higher
resolution and finds significant links also in the strong and the weak coupling A → O
case, which are both non-significant for the LKIF.
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Figure 4.11: Analysis of the ocean-atmosphere coupling with the interregional TE. The
lag between the atmosphere and the ocean, in months, increases exponentially on the x
axis, shown in log scale. For positive values of the x axis the atmosphere lags forward
with the respect to the ocean, and it lags behind the ocean for negative x values. Results
for the strong coupling scenario are shown in the top panel: A → O (left) and O → A
(right). Results for the weak scenario are shown in the bottom panel: A→ O (left) and
O → A (right). Error bars are reported on each data point. Red dashed lines indicate
time lags of 100 and 1000 days.

91



CHAPTER 4 4.4. Experiment results: interregional analysis

Figure 4.12: Analysis of the ocean-atmosphere coupling with the interregional LKIF. The
lag between the atmosphere and the ocean, in months, increases exponentially on the x
axis, shown in log scale. For positive values of the x axis the atmosphere lags forward
with the respect to the ocean, and it lags behind the ocean for negative x values. Results
for the strong coupling scenario are shown in the top panel: A → O (left) and O → A
(right). Results for the weak scenario are shown in the bottom panel: A→ O (left) and
O → A (right). Error bars are reported on each data point. Red dashed lines indicate
time lags of 100 and 1000 days.

Key points

• A causal analysis is performed on the 36 spectral modes of MAOOAM through the
Liang-Kleeman Information Flow (LKIF) and the Transfer Entropy (TE), using
multivariate and interregional approaches.

• Multivariate analysis is particularly effective for examining mode-to-mode causal
links within a multivariate system. However, its application is limited by the
system’s high dimensionality and the inherent challenges in interpreting causal
links in the spectral formulation of MAOOAM.
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• Multivariate TE and LKIF clearly underline the change from strong to weak cou-
pling in the system and successfully retrieve different causal information in the
atmosphere → ocean versus ocean → atmosphere directions. Significant local
differences are retrieved in the output of the two methods, and more substantial
ones with respect to the correlation.

• Interregional causal analysis highlights the advantage of causal methods over a
symmetric correlation measure, as it marks a clear difference in the causal infor-
mation between the ocean→ atmosphere and the atmosphere→ ocean directions.
The TE is more sensitive, as it retrieves significant causal links also in the directions
which the LKIF marks as non-significant.

• Smoothing the Atmospheric Signal. Reducing fast fluctuations in the atmospheric
data makes the ocean–atmosphere connection emerge more clearly.

• Time-lag analysis. Shifting the timing between ocean and atmosphere signals shows
that the basic directional influences stay consistent unless the lag is very large
(about 10 years), except for the weak coupling case of the atmosphere that shows
higher instability.

• Connections to the Physics of MAOOAM. The results match physical expectations:
when the ocean-atmosphere coupling is strong, the ocean damps the faster atmo-
spheric variability; in the weak coupling case, the atmosphere increasingly drives
the ocean. Significant foundational differences between TE and LKIF limit further
interpretations.
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Conclusions

In this work, we have explored the foundations of causality with a focus on the challenges
of performing causal inference from time series. We examined both its philosophical and
scientific grounds and described the two main approaches that have emerged over the
last century. One approach is based on a mathematically rigorous framework largely
introduced by Judea Pearl (Spirtes, C. Glymour, and Scheines, 2001; Judea Pearl, 2009;
Peters, Janzing, and Schlkopf, 2017), which employs causal graphs and the notion of
interventions. The other approach is rooted in data-driven methods aimed at inferring
causal relations from observations and time series, with Granger causality (Granger,
1969) being its best-known representative.

These two lines of work have evolved considerably in recent decades. On one side,
algorithms based on conditional independencies have advanced the interventional frame-
work, while on the other, several data-driven methods rooted in information theory and
dynamical systems have been developed. In our work, we paid special attention to the
information-theoretic method Transfer Entropy (Schreiber, 2000; J. Lizier et al., 2011)
and to the Liang–Kleeman Information Flow (X. San Liang, 2021). We also described
dynamical systems-based methods such as Convergent Cross Mapping (CCM) (Sugihara
et al., 2012) and Empirical Model Reduction (EMR) (Dmitri Kondrashov, Chekroun,
and Michael Ghil, 2015). Current research aims to generalize linear and/or bivariate
methods to higher-order nonlinear versions, to capture complex interactions more faith-
fully (Marinazzo, Pellicoro, and Stramaglia, 2008; Stramaglia et al., 2024). In addition,
recent research has explored data-driven methods that attempt to reconnect with the
interventional definition of causality, for example through the fluctuation-response for-
malism (Baldovin, Cecconi, and Vulpiani, 2020). Theoretical studies have examined
possible common ground between these methods. For instance, it has been argued that
Granger causality and Transfer Entropy are equivalent up to a factor of 2 for Gaussian
variables (Barnett, Barrett, and A. K. Seth, 2009), and that these methods can be re-
cast in terms of testing for conditional independencies, much like algorithms based on the
formal interventional framework (Peters, Janzing, and Schlkopf, 2017; J. Runge, 2018).
However, a broader generalization has not yet been achieved.

Different methods do not always yield convergent results, particularly with respect
to estimated causal effects and reconstructed causal graphs. This may be due to the
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different theoretical foundations of the methods and to their specific implementation
characteristics - such as linear versus nonlinear, or bivariate versus multivariate - and
it underscores the need to choose the appropriate method for a particular type of data
(Krakovská et al., 2018).

Causal methods have seen increasing application in climate studies, driven by the be-
lief that a causal perspective offers valuable insights for disentangling complex dynamical
relationships and attributing causes to events (A. Hannart et al., 2016; Alexis Hannart,
Carrassi, et al., 2016), particularly compelling tasks in this field. This is particularly
true in climate science, where we deal with one of the most fascinating, complex, and
multiscale nonlinear systems (Michael Ghil and Lucarini, 2020).

Open methodological challenges in applying causality to the climate system include
handling incomplete domain knowledge and developing methods that can cope with
high degrees of complexity and missing data (Jakob Runge, Gerhardus, et al., 2023). A
growing line of research aims to integrate machine learning with causality. For example,
incorporating large language models into the framework of causal hypothesis testing -
combined with expert knowledge and data - could yield deeper insights into the causal
structure of the climate system and improve data-driven forecasting (Cohrs et al., 2025).

We have positioned our work within the field of causal studies in climate science
by investigating ocean–atmosphere coupled variability. Although this problem has been
extensively studied through observations and modeling, the direction of the coupling
between the ocean and the atmosphere remains not fully understood. In this work,
we have investigated the causal interactions of the ocean–atmosphere system using the
low-order coupled spectral model MAOOAM (De Cruz, J. Demaeyer, and S. Vannitsem,
2016) and two methods: Transfer Entropy (TE) and Liang–Kleeman Information Flow
(LKIF).

First, we examined mode-to-mode causal relationships via multivariate approaches,
which proved effective at revealing how the system transitions from strong to weak
coupling and at distinguishing the directional influences between the atmosphere and
the ocean. The two methods qualitatively agree but present significant differences. The
high dimensionality of MAOOAM and the challenges inherent in interpreting causal links
within its spectral formulation limit this approach.

To complement our findings, we adopted an interregional perspective by analyz-
ing the ocean and atmosphere as distinct multivariate subsystems. This interregional
causal analysis highlights the advantage of causal methods over symmetric correlation
measures, as it clearly differentiates the two causal directions. Both methods retrieve
a strong ocean → atmosphere causal link in the strong coupling scenario, while the
atmosphere→ ocean becomes predominant in the weak coupling scenario. Notably, TE
demonstrated higher sensitivity by retrieving significant causal links in both directions,
whereas LKIF sometimes marked weaker links as non-significant. Furthermore, reducing
fast fluctuations in the atmospheric data (smoothing) made the ocean–atmosphere con-
nection emerge more clearly, and a time-lag analysis showed that the basic directional
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influences remain consistent unless the lag becomes very large (around 10 years), with
the weak coupling case exhibiting higher instability.

Overall, the results obtained with TE and LKIF show some relevant differences, likely
due to their distinct theoretical foundations. Nevertheless, they qualitatively align with
physical expectations: under strong coupling, the ocean dampens rapid atmospheric
variability, while under weak coupling, the atmosphere increasingly drives the ocean.
These findings warrant further investigation.

The analyses presented in this work are limited to the spectral modes of MAOOAM.
A natural extension of this research would be to investigate the causal dependencies in
real space by integrating the model to obtain atmospheric and oceanic physical fields,
thereby providing more straightforward physical intuition.

Further insight into the ability of TE and LKIF to capture physical information could
be obtained by studying higher-dimensional models. Moreover, applying these methods
to observational or reanalysis time series would allow us to test them under conditions
of maximum complexity and directly compare their outputs with real-world data.

The analysis could also be extended to include other methods. An evolution of this
work—not implemented due to time constraints—would involve testing the EMR and
CCM methods. This would help assess whether dynamical systems-based approaches
offer greater insight into the causal dependencies of the system, as they operate in a
framework that closely aligns with the system’s own dynamics.
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Appendix A

Derivation of the MAOOAM
spectral model

Set of Basis Functions

The atmospheric field is defined in a zonally periodic channel with no-flux boundary
conditions in the meridional direction: ∂ · /∂x ≡ 0 at the meridional boundaries. The
fields are projected on Fourier modes that take into account these boundary conditions,
with a Galerekin expansion.

Galerkin expansion

The Galerkin expansion is spectral method belonging to the general class of Weighted
Residual Methods (Oliveira and Rodrigues, 2011), developed to solve numerically differ-
ential equations, for which the solution is approximated by a finite series expansion in
some basis of functions. The series expansion is such that some quantity - a measure of
error or residual - which should be exactly zero is forced to be zero in an approximate
sense. Let us give an example. We consider a function f(x) that is approximated by the
series expansion fN(x) =

∑N
i=0 aiFi(x), where ai are the unknown coefficients and Fi(x)

are the basis functions. The coefficients are determined by requiring that the residual
RN ≡ f(x)− fN(x) is set to zero in some approximate sense, that is

⟨RN , ϕj⟩ =
∫ b

a

RNϕjwdx = 0, (A.1)

where j = 0, ..., N , ϕj(x) are the test functions and w is the weight. The choice of the
spectral function defines the spectral method. The Galerkin method is retrieved when
ϕi(x) = Fi(x), with the basis functions satisfying the boundary conditions. Spectral
methods transform a partial differential equation in a finite set of ordinary differen-
tial equations, with considerable economy of the computational resources Oliveira and
Rodrigues, 2011.
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Spectral expansion of MAOOAM

The basis functions for the atmosphere chosen in Stéphane Vannitsem, Jonathan De-
maeyer, et al. (2015) are defined as follows

FA
P (x, y) =

√
2 cos(Py),

FK
M,P (x, y) = 2 cos(Mnx) sin(Py),

FL
H,P (x, y) = 2 sin(Hnx) sin(Py),

(A.2)

where M , H, and P are integers. The apices A,K,L come from the original naming
of the functions assigned in Lorenz (1963). The functions with the apex A represent
the zonal component of the flow. Functions with apices K and L represent superposed
waves, and are called waved of the first mode. The coordinates x and y are the horizontal
adimensionalised coordinates, rescaled by dividing the dimensional coordinates by the
characteristic length L (Lx and Ly for zonal and meridional extents, respectively). The
model’s domain is then defined as:

0 ≤ x ≤ 2π

n
, 0 ≤ y ≤ π, (A.3)

where n is the aspect ratio between its meridional and zonal extents Ly (Ly) and Lx

(Lx).
In the application we will refer to the functions as F1(x, y), ..., Fna(x, y), numbering

them along increasing values f M = H and then P , where na is the number of modes
in the spectral expansion. In the version of the model we used in this work, we have
na = 10.

For the basis functions we have

∇2Fi(x, y) = −a2iFi(x, y) (A.4)

with eigenvalues a2i = P 2
i +n

2M2
i or a2i = P 2

i +n
2H2

i . The atmospheric Fourier modes
are orthonormal with respect to the inner product on the domain.

We now turn to the oceanic basis functions. Both oceanic fields ψ0 and δT0 are
defined in a closed basin with no-flux boundary conditions at both meridional and zonal
boundaries. This condition implies that the modes will only involve sine functions. The
set of basis functions counts no elements, corresponding to the number of oceanic modes
one wants to implement. In this work we used no = 8. The basis functions read

ψHo,Po(x, y) = 2sin(
Hon

2
x)sin(Poy) (A.5)

with integer values of Ho, Po. The basis functions are numbered along increasing
values of Ho and then Po. For these functions we have

∇2ϕi(x, y) = −m2
iϕi(x, y) (A.6)
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Figure A.1: The first 10 basis functions for the atmosphere, Fi, evaluated on the nondi-
mensional domain of the model. Courtesy of Jonathan Demaeyer, Cruz, and Stéphane
Vannitsem (2020)

with eigenvalues m2
i = P 2

o,i + n2H2
o,i/4. These Fourier modes are orthonormal with

respect to the inner product over the domain. Atmospheric and oceanic basis functions,
instead, are not orthonormal to each other.
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Figure A.2: The first 8 basis functions for the ocean, ϕi, evaluated on the nondimensional
domain of the model. Courtesy of Jonathan Demaeyer, Cruz, and Stéphane Vannitsem
(2020).

Fields expansions

ψa(x, y) =
na∑
i=1

ψa,iFi(x, y),

θa(x, y) =
na∑
i=1

θa,iFi(x, y),

δTa(x, y) =
na∑
i=1

δTa,iFi(x, y),

δTa(x, y) =
2f0
R

na∑
i=1

θa,iFi(x, y),

ψo(x, y) =
no∑
j=1

ψo,j

(
ϕj(x, y)− ϕj

)
,

δTo(x, y) =
no∑
j=1

δTo,jϕj(x, y).

(A.7)
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In the expansion for ψo, a term ϕ̄j is added to the oceanic basis function ϕj in order
to get a zero spatial average: this ensures mass conservation in the ocean, and does not
affect the dynamics. The mass conservation is automatically satisfied for ψa, instead, as
the spatial average of the atmospheric basis functions is zero.

The short-radiation for atmosphere and ocean, and the vertical velocity in the atmo-
sphere are decomposed as well.

Ordinary differential equations

The fields, parameters and variables are non-dimensionalized by divinding time by f−1
0 ,

distance by the characteristic length scale L, pressure by the pressure difference ∆p, tem-
perature by f 2

0L
2/R, and streamfunction by L2f0. The result of the adimensionalization

is the identification of the field θa with δTa: 2θa ≡ δTa.
Having adimensionalized, one can write the ordinary differential equations of the trun-

cated model. These equations are at most quadratic in the fields ψa,i, θa,i, ψo,i, ωi, δTo,i.
The vertical velocity field ωi can be eliminated. These equations include coefficients that
result from the Galerkin expansion. The coefficients are correspond to the inner products
of the Fourier modes Fi with Fi, ϕi with ϕi and Fi with ϕi. We will not write explic-
itly the resulting ODEs of the model, but they can be explicitly found in the model’s
documentation page, here.

The obtained ordinary differential equations can then be integrated numerically, so
that the solution for the Fourier components of the fields are obtained as time series.
The numerical integration is performed through a Runge-Kutta method; the scheme is
detailed here.

The qgs implementation also gives the possibility to obtain several physical fields
of the model, by using the formulae A.7. One can obtain the atmospheric and oceanic
streamfunctions and temperature fields, the wind velocities, and several other physical
components of the model. The spatial resolution of these fields can be chosen by the
user.
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Appendix B

Kraskov-Stögbauer-Grassberger
technique for TE estimation

The Kraskov-Stögbauer-Grassberger technique computes Transfer Entropy via Condi-
tional Mutual Information. In the following we explain the rationale of this technique.

Estimation of MI

Consider a set of N bivariate measurements, zi = (xi, yi), i = 1, ..., N , which are assumed
to be independent identically distributed (i.i.d.) realizations of a random variable Z =
(X, Y ) with density µ(x, y). Here, x and y can be scalar or vector quantities. The density
is assumed to be a proper smooth function, so that the integrals written below exist in
some sense. The Mutual Information is defined as

MI(X, Y ) =

∫ ∫
dxdy µ(x, y) log

µ(x, y)

µx(x)µy(y)
, (B.1)

where the terms at the denominator are the marginal densities of X and Y . The
MI can be decomposed iteratively in the MI for subsystems, leveraging its definition.
So one can decompose MI(X1...Xn) for any n > 2 and for any partitioning of the set
(X1...Xn) into the MI between elements within one cluster and MI between clusters. This
property is numerically useful and it derives from the information-theoretic ground of MI,
representing an advantage of this method over others that do not have these theoretical
grounds. in case of changes of high-dimensional redundancies under reparametrization
of some subspace, since it is sufficient to calculate the MIs in that subspace only.

There are different approaches to practically compute MI. The KSG technique esti-
mates MI from k-nearest neighbor statistics. This approach is frequently used to com-
pute estimators for Shannon entropy, and it has been extended to the estimation of MI
in Kraskov, Stögbauer, and Grassberger, 2004.

Assume some metrics to be given on the spaces spanned by X, Y and Z = (X, Y ). We
can then rank, for each point z = (x, y), its neighbors by the maximum norm distance
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∥z−z′∥ = max{∥x−x′∥, ∥y−y′∥}, while any norm can be used for ∥x−x′∥ and ∥y−y′∥.
Let us denote by ϵ(i)/2 the distance from zi to its kth neighbor, and by ϵx(i)/2 and
ϵy(i)/2 the distance between the same points projected into the X and Y subspaces.
We have ϵ(i) = max{ϵx(i), ϵy(i)}. One can then compute the MI following two different
algorithms, detailed in Kraskov, Stögbauer, and Grassberger, 2004.

Estimation algorithms

The first algorithm to compute MI counts the number nx(i) of points xj whose distance
from xi is strictly less than ϵ(i)/2, and similarly for y instead of x. This is shown in
Figure B.3(a). Notice that ϵ(i) is a random fluctuating variable, and therefore also nx(i)
and ny(i) fluctuate. We denote by ⟨...⟩ averaged both over all i ∈ [1, ..., N ] and over all
realizations of the random samples,

⟨...⟩ = N−1

N∑
i=1

E[...(i)]. (B.2)

The estimate for MI is then

MI(1)(X, Y ) = ψ(k)− ⟨ψ(nx + 1) + ψ(ny + 1)⟩+ ψ(N). (B.3)

In the second algorithms nx(i) and ny(i) by the number of points are replaced by
∥xi − xj∥ ≤ εx(i)/2 and ∥yi − yj∥ ≤ εy(i)/2. The estimate for MI is then

MI(2)(X, Y ) = ψ(k)− 1/k − ⟨ψ(nx) + ψ(ny)⟩+ ψ(N). (B.4)

The algorithms estimate the mutual information in nats. In general, both formulas
give very similar results. For the same k, Eq. B.3 gives slightly smaller statistical errors
but have larger systematic errors. The latter algorithm should be applied if interested
in very high dimensional systems.

The adaptation of this method to compute the Transfer Entropy has been derived in
Wibral, Vicente, and Lindner, 2014.
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Figure B.1: Panel (a): Determination of ϵ(i), nX(i), and nY (i) in the first algorithm,
for k = 1 and some fixed i. In this example, nX(i) = 5 and nY (i) = 3. Panels (b),(c):
Determination of ϵX(i), ϵY (i), nX(i), and nY (i) in the second algorithm for k = 2. Panel
(b) shows a case in which ϵX(i) and ϵY (i) are determined by the same point, while panel
(c) shows a case in which they are determined by different points. Courtesy of Kraskov,
Stögbauer, and Grassberger, 2004.
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Appendix C

Estimation of the Liang-Kleeman
Information Flow

C.1 Estimation of the bivariate information flow

The following theorem, proven in X. San Liang, 2014, gives the maximum likelihood
estimator for the information flow in a two-dimensional system (d = 2).

Theorem C.1.1. Given two time series X1 and X2, under the assumption of a linear
model with additive noise, the maximum-likelihood estimator of 2.21 is

T̂2→1 =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C2

12

(C.1)

where Cij is the sample covariance between Xi and Xj, and Ci,dj is the sample covariance
between Xi and a series derived from Xj using the Euler forward differencing scheme:
Ẋj,n = (Xj,n+k −Xj,n)/(d∆t), with k ≥ 1 some integer.

C.2 Estimation of the multivariate information flow

The possibility to compute the information flow for multivariate time series has been
implemented in X. San Liang, 2021, which develops a formalism for time series. We
give here the details for the estimation of 2.20, given observations of the d components.
Without loss of generality, it suffices to examine T2→1. We hence examine a linear
stochastic differential equation:

dX = f +AXdt+BdW, (C.2)

where f is a constant vector, and A = (aij) and B = (bij) are constant matrices.
B is assumed to be diagonal to simplify the calculations and as it is a quite reasonable
assumption X. San Liang, 2021.
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C.2. Estimation of the multivariate information flow

The estimation of the information flow under the observation of d time series is
again obtained with maximum-likelihood estimation. Suppose that the series are equal-
distanced with a time stepsize ∆t, and let N be the sample size. Consider an interval
[n∆t, (n + 1)∆t], and let the transition pdf be ρ(Xn+1|Xn; θ), where θ stands for the
vector of parameters to be estimated. So, the log likelihood is:

ℓN(θ) =
N∑

n=1

log ρ(Xn+1|Xn; θ) + log ρ(X1). (C.3)

Following some passages reported in X. San Liang, 2014, one obtains the maximum
likelihood estimators:

â1i =
1

detC

d∑
j=1

∆ijCjd,1,

ĝ11 =
QN,1∆t

N
,

f̂1 = Ẋ1 −
d∑

i=1

â1iX i,

(C.4)

where

Cij = (Xi −X i)(Xj −Xj),

Ci,dj = (Xi −X i)(Ẋj − Ẋj),
(C.5)

are the sample covariances, ∆ij are the cofactors of the matrix C = (Cij), and

QN,1 =
N∑

n=1

[
Ẋ1,n −

(
f̂1 +

d∑
j=1

â1jXj,n

)]2

=
N∑

n=1

[
(Ẋ1,n − Ẋ1)−

d∑
i=1

â1i(Xi,n −X i)

]2

= N(Cd1,d1 − 2
d∑

i=1

â1iCd,1i +
d∑

i=1

d∑
j=1

â1iâ1jCij).

(C.6)

By 2.22, this yields an estimator of the information flow from X2 to X1, which
concludes our calculations:

T̂2→1 =
1

detC
·

d∑
j=1

∆2jCj,d1 ·
C12

C11

, (C.7)
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C.2. Estimation of the multivariate information flow

where Cj,d1 is the sample covariance between Xj and the derived series Ẋ1. When
d = 2 the formula coherently reduces to 2.21, the 2D estimator.
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