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Abstract

The three-dimensional reconstruction of lithium cobalt oxide (LCO) bat-

teries in the X-ray domain is crucial for analyzing their internal structure and

degradation processes. Traditional reconstruction techniques require acquir-

ing and aligning thousands of X-ray projections, making the process compu-

tationally expensive and impractical for certain applications. In this work, we

explore state-of-the-art rendering techniques to significantly reduce the num-

ber of required projections while maintaining high reconstruction quality. Our

primary focus is on 3D Gaussian Splatting (3DGS), which we demonstrate to

be a faster and more efficient alternative compared to Neural Radiance Fields

(NeRF).

We begin by introducing the problem, detailing the X-ray acquisition sys-

tem, and discussing the role of X-ray absorption fine structure (XAFS) tech-

nology in LCO battery analysis. Through systematic experimentation, we

compare 3DGS and NeRF, showing that 3DGS achieves superior reconstruc-

tion quality with significantly lower computational cost and training time.

Additionally, we investigate strategies for optimizing reconstruction quality

by carefully selecting, averaging, and filtering projections to minimize acqui-

sition and processing overhead. Our findings confirm that modern render-

ing techniques, particularly 3DGS, enable high-fidelity 3D reconstructions

with an order-of-magnitude reduction in required projections, making them

a promising solution for efficient battery analysis.



Chapter 1

Introduction

1.1 Problem Definition

3D object reconstruction from X-ray images involves recovering the internal

structure of an object as a 3D volume from a series of 2D X-ray projections.

This process is fundamental in fields such as medical imaging, material sci-

ence, industrial inspection, and cultural heritage preservation.

The reconstruction is typically achieved using techniques like computed

tomography (CT), where a complete dataset of X-ray projections taken at mul-

tiple angles is used to reconstruct the 3D volume. However, acquiring many

projections is time-consuming, expensive, and exposes objects (or patients) to

higher radiation doses, making it critical to achieve high-quality reconstruc-

tion with a reduced number of input projections.

The goal of this thesis is to:

• Minimize the number of input X-ray projections while still achieving

high-quality 3D reconstructions. Volumes must be accurate, i.e., faith-

fully represent the original object; small details should be preserved;

and artifacts and noise should be minimized

• Adapt and train SoTA reconstruction methods that compensate for the

reduced projection data
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• Balance the trade-offs between computational cost, training time, re-

construction quality, and practical constraints (e.g., data acquisition and

radiation exposure)

• Definemetrics to evaluate reconstructed volumeswith andwithout ground

truth data

1.2 Metrics

When it comes to evaluating a density volume, we need to establish whether

ground truth (GT) data is available, the accuracy and reliability of such data,

or whether reference data is not available. For this reason, we can categorize

our metrics according to the presence of a ground truth volume.

With GT volume In this scenario, a direct comparison of a reconstructed

volume and a reference volume is possible. A GT volume can be obtained in

different ways according to the application of interest. Synthetic Volume A

3D object can be designed and modeled with a 3D Software, e.g., Blender[8],

and can be printed using a 3D printer. In this case, the shape of the reference

volume is known because it has been manually designed by a modeler. To

evaluate the capacity of the model to distinguish between low and high den-

sity regions, wemay print objects using composite materials (e.g., a mixture of

plastic, metals, resins, ceramic), or calibrate the infill percentage for volumet-

ric region. Traditional Volume If a high and accurate number of projections

are captured around the object (e.g., 1800 images), a high-fidelity volume can

be reconstructed using traditional algorithms (e.g., Filtered Back Projection

[16]) and can be treated as GT. This assumes a qualitative analysis by experts

to certify the accuracy and fidelity of the volume.

Once the GT volume is available, we can transfer metrics usually used to

compare 2D images to the world of 3D. Metrics include the Peak Signal-to-

Noise Ratio (PSNR) and Structural Similarity Index (SSIM).



1.2 Metrics 3

Peak Signal-to-Noise Ratio is defined as

PSNR = 10 · log10

(
MAX2

MSE

)
, (1.1)

where MAX is the maximum possible pixel value of the volume and MSE is

the Mean Squared Error, namely

MSE = 1
NxNyNz

Nx∑
x=1

Ny∑
y=1

Nz∑
z=1

(IGT(x, y, z) − Ipred(x, y, z))2 . (1.2)

In general, a high PSNR (>30 dB) means good reconstruction, whereas a

low PSNR indicates greater noise or deviation from the ground truth. SSIM

measures the perceptual quality of the reconstructed volume according to the

ground truth, focusing on the structural similarity.

SSIM3D = 1
3

(SSIMD + SSIMH + SSIMW ) (1.3)

SSIM(X, Y ) = (2µXµY + C1)(2σXY + C2)
(µ2

X + µ2
Y + C1)(σ2

X + σ2
Y + C2)

(1.4)

In Eq. 1.3, SSIM3D is computed as the mean of the 2D SSIM for each

volume dimension. In Eq. 1.4, X and Y are two given slices of the predicted

and reference volume. µX, µY are the mean intensities of the slices; σ2
X, σ2

Y are

the variances; σX, Y is the covariance; C1 and C2 are stabilization constants to

avoid division by zero.

An SSIM = 1means perfect similarity; an SSIM ≈ 0means no perceptual

similarity.

Without GT Volume If the GT volume is unavailable, we need to engineer

metrics to assess the quality of the reconstructed volumes without the pres-

ence of a reference volume. In general, a visual assessment of the volumes

suggests the outcome of a successful reconstruction. Given a small amount
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of prior knowledge about the object, the presence of artifacts or unwanted

floaters provides a first quality assessment. Noise and abrupt density changes

also signal a poor reconstruction.

Following [15], we can segment active regions from empty regions in

the volumes. Regions are labeled as active if we are confident enough that

there is high-density material. Such labeling process is usually supervised

by an expert that is able to interpret the predicted volume and assess their

quality; empty regions, corresponding to low-density material, are labeled as

background. On such segmented volumes, signal-to-noise ratio (SNR) and

contrast-to-noise ratio (CNR) can be calculated as follows:

SNR = 20 log10

(
µi

σb

)
(1.5)

CNR = 20 log10

(
|µi − µb|

σb

)
(1.6)

µi and µb represent the mean values of the foreground and background

regions, respectively, while σb is the standard deviation of values in the back-

ground regions. The factor of 20 in the SNR and CNR formulas arises because

these ratios are typically defined in terms of power, which is proportional to the

square of the amplitude. Using the logarithm property log10(x2) = 2 log10(x),

the squared term introduces a factor of 2, resulting in 10 · 2 = 20 as the mul-

tiplicative factor in the decibel calculation.

Binary mask Labeling 3D regions on a volume is a cumbersome, error-

prone, and dataset-specific process. An alternative approach is to use an un-

supervised learning algorithm (e.g., K-Means with K = 2) on a good-enough

reconstruction and classify each voxel between high or low density region.

We will use this method in our experiments to get a quantitative evaluation of

the results in little time while avoiding manual annotations of active regions.

Since we are interested in the active material (stone-like features, see Figure
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Figure 1.1: Illustration from Ariyoshi et al. [2], depicting SEM images (Scan-
ning Electron Microscope images) of NCM (Lithium Nickel Cobalt Man-
ganese Oxide) particles. (a-b) octahedral and (c-d) plate-like morphologies
are synthesized using different fluxes and temperatures, illustrating the influ-
ence of synthesis conditions on particle shape and size. (e) and (f) depict the
morphologies of octahedral and plate-like features, respectively.

1.1) in the inside of the object, a central vertical crop is performed to exclude

boundaries that may alter evaluation.

To better isolate the most salient features, we crop the cuboid inscribed in

the circumference of the battery and add some margin.

1.3 RGB vs X-ray imaging

The crucial difference between RGB and X-ray 3D reconstruction lies in the

physics of light interaction with the objects and the type of information cap-

tured during the imaging process.
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Figure 1.2: Visible light vs. X-ray. Visible light imaging relies on reflection.
X-ray imaging is based on penetration and attenuation. Illustration taken from
Cai et al. [6].

Physics of RGB and X-ray imaging See Fig. 1.2 for a visual compari-

son between RGB and X-ray imaging. RGB imaging relies on reflection and

scattering of visible light off the surface of an object. Cameras are passive

sensors that capture intensity and color or reflected light. What is captured is

the surface-level information, as visible light cannot penetrate most materials.

On the other hand, X-rays operate in a completely different setting, and

interact with materials in different ways. Absorption is the capacity of denser

of thicker materials to absorb more X-rays, leaving fewer photons to reach the

detector. Some X-rays may be scattered out of the beam path. The remaining

X-rays pass through the material and are captured as intensities in the detector.

Indeed, X-ray imaging captures internal structures by measuring how ma-

terials attenuate the X-ray beam. This provides a cross-sectional density map

of the object, enabling volumetric reconstruction.

Difference in the data RGB imaging relies on high-resolution color data

to reconstruct fine surface details. Reconstruction quality depends on feature

visibility and lighting conditions. There is no information about internal struc-

ture. Instead, X-ray imaging provides intensity data proportional to material

density and thickness along the ray. It enables 3D reconstructions of internal

structures, but lacks color and texture information. It suffers from artifacts,

like noise and ghosting, due to scattering or limited projections.
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Consequently, methods that traditionally work with RGB data must be ad-

justed to work with X-ray data. Differently from RGB images, X-ray imaging

captures projections, namely integrated density values along straight lines (ray

paths). X-ray projections mix information from all materials along the path.



Chapter 2

Background

2.1 3D Reconstruction for X-ray imaging

2.1.1 Traditional Approaches

Analytical Approaches Filtered back projection (FBP)workswell for dense,

evenly distributed projections but struggle with sparse data. Its evolution,

FDK[10], produces results almost immediately (< 1 second), solving the

Radon transform and its inverse [23]. However, both methods tend to intro-

duce serious streak artifacts in sparse-view scenarios.

Iterative Methods These optimize the reconstruction iteratively by solv-

ing the system of equations formed by projections. Examples include ART

[13], SIRT [12], SART [1], and other iterative algorithms [28, 20, 26]. They

leverage regularization techniques (e.g., total variation) to reduce noise and

artifacts. The main drawbacks of these techniques are that they take longer

time (< 10 minutes) and lose structure details.

2.1.2 NeRFs

Neural Radiance Fields (NeRFs) [21] are neural-based models that learn a

volumetric scene representation and synthesize novel views by approximating
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the radiance emitted from points in a 3D scene.

They represent the 3D scene as a continuous volumetric function parametrized

by a neural network. They output a density and radiance (RGB color) at any

queried point in 3D space.

FΘ : (x, y, z, θ, ϕ) → (R, G, B, σ). (2.1)

In Eq. 2.1, an MLP with weights Θ is employed to learn a mapping func-

tion FΘ from the point position (x, y, z) ∈ R3 and view direction (θ, ϕ) to the

color (R, G, B) ∈ R3 and volume density σ ∈ R.

Rendering is performed via volume rendering, accumulating densities and

colors along rays. In particular, for each pixel in the desired view, a ray is cast

from the camera’s position into the scene. A ray is parametrized as r(t) =

o+ t ·d, where o is the ray origin, d is the ray direction, t is the distance along

the ray. To compute the color for a pixel, NeRF integrates the contribution of

color and density along the ray r(t). The volume rendering equation is

C(r) =
∫ tf

tn

T (t) · σ(r(t)) · c(r(t)) dt, (2.2)

where T (t) = exp
(
−
∫ t

tn
σ(r(s)) ds

)
is the transmittance, representing the

fraction of light that reaches t without being absorbed; σ(r(t)) is the volume

density at point r(t); c(r(t)) = (R, G, B) is the radiance (color) at point r(t);

and tn, tf are the near and far bounds of the ray.

NeRF discretizes Eq. 2.2 by samplingthe ray at N points:

C(r) ≈
N∑

i=1
Ti · αi · ci, (2.3)

where Ti = ∏i−1
j=1 exp(−σj∆j) is the approximation of the transmittance up

to sample i; αi = 1 − exp(−σi∆i) is the probability of light being scattered

at sample i; ci is the color at sample i, ∆i is the distance between consecutive

sample points.
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NeRF optimizes the parameters Θ of the function FΘ by minimizing the

reconstruction error between rendered and ground-truth images using a loss

function:

L =
∑

r∈rays
||Crendered(r) − Cground-truth(r)||2. (2.4)

MipNeRF [3] extends NeRF to render anti-aliased conical frustums in-

stead of rays, improving representation and achieving faster multiscale scene

rendering. Mip-NeRF 360 [4] extendsmip-NeRF to handle unbounded scenes.

Evolutions of NeRF have been applied to broader fields [7, 29].

In general, applying existing RBG NeRF methods for X-ray rendering

(e.g., MedNeRF [9], NeAT [24]) may achieve suboptimal results due to the

differences between visible light and X-ray imaging. For instance, NAF [31]

follows NeRF to employ an MLP model for medical X-ray neural rendering,

showing limitations in capturing complex structures of imaged objects in 3D

space.

Although NeRF-based methods excel in per-case reconstruction, they are

time-consuming (> 30minutes) due to the extensive point sampling in volume

rendering.

2.1.3 3D Gaussian Splatting

3DGaussian splatting (3DGS) [17] has been a breakthrough in the world of 3D

reconstruction because of its significantly faster rendering phase with respect

to NeRF approaches. The code idea of 3DGS is to represent objects with

a set of trainable 3D Gaussians primitives. During training, properties for

each Gaussian like position, size, and color are optimized to best represent the

scene.

3DGS takes as input a set of images with corresponding cameras cali-

brated with structure-from-motion (SfM [27]); as side effect, SfM produces a

sparse point cloud of the scene. Then, 3D Gaussians are initialized on these
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initial points with initial position (mean), covariance matrix, color (spherical

harmonics), and opacity α. Optimization steps affecting parameters of each

Gaussian are interleaved with operations for adaptive control of the Gaussian

density. After “splatting” 3D Gaussians into the image plane, a tile-based

rasterizer performs α-blending according to the order of each Gaussian.

G(x) = exp
(

−1
2

xT Σ−1x
)

(2.5)

As shown in Eq. 2.5, Gaussians are defined by a 3D covariance matrix Σ

centered at point µ.

To project the 3D Gaussian to 2D for rendering, authors use a viewing

matrix W and a Jacobian matrix J ; the transformed 2D covariance matrix

hence becomes Σ′ = JWΣW T JT . To avoid a covariance matrix with no

physical meaning, authors parametrize it with a scaling matrix S and rotation

matrix R: Σ = RSST RT .

During optimization, L1 loss is computed between rendered images and

reference images, and an additional D-SSIM loss is added to compensate for

structural quality. D-SSIM loss is defined as:

D-SSIM = 1 − SSIM(Irendered, Iground truth).

The adaptive control mechanism controls the number of Gaussians and

density over unit volume. For example, we talk about “under-reconstruction”

in those regions missing geometric features, and “over-reconstruction” in ar-

eas covered by large Gaussians and that must be split in two.

A tile-based rasterizer sorts Gaussian splats for an entire image at a time.

Screen is split into 16x16 tiles, and 3D Gaussians are culled against the view

frustum for each tile. Radix sort algorithm is used to sort the Gaussians ac-

cording to the depth. Colors and α values are accumulated by traversing lists

front-to-back
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Someworks have extended 3DGS to X-ray imaging. X-Gaussian [5] mod-

ify 3DGS to synthesize novel-view X-ray projections. DDGS-CT [11] im-

prove X-Gaussian by considering complex noise-inducing physical effects.

However, they cannot extract 3D density volumes from trained Gaussians.

2.2 LCO Cathode Batteries

In this section, we focus on the object of our investigation–the active material

of a battery–, and briefly describe the chemical reactions that happen during

charging/discharging cycles inside a Lithium-ion battery.

We are analyzing the active material contained in the cathode of a high-

energy battery. The atomic formula is LiCoO2, a compound rich of Lithium

atoms that serves as the source of energy during the charging/discharging cy-

cles. The chemical composition of the battery is very similar to Kimura et al.

[18]; in this study, they show how solid-state-batteries (SSB) can be damaged

by some chemical reaction that take place in the electrodes, visualizing the

reaction during charge and discharge (operando imaging). The size and shape

of the active material is studied in Ariyoshi et al. [2], where the electrochemi-

cal properties are studied by analyzing the morphology (shape and size) of the

NCM active material. The morphology of our LCO crystals is referenced in

[2] as “Large Oct”, as illustrated in Figure 1.1.

During the discharging phase, lithium ions move from the anode to the

cathode, and electrons flow through the external circuit, providing power to

the device. In the anode, typically made of graphite, lithium ions are extracted

andmove toward the cathode; at the same time, electrons are released and flow

through the external circuit.

LixC6 → xLi+ + xe− + C6 (2.6)

In Eq. 2.6, we denote with x the percentage of Lithium currently present

in the anode. In the cathode (LiCoO2), lithium ions and electrons are inserted
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into the atomic structure.

Li1−xCoO2 + xLi+ + xe− → LiCoO2 (2.7)

During charging, lithium ions move from the cathode back to the anode,

and electrons flow through the external circuit to the anode. In the cathode,

lithium ions are extracted and navigate towards the anode through the elec-

trolyte; electrons are released and flow through the external circuit to the an-

ode (see Eq. 2.8).

LiCoO2 → Li1−xCoO2 + xLi+ + xe− (2.8)

In the anode, lithium ions and electrons are inserted into the graphite (see

Eq. 2.9).

xLi+ + xe− + C6 → LixC6 (2.9)

To sum up, during charging and discharging phases, theLi+ ionmovement

takes place: Li+ ions move from the anode to the cathode; during charging,

they move back to the anode. Meanwhile, electrons flow though the external

circuit providing electrical energy during discharging.

2.3 XAFS

XAFS (X-ray Absorption Fine Structure) is a powerful tool for the structural

analysis of materials [14]. In our study, we use this technology to study cath-

ode materials in Lithium Cobalt Oxide (LCO) batteries.

In the typical scenario, an X-ray source generates X-rays at different en-

ergy wavelengths that interact with the imaged object. At the atomic level,

ejected photoelectrons interact with nearby atoms, and based on this interfer-

ence, X-rays are absorbed by the material. By studying the oscillations of

the absorption coefficient µ(E), where E is the initial energy of the X-rays,
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Figure 2.1: XAS diagram showing the absorption coefficient at different en-
ergies and charging levels

distances between atoms can be inferred [14].

Fig. 2.1 shows the X-ray Absorption Spectrum (XAS) of our LCO active

material inside the cathode. On the x-axis there is the energy level measured

in electron-volts (eV); on the y-axis there is the absorption coefficient µ(E),

measuring how strongly the material absorbs X-rays at a given energy.

We can identify several regions that are based on the ionization threshold

of the material:

• Pre-edge This is the lower energy region before the edge. Provides

details about electronic structure and chemical environment

• XANES (X-ray absorption near edge structure): this is near the absorp-

tion edge where features arise due to electronic transitions and local

atomic arrangements. Features give information about the oxidation

state, coordination environment, bond type

• EXAFS (Extended X-ray absorption fine structure): energies are be-

yond the edge, and oscillations occur due to interference between the

outgoing photoelectronwave and scatteredwaves from neighboring atoms.
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This region provides structural information about distances and arrange-

ments of atoms around the absorbing atom.

We can clearly identify the absorption edge at ∼ 8348.519 eV. The edge is

a sharp rise in absorption, and it is where atoms absorb X-rays and eject core

electrons. We also notice that the edge remains almost constant at different

energy states of the battery. In our experiments, we perform one-energy level

analysis considering the energy level that corresponds to the maximum peak in

the absorption coefficient, analyzing a full-charged battery (in Fig. 2.1, state

x = 1).

XAFS analysis is particularly useful because it allows us to clearly identify

the edge band on the x-axis (see Fig. 2.1), corresponding to the highest peak in

absorption. Indeed, to better isolate the high-density regions in the volumes,

we aim to capture the highest contrast in the images, that is achieved exactly

in the edge-band region. On the other hand, hitting the imaged object using

wavelengths outside the edge-band regions may produce less high-contrast

images due to lower absorption. Essentially, by studying the XAFS spectrum,

we can clearly identify the most suitable x-ray frequency to produce high-

contrast images and then 3D reconstruct the model.



Chapter 3

Methodology

3.1 Acquisition setup

3.1.1 Optical Path

In this section, we describe the mechanism for converting X-rays into pixel

intensities. Fig. 3.1 shows the optical path diagram.

Initially, X-rays are generated and interact with the imaged object; trans-

mitted X-rays reach the fluorescent screen, that converts them into visible

light. Then, an objective lens, an imaging lens, and a mirror, focus the light

beam and direct it towards the detection system. A highly-sensitive camera

captures the visible light and produce high-resolution X-ray images.

Figure 3.1: Optical Path Diagram
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Figure 3.2: ORCA-Quest qCMOS (Hamamatsu Photonics, C15550-22UP),
a high-resolution, ultra-low noise, high-QE qCMOS camera. Image from
Hamamatsu Photonics website 1.

3.1.2 qCMOS camera

Anultra-sensitive, low-noise qCMOS camera (ORCA-Quest, Hamamatsu Pho-

tonics, C15550-22UP), Fig. 3.2, was used to capture high-resolution images.

A quantitative CMOS (qCMOS) image sensor is capable of detecting multi-

ple photoelectrons and distinguishing their numbers (photon counting) even

in low-light conditions. The camera was used in “standard” mode, with a

root-mean-square (RMS) noise of 0.43 electrons at 120 fps and a resolution of

4094 × 2304 pixels (∼ 9.4 megapixels).

The peak quantum efficiency (QE) is 85%. QE is the ability to convert

incoming photons into electrons and it varies according to the wavelength of

the incident light. More formally, QE can be measured as follows:

QE = # photoelectrons generated
# incident photons

× 100 (3.1)

ORCA-Quest features photon number resolving; it is an advanced method

of measuring light by counting photoelectrons. In order to provide accurate

measurements, the camera noise must be sufficiently smaller than the amount

of photoelectron signal. RMS noise indicates how much uncertainty or ran-

dom fluctuations exists in the signal, and it is measured in terms of the smallest

detectable unit, the electron.
1Source: https://camera.hamamatsu.com/jp/ja/product/camera/

C15550-22UP.html

https://camera.hamamatsu.com/jp/ja/product/camera/C15550-22UP.html
https://camera.hamamatsu.com/jp/ja/product/camera/C15550-22UP.html
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Figure 3.3: Quantum efficiency (QE) is plotted spanning over different wave-
lengths. A Peak QE of 85% is reaches at ∼ 460nm (blue spectrum). Figure
from the camera catalog on Hamamatsu Photonics website.

In Figure 3.3, we see the quantum efficiency of our camera spanning over

different wavelengths.

3.2 X-ray Novel Datasets

A series of acquisitions are performed and X-ray projections are captured. We

see the acquisition phase as an incremental process toward high-quality pro-

jections. After carefully inspecting images of early acquisitions, we identify

issues that cause image degradation, obfuscate the main features, give rise to

artifacts and noise, and use such knowledge to perform better acquisition the

subsequent times.

Since we want to prioritize high-speed acquisition, the camera is left with

shutter open formost of the time, and at every fixed interval, an external trigger

is activated and the image is captured.

We notice that a reduction in number of captures increases the exposure

time for each acquisition, leading to more motion blur. On the contrary, a more

frequent acquisition rate naturally reduces the exposure time and blurriness.
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3.3 Preprocessing

Early inspections Raw data is stored as a single tif file of approximately

30GB of memory. Such file contains 1800 projections (grayscale images) of

the imaged object, each of size 2048×2048. Values are store as 32 bit floating

point numbers.

To start with, for all our datasets, we draw some statistics among the im-

ages, including min/max/average values, variance, sum of the absolute values,

the presence of non-data regions, and the entropy.

We then spend time visualizing data and inspecting the presence of noise,

blurriness, occlusions, undesired effects. We indeed notice visual anomalies

especially in early acquisition datasets.

One main issue includes the presence of floaters appearing in the fore-

ground for a limited number of consecutive projections and disappearing in

the others. This effect limits the capacity of our reconstruction methods, since

only few projections can be used to identify the location of the floater.

We notice also a recurrent problem in early acquisitions. The field-of-

view of the acquisition system seems too narrow and focused in the middle

of the object, limiting ourselves to a partial reconstruction; on the other hand,

borders and regions close to the edges are not captured during acquisition.

We observe also a weird-looking effect and we call it “ghost effect”. While

inspecting the images as the object rotates, a fog-like material emerges from

the left and quickly disappears on the right in a few frames. This suggests

us that there may be an object occluding the battery that alters the intensities

captured by the detector. We note the effect and investigate the causes. Even-

tually, it turns out that there is indeed an occluding object during acquisition

and, after removing it, we notice how it is absent in the subsequent recording

sessions.

In early acquisitions, to mitigate the presence of highly noisy images, we

treat as noise low intensity values and we set to zero all the pixels below a
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threshold τ . This way, we try to retain the most important features, e.g., stone-

like objects and discard minor features. Additionally, we try to find a smaller

angle range so that the object is clearly visible (e.g., 30-40 degrees), and treat

these projections as training images.

After a comprehensive visual and statistical inspection, we prepare data

for training. Images are resized to 256 × 256 using bicubic interpolation and

normalized in desired range (e.g., 0-1).

Training projections One of the main objectives of our study is to achieve

high-quality reconstruction while minimizing the number of training images

required. We try different strategies to select and preprocess input projections

and compare the reconstructed volumes. We assess which input configurations

provide high-quality reconstruction without excessive computational cost.

3.4 SoTA 3D Reconstruction Methods

3.4.1 SaxNeRF

Figure 3.4: Training pipeline of SaxNeRF and neural layers. Figure repro-
duced from Cai et al. [6].

Fig. 3.4 depicts the training pipeline and the configuration of the neural

layers. A sampling technique calledMasked Local-Global (MLG) sampling is
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used to sample batches R of X-rays hitting the imaged object during training.

On each of these rays r ∈ R, N point positions P = {p1, . . . , pN} ∈ RN×3

are sampled and fed into a neural block called Lineformer. It is based on a

basic unit named Line Segment-based Attention Block (LSAB).

The radiodensity field is modeled as

FΘL
: (x, y, z) → ρ, (3.2)

where FΘL
is the mapping function of the neural network with weights

ΘL. Differently from the original NeRF formulation, the color information

is not included in the output; input viewing direction is also excluded as the

radiodensity on the point position only depends on the 3D location in the scene.

The ground truth intensity value Igt(r) for ray r(t) = o + td ∈ R3 can be

modeled via the Beer-Lambert law.

Igt(r) = I0 · exp
(

−
∫ tf

tn

ρ(r(t)) dt
)

(3.3)

where I0 is the initial density, and tn and tf are the near and far bounds.

After discretizing Eq. 3.3, we derive the predicted intensity Ipred(r) ∈ R.

Ipred(r) = I0 · exp
(

−
N∑

i=1
ρiδi

)
(3.4)

In Eq. 3.4, ρi is the density predicted by the model for sample i and δi =

||pi+1 − pi|| is the distance between adjacent points.

The training loss is simply the minimization of the total squared error L

between the predicted and ground-truth intensities in the training X-ray batch

R.

L =
∑
r∈R

||Ipred(r) − Igt(r)||22 (3.5)

Line Segment-based Transformer As shown in Fig. 3.4, the position P of

sampled rays goes through a hash encoding layer H to produce point feature
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F ∈ RN×C . F is passed through four LSABs with a skip connection and two

fc layers to derive the point radiodensity D ∈ RN .

In the LSAB blocks, self-attention within each line segment is computed.

The first step is to partition the point feature intoM segments as

X = [X1, X2, . . . , XM ]T (3.6)

where Xi ∈ R N
M

×C and i = 1, 2, . . . , M. Each Xi is linearly projected

into query Qi ∈ R N
M

×C , key Ki ∈ R N
M

×C , and value Vi ∈ R N
M

×C by three

fc layers. Multi-head self attention is employed by using k heads along the

channel dimension. The self-attention within each head Hj
i thus becomes

Hj
i = Attn(Qj

i , Kj
i , Vj

i ) = Vj
i softmax

KjT

i Qj
i

αj
i

 . (3.7)

αj
i ∈ R is a learnable parameter that scales the inner product before the

softmax. Then, the k heads are concatenated along the channel dimension and

pass through an fc layer; only then are summedwith the positional embeddings

Ei ∈ R N
M

×C . The i-th output Yi ∈ R N
M

×C thus becomes

Yi = [H1
i , H2

i , . . . , Hk
i ]Wi + Ei, (3.8)

Wi ∈ RC×C is the learnable matrix of the fc layer. The outputs are then

grouped to get the final feature Yi ∈ RN×C as

Y = [Y1, Y2, . . . , YM ]T . (3.9)

Complexity Analysis Authors analyze the computational complexity of the

LS-MSA and derive the following formula:

O(LS-MSA) = 2NC2

k
. (3.10)
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Differently from the vanilla Transformer, LS-MSA is linear to N, signifi-

cantly reducing computation cost. C is the channel length and k is the number

of heads.

Masked Local-Global Ray Sampling The idea is to sample rays in infor-

mative regions that characterize the radiodensity property of the object, ex-

cluding rays hitting the background or uninformative regions.

A mask M ∈ RH×W is used to segment the foreground regions. It is used

a threshold T ∈ R on the original projection I ∈ RH×W to obtain M =

1I>T . Then, M is partitioned into a set W of non-overlapping windows of

size S × S. Thereby, a window is selected if it is entirely contained in the

foreground masked region.

Wf = {w ∈ W | w = 1s×s} (3.11)

Wf denotes the set of regions that are available for sampling. Then, Nl

windows Wl = {w1, . . . , wNl
} are randomly selected from Wf , and rays are

projected.

Rl =
Nl⋃
i=1

⋃
p∈Wi

Ray(p) (3.12)

In Eq. 3.12,Rl denotes the set of rays that are selected for sampling, where

Ray(p) maps a pixel p to its corresponding ray.

On top of that, pixel-level sampling is performed by randomly selectingNg

pixels from the foreground regions excluding the area ofWl, to avoid repeated

sampling.

Rg =
⋃

p∈(M−Wl)
Ray(p). (3.13)

Rg denotes the set of rays that are selected via global sampling. Overall,

the rays selected for training are the union between Rl and Rg.
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R = Rl

⋃
Rg. (3.14)

3.4.2 R2-Gaussian

Themain idea of R2Gaussian [30] is to represent the target object with a group

learnable 3D Gaussians G3 = {G3
i }i=1,...,M . Each Gaussian G3

i defines a local

Gaussian-shaped density field, i.e.,

G3
i (x | ρi, µi, Σi) = ρi · exp

(
−1

2
(x − µi)⊤Σ−1

i (x − µi)
)

, (3.15)

where ρi ∈ R, µi ∈ R3 and Σi ∈ R3×3 are learnable parameters represent-

ing respectively the central density, mean, and covariance. For optimization

purposes, Σi is parametrized with the rotation matrix Ri and scale matrix Si:

Σi = RiSiS⊤
i R⊤

i . (3.16)

To find the density value σ at position x ∈ R3, the density contribution of

each Gaussian at location x is summed:

σ(x) =
M∑

i=1
G3

i (x | ρi, µi, Σi). (3.17)

Initialization Initially, FDK[10] is used to reconstruct a low-quality vol-

ume. With a density threshold τ , empty spaces are excluded and M points are

randomly sampled as starting Gaussian positions. The scale of each Gaussian

is set as the nearest neighbor distances and there is no initial rotation. The cen-

tral densities are queried from the FDK volume and empirically scaled down

to compensate for the overlay between Gaussians.

Training Fig. 3.5 depicts the overall training pipeline. Initially, Gaussians

are initialized from an FDKvolume. Projections are rasterized for photometric
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Figure 3.5: Overall training pipeline of R2-Gaussian. Figure from the original
work by Zha et al. [30].

losses and small volumes are voxelized for 3D regularization. Throughout

the whole process, adaptive control is used to densify Gaussians for better

representation. After training, density volumes are voxelized at target size.

Projections and composition To calculate the final intensity value Ir(r) for

a pixel along ray r, authors suggest how an X-ray projection can be rendered

by simply summing 2D Gaussians starting from the Beer-Lambert integration

law and converting 3D Gaussians to 2D Gaussians by integrating along an

axis.

Ir(r) ≈
M∑

i=1
G2

i (x̂|

√√√√2π|Σ̃i|
|Σ̂i|

ρi, µ̂i, Σ̂i) (3.18)

In Eq. 3.18 the intensity pixel of ray r is computed as an approximation of

the summation of M 2D Gaussians, where x̂ ∈ R2, µ̂i ∈ R2, Σ̂i ∈ R2×2,

Σ̃i ∈ R3×3.

Voxelization Once the optimized set of Gaussians G3 are obtained, a vox-

elizer V maps them to a density volume V ∈ RX×Y ×Z . The voxelizer first

partitions the target space into multiple 8×8×8 tiles. It then culls Gaussians,

retaining those with a 99% confidence of intersecting the tile. In each 3D tile,

voxel values are parallelly computed by summing the contributions of nearby

Gaussians. The voxelizer is implemented in CUDA for fast computation.
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Optimization Stochastic gradient descent (SGD) is used to optimize Gaus-

sians. Photometric losses include L1 loss L1 and D-SSIM loss Lssim. A 3D

total variation (TV)[25] regularization loss Ltv is included as a homogeneity

prior. During each iteration, a small density volume is queried and its variation

is minimized.

Ltotal = L1(Ir, Im) + λssimLssim(Ir, Im) + λtvLtv(Vtv). (3.19)

Eq. 3.19 represents the overall loss, where Ir, Im, λssim and λtv are respec-

tively the rendered projection, measured projection, D-SSIM weight, and TV

weight. Adaptive control removes empty Gaussians and densify (clone or

split) those with large loss gradients. Large Gaussians are not pruned since

they may be useful to represent large homogeneous areas like human organs.

The densification process halves the densities of both the original and repli-

cated Gaussians.

3.4.3 Postprocessing

After visualizing the 3D volume with Napari [22], we identify region of inter-

ests and crop cuboids that encapsulate them. To grasp an overall view of the

battery, we remove the borders since they occlude the internal structures. We

identify the top-view circumference of the battery and perform a vertical crop

following the inscribed squared with some additional margin. The side of the

inscribed square can be formulated as follows: side = 2 · r · cosθ, where r is

the radius of the circumference, and θ = 45°.

Then, we perform a series of post-processing steps (see Fig. 3.6) to en-

hance the visualization and analysis of the stone-like particles. Wewish to iso-

late specific regions of interest and improve the clarity of the internal structure

of the battery.

First, normalization on the raw volume is applied, as voxels values are
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Figure 3.6: Postprocessing pipeline to enhance the voxelized volume and bet-
ter visualize regions of interest.

Figure 3.7: Clustering pipeline to obtain a refined segmented volume.

rescaled between 0 and 1. Then, we exclude outliers that may compromise

the visualization: we apply left and right percentile thresholds to eliminate

extreme values, ensuring that the majority of the data is properly scaled. The

rescaling step is performed, and voxels values are rescaled within the adjusted

range. Gamma correction is then applied to adjust the brightness and contrast,

enhancing the visibility of finer details. Finally, a Gaussian filter is applied to

the final volume to smooth out surfaces and get rid of noise and tiny artifacts.

Clustering To further isolate regions of interest, we perform unsupervised

learning on the enhanced volumes using the K-Means [19] clustering algo-

rithm (see Fig. 3.7). This step enables the separation of clusters corresponding

to different density regions. Using the “elbow” rule we identify the optimal

number of clusters to best capture the density variations.

To refine the clustered results, morphological operations are applied, in-

cluding binary open and binary close operations. These operations are based

on the erosion and dilation of the segmented volume. In this way, we fill small

gaps and voids within the segmented objects via hole filling, creating a contin-

uous representation of the stone-like structures. This also naturally includes

the removal of small and irrelevant features.

As demonstrated in our experiments, these post-processing steps signifi-

cantly improved the quality and interpretability of the reconstructed volumes,

making it possible to analyze the internal structure of the objects with greater

precisions.



Chapter 4

Experiments

4.1 Dataset Analysis

Figure 4.1: An insight of our battery dataset, depicting different projections
from all the 1800 views.

In Fig. 4.1 we report some images from our battery dataset. These are

gray scale images with an original dimension of 2048x2048, that we rescale
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to 256x256 for efficiency. White regions denote dense material (active mate-

rial) and black regions denote low-density material. Since we are particularly

interested in characterizing the shape and size of the active material, we aim to

reconstruct the stone-like object as faithfully as possible. Views are captured

along a semi-circumference around the battery using the acquisition machin-

ery described in the Acquisition setup section.

Figure 4.2: Top raw: some samples of views from the battery dataset; bottom:
their histogram distributions.

In Fig. 4.2 we report some views and their relative pixel value histograms.

From certain viewpoints, less dense material may be captured, resulting in a

histogram shifted to low values; on the other hand, capturing denser material

results in a distribution shifted to middle-to-high values.

While all the dense material tend to lay in the middle of the projections,

there is material that quickly enters the field-of-view and leaves, and such

effect is present in a limited consecutive amount of projections. After visual

inspections, we notice that such kind of material appears only on the opposite

side of the rotation angle. Consequently, there is less chance for the model to

reconstruct this material due to a limited amount of projections capturing this

phenomenon.

Previous acquisitions In previous acquisitions, we noticed anomalies that

we successfully removed recalibrating the acquisition machinery and hard-

ware setup. Anomalies included:
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• a black narrow band on the left side of the images, limiting the field-of-

view and occluding active materials

• a “ghost” effect in a series of images, appearing from right to left, that

caused out-of-distributions images with higher pixel intensities

Both issues were solved and the “battery” dataset we used for our experi-

ments is free from these defects.

In previous acquisitions, noisy artifacts were present in views and limited

the reconstruction capabilities of our models. For this reason, we used filtering

methods (e.g., Gaussian filter) to smooth out the projections and thresholding

schemes, setting to zero lower-intensity pixels.

4.2 Experiment 1 - Fixed Sampling

We compare the performance of R2Gaussian and SaxNeRF while gradually

reducing the number of training projections from each experiment. In fact, the

ability to reconstruct a sufficiently-accurate 3D volume with a low number of

input images is one of our main objectives. Given the original 1800 projec-

tions, we pick equally-spaced projections while increasing the step angle for

each experiment. The training time for each experiment is kept constant for

fairness among methods and we pick projections from 0 to 180 degrees. We

then perform a qualitative assessment inspecting the internal slices side-by-

side and compute the relative metrics according to ground-truth data.

For R2Gaussian, we train for 30000 iterations, as it was performed in the

original paper; regarding SaxNeRF we fix a train time of 3 hours as we saw

little improvement after this training time in previous experiments.

Qualitative Analysis In Fig. 4.3 we show the 3D visualization of the re-

constructed volumes for both R2Gaussian and SaNeRF. We notice how all 45,

90, and 180 versions can successfully reconstruct all the active material (red
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Figure 4.3: 3D visualization of GT and reconstructed volumes by R2Gaussian
and SaxNeRF among different numbers of training projections (Napari, “twi-
light shifted” color map); on the right, the volume reconstructed with FBP
using 1800 projections.

regions). Regarding R2Gaussian (top row), we observe that the 45 version

suffers from noisy artifacts in the background regions, whereas the 90 projec-

tions alternative is more robust. When it comes to SaxNeRF (bottom row),

when we reduce the number of projections, the active regions becomes much

blurrier and quickly lose sharp contours. Unwanted material appears also in

the void region. For visualization purposes, we used color enhancement so we

could clearly inspect the stone-like material.

In Figure 4.4, we see a comparison between volumes produced by FBP

and R2Gaussian. We notice how the GT volume is darker, as FBP tends to

produce smoother and more uniform reconstructions. Moreover, volumes re-

constructed with R2Gaussian are typically in a different intensity range com-

pared to the GT. Since volumes are then normalized, they may appear brighter

or clearer. The different in brightness does not inherently indicate a prob-

lem: it is indeed the result of different reconstruction algorithms, methods,

or intensity scaling. The key here is evaluate the structural accuracy and fea-

ture preservation rather than absolute intensity. Since the GT volume clearly

shows the internal structure and features, the difference in brightness is not a

significant issue.

Commenting Fig. 4.4, we notice a progressive degradation in the quality of
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Figure 4.4: Comparison of internal slices produced by R2Gaussian (top-
bottom) among different number of training projections (shown on left); GT
is the ground-truth volume reconstructed with FBP with 1800 projections.

the reconstruction when we reduce the number of projections. Noise consists

of misplaced Gaussians (a.k.a. floaters) that appear in the void regions. We

notice that the model trained with 360 projections very closely approximate

the reference volume; active material is well reconstructed and isolated from

the background, with sharp edges, and the circular boundaries of the battery

are also reconstructed.

When we compare the 360 and 180 versions, we do not notice a significant

degradation in quality reconstruction, suggesting that 180 may be a good can-

didate number for further reconstructions. Intensities inside the active regions

and in the boundaries are comparable with the 360 alternative.

When it comes to the 90 and 45 versions, floaters start appearing in the

background regions, yet the active material is still well-reconstructed. Also

in the 45 alternative, all the stone-like features are preserved and have sharp

edges.

Regarding slice 255 (top slice), all models struggle during reconstruction
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Figure 4.5: Comparison of internal slices produced by SaxNeRF (left-right)
among different number of training projections (shown on left); GT is the
ground-truth volume reconstructed with FBP with 1800 projections.

and we can see blurriness and lose details. This is probably caused by the

acquisition setup, where projections well-depict the whole central region of

the battery while culling the bottom and high edges.

In Fig. 4.5 we report a slice comparison of the volumes produced by SaxN-

eRF with different number of training projections as input. As expected, when

we feed a higher number of projections (360), active material tends to be clus-

tered in high-defined regions, with high contrast on the background. When we

reduce the number of training images, the active regions becomes blurrier and

lose well-defined shape. We notice, however, that there is very little differ-

ence between the 180 and 360 version. When it comes to the 90 alternative,

most of the high-density regions are also preserved. We start losing details

and consistency only in the 45 projections case.
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Model N. projs Step angle PSNR SSIM SNR CNR
R2Gaus 360 0.5 22.097 0.692 20.243 15.445
SaxNeRF 360 0.5 19.374 0.531 18.936 13.345
R2Gaus 180 1 21.557 0.671 20.145 15.363
SaxNeRF 180 1 18.755 0.520 18.675 12.660
R2Gaus 90 2 21.786 0.669 19.889 15.008
SaxNeRF 90 2 17.803 0.459 16.723 10.733
R2Gaus 45 4 22.094 0.638 18.951 13.988
SaxNeRF 45 4 17.482 0.406 15.000 9.160

Table 4.1: Performance of R2Gaussian and SaxNeRF with different number
of input views.

QuantitativeAnalysis In Table 4.1we show the performance of R2Gaussian

and SaxNeRF among different input settings. Regarding R2Gaussian, we ob-

tain higher performance when we provide in input more projections (360).

However, we do not notice a significant degradation in performance when we

start reducing the number of training views, as demonstrated by the 180 and 90

settings. While changing the number of input projections, R2Gaussian always

outperforms SaxNeRF according to all our metrics. On the contrary, SaxN-

eRF loses consistency especially in the case of low number of input images

(45).

4.3 Experiment 2 - Narrowing Angles

In this experiment we gradually narrow down the angle of projection; from a

full 0-180 degrees, we restrict to 30-150, 45-135, 60-120. While doing this,

we distinguish between two cases: in (A) we decrease also the number of

projections; in (B) we keep constant the number of projections.

Case A As depicted in Fig. 4.6, we gradually decrease the number of pro-

jections and feed them to R2Gaussian. We assess how narrow-wide angles

affect the reconstruction of the volume.

In Fig. 4.7, we show a visual comparison of the internal slices among dif-

ferent ranging sectors. We observe how the angle range particularly affect the
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Figure 4.6: Training angles used during training. We narrow down the angle
sector and reduce the number of projections.

Figure 4.7: Slice comparisons of volumes while narrowing the sector angle;
on the left we report the sector range in degrees. (Training setting: 120 projs.
were used in the 30-150 deg. experiment; 90 projs. were used in the 45-135
deg. experiment; 60 projs. were used in the 60-120 deg. experiment.)

reconstruction performance. In this setup, we trained with 120, 90, and 60 pro-

jections as we narrowed down the sector range. We notice that while reducing

down the angle view, the quality of the reconstruction volume significantly

drops. The active material gradually gets blurrier and floaters start appearing

in the background regions; circular boundaries are also progressively lost.

This qualitative insight suggests that the reconstruction procedure is highly

affected by the sector angle. While the number of projections is not a crucial

factor, as evidenced in experiment 1, reducing the sector angle highly affect

the reconstruction, loosing quality and consistency.

In Table 4.2 we show the performance of R2Gaussian with different angle
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Model N. projs Angle range PSNR SSIM SNR CNR
R2Gaus 120 30-150 21.340 0.660 16.608 10.944
R2Gaus 90 45-135 20.881 0.607 14.118 7.485
R2Gaus 60 60-120 20.603 0.601 12.034 4.407

Table 4.2: Performance of R2Gaussianwith different angle ranges and number
of projections.

ranges and number of projections. As expected, while narrowing the angle

range and reducing the number of projections, performance tends to decrease.

Case B We fix the number of projections and gradually reduce the angle

range. This setting evaluates the impact of the sector angle on the reconstruc-

tion process.

Figure 4.8: Slice comparisons with 60 train projections and different angle
segment.

We notice that while keeping the number of training images constant (in

Fig. 4.8, the number of projections is 60), and narrowing down the sector angle

range, we notice a significant impact on quality reconstruction, the volumes

gradually becoming blurrier.
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This insight further suggests us that a wide angle of capturing is crucial

for a correct and high-quality reconstruction.

Figure 4.9: Here we report a 3D visual comparison of an internal crop of the
volumes reconstructed by R2Gaussian. Here we used 120 train projections
for each volume and varying sector angle ranges (shown at the bottom of each
image).

Model N. projs Angle Range PSNR SSIM SNR CNR
R2Gaus 60 30-150 21.351 0.628 16.261 10.927
R2Gaus 60 45-135 20.579 0.590 14.301 7.650
R2Gaus 60 60-120 21.583 0.600 12.011 4.318
R2Gaus 120 30-150 22.026 0.673 17.155 11.541
R2Gaus 120 45-135 21.537 0.636 14.665 7.980
R2Gaus 120 60-120 21.007 0.608 11.972 4.445

Table 4.3: Performance of R2Gaussianwith different angle ranges and number
of projections.

In Table 4.3 we show the performance of R2Gaussian with different angle

ranges and number of projections. The angle range seems to play the most

significant impact on performance, hindering the reconstruction quality. It is

worth noting that while the number of projections is the same, just having

them all close together or far apart plays a crucial role during reconstruction.

4.4 Experiment 3 - Random Sampling

In the third experiment, we consider a full 0-180 projection angle but pick

training views at random angle intervals. We also reduce the number of pro-

jections and directly compare the results with experiment 1, that assumes a

fixed step angle between projections.
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Figure 4.10: We show a slice comparison among each training setting. On the
left side we note the number of projections used (45, 90, 180) and the angle
scheme (fixed or random).

Qualitative Analysis In Fig. 4.10 we show a slice comparison side-to-side

of the battery. We can compare how fixed and random angles perform while

reducing the number of projections. As expected, unwanted Gaussians start

appearing in both methods when we reduce the number of training images.

Overall, it is difficult to tell whether fixed or random sampling is better than

the other. In the 45 projections setting, we notice that random sampling tends

to produce larger Gaussians in the void regions and loose shapes of the active

materials. However, in the 180 and 90 settings, both method successfully

reconstruct the main stone-like objects. Borders are also visible as vertical

red lines at the side of the slices and are present in both methods.
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Model Sampling N. projs PSNR SSIM SNR CNR
R2Gaussian Random 360 22.360 0.697 20.014 15.157
R2Gaussian Fixed 360 22.097 0.692 20.243 15.445
R2Gaussian Random 180 22.544 0.694 19.791 14.847
R2Gaussian Fixed 180 21.557 0.671 20.145 15.363
R2Gaussian Random 90 21.856 0.653 18.903 13.949
R2Gaussian Fixed 90 21.786 0.669 19.889 15.008
R2Gaussian Random 45 21.265 0.608 17.724 12.633
R2Gaussian Fixed 45 22.097 0.638 18.951 13.988

Table 4.4: Performance of R2Gaussian with both random and fixed projec-
tions in input.

QuantitativeAnalysis In Table 4.4we report the performance of R2Gaussian

among different sampling schemes and number of projections. We find that

fixed sampling outperforms random sampling when the number of input pro-

jection is reduced (e.g., 45). However, when when the number of projections

is sufficiently high (180, 360), random sampling may be preferable than fixed

sampling.

4.5 Experiment 4 - Window Averaging

In this experiment, we average the input 1800 projections calibrating a win-

dow size and compare the results. In practice, we take batches of consecutive

images and average them at pixel level, and pass the final averaged images

to the model. In the first case (A), we set different averaging groups and re-

duce the number of training projections; in the second scenario (B), we set the

averaging window but keep the total number of projections constant among

experiments. Regarding the latter aspect, overlapping between projections is

necessary to achieve a constant number of views for each experiment.

Case A In this scenario, we calibrate the window size and take averages

among consecutive projections. According to Table 4.5, a window size of

10 gives a strong SNR and CNR on the active regions. On the other hand,
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Model N. projs Average group PSNR SSIM SNR CNR
R2Gaussian 180 10 21.993 0.692 20.050 15.202
R2Gaussian 90 20 22.175 0.694 19.590 14.660
R2Gaussian 60 30 22.290 0.693 19.320 14.264

Table 4.5: Performance metrics for the R2Gaussian model with different av-
erage windows.

Figure 4.11: Slice comparison among different projection numbers and aver-
age windows.

widening the window size provides a higher PSNR and SSIM, suggesting that

averaging is a good strategy to remove noise.

Visually inspecting the internal slices in Fig. 4.11, we notice that a too

wide average window may cause noise and artifacts.

Model N. projs Average group PSNR SSIM SNR CNR
R2Gaussian 180 20 22.001 0.692 19.880 15.000
R2Gaussian 180 30 22.530 0.699 19.308 14.288
R2Gaussian 180 40 22.760 0.704 18.953 13.760
R2Gaussian 180 50 22.621 0.694 18.411 13.039
R2Gaussian 180 60 22.488 0.693 18.114 12.519

Table 4.6: Performance metrics for the R2Gaussian model with varying aver-
age group sizes.

Case B Commenting Table 4.6, an average group of 40 seems to lead to

the highest PSNR and SSIM among the other sizes. Widening the average

size, however, has the drawback of lowering the SNR and CNR in the active
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regions.

Figure 4.12: Slice comparison among different averaging methods and con-
stant number of projections.

In Figure 4.12 we show a visual inspection of the different averagingmeth-

ods. We find that visually spotting the differences between each variant is

quite challenging. Indeed, the overlapping approach due to averaging win-

dows turned out to be a good strategy to keep the number of projections con-

stant and provide a good reconstruction quality.



Chapter 5

Discussion

R2Gaussian vs SaxNeRF In Experiment 1we demonstrated that while chang-

ing the number of input images, R2Gaussian regularly surpass SaxNeRF in

all test cases. This suggests that not only R2Gaussian is faster, but it pro-

duces high quality and less noisy volumes than SaxNeRF. On top of that,

R2Gaussian is free from many hyper-parameters that SaxNeRF has, e.g., the

near/far planes, the number of coarse and fine points to sample, the window

dimension, the segment length, etc.

Low number of projections We demonstrated that 3D reconstruction is

possible with sparse input, namely using a number of projections that is less

than one order of magnitude of the original training data. In fact, while tra-

ditional algorithms typically require 1000+ training images to achieve a good

reconstruction, our methods requires significantly less data and still achieves

comparable, if not better, reconstructions.

Angle range We experimented with the sector ranges of acquisition, nar-

rowing down the capturing angle and potentially speeding up the acquisition

phase. We showed that while good reconstruction is still possible with an an-

gle sector of less than 180 degrees, performance dramatically decreases if the

angle range becomes too narrow. This insight suggests that to best reconstruct
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an object, we need to have it in many views with different angles; reconstruc-

tion may be hindered by too aligned views or with small angle difference.

Angle step We compared fixed and random angles between each projections

and compared the performances. We showed that there is not a predominant

approach, and in most cases, both methods show similar performance.

Averaging With Experiment 4, we found that averaging projection is indeed

an interesting approach to smooth out the volume, reduce noise, while keeping

the active regions intact. We experimented with different averaging windows

and assess that a medium-sized window is the best compromise.

We also noticed how the overlapping strategy among averaging windows

is a good strategy to keep the number of projections constant and provide a

good reconstruction quality.



Chapter 6

Conclusion

6.1 Summary

The goal of this thesis was to explore the effectiveness of 3D reconstruction

from X-rays for inspecting lithium-ion batteries. By leveraging state-of-the-

art (SoTA) methods, we addressed this application problem and demonstrated

that 3D reconstruction in X-ray imaging is not only feasible but also achieves

high precision using modern approaches, even with a limited number of input

images.

We started by defining our task, that is 3D reconstruction of LCO batter-

ies from multiple views around the object. We then defined several metrics

to assess the quality of the reconstructed volumes with and without a refer-

ence volume. When a GT volume is provided, metrics traditionally applied

to images (SSIM and PSNR) can be extended in the 3D domain; when a GT

volume is not available, we engineered ad-hoc metrics proposed in previous

works.

We then described the crucial difference between RBG and X-ray imag-

ing, providing physics insights from the optical domain. These observations

helped us to better comprehend the nature of X-ray data and guided our fol-

lowing experiments.

In the Background section, we briefly touched on traditional approached



6.1 Summary 45

for 3D reconstruction, including analytical and iterative methods. We then

continued with modern SoTAmodels, covering NeRF and 3DGaussian Splat-

ting.

We then described the acquisition setup we used during our X-ray acqui-

sitions, since we worked on novel X-ray datasets. Reconstruction methods

were also illustrated in details, namely SaxNeRF and R2Gaussian Splatting.

A postprocessing pipeline was also introduced to segment activematerial from

the background.

We then proceeded with our experiments, using our models under differ-

ent input settings and comparing the reconstruction results. We assessed re-

sults both qualitatively and quantitatively. Indeed, we visually inspected 3D

volumes and internal slices with a 3Dmodern visualization software and com-

pared the differences. Results were also provided in tables according to the

metrics we defined in the Metrics section. For each experiment, we discussed

the results and tried to understand the reason and behavior of each model.

In our experiments, we compared SaxNeRF and R2Gaussian using a fixed

number of projections, and assessed that the latter is superior in all cases.

When it comes to lowering the number of projections, R2Gaussian is still able

to produce acceptable results, differently from traditional methods that require

1000+ train images. Regarding the capturing angle of the imaged object, we

saw how it plays a crucial role in reconstruction and how a wide angle (∼ 180

degrees) is necessary for a high-quality reconstruction. When dealing with the

angle step, we found that there is no dominant approach between fixed-step

or random-step angles between each projection. Finally, we discovered how

averaging projections is a promising way to reduce noise in the empty regions

and create sharp borders on the surfaces of the active regions.
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6.2 Future Work

In this work, we performed 3D reconstruction in X-ray imaging relying on a

single energy level; this approach limits the capacity to differentiate between

similar structures and material contrast. A natural extension may be to lever-

age multiple energy levels, enhancing the characterization of materials with

different absorption properties.

Indeed, different materials have different absorption behaviors depend-

ing on the energy input level. Combining multiple energies can help miti-

gate noise, artifacts, and ambiguities present in single-energy reconstructions.

Consequently, we may achieve more precise estimations of density and com-

position, useful not only in battery analysis but also in other domains.



Bibliography

[1] A. H. Andersen and A. C. Kak. Simultaneous algebraic reconstruction

technique (sart): a superior implementation of the art algorithm. Ultra-

sonic Imaging, 6(1):81–94, 1984. DOI: 10.1177/016173468400600107.

[2] K.Ariyoshi and T. Tanaka. Single-crystal growth of lini1/3co1/3mn1/3o2

via the flux method and its electrochemical properties. Crystal Growth

&Design, 24(9):3771–3776, 2024. DOI: 10.1021/acs.cgd.4c00101.

eprint: https://doi.org/10.1021/acs.cgd.4c00101. URL:

https://doi.org/10.1021/acs.cgd.4c00101.

[3] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla,

and P. P. Srinivasan. Mip-nerf: a multiscale representation for anti-

aliasing neural radiance fields, 2021. arXiv: 2103 . 13415 [cs.CV].

URL: https://arxiv.org/abs/2103.13415.

[4] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman.

Mip-nerf 360: unbounded anti-aliased neural radiance fields, 2022. arXiv:

2111 . 12077 [cs.CV]. URL: https : / / arxiv . org / abs / 2111 .

12077.

[5] Y. Cai, Y. Liang, J. Wang, A. Wang, Y. Zhang, X. Yang, Z. Zhou, and

A. Yuille. Radiative gaussian splatting for efficient x-ray novel view

synthesis, 2024. arXiv: 2403 . 04116 [eess.IV]. URL: https : / /

arxiv.org/abs/2403.04116.

https://doi.org/10.1177/016173468400600107
https://doi.org/10.1021/acs.cgd.4c00101
https://doi.org/10.1021/acs.cgd.4c00101
https://doi.org/10.1021/acs.cgd.4c00101
https://arxiv.org/abs/2103.13415
https://arxiv.org/abs/2103.13415
https://arxiv.org/abs/2111.12077
https://arxiv.org/abs/2111.12077
https://arxiv.org/abs/2111.12077
https://arxiv.org/abs/2403.04116
https://arxiv.org/abs/2403.04116
https://arxiv.org/abs/2403.04116


BIBLIOGRAPHY 48

[6] Y. Cai, J. Wang, A. Yuille, Z. Zhou, and A. Wang. Structure-aware

sparse-view x-ray 3d reconstruction, 2024. arXiv: 2311.10959 [eess.IV].

URL: https://arxiv.org/abs/2311.10959.

[7] X. Chen, Q. Zhang, X. Li, Y. Chen, Y. Feng, X. Wang, and J. Wang.

Hallucinated neural radiance fields in the wild, 2022. arXiv: 2111 .

15246 [cs.CV]. URL: https://arxiv.org/abs/2111.15246.

[8] B. O. Community. Blender - a 3D modelling and rendering package.

Blender Foundation. Stichting Blender Foundation, Amsterdam, 2018.

URL: http://www.blender.org.

[9] A. Corona-Figueroa, J. Frawley, S. Bond-Taylor, S. Bethapudi, H. P. H.

Shum, and C. G. Willcocks. Mednerf: medical neural radiance fields

for reconstructing 3d-aware ct-projections from a single x-ray, 2022.

arXiv: 2202.01020 [eess.IV]. URL: https://arxiv.org/abs/

2202.01020.

[10] L. Feldkamp, L. C. Davis, and J. Kress. Practical cone-beam algorithm.

Journal of the Optical Society of America A, 1:612–619, June 1984.

DOI: 10.1364/JOSAA.1.000612.

[11] Z. Gao, B. Planche, M. Zheng, X. Chen, T. Chen, and Z. Wu. Ddgs-ct:

direction-disentangled gaussian splatting for realistic volume render-

ing, 2024. arXiv: 2406.02518 [cs.CV]. URL: https://arxiv.org/

abs/2406.02518.

[12] P. Gilbert. Iterative methods for the three-dimensional reconstruction of

an object from projections. Journal of Theoretical Biology, 36(1):105–

117, January 1972. ISSN: 0022-5193. DOI: 10.1016/0022-5193(72)

90180- 4. URL: https://doi.org/10.1016/0022- 5193(72)

90180-4.

[13] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction

techniques (art) for three-dimensional electron microscopy and x-ray

https://arxiv.org/abs/2311.10959
https://arxiv.org/abs/2311.10959
https://arxiv.org/abs/2111.15246
https://arxiv.org/abs/2111.15246
https://arxiv.org/abs/2111.15246
http://www.blender.org
https://arxiv.org/abs/2202.01020
https://arxiv.org/abs/2202.01020
https://arxiv.org/abs/2202.01020
https://doi.org/10.1364/JOSAA.1.000612
https://arxiv.org/abs/2406.02518
https://arxiv.org/abs/2406.02518
https://arxiv.org/abs/2406.02518
https://doi.org/10.1016/0022-5193(72)90180-4
https://doi.org/10.1016/0022-5193(72)90180-4
https://doi.org/10.1016/0022-5193(72)90180-4
https://doi.org/10.1016/0022-5193(72)90180-4


BIBLIOGRAPHY 49

photography. Journal of Theoretical Biology, 29(3):471–481, Decem-

ber 1970. ISSN: 0022-5193. DOI: 10.1016/0022-5193(70)90109-

8. URL: https://doi.org/10.1016/0022-5193(70)90109-8.

[14] W. Grünert and K. Klementiev. X-ray absorption spectroscopy princi-

ples and practical use in materials analysis. Physical Sciences Reviews,

0(0), 2020. DOI: 10.1515/psr-2017-0181.

[15] D. He, J. Zhou, X. Shang, X. Tang, J. Luo, and S.-L. Chen. De-noising

of photoacoustic microscopy images by attentive generative adversarial

network. IEEE Transactions on Medical Imaging, 42(5):1349–1362,

2023. DOI: 10.1109/TMI.2022.3227105.

[16] A. C. Kak and M. Slaney. Principles of Computerized Tomographic

Imaging. Society for Industrial and Applied Mathematics, 2001. DOI:

10.1137/1.9780898719277. eprint: https://epubs.siam.org/

doi/pdf/10.1137/1.9780898719277. URL: https://epubs.

siam.org/doi/abs/10.1137/1.9780898719277.

[17] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian

splatting for real-time radiance field rendering, 2023. arXiv: 2308 .

04079 [cs.GR]. URL: https://arxiv.org/abs/2308.04079.

[18] Y. Kimura, A. Tomura, M. Fakkao, T. Nakamura, N. Ishiguro, O. Sek-

izawa, K. Nitta, T. Uruga, T. Okumura, M. Tada, Y. Uchimoto, and

K. Amezawa. 3d operando imaging and quantification of inhomoge-

neous electrochemical reactions in composite battery electrodes. The

Journal of Physical Chemistry Letters, 11(9):3629–3636, 2020. DOI:

10.1021/acs.jpclett.0c00876. eprint: https://doi.org/10.

1021/acs.jpclett.0c00876. URL: https://doi.org/10.1021/

acs.jpclett.0c00876. PMID: 32315194.

[19] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on In-

formation Theory, 28(2):129–137, 1982.

https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1515/psr-2017-0181
https://doi.org/10.1109/TMI.2022.3227105
https://doi.org/10.1137/1.9780898719277
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719277
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719277
https://epubs.siam.org/doi/abs/10.1137/1.9780898719277
https://epubs.siam.org/doi/abs/10.1137/1.9780898719277
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2308.04079
https://doi.org/10.1021/acs.jpclett.0c00876
https://doi.org/10.1021/acs.jpclett.0c00876
https://doi.org/10.1021/acs.jpclett.0c00876
https://doi.org/10.1021/acs.jpclett.0c00876
https://doi.org/10.1021/acs.jpclett.0c00876


BIBLIOGRAPHY 50

[20] S. H.Manglos, G.M.Gagne, A.Krol, F. D. Thomas, andR.Narayanaswamy.

Transmissionmaximum-likelihood reconstruction with ordered subsets

for cone beam ct. Physics in Medicine and Biology, 40(7):1225–1241,

July 1995. ISSN: 0031-9155. DOI: 10.1088/0031-9155/40/7/006.

URL: https://doi.org/10.1088/0031-9155/40/7/006.

[21] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-

thi, and R. Ng. Nerf: representing scenes as neural radiance fields for

view synthesis, 2020. arXiv: 2003 . 08934 [cs.CV]. URL: https :

//arxiv.org/abs/2003.08934.

[22] napari contributors. Napari: amulti-dimensional image viewer for python.

https : / / github . com / napari / napari, 2019. DOI: 10 . 5281 /

zenodo.3555620.

[23] J. Radon, P. Parks, and C. Clark. On the determination of functions from

their integral values along certain manifolds, April 2018.

[24] D. Rückert, Y. Wang, R. Li, R. Idoughi, and W. Heidrich. Neat: neu-

ral adaptive tomography, 2022. arXiv: 2202.02171 [cs.CV]. URL:

https://arxiv.org/abs/2202.02171.

[25] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise

removal algorithms. Physica D: Nonlinear Phenomena, 60:259–268,

November 1992. DOI: 10.1016/0167-2789(92)90242-F.

[26] K. Sauer and C. Bouman. A local update strategy for iterative recon-

struction from projections. IEEE Transactions on Signal Processing,

41(2):534–548, 1993. DOI: 10.1109/78.193196.

[27] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

https://doi.org/10.1088/0031-9155/40/7/006
https://doi.org/10.1088/0031-9155/40/7/006
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://github.com/napari/napari
https://doi.org/10.5281/zenodo.3555620
https://doi.org/10.5281/zenodo.3555620
https://arxiv.org/abs/2202.02171
https://arxiv.org/abs/2202.02171
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1109/78.193196


BIBLIOGRAPHY 51

[28] E. Y. Sidky and X. Pan. Image reconstruction in circular cone-beam

computed tomography by constrained, total-variationminimization.Physics

in Medicine and Biology, 53(17):4777–4807, September 2008. ISSN:

0031-9155. DOI: 10.1088/0031-9155/53/17/021. URL: https:

//doi.org/10.1088/0031-9155/53/17/021.

[29] M. Suhail, C. Esteves, L. Sigal, and A. Makadia. Light field neural ren-

dering, 2022. arXiv: 2112.09687 [cs.CV]. URL: https://arxiv.

org/abs/2112.09687.

[30] R. Zha, T. J. Lin, Y. Cai, J. Cao, Y. Zhang, and H. Li. R2-gaussian:

rectifying radiative gaussian splatting for tomographic reconstruction,

2024. arXiv: 2405.20693 [eess.IV]. URL: https://arxiv.org/

abs/2405.20693.

[31] R. Zha, Y. Zhang, and H. Li. Naf: neural attenuation fields for sparse-

view cbct reconstruction. In Medical Image Computing and Computer

Assisted Intervention – MICCAI 2022. Springer Nature Switzerland,

2022, pages 442–452. ISBN: 9783031164460. DOI: 10.1007/978-3-

031-16446-0_42. URL: http://dx.doi.org/10.1007/978-3-

031-16446-0_42.

https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.1088/0031-9155/53/17/021
https://arxiv.org/abs/2112.09687
https://arxiv.org/abs/2112.09687
https://arxiv.org/abs/2112.09687
https://arxiv.org/abs/2405.20693
https://arxiv.org/abs/2405.20693
https://arxiv.org/abs/2405.20693
https://doi.org/10.1007/978-3-031-16446-0_42
https://doi.org/10.1007/978-3-031-16446-0_42
http://dx.doi.org/10.1007/978-3-031-16446-0_42
http://dx.doi.org/10.1007/978-3-031-16446-0_42


Acknowledgements

I am grateful to my home university, the University of Bologna, for allow-

ing me to participate in the 1st Call of 2024 for the NII International Intern-

ship Program in Tokyo. I would also like to sincerely thank my supervisor at

NII, Prof. Imari Sato, for her invaluable guidance, support, and motivation

throughout this journey.

I would also like to thank my advisor, Prof. Samuele Salti, for his contin-

uous support and feedback throughout the writing of this thesis.

A special thanks goes to my colleague and friend, Ming-Yang Ho, for his

essential help, knowledge, and inspiration.


	Introduction
	Problem Definition
	Metrics
	RGB vs X-ray imaging

	Background
	3D Reconstruction for X-ray imaging
	Traditional Approaches
	NeRFs
	3D Gaussian Splatting

	LCO Cathode Batteries
	XAFS

	Methodology
	Acquisition setup
	Optical Path
	qCMOS camera

	X-ray Novel Datasets
	Preprocessing
	SoTA 3D Reconstruction Methods
	SaxNeRF
	R2-Gaussian
	Postprocessing


	Experiments
	Dataset Analysis
	Experiment 1 - Fixed Sampling
	Experiment 2 - Narrowing Angles
	Experiment 3 - Random Sampling
	Experiment 4 - Window Averaging

	Discussion
	Conclusion
	Summary
	Future Work

	Bibliography
	Acknowledgements

