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Abstract 

This study explores the enhancement of autonomy in connected vehicles through 

improved cooperative mapping techniques. By dividing large areas into smaller 

sections for independent exploration, vehicles can generate precise local maps using 

integrated sensors such as LIDAR, cameras, and GNSS. The focus is on urban and 

outdoor environments, utilizing Vehicle-to-Vehicle (V2V) communication rather than 

Vehicle-to-Everything (V2X) or Vehicle-to-Infrastructure (V2I). Two main map merging 

methods are evaluated: Direct Map Merging (DMM) and Indirect Map Merging (IMM). 

DMM offers real-time capabilities and simplicity, while IMM provides improved 

accuracy and flexibility but is computationally intensive. The study employs the CARLA 

simulator to validate the proposed cooperative 3D mapping system, utilizing vehicles 

equipped with advanced sensors. Performance metrics such as fitness score, RMSE, 

and C2C distance are used to evaluate the effectiveness of the system in different 

scenarios. 
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1 Basis: 

In today's internet-connected world, vehicles are revolutionizing transportation by 
communicating with each other and infrastructures in real time. This enhances 
efficiency, prevents accidents, and saves lives. Connected vehicle technologies enable 
higher autonomy levels, crucial for both autonomous driving and Advanced Driver 
Assistance Systems (ADAS). They also reduce human errors, major causes of 
accidents, and traffic congestion. The Connected Autonomous Vehicle (CAV) 
promotes safety by raising awareness among vehicles. Emerging vehicle connectivity 
supports various communications like V2V and V2I, improving transportation 
efficiency. Autonomous driving systems utilize sensors for environment perception, 
ensuring safer travel through accurate mapping and localization. 
 

Motivation and Objectives: 

To make connected vehicles more autonomous, it is needed to carefully record and 

map their surroundings. Since sensor signals can be affected by the environment, we 

use sensor fusion to improve detection reliability. However, sensors have limits in 

detecting the environment fully. So, communication protocols help to share information 

among vehicles, transmitting only clear objects due to network limits. This creates 

uncertainty in the environment model, which can be solved by sending relevant sensor 

data. This data is turned into a model showing the surroundings. Typically, SLAM 

algorithms are used for this. They use local sensor data to figure out the vehicle's 

position and the position of objects around it. There are various mapping methods, like 

occupancy grid maps or semantic maps. We explore ways to create a detailed global 

map for networked vehicles, considering different map formats with different details 

and information types. 

Structure and Main Tasks: 

In the near future, autonomous vehicles are expected to take over various 

transportation roles, replacing traditional vehicles. Expected trends indicate the 

availability of both Autonomous Vehicles (AVs) and connected vehicles (CVs), possibly 

together, because it is expected to be inexpensive. While AVs and CVs can be 

equipped with a variety of sensors, a critical functionality involves their ability to 

accurately position and measure distances between vehicles and objects and map 

their environment in detailed. The reliability and accuracy of connected vehicle 

systems, as well as road safety, rely on these sensors and their measurements.  

 

The primary objectives of autonomous driving involve addressing key questions: 
Where am I? Where are the others? How do I reach my destination? These inquiries 
find solutions through key elements such as Localization and Mapping, Sensing, 
Planning, and Driver State Monitoring respectively. The Society of Automotive 
Engineers (SAE) classifies vehicular autonomy into six levels (0 to 5), depending on 
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the level of human driver involvement during operation. Researchers are aiming for 
level 5 where cars can operate without any human input.[1] 

 

 

Table 1: Description of Autonomy Level [2] 

Level 0  

Driver Only 

Level 1 

Assisted 

Level 2 

Partially 

Automated 

Level 3 

Highly 

Automated 

Level 4 

Fully 

Automated 

Level 5 

Self - 

Driving 
 

Feet-off Hands-off Eyes-off Eyes-off Mind-off 

Perform 

longitudinal 

and lateral 

tasks 

continuously  

Perform 

longitudinal 

or lateral 

tasks 

continuously 

Driver 

monitors 

systems 

continuously 

Driver does 

not monitor 

systems 

continuously 

Driver is 

required in 

defined 

use cases 

Driver is not 

required 

during the 

entire 

journey 

Driver Monitors  the Environments Machine Monitors the environment 

 

 

Connected and Autonomous Vehicles (CAVs) involve three main tasks. Perception, 

Planning and Control. The autonomy system of driverless vehicles relies on integration 

of perception and planning, each consisting of distinct subsystems. In the domain of 

autonomous vehicular operations, the comprehensive control of vehicle motion 

encompasses both longitudinal and lateral directions. This necessitates the execution 

of a control task that involves actively managing both the powertrain and steering 

system to ensure optimal and effective motion. The ultimate goal in the realm of 

Advanced Driver Assistance Systems (ADAS) and Autonomous Driving is to emulate 

human driver’s capability to sense, reason and act to achieve beyond human driving 

performance.[1] 

 

1.1.1 Perception  

The perception layer gathers data from various sensors, undertaking tasks such as 
establishing the vehicle's global and local position, creating an environmental map, 
detecting, classifying, and tracking obstacles or participants. Connected and 
Autonomous Vehicles need both onboard and communication sensors to work well. 
These sensors also need to interact smoothly with the environment, like roads and 
other vehicles, for CAVs to operate effectively. The connectivity facilitated by vehicle 
communication enables the perception layer to exchange critical information with other 
road users, promoting a collaborative driving. This Perception Layer is typically 
segmented into three essential components: Sensor Fusion, Environmental 
Perception, and Localization and Mapping. The aim of these components is to ensure 
robust and reliable perception, as well as precise localization and mapping. These 
elements are vital in making accurate and dependable decisions for vehicle control. 
Essentially, a reliable Perception Layer is crucial for autonomous vehicles to operate 
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well, influencing their ability to navigate and interact safely and intelligently with the 
various dynamic driving scenarios. [1] 

1.1.2 Planning:  

When the perception layer provides data about the surroundings and the vehicle's 
position, the planning layer translates that information into practical driving actions. 
This highlights the crucial role of planning in ensuring smooth and efficient driving in 
autonomous systems. The planning layer determines the optimal global route by 
utilizing remote map data that includes road and traffic information, covering 
maneuver, path, and trajectory planning. Through real-time decision-making, it 
calculates a locally optimal trajectory, influencing servo control for precise vehicle 
actuation. This comprehensive planning process, initiated after receiving the 
environmental model and ego-vehicle position from the perception layer, allows the 
planning layer to transform information into the desired driving action.[1] 
 

1.1.3 Control: 

Within the control layer, precise commands are calculated to guide vehicle actuators, 

ensuring the reliable execution of the intended trajectory. This crucial layer effectively 

guides vehicle movements with precise servo control and adept trajectory tracking. 

The motion control block manages both longitudinal and lateral motions, smoothly 

integrating with powertrain and steering controls. This integrated approach ensures the 

vehicle responds optimally, achieving precise trajectory tracking in diverse driving 

scenarios.[1] 

 

 
Figure 1: Connected Autonomous Vehicles Architecture  [1] 
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1.1.4 What is not covered in this Thesis 

Within the scope of this project, the primary emphasis is on Perception and map 

generation, deliberately excluding discussions related to planning and control blocks. 
 

 

1.2 Sensing Technologies: 

Connected Autonomous Vehicles (CAVs) heavily rely on sensors for data collection 

and communication with electronic devices. Perception, in alongside sensors, plays a 

pivotal role by creating a model of the environment, detecting obstacles, recognizing 

traffic signals, identifying road markings, and achieving accurate localization.  

 

Sensors are categorized as onboard sensors for direct data collection and 

communication sensors, dependent on communication quality. After extracting 

environmental data, processes for localization and mapping are conducted to fulfil the 

perception task. Furthermore, the effectiveness of sensors significantly impacts CAVs' 

safety and efficiency by providing a comprehensive understanding of the surrounding 

environment. This allows the vehicle to make informed decisions and navigate diverse 

scenarios with precision.  

 

In the domain of Autonomous Driving, sensors play a crucial role in determining a 

vehicle's position and orientation. GNSS, LiDAR, Radar, IMU, and cameras collect 

data to comprehend the vehicle's surroundings. Sensors are categorized as either 

exteroceptive (sensing the environment) or proprioceptive (measuring internal 

conditions). They are also classified based on energy usage, with passive sensors 

(e.g., cameras, GNSS, and inertial sensors) not emitting energy, and active sensors 

(e.g., LiDAR and Radar) emitting energy to perceive the environment. This diverse 

sensor array is vital for accurate and reliable localization, facilitating higher-level 

decision-making for vehicles.  

 

In autonomous vehicles, sensors such as Radar, LiDAR, and Cameras contribute to 

surrounding sensing by perceiving road conditions, traffic signs, weather, obstacles, 

and the driver's state. These sensors can either be active, emitting signals, or passive, 

perceiving existing signals. Selecting the appropriate sensor involves considering 

factors like the required information type, the suitability of an active or passive sensor, 

budget constraints, and the decision to use a single or multiple sensors. [3] 
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Figure 2: Sensor suite resembling deployed on highly automated vehicles 
[image source: Bosch] 

1.2.1 On-Board Sensors: 

Onboard sensors are like the eyes and ears of a vehicle. They collect information 
directly from the car's surroundings, helping it navigate and make smart decisions. 
These sensors include cameras, LiDAR, radar, GNSS, and IMU. Cameras see and 
recognize things, LiDAR creates 3D maps, radar detects objects, GNSS provides 
global positioning, and IMU helps understand motion. Together, these sensors make 
sure the car can drive safely and react wisely to what is happening on the road in real 
time.[1] 
 

1.2.2 In-vehicle Sensors 

In autonomous vehicles, critical sensors encompass the accelerometer, gyroscope, 

wheel speed sensor, and steering wheel angle sensor. The accelerometer measures 

changes in the vehicle’s speed, while the gyroscope tracks rotation or angular velocity, 

for steering. These often unite in the Inertial Measurement Unit (IMU). On each wheel, 

the wheel speed sensor keeps an eye on how fast it is spinning. This is really important 

for safety systems like antilock brakes and traction control. Finally, the steering wheel 

angle sensor shows how much the steering wheel is turning. This is super important 

for controlling the car and making things like electric power steering and lane departure 

warnings work in Advanced Driver Assistance Systems (ADAS). These sensors, acting 

as the car's sensory toolkit, aid in navigation and decision-making, ensuring a smooth 

and controlled ride. In this case, proprioceptive sensors check the ego-vehicle's current 

state, commonly using pre-installed units like odometers, IMUs, gyroscopes, and data 

from the controller area network (CAN) bus.[1] 
 

In addition to the mentioned sensors like the accelerometer, gyroscope, wheel speed 

sensor, and steering wheel angle sensor, there are several other in-vehicle sensors. 

These include Rain Sensors, Light Sensors, Temperature Sensors, Fuel Level 

Sensors, Tire Pressure Sensors, and Biometric Sensors with interior cameras. Rain 

Sensors automatically adjust wiper speed in response to detected rain or moisture on 
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the windshield. Light Sensors autonomously control headlights by gauging ambient 

light levels. Temperature Sensors monitor interior and exterior temperatures to 

contribute to climate control. Fuel Level Sensors indicate the amount of fuel in the tank, 

aiding drivers in monitoring gas levels. Tire Pressure Sensors alert drivers when tire 

pressure deviates from recommended levels. 

  

In advanced systems, Biometric Sensors and interior cameras play a vital role. They 

monitor the driver, adapting settings based on preferences, and detecting signs of 

fatigue or drowsiness to enhance safety. These applications collectively contribute to 

an improved driving experience, with ongoing advancements continuing to refine and 

expand the capabilities of in-vehicle sensors. 

 

The specific sensors in a vehicle can vary depending on the make, model, and the 

level of technology integrated into the vehicle. Advances in automotive technology 

continue to introduce new sensors and enhance existing ones to improve safety, 

efficiency, and overall driving experience. 

 

1.2.3 Radar  

Radar plays a crucial role in automotive applications by measuring the position and 

velocity of objects relative to the vehicle. Unlike LIDAR and cameras, radar is robust 

in poor visibility conditions (all-weather capability) enhancing the reliability of 

autonomous vehicles. However, it may face challenges in extreme weather. Three 

main types of automotive radars exist: 

 

 Short-Range Radar (SRR) at 24 GHz is great for parking and close detection, like 

Blind Spot and Cross Traffic Alert, with a wide view. 

 Mid-Range Radar (MRR) at 76-77 GHz is for warnings like Forward Collision and 

Emergency Braking. It focuses sharply with precise antennas and a narrower field 

of view (FoV) ensuring your safety on the road. 

Long-range radar (LRR) at 76-77 GHz for front radar, adaptive cruise control 
and long-range object detection. This radar system possesses narrower field of 
view with operation range of 250 meters. [4] 

 

 

Figure 3: Typical range and Field of View for automotive Radar[4] 
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Radar measurements include range, relative velocity, and direction estimation. 

Techniques like Digital Beamforming (DBF) and multi-input-multi-output (MIMO)[5] 

improve radar capabilities. DBF enhances angular resolution, while MIMO radar, using 

multiple receivers and transmitters, reduces clutter and enhances coverage. Radars 

are extensively studied for autonomous vehicle development, covering multiple target 

detection, ego-motion estimation, radar perception, self-localization, lane prediction, 

and pedestrian detection. Ego-motion estimation utilizes Doppler information for 2D 

motion estimation of the vehicle and velocity measurement. Radar-grid, a recent 

technique, builds a detailed 3D representation for tasks like SLAM, landmark 

extraction, and sensor fusion. Radars predict driving lanes in the absence of efficient 

optical sensors. Pedestrian detection involves micro-Doppler signatures and feature 

extraction methods. Radar-grid, multiple target detection, and sensor fusion are 

identified as future research directions, with radar-grid offering potential improvements 

in perception capabilities and cost reduction for AV. [1] 

 

 

 

Figure 4: Front Radar Sensor (Left) and Mid-range sensor (Right)               
[image source Bosch] 

 
 

1.2.4 LIDAR 

LIDAR relies on laser technology to determine the spatial position of objects in its 

environment, achieved through the emission of laser impulses and the application of 

the time-of-flight method. The sensor calculates the distance of scanned points from 

its center. Renowned for its high frequency, precision, extensive range, and robustness 

to lighting influences, LIDAR stands out as a versatile technology capable of operating 

both indoors and outdoors, producing either 2D or 3D point clouds. LIDAR improves 

scene understanding with better detail compared to radar due to higher resolution, 

achieved through numerous scans and dense scan points. In autonomous vehicles, 

LIDAR is crucial, using laser beams to measure distances and create detailed point 

cloud maps around the vehicle. LIDAR has two main ways of measuring distance: 

pulse measurement (time-of-flight) and phase measurement. Pulse measurement, like 

Velodyne's widely used product, is great for long distances (up to 800m) and is popular 

in autonomous vehicles. [6] On the other hand, phase measurement provides faster 

data rates and accuracy but only works well at shorter distances (less than 100m). 

Critical parameters affecting LIDAR in autonomous vehicles include eye safety, data 
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receive rate, range resolution, frame rate, and maximum pulse repetition frequency 

(PRF). Emphasizing human-eye safety, LIDAR ensures invisible, harmless laser 

emissions. It excels as a primary data source, collaborating with cameras, sonars, and 

radars, offering varied environmental representations. Despite a lower frame rate, 

LIDAR's 360-degree field of view, adaptability to lighting and adverse weather 

conditions and precision make it a favoured sensor in autonomous vehicles. Perception 

using LIDAR involves segmentation, fragmentation clustering, and tracking. 

Segmentation groups LIDAR measurement points based on predefined thresholds, 

often incorporating target distance. Fragmentation clustering identifies object types 

through physical features like size and shape, while tracking relies on methods such 

as Kalman filters. LIDAR plays a crucial role in recognising objects like road markings, 

pedestrians, cyclists, and cars. Using reflection intensity analysis, specifically the 

modified Otsu method, it ensures robust road marking recognition in diverse lighting 

conditions [7]. 

 

 

 

Figure 5: Visualization of a LIDAR point cloud [8] 

 

 

1.2.5 Camera 

Cameras play a pivotal role in autonomous vehicles by generating a 2D image of the 
surrounding environment through the detection of electromagnetic waves emitted by 
objects. Unlike active sensors such as LIDAR, radar, and ultrasonic, cameras are 
passive, relying on detecting energy without emitting any. Despite being a low-cost 
option, cameras are computationally intensive and find application in various areas, 
including vehicle, pedestrian, lane marking, and traffic sign detection in autonomous 
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vehicles. There are three main types of cameras used in autonomous driving: single, 

stereo, and infrared.  

 

 

Figure 6: Monocular vision vs. Stereo Vision [9] 

 

Infrared cameras are specifically designed for pedestrian detection during nighttime 

conditions. Single and stereo cameras employ different methods for vehicle detection. 

Appearance-based methods, applied to both single and stereo cameras, analyze 

features like symmetry, edge, and headlights for vehicle detection. Motion-based 

methods, used primarily with single cameras, face limitations due to the lack of direct 

depth information. For stereo cameras, stereo matching, appearance-based methods 

(such as v-disparity and u-disparity), and motion-based methods (including optical flow 

and occupancy grids) contribute to vehicle detection and scene segmentation. 

Pedestrian detection involves model-based, motion-based, appearance-based, and 

part-based methods. Lane marking detection with cameras follows a series of steps, 

including pre-processing, color processing, ROI selection, edge detection, and lane 

detection. Traffic sign detection with cameras involves segmentation, shape feature 

extraction, and detection using various methods like Hough transform and cascaded 

classifiers. Despite significant advancements in digital cameras and video processing, 

challenges persist, such as detecting partially occluded vehicles and improving traffic 

sign recognition using high-definition (HD) map information. Ongoing research is 

needed to address these challenges and enhance the robustness of camera-based 

perception systems in autonomous vehicles. 

  

 

 

 

Figure 6: from Left, Stereo Camera, Multi-Purpose single camera,                

Near-Range Camera [Photos from Bosch] 
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1.2.6 Ultrasonic Sensor: 

Ultrasonic sensors utilize sound waves for obstacle detection and are particularly 

effective in parking scenarios and low-speed manoeuvres. Emitting ultrasonic waves, 

these sensors measure the distance to surrounding objects based on the time it takes 

for the waves to reflect back. This data is then processed to provide real-time feedback 

to the driver. Ultrasonic sensors help vehicles to park better by accurately measuring 

how close they are to obstacles. This makes parking easier and allows for smooth and 

controlled movement in confined spaces. Strategically placing ultrasonic sensors all 

around vehicles ensures they detect obstacles from every angle, offering complete 

coverage similar to Blind Spot Detection. So, these sensors help drivers handle tricky 

situations in cities and parking lots by giving them a better understanding of their 

surroundings. They are useful tools for urban driving and parking scenarios. [10] 
 

The ultrasonic sensor plays a crucial role in detecting objects near the vehicle, 

especially in areas where the camera may have limitations. It processes this 

information to create maps with altitude data. Furthermore, it provides valuable input 

to the system, enabling the categorization of objects and determining feasible routes. 

We also still use the ultrasonic sensor to identify the distance with the object in front of 

the car and even when parking or behind the car. [11] 

 

 

 
                              (a)                                                               (b) 
 

 

(c) 
 

Figure 7: Ultrasonic Sensor Distance Measurement (a) 

 and Object Localization (b) by Ultrasonic Sensors [10] 
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Table 2: Sensor Classification and Comparison 

 

Sensors 

 

 

Advantages 

 

Disadvantages 

 

Camera 

 High angular resolution 

 Good for Classification 

 Human Vision Resemblance 

 Feasible to bad weather and 

light 

 No direct range and velocity 

measurement 

 Bad depth Estimation 

 

 

LIDAR 

 High angular resolution 

 360° visibility 

 Robust to lighting conditions 

 Expensive  

 Feasible to fog and bad 

weather conditions 

 No velocity measurement 

 

 

Radar 

 Long Range 

 Robust to bad weather and lighting 

 Hidden Installation 

 Low cost 

 Velocity Measurement 

 Low Resolution 

Ultrasound  Cheap and cost effective 

 Mostly used for parking functions 

 Only for near range (<8) 

 Short Range 

 Gives no insight about the 

object 

 

1.3 Communication Sensors: 

The communication sensors can receive additional data through communication. In 

this case, the communication sensors suffer more data delay or loss problems, 

compared to the on-board sensors. The typical communication sensors in CAV include 

Global Navigation Satellite System (GNSS), Dedicated short-range communication 

(DSRC) and Cellular technology. Communication and connectivity are enabling 

technologies for intelligent transportation systems. Perception makes self-driving 

vehicles aware of their surroundings, similar to senses for human drivers. Multi-vehicle 

cooperation, awareness of obstacles outside the line of sight, and forecasts require 

communication. Today’s core technologies are DSRC and cellular communication 

(4G and 5G) [1]. 

 

1.3.1 Global Navigation Satellite System (GNSS):  

Global Navigation Satellite Systems (GNSS) are crucial for determining vehicle 

position and velocity on a global scale, playing a vital role in various Intelligent 

Transportation System (ITS) applications such as Autonomous Vehicles (AV), 

advanced driver assistance systems (ADAS), toll collection, and traffic management. 
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GNSS, categorized as communication sensors, communicates with satellites to 

determine the vehicle's global position using a receiver or antenna. [1] 
 

Different types of GPS receivers offer varying levels of accuracy: 

 

 Standard GPS receivers: achieve 3-8 meters accuracy, while  

 Differential GPS (DGPS): enhances it to 1-3 meters by utilizing ground-based 

stations.  

 Real-time kinematic GPS (RTK-GPS) achieves centimetre-level accuracy but it is 

costly 

 

Despite its advantages, GNSS has limitations [12], including: 

 

 Susceptibility to obstacles causing multipath and non-line-of-sight (NLOS) issues.  

 Multipath issues involve reflected signals, addressable through specialized 

techniques. 

 

NLOS requires mitigation strategies or fusion with other sensors. To address 

limitations like low update frequency and long-term GPS outages, sensor fusion is 

utilized. Fusion involves incorporating data from Inertial Measurement Units (IMUs), 

in-vehicle sensors, cameras, radar, LIDAR, and digital maps. GPS and IMU fusion is 

common for high-frequency updates, while Bayesian filters fuse in-vehicle sensors for 

enhanced positioning accuracy [1]. 

 

 

 

 

Figure 8: Obstacle influence on GPS signals[1] 

 



Final Thesis 
 

 

1.3.2 Dedicated Short Range Communications (DSRC): 

Dedicated Short-Range Communication (DSRC) stands as a pivotal wireless 

communication technology for Vehicle-to-Everything (V2X) communication, designed 

for short-range real-time communications between vehicles and roadside 

infrastructures. DSRC operates in the 5.9GHz frequency band and is primarily used 

oft vehicle-to-vehicle (V2V) and vehicle-to-infrastructures (V2I) communications. It 

would be useful to improve road safety, traffic efficiency and overall transportation 

system. [1] 

 

DSRC stands out from 5G cellular networks due to its low-latency end-to-end 

communication, making it a reliable option for safety applications. However, for 

enhanced data speeds, Long Term Evolution (LTE) or C-V2X is employed instead of 

DSRC. Despite DSRC's significant role, emerging cellular technologies like 5G are 

considered, and the choice depends on regional standards, regulations, and industry 

collaboration. [1] 
  

Connected Vehicle (CV) technology operates through two primary components: the 

Road-side Unit (RSU) and the On-Board Unit (OBU). The OBU is situated within the 

vehicle, while the RSU is placed either at intersections or alongside roads. Through 

the OBU, a CV constantly shares essential vehicle details multiple times per second 

and can also receive messages from nearby CV-equipped vehicles. These incoming 

messages, referred to as Basic Safety Messages (BSMs), are utilized to assess the 

trajectories of both the present and nearby vehicles, aiding in the detection of potential 

future incidents. [13] 

 

DSRC, or Dedicated Short-Range Communication, has key features and applications 

in intelligent transportation systems, including safety applications, traffic flow 

management, cell phones for Vehicle-to-Pedestrian (V2P) communication, intersection 

collision avoidance, electronic toll collection, and the development of connected 

vehicle systems. Despite its maturity, DSRC faces challenges like scalability, latency, 

and reliability degradation in certain conditions. Solutions involve incorporating 

additional technologies, addressing security and privacy concerns, and mitigating 

construction and maintenance costs. [13] 

 

 

Figure 9: DSRC system communication with roadside equipment [12] 
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1.4 Vehicle Connectivity: 

Connected Vehicles (CV) use Vehicle-to-Everything (V2X) communication technology 

to interact with other vehicles and networks, including Vehicle-to-Vehicle (V2V), 

Vehicle-to-Pedestrian (V2P), and Vehicle-to-Infrastructure (V2I) communication.  

Through dedicated short-range communications (DSRC), CVs can transmit Context-

Aware Messages (CAM) that include information about the host vehicle's speed, 

heading, and brake status. These messages facilitate communication between 

vehicles, warning drivers about potential crashes and hazards [1]. 

 

C-V2X, or Cellular Vehicle-to-Everything, uses existing cellular networks to facilitate 

direct vehicle-to-vehicle communication and network-based communication. It 

operates in the 5.9 GHz band and cellular networks, ensuring seamless 

communication across different environments [14]. 

 

Recent developments within the 3rd Generation Partnership Project (3GPP) aim to 

enhance cellular V2X technology for faster and more efficient communication. While 

the latest 3GPP LTE releases have introduced cellular V2X for direct vehicle 

communication, there's an ongoing discussion about whether to adopt Dedicated 

Short-Range Communications (DSRC) or cellular V2X [14]. 

 

However, both approaches encounter challenges, particularly in managing message 

congestion on the safety channel. This congestion could compromise communication 

reliability, especially in busy traffic scenarios, potentially posing safety risks. 

Additionally, existing V2V networks struggle with limited capacity to handle numerous 

vehicles and data rates, hindering advanced applications like cooperative Advanced 

Driver Assistance Systems (ADAS) and platooning [14]. 

 

 

 

Figure 10: Overview of Vehicular Communication Environment [15] 
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1.4.1 Vehicle-to-Vehicle (V2V) Communication:  

V2V, or Vehicle-to-Vehicle communication, involves vehicles directly sharing real-time 

information such as speed, position, and direction. This communication enhances road 

safety by providing drivers with timely details about nearby vehicles, potential hazards, 

and traffic conditions. It aims to prevent accidents and improve overall traffic flow. 

 

DSRC (Dedicated Short-Range Communications) operates in the 5.9 GHz frequency 

band, facilitating direct communication between vehicles to share vital information like 

location and speed. V2V communication typically utilizes dedicated wireless 

technologies, with Dedicated Short-Range Communications (DSRC) being the most 

common standard based on the IEEE 802.11p standard. 

C-V2X (Cellular Vehicle-to-Everything) uses existing cellular networks to enable both 

direct vehicle-to-vehicle communication and network-based communication, offering 

versatility in the 5.9 GHz band and cellular networks. 
 

1.4.2 Vehicle-to-Infrastructure (V2I) Communication: 

V2I, or Vehicle-to-Infrastructure communication, refers to the exchange of information 

between vehicles and infrastructure elements, such as traffic signals, road signs, and 

other components of the transportation system. This communication is a key aspect of 

intelligent transportation systems (ITS) and is part of the broader concept of V2X 

(Vehicle-to-Everything) communication [16]. 

 

In V2I communication, vehicles and infrastructure components use wireless 

technologies to share data, which can include information about traffic conditions, road 

hazards, traffic signal status, and other relevant details. This real-time exchange of 

information enables vehicles to make more informed decisions, optimize traffic flow, 

enhance safety, and improve overall transportation efficiency [16]. 

 

V2I communication plays a crucial role in the development of smart and connected 

transportation systems, contributing to advancements in areas such as autonomous 

driving, traffic management, and the overall effectiveness of transportation networks. 

Key components and devices used in V2I communication include: 
 

1.4.3 On-Board Units (OBUs): 

These are devices installed in vehicles to enable communication with roadside 

infrastructure. OBUs typically consist of a communication module, such as Dedicated 

Short-Range Communication (DSRC) or Cellular Vehicle-to-Everything (C-V2X) [16]. 

 

1.4.4 Roadside Units (RSUs):  

Installed along roadways or highways to facilitate communication with vehicles. RSUs 

communicate traffic conditions, road hazards, and signal timing to vehicles. RSUs are 
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part of V2I (Vehicle-to-Infrastructure) communication systems, allowing the exchange 

of information between vehicles and the roadside infrastructure [16]. 

 

1.4.5 Traffic Management Centers (TMCs):  

Centralized facilities optimize traffic flow and safety by providing real-time information 

to vehicles. This is a centralized facility where traffic-related data is collected, 

monitored, and managed. TMCs play a crucial role in traffic control and management, 

coordinating signals, responding to incidents, and optimizing traffic flow. They use 

various technologies and data sources, including information from roadside units, to 

make informed decisions and improve overall traffic efficiency [17]. 

1.4.6 Vehicle-to-Pedestrian (V2P) Communication: 

V2P stands for Vehicle-to-Pedestrian, which is a specific subset of communication 

within the broader V2X (Vehicle-to-Everything) framework. V2P technology enables 

communication between vehicles and pedestrians, contributing to improved safety and 

awareness in urban environments.[16] 

 

In a V2P system, vehicles equipped with communication capabilities can exchange 

information with pedestrians and vice versa. This communication can take various 

forms, such as warnings, alerts, or notifications to enhance environmental 

understandings and prevent potential accidents such as [18]:  

 

 Pedestrian Warnings: Vehicles can transmit warnings to pedestrians about their 

presence, when the pedestrian might be in a blind spot or not easily visible to the 

driver. 

 

 Crosswalk Safety: Pedestrians can receive notifications from nearby vehicles, 

indicating whether it is safe to cross the road or if a vehicle is approaching. 

 

 Intersection Safety: The technology can enhance safety at intersections by 

alerting both drivers and pedestrians about each other's presence, reducing the risk 

of collisions. 

 

 Emergency Situations: In emergency situations, such as a vehicle approaching 

at high speed or a pedestrian in a hazardous location, V2P communication can 

provide real-time alerts to all parties involved. 
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1.5 Localization and Mapping 

1.5 

1.5.1 Localization:  

Localization in Autonomous Connected Vehicles (ACVs) refers to the ability of the 

vehicle to determine its precise position and orientation within its environment. 

Accurate localization is a crucial aspect of autonomous driving, as it enables the 

vehicle to understand its surroundings, plan optimal routes, and make informed 

decisions. Localization is achieved through the integration of various sensors in which 

explained in the previous sections [19]. 
 

Autonomous vehicle localization is categorized into the three main approaches:  

 

 Traditional Approaches (First Category): 
o Utilize exteroceptive sensor data. 
o Employ Bayes-filter-based techniques. 
o Include road marks and landmarks for navigation. 

 

 Machine Learning Approaches (Second Category): 
o Explore contemporary methods. 
o Leverage machine learning for enhanced localization. 

 

 Communication-Based Localization (Third Category): 
o Focus on vehicle-to-vehicle or vehicle-to-infrastructure communication 

(V2X). 
 

 

 

 

Figure 11: Localization Categories 
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1.5.1.1 Conventional Localization: 

Traditional Localization relies on cost-effective sensors like cameras, LiDAR, and 

Radar for visual perception and scene detection in diverse weather conditions. These 

sensors provide information that is compared with existing maps during autonomous 

operation to determine the vehicle's location. Landmarks, road marks, IMU, GNSS, 

gyroscope, and odometer are sometimes utilized to enhance localization robustness. 

Conventional map-based localization often suffers from changes in maps during 

nighttime or harsh weather. Often, features inside the prior map look different at various 

times of the day and night or in different seasons. For example, lane marking on a road 

could be partially invisible or fully covered by snow in snowy weather. In that situation, 

it is important to use sensors with minimal errors [19]. 
 

Two main categories exist within traditional localization approaches:  

 

 Map-based: In the context of Simultaneous Localization and Mapping (SLAM), 

the map-based approach encounters difficulties related to error accumulation, 

high computational demands, fast data transmission necessities, and high 

resource utilization. Utilizing High-Definition (HD) maps alongside Light 

Detection and Ranging (LiDAR) sensors provides a more precise and effective 

solution. Techniques such as point cloud data accumulation, map matching, and 

feature extraction contribute to accurate vehicle localization. However, 

assessing map-matching performance becomes challenging in complex urban 

environments due to the high data volume and computational requirements. 

This complexity arises from the presence of both semi-static and dynamic 

objects in urban environments [19]. 

 

 Mark-based: Locating objects in urban areas is facilitated by using landmarks 

and road marks. Landmarks like trees, traffic light poles, and tall buildings, along 

with methods like LiDAR and stereo cameras, enable accurate vehicle 

localization. Lane markings, guardrails, and various road markings, detected 

through innovative algorithms and LiDAR point clouds, enhance localization 

accuracy. Traditional Localization utilizes cost-effective sensors for scene 

detection, comparing information with maps for vehicle location. Two main 

categories, map-based and mark-based, differ in their reliance on detailed maps 

or positions of markings for localization. Vision-only localization using a 

monocular camera achieves high accuracy through map matching [19]. 

 

 

In summary, map-based approaches focus on generating and localizing within 

predefined maps, while mark-based methods use elements like road markings and 

landmarks for vehicle localization. SLAM is briefly mentioned but considered beyond 

the current review's scope. 
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1.5.1.2 Machine-Learning-Based Localization: 

Machine learning is a growing field that helps solve real-world problems, like making 

autonomous driving safer. In tasks such as spotting pedestrians, recognizing road 

markings, and locating vehicles, machine learning, especially deep learning, is 

valuable. These methods often work better than traditional approaches and are 

sometimes used to make traditional methods even better. [19] 

 

Three main categories exist within the machine-learning based localization approach: 

 

 Neural Network Approach: 

Neural networks, particularly convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), play a pivotal role in advancing vehicle 

localization. They excel in generating maps and addressing challenges such as 

dynamic objects and temporary obstacles [20]. Additionally, they aid in filtering 

out removable objects from 3D point clouds, thereby facilitating map generation 

and vehicle localization. Deep learning algorithms, particularly CNNs, can be 

applied to visual localization, enabling precise localization across diverse 

weather conditions through techniques like Deep Visual Global Localization 

(Deep VGL) [21]. CNN-based approaches are instrumental in measuring 

uncertainty and enhancing accuracy. For instance, CoordiNet predicts camera 

pose from a single image while providing uncertainty estimation [22]. 

Furthermore, deep learning techniques extend to specialized tasks such as curb 

detection, as exemplified in, offering accurate and cost-effective solutions for 

lateral localization using monovision fisheye cameras [23]. 

 

 Reinforcement Learning Approach: 

Reinforcement learning (RL) and Deep Reinforcement Learning (DRL) are 

powerful AI models increasingly applied in automotive applications to train 

machines through their environment and mistakes. DRL, popularized by Google 

DeepMind, offers various techniques for autonomous vehicle tasks. CNN and 

RNN are suggested for perception and localization tasks, while RL is suitable 

for planning and control [24]. 

 

Techniques such as RL-AKF, DQLL, and RL-L2O have been proposed to 

improve localization, lane level localization, and LiDAR-based 3D object 

detection and localization, respectively. RL methods are in the beginning stages 

for localization tasks, offering potential for future research to complete the entire 

localization process using RL or DRL, rather than just improving results. 

Furthermore, the integration of RL into localization processes offers a unique 

advantage over traditional supervised learning approaches by not requiring 

extensive labeled data. This aspect opens up avenues for innovative research 

in refining localization algorithms and improving their robustness in real-world 

settings. [19] 
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 End-to-End Localization: 

End-to-end localization, or behavior reflex, optimizes driving using a single 

network for various tasks. This network takes input from sensors and produces 

steering and wheel commands, treating all tasks as one machine learning 

problem. In contrast, modular pipelines use interconnected modules for 

perception, localization, planning, and control. [19] 

 

Researchers have proposed various techniques for end-to-end localization, 

such as using deep attention mechanisms to find stable features for visual 

localization. They also explore different levels of localization, starting from road-

level to lane-level, using data from sources like OpenStreetMap and detectors 

like YOLO. [25] 

 

End-to-end approaches can be categorized based on whether they map sensor 

data to control or localization. Pose estimation-based visual localization falls into 

the latter category. 
 

1.5.1.3 V2X Localization: 

V2X enables vehicles to interact with their surroundings in Intelligent Transport 
Systems (ITS). This collaboration is made possible through internet connectivity and 
various wireless communication methods.  V2X localization is a crucial technology that 
helps vehicles accurately locate themselves among other vehicles, infrastructure, and 
objects. It is essential for connected and autonomous vehicles to understand their 
surroundings and make quick decisions, improving safety and efficiency on the 
road.[19] 

 V2V Localization 

V2V localization, or Vehicle-to-Vehicle localization, is a technology that enables 

vehicles to determine their precise locations in relation to other vehicles. It 

allows vehicles to communicate with each other and exchange information 

about their positions, speed, and direction. This shared data enables a vehicle 

to estimate its position without the necessity of high-precision sensors. V2V 

localization is crucial for enhancing safety on the road by enabling vehicles to 

detect potential collisions, coordinate maneuvers, and avoid accidents. It is a 

key component of connected and autonomous vehicle (CAV) systems, to 

improve situational awareness and decision-making capabilities. The 

techniques encompass various methods aimed at enhancing localization 

accuracy and robustness in vehicular systems. These include a doubled-layer 

consistency check, which ensures robust localization, a V2V communication-

based positioning system integrating GPS receivers and ranging sensors for 

precise location determination, and the utilization of RFID systems to further 

enhance localization accuracy. Additionally, considerations are made regarding 

the impact of road configurations on V2V-based localization, highlighting the 

need for adaptability in different environments.[19] 
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 V2I Localization 

V2I, which stands for vehicle-to-infrastructure communication, is crucial in smart 

transportation systems. Unlike V2V (vehicle-to-vehicle) communication, V2I 

relies on fixed infrastructure such as roadside units (RSUs) for better positioning 

accuracy and dependable communication. This method offers benefits like 

precise location tracking because RSUs stay in fixed positions, ensuring 

consistent communication, and facilitating the exchange of important details like 

weather updates and traffic conditions. Various V2I localization techniques 

include: IR-UWB, DOA, TOA, TDOA, and AOA estimation. These techniques 

have the potential to revolutionize transportation systems, making them safer 

and more efficient for everyone. 
 

1.5.2 Mapping and Map Types:  

Understanding location dynamics is crucial for effectively addressing challenges in our 

surroundings. Maps serve as vital tools for both human drivers and autonomous 

vehicles, aiding decision-making during vehicle control. While physical and digital 

maps enable drivers to navigate their vehicles, autonomous vehicles require detailed 

maps for informed decision-making, unlike human drivers who may rely on simpler 

abstract maps. As autonomous vehicles become more common, the importance of 

maps increases further. 

 

Maps play a critical role in autonomous driving by offering unique capabilities, including 

the ability to perceive occluded areas without being affected by environmental 

conditions, thanks to their infinite range. They also provide accurate real-time 

information about the surroundings, acting as an additional sensor in autonomous 

driving systems. Beyond navigation, maps support various functions such as self-

localization, vehicle control, motion planning, perception, and system management. 

They offer static and dynamic information such as road grade, speed limits, and traffic 

conditions, aiding in self-localization by integrating sensor data and predicting satellite 

signal availability for accurate positioning. Creating detailed maps is central to ensuring 

autonomous vehicles are aware of their location [26]. 
 

Autonomous driving depends on three key types of map data: 

 Topological 

 Geometric 

 Semantic information 

1.5.2.1 Topological maps: 

Topological maps display connections between things, such as roads, which can be 
used to plan energy-efficient routes over large distances. Maps that represent the 
spatial relationships and connectivity between different locations and features without 
explicitly detailing geometric or visual information. These maps focus on capturing the 
topological structure of the environment rather than its precise geometry. Advanced 
methods using deep learning and aerial images can reveal even more connections 
than traditional maps, helping follow traffic rules on smaller streets. [26] 
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1.5.2.2 Geometric Maps: 

Geometric information in urban environments includes three main categories: 

permanent, temporary, and dynamic features. Permanent features, such as buildings 

and signs, are crucial for obstacle avoidance and accurate localization within a city. 

Temporary elements like roadworks, although not always mapped, can significantly 

influence vehicle sensors. Additionally, dynamic features like moving vehicles require 

real-time tracking to anticipate their trajectories and plan safe navigation. Effective 

mapping of permanent structures lays the foundation for detecting and responding to 

temporary and dynamic changes with precision. [26] 

1.5.2.3 Semantic Maps: 

Semantic information gives meaning to features like road speed limits, lane specifics, 

and road types. It is a detailed representation of the surrounding environment of the 

vehicle, and marked with semantic information about different elements such as lanes, 

traffic signs, pedestrians, vehicles, and other objects relevant to navigation and 

decision-making. It helps make smart decisions while driving, such as understanding 

when it is safe to turn left at a traffic light. It is important to connect semantic info with 

the actual shape of roads. To do this well, geometric data should match up with 

semantic details. For instance, if a road has different speed limits, it should be split into 

separate segments. Clear and structured geometry makes it easier to include semantic 

information accurately. This kind of info is crucial for autonomous driving maps, 

providing detailed data for safe navigation. New computer vision techniques, like 

automatic semantic mapping, make it easier to integrate this info into autonomous 

driving systems. [26] 

 

 

Figure 12: Map formats: satellite image (a), topology (b), geometry (c) and semantic 
information (d) 
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1.5.3 Combined Approaches: 

1.5.3.1 SLAM Based Approaches:  

Simultaneous Localization and Mapping (SLAM) is crucial for robots and Autonomous 

Vehicles (AVs) to create a map of their surroundings and determine their position, 

especially where there is no existing map. Accurate self-localization ensures safe 

navigation for self-driving vehicles, helping them understand their environment and 

navigate effectively. 

 

Self-driving cars often use a mix of methods for efficiency, adaptability and finding the 

right balance. However, this presents challenges, such as managing large map data 

and ensuring up-to-date maps. SLAM is vital because it prevents mistakes, particularly 

where there is no existing map, such as inside buildings with mobile robots. Over years, 

SLAM has greatly improved, becoming more reliable and scalable. It serves as the 

backbone for many applications, assisting robots and self-driving cars in planning 

paths and avoiding getting lost. These enhancements make self-driving technology 

safer and more reliable in real-world scenarios. 

1.5.3.2 LIDAR SLAM:  

LiDAR-SLAM integrates LiDAR sensors and mapping algorithms to enable real-time 

mapping and localization for robots and autonomous systems. By emitting laser beams 

and measuring their return time, LiDAR sensors create detailed 3D maps of 

surroundings. Its primary goal is precise positioning in unfamiliar environments while 

mapping them accurately. Challenges include robustness in varying conditions like 

lighting and dynamic obstacles, essential for safe navigation and decision-making. 

Advances in LiDAR technology and computational power have made LiDAR-SLAM 

more practical, with sensor fusion improving performance by combining LiDAR data 

with inputs from cameras or IMUs. It encompasses various types, from 2D LiDAR-

SLAM for indoor environments to 3D LiDAR-SLAM for outdoor surveying. Overall, 

LiDAR-SLAM is indispensable for navigating unknown or changing environments in 

robotics and autonomous systems, evolving continually for broader applications. 

 

1.5.3.3 Visual SLAM:  

Visual SLAM is an advanced robotics technique for real-time navigation in unknown 

environments. It utilizes cameras or LiDAR sensors to create a detailed 3D map and 

determine its precise location. The camera continuously captures images to help the 

robot or autonomous system to understand its surroundings. V-SLAM relies primarily 

on visual sensors for cost-effectiveness and rich environmental data. However, it may 

face challenges in low-light conditions, high computational costs and visual 

ambiguities. Despite these challenges, advancements in deep learning show promise 

in improving V-SLAM performance, especially in scenarios involving variable 

illuminations, occlusions, and dynamic elements. Additional sensors like IMUs or 

LiDAR can enhance V-SLAM performance by providing orientation and movement 



Final Thesis 
 

 

data. Depth sensors aid in motion and positioning estimation when combined with 

cameras. [27] 

 

In practical terms, Visual SLAM enables a robot to navigate and map unknown 

environments simultaneously. It achieves this through two methods: identifying specific 

features in the environment and calculating its position based on changes in captured 

images. Various approaches to V-SLAM exist, including feature-based, direct, and 

RGB-D SLAM, each with its own advantages and evaluated using publicly available 

datasets. However, challenges persist, particularly in low-texture and noisy 

environments. Common visual sensors used in V-SLAM include monocular, stereo, 

RGB-D, and event cameras. [27] 

 

In summary, Visual SLAM integrates advanced sensors, real-time mapping, and 

precise localization, demonstrating the fusion of robotics and computer vision for 

superior performance in navigating unfamiliar spaces. 

 

 

 

Figure 13: Overview of Scene understanding using V-SLAM                                    
in outdoor and indoor environments [27] 
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1.5.3.4 Cooperative SLAM: 

 
To tackle transportation issues, we propose innovative resource-sharing among 
vehicles, particularly in Cooperative Connected and Autonomous Vehicles (CAVs). 
Equipped with advanced sensors and computing capabilities, these CAVs collaborate 
to understand driving environments, promoting road safety and efficiency. This system 
fosters collaboration among stakeholders across different transport systems. 
 
In this context, Cooperative Simultaneous Localization and Mapping (C-SLAM) 
emerges as a crucial technique. It involves multiple robots working together to create 
a map of the environment, merging individual maps into a cohesive global one. Real-
time cooperative SLAM enhances 3D LiDAR mapping accuracy, leveraging the wide 
view and precise distance measurement capabilities of LiDAR sensors, which are 
preferred over vision sensors in vehicles. 
 
While single-robot SLAM methods have limitations in exploring large environments due 
to resource constraints, multi-robot systems offer efficiency and robustness 
advantages, especially for time-sensitive tasks. Cooperative SLAM enables each robot 
to explore a portion of the environment, establishing consistent coordinates where their 
areas overlap. However, challenges arise in large-scale scenarios without a global 
communication infrastructure. 
 
To address these challenges, real-time distributed cooperative SLAM system, namely 
RDC-SLAM can be used. This system overcomes communication obstacles and 
enhances efficiency by integrating elaborate communication rules and distributed 
graph optimization algorithms. RDC-SLAM enables seamless coordination among 
multiple robots, facilitating accurate and scalable mapping in dynamic environments 
[28].  

 

Figure 14: Generated Final Global map - Point Cloud in different Colors 
collected from different participant [28] 
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Expanding upon this approach, an innovative LiDAR-based approach known as C-
SLAMMODT has been developed for autonomous driving systems to tackle 
simultaneous localization and mapping (SLAM) alongside moving object detection and 
tracking (MODT). This strategy integrates multi-vehicle cooperation to address 
challenges such as view occlusion, which often hinder conventional methods. Unlike 
traditional approaches that rely on assumptions like static environments or precise 
ego-vehicle pose estimation, C-SLAMMODT effectively handles dynamic 
environments by merging cooperative SLAM and MODT modules. These modules 
leverage shared information from neighboring vehicles to enhance both ego-vehicle 
pose estimation and object tracking accuracy. Through a unified factor graph 
optimization, data from both the ego-vehicle and neighboring vehicles are integrated, 
leading to improved pose estimation and object tracking performance. Comparative 
experiments have demonstrated the superior accuracy and robustness of C-
SLAMMODT in complex environments [29].  
 

 

Figure 15: LIDAR Based multi vehicle cooperative 

SLAM and MODT (C-SLAMMODT) [29] 

 
Additionally, various methods for ego-vehicle pose estimation are compared, including 
single-vehicle SLAM utilizing LOAM and LeGO-LOAM, cooperative SLAM alone, and 
the C-SLAMMODT approach, using diverse scenes from OPV2V and V2V4Real 
datasets. The results illustrate that cooperative SLAM surpasses single-vehicle SLAM 
methods, achieving smaller root mean square error (RMSE) and mean error (Mean) in 
ego-vehicle trajectory estimation. Furthermore, C-SLAMMODT exhibits superior 
accuracy compared to cooperative SLAM alone across different scenes, attributed to 
its incorporation of dynamic object perception. [29] 
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1.5.3.5 Map Merging: 

Map merging and common area detection are critical components in the field of multi-
robot simultaneous localization and mapping (SLAM). These processes allow multiple 
robots to collaboratively create a unified representation of an environment by 
integrating individual maps generated by each robot. Here’s an overview of the key 
methods and challenges involved [30]: 
 

 Occupancy Grid Maps: This method involves merging grid-based maps where 
each cell indicates the presence or absence of an obstacle. Common 
techniques include feature matching and transformation estimation to align the 
maps correctly. Challenges include handling varying resolutions and ensuring 
accurate alignment without an initial guess of the transformation[30]. 

 

 Feature-Based Maps: These maps use distinct features (e.g., corners, edges) 
identified within the environment. Feature matching algorithms like the ones 
used in computer vision are applied to merge these maps. This approach is 
robust but computationally intensive, especially when dealing with a large 
number of features or when features are sparsely distributed [31] 

  

 Topological Maps: Involves higher-level representations such as graphs 
where nodes represent significant places and edges represent paths. Merging 
these maps requires identifying common nodes and aligning the graphs 
accordingly. This method is beneficial in environments where geometric 
features are not well-defined or are difficult to detect [30] 
 

 

 
 

Figure 16: Example of global alignment: A model (yellow) was extracted from 
one map (red) and matched to another map (blue). [31] 
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1.5.3.6 Common Area Detection: 

Detecting common areas between maps is a precursor to successful map merging. 
Techniques include: 
 

 Point Set Alignment: Transforming map data into a domain where alignment 
can be more easily computed, such as the Radon or Hough domain. This 
method is effective for maps with substantial overlap and provides a robust 
alignment even with partial overlaps [31] 

 

 Descriptor-Based Matching: Utilizing descriptors based on lines or planes 
rather than just points, which can enhance performance in environments with 
limited overlapping areas. This approach leverages higher-level geometric 
information to improve matching accuracy [31] 

 

 Octree-Based Methods: These involve dividing the map into hierarchical 3D 
grids (octrees), which allow for efficient storage and retrieval of spatial 
information. Octree-based methods can utilize occupancy probabilities and are 
particularly useful for integrating 3D maps [31] 
 

 
 

 
 

Figure 17: Integration of indoor maps: (a) Indoor maps being integrated and (b) 
the resulting integrated map.[31] 
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1.6 Summary: 

The introduction emphasizes the significance of connected and autonomous vehicles 
(CAVs) in modern transportation, highlighting their role in improving efficiency, safety, 
and reducing human errors. The objectives include enhancing autonomy, accurate 
environmental mapping, and integrating various communication protocols and sensors 
to improve vehicle perception. 
 
The structure of the thesis outlines the main tasks of perception, planning, and control, 
with a focus on perception and map generation. The document details various sensing 
technologies such as onboard sensors (radar, LIDAR, cameras, ultrasonic sensors) 
and communication sensors (GNSS, DSRC). It also explores different connectivity 
types like Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-
Pedestrian (V2P). 
 
Localization and mapping are crucial components, with different approaches 
discussed, including conventional, machine-learning-based, and V2X localization. The 
document delves into SLAM techniques and their applications in CAVs, emphasizing 
the importance of accurate map merging and cooperative mapping to handle large 
areas efficiently. 
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2 Conception 

2.1 Assumptions and Limitations: 

The main assumption is that the robots or vehicles under study are independent 
entities capable of constructing their own local maps. Each of these vehicles is 
equipped with its own set of sensors, processors, and communication systems. 
Additionally, the outdoor environmental conditions surrounding these vehicles are 
taken into account 
 
In this study, three main scenarios are focused on: Maximum Overlapping, Partial 
Overlapping, and Non-overlapping Views. The greatest challenge encountered lies 
within Non-overlapping Views. These situations are particularly complex due to the 
absence of overlap between observations from different robots or vehicles. 
Conversely, Maximum and Partial Overlapping scenarios necessitate intersection 
points for observation exchange. This intersection holds particular significance in 
Cooperative SLAM and Connected Vehicles, where observation sharing is crucial as 
illustrated in Figure 18 [32]. 
 

 

Figure 18: Green curve: Robot A's route. Red curve: Robot B's route. (a) Both 
robots meet at their ends. (b) Meeting at their starts. (c) Meeting point on 
routes.[32] 

 
A variety of data collection options exist, including Radar, LIDAR, and Cameras, with 
IMU and GPS playing supporting roles. However, the decision has been made to 
employ either a 360-degree field of view LIDAR or a classic mechanical spinning 
LIDAR to ensure comprehensive coverage of the entire 360-degree field of view. The 
decision to utilize a 360-degree field of view LIDAR instead of a small field of view 
LIDAR was primarily influenced by the need for comprehensive environmental 
coverage. A 360-degree LIDAR provides a full panoramic view, ensuring that no areas 
are left unscanned, which is crucial for applications requiring complete situational 
awareness. This approach mitigates the risk of blind spots that can occur with limited 
field of view LIDAR systems. 
 
Additionally, although cost considerations are often significant in technology selection, 
the priority in this case was to achieve optimal performance and reliability. The broader 
coverage provided by the 360-degree LIDAR justifies its selection despite potentially 
higher costs, as it enhances the accuracy and robustness of the data collection 
process. The selection of a 360-degree field of view LIDAR over a smaller field of view 
LIDAR, as depicted in Figure 19, is driven by its capability to provide complete 
coverage without the constraint of cost considerations [33]. 
 
Furthermore, the chosen methodology operates independently of roadside 
communication facilities or infrastructures, highlighting the system's self-sufficiency 
and reliability in diverse environments. This independence from external infrastructure 
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further underscores the importance of employing a LIDAR system capable of delivering 
extensive, uninterrupted coverage. 
 

 

Figure 19: Difference in Point Clouds due to different Perspectives in Maximum 
Overlapping, Partial Overlapping and non-overlapping conditions using small 

FoV LIDAR. [33] 

 

2.2 Levels of Data Fusion:  

Before diving into the details of map merging, it is important to grasp the basic levels 

of data processing required for this task. Map merging, a crucial aspect of multi-sensor 

fusion systems, aims to combine information from diverse sensor modalities to 

construct accurate and comprehensive maps of the environment. This process 

involves integrating data from sensors such as LiDAR, cameras, GPS, and more, to 

generate a unified representation of the surroundings. Two critical stages in map 

merging are map alignment and data association. Map alignment involves determining 

suitable spatial coordinate transformations between local maps, distinct from 

establishing relative poses among robots. Existing algorithms for map alignment often 

rely on assumptions such as similar map formats, scale, and significant map overlap. 

On the other hand, data association aims to match and merge features across partial 

maps, facilitating the fusion of maps generated by multiple robots. This process is 

crucial given the varying quality of maps produced by individual robots due to sensor 

differences. The complete map-merging process is depicted in Figure 20 [30]. 
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Figure 20: Map Merging Process with map alignment and Feature marging. 
Overlaps between the maps are marked: red for the first two, black for the 

second and third, and blue for the third and fourth. [30] 

 
 

The primary levels of data processing in map merging can be categorized into Data 

Level (Map Level) and Feature Level. 

 

2.2.1 Data Level (or Map Level):  

At data level, raw data from different sensors are combined directly without any 
preprocessing or feature extraction. For example, LiDAR data representing point 
clouds and camera data capturing images are merged without extracting specific 
features. This approach may lack the full utilization of complementary information from 
different sensor modalities. In the context of map merging, data-level fusion involves 
merging complete maps generated by various sources or methods. Tasks include 
aligning map layers, resolving discrepancies, and ensuring overall consistency in the 
merged map [34]. 
 

2.2.2 Feature Level:  

Conversely, feature-level fusion involves extracting meaningful features from each 
sensor modality and then combining these features to create a more comprehensive 
representation of the environment. For instance, features like point cloud clusters from 
LiDAR data and edges, colors, or textures from camera data are identified and fused 
using techniques like feature matching or machine learning algorithms. In map 
merging, this level entails handling individual features or attributes extracted from 
different maps, such as satellite imagery, GPS coordinates, and elevation data, to 
construct detailed and comprehensive maps [34]. 
 



Final Thesis 
 

 

In summary, map-level fusion ( data-level fusion) is concerned with merging entire 

maps without feature extraction, while feature-level fusion focuses on integrating 

meaningful features from different sensor modalities. Both levels are essential for 

creating accurate and comprehensive maps. 

 
 

2.3 Map Merging Techniques 

Cooperative mapping relies on map merging to explore vast areas accurately which 
helps to reduce the time and computation cost. This is done by splitting the area into 
smaller sections for independent exploration. Efficient mapping often involves 
collaboration among multiple robots or vehicles to cover large areas. Crucial to this 
collaboration is the merging of local maps produced by individual participants.  The 
cooperative mapping process is divided into two main tasks: The common area 
detection task and the map merging tasks [32]. 
 

To merge maps effectively, the Map Transformation Matrix (MTM) is crucial. It 
determines the relative angle and translation between individual local maps. Using 
multiple pose transformation matrices further enhances merging accuracy and corrects 
mapping drift from single robot mapping. This approach reduces time and 
computational complexity while improving accuracy [35]. 
 
When employing multiple robots for mapping large areas, merging their local maps 
efficiently is key. One solution is to specify common starting or ending points for their 
driving paths. It means the robots have to meet each other at their start, and ending 
points or on the routes as illustrated in Figure 18.  This enables direct acquisition of 
the pose transform between the maps built by each robot, facilitating progressive 
combination for completing the entire map.  
 
Map merging techniques include direct and indirect methods. Direct methods involve 
robots meeting at common points to obtain pose transformations, ensuring accurate 
map alignment. Indirect methods rely on remote sensing and estimation techniques to 
merge maps without direct interaction between robots. Both approaches aim to 
enhance the efficiency and accuracy of cooperative mapping efforts 
 

2.3.1 Direct Map Merging (DMM): 

Direct map merging (DMM) involves computing the Map Transformation Matrix (MTM) 
directly using visual and range sensors. The key idea is to find common features or 
landmarks in the maps and use them to establish connections between different 
coordinate systems. It can be divided into two types: obtaining robot-to-robot visual 
and range measurements when robots meet at rendezvous and identifying common 
regions or objects in multiple maps [35]. 
 
Robot-to-robot measurements involve direct interaction between two robots to 
ascertain their relative positions. For this type of measurement, a two-step map 
merging framework was proposed [36]. Initially, a Map Transformation Matrix (MTM) 
is obtained using these robot-to-robot measurements, which involve one robot 
determining its position relative to the other. In the first step, the MTM provides a 
hypothesis of their spatial relationship. Subsequently, this hypothesis is verified by 
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instructing the robots to move to a mutually estimated location. If the robots 
successfully meet at this location, it indicates alignment, and the hypothesis is 
accepted, leading to the merging of their maps. Conversely, if they fail to meet, the 
hypothesis is rejected. 
 
Useful formulations to compute Map Transformation Matrix (MTM) based on robot-to-
robot measurements from omni-directional cameras were proposed [37]. However, 
there was an assumption that the robots should encounter each other. 
 

A probabilistic map merging framework for multi-robot SLAM using particle filters was 
proposed [38]. This framework addressed the challenge of obtaining the most suitable 
map merging bases from a multiple hypothesis system caused by particle filters, 
employing Gaussian processes with robot-to-robot measurements. Range 
measurements were utilized to acquire the direct map transformation matrix when the 
robots encountered each other. 
 
For another type which is common region detection in multiple maps, The computation 
of the Map Transformation Matrix (MTM) in [39] relied on overlapped regions detected 
by ceiling-vision sensors. Utilizing image patches around observed landmarks 
facilitated the identification of common regions overlapped by multiple robots. A coarse 
Map Transformation Matrix (MTM) was obtained through place recognition with 
omnidirectional vision [40]. This method necessitated prior processing to compute the 
suitable size of the bounding box for Haar-based place recognition. 
 

2.3.1.1 Advantages: 

 Speed: DMM can be quickly performed once robot-to-robot measurements or 

common objects are obtained. 

 Immediate Integration: The integration process is straightforward once the 

necessary data is available. 

 Ease of Implementation: Generally simpler to implement compared to IMM. 

 Real-Time Capability: Suitable for real-time applications where immediate map 

merging is required. 

  

2.3.1.2 Disadvantages: 

 Dependence on Sensor Quality: Performance heavily relies on the quality of 

measurements, which can be affected by sensor imperfections. 

 Error Propagation: Errors in initial measurements can propagate throughout the 

merging process, potentially leading to inaccuracies. 

 Requirement for Encounter: In some cases, DMM requires robots to physically 

encounter each other or rely on common objects, which may not always be 

feasible. 
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 Limited Accuracy: Depending on the sensor capabilities, the accuracy of DMM 

may be limited. 

2.3.2 Indirect Map Merging (IMM):  

Indirect map merging (IMM) computes the Map Transformation Matrix (MTM) by 

identifying and matching common parts of maps. This process can be categorised into 

three types: matching common point features, applying scan-matching algorithms, and 

utilizing spectral information on maps [35]. 

 

In both [37] and [38], point feature matching was applied for map features. While [37], 

utilized the nearest neighbor test (NNT) following coarse map merging with DMM, its 

effectiveness decreased in dense feature maps. Conversely, [38] introduced the 

probabilistic feature matching (PFM) algorithm as an alternative method. 

 

Another approach to consider is the utilization of scan-matching algorithms for map 

merging. For instance, [40] employed the polar scan matching (PSM) algorithm to 

achieve a more precise Map Transformation Matrix (MTM). Similarly, [41] 

demonstrated the extension of iterative dual correspondence (IDC) with laser scan 

sensors. 

 

In [42], a combination of visual feature matching and iterative closest points (ICP) was 

integrated for map merging. However, these techniques, which rely on scan matching 

algorithms, may face challenges in environments with minimal occlusions. Moreover, 

the iterative nature of scan-matching algorithms could result in time inefficiency during 

map merging processes. 

 

[43], introduces a novel map merging algorithm that leverages spectral information 

extracted by the Hough transform to enhance the accuracy of the Map Transformation 

Matrix (MTM). Additionally, it proposes a feature map merging algorithm based on 

spectral information extracted by virtual supporting lines (VSLs). 

 

Furthermore, [44] suggests a matching algorithm that is particularly suitable for outdoor 

areas. It initially utilizes GPS location information as the rendezvous point and then 

identifies common areas based on LIDAR point cloud data. 
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2.3.2.1 Advantages: 

 Improved Accuracy: IMM can refine the results obtained from DMM, leading to 

higher accuracy in map merging. 

 Flexibility: Can work with various types of data such as point features, scan 

data, or spectral information. 

 Robustness to Sensor Noise: Can mitigate the effects of sensor noise and 

errors through advanced matching algorithms. 

 Global Optimization: Allows for a broader search space, potentially finding a 

more optimal solution. 

 

2.3.2.2 Disadvantages: 

 Computationally Intensive: Generally requires more computational resources 

compared to DMM, especially with larger search spaces. 

 Risk of Local Optima: This may converge to local maxima instead of the global 

optimum, especially in complex environments. 

 Dependency on Preprocessing: Success often relies on preprocessing steps to 

extract meaningful features or information from sensor data. 

 Challenges with Occlusions: Techniques based on scan matching algorithms 

may struggle with occluded areas in maps. 

 

2.3.2.3 Trade-offs and Combined Approaches: 

DMM focuses on speed, sacrificing accuracy, while IMM prioritizes accuracy, even if it 

requires more computational resources. Combining both techniques can balance 

speed and precision, but it may require extra effort to implement. Integrating DMM and 

IMM often involves merging hardware and complex software. The choice between 

DMM and IMM depends on application needs and available resources. However, 

combining them can improve both computation time and accuracy as it can be seen in 

techniques in [37], [38] and [40]. 

 

Also the technique in [33] is combination of both direct and indirect map merging since 

it utilizes direct methods like identifying common areas and constraints between maps, 

while also incorporating indirect methods like factor graph optimization and computing 
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the MTM by matching common parts of maps. Therefore, it can be considered as 

hybrid approach that combines aspects of both DMM and IMM. 

 

More over Techniques in [32] also combines elements of both direct and indirect 

mapping by using SLAM for local map construction and directly matching point cloud 

scans (direct mapping) and then employing feature (ground features and min-Z feature 

points)  extraction and matching algorithms to identify common route segments and 

establish pose transforms (indirect mapping). By combining these techniques, the 

method aims to merge individual local maps into a globally consistent one. 

 

DMM's speed is hindered by its need for precise measurements, making real-world 

deployment difficult due to sensor inaccuracies. Conversely, IMM can enhance DMM's 

outcomes, but it operates slower and faces the risk of encountering local maxima, 

especially in 3D mapping scenarios. Balancing computational costs without 

compromising accuracy remains a key challenge in 3D cooperative mapping. 

Combining DMM and IMM presents a promising solution to address this challenge. 

However, it's crucial to prioritize factors like data communication efficiency and real-

time performance for future advancements in collaborative SLAM systems [35]. 

 

In conclusion, Cooperative mapping involves splitting a large area into smaller sections 

for independent exploration, with multiple robots or vehicles collaborating to reduce 

time and computational costs. Central to this process is the merging of local maps 

produced by each participant. The two main tasks in cooperative mapping are common 

area detection and map merging. The Map Transformation Matrix (MTM) plays a 

crucial role, determining the relative angle and translation between local maps, 

enhancing accuracy, and correcting mapping drift. 

 

Direct map merging (DMM) and indirect map merging (IMM) are the two primary 

techniques. DMM relies on direct interactions and sensor data to align maps quickly, 

while IMM uses advanced matching algorithms for greater accuracy but at a higher 

computational cost. Combining DMM's speed with IMM's precision offers a balanced 

approach, addressing the trade-offs between computational efficiency and accuracy in 

large-scale mapping efforts. This hybrid approach is essential for improving the 

efficiency and effectiveness of cooperative mapping in complex environments. 
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2.4 Final Assessment and Selection of Suitable Approach for Map 
Merging: 

The study examined the combination of maps created by different robots or vehicles 
in Cooperative SLAM. Efficient merging of their maps is essential when multiple robots 
map large areas. 
 

2.4.1 Common Starting/Ending Points: 

Ensuring robots start or finish at the same point facilitates easy map connection. 
However, practical scenarios often involve different starting locations, requiring path 
overlap detection for map merging and pose transformation calculation [45] 
 

2.4.2 GPS and Landmark aided Methods: 

Earlier methods relied on GPS or specific landmarks, which have limitations in indoor 
environments or areas without navigational aids [44] [45]. Alternative strategies have 
been developed to address these limitations and enable effective map merging in 
diverse environments [46]. 
 

2.4.3 Crowd-Sourced Mapping - Landmark Feature Map: 

Proposed by [47], this method utilizes crowd-sourced data to create landmark feature 
maps instead of point cloud maps. It creates a new feature layer to streamline map 
updates and reduce costs. The HD map-based GraphSLAM algorithm aligns features 
from perception sensors with existing HD maps, ensuring consistency. The Recursive 
Least Squares (RLS) algorithm integrates new feature layers, compensating for sensor 
inaccuracies. Multiple intelligent vehicles contribute to crowd-sourced mapping efforts. 
The algorithm's performance relies on the accuracy of the landmark feature detector. 
 

2.4.4 LiDAR-Based Navigation: 

Proposed Method [1]: 

 Uses LiDAR with ground and min-Z features along with the Iterative Closest 
Point (ICP) technique for precise navigation. Ground feature points identify 
shared route segments but can't distinguish symmetric structures like roads or 
corridors. Min-Z feature frames capture the minimum height within an area, 
differentiating scenes with similar ground features but different structures above 
ground. 

 

 Steps involved: 
1. Local Map Construction: Creating local maps from LiDAR data for each 

vehicle. 
2. Feature Extraction: Identifying features to efficiently find common areas. 
3. Common Area Detection: Identifying shared areas along vehicle routes. 
4. Global Map Merging: Combining local maps into a coherent global map. 
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2.4.5 Online Cooperative Mapping Strategy: 

 Relies on RTK and lacks a backend optimization procedure, causing motion-
dependent blurring in large-scale maps. It integrates location-based services 
into applications like augmented reality and urban planning. 
 

 Process involves four steps: 
1- Independent single-vehicle mapping with shared GPS pose information. 
2- Vehicles detect nearby peers using shared GPS pose information and 

exchange local LIDAR scans. 
3- Scan matching to establish relative transformations between local reference 

frames. 
4- Merging maps generated by different vehicles into a cohesive 

representation. 
5-  

 

 

Figure 21: Map Merging Process using GNSS and LIDAR [44] 

 
 

2.4.6 Multi-Vehicle Cooperative Mapping: 

 Method Introduced in : 
Uses multiple vehicles with small FoV LiDAR (81.7° × 25.1°), low-cost GPS, and 
IMU. It aims to create and maintain a consistent point cloud map efficiently. This 
method employs multi-sensor fusion to construct local maps, using ground 
alignment and FoV maps for place recognition across different local maps 
generated by distinct vehicles. 
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Conclusion 
 
In conclusion, considering factors such as outdoor operability, independence from 
roadside infrastructure, and the utilization of advanced technologies like 360-degree 
LiDAR and GPS, the Online Cooperative Mapping approach [44] emerges as the most 
suitable method. It is particularly effective in scenarios where cost is not a limiting factor 
and universal availability of geographical features cannot be guaranteed. This 
approach provides robust solutions for accurate and efficient map merging, essential 
for applications ranging from autonomous driving to urban planning. 
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2.5 Overview of the Conceptual System Model 

The conceptual system model for the cooperative 3D mapping system for connected 
vehicles is designed to ensure efficient, accurate, and robust mapping through the 
integration of multiple autonomous vehicles. The model leverages high-resolution 
LIDAR data, precise GNSS positioning, and advanced communication protocols to 
create a comprehensive and dynamic global map. Below is an overview of the key 
components and interactions within the system. 
 
Key Components: 
 

 Vehicles: 
o Autonomous vehicles equipped with sensors and communication 

modules. 
o Each vehicle generates local maps and participates in data exchange 

and map merging. 
 

 Sensors: 
o LIDAR Sensors: 

 Capture high-frequency 3D point cloud data. 
 LIDAR sensors with specifications such as 128 channels, 30 Hz 

rotation frequency, and 300 meters range. 
o GNSS Receivers: 

 Provide precise latitude, longitude, and altitude data. 
 

 Onboard Computers: 
o Process sensor data in real-time. 
o Perform feature extraction, motion estimation, and local map generation. 
o Implement data exchange and map merging algorithms. 

 

 Communication Network: 
o Facilitates data exchange between vehicles. 
o Utilizes protocols like UDP for low-latency communication. 
o Future integration with advanced communication technologies such as 

5G for enhanced performance. 
 
System Workflow 

 Data Acquisition: 
o LIDAR sensors capture high-frequency 3D scans of the environment. 
o GNSS receivers provide accurate positioning data. 

 

 Local Map Generation: 
o Onboard computers process LIDAR data to generate local point cloud 

maps. 
o Features are extracted using techniques like FPFH (Fast Point Feature 

Histograms). 
 

 Rendezvous Detection: 
o Vehicles continuously exchange GNSS data to monitor their relative 

positions. 
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o When vehicles come within a predefined distance, a rendezvous event 
is detected. 

 
 

 Data Exchange: 
o Upon rendezvous, vehicles exchange their latest LIDAR scans. 
o Data is transmitted using low-latency communication protocols. 

 

 Map Alignment and Merging: 
o Initial alignment is performed using RANSAC (Random Sample 

Consensus). 
o Refined alignment is achieved with ICP (Iterative Closest Point) 

algorithm. 
o Aligned point clouds are merged to form a global map. 

 

 Global Map Update: 
o The global map is continuously updated with new data from local maps. 
o Ensures an accurate and up-to-date representation of the environment. 

 
Interaction and Data Flow: 
 

 Sensor Data Flow: 
o LIDAR and GNSS data are continuously collected and processed by 

each vehicle's onboard computer. 
 

 Communication Flow: 
 

o GNSS data is periodically exchanged to monitor vehicle positions. 
o LIDAR data is exchanged upon rendezvous detection for map merging. 

 

 Processing Flow: 
 

o Feature extraction and motion estimation are performed on local maps. 
o Initial and refined alignments are calculated to merge maps accurately. 
o The global map is updated and shared among vehicles. 

 
Future Enhancements: 
 

 Advanced Communication Protocols: 
o Integration of 5G technology to improve data exchange speed and 

reliability. 
o Enhanced communication protocols to support higher data volumes and 

more vehicles. 
 

 Improved SLAM Algorithms: 
o Incorporation of advanced LIDAR SLAM algorithms such as LeGO-

LOAM or LOAM for better accuracy and robustness. 
 

 Scalability: 
o Testing with larger fleets to ensure scalability and consistent 

performance. 
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o Optimizing algorithms and communication protocols for handling multiple 
vehicles. 

 Real-world Testing: 
o Extensive testing in real-world environments to validate performance 

under various conditions and challenges. 
 

This conceptual system model outlines a comprehensive approach to cooperative 3D 
mapping for connected autonomous vehicles, emphasizing real-time processing, 
accurate data integration, and robust communication. The system aims to enhance 
mapping efficiency and accuracy, ensuring reliable navigation and situational 
awareness for autonomous driving. 
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3 Prototype and Software Architecture 

3.1 Introduction: 

3.1.1 Project Overview: 

This project focuses on developing a cooperative 3D mapping system for connected 
autonomous vehicles, leveraging LIDAR sensors and GNSS receivers. Traditional 
single-vehicle mapping systems often face challenges in efficiency, scalability, and 
accuracy. Our approach enables multiple vehicles to collaboratively build a global map 
by integrating data from each vehicle into the system. This document outlines the 
design, implementation, and testing of the system using the CARLA simulation 
environment, aiming for a scalable and efficient solution suitable for real-time 
deployment. 
 

3.1.2 Objectives: 

 

 Design and Implementation: Create a cooperative mapping system with 
efficient communication and data processing protocols. 

 Simulation and Validation: Use CARLA to test and validate the system in 
various scenarios. 

 Enhance Accuracy and Efficiency: Demonstrate improvements over single-
vehicle mapping in terms of accuracy and time. 

 Ensure Real-Time Performance: Achieve minimal latency in data processing 
and inter-vehicle communication for practical deployment. 

 

3.1.3 Scope of Work: 

 System Design and Architecture: Define roles, communication protocols, and 
data workflows. 

 CARLA Simulation Setup: Configure vehicles, sensors, and networks in the 
CARLA environment. 

 Vehicle and Sensor Configuration: Set up vehicles with LIDAR and GNSS 

 Data Collection and Processing: Develop algorithms for LIDAR and GNSS 
data processing and map merging. 

 Experimental Validation: Test the system in CARLA under various conditions. 
 

By meeting these objectives, the project aims to enhance 3D mapping for connected 
autonomous driving, showcasing the benefits of a cooperative approach in improving 
mapping efficiency, accuracy, and robustness. 
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3.2 System Design and Architecture: 

3.2.1 System Components: 

The cooperative 3D mapping system is composed of several key components that 
work in tandem to achieve efficient and accurate mapping. Each component plays a 
crucial role in the overall system architecture, ensuring seamless data collection, 
processing, and communication. 

3.2.2 CarlaConnector Class:  

 Role: Manages the connection to the CARLA simulator. 

 Responsibilities: 
o Establishes and maintains the connection to the CARLA server. 
o Spawns vehicles at specified locations within the simulation. 
o Attaches sensors (LIDAR and GNSS) to the vehicles. 

3.2.3 Vehicles:  

 Role: Serve as mobile platforms for data collection. 

 Models Used: Lincoln MKZ 2020 and Mercedes Coupe 2020. 

 Sensors Equipped: 
o LIDAR: Captures detailed 3D point cloud data of the environment. 
o GNSS: Provides accurate positional data for each vehicle. 

3.2.4 Sensors:  

The system utilizes two primary types of sensors for data collection: LIDAR and GNSS. 
These sensors are integral to capturing the necessary environmental and positional 
data for mapping. 
 

 LIDAR:  
o Specifications: 

 Range: 300 meters 
 Noise Standard Deviation: 0.00 
 Field of View (FOV): 

 Upper FOV: 10 degrees 
 Lower FOV: -25 degrees 

 Channels: 128 
 Rotation Frequency: 30 Hz (rotations per second) 
 Points Per Second: 1,000,000 

 
o Characteristics: 

 High Resolution: Capable of capturing detailed 3D point clouds 
with high precision. 

 Wide Coverage: The multiple channels and large FOV provide 
extensive environmental coverage. 

 Real-Time Data: High rotation frequency and point generation rate 
ensure that data is up-to-date and accurate. 
 

o Setup: The LIDAR sensor is spawned and attached to the vehicle using 
the spawn_lidar method, which configures the sensor with the specified 
attributes and initiates data collection. 
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 GNSS:  
o Specifications: 

 Accuracy: Centimeter-level positioning accuracy 
 Update Rate: Typically 10 Hz (updates per second) 
 Latency: Minimal, ensuring real-time positional updates 

 
o Characteristics: 

 High Precision: Provides highly accurate positioning data 
essential for precise navigation and mapping. 

 Real-Time Updates: Frequent updates ensure that the positional 
data is current, which is critical for dynamic environments. 

 Reliability: Robust against signal disruptions, providing consistent 
performance in various conditions. 
 

o Setup: The GNSS sensor is configured and attached to the vehicle using 
the setup_gnss_sensor method, which ensures continuous data 
collection and integration with the mapping system. 

 

3.2.5 Computers: 

 Hardware Configuration: 
o CPU: AMD Ryzen for robust processing capabilities. 
o Memory: 16 GB RAM to handle data-intensive tasks. 

 Role: Process the data collected from sensors and manage communication 
between vehicles. 
 

3.2.6 Networking: 

The networking component is crucial for enabling communication and data 
exchange between vehicles during the mapping process. The system uses local 
area wireless communication to facilitate real-time data sharing and 
synchronization. 
 

 Implementation: 
o UDP Sockets: Used for sending and receiving GNSS and LIDAR data 

between vehicles. 
o Ports: Specific ports are designated for each vehicle to ensure organized 

and efficient communication. 
o Methods: 

 send_gnss_data: Sends GNSS data to other vehicles. 
 receive_data: Listens for incoming data, processes it, and updates 

the local map. 
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3.3 System Architecture:  

The system architecture for the cooperative 3D mapping system is designed as a 
distributed network of autonomous vehicles. Each vehicle is equipped with sensors 
and processing capabilities to collect, process, and share environmental data. The 
architecture supports the collaborative creation of a global map by enabling efficient 
data exchange and synchronization between vehicles. Key components of this 
architecture include connection management to the CARLA simulator, vehicle 
spawning and sensor setup, data processing and mapping, communication and data 

CARLA Simulator 

Vehicle A 

LIDAR 

GNSS 

Vehicle B 

LIDAR 

GNSS 

LIDAR Processor 1 LIDAR Processor 2 

Vehicle Manager 1 Vehicle Manager 2 

HUD 1 HUD 2 

Figure 22: System Architecture of 3D 

Cooperative Mapping System 
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exchange, and HUD visualization. Error! Reference source not found. illustrates the 
elements and overall architecture of the system. 
 
 

3.3.1 Connection to CARLA Simulator:  
The connection to the CARLA simulator is managed by the CarlaConnector class. 
This class is responsible for establishing and maintaining the connection to the 
CARLA server, setting up the simulation environment, and managing various 
simulation parameters. 

 

 Function: Establishes a connection to the CARLA simulator. 

 Responsibilities: 
o Initialize Connection: Uses the CARLA API to connect to the simulator 

server. 
o Manage Simulation World: Sets up the simulation world, including 

weather conditions, traffic, and environment settings. 
o Spawn Vehicles and Sensors: Manages the spawning of vehicles and 

attachment of sensors. 
o Visualization: Visualizes spawn points and other simulation elements for 

easier debugging and analysis. 
 
 

3.3.2 Vehicle Spawning and Sensor Setup:  
Vehicles and sensors are initialized within the CARLA simulation environment using 
the spawn_vehicle method. This method ensures that vehicles are placed at 
predefined locations and equipped with the necessary sensors for data collection. 

 

 Function: Initializes vehicles and sensors within the simulation. 

 Responsibilities: 
o Vehicle Spawning: Spawns vehicles at specified locations using 

predefined blueprints. 
o Sensor Attachment: Attaches LIDAR and GNSS sensors to each vehicle 

to capture environmental and positional data. 
o Configuration: Configures sensor attributes such as range, field of view, 

and update rates. 
 
 

3.3.3 Data Processing and Mapping:  
The LidarProcessor class handles the processing of LIDAR data to generate local 
maps. This includes managing point cloud data, extracting features, estimating 
motion, and updating the global map. 

 

 Function: Processes collected data to generate local and global maps. 

 Responsibilities: 
o Point Cloud Processing: Converts raw LIDAR data into 3D point clouds. 
o Feature Extraction: Identifies key features in the point clouds for mapping 

and alignment. 
o Motion Estimation: Estimates vehicle motion based on changes in the 

point clouds. 
o Map Updating: Updates the global map with newly processed data to 

maintain an accurate representation of the environment. 
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3.3.4 Communication and Data Exchange: 
The VehicleManager class manages communication and data exchange between 
vehicles. It ensures that GNSS data is continuously updated, rendezvous events 
are detected, and LIDAR data is exchanged during these events. 

 

 Function: Manages inter-vehicle communication and data exchange. 

 Responsibilities: 
o GNSS Data Update: Continuously sends and receives GNSS data 

between vehicles to monitor their positions. 
o Rendezvous Detection: Detects when vehicles are within a predefined 

distance and initiates data exchange. 
o LIDAR Data Exchange: Manages the transfer of recent LIDAR scans 

between vehicles to enhance the global map's accuracy. 
 

 

 

3.3.5 HUD and Visualization: 
The HUD (Heads-Up Display) class provides a real-time visual interface for 
monitoring the status of the system. It displays critical information such as vehicle 
speed, location, GNSS data, and system status. 

 

 Function: Provides a real-time visual interface for monitoring the system. 

 Responsibilities: 
o Display Information: Shows relevant data such as vehicle speed, 

location, GNSS coordinates, and system status. 
o Monitor Progress: Helps operators track the progress of the mapping 

process and the status of each vehicle. 
o User Interface: Ensures that the interface is clear, concise, and provides 

all necessary information for effective monitoring. 
 

 

 

Figure 23: Heads-Up Display of each vehicle during the rendezvous event, with 
both rendezvous and LIDAR data exchange activated. 
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3.4 Communication Model:  

The communication model is critical for enabling efficient data exchange and 
synchronization between vehicles during the cooperative mapping process. This model 
ensures that vehicles can share their positional and environmental data in real-time, 
detect rendezvous events, and exchange LIDAR scans when necessary. The 
communication model is designed to minimize latency and ensure robust data transfer 
even in dynamic environments. 
 

3.4.1 GNSS Data Exchange 
The GNSS data exchange is essential for vehicles to monitor each other's 
positions continuously. This data helps in calculating the distances between 
vehicles and detecting potential rendezvous points where data exchange should 
occur. 

 

 Function: Continuously sends and receives GNSS data between vehicles. 

 Implementation: 
o UDP Sockets: Use UDP sockets for real-time data transmission, 

ensuring low latency and minimal overhead. 
o Data Format: GNSS data is serialized using the pickle module and 

includes vehicle ID and location (latitude, longitude, altitude). 
o Transmission: The send_gnss_data method handles the serialization 

and transmission of GNSS data. 
 

 

Figure 24: Rendezvous Detection and LIDAR Data Exchange Based on 
Distance Measurement and Defined Threshold 

 

3.4.2 Rendezvous Detection 
Rendezvous detection ensures that vehicles can identify when they are close 
enough to exchange LIDAR data. This process is based on calculating the 
Euclidean distance between the GNSS coordinates of the vehicles. 
 

 Function: Detects when vehicles are within a predefined threshold distance. 

 Implementation: 
o Distance Calculation: Uses GNSS data to compute the distance between 

vehicles. 
o Threshold: A predefined distance threshold (e.g., 25 meters) determines 

when vehicles should exchange data. 
o Logic: The check_rendezvous method in the VehicleManager class 

handles the detection logic. 
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Figure 25: Rendezvous detection in Scenario 1. Green lines represent the LIDAR 
data exchange between the vehilces and green dot is the rendezvous point 

 

3.4.3 LIDAR Data Exchange: 
When vehicles detect a rendezvous, they exchange their most recent LIDAR 
scans to update each other's maps. This exchange is crucial for maintaining an 
accurate and comprehensive global map. The process can be seen on Figure 
24.  
 

 Function: Exchanges LIDAR data upon detecting a rendezvous. 

 Implementation: 
o Data Serialization: LIDAR data is serialized using pickle and includes the 

LIDAR point clouds. 
o Chunked Transmission: Large data sets are sent in chunks to ensure 

reliability. 
o Handling LIDAR Data: The exchange_lidar_data method manages the 

serialization, transmission, and receipt of LIDAR data. 
 
 

3.4.4 Real-time Updates: 
The system is designed to operate in real-time, ensuring that data is processed 
and exchanged with minimal latency. This capability is essential for maintaining 
the accuracy and reliability of the mapping process. 

 

 Function: Maintains real-time operation with minimal latency. 

 Implementation: 
o Efficient Data Processing: Utilizes optimized algorithms and data 

structures to handle sensor data quickly. 
o Asynchronous Communication: Uses threading to manage 

communication processes without blocking the main execution flow. 
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o Continuous Monitoring: Constantly checks for incoming data and 
updates the system state accordingly. 

 
By implementing these components and communication protocols, the system ensures 
that multiple autonomous vehicles can collaborate effectively to create a high-definition 
global map. This approach significantly improves mapping efficiency, accuracy, and 
robustness, making it suitable for deployment in dynamic and complex environments. 
 
 

3.5 Implementation Details: 

The implementation of the cooperative 3D mapping system involves setting up the 
CARLA simulation environment, configuring the vehicles and sensors, and developing 
data collection and processing mechanisms. This section provides detailed information 
on how these components are implemented, focusing on the practical aspects of 
integrating LIDAR and GNSS data to create a comprehensive and accurate map. 
 

3.5.1 CARLA Simulation Environment:  

The CARLA simulation environment is used to emulate real-world driving conditions 
for testing the cooperative 3D mapping system. The CarlaConnector class is 
responsible for connecting to the CARLA server, setting up the simulation world, 
spawning vehicles, and attaching sensors. 
 

 Setup and Connection: Establish a connection to the CARLA simulator and 
configure the simulation environment. 

 World Configuration: Customize the simulation world, including weather 
conditions, time of day, and environmental objects. 

 Vehicle Management: Spawn and manage vehicles within the simulation, 
ensuring they are equipped with the necessary sensors. 
 

3.5.2 Vehicle and Sensor Setup:  

Vehicles and sensors are set up within the CARLA simulation environment using the 
spawn_vehicle and setup_gnss_sensor methods. These methods ensure that vehicles 
are placed at predefined locations and equipped with the necessary sensors for data 
collection. 
 

 Vehicle Spawning: Use predefined blueprints to spawn vehicles at specific 
locations within the simulation world. 

 Sensor Attachment: Attach LIDAR and GNSS sensors to each vehicle to collect 
environmental and positional data. 

 Sensor Configuration: Configure sensor attributes such as range, field of view, 
update rates, and data collection methods. 

3.5.3 Data Collection and Processing: 

Data collection and processing involve capturing LIDAR scans and GNSS data, 
processing these data to generate local maps, and exchanging data between vehicles 
during rendezvous events. 
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3.5.3.1 LIDAR Data Processing: 

The LidarProcessor class handles the processing of LIDAR data. It involves capturing 
3D point clouds, extracting features, estimating motion, and updating the global map. 
 

 Point Cloud Generation: Convert raw LIDAR data into 3D point clouds. 

 Feature Extraction: Identify key features in the point clouds for mapping and 
alignment. 

 Motion Estimation: Estimate vehicle motion based on changes in the point 
clouds. 

 Map Updating: Update the global map with newly processed data to maintain 
an accurate representation of the environment. 
 
 

3.5.3.2 GNSS Data Processing: 

The VehicleManager class handles the updating of GNSS data and manages LIDAR 
data exchange during rendezvous events. 
 

 GNSS Data Update: Continuously update and send GNSS data to other 
vehicles. 

 Rendezvous Detection: Detect when vehicles are within a predefined distance 
and initiate data exchange. 

 LIDAR Data Exchange: Manage the transfer of recent LIDAR scans between 
vehicles to enhance the global map's accuracy. 

 

3.6 Cooperative Mapping Algorithm 

The cooperative mapping algorithm is designed to enable multiple autonomous 
vehicles to collaboratively create a high-definition global map of their environment. This 
section describes the implementation details of the cooperative mapping process, 
focusing on the main components: single vehicle mapping, rendezvous detection, and 
map alignment and merging. The implementation is based on the provided code, 
ensuring that the details reflect the actual code structure and functionality. 
 

3.6.1 Single Vehicle Mapping: 

Each vehicle independently maps its local environment using its LIDAR sensor. The 
LidarProcessor class handles the processing of LIDAR data to create local 3D maps 
incrementally. This involves converting raw LIDAR data into 3D point clouds, extracting 
features, estimating vehicle motion, and updating the local map. 
 

 Point Cloud Generation: Converts raw LIDAR data into 3D point clouds. 

 Feature Extraction: Identifies key features in the point clouds necessary for 
mapping and alignment. 

 Motion Estimation: Estimates vehicle motion based on changes in the point 
clouds. 

 Map Updating: Updates the local map with processed data to maintain an 
accurate representation of the environment. 
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3.6.2 Rendezvous Detection: 

Rendezvous detection is critical for enabling vehicles to exchange data when they are 
close to each other. The VehicleManager class manages the detection of rendezvous 
events by calculating the distance between vehicles using their GNSS data. When 
vehicles are within a predefined threshold distance, they initiate data exchange. 
 

 Distance Calculation: Uses GNSS data to compute the Euclidean distance 
between vehicles. 

 Threshold: A predefined distance threshold (e.g., 25 meters) determines when 
vehicles should exchange data. 

 Detection Logic: Implemented in the check_rendezvous method of the 
VehicleManager class. 
 

3.6.3 Map Alignment and Merging: 

When a rendezvous event is detected, vehicles exchange their most recent LIDAR 
scans and align their local maps. The LidarProcessor class handles the map alignment 
and merging using a coarse-to-fine matching approach. Initial alignment is achieved 
using feature extraction and RANSAC, followed by fine alignment with ICP. The 
transformation matrix obtained is used to merge local maps into a global map. 
 

 Initial Alignment: Uses feature extraction and RANSAC to roughly align the 
LIDAR scans from different vehicles. 

 Fine Alignment: Uses Iterative Closest Point (ICP) to refine the alignment and 
ensure high accuracy. 

 Map Merging: Applies the transformation matrix to align and merge the local 
maps into a global map. 
 

By implementing these components and communication protocols, the system enables 
multiple autonomous vehicles to collaboratively create a high-definition global map, 
improving mapping efficiency, accuracy, and robustness. The cooperative mapping 
algorithm ensures that data is processed and exchanged in real-time, allowing for 
dynamic updates and corrections to the map as vehicles move through the 
environment. 
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3.7 Test Scenarios and Validations: 

Two main scenarios are implemented to validate the cooperative 3D mapping system. 
In order to do this Town 10 is considered as the simulation Environment on CARLA. 
 

 

Figure 26: Town 10 in the CARLA environment [48] 

 

3.7.1 Scenario 1: Straight Boulevard 

In this scenario, Vehicle A and Vehicle B travel towards each other on a straight 
boulevard lined with numerous trees. Each vehicle moves at a speed of 50 km/h. When 
the vehicles come within 25 meters of each other, they initiate LIDAR data exchange. 
The proximity estimation is based on the distance calculated between the vehicles 
using GNSS data. 
 

 Objective: Test the system's ability to handle data exchange and map merging 
in a straight path with environmental obstacles (trees). 

 Path: 
o Red Path: Vehicle A 
o Blue Path: Vehicle B 
o Green Dot: Rendezvous point 
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Figure 27: Vehicle Paths in Scenario B: Vehicle 1 follows the red path, Vehicle 2 
follows the blue path, and the green dot represents the rendezvous point. 

 

3.7.2 Scenario 2: Intersection 

 

In this scenario, Vehicle A and Vehicle B move towards each other at the same speed 
of 50 km/h within the same proximity range of 25 meters, but this time the simulation 
takes place at an intersection without any obstacles between the vehicles. 
 

 Objective: Validate the system's performance in an open intersection, focusing 
on the efficiency and accuracy of data exchange and map merging. 

 Path: 
o Red Path: Vehicle A 
o Blue Path: Vehicle B 
o Green Dot: Rendezvous point 

 
By conducting these test scenarios, we validate the cooperative 3D mapping system's 
ability to create accurate and comprehensive maps through effective collaboration 
between vehicles. The scenarios help demonstrate the system's robustness in different 
environmental settings, its efficiency in handling data exchange, and its accuracy in 
maintaining an up-to-date global map. 
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Figure 28: Path of Vehicles in Scenario B: Vehicle 1 follows the red path, 
Vehicle 2 follows the blue path, and the green dot represents the rendezvous 

point. 
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4 Evaluation and Discussion 

Introduction: 

This evaluation document aims to comprehensively assess the cooperative 3D 
mapping system for connected vehicles. The evaluation will define the input and output 
data, relevant metrics, theoretical evaluation based on requirements, detailed test 
scenarios, and a final discussion of results. The goal is to validate the system's 
performance, accuracy, and efficiency in dynamically generating a global environment 
for connected autonomous vehicles. 

4.1 Input and Output Data: 

4.1.1 Input Data:  

 LIDAR Data: 
o Format: Point cloud data (PCD files) 
o Attributes: 3D coordinates (x, y, z), intensity 
o Frequency: 30 Hz 
o Details: The LIDAR sensor provides high-resolution 3D data, capturing 

the surroundings in detail. The data includes distance measurements 
and reflectivity information for each point, which is critical for building 
accurate maps. 

 

 GNSS Data: 
o Format: Latitude, longitude, altitude 
o Attributes: GPS coordinates 
o Frequency: Real-time updates 

Details: The GNSS data offers precise positioning information, essential for 
aligning the LIDAR data from different vehicles. This high-accuracy GPS data 
helps in maintaining consistency and accuracy in the generated maps. 

 

4.1.2 Output Data: 

 Local Map: 
o Format: Point cloud data (PCD files) 
o Attributes: 3D coordinates (x, y, z), intensity 
o Details: Each vehicle generates a local map from its LIDAR data. These 

local maps are used to detect features and align with maps from other 
vehicles. 
 

 Global Map: 
o Format: Merged point cloud data (PCD files) 
o Attributes: 3D coordinates (x, y, z), intensity 
o Visualization: PNG images of the merged map 
o Details: The global map is created by merging local maps from different 

vehicles. This comprehensive map provides a unified view of the 
environment, improving navigation and situational awareness for 
connected autonomous vehicles. 
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 Performance Metrics: 
o Fitness Score: Measures the alignment quality of point clouds. 
o RMSE (Root Mean Square Error): Measures the average deviation 

between the corresponding points in the aligned point clouds. 
o C2C Distance (Cloud-to-Cloud Distance): Measures the average 

distance between points in one point cloud to the nearest points in the 
other point cloud. 

o Details: These metrics are essential for evaluating the system’s ability 
to generate accurate and consistent maps. 

  

4.2 Algorithm Analysis: 

4.2.1 LIDAR Data Processing: 

 Description: The LidarProcessor class processes the raw LIDAR data to 
generate a detailed 3D point cloud map. 
 

 Steps: 
o Data Acquisition: Captures LIDAR scans at high frequency. 
o Point Cloud Generation: Converts raw data into structured point cloud 

data. 
o Feature Extraction: Identifies key features in the point cloud for alignment 

purposes. 
o Motion Estimation: Estimates the vehicle's movement to update the local 

map. 
 

 Relevance: Accurate LIDAR data processing is crucial for creating precise local 
maps, which are the foundation for the global map. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIDAR Data Acquisition 

Feature Extraction 

FPFH Computation 

Motion Estimation 

Local Map Update 

Figure 29: Process of the LIDAR Data Processing 



Final Thesis 
 

 

4.2.2 GNSS Data Processing: 

 Description: The GNSS data is processed to provide accurate positioning 
information for each vehicle. 

 Steps: 
o Data Acquisition: Continuously receives GNSS signals to update the 

vehicle's position. 
o Coordinate Transformation: Converts GNSS coordinates into the local 

reference frame. 
o Rendezvous Detection: Uses GNSS data to calculate the distance 

between vehicles and detect rendezvous points. 

 Relevance: Accurate positioning is essential for aligning local maps from 
different vehicles to create a coherent global map. 

 
 

 

Figure 30: LIDAR Data Exchange and Rendezvous Detection Process 

 
 

 

Figure 31: Distance Calculation Between Vehicles 

 

4.2.3 Map Merging: 

 Description: The system merges local maps from multiple vehicles into a single 
global map. 

 Steps: 
o Initial Alignment: Uses RANSAC for coarse alignment of point clouds. 
o Refined Alignment: Applies ICP for fine-tuning the alignment. 
o Map Update: Integrates the aligned point clouds into the global map. 

 Relevance: Effective map merging ensures that the combined map accurately 
represents the environment, which is crucial for navigation and situational 
awareness. 
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4.3 Test Scenarios and Expectations: 

4.3.1 Scenario 1: Straight Boulevard: 

 Description: Vehicle A and Vehicle B travel towards each other on a straight 
boulevard lined with trees. Each vehicle moves at a speed of 50 km/h. When 
the vehicles come within 25 meters of each other, they initiate LIDAR data 
exchange. 
 

 Expectation: The system should accurately detect rendezvous, exchange data, 
and merge maps despite environmental obstacles. The merged map should 
align closely with the ground truth, demonstrating the system's ability to handle 
data exchange and map merging in a straight path with obstacles. 

 

Load Local Maps 

Initial Alignment with RANSAC 

Compute Initial Transformation 

Refined Alignment with ICP 

Apply Transformation to Local Maps 

Merge Aligned Maps 

Update Global Map 

Figure 32: Process of the Map Merging 
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Figure 33: Merged Map of the Vehicles A (red) and B (blue) in scenario 1 

 

Figure 34: Local Map of Vehicle A 

 

Figure 35: Local Map of the Vehicle B 



Final Thesis 
 

 

4.3.2 Scenario 2: Intersection: 

 Description: Vehicle A and Vehicle B move towards each other at an 
intersection without obstacles. Each vehicle moves at a speed of 50 km/h. When 
the vehicles come within 25 meters of each other, they initiate LIDAR data 
exchange. 
 

 Expectation: The system should efficiently handle data exchange and map 
merging in an open intersection, with minimal latency and high accuracy. The 
merged map should reflect the intersection layout accurately, validating the 
system's performance in an open, obstacle-free environment. 
 

 

Figure 36: Overlapped Map of the Vehicles A (red) and B (blue) in scenario 2 

 

 

Figure 37: Local Map of the Vehicle B 
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Figure 38: Local Map of the Vehicle A 

 

4.4 Evaluation of Scenarios: 

4.4.1 Scenario 1: Straight Boulevard: 

 Initialization: 
o Set up the CARLA simulation and spawn vehicles. 
o Initialize CarlaConnector, VehicleManager, and LidarProcessor. 

 

 Data Collection: 
o Vehicles move along predefined paths. 
o Collect and process LIDAR and GNSS data. 

 

 Rendezvous Detection: 
o Calculate distance and detect rendezvous. 
o Initiate LIDAR data exchange. 

 

 Map Alignment and Merging: 
 

o Perform initial alignment with RANSAC. 
o Refine alignment with ICP. 
o Merge local maps into a global map. 

 

 Results: 
 

o Accuracy: The merged map closely matches the ground truth. 
o Efficiency: Data processing and map merging are completed within a 

reasonable timeframe. 
o Robustness: The system handles environmental obstacles effectively. 

 

 Metrics: 
 

o Fitness Score: 0.6560 
o RMSE: 0.1499 
o C2C Distance: 1.8506 
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Figure 39: Path of the Vehicles in Scenario 1 

 

4.4.2 Scenario 2: Intersection: 

 Initialization: 
o Set up the CARLA simulation and spawn vehicles. 
o Initialize CarlaConnector, VehicleManager, and LidarProcessor. 

 

 Data Collection: 
o Vehicles move along predefined paths. 
o Collect and process LIDAR and GNSS data. 

 

 Rendezvous Detection: 
o Calculate distance and detect rendezvous. 
o Initiate LIDAR data exchange. 

 

 Map Alignment and Merging: 
o Perform initial alignment with RANSAC. 
o Refine alignment with ICP. 
o Merge local maps into a global map. 

 

 Results: 
o Accuracy: The merged map closely matches the ground truth. 
o Efficiency: Data processing and map merging are completed with 

minimal latency. 
o Robustness: The system maintains high accuracy and efficiency in an 

open intersection. 
 

 Metrics: 
o Fitness Score: 0.7383 
o RMSE: 0.1531 
o C2C Distance: 0.5563 
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Figure 40: Path of the Vehicle B in Scenario 2 

 

4.5 Final Discussion: 

4.5.1 Summary of Results: 

 Accuracy: Both scenarios demonstrated high accuracy in the merged maps, 
closely matching the ground truth. The fitness scores and RMSE values indicate 
that the system effectively aligns and merges the local maps. 
 

 Efficiency: The system efficiently handled data processing and map merging 
within a reasonable timeframe, meeting real-time performance requirements. 
 

 Robustness: The system maintained accuracy and efficiency in different 
environmental settings, demonstrating robustness in both scenarios. 

4.5.2 Outlook: 

 Improvements: Future work could focus on further optimizing data processing 
algorithms and improving inter-vehicle communication protocols to enhance 
performance. Integrating advanced communication technologies such as 5G 
could significantly improve data exchange speeds and reliability. Additionally, 
incorporating more accurate LIDAR SLAM algorithms like LeGO-LOAM or 
LOAM could further enhance the system's mapping accuracy and robustness. 
 

 Scalability: The system should be tested with more vehicles to assess scalability 
and performance in larger fleets, ensuring consistent and reliable mapping in 
larger and more complex environments. This could involve simulating various 
fleet sizes and configurations to evaluate the system's capability to handle 
increased data volume and communication overhead. 
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 Real-world Testing: Conducting real-world tests outside of simulation 
environments is essential to validate the system's performance in actual driving 
conditions, accounting for real-world variables and complexities. This includes 
testing in diverse environments and scenarios to ensure the system can handle 
various challenges and deliver reliable performance in real-world applications. 
 

 
By systematically evaluating the cooperative 3D mapping system, we can ensure that 
it meets the required performance metrics and is capable of creating accurate, efficient, 
and robust maps for connected autonomous vehicles. This evaluation provides a solid 
foundation for further development and real-world deployment, highlighting the 
system's strengths and areas for improvement. 
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5 Final Conclusion: 

This research addresses the need for increased autonomy in connected vehicles 
through enhanced cooperative mapping.  
 

Key elements include: 
 

 Splitting Large Areas: Dividing large regions into smaller sections for 
independent exploration enhances vehicle autonomy. 

 

 Detailed Recording and Mapping: Accurate mapping of surroundings is 
achieved using integrated sensors, enabling each vehicle to generate its own 
local map. 

 

 Enhanced Cooperation: Data exchange between vehicles through V2V 
connectivity, focusing on urban and outdoor areas, improves overall map 
creation. 

 

 Sensor Integration: Vehicles are equipped with LIDAR, cameras, and GNSS 
sensors to ensure comprehensive environmental mapping. 

 

Methods: 

 

 Direct Map Merging (DMM): 
o Robot-to-Robot Measurements 
o Common Region Detection 
o Pros: Quick merging, real-time capability, simpler implementation 
o Cons: Sensor dependencies, limited accuracy 

 

 Indirect Map Merging (IMM): 
o Point Feature Matching 
o Scan-Matching Algorithms 
o Pros: Improved accuracy, flexibility with various data types 
o Cons: Computationally intensive, preprocessing dependency 

 

 Sensor Selection: 
o LIDAR: High-resolution 3D data for precise mapping 
o Camera: Used selectively for distinguishable landmarks 
o GNSS: Essential for accurate rendezvous detection 

 

Techniques: 
 

 Feature Extraction: Fast Point Feature Histograms (FPFH) for real-time 
applications, compared with Scale-Invariant Feature Transform (SIFT). 

 Initial Alignment: Random Sample Consensus (RANSAC) for coarse alignment, 
compared with Hough Transform. 

 Refined Alignment: Iterative Closest Point (ICP) for precise merging, compared 
with Normal Distributions Transform (NDT). 
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Implementation: 
 Data Acquisition: Continuous collection of LIDAR and GNSS data ensures up-

to-date mapping. 

 Local Map Generation: Real-time processing on onboard computers generates 
local point cloud maps. 

 Rendezvous Detection: Vehicles exchange GNSS data to monitor relative 
positions and detect rendezvous events. 

 Data Exchange and Map Alignment: LIDAR scans are exchanged upon 
rendezvous, with initial alignment using RANSAC and refined alignment using 
ICP. 
 

Validation: 
 

 Simulator: CARLA simulator provides a high-fidelity environment for testing and 
validation. 

 Test Scenarios: Scenario A (Straight Boulevard) and Scenario B (Intersection) 
are used to evaluate performance. 
 

Results 

 Scenario A (Straight Boulevard): 
o Fitness Score: 0.6560 
o RMSE: 0.1499 
o C2C Distance: 1.8506 

 

 Scenario B (Intersection): 
o Fitness Score: 0.7383 
o RMSE: 0.1531 
o C2C Distance: 0.5563 

 
The study concludes that the proposed cooperative mapping system significantly 
enhances the autonomy and mapping accuracy of connected vehicles, particularly in 
urban and outdoor environments. 
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