
DEPARTMENT OF INDUSTRIAL ENGINEER

SECOND CYCLE DEGREE

Deep Learning-Based

Spacecraft Detection Algorithm

Optimized for

Embedded Hardware

Dissertation in Spacecraft Attitude Dynamics and Control

Supervisor
Prof. Dario Modenini
Co-Supervisor:
PhD candidate:
Roman Prokazov

Candidate:
Michele Sacripante

Graduation Session 03/2025
Academic Year 2023/2024

Abstract

Since the launch of the first space mission in 1957, the number of artificial satel-
lites on Low Earth Orbit (LEO) has grown exponentially, leading to a significant
technological and scientific advancement. However, the lack of stringent regulations,
especially in the early years of space exploration, has also resulted in a substantial
accumulation of space debris. The problem of space debris is of great concern to the
international scientific community, as it might preclude access to space for future
missions and negatively influence existing ones.
For this reason, aerospace companies worldwide are actively developing on-orbit ser-
vicing and space debris removal missions. In order for these missions to be successful,
highly autonomous navigation systems are essential. Traditional methods, such as
those relying on expensive and cumbersome Light Detection and Ranging (LIDAR)
systems, are being replaced by vision-based navigation approaches. This shift is
driven by the need for cost-effective and adaptable solutions capable of operating in
the dynamic and unpredictable space environment. To enable accurate and reliable
vision-based navigation, robust object detection capabilities are paramount. Deep
Learning (DL) algorithms are increasingly recognized for their potential to achieve
the required level of autonomy and accuracy in this critical task.
This thesis focuses on advancing the application of DL for spacecraft object detec-
tion by developing and optimizing an image classification network. Specifically, we
leveraged the EfficientNet-B0 architecture to create a lightweight yet accurate object
detection network tailored for deployment on embedded hardware, such as the Jet-
son Orin Nano. To further enhance efficiency, we explored quantization techniques,
converting the model through Torch, ONNX, and TensorRT formats. Additionally,
we trained a YOLO network to provide a comparative benchmark for our developed
solution. Both networks were trained using the SPEED+ dataset, a comprehen-
sive resource for spacecraft pose estimation. The primary aim of this work is to
demonstrate the feasibility of deploying highly efficient DL-based object detection
on resource-constrained platforms, thereby contributing to the development of ro-
bust and autonomous space debris removal missions. Indeed, our software pipeline
was capable of running at up to 136.05 fps showing satisfactory object detection per-
formance, with an average Intersection over Union index equal to 0.850 on synthetic
images, which drops to about 0.382 during domain gap tests.

Acknowledgements

I would like to thank Professor Modenini for his support and for allowing me to
participate in this project. I am also grateful to Roman Prokazov for his guidance,
valuable advice and availability.

A special thanks goes to my family, who have supported and encouraged me through-
out these years at university.

Finally, I want to thank all the friends I have met along the way and who have
contributed to this journey with their friendship.

Contents

1 Introduction 1
1.1 Space Debris . 1
1.2 Artificial Intelligence, Machine Learning and Deep Learning 3
1.3 Artificial Intelligence for space applications 3

2 Theoretical background 7
2.1 Computer Vision . 7

2.1.1 Computer Vision techniques 7
2.1.2 Computer Vision tasks . 9

2.2 Deep Learning . 10
2.2.1 Neural Networks . 10
2.2.2 Convolutional Neural Networks 11

2.3 Neural Networks learning theory . 15
2.3.1 Supervised Learning . 16
2.3.2 Loss Functions . 18
2.3.3 Optimization algorithm . 21
2.3.4 Training limitations . 22
2.3.5 Accuracy metrics . 22

2.4 Inference speed optimization techniques 24
2.4.1 GPU acceleration . 24
2.4.2 Parallelization . 25
2.4.3 Pruning . 26
2.4.4 Quantization . 26

3 Tools and Methodology 29
3.1 Tools . 29

3.1.1 Dataset . 29
3.1.2 Albumentations . 30
3.1.3 PyTorch . 32
3.1.4 Inference engines . 33
3.1.5 Jetson Orin Nano . 34
3.1.6 Ultralytics . 35

3.2 Methodology . 36
3.2.1 Data collection . 36
3.2.2 Image transformations . 39
3.2.3 PyTorch training pipeline . 40

I

3.2.4 PyTorch Inferences . 42
3.2.5 ONNX Runtime pipeline . 43
3.2.6 Ultralytics pipeline . 44

4 Results 46
4.1 Training results . 46
4.2 Inferences results . 49

4.2.1 Accuracy results . 49
4.2.2 Inference speed results . 49
4.2.3 Literature validation . 52

5 Conclusions 57
5.1 Future works . 58

II

List of Figures

1.1 Examples of damage caused by space debris 2
1.2 Visual division of AI in ML and DL [55] 3
1.3 Examples of space missions with AI algorithms involvement 4
1.4 Real images from the ESA RemoveDEBRIS mission for active space

debris collection [4]. 6

2.1 (a) Traditional CV techniques. (b) CV enhanced by DL. Base image
[6] . 8

2.2 Examples of different tasks performed by computer vision algorithms
(base image [39]) . 10

2.3 Graphical interpretation of the action of a Neural Network [50] 11
2.4 Typical architecture of a Convolutional Neural Network [30] 12
2.5 EfficientNet-B0 architecture [71] . 13
2.6 YOLOv8 architecture [7] . 15
2.7 Visual representation of gradient descent applied to a function with

two parameters to be optimized. This is just an example, as gradient
descent can also be applied to functions with multiple parameters
(base image[10]) . 17

2.8 Examples of Overfitting and Underfitting 23
2.9 Visualization of the IoU formula [16] 23
2.10 Principal inference parallelization methods[68] 26
2.11 Pruning methods. a) Unstructured pruning, b) Structured pruning[64] 27

3.1 SPEED+ synthetic and HIL images [46] 30
3.2 Spatial transformations . 31
3.3 Pixel transformations . 31
3.4 Paper implementations grouped by framework [61] 32
3.5 Jetson Orin Nano [35] . 35
3.6 Projection of the 11 3D keypoints on a 2D image 38
3.7 Image transformation for the training process 40
3.8 EfficientNet-B0 QDQ and QOperator quantized model representation 44

4.1 Training and Validation loss EfficientNet-B0 47
4.2 Training and Validation loss YOLOv8n 47
4.3 Comparison of validation mAP between EfficientNet-B0 and YOLOv8n 48
4.4 Visual comparison of YOLO and EfficientNet-B0 model predictions

on 9 random test images . 54

III

4.5 Visual comparison of YOLO and EfficientNet model predictions on
HIL images . 55

4.6 Inference time comparison between EfficientNet-B0 and YOLOv8n . . 55
4.7 Accuracy comparison between EfficientNet-B0 and YOLOv8n 56
4.8 EfficientNet-B0 different model format inference speed speedups . . . 56

IV

List of Tables

3.1 Camera Parameters [46] . 31
3.2 Main Specifications of NVIDIA Jetson Orin Nano [35] 36
3.3 Training Transformations . 39
3.4 YOLO Training default data augmentation parameters [62] 41
3.5 Training hyperparameters . 42
3.6 ONNX exportation settings . 43
3.7 YOLOv8 Default Training Hyperparameters 45

4.1 Best EfficientNet-B0 Validation Loss and Accuracy 46
4.2 Best YOLOv8n Validation Loss and Accuracy 48
4.3 IoU results . 49
4.4 EfficientNet-B0 Jetson Orin Nano inference results. The superscript

denotes the quantization representation adopted. Specifically, 1 stands
for QDQ and 2 stands for QOperator. 50

4.5 YOLOv8n Jetson Orin Nano Inference Results 50
4.6 Inference speed obtained on Jetson Nano from [41] in seconds. 52
4.7 Input Sample Data Specifications [70] 53

V

Chapter 1

Introduction

The main goal of this thesis is to develop and optimize a real-time vision-based ob-
ject detector, utilizing deep learning algorithms, specifically for space applications.
A crucial aspect of these applications, particularly in scenarios like on-orbit servic-
ing and debris removal, is the ability to rapidly process visual data. Therefore, this
work focuses on optimizing the inference speed of the object detector, meaning the
time required for the model to generate a prediction. This optimization is essential
to address the growing challenge of space debris, a critical issue within the interna-
tional scientific community.
The organization of this document is as follows. Chapter 1 presents the main con-
cepts related to the space debris problem and its potential impact on current and
future space missions. It is followed by an introduction to Artificial Intelligence (AI)
and its increasingly important role in space applications.
Chapter 2 presents the state-of-the-art techniques for building and deploying real-
time vision-based object detection systems. In particular, an introduction to the
field of Computer Vision (CV) and how this discipline has benefited from AI is pro-
vided. Subsequently, the main DL algorithms, learning mechanisms, and evaluation
metrics are discussed. Finally, an overview of techniques for optimizing DL inference
speed is presented.
Chapter 3 provides a description of the main tools used during the thesis work, with
a focus on their application during the training, validation, and deployment of the
developed and optimized model on embedded hardware.
In Chapter 4, the obtained results for a custom model are presented and discussed.
Subsequently, the results are validated by comparing them with those obtained for
a YOLOv8n model from Ultralytics and relevant literature.
Finally, in Chapter 5, the conclusions of the work are presented, along with possible
scenarios for future research.

1.1 Space Debris

The Kessler Syndrome is a theory that describes a scenario where the density of
satellites and space debris in orbit becomes so high that collisions between space-
craft and space debris, and between satellites themselves, are inevitable. These
collisions will then lead to more debris release, which will generate further collisions,

1

1.1 Space Debris 2

giving way to a cascade reaction [38]. This theory, presented by Donald J. Kessler in
1978, indicates the extent of the space debris problem, which encompasses all non-
functional, artificial objects, including fragments and elements thereof, in Earth
orbit or re-entering into Earth’s atmosphere [3].
Since the onset of the space race, orbits such as LEO, medium Earth orbit (MEO)
and, geostationary Earth orbit (GEO) have become increasingly populated by satel-
lites, leading to a dramatic growth in the number of space debris. This proliferation
is driven by plenty of sources of space debris such as spent rocket stages, satellite
explosions, anti-satellite tests, and in-orbit collisions.
The US Space Surveillance Network is the body responsible for cataloging and track-
ing objects larger than approximately 5-10 cm in LEO and 30 cm to 1 m at GEO
altitudes. As of today, out of the 36860 tracked objects, only about 10200 are
intact, operational satellites. In addition, many objects remain untracked and un-
catalogued. Statistical models estimate that, in 2024, there were [3]:

� 40500 space debris objects greater than 10 cm;

� 1100000 space debris objects from greater than 1 cm to 10 cm;

� 130 million space debris objects from greater than 1 mm to 1 cm.

The real problem related to space debris is that even debris smaller than 1 cm can
cause catastrophic damage due to the high velocities at which they travel. Examples
of impacts between satellites and high-speed debris are illustrated in figure 1.1.

(a) Hubble solar cell impact damage [2]. (b) Canadarm2 damage - Image credit
NASA/Canadian Space Agency.

Figure 1.1: Examples of damage caused by space debris

Several approaches have been developed to address the problem of space debris,
ranging from passive shielding techniques to advanced technologies for identifying,
capturing, and removing debris [54].
To perform these operations, it is essential to determine the attitude, geometry,
and composition of the debris. Therefore, robust object detection algorithms are
required to retrieve this information, enabling accurate maneuver planning for colli-
sion avoidance or efficient debris collection while supporting autonomous navigation
during capture operations [1].

1.2 Artificial Intelligence, Machine Learning and Deep Learning 3

1.2 Artificial Intelligence, Machine Learning and

Deep Learning

Artificial Intelligence is the ability of a machine to show human ability such as
reasoning, learning, planning and creativity. AI allows systems to understand their
environment, interpret external inputs and provide solutions to problems [53].
The theory of AI was born in 1943, with the work of McCulloch and Pitts, but it is
thanks to the technological advances of recent years that it is becoming more and
more present in everyday life.
The simplest task that can be performed by AI is commonly referred to as Symbolic
AI, where given in input data and rules the machine is able to generate answers.
Machine Learning (ML) is a subset of AI that includes techniques enabling comput-
ers to learn how to perform tasks without being explicitly programmed. This process
is the result of a training specific, where the model is provided with data and the
corresponding outputs, and from there, it infers patterns and develops rules. Once
those rules are defined, ML enables the automation of tasks through the generation
of adaptive and generalizable rules [53].
Finally Deep Learning is a specific subgroup of ML focused on layered techniques
inspired by the structure and function of the brain. It is based on Artificial Neural
Networks (ANN) in which multiple layers of processing are used to extract progres-
sively higher level features from data [53].
Figure 1.2 gives a visual representation of how the AI could be subdivided.

Figure 1.2: Visual division of AI in ML and DL [55]

1.3 Artificial Intelligence for space applications

Today, it is increasingly evident that terrestrial technology is dependent on and re-
lated to space technology, as demonstrated, for instance, in the near global internet
coverage and GNSS services. As a result, the number of space missions launched
every year is growing, leading to, as already mentioned above, an ever-increasing
population of the main orbits around Earth.

1.3 Artificial Intelligence for space applications 4

While there has been a general improvement in the quality of life, there are also
new challenges that need to be addressed. Some of them include limited communi-
cation windows, long communication latencies, limited bandwidth, restricted access
and availability of operators, limited crew availability, system complexity, sudden
maneuvers and many other factors often preclude direct human oversight of many
functions.
This highlights the need for intelligent systems that can make decisions on their own
in remote, potentially hostile environments. AI can then play a fundamental role
in the life of a satellite, saving time and money. Space applications of AI can be
divided into three types of operations they support: predictable, unpredictable, and
real time [36].

(a) Mars 2020 mission [47] (b) Rosalind Franklin rover
from the ExoMars mission
[8]

(c) Crew Dragon capsule
[34]

Figure 1.3: Examples of space missions with AI algorithms involvement

Many flight operations such as navigation and maneuvering in space, orbiting a
celestial body, observations, communication, and safekeeping activities are highly
predictable and can be planned well in advance. The complexity of operations, cou-
pled with stringent resource constraints, underscores the necessity for automated
planning and scheduling. An example of a space mission with this kind of AI appli-
cation is NASA’s Mars 2020, that used autonomous navigation algorithm based on
the ground conformation (figure 1.3a) [33].
In contrast, surface operations such as long- and short-range traverse, sensing, ap-
proaching an object of interest to place tools in contact with it, drilling, coring,
sampling, assembly of structures, and many others are characterized by a high de-
gree of uncertainty resulting from interactions with the environment. Operations in
these environments, without the autonomy to monitor progress and adjust behavior
accordingly, would be greatly restricted, particularly as communication delays to
Earth increase. ESA’s ExoMars mission leverages AI to autonomously analyze and
identify drilled rock samples, enabling the detection of potential organic compounds
and advancing our understanding of Mars’s geological and possibly biological history
(Figure 1.3b) [37].
Finally, operations such as entry, descent, and landing (EDL) and automated space-
craft docking require a real-time response from the vehicle that can preclude any
interaction with mission control. As it happens in the capsule Crew Dragon of Space
X during autonomous docking with the ISS (figure 1.3c).
A critical factor for real-time applications is the reactivity of the vehicle to prevent

1.3 Artificial Intelligence for space applications 5

catastrophic outcomes. Faster response times enable proactive decision-making,
such as performing collision avoidance manoeuvres and active debris removal.
The application of AI to CV is of particular interest for the development of ro-
bust and reliable identification algorithms. These algorithms play a key role in the
development of In Orbit Services, sector characterized by both unpredictable and
real-time scenarios. One area that has particularly benefited from this technology
is active space debris removal, which relies on precise identification and tracking of
debris.
A notable example is given from the RemoveDEBRIS mission [29], a technology
demonstration mission featuring three main experiments: net capture, harpoon cap-
ture, and a vision-based navigation algorithm. Although CubeSats were ejected and
used as targets instead of real space debris for the purposes of the mission, it still
represents an important step toward a fully operational active debris removal mis-
sion.
In this context, the vision-based algorithm detects in real-time the CubeSat and
provides information that is later used for pose estimation. Based on this data, a
net is deployed to capture the satellite.
Figure 1.4 shows real images from the mission, particularly during the satellite cap-
ture with the net and the results of the object detection process.
This, once again, confirms the critical role that AI can play in advancing space
technology.

1.3 Artificial Intelligence for space applications 6

(a) Left -before the capture, two lateral booms visible. Centre -moment
of the Net capture of DSAT#1, one of the satellite sails is shown, be-
tween the lateral and longitudinal booms. Right -after the capture,
DSAT#1 tangled in the net

(b) Left: View of DSAT#2 with shape contours, Right: image from
LiDAR camera.

Figure 1.4: Real images from the ESA RemoveDEBRIS mission for active space
debris collection [4].

Chapter 2

Theoretical background

This chapter presents the theoretical concepts that support the development of the
work presented in this thesis. In particular, it outlines classical CV techniques, high-
lighting their limitations and how they can be enhanced by AI to perform key CV
tasks. Subsequently, the process of training a DL model and the various techniques
that can be used to optimize inference speed are explained.

2.1 Computer Vision

Computer Vision is a simulation of biological vision using computers and related
equipment. Its main task is to obtain the three-dimensional information of the
corresponding scene by processing collected pictures or videos [31].
CV is currently widely applied in fields such as biometry, quality analysis, smart
surveillance, telemedicine, autonomous vehicles, space debris recognition and many
others.

2.1.1 Computer Vision techniques

The traditional approach in CV is to use well-established mathematical algorithms
and statistics to process images or videos. In particular, for object detection tasks,
which will be later described, feature descriptors such as SIFT, SURF, etc., are used
[44].
The Scale Invariant Feature Transform (SIFT) transforms an image into a large
collection of local feature vectors, each of which is invariant to image translation,
scaling, and rotation, and partially invariant to illumination changes and affine or
3D projection. The scale-invariant features are efficiently identified using a staged
filtering approach. The first stage identifies key locations in scale space by looking
for locations that are maxima or minima of a Difference of Gaussian (DoG) func-
tion. In particular, this function represents an approximation of the Laplacian of
Gaussian, obtained by subtracting two Gaussian-blurred versions of the image at
different scales. This approach allows for the identification of keypoints that are
stable across different image scales.
From there, each relevant point is used to generate a feature vector that describes the
local image region sampled relative to its scale and position. The features achieve

7

2.1 Computer Vision 8

partial invariance to local variations, such as affine or 3D projections, by consider-
ing image gradient changes [42]. The gradient of the image is obtained by taking
the partial derivatives of the image, allowing for an interpretation of the intensity
changes in the image. These gradients are then used to build a histogram of gradient
orientations in the local neighborhood around the keypoint.
Speeded Up Robust Features (SURF) is a CV technique that employs a simplified
approximation of the Hessian matrix to emulate the operation of the DoG, leveraged
by SIFT as a Laplacian-based detector.
One advantage of SURF is its computational speed. This method is, in fact, also
referred to as the ”Fast-Hessian” detector, enhanced by the use of integral images,
which enable the rapid calculation of sums in rectangular regions by precomputing
cumulative pixel values at each image position.
This allows SURF to quickly evaluate Haar-like features within a local window
around each keypoint. Instead of iterating over each pixel individually, the integral
image provides a way to obtain the sum of any rectangular region in constant time,
making it highly efficient for real-time applications [13].
One of the most common CV algorithms used in traditional CV techniques is Edge
Detection. The main task of edge detection is to locate and identify sharp discon-
tinuities arising from abrupt changes of pixel intensity. These changes characterize
the boundaries of objects in a scene. Edges give boundaries between different re-
gions in the image, used to identify objects for segmentation and matching purpose.
Various types of operators are available for edge detection and they can be classified
into two categories. The first category involves first-order derivatives, where the
input image is convolved with an adapted mask to generate a gradient image, with
edges detected by thresholding. In the second category, second-order derivatives are
used, based on the extraction of zero-crossing points, which indicate the presence of
maxima in the image [15].

Figure 2.1: (a) Traditional CV techniques. (b) CV enhanced by DL. Base image [6]

The difficulty with the traditional approaches is that it is necessary to choose which
features are relevant in each given image. In a classification task, for example, as the
number of classes to classify increases, feature extraction becomes more and more

2.1 Computer Vision 9

cumbersome. It is up to the CV engineer’s judgment and a long trial and error
process to decide which features best describe different classes of objects.
The new frontier of CV algorithms based on DL models, such as the one described
in the following Convolutional Neural Network (CNN) section, offers greater accu-
racy and versatility in performing the same tasks as traditional CV techniques, at
the cost of requiring significant computational resources during the training process
(figure 2.1)[44].
When operating in space, the satellite has to work under extreme conditions, fac-
ing for example variable illumination, noise, and atmospheric interference condition.
For this reason, it is challenging for a CV engineer to identify specific features for
each condition. This makes it evident that DL-based models demonstrate supe-
rior robustness and reliability for space application, provided they are trained with
sufficient and diverse datasets.

2.1.2 Computer Vision tasks

CV algorithms differ from each other depending on which features the user is inter-
ested in extracting. These features could be from an image or a video, for example.
Among the most common tasks that can be performed there are:

� Image Classification: analysis of the content of an image and associating it
with a label, based on predefined categories or metrics. For example given a
dataset of images related to space operations, the algorithm is able to assign
a category to each one of the images, such as ”satellite fragment”, ”rocket
component”, ”astronaut” and so on.

� Object Detection: identification of one or more entity in a picture. It
combines image classification with object localization, generating rectangular
regions, called “bounding boxes”, in which objects are located.

� Image Segmentation: partition an image into multiple parts or regions, of-
ten based on the characteristics of the pixels in the image. Conventional image
segmentation algorithms process high-level visual features of each pixel, like
color or brightness, to identify object boundaries and background regions.
The image Segmentation can be further divided in semantic or instance seg-
mentation [66]. The main difference between the two is that semantic seg-
mentation associates a semantic class to every pixel grouping all objects of
the same class together, while instance segmentation identifies and delineates
individual instances of objects within an image even if they belong to the same
class.

� Face Recognition: recognition of the characteristic features of people’s faces.

� Action Recognition: identification of one or more entities and their rela-
tionship in time and space, in order to identify and describe specific actions.

� Visual Relationship Detection: comprehension of the relationship between
the objects of an image.

2.2 Deep Learning 10

(a) Image Classification (b) Object Detection

(c) Instance Segmentation (d) Semantic Segmentation

Figure 2.2: Examples of different tasks performed by computer vision algorithms
(base image [39])

2.2 Deep Learning

2.2.1 Neural Networks

As previously mentioned, neural networks (NNs) form the backbone of DL models,
and in order to develop a vision-based detector, it is essential to understand how
these NNs function. Figure 2.3a shows a typical NN architecture. Here the green
layer represents the input layer, the blue are the hidden layers and finally the pink
one the output layer.
The neurons, represented by blue circles, are the building blocks of a network. Each
neuron sums its input signals weighted by the connection strengths (the weights)
and applies an activation function σ to generate an output signal, as shown in
figure 2.3b. There are different types of activation functions, going from Linear to
Nonlinear ones. The most commonly used nonlinear activation functions are the
sigmoid, tanh, or ReLU (Rectified Linear Unit) [56]. Those are typically applied
in both hidden and output layers, whereas the linear activation function is mostly

2.2 Deep Learning 11

(a) Typical architecture of a Neural Network

(b) Neuron action

Figure 2.3: Graphical interpretation of the action of a Neural Network [50]

used in the output nodes. The nonlinear activation functions allow the model to
generalize and adapt to a variety of data, enabling complex modeling.
One pass of the entire dataset through the NN, including both forward and backward
passes, is known as an epoch. Multiple epochs are used to pass the dataset multiple
times.
To ease computational pressure, the epoch can be split into batches which dictate
the number of iterations needed to complete one epoch. For example, 2000 examples
that are split into 500 batches would require four iterations to complete one epoch.
However, using too many small batches can increase the computational overhead
and lead to less stable training.
The term “deep” refers to the number of layers in the network. In particular, the
greater the number of layers, the deeper the network. While traditional NN generally
contain only 2 or 3 layers, deep networks can have hundreds of them, allowing for a
detailed and complex modeling.

2.2.2 Convolutional Neural Networks

A CNN is a specialized NN that has been developed to work with data structured
in grids or matrices such as images, audio and signals. As a traditional NN, its

2.2 Deep Learning 12

structure is composed by an input, an output and several hidden layers, that have
to perform the operation of convolution, pooling and fully connected transforma-
tions. When talking about CNNs, it is common to refer to a group of layers that
perform the same specific action as a block [9]. The main task of the convolutional

Figure 2.4: Typical architecture of a Convolutional Neural Network [30]

layer is to extract significant features from the input. For example, a color image
can be represented as a three dimensional matrix of pixels, where each dimension
corresponds to the height, width, and depth (the three channels: red, green, and
blue). Now introducing the filter, or kernel, of the convolutional layer as a smaller
matrix, with respect to the input matrix, the convolutional operation is obtained by
sliding the filter over the entire image.
In particular during the convolution process, the filter is applied to a small region of
the image (the receptive field) and computes a dot product between the pixel values
in the image and the values in the filter. The result of this operation is placed in a
feature map. Afterward, the filter shifts by a fixed amount, called the stride, and
the process repeats until the entire image is covered. Each point in the feature map
represents a feature extracted from the corresponding portion of the image. After
each convolution operation, a CNN applies a ReLU transformation to the feature
map, introducing nonlinearity to the model.
The pooling layers, also known as down-sampling layers, conduct dimensionality
reduction, reducing the number of parameters in the input. Similar to the convo-
lutional layer, the pooling operation sweeps a filter across the entire input, but the
difference is that this filter does not have any weights. Instead, the kernel applies
an aggregation function (such as maximum or average) to the values within the
receptive field, populating the output array [32].
The fully connected layer, or dense layer, has the task to capture global patterns
and relationships in the input data by connecting every neuron from the previous
layer to every neuron in the fully connected layer. The primary function of the fully
connected layer is to perform high-level reasoning and decision-making based on the
features extracted by the preceding layers. It accomplishes this by learning complex
non-linear mappings between the input and output data. Each neuron in the fully
connected layer receives inputs from all the neurons in the previous layer and pro-
duces an output by applying a set of weights and biases, followed by an activation
function, following then procedure of a conventional NN. An example of a typical
architecture are shown in figure 2.4.
When building a CNN, or more generally a NN, there are many variables to keep

2.2 Deep Learning 13

in consideration, such as how many groups, layers and neurons use, without con-
sidering the initialization of the weights and the selection of the proper activation
functions. One factor that has contributed to the widespread adoption of computer
vision is the availability of pre-trained models developed by large companies. These
models are freely available and adjustable for personal tasks, making this technology
more approachable.

EfficientNet

The state of the art in image classification is the family of algorithms called Effi-
cientNet, which achieves 84.3% top-1 accuracy on the ImageNet dataset (1.2 million
images classified into a thousand categories)[22] , while being 8.4 times smaller and
6.1 times faster in inference than the best existing CNN [58]. It is common practice
to develop CNNs at a fixed resource budget, and then, scale them up for better
accuracy if more resources are available. However, achieving an optimal balance
between network width, depth, and resolution during scaling is challenging. In the
EfficientNet family, such balance is achieved by simply scaling each network dimen-
sion with a constant ratio. This procedure is called compound scaling method and
is well described in [58].

input

M
B

C
onv6, k

3x3

M
B

C
onv6, k

3x3

M
B

C
onv6, k

5x5

M
B

C
onv6, k

5x5

M
B

C
onv6, k

3x3

M
B

C
onv6, k

3x3

M
B

C
onv6, k

3x3

M
B

C
onv6, k

5x5

M
B

C
onv6, k

5x5

M
B

C
onv6, k

5x5

M
B

C
onv6, k

5x5

M
B

C
onv6, k

5x5

M
B

C
onv6, k

5x5

M
B

C
onv6, k

5x5

M
B

C
onv6, k

3x3

output

M
B

C
onv1, k

3x3

C
onv 3x3

input
1x1 Conv

BN + Swish
Depth-wise Conv

BN + Swish

1x1 Conv
BN + Dropoutoutput

SE

input
AvgPooling Fully connected layer 1

Swish

Fully connected layer 2
Sigmoidoutput

MBConv block

SE module

Figure 2.5: EfficientNet-B0 architecture [71]

The main building block of the EfficientNet architecture is the Mobile Inverted Bot-
tleneck Convolution (MBConv), based on the concept introduced in MobileNet [52].
The MBConv block, as shown in figure 2.5, consists of three convolutional layers
followed by a squeeze-and-excitation (SE) block.
At first, a point-wise convolution is performed that expands the number of channels,
allowing for more complex feature interactions. By increasing the dimensionality of
the feature map, the network is able to learn a richer representation.

2.2 Deep Learning 14

The expansion factor of each layer is specified in the name of the group by the num-
ber following MBConv. For example, MBConv6 means an expansion factor of 6.
Next, a depth-wise convolution is applied, where instead of processing all channels
simultaneously, each channel is convolved separately.
After each convolutional operation, Batch Normalization is applied to stabilize train-
ing, followed by the Swish activation to introduce non-linearity, whose behavior is
described in equation 2.1:

fSwish =
1

1 + e−βx
(2.1)

where β is a parameter that can be learned during the CNN training.
Finally, the SE block tells the model which features are essential and suppresses the
less relevant ones. It uses global average pooling to reduce the spatial dimensions of
the feature map to a single channel, followed by two fully connected layers to learn
channel-wise weights, effectively recalibrating the importance of each channel.
The EfficientNet-B0 architecture is designed to be scalable, meaning that its depth,
width, and resolution can be uniformly scaled up to create larger, more accurate
models (like EfficientNet-B1, B2, etc.) while maintaining efficiency.
In this thesis project, to develop an object detection model, the pre-trained EfficientNet-
B0 model, whose architecture is shown in figure 2.5, was used, since it provides a
good balance between computational resources and accuracy.

You Only Look Once

In the field of object detection, the You Only Look Once (YOLO) family of al-
gorithms stands out as one of the most performant. Despite being single-stage
detectors, their accuracy is often comparable to that of two-stage detectors. For
instance, YOLO achieves an accuracy of 63.4% compared to the 70% of Fast R-
CNN, yet it operates nearly 300 times faster in inference [27]. This makes YOLO
models the state of the art for real-time applications. Unlike traditional approaches,
YOLO formulates object detection as a regression problem rather than a classifica-
tion task, using a convolutional neural network to predict bounding boxes and class
probabilities in a single step.
Given its efficiency and accuracy, YOLO is used in this thesis as a benchmark to
evaluate the developed model. In particular, the YOLOv8n model from Ultralyt-
ics [62] has been selected for evaluation, where ’n’ stands for nano, indicating the
smallest and fastest variant among the YOLOv8 models.
As shown in figure 2.6, the YOLOv8 architecture is divided into three main com-
ponents: backbone, neck, and head. The backbone, possibly an advanced version
of CSPDarknet or another efficient architecture [59], is responsible for extracting
relevant features from the input image through convolutional layers. It incorporates
Convolution, Batch Normalization, and SiLU activation function (CBS), which en-
hances stability and convergence. The backbone also includes C2f, a CSP Bottleneck
with Fusion, which reduces redundant computations by splitting and merging fea-
ture pathways. Additionally, the Spatial Pyramid Pooling - Fast Compact (SPPFC)
module expands the receptive field and preserves spatial information, improving the
model’s ability to recognize objects at different scales.

2.3 Neural Networks learning theory 15

Figure 2.6: YOLOv8 architecture [7]

The neck serves as a bridge between the backbone and the head, refining the ex-
tracted features before final predictions. It integrates structures such as the Feature
Pyramid Network (FPN), which enhances multi-scale detection by combining low-
level detailed features with high-level abstract representations, and the Path Aggre-
gation Network (PAN), which enables bidirectional information flow. This allows
finer details from lower layers to influence higher-level feature maps, improving both
localization accuracy and bounding box quality.
Finally, the head is responsible for generating the final detection. YOLOv8 sup-
ports both anchor-based and anchor-free methods, providing greater flexibility in
balancing speed and accuracy.

2.3 Neural Networks learning theory

In order to work properly, a NN must undergo a training process, which results in
the optimization of parameters such as weights and biases, so that it is ultimately
able to learn and solve a specific task [11]. During training, ML algorithms process
large amounts of historical data to identify patterns through inference.
Depending on the data provided and the task that the NNs have to perform, it is
possible to divide the learning process into supervised and unsupervised learning
[57].
Unsupervised learning refers to training with unlabeled data. In particular, the
model examines new data and establishes meaningful relationships between the un-
known input and its underlying structure. These models rely solely on input data to
identify patterns and structures within it, and they are widely used for knowledge
extraction, data compression/denoising, grouping, or clustering tasks. In general,
models that undergo unsupervised learning can be predictive, if they make predic-
tions on new data; descriptive, if they aim to understand and represent the data;
or both. The evaluation of their performance depends on whether the goal is to
reproduce existing knowledge or to acquire new insights.
Supervised learning, on the other hand, relies on labeled data, where both the input

2.3 Neural Networks learning theory 16

and the corresponding output are provided to the algorithm during training. Given
a sufficient amount of labeled data, a supervised learning system can, over time,
recognize patterns and structures. This type of learning is mainly used for classifi-
cation or regression tasks, depending on whether the output consists of a discrete
set of values, the classes, or a continuous variable, respectively.

2.3.1 Supervised Learning

To truly understand the principles behind the NN training, the logistic regression
model, characterized by a relatively low level of complexity, is introduced. This
learning algorithm is used when the output labels ŷ in a supervised learning problem
are binary, taking values of either zero or one. So the goal of training this model is
that, given an input vector x, the output ŷ, should be the most accurate possible
probability that determines at which class the x belongs, specified by the correct
label y.
During a forward pass all the n input pass through the algorithm ending with n
evaluation of probabilities ŷ and metrics. Considering now the parameters of the
logistic regression, W (weights), b (bias) and activation function σ, here a sigmoid,
the output of the model is described by equation 2.2.

z = W Tx+ b

ŷ = σ(z)
(2.2)

A metric to evaluate how well the process is doing within each training example
is the loss function. In logistic regression, a logarithmic function, described by
equation 2.3, is usually used since it is guaranteed to be convex for all input values,
containing only one minimum, allowing to run the gradient descent algorithm, as it
will be discussed later.

L(ŷ, y) = −(ylog(̂y) + (1− y)log(1− ŷ)) (2.3)

It is now time to introduce the cost function J(W, b), that is an appropriate param-
eter to estimate the quality of the whole forward pass. The cost function is indeed
the mean of all the loss values computed for the n probabilities, here defined in
equation 2.4.

J(W, b) =
1

n

n∑
i=1

L(ŷ(i), y(i)) (2.4)

To summarize, the loss function can be interpreted as a measure of how accurate
are the predictions on a single training example, while the cost function does the
same but on the entire training set.
After completing the forward pass, the next step in the training process is the back-
ward pass. Once J is defined, it is time to minimize it by adjusting the parameters W
and b, on which it depends. To do so, the iterative optimization algorithm Gradient
Descent is applied.
The common procedure is to initialize the whole process by selecting the parame-
ters equal to zero or picking them randomly. Once W and b are defined, the J is
evaluated at these values. Then, from this location, the algorithm takes a step in

2.3 Neural Networks learning theory 17

the steepest downhill direction of the cost function, i.e., toward a smaller value of
J . The size of how big is the step taken set by the learning ratio α, which is used
to define the update rule for the parameters described in equation 2.5.

Wi = Wi − αdWi

b = b− αdb
(2.5)

In particular, in equation 2.5 the subscript i stands for the generic element of the
weights and dW and db are obtained with equation 2.6.

dW =
∂J(W, b)

∂W
db = dz = ŷ − y

(2.6)

Once the parameters are updated, a new forward pass is performed reiterating the
same process until the minimum of J is reached. A visual representation of what is
described above is shown in figure 2.7.

Figure 2.7: Visual representation of gradient descent applied to a function with two
parameters to be optimized. This is just an example, as gradient descent can also
be applied to functions with multiple parameters (base image[10])

This process can now be generalized to a DNN with L layers, and n[l], a[l], g[l], and
W [l] representing the number of units, the activations, the activation functions, and
the weights of the l-th layer, respectively.
Considering just a training example, it is possible to describe the forward pass
through a generic layer by applying equation 2.7.

z[l] = W [l]a[l−1] + b[l]

a[l] = g[l](z[l])
(2.7)

Meanwhile, for the backward propagation, equation 2.8 hold true, always applied to

2.3 Neural Networks learning theory 18

a specific l layer, where ∗ represent the element wise product.

dz[l] = da[l] ∗ g[l](z[l])
dW [l] = dz[l]a[l−1]T

db[l] = dz[l]

da[l−1] = W [l]Tdz[l]

(2.8)

The process of forward and backward propagation is applied iteratively across all
layers in the network. First, in the forward pass, from left to right, starting from
the input layer, the activations a[l] are computed layer by layer until the final output
layer, where the cost function is evaluated. Second, from right to left, the backward
pass propagates the error dz[l] through each layer to compute gradients to update
parameters W [l] and b[l] [11].
By combining the computations across all layers, the network forms a pipeline where
each layer’s output serves as the input to the next. This interconnected structure
allows the network to map input data to predictions during the forward pass. In
the backward pass, errors are distributed across the layers, enabling the parameters
to be iteratively updated to minimize the cost function.
Finally the entire process can be vectorized, allowing the training for the entire
dataset.

2.3.2 Loss Functions

A typical loss function used in CNNs for tasks involving continuous output pre-
dictions, such as object detection based on keypoints, is the Mean Squared Error
(MSE). It creates a criterion, described in equation 2.9, that measures the mean
squared error (squared L2 norm) between each element in the input ŷ and target y.

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (2.9)

From the MSE, it is straightforward to derive the Root Mean Squared Error (RMSE),
which evaluates the square root of the average squared errors (equation 2.10).

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (2.10)

The Binary Cross Entropy (BCE) is a performance measure for classification models
that output predictions with probability values typically between 0 and 1. This pre-
diction value corresponds to the likelihood of a data sample belonging to a particular
class or category. The BCE ℓ(x, y) can be described by equation 2.11 [49].

ln = −wn [yn · log xn + (1− yn) · log(1− xn)]

ℓ(x, y) = L =
[
l1, . . . , lN

]⊤ (2.11)

2.3 Neural Networks learning theory 19

Subsequently, this loss function can be reduced by either summing or averaging
the elements of ℓ(x, y), where x and y represent the prediction and the target,
respectively, and w represents the weights associated with each class. The BCE
can be combined with the sigmoid activation function σ, as described in equation
2.12. This combination is used when the model outputs logits, i.e., a continuous
value rather than a probability. In this case, the probability is computed precisely
through the sigmoid function, represented in equation 2.13 and the loss function ln
is referred to as BCE with logits.

ln = −wn [yn · log σ(xn) + (1− yn) · log(1− σ(xn))]

ℓ(x, y) =
[
l1, . . . , lN

]⊤ (2.12)

σ(xn) =
1

1 + e−xn
(2.13)

The Focal Loss (FL) is one of the most common loss functions when the algorithm
needs to learn dense classification scores. It is particularly suited to address one-
stage object detection scenario, where an extreme imbalance between foreground
and background classes in the training data exists, specifically when the background
class dominates [40]. FL is evaluated thanks to equation 2.14:

FL(p) = −(1− pt)
γ log(pt), pt =

{
p, when y = 1

1− p, when y = 0
(2.14)

where y ∈ {0, 1} specifies the ground-truth class, p ∈ [0, 1] denotes the estimated
probability for the class with label y = 1 and γ is the tunable focusing parameter.
From equation 2.14, it is possible to notice that the FL intensifies the loss for
data points that have a large difference between the predicted and actual outputs,
effectively making the NN focus more on hard-to-classify examples.
The Distribution Focal Loss (DFL) is a variation of FL used specifically for bounding
box (BB) regression [40]. Where the term BB refers to the box with the smallest
size (of area, volume, or hypervolume in larger dimensions) within which all relevant
points of the object to be detected are contained.
DFL improves localization accuracy by enhancing the gradient condition, leading to
better performance in handling difficult-to-classify data points. It further improves
on FL by modeling the locations of bounding boxes as general distributions, while
forcing the networks to rapidly focus on learning the probabilities of values close to
the target coordinates. Instead of a single predicted value, DFL ensures the model
learns a distribution over possible values.
Conventional operations of BB regression model the predicted labels with a Dirac
delta distribution δ described in equation 2.15.∫ +∞

−∞
δ(x− y)dx = 1 (2.15)

It is possible then to define the regressed label y as in equation 2.16.

y =

∫ +∞

−∞
δ(x− y)x dx (2.16)

2.3 Neural Networks learning theory 20

However, this approach relies on priors like Dirac delta or Gaussian distributions.
Another possible way of describing the predicted label is through the general distri-
bution P (x). The estimated regression value ŷ is computed by integrating over the
range of y, from y0 to yn, which represent the minimum and maximum values of the
regressed label, as shown in equation 2.17.

ŷ =

∫ yn

y0

P (x)x dx (2.17)

P (x) is generally implemented through a softmax layer S(·), where the values P (yi)
are denoted as Si.
However, this approach introduces some limitations. In fact, there exist infinite
combinations of values for P (x) that can produce the same result for ŷ, leading to
inefficiencies in learning.
The DFL is a robust solution to this problem. By emphasizing the learning of values
around the target y, it increases the probabilities of values close to y. Specifically, it
focuses on the two nearest values, yi and yi+1, and encouraging higher probabilities
for them. This operation is described in equation 2.18.

DFL(Si, Si+1) = − ((yi+1 − y) log(Si) + (y − yi) log(Si+1)) (2.18)

The global minimum solution of DFL guarantees that the estimated regression tar-
get ŷ is infinitely close to the corresponding label y.
Finally the Complete Intersection over Union (CIoU) loss function is another wide-
spread loss function used to help convergence in the object detection models [63]. It
is based on the Intersection over Union (IoU) metric that will be described further
in this chapter.
The CIoU loss function, defined in equation 2.19, takes into account not only the
intersection of the areas of the predicted and ground truth BB but also the Eu-
clidean distance d between their centers and the minimum diagonal distance C of
the rectangle that encloses both BBs.

LCIoU = 1− IoU +
d2

C2
+ αv (2.19)

In particular v describes the aspect ratio difference between the two BBs, and α is
a trade-off parameter, function of IoU, as defined respectively in equations 2.20 and
2.21.

v =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2 (2.20)

α =
v

(1− IoU) + v
(2.21)

Thanks to the definition of the CIoU loss given in equation 2.19, it is possible to
observe that the aspect ratio factor is less significant in the case of no overlap and
more important in the case of a greater overlap.

2.3 Neural Networks learning theory 21

2.3.3 Optimization algorithm

Depending on the situation, there are several techniques to perform Gradient De-
scent, ranging from the most general one, described in equation 2.6, to more ad-
vanced strategies such as the Adaptive Moment Estimation (Adam) and Stochastic
Gradient Descent with momentum (SGDM) optimization algorithms [69].
ADAM is an adaptive learning rate algorithm designed to improve training speed
and achieve faster convergence. In the standard gradient descent algorithm, the
learning rate α is fixed. Typically, α starts with a higher value, and then it is man-
ually adjusted in steps or according to a learning schedule. A lower learning rate at
the onset would lead to very slow convergence, while a very high rate at the start
might miss the minimum.
The Adam optimizer instead is able to adapt the learning rate for each parameter
that needs to be optimized [26]. To do so, momentum is introduced to speed up
the training by accelerating gradients in the right directions, adding a fraction of
the previous gradient to the current one. For example, let’s say a gradient has been
consistently pointing in the same direction. The momentum term, proportional to
the previous gradients, will accumulate and accelerate the optimization in that di-
rection. So, being θ the model parameters, the gradient of the loss function at the
t-th iteration is obtained using equation 2.22.

gt = ∇θL(θt) (2.22)

The moments, computed by ADAM, are the first order mt and second order vt mo-
mentum, which represent respectively the mean of gradients and the the uncentered
variance of gradient, are defined by equation 2.23.

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

(2.23)

It is now necessary to introduce the correction to the moments, as described in
equation 2.24, due to the fact that they have been initialized at zero. As a result,
their values may differ significantly from the true ones, being biased towards zero.

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.24)

Finally, the last step is the update of the model parameters, as shown in equation
2.25.

θt+1 = θt − α
m̂t√
v̂t + ϵ

(2.25)

Where β1 and β2 are hyper-parameters that control the exponential decay of the
moments and ϵ is term of numerical stability.
Considering now the definition of the gradient of the cost function gt given in equa-
tion 2.22, the update of the parameters performed by SGD at each t step is described
by equation 2.26.

θt+1 = θt − αgt (2.26)

2.3 Neural Networks learning theory 22

A variation of SGD is the SGDM, where the momentum is introduced to speed up
learning and avoid wide oscillations during the training process. The concept behind
the SGDM algorithm is that, during the update, not only the gradient of the current
step is used, but also a moving average of the gradient from the previous steps. It
is then possible to define the momentum mt as shown in equation 2.24, from which
the update rule, described in equation 2.27, is derived.

θt+1 = θt − αmt (2.27)

In conclusion, SGDM can achieve more accurate minima in the loss function at the
cost of longer training. This means that ADAM converges much faster to a local
minimum, often oscillating around it, at the cost of lower precision. Furthermore,
the choice of hyperparameters in ADAM is less critical, even though their number
is higher, compared to SGD and SGDM, where the choice of α is crucial.

2.3.4 Training limitations

A training session is defined as successful if the model correctly fits the test inputs.
If this is not the case, the model may suffer from underfitting or overfitting prob-
lems.
A model experiences overfitting if it is unable to generalize well from the training
data to unseen data. As a result, the model performs consummately on the training
set while fitting ineffectively on the testing set. This happens because an over-fitted
model experiences issues adapting to bits of the data in the testing set, which might
be unique about those in the training set.
This phenomenon may be correlated with the training dataset used. A dataset that
is too small or noisy may lead the model to learn the noise component as well, caus-
ing it to look for it in the test data. Another factor that can lead to overfitting is
the model’s hypercomplexity.
There are different techniques to prevent overfitting problems, such as early stop-
ping, network reduction, dataset expansion, and regularization. During regulariza-
tion, a penalty is added to the complexity of the model, reducing the magnitude of
the weights [48].
Underfitting, on the other hand, as its name suggests, is the opposite problem. It
describes a model that does not capture the underlying relationship in the dataset
on which it is trained. As a result, it will neither perform well on the training set
nor generalize well to unseen data
Some solutions include increasing the model complexity, reducing regularization,
and adding features to the training data.
In figure 2.8, the typical trends of training and validation losses are shown for over-
fitted models 2.8a and underfitted models 2.8c, respectively.

2.3.5 Accuracy metrics

To assess the performance of a DL model, it is necessary to define some measurable
and comparable quantities called metrics.
The Frames Per Second FPS metric is of particular importance in all those systems

2.3 Neural Networks learning theory 23

(a) Overfitting (b) Correct fitting (c) Underfitting

Figure 2.8: Examples of Overfitting and Underfitting

that have to operate in real-time. It is a measure of the model’s speed and efficiency,
indicating how quickly it can handle incoming images and generate object detection
results.
The most common object detection metric is the Intersection over Union (IoU).
Exploiting the bounding box coordinates, the IoU evaluates the ratio of the area
of intersection to the area of the union between the predicted and ground truth
bounding boxes (figure 2.9).

Figure 2.9: Visualization of the IoU formula [16]

Another common measure of accuracy is the Average Precision (AP) [45]. To provide
the correct definition of AP, it is necessary to introduce the following concepts. In the
context of object detection, a true positive (TP) case occurs when there is a correct
detection of a ground-truth BB. A false positive (FP) is an incorrect detection of
a nonexistent object or a misplaced detection of an existing object. Finally, a false
negative (FN) is an undetected ground-truth BB.
By comparing the IoU with a given threshold t, it is possible to asses if a detection
is correct, IoU ≥ t or not, IoU < t. The precision (P) and recall (R) can be defined
as in equation 2.28.

P =
TP

TP + FP

R =
TP

TP + FN

(2.28)

2.4 Inference speed optimization techniques 24

Precision is the ability of a model to identify only relevant objects, representing the
percentage of correct positive predictions. Recall, on the other hand, is the ability
of a model to find all relevant cases, i.e., all the ground-truth BB. R represents the
percentage of correct positive predictions among all given ground truths. The AP
is then the area under the precision-recall curve, as defined in equation 2.29.

AP =

∫ 1

r=0

p(r)dr (2.29)

Finally, equation 2.30 describes the mean average precision (mAP), which measure
the accuracy of object detectors over all classes in a specific database.

mAP =
1

k

k∑
i

APi (2.30)

In particular, mAP@50 is the mean of AP values calculated with an IoU threshold t
of 0.5 and mAP@50-95 the mean of AP values computed over IoU thresholds ranging
from 0.50 to 0.95 in steps of 0.05, as defined in equation 2.31:

mAP@50− 95 =
1

N

0.95∑
t=0.50

APt (2.31)

where APt is the Average Precision computed at IoU threshold t.

2.4 Inference speed optimization techniques

The inference speed in DL refers to the time it takes for a trained model to make
predictions, such as regressions or classifications, on new data.
Reducing inference time is a critical requirement especially for real-time applica-
tions. This task becomes even more important in space applications, such as image
recognition for debris avoidance or collection, where onboard power is limited. Faster
inference, in fact, reduces the energy consumption required for computation.
The following sections present various techniques and solutions designed to reduce
the inference time of a CNN.

2.4.1 GPU acceleration

A first solution to improve inference speed is acceleration through a graphics pro-
cessing unit (GPU). Unlike the central processing unit (CPU), which acts as the
”brain” of a computer, optimized for executing complex instructions sequentially
while managing general system operations, the GPU is specialized for parallel com-
putations.
In general, while the CPU handles more high-level tasks and control operations, the
GPU excels at specific tasks that require high computational power. This is due to a
higher number of cores, which, even though simpler than CPU cores, allow for mas-
sive parallelism. In addition, the GPU has access to dedicated memory (VRAM),

2.4 Inference speed optimization techniques 25

which enables faster computation. These cores work together by distributing pro-
cessing tasks across many units simultaneously, significantly improving performance
[18].
In the context of ML, where each inference involves a large number of parame-
ters, GPU acceleration can significantly reduce inference time. Technologies such as
Compute Unified Device Architecture (CUDA), CUDA Deep Neural Network library
(cuDNN) and Tensor Runtime (TensorRT) further optimize inference performance
by exploiting the GPU architecture.
However, this computational speed comes at the cost of high power consumption.
Additionally, for very small models, the data transfer latency between the main
RAM and VRAM can sometimes negate the speed benefits.
This technology is, of course, also leveraged during the training process, where even
clusters of GPUs are used to process batches of data simultaneously, further speeding
up the entire process.

2.4.2 Parallelization

The parallelization technique exploits multiple processing units such as GPUs or
multi-core CPU to distribute the computational workload. Through out this process
a lower inference time is achieved, guaranteeing a reduced latency and the ability
to handle models that could exceed the memory of a single device [68]. The most
common methods for performing inference parallelism are as follow:

� Data Parallelism: during data parallelism the input data is split into mini-
batches which are distributed across different devices working in parallel (figure
2.10a). When the output is computed it is necessary to perform an aggregation
of the results. This method mainly benefits the training process, where large
amounts of data are required. Here the synchronization is performed at the end
of each batch processing to gather the gradients and update the model weights.
It can be useful during inference if more batches of input data are involved,
this does not strictly imply a faster inference but allows for a throughput
improvement.

� Model Parallelism: The model parallelism method consists in splitting the
model and allocating different parts of it across multiple GPUs. During this
process, the entire input dataset is simultaneously stored on each device.
This partitioning can be done in two ways. The first consists in horizontally
partitioning the model, meaning that neurons from different layer are dis-
tributed across multiple GPUs. This approach is illustrated in figure 2.10b.
The second method divides the model layer-wise, as shown in figure 2.10c,
where entire layers are assigned to individual GPUs, and different GPUs han-
dle different layers.

� Pipeline Parallelism: In pipeline parallelism, different stages of the process
are carried out in different devices, but concurrently. For example, different
layers of the ML model can be placed in different devices, forming a pipeline
[43].

2.4 Inference speed optimization techniques 26

(a) Data parallelism (b) Tensor parallelism (c) Model layer-wise division

Figure 2.10: Principal inference parallelization methods[68]

2.4.3 Pruning

Model pruning is a technique used to remove unimportant parameters from NNs,
enhancing efficiency without significantly compromising performance. It balances
model accuracy with size reduction, making it ideal for deployment in constrained
environments or real-time applications.
NN pruning has proven to be an effective method for reducing memory usage and
computational time during inference while maintaining comparable, or even superior
performance, to the original DNNs. Pruning can be applied both during training
and in the post-training phase, depending on the available computational power and
the complexity of the operations [20].
There are two main methods to operate pruning on a NN: unstructured and struc-
tured pruning.
Unstructured pruning involves zeroing out individual weights in the weight matrix
if they fall below a defined threshold, which can be determined based on the magni-
tude or gradient. Since all calculations are performed before pruning, this method
provides minimal latency improvement. Essentially, it removes individual connec-
tions within the network.
Structured pruning, on the other hand, removes entire structured groups of weights,
such as filters, kernels, or channels. This approach significantly reduces the number
of computations required during the forward pass, leading to improved inference
speed.
A graphical explanation of the different operations carried out with these two meth-
ods is given in figure 2.11.

2.4.4 Quantization

Quantization is a procedure that reduces the precision used to represent NN param-
eters, usually from n bits to m bits, where n > m [65].
The standard format for training CNNs is usually 32-bit floating-point represen-
tation (fp32). For this reason, one of the most common quantization processes is
the conversion of CNNs to a 16-bit floating-point (fp16) or an 8-bit integer (int8)
representation.
The beneficial effect of quantization in speeding up inferences derives from the fact
that integer arithmetic is less complex than floating-point arithmetic. With fewer
bits to compute and an efficient numerical representation, executing an 8-bit integer
NN significantly lowers latency, energy consumption, and resource utilization, albeit
at the cost of lower inference accuracy.

2.4 Inference speed optimization techniques 27

Figure 2.11: Pruning methods. a) Unstructured pruning, b) Structured pruning[64]

The mapping from real numbers r to quantized integers q is described in equation
2.32 [21].

q = round
(r

S
+ Z

)
r = S(q − Z)

(2.32)

where S and Z are scale and zero point quantization parameters. In the case of
floating-point distributions, S and Z can be calculated based on the distribution of
the floating-point values, as shown in equation 2.33.

S =
rmax − rmin

qmax − qmin

Z = round
(
qmax −

rmax

S

) (2.33)

If the quantization scheme is symmetric, the quantization is centered around zero,
which is achieved by setting Z to zero. On the other hand, in the case of asymmetric
quantization, the scale and shift values are adjusted to better match the distribution
of the data. This approach allows for a more efficient use of the available bit-width
and helps reduce quantization error, though it may come with an increase in com-
putational complexity.
Model quantization techniques can be broadly classified in two categories.
The Post-Training Quantization (PTQ) is a quantization operation performed on
a pre-trained floating-point model. Before the quantization process begins, a layer
fusion operation is carried out for convolution, batch normalization, and activation
functions to reduce the number of potential sources of quantization errors.
Unlike weights, quantizing activations can be challenging because their distribution
is unknown. For this reason, a calibration dataset is introduced to collect the dy-
namic ranges of the weights and biases in the convolutional and fully connected
layers of the network, as well as the dynamic ranges of the activations in all layers

2.4 Inference speed optimization techniques 28

of the network. The selected data can be unlabeled, provided it is representative
of the actual distribution expected during inference operations. There is no fixed
recommended size for the calibration dataset; the choice depends on the specific
case. Research [21] shows that a calibration dataset consisting of a few hundred to
a thousand shuffled images can generalize the classification accuracy of a network
trained on the ImageNet dataset, which contains approximately one million images.
The second category is Quantization Aware Training (QAT). As previously dis-
cussed, quantization may shift the model away from its optimal convergence point,
leading to reduced inference accuracy. To counteract this phenomenon, QAT at-
tempts to emulate quantized inference during training, while the actual training
still occurs in floating point.
Quantization is modeled during training by inserting fake quantization nodes for
both weights and activations. Backpropagation is performed in floating point, as
accumulating gradients in quantized precision can result in diminishing gradients or
high errors, especially in low-precision scenarios. In fact, the weights adapt to the
loss of precision caused by quantization.
This process can be computationally expensive, as it requires retraining the model
for multiple epochs. Additionally, it may be sensitive to training hyperparameters,
including S and Z.

Chapter 3

Tools and Methodology

This chapter is divided into two main sections. The ’Tools’ section presents the
Python libraries, frameworks, and inference engines used to develop a real-time,
vision-based object detection system that operates on the dataset presented herein.
Finally, a technical description of the Jetson Orin Nano embedded hardware em-
ployed to test the model is given.
The second section, ’Methodology’, describes the methodologies adopted, starting
from image processing and data augmentation, and arriving at model training, test-
ing, model format conversion, and quantization.

3.1 Tools

3.1.1 Dataset

In ML, the term dataset refers to a collection of data used to train and test algo-
rithms and models. In this thesis, the dataset used is the PosE Estimation Dataset
+ (SPEED+), developed by Stanford University and utilized in the second Interna-
tional Satellite Pose Estimation Challenge, co-hosted by SLAB and the Advanced
Concepts Team of the European Space Agency. This dataset is designed to evaluate
and compare the robustness of space-borne ML models trained on synthetic images
[46].
The dataset is composed of images of Tango, an advanced and highly maneuverable
spacecraft part of the PRISMA mission. This mission serves as a technology demon-
stration for the in-flight validation of sensor technologies and guidance/navigation
strategies for spacecraft formation flying and rendezvous [17].
Acquiring a large-scale labeled dataset of images of an intended target in a space
environment is complex due to the limited memory and power onboard a spacecraft,
as well as the difficulty of transmitting large volumes of data to Earth. For this
reason, the majority of datasets rely on synthetic images, which are relatively less
challenging to produce. However, these synthetic images often fail to fully replicate
the visual features and illumination variability inherent in real spaceborne images.
The novelty of SPEED+ lies in the fact that, in addition to 59,960 synthetic images,
it also includes 9,531 Hardware-In-The-Loop (HIL) images, represented in figure 3.1.
These HIL images are captured in a ground-based simulated space environment to

29

3.1 Tools 30

better approximate real-world scenarios.
In particular, the HIL images are divided into lightbox and sunlamp pictures. The
following experimental setup is used to generate them. A lightweight, reduced-scale
mockup of Tango is positioned with different attitudes and held by a robotic arm,
while being exposed to varying lighting conditions. Meanwhile, another robotic arm,
equipped with a camera, moves along a ceiling-mounted linear rail across the room
to capture images from different perspectives.
The lightbox setup is designed and calibrated to provide a uniform maximum radi-
ance of 14 W/m²·sr, corresponding to the mean radiance from Earth for an albedo
coefficient of 0.3 and a solar irradiance of 1366 W/m². The sunlamp setup, on the
other hand, simulates direct sunlight exposure with a collimated beam at a solar
constant of 1.0 (nominal 1357 W/m²) and a spectral response close to 6000 K.
The HIL images are intended for the final evaluation of the ML algorithm with re-
spect to domain gaps, enabling a more accurate assessment of its robustness under
real-world conditions

(a) Synthetic (b) Sunlamp (c) Lightbox

Figure 3.1: SPEED+ synthetic and HIL images [46]

The synthetic images used for training and validation are stored in the same folder
and named in the format imgxxxxxx.jpg, where ’x’ represents an integer. The
labels associated with each image are provided in two separate JSON files, one for
training and one for validation, containing the quaternions and translations. The
division between training and validation sets is made randomly. For example, the
training labels do not include all the images but only a subset of the synthetic
dataset, selected randomly. Therefore, it is necessary to link each image with its
corresponding label, using the proper label and the image names.
Table 3.1 presents the specifics of the camera used to collect the pictures, which are
needed during the keypoints extraction process.

3.1.2 Albumentations

When dealing with CV and ML algorithms, data augmentation is an essential tech-
nique that enhances the robustness of a model by increasing the volume of available
training data.
Additionally, each model requires input data in a specific format, making pre-
processing of the original images necessary.
It is possible to perform data augmentation and pre-processing using the Python li-
brary Albumentations [19]. This tool is particularly well-suited for data preparation
in DL contexts, as it allows for the automatic application of the same transfor-

3.1 Tools 31

Table 3.1: Camera Parameters [46]

Parameter Description Value

Nu Number of horizontal pixels 1920

Nv Number of vertical pixels 1200

fx Horizontal focal length [m] 0.017513

fy Vertical focal length [m] 0.017513

px Horizontal pixel length [µm] 5.86

py Vertical pixel length [µm] 5.86

[r1, r2, r3] Radial distortion parameters [-0.2238, 0.5141, -0.1312]

[t1, t2] Tangential distortion parameters (×10−4) [-6.650, -2.140]

mations to both input images and their corresponding labels, such as keypoints,
bounding boxes, and masks.
In image processing, there are mainly two types of transformations that can be
applied. Spatial-level transformations modify the spatial arrangement of pixels, as
illustrated in figure 3.2. Meanwhile, pixel level transformations act on the intensity,
color, or position of pixels in an image without affecting its labels, as shown in figure
3.3.

Figure 3.2: Spatial transformations

Figure 3.3: Pixel transformations

3.1 Tools 32

3.1.3 PyTorch

PyTorch is the most popular open-source DL framework among researchers and
major companies like Tesla and Microsoft. As of January 31, 2025, more than 58%
of deep learning research papers utilize PyTorch as shown in figure 3.4 [61].

Figure 3.4: Paper implementations grouped by framework [61]

There are multiple reasons behind the widespread adoption of PyTorch in experi-
mentation and prototyping. First of all its accessibility: being written in Python,
it is approachable by the majority of ML practitioners. Another key factor is that
it allows a straightforward access to layers and weights, making debugging more
intuitive. Additionally, PyTorch employs reverse-mode auto-differentiation, which
enables computation graphs to be modified on the fly [49].
At the core of PyTorch are tensors, a fundamental data type similar to multidimen-
sional arrays, used to store and manipulate model inputs, outputs, and parameters.
While similar to NumPy’s array, PyTorch tensors have the additional capability of
running on GPUs, significantly accelerating computations. This is possible thanks
to native integration with CUDA, a programming model and computing toolkit de-
veloped by NVIDIA. CUDA, in particular, enables compute-intensive operations to
run efficiently by parallelizing tasks across GPU cores. PyTorch provides built-in
CUDA support via the torch.cuda module, allowing tensors and operations to be
easily transferred between CPU and GPU memory. However, it is essential for the
correct execution of operations that the versions of PyTorch and CUDA are com-
patible.
PyTorch is also highly efficient for complex operations such as quantization and par-
allelization, which, as described in the previous chapter, enhance inference speed.
Finally, another important feature is the export function, which allows exporting
a PyTorch model into different formats, such as TorchScript, ideal for inference in
production environments, and Open Neural Network Exchange (ONNX).
ONNX is an open standard designed to represent machine learning models, allowing
them to be trained in one framework (such as PyTorch or TensorFlow) and then ex-
ported to run in another environment optimized for different hardware architectures.
This enables better access to hardware-specific optimizations, ultimately improving
inference speed and efficiency.

3.1 Tools 33

3.1.4 Inference engines

An Expert System (ES) is a system that, through logical rules, extracts knowledge
from data captured to solve problems that ordinarily require human expertise [12].
An inference engine is the brain of an ES. Its main function is to draw inferences
from data using a set of rules, applying them to a knowledge base to make decisions.
It interprets data, derives new insights, and supports decision-making or predictions.
ONNX Runtime, developed by Microsoft, is a cross-platform DL model accelerator
and a versatile inference engine often used in model deployments operations. Its
flexible interface allows integration with hardware-specific libraries, often improving
performance with respect to the original framework [25].
ONNX Runtime, during an inference process, first applies a series of graph optimiza-
tions to the model graph and subsequently partitions the optimized main graph into
subgraphs based on available hardware-specific accelerators.
Optimized computation kernels in the core ONNX Runtime provide performance
improvements, and assigned subgraphs benefit from further acceleration by each Ex-
ecution Provider (EP). ONNX Runtime abstracts away the complexities of hardware
libraries, which are crucial for optimizing DNN execution across diverse platforms
like CPUs and GPUs. It achieves this by enabling EPs to allocate specific nodes or
subgraphs for execution using optimized libraries on supported hardware platforms.
Major providers include CUDA, TensorRT, and others.
NVIDIA TensorRT is an ecosystem of APIs for high-performance DL inference.
TensorRT includes an inference runtime and model optimizations that deliver low
latency and high throughput for production applications [24]. Built on the CUDA
parallel programming model, it optimizes inference using techniques such as quan-
tization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs,
from edge devices to PCs to data centers. It powers key NVIDIA solutions such
JetPack.
Another key feature of ONNX Runtime is the ability to implement both PQT and
QAT model quantization.
In particular, for PQT quantization, both dynamic and static quantization are avail-
able.
Dynamic quantization computes the quantization parameters, such as scale S and
zero point Z, for activations dynamically. This means that those parameters are
specific to each forward pass, guaranteeing higher accuracy.
On the other hand, static quantization first runs the model using a set of inputs
called calibration data. During these runs, the quantization parameters for each
activation are computed. These quantization parameters are written as constants
into the quantized model and used for all inputs. Having all the activations with
the same S and Z during each forward pass will reduce the computational cost at
the expense of reduced accuracy.
It is possible to quantize the model in two different representations. In the Operator-
oriented (QOperator) representation, all the quantized operators have their own
ONNX definitions, such as QLinearConv or MatMulInteger. The Tensor-oriented
(QDQ) representation inserts operations like DeQuantize and Quantize layers be-
tween the original operators to simulate the process of quantizing and then restoring
the tensor values. This ensures that the tensor’s data is efficiently processed while

3.1 Tools 34

maintaining its structure. An example of the different representations is given in
figure 3.8.

3.1.5 Jetson Orin Nano

NVIDIA Jetson is a series of embedded computing boards designed to accelerate
ML applications. These compact and powerful devices, built around NVIDIA’s
GPU architecture, can run complex AI algorithms and DL models directly on the
device. For this reason, Jetson boards have found applications in many different
fields, including robotics, autonomous vehicles, and industrial automation, where
AI inference needs to be performed locally with low latency and high efficiency. Ad-
ditionally, these boards are based on the ARM architecture CPU and run on lower
power compared to traditional GPU computing devices [35].
NVIDIA Jetson is powered by the Jetpack software development kit (SDK). This
SDK includes the Linux for Tegra (L4T) operating system and the CUDA Accel-
erated AI stack, with a complete set of libraries for GPU computing acceleration,
multimedia, graphics, and computer vision. In addition, Jetpack provides a collec-
tion of ready-to-use services that accelerate AI application development on Jetson
[23].
Jetson Orin Nano, in particular, offers a promising combination of a multi-core ARM
A78AE CPU (up to 6 cores with a frequency of 1.5 GHz) and an NVIDIA GPU
(8 SMs, frequency up to 0.625 GHz), providing sufficient computing power for the
implementation of AI algorithms and the processing of complex sensor data. Con-
suming only 15W of maximum power, Orin Nano is an energy-efficient alternative
for power-constrained applications. More specific technical details are presented in
table 3.2.
As previously stated, modern space missions require high payload processing perfor-
mance. A growing trend is the direct extraction of useful data on-board, which must
be guaranteed with minimal latency. Unfortunately, current families of processors
often fall short of meeting these evolving performance requirements. For this reason,
Jetson Orin Nano, with its specific features, is a good candidate to meet new and
increasingly demanding requirements [51]. Jetson Orin Nano results well suited for
space applications, also for its high radiation tolerance. The study carried out in
[51] demonstrates that this device, along with Jetson Orin NX and Xavier NX, can
survive total ionizing doses (TID) of at least 20 krad. This is a significant value for
missions in LEO. Although the study highlights a performance degradation (CPU
clock frequency reduction) at higher doses of 50 krad, the demonstrated resilience
makes it a promising candidate for space applications.
It is also important to consider the involvement of external components to guar-
antee the reliability of this device. For example, specialized porting boards that
shield against radiation can mitigate the risk of premature failures due to radiation
exposure [51].
The Jetson Orin Nano used in this thesis is powered by Jetpack 6.2.

3.1 Tools 35

Figure 3.5: Jetson Orin Nano [35]

3.1.6 Ultralytics

Ultralytics is an open-source Python library developed by the American software
company with the same name, which specialises in CV and DL. Ultralytics allows,
through the YOLO family of algorithms, to perform classification, object detec-
tion, and image segmentation with a straightforward procedure [62]. The library
supports a wide range of operations, including training and validation on custom
datasets, testing and model deployment, as well as data augmentation and model
quantization. Another interesting feature is the exporting capability in ONNX and
TensorRT format, allowing for better inference performance.
It is important, in particular during the training and validation processes, that the
labels are in YOLO format, described by equation 3.1:

[< class− id >,< xcenter >,< ycenter >,< width >,< height >] (3.1)

where class− id is the class label of the object, represented by a number; xcenter and
ycenter are the x and y coordinates of the object’s center, normalized by the image
width and height, respectively; and width and height are the width and height of the
bounding box, normalized in the same way as the bounding box center coordinates.
Each image in the dataset must have a corresponding .txt file, named as the image,
containing one row per object with the BB specific. The dataset has to be organized
into three main folders: ’train’, ’val’, and ’test’, each containing ’images’ and ’labels’
subfolders. A .yaml file specifying the paths to these folders is required during
training.

3.2 Methodology 36

Table 3.2: Main Specifications of NVIDIA Jetson Orin Nano [35]

Feature Details

GPU NVIDIA Ampere, 1024 CUDA cores, 32 Tensor Cores

CPU 6-core ARM Cortex-A78AE

RAM 8 GB LPDDR5

Storage microSD (expandable via M.2 NVMe SSD)

AI Performance Up to 40 TOPS (Tera Operations Per Second)

Power Consumption 7W / 15W (configurable)

Interfaces 1x GbE, 3x USB 3.2, 1x USB 2.0, GPIO, I2C, I2S, SPI, UART

Video Encode/Decode 4K60, H.264/H.265 support

Operating System Ubuntu-based NVIDIA JetPack SDK

Size 100 x 79 x 21 [mm]

During inference, Ultralytics YOLO provides various metrics, such as precision,
recall, mAP, and inference time, to evaluate model performance.

3.2 Methodology

3.2.1 Data collection

The first step done in this thesis project was the selection and collection of data.
In particular, the training dataset is composed of 10.000 images taken from the
synthetic images corresponding to the first 10.000 labels in the training JSON file.
This size was considered sufficient, considering the trade-off between training time,
variety of subjects and achievable accuracy. The main goal of this thesis is, in fact,
optimizing inference speed, rather than achieving the best detection accuracy, which
could be obtained by using the entire dataset. Nevertheless, this number proved to
be large enough to achieve reasonable accuracy.
As already described, the labels in the training JSON file correspond to a subset
of all the synthetic images. For this reason, it was necessary to match the labels
with the images that have the same name. Subsequently the same operation was
conducted for the first thousand labels of the validation json file. Regarding the test
set, of 1000 synthetic images, it was sufficient to select the first images since the
order of the image names was the same in the label JSON file and in the test image
folder. Additionally, the same operation was applied to the HIL images to compare
the robustness of the developed algorithm with that of YOLO.
The second step was the extraction of the pixel coordinates of the keypoints of the
Tango S/C. These were obtained using the 3D coordinates of 11 vertices of the
Tango spacecraft, along with the camera characteristics (shown in table 3.1), the
quaternions q and the vector translations t. The procedure was performed thanks
to a given script. The steps followed in the procedure are as follows.

3.2 Methodology 37

From the vector of quaternions q it is possible to define the rotational matrix R as
described in equation 3.2.

R =

2q20 − 1 + 2q21 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 2q20 − 1 + 2q22 2q2q3 + 2q0q1
2q1q3 + 2q0q2 2q2q3 − 2q0q1 2q20 − 1 + 2q23

 (3.2)

Thanks to R it is then possible to transform, the 11 points, from the satellite to
the camera reference system with equation 3.3.

Xcamera

Ycamera

Zcamera

1

 =

[
R t
0 1

]
Xsatellite

Ysatellite

Zsatellite

1

 (3.3)

The next step was to project the 3D points into the 2D image plane, by applying
the perspective projection from equation 3.4.

x′ =
Xcamera

Zcamera

y′ =
Ycamera

Zcamera

(3.4)

When processing a digital image, it is necessary to introduce a correction for distor-
tions that can cause a degradation in the quality of the final image. In particular, in
this work, corrections were introduced for both radial and tangential distortion. Ra-
dial distortion causes straight lines to bend as general curves, and points are moved
in the radial direction from their correct position. Tangential distortion arises from
positional defects, i.e., eccentricity of the optical axis or the lack of parallelism of in-
dividual lenses with respect to each other, but also with respect to the photographic
sensor of the camera [28].
Here a polynomial distortion correction was adopted, such as the one described in
equation 3.5.

d2 = x′2 + y′2

cdist = 1 + r1d
2 + r2d

4 + r3d
6

x′′ = x′cdist + 2t1x
′y′ + t2(d

2 + 2x′2)

y′′ = y′cdist + t1(d
2 + 2y′2) + 2t2x

′y′

(3.5)

Where the ri coefficients, along with the squared distance d from the center of the
image, are used to define the scale factor cdist for radial corrections, while the ti
coefficients account for the tangential distortion correction. The values considered
are the ones described in table 3.1.
Finally, the 2D coordinates in pixel values of the key points are obtained through
matrix multiplication with the camera matrix and the corrected coordinates, as
shown in equation 3.6. uv

1

 =

fx 0 cx
0 fy cy
0 0 1

x′

y′

1

 (3.6)

3.2 Methodology 38

Figure 3.6: Projection of the 11 3D keypoints on a 2D image

The values in the camera matrix represent fx and fy, the focal lengths in pixel units,
while cx and cy are the pixel coordinates of the image center, i.e., the point where
the Zcamera axis intersects with the image plane.
Each keypoint’s coordinate is stored in the typical (x, y) format and allocated in a
common array.
An example of the results of the projection of the keypoints onto an image is shown
in figure 3.6.
At this point, in order to build a bounding box, a Python function was implemented
to extract the coordinates of the top-left and bottom-right corners from the 11
keypoints. The function performs the operations described in equation 3.7, which
give the final label in Pascal VOC format [xmin, ymin, xmax, ymax].

xmin = min(xkpts)

ymin = min(xkpts)

xmax = max(xkpts)

ymax = max(ykpts)

(3.7)

A second function was implemented to transform the label from Pascal VOC format
to YOLO format, applying the operations described in equation 3.8, where W and
H are the width and height of the image.

xcenter =
xmin + xmax

2W

ycenter =
ymin + ymax

2H

widht =
xmax − xmin

W

height =
ymax − ymin

H

(3.8)

Additionally a class tag, 0, was added in order to define the class ”Tango”.

3.2 Methodology 39

3.2.2 Image transformations

The EfficientNet-B0 requires normalized input tensors. Furthermore, to increase
robustness and avoid overfitting problems, as already mentioned above, data aug-
mentation is recommended during the training process. For these reasons, two
different image transformations, one for training and one for validation and testing,
are implemented using the Albumentations library. The training transformation is
described in table 3.3. Regarding the validation transformations, only the Resize,
Normalize and ToTensor operations are considered.

Table 3.3: Training Transformations

Transformation Probability Description

Resize - Resizes the image to 224x224 pixels.

Rotate 0.8 Rotates the image randomly up to 15 degrees with a
constant border mode.

RandomBrightnessContrast 0.2 Adjusts brightness and contrast randomly with a
limit of 0.5.

OneOf (Set 1) 1.0 Applies one of the following transformations with
equal probability:

- GaussNoise 0.8 Adds Gaussian noise to the image.

- CLAHE 0.8 Enhances local contrast using Contrast Limited
Adaptive Histogram Equalization.

- ImageCompression 0.8 Simulates image compression artifacts.

- RandomGamma 0.8 Randomly adjusts the gamma of the image.

- Posterize 0.8 Reduces the number of colors in the image.

- Blur 0.8 Applies a blurring effect to the image.

OneOf (Set 2) 1.0 Reapplies one of the transformations from the previ-
ous set with the same probabilities.

Affine 0.2 Applies affine transformations with a translation of
10%, scaling between 0.9 and 1.1, and no rotation,
using a constant border mode.

Normalize - Normalizes the image using mean = [0.382, 0.382,
0.382] and std = [0.382, 0.382, 0.382], with max pixel
value of 255.

ToTensorV2 - Converts the image to a tensor format.

An example of images that have undergone the training transformation is presented
in figure 3.7.
The YOLOv8n from Ultralytics automatically resizes the image to 640x640 pixels if
the image is square. In the case that the image is larger than the required dimension
and not squared, Ultralytics will resize the larger dimension to 640 and then scale the
other one maintaining a constant aspect ratio. The remaining space is then padded
to achieve a square 640x640 input. Being the images from SPEED+ 1920x1200
pixels the input of the YOLO model are resized at first to 640x416 pixels and then
padded to 640x640 pixels.
Furthermore, during the training process, data augmentation is applied by default,
using the transformations shown in the table 3.4.

3.2 Methodology 40

Figure 3.7: Image transformation for the training process

3.2.3 PyTorch training pipeline

In the following, the procedures carried out in PyTorch to ensure the proper training
of the modified EfficientNet-B0 model are described.
The first step was building a custom Dataset class to store the samples and their
corresponding labels. This class must have three main functions: init , len
and getitem . The task of the class dataset, here named BoundingBoxDataset,
is to initialize the directory with the images, annotations, and transforms, be able
to return the number of samples in the dataset, and, finally, load, transform, and
return a sample from the dataset at a given index.
Once the data are stored in BoundingBoxDataset, it is possible to access one sample
with its corresponding label at a time. For this reason, in order to access multiple
samples at a time, the dataset is passed through a DataLoader that loads the images
and labels in batches.
In particular, two Datasets and two DataLoaders were built, allowing the application
of two different transformations to the original data, depending on whether they
are meant for the training or validation process. Furthermore, for the training
DataLoader, the shuffle option is enabled to shuffle the data once a forward pass of
all the batches is completed.
As already stated above, the selected model is the EfficientNet-B0. However, since
this model is designed for image classification, it was necessary to modify its last
layer. This layer, in fact, is a fully connected layer, whose task is to take the feature
map generated by the previous convolutional layers and predict the class. To adapt
the model, this layer was replaced with a linear layer that takes 1280 input features
and produces 4 outputs, which correspond to the coordinates of the desired points.
Furthermore, two main functions for training, train one epoch, and for validation,
val one epoch, over one epoch were defined.
Considering the model being already on the GPU, train one epoch implements the
following procedure to allow the cost function to converge toward a minimum:

1. .to(device): Allocate image and label tensors on the GPU.

2. Forward pass : Make predictions with the model.

3.2 Methodology 41

Table 3.4: YOLO Training default data augmentation parameters [62]

Argument Type Default Description

hsv h float 0.015 Adjusts the hue of the image by a fraction of
the color wheel, introducing color variability.
Helps the model generalize across different
lighting conditions.

hsv s float 0.7 Alters the saturation of the image by a frac-
tion, affecting the intensity of colors. Useful
for simulating different environmental condi-
tions.

hsv v float 0.4 Modifies the value (brightness) of the image
by a fraction, helping the model perform well
under various lighting conditions.

translate float 0.1 Translates the image horizontally and verti-
cally by a fraction of the image size, aiding
in learning to detect partially visible objects.

scale float 0.5 Scales the image by a gain factor, simulating
objects at different distances from the cam-
era.

fliplr float 0.5 Flips the image left to right with the specified
probability, useful for learning symmetrical
objects and increasing dataset diversity.

mosaic float 1.0 Combines four training images into one, sim-
ulating different scene compositions and ob-
ject interactions. Highly effective for com-
plex scene understanding.

erasing float 0.4 Randomly erases a portion of the image dur-
ing classification training, encouraging the
model to focus on less obvious features for
recognition.

crop fraction float 1.0 Crops the classification image to a fraction
of its size to emphasize central features and
adapt to object scales, reducing background
distractions.

3. Calculate the loss : Evaluate the loss between the predictions and the ground
truth labels.

4. .zero grad(): This is the first step of backpropagation. To avoid accumulating
gradients from previous steps, set them to zero.

5. .backward(): Backpropagate the loss to compute the gradients of each model
parameter with respect to the loss.

6. .step(): Perform gradient descent, updating the weights through the optimizer
function using the newly computed gradients.

3.2 Methodology 42

For val one epoch, fewer steps are necessary since there is no backpropagation. Addi-
tionally, the model was set in .eval() mode. This operation, along with torch.no grad(),
turns off specific layers and parts of the model needed only during training, allowing
for faster and less computationally demanding execution. To conclude just point 1.,
2. and 3. are performed in this function.
Table 3.5 shows the selected hyperparameters for the training and validation loop.

Table 3.5: Training hyperparameters

HYPERPARAMETERS

EPOCHS 100

BATCH 16

Loss Function MSE

OPTIMIZER ADAM

Learning Rate 1e−3

Weight Decay 5e−4

3.2.4 PyTorch Inferences

To perform inference with PyTorch, the function test fn was implemented. Here,
the operations conducted are similar to those in val one epoch. The main difference
is that pre-processing is now performed without the use of a DataLoader, using the
pre process function, where the same transformations from the validation steps are
implemented. This is done to simulate a real-world scenario, where neither a Dataset
nor a DataLoader is present.
Additionally, the post process function was implemented to extract the IoU from
the predictions. Here, two main steps are carried out. In the first step, a conversion
of data is performed. The predictions are made for a 224x224 pixel image. For
this reason, the predictions are scaled back to the original dimensions of the image.
Then, the IoU is evaluated by comparing the scaled predictions with the ground
truth labels.
The IoU is evaluated using a dedicated function. The first step is to determine
the coordinates of the corners of the rectangle representing the intersection area,
using the formulas in equation 3.9. From where, it is straightforward to evaluate
the intersection area.

xintersection
min = max(xpred

min , x
gt
min)

yintersectionmin = max(ypredmin , y
gt
min)

xintersection
max = min(xpred

max, x
gt
max)

yintersectionmax = min(ypredmax, y
gt
max)

(3.9)

The union area is evaluated with equation 3.10.

Union Area = Areapred +Areagt − Areaoverlap (3.10)

3.2 Methodology 43

In case of no intersection, the IoU is set to zero, skipping the other steps to avoid
computational issues, such as division by zero. During these steps, different timers
were set to record the inference, pre-processing and post-processing times.

3.2.5 ONNX Runtime pipeline

Once the PyTorch model was trained, thanks to the torch.export function, it was
possible to export it in ONNX format. During the export, the parameters shown in
table 3.6 were set, with, in particular, the dynamic axes were enabled to allow the
model to accept more than one batch at a time as input.

Table 3.6: ONNX exportation settings

SETTINGS

input shape (1, 3, 224, 224)

opset version 11

input names [’input’]

output names [’output’]

dynamic axes {’input’: {0: ’batch size’}, ’output’: {0: ’batch size’}}
export parameters True

In order to perform inference with an ONNX model, it is necessary to start an
ONNX Runtime inference session, where the model path and the providers must be
specified. As with PyTorch inference, pre process and post process functions were
also used to perform inferences.
Here, in particular, the pre process function was adapted to handle batch sizes dif-
ferent from one, in order to test the variations in speed performance for increasing
batch sizes.
Finally, model quantization was carried out to achieve higher performance in terms
of inference speed and FPS.
In particular, for CNNs a static quantization is recommended. For this reason a
calibration dataset was defined. The Python class CalibrationDataSet, that imple-
ments the init , get next and rewind functions, was defined. This class loads the
calibration dataset, which is the entire testing dataset, and divides it into batches.
The images in the batch are transformed using the validation transform function.
Then, with get next, after a forward pass, the subsequent batch was transformed
and passed to the model. Finally, rewind returns the class to the beginning of the
batch sequence.
The first step to quantize the model was to pre-process it with a built-in function
quant pre proces, allowing the quantization process to be conducted efficiently. The
main pre-processing operations carried out are:

� Shape Inference: Determine the dimensions of all the tensors in the model.

3.2 Methodology 44

� Optimization: Removes inefficiencies in the model to make it faster. Such
operations include, for example, Operator Fusion, Dead Code Elimination
(i.e., eliminating parts of the model that are not in use), Constant Folding,
and Graph Simplification. These steps reorganize the model to reduce the
number of operations or the complexity of the data flow.

� Saving: Save the optimized model.

Once the preprocessing was completed, it was possible to proceed with the quanti-
zation and saving of the model, setting the symmetric activations option in order to
enable the use of the TensorRT provider.
Additionally, both QDQ and QOperator quantization representations were obtained,
since inference with TensorRT providers encounters problems with the QDQ repre-
sentation. An example of the final quantized model is shown in figure 3.8, where
the first layers of the model are displayed with both quantization representations

(a) QOQ representation (b) QOperator representation

Figure 3.8: EfficientNet-B0 QDQ and QOperator quantized model representation

3.2.6 Ultralytics pipeline

Training with Ultralytics doesn’t require any pre- or post-processing operations, as
these are autonomously handled by the library. Once the .yaml file with the paths

3.2 Methodology 45

to the training and validation folders is defined and provided to the model, along
with the batch size, training begins. In particular, the hyperparameters involved
are those shown in table 3.7. Most of the hyperparameters are left at their default
values, such as the combination of different loss functions.

Table 3.7: YOLOv8 Default Training Hyperparameters

HYPERPARAMETERS

EPOCHS 100

BATCH 16

Learning Rate 1e−2

Weight Decay 5e−4

Class Loss BCEWithLogitsLoss

Box Loss DFL + CIoU

Differentian Focal Loss DFL

OPTIMIZER SGD with Momentum

Regarding inferences, it was necessary to implement a post-processing function in
order to be able to evaluate the IoU. This will increase the post-process time. No
timers are required, since the inference, pre- and post-processing speed are intrinsi-
cally evaluated. This high degree of process management autonomy by the library,
on one hand, speeds up the process, but on the other hand, it does not allow for
much flexibility. In this way, for example, the post-processing time includes various
operations and not just the evaluation of the IoU. This makes it impossible to make
a direct comparison with the post-processing conducted with PyTorch.
With Ultralytics, it is possible to simply export the models in ONNX and .engine
format by specifying the specific format in the export command.
The inferences in this format are done in the same way as the PyTorch model, i.e.,
by simply giving the path of the image to the model. In order to do inference with
a batch of images, the variable dynamic has to be set to true.
The YOLO models from Ultralytics accept images in various formats, including
paths, numpy array, .jpg, and others. The choice of giving only the path was made
to allow the model to handle the pre-processing entirely, in order to compare the
time needed when compared to the pre-processing defined above.

Chapter 4

Results

This chapter first presents the results of training both the EfficientNet-B0 and
YOLOv8n models, comparing the obtained metrics where possible. Then, the in-
ference results of both models with Torch, ONNX and TensorRT formats and fp32,
fp16 and int8 precision on the Jetson Orin Nano are presented. Finally, related work
on real mission space debris classification algorithms and the use of Jetson for space
applications is discussed to validate the work done.

4.1 Training results

By leveraging the functions described in the previous chapter, the modified EfficientNet-
B0 model was trained and validated on the selected portion of SPEED+. In partic-
ular, the best weights were saved from the 89th epoch, where a minimum validation
RMSE of 4.94 was recorded. It should be noted that this epoch does not correspond
to the maximum validation mAP values. These occur at epoch 90, with an mAP@95
of 0.721 (table 4.1).

Table 4.1: Best EfficientNet-B0 Validation Loss and Accuracy

EPOCH RMSE mAP@50:95 mAP@50

Best Loss 89 4.940 0.673 1.00

Best Accuracy 90 5.161 0.721 1.00

Regarding the training of the YOLOv8n model, the highest mAP@95 value was
obtained at epoch 97, reaching 0.99407. The epochs corresponding to the minimum
for each loss and the best metrics are shown in table 4.2.
Figures 4.1 and 4.2 show the training and validation loss trends for both models.
From these, it is already possible to confirm that the training process was successful,
as the two loss curves do not diverge or reach a plateau at a high loss value, indicating
that neither overfitting nor underfitting occurred.
Figure 4.3 presents a comparison of mAP@50 and mAP@50:95 achieved during
validation for the two models. It is evident that the YOLOv8n model has superior

46

4.1 Training results 47

0 20 40 60 80 100

Epochs

0

20

40

60

80

100

120

R
M
S
E

Train and Validation Losses

Train losses

Validation losses

Figure 4.1: Training and Validation loss EfficientNet-B0

0 20 40 60 80 100

0.2

0.4

0.6

B
ox

lo
ss

0 20 40 60 80 100

0.5

1.0

C
la
ss

lo
ss

Train losses

Validation losses

0 20 40 60 80 100

Epochs

0.8

0.9

1.0

D
F
L

Figure 4.2: Training and Validation loss YOLOv8n

4.1 Training results 48

Table 4.2: Best YOLOv8n Validation Loss and Accuracy

EPOCH mAP@50:95 mAP@50 Box Loss Class Loss DFL

Best mAP@50:95 98 0.99407 0.995000 0.17571 0.09834 0.85640

Best Box Loss 99 0.99407 0.995000 0.17550 0.09769 0.85674

Best Class Loss 100 0.99406 0.995000 0.17550 0.09738 0.85703

Best DFL 66 0.99347 0.995000 0.19086 0.10929 0.84738

detection capability in terms of accuracy, achieving an mAP@50:95 that is 0.274
points higher than the EfficientNet-B0 model. However, for mAP@50, both models
exhibit a similar trend. Although YOLOv8n converges earlier, by the end of training,
both algorithms reach a mAP@50 of approximately 1.

0 25 50 75 100

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

m
A
P
@
0.
50

mAP@0.50

EfficentNet-B0

YOLOv8n

0 25 50 75 100

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

m
A
P
@
0.
50
:0
.9
5

mAP@0.50:0.95

Figure 4.3: Comparison of validation mAP between EfficientNet-B0 and YOLOv8n

4.2 Inferences results 49

4.2 Inferences results

4.2.1 Accuracy results

Once the training was completed, it was possible to perform inference and compare
the results obtained from the two models.
In particular, the algorithms were tested on both synthetic and HIL images to assess
their robustness against the domain gap. The results obtained in terms of accuracy
are listed in table 4.3.

Table 4.3: IoU results

EfficientNet-B0 YOLOv8n

Synthetic 0.849 0.946
Sun lamp 0.383 0.442
Light box 0.381 0.442

As expected, YOLOv8n performs overall better; nevertheless, the EfficientNet-B0
model achieves relatively high accuracy, especially on synthetic images.
A visual representation of the detection inference results is provided in figure 4.4,
where both ground truth and predicted BB are shown for both models.
Regarding the HIL images, both algorithms suffer significantly from the domain
gap. Nevertheless, although the EfficientNet-B0 IoU is lower, it experiences almost
the same percentage drop in accuracy, i.e., 55.09% for EfficientNet and 53.28% for
YOLO.
It is evident that further strategies need to be applied to mitigate this performance
drop and that data augmentation techniques alone are not sufficient.
Finally, a visual representation of the detection results for HIL images is presented
in figure 4.5. In particular, figure 4.4b shows the results for EfficientNet-B0, while
figure 4.5b presents the results for YOLOv8n.

4.2.2 Inference speed results

In order to assess the possibility of a true deployment of the detection algorithm,
inference times were evaluated on the Jetson Orin Nano platform.
Different model formats were studied to obtain the most performant one in terms
of inference time and FPS, without excessively compromising accuracy.
Table 4.4 presents the results obtained with EfficientNet-B0, while table 4.5 shows
the results obtained from the YOLO inferences.
In the following, a discussion and interpretation of the values shown in tables 4.4
and 4.5 are provided.
At first, it is immediately noticeable how the effect of GPU acceleration, tested only
on the EfficientNet-B0 PyTorch model with fp32 precision, guarantees more than a
51-times speedup compared to the CPU.
Considering the pre-processing times, the strategy implemented here with Albu-
mentations is slightly slower compared to the one implemented by Ultralytics, even

4.2 Inferences results 50

Table 4.4: EfficientNet-B0 Jetson Orin Nano inference results. The superscript
denotes the quantization representation adopted. Specifically, 1 stands for QDQ
and 2 stands for QOperator.

Format Precision Inference Speed (ms) FPS IoU Pre Speed (ms) Post Speed (ms) # Image

PyTorch CPU fp32 1841 0.543 0.845 27.11 0.110 1000

PyTorch GPU fp32 35.546 28.13 0.845 16.021 0.346 1000

ONNX CPU fp32 61.872 16.16 0.845 20.35 0.1302 1000

ONNX CUDA

fp32 21.081 47.43 0.849 16.59 0.1337 1000

fp16 17.520 57.07 0.849 14.33 0.119 1000

int8[1] 29.854 33.49 0.436 18.72 0.1242 1000

int8[2] 24.075 41.53 0.436 18.824 0.122 1000

TensorRT

fp32 10.774 92.81 0.845 17.13 0.1174 950

fp16 7.350 136.05 0.850 14.25 0.1061 950

int8[1] 11.151 86.88 1.71×10−6 16.435 0.148 950

int8[2] 28.031 35.67 0.436 17.866 0.125 950

TensorRT Batch fp32 4.365 229.09 0.850 17.95 0.1123 976

Table 4.5: YOLOv8n Jetson Orin Nano Inference Results

Format Precision Inference Speed (ms) FPS IoU Pre Speed (ms) Post Speed (ms) # Image

PyTorch fp32 26.684 37.47 0.9460 7.20 431.36 1000

ONNX CUDA
fp32 28.661 34.89 0.945 7.784 408.189 1000

fp16 33.84 29.55 0.945 8.50 456.19 1000

fp32 20.42 48.97 0.9453 9.710 499.30 1000

TensorRT fp16 11.647 85.85 0.945 8.634 432.71 1000

int8 7.74 129.19 0.886 7.028 343.18 1000

TensorRT Batch fp32 7.085 141.14 0.946 5.804 282.86 1000

though the pre-processing time is of the same order of magnitude in both cases.
An important observation is that the pre-processing time is almost invariant with
respect to the model format and precision. As expected, the post-processing time
is much higher in the YOLOv8n inference, as a lot more operations are carried out,
and for this reason, a fair comparison of the results obtained is not possible.
With these considerations made, some unexpected outcomes are noticeable, partic-
ularly for inference with the EfficientNet-B0 model in the ONNX quantized format.
During inference of the ONNX format with the CUDA provider, for both quantiza-
tion representations, ONNX Runtime inserts many Memcpy nodes into the model
graph. This operation involves continuous data transfers between the CPU and
GPU, significantly slowing down the entire process, especially if these transfers are
frequent or if the tensors are large.
The creation of these nodes occurs because some operations in the quantized model
may not be supported by the CUDA provider of ONNX Runtime, and as a result,
they are executed on the CPU. In particular, for the QDQ representation, the De-
quantized Layers nodes cause these issues, while for the QOperator representation,
it is the layers whose names start with ”Q”.

4.2 Inferences results 51

Even though some operations are executed on the CPU, this solution still ensures a
faster inference speed compared to the PyTorch model but suffers from a consider-
able drop in IoU due to the quantization process.
The same problem occurs during inference of the ONNX quantized model with the
TensorRT provider, where TensorRT fails to correctly interpret specific layers of the
neural network.
In particular, with the QDQ representation, if some nodes are not correctly con-
verted, the model may skip them, resulting in incorrect predictions or NaN values.
For this reason, the results obtained with the QDQ quantization version are pre-
sented for completeness, even though they are not considered reliable. Further work
is needed to achieve the required optimization.
Even for the QOperator representation, some issues persist. TensorRT fails to find
the necessary plugins to support quantized operations such as QLinearMul, QLin-
earGlobalAveragePool, QLinearSigmoid, and QLinearConv.
This occurs because the TensorRT provider does not have optimized implemen-
tations for these specific operations. Consequently, the entire model cannot be
fully accelerated by TensorRT, and some operations, similar to the case of CUDA
providers, must be executed on the CPU, once again slowing down the inference
process. However, in this case, the IoU remains the same as that obtained with the
CUDA provider, indicating that the overall execution is functioning correctly.
Another important observation regarding TensorRT providers is that, in order to
function properly, they require a warm-up process using a set of images. For this
reason, during the evaluation of the metrics, 950 images were considered instead of
1000.
Regarding the results obtained for YOLOv8n shown in table 4.5, the same problem
observed with EfficientNet-B0 arises during inference with ONNX using the CUDA
provider, i.e. some nodes are allocated on the CPU. This continuous transfer of
data between the CPU and GPU during inference, again, significantly slows down
the entire process.
Despite some results being discarded, it is still possible to draw final conclusions.
EfficientNet-B0 has proven to be competitive when compared to the state-of-the-art
YOLOv8n. In particular, impressive inference speed performance is achieved with
the model accelerated using TensorRT with fp16 precision, which outperforms the
fastest version of YOLOv8n, quantized and accelerated by TensorRT, by 6.86 FPS,
while maintaining only a 4.1% decrease in accuracy, a minimal difference between
the two models.
Another technique experimented with here to speed up inference is batching, where
batches of images (in this case, 16) are processed simultaneously. As shown, this ap-
proach can significantly increase inference speed and is widely used in various fields,
such as surveillance systems and retail for inventory management and customer
behavior analysis. However, this technique still has some limitations in real-time
applications, as it may introduce overhead when loading the entire batch, require
more memory, and cause latency issues since predictions are only available after the
entire batch has been processed. Nevertheless, it can substantially speed up the
inference process, and its use in this sector can bring significant benefits in terms of
inference speed.

4.2 Inferences results 52

Finally, a visual interpretation of the results in terms of speed and accuracy is pre-
sented in figures 4.6 and 4.7, while a representation of the speedups achieved with
different model formats is shown in figure 4.8. In particular, figures 4.6 and 4.7 only
display results considered reliable and comparable. Since Ultralytics does not allow
for direct quantization of the YOLO ONNX model, these results are not included
in the plots.

4.2.3 Literature validation

A final comparison is made by considering significant literature examples.
In the aforementioned RemoveDEBRIS mission, a vision-based navigation system
utilizing a digital camera and LiDAR was also tested for debris observation. This
system automatically determines key parameters such as distance and spinning rates,
which are essential for rendezvous and debris capture. As reported in [5], the pro-
cessing time for each frame was less than 0.1 seconds, thereby strongly validating
the inference time results obtained in this work.
In [41], a different strategy to reduce inference time is presented, based on image
compression techniques rather than modifying the model itself. In particular, two
object detection algorithms are tested: the Single Shot MultiBox Detector (SSD)
and the Region-based Fully Convolutional Network (R-FCN), both pre-trained on
the DOTA dataset [67], a large-scale dataset for object detection in aerial images.
Inference speed results are reported for the smallest tested image (475Ö546 pixels)
and the largest runnable one (4392Ö4441 pixels). Thanks to these techniques, sig-
nificant improvements in inference speed are achieved on the Jetson Nano, as shown
in Table 4.6.

Table 4.6: Inference speed obtained on Jetson Nano from [41] in seconds.

Large image Small image

Original Compressed Original Compressed

SSD 5.21 3.07 1.48 1.24
R-FCN 7.32 6.16 5.39 5.21

Comparing these results to those in table 4.4, it is evident that even the EfficientNet-
B0 PyTorch model achieves faster inference than the solution presented in [41]. How-
ever, it should be noted that in [67], a significantly higher number of objects needed
to be detected, which could slow down inference due to the increased computational
complexity required for processing multiple detections.
Finally, a specific vision-based algorithm for detecting and classifying small orbital
debris using onboard optical cameras for near-real-time applications is analyzed in
[70]. Their algorithm is for near real time applications and it was developed to
address the challenges of in-situ small orbital debris detection. Table 4.7 presents
how accuracy metrics vary depending on the FPS of image acquisition.
In particular, spots refer to all light sources detected in the video sequence, including
stars and debris, while Objects are a subset of spots, that represents moving debris.
From this results it is possible to notice that increasing the FPS (from 30 to 60) to

4.2 Inferences results 53

Table 4.7: Input Sample Data Specifications [70]

Sample Data Frame Rate (FPS) Duration (s) Frame Count Spots (Mean ± Std) Objects (Mean ± Std)

Simple Foreground 30 6 180 134.7 ± 2.4 1.3 ± 0.7

Complex Foreground 30 30 900 117.7 ± 3.7 6.8 ± 2.0

Simple Background 60 60 3600 118.3 ± 2.1 5.3 ± 2.1

Complex Background 60 60 3600 114.0 ± 4.8 5.1 ± 2.3

improve object tracking over time and reduce tracking errors.
This analysis highlights the importance of frame acquisition frequency and its im-
pact on real-time inference. Ensuring a high enough FPS is crucial for maintaining
accurate tracking.
While the comparison may not be entirely fair, it helps illustrate the FPS range at
which an operation can be considered real-time or near-real-time, particularly in the
context of space debris tracking.

4.2 Inferences results 54

(a) YOLOv8n

(b) EfficientNet-B0

Figure 4.4: Visual comparison of YOLO and EfficientNet-B0 model predictions on
9 random test images

4.2 Inferences results 55

(a) EfficientNet-B0 (b) YOLOv8n

Figure 4.5: Visual comparison of YOLO and EfficientNet model predictions on HIL
images

EfficientNet-B0 YOLOv8n
0

5

10

15

20

25

30

35

In
fe
re
n
ce

ti
m
e(
m
s)

35.546

21.081

17.529

10.774

7.357

28.030

4.365

26.684

28.661

33.840

20.420

11.647

7.745
7.085

Inference time for EfficientNet-B0 e YOLOv8n

PyTorch fp32

ONNX fp32

ONNX fp16

TensorRT fp32

TensorRT fp16

TensorRT int8

TensorRT BATCH

Figure 4.6: Inference time comparison between EfficientNet-B0 and YOLOv8n

4.2 Inferences results 56

EfficientNet-B0 YOLOv8n
0.0

0.2

0.4

0.6

0.8

1.0

M
ea
n
Io
U

0.845 0.849 0.849 0.845 0.850

0.436

0.850

0.946 0.945 0.945 0.945 0.945

0.886

0.946

Mean IoU for EfficientNet-B0 and YOLOv8n

PyTorch fp32

ONNX fp32

ONNX fp16

TensorRT fp32

TensorRT fp16

TensorRT int8

TensorRT BATCH

Figure 4.7: Accuracy comparison between EfficientNet-B0 and YOLOv8n

Py
To
rc
h
fp
32

O
NN

X
fp
32

O
NN

X
fp
16

Te
ns
or
RT

fp
32

Te
ns
or
RT

fp
16

Te
ns
or
RT

BA
TC
H

0

1

2

3

4

5

6

7

S
p
ee
d
u
p

1.00x

1.54x

1.86x

3.02x

4.42x

7.46x

Speedups

Figure 4.8: EfficientNet-B0 different model format inference speed speedups

Chapter 5

Conclusions

The main goal of this thesis was to develop a vision-based object detector for real-
time space applications, specifically to assess the validity of this technology for future
missions related to space debris management. To achieve this, the work primarily
focused on optimizing inference speed, an essential requirement for autonomous
spacecraft. In the context of space debris, high inference speed also contributes to
improved tracking performance, particularly when detecting and following debris in
star-populated image backgrounds, as confirmed by Zamani et al. [70].
To accomplish this goal, an EfficientNet-B0 model adapted for object detection was
trained, along with a YOLOv8n model, on the SPEED+ dataset. During training
for 100 epochs, the EfficientNet-B0 model achieved its best validation loss at epoch
89, with an RMSE of 4.94, reaching a maximum accuracy of 0.721 at epoch 90.
The YOLOv8n model achieved a maximum accuracy of 0.994, with a Box Loss of
0.175, Class Loss of 0.098, and DFL of 0.856. From the training of both models, it
is evident that YOLOv8n trained more efficiently, achieving higher accuracy.
This trend is confirmed during accuracy tests, where EfficientNet-B0 achieved a
mean IoU over 1000 synthetic images of 0.849, compared to the 0.946 IoU of
YOLOv8n. A significant loss in accuracy, as expected, was registered for both
models during domain gap testing with 1000 HIL images, where an IoU of 0.382
and 0.442 was achieved, respectively, indicating a lack of robustness for real space
scenarios.
During inference speed tests conducted on the Jetson Orin Nano, it was observed
that model format and precision can significantly influence inference speed. In par-
ticular, when all model nodes are allocated to the chosen provider rather than being
partitioned between the CPU and the provider, a notable speed improvement oc-
curs. Specifically, the EfficientNet-B0 model initially had an inference time of 1841
ms when the PyTorch fp32 model was run on the CPU. This improved to the best
inference speed of 7.35 ms and 136.05 FPS when using the ONNX model with the
TensorRT provider at fp16 precision. This speed improvement did not affect mean
accuracy, as the IoU increased slightly from 0.845 to 0.850. However, the quantiza-
tion process carried out in this project did not prove to be an effective method for
increasing inference speed due to discrepancies between model representations and
the providers used.
Regarding YOLOv8n, the inference speed results revealed that the quantization

57

5.1 Future works 58

process was effective. The PyTorch model with fp32 precision running on the GPU
achieved an inference speed of 26.684 ms and 37.47 FPS. This was further acceler-
ated when using the .engine format on TensorRT, achieving an inference speed of
7.74 ms and 129.19 FPS with int8 precision. However, a relatively higher accuracy
drop was registered, with the mean IoU decreasing from 0.946 to 0.886.
From these results, it is possible to state that the fastest EfficientNet-B0 model
outperformed the YOLOv8n model in terms of speed, registering a 6.86 FPS higher
score and a 0.39 ms faster inference at the cost of a 4.1% decrease in accuracy.
These results were then compared with significant but different literature studies,
confirming that they fall within the range of real-time application requirements. In
particular, the RemoveDEBRIS mission confirmed an inference time lower than 0.1
seconds [5], and the study on increasing inference speed for space applications con-
ducted on the Jetson Nano by [41] recorded a best performance inference speed of
1.24 seconds with an SSD model.
Finally, another speed improvement was observed when inference was carried out on
batches of images. For a batch size of 16 images, the EfficientNet-B0 ONNX model
with the TensorRT provider in fp32 precision reached an inference speed of 4.36 ms
and 229.09 FPS, while the fp32 YOLOv8n model in .engine format accelerated on
TensorRT reached an inference speed of 7.085 ms and 141.1 FPS. Batch inference
can significantly speed up the inference process, but it is not yet widely applied
in real-time applications, as the results of the inference are only available once the
entire batch has been processed, increasing latency.

5.1 Future works

While this thesis has demonstrated promising results, several areas warrant further
investigation to enhance the robustness and real-world applicability of the proposed
approach. First, addressing the domain gap remains a critical challenge. The cur-
rent data augmentation techniques were not fully effective in mitigating this issue,
suggesting that alternative strategies, such as unsupervised domain adaptation [14]
and domain randomization [60], should be explored. Training on the entire dataset
may also contribute to improved accuracy and allow for further hyperparameter op-
timization.
Additionally, different quantization techniques should be explored to fully benefit
from the speed-up they offer. In particular, converting the EfficientNet-B0 ONNX
model into a .engine file instead of using TensorRT providers could be investigated
to ensure all model parameters are correctly converted. It is also necessary to ensure
that the versions of TensorRT and CUDA installed on the device are compatible.
A crucial next step is the validation of the model in a real-world testbed environ-
ment. Instead of testing with a static printed image, the system should be deployed
in a dedicated rendezvous simulation facility, typically featuring a dark room, two
robotic arms for dynamic motion emulation, and a sun simulator. This setup will en-
able realistic evaluation under controlled lighting conditions and spacecraft-relative
motion, ensuring the model’s robustness for real chaser-target interactions.
Finally, other techniques described in this thesis, such as pruning or parallelization,
may also be explored.

Bibliography

[1] Roya Afshar and Shuai Lu. “Classification and recognition of space debris and
its pose estimation based on deep learning of CNNs”. In: HCI International
2020-Posters: 22nd International Conference, HCII 2020, Copenhagen, Den-
mark, July 19–24, 2020, Proceedings, Part I 22. Springer. 2020, pp. 605–613.

[2] European Space Agency. Hubble’s impactful life alongside space debris. ESA.
2020. url: https://www.esa.int/Space_Safety/Hubble_s_impactful_
life_alongside_space_debris.

[3] European Space Agency. Space Debris FAQ: Frequently asked questions. ESA.
2021. url: https://www.esa.int/Space_Safety/Space_Debris/Space_
Debris_FAQ_Frequently_asked_questions.

[4] Guglielmo S Aglietti et al. “RemoveDEBRIS: An in-orbit demonstration of
technologies for the removal of space debris”. In: The Aeronautical Journal
124.1271 (2020), pp. 1–23.

[5] Guglielmo S Aglietti et al. “The active space debris removal mission Re-
moveDebris. Part 2: In orbit operations”. In: Acta Astronautica 168 (2020),
pp. 310–322.

[6] Aliu Akinsemoyin et al. “Unmanned aerial systems and deep learning for safety
and health activity monitoring on construction sites”. In: Sensors 23.15 (2023),
p. 6690.

[7] Syed Zahid Ali. Principles of YoloV8. Medium. 2023. url: https://medium.
com/@syedzahidali969/principles-of-yolov8-6a90564e16c3.

[8] Francesca Altieri et al. “Investigating the Oxia Planum subsurface with the Ex-
oMars rover and drill”. In: Advances in Space Research 71.11 (2023), pp. 4895–
4903.

[9] Laith Alzubaidi et al. “Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions”. In: Journal of big Data 8 (2021),
pp. 1–74.

[10] Alexander Amini et al. “Spatial uncertainty sampling for end-to-end control”.
In: arXiv preprint arXiv:1805.04829 (2018).

[11] Kian Katanforoosh Andrew Ng and Younes Bensouda Mourri. Neural Net-
works and DeepLearning. Coursera. url: https : / / www . coursera . org /

learn/neural-networks-deep-learning/home/info.

i

https://www.esa.int/Space_Safety/Hubble_s_impactful_life_alongside_space_debris
https://www.esa.int/Space_Safety/Hubble_s_impactful_life_alongside_space_debris
https://www.esa.int/Space_Safety/Space_Debris/Space_Debris_FAQ_Frequently_asked_questions
https://www.esa.int/Space_Safety/Space_Debris/Space_Debris_FAQ_Frequently_asked_questions
https://medium.com/@syedzahidali969/principles-of-yolov8-6a90564e16c3
https://medium.com/@syedzahidali969/principles-of-yolov8-6a90564e16c3
https://www.coursera.org/learn/neural-networks-deep-learning/home/info
https://www.coursera.org/learn/neural-networks-deep-learning/home/info

Bibliography ii

[12] Jay E. Aronson. “Expert Systems”. In: Encyclopedia of Information Systems.
Ed. by Hossein Bidgoli. New York: Elsevier, 2003, pp. 277–289. isbn: 978-
0-12-227240-0. doi: https : / / doi . org / 10 . 1016 / B0 - 12 - 227240 - 4 /

00067-8. url: https://www.sciencedirect.com/science/article/pii/
B0122272404000678.

[13] Herbert Bay. “Surf: Speeded up robust features”. In: Computer Vision—ECCV
(2006).

[14] Shai Ben-David et al. “Analysis of representations for domain adaptation”.
In: Advances in neural information processing systems 19 (2006).

[15] Saket Bhardwaj and Ajay Mittal. “A survey on various edge detector tech-
niques”. In: Procedia Technology 4 (2012), pp. 220–226.

[16] Gaudenz Boesch. What is Intersection over Union (IoU)? 2024. url: https:
//viso.ai/computer-vision/intersection-over-union-iou/.

[17] Dr.-Ing. Benjamin Braun. PRISMA Formation Flying Mission. 2025. url:
https://www.dlr.de/en/rb/research-operation/research-projects/

flight - dynamics - navigation - and - orbital - sustainability / gnss -

technology-and-navigation/past-projects/prisma-formation-flying-

misson.

[18] Ebubekir BUBER and Banu DIRI. “Performance Analysis and CPU vs GPU
Comparison for Deep Learning”. In: 2018 6th International Conference on
Control Engineering & Information Technology (CEIT). 2018, pp. 1–6. doi:
10.1109/CEIT.2018.8751930.

[19] Alexander Buslaev et al. “Albumentations: Fast and Flexible Image Augmen-
tations”. In: Information 11.2 (2020), p. 125. doi: 10.3390/info11020125.
url: https://www.mdpi.com/2078-2489/11/2/125.

[20] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. “A Survey on Deep
Neural Network Pruning: Taxonomy, Comparison, Analysis, and Recommen-
dations”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
46.12 (2024), pp. 10558–10578. doi: 10.1109/TPAMI.2024.3447085.

[21] Dwith Chenna. “Quantization of Convolutional Neural Networks: A Practi-
cal Approach”. In: International Journal for Research Trends and Innovation
(2023).

[22] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[23] NVIDIA DEVELOPER. JetPack SDK. https://developer.nvidia.com/
embedded/jetpack.

[24] NVIDIA DEVELOPER. NVIDIA TensorRT. https://developer.nvidia.
com/tensorrt/.

[25] ONNX Runtime developers. ONNX Runtime. https://onnxruntime.ai/.
Version: x.y.z. 2021.

https://doi.org/https://doi.org/10.1016/B0-12-227240-4/00067-8
https://doi.org/https://doi.org/10.1016/B0-12-227240-4/00067-8
https://www.sciencedirect.com/science/article/pii/B0122272404000678
https://www.sciencedirect.com/science/article/pii/B0122272404000678
https://viso.ai/computer-vision/intersection-over-union-iou/
https://viso.ai/computer-vision/intersection-over-union-iou/
https://www.dlr.de/en/rb/research-operation/research-projects/flight-dynamics-navigation-and-orbital-sustainability/gnss-technology-and-navigation/past-projects/prisma-formation-flying-misson
https://www.dlr.de/en/rb/research-operation/research-projects/flight-dynamics-navigation-and-orbital-sustainability/gnss-technology-and-navigation/past-projects/prisma-formation-flying-misson
https://www.dlr.de/en/rb/research-operation/research-projects/flight-dynamics-navigation-and-orbital-sustainability/gnss-technology-and-navigation/past-projects/prisma-formation-flying-misson
https://www.dlr.de/en/rb/research-operation/research-projects/flight-dynamics-navigation-and-orbital-sustainability/gnss-technology-and-navigation/past-projects/prisma-formation-flying-misson
https://doi.org/10.1109/CEIT.2018.8751930
https://doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125
https://doi.org/10.1109/TPAMI.2024.3447085
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/tensorrt/
https://developer.nvidia.com/tensorrt/
https://onnxruntime.ai/

Bibliography iii

[26] P Kingma Diederik. “Adam: A method for stochastic optimization”. In: (No
Title) (2014).

[27] Tausif Diwan, G Anirudh, and Jitendra V Tembhurne. “Object detection using
YOLO: Challenges, architectural successors, datasets and applications”. In:
multimedia Tools and Applications 82.6 (2023), pp. 9243–9275.

[28] Clément Ernould et al. “Chapter One - Measuring elastic strains and orien-
tation gradients by scanning electron microscopy: Conventional and emerging
methods”. In: ed. by Martin Hÿtch and Peter W. Hawkes. Vol. 223. Advances
in Imaging and Electron Physics. Elsevier, 2022, pp. 1–47. doi: https://doi.
org/10.1016/bs.aiep.2022.07.001. url: https://www.sciencedirect.
com/science/article/pii/S1076567022000544.

[29] Jason L Forshaw et al. “RemoveDEBRIS: An in-orbit active debris removal
demonstration mission”. In: Acta Astronautica 127 (2016), pp. 448–463.

[30] Stanislav Ganea. “Deep Learning for Spacecraft Detection and Classification
in Orbital Operations”. Master thesis. Blogna: Alma Mater Studiorum - Uni-
versity of Bologna, 2024.

[31] Kaifeng Gao et al. “Julia language in machine learning: Algorithms, applica-
tions, and open issues”. In: Computer Science Review 37 (2020), p. 100254.

[32] Hossein Gholamalinezhad and Hossein Khosravi. “Pooling methods in deep
neural networks, a review”. In: arXiv preprint arXiv:2009.07485 (2020).

[33] Justin Goodwill, Christopher Wilson, and James MacKinnon. “Current AI
technology in space”. In: Precision Medicine for Long and Safe Permanence
of Humans in Space. Elsevier, 2025, pp. 239–250.

[34] Anna Heiney. Demo-1: Watch Crew Dragon Hatch Closure. NASA. 2019. url:
https://blogs.nasa.gov/commercialcrew/2019/03/page/2/.

[35] Jetson Modules. NVIDIA. 2025. url: https://developer.nvidia.com/
embedded/jetson-modules.

[36] Ari Jonsson, Robert A. Morris, and Liam Pedersen. “Autonomy in Space:
Current Capabilities and Future Challenge”. In: AI Magazine 28.4 (Dec. 2007),
p. 27. doi: 10.1609/aimag.v28i4.2066. url: https://ojs.aaai.org/
aimagazine/index.php/aimagazine/article/view/2066.

[37] Matthew Kaufman. NASA Trains Machine Learning Algorithm for Mars Sam-
ple Analysis. 2025. url: https://www.nasa.gov/solar- system/nasa-
trains-machine-learning-algorithm-for-mars-sample-analysis.

[38] Donald J Kessler and Burton G Cour-Palais. “Collision frequency of artificial
satellites: The creation of a debris belt”. In: Journal of Geophysical Research:
Space Physics 83.A6 (1978), pp. 2637–2646.

[39] Robin Larsson Nordström et al. “Flight results from SSCS GNC experiments
within the PRISMA formation flying mission”. In: 61st International Astro-
nautical Congress 2010, IAC 2010 7 (Jan. 2010), pp. 6032–6041.

https://doi.org/https://doi.org/10.1016/bs.aiep.2022.07.001
https://doi.org/https://doi.org/10.1016/bs.aiep.2022.07.001
https://www.sciencedirect.com/science/article/pii/S1076567022000544
https://www.sciencedirect.com/science/article/pii/S1076567022000544
https://blogs.nasa.gov/commercialcrew/2019/03/page/2/
https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://doi.org/10.1609/aimag.v28i4.2066
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2066
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2066
https://www.nasa.gov/solar-system/nasa-trains-machine-learning-algorithm-for-mars-sample-analysis
https://www.nasa.gov/solar-system/nasa-trains-machine-learning-algorithm-for-mars-sample-analysis

Bibliography iv

[40] Xiang Li et al. “Generalized focal loss: Learning qualified and distributed
bounding boxes for dense object detection”. In: Advances in Neural Informa-
tion Processing Systems 33 (2020), pp. 21002–21012.

[41] Martina Lofqvist and José Cano. “Accelerating deep learning applications in
space”. In: arXiv preprint arXiv:2007.11089 (2020).

[42] David G Lowe. “Object recognition from local scale-invariant features”. In:
Proceedings of the seventh IEEE international conference on computer vision.
Vol. 2. Ieee. 1999, pp. 1150–1157.

[43] Christine Mwase et al. “Communication-efficient distributed AI strategies for
the IoT edge”. In: Future Generation Computer Systems 131 (2022), pp. 292–
308.

[44] Niall O’Mahony et al. “Deep learning vs. traditional computer vision”. In:
Advances in Computer Vision: Proceedings of the 2019 Computer Vision Con-
ference (CVC), Volume 1 1. Springer. 2020, pp. 128–144.

[45] Rafael Padilla, Sergio L. Netto, and Eduardo A. B. da Silva. “A Survey
on Performance Metrics for Object-Detection Algorithms”. In: 2020 Interna-
tional Conference on Systems, Signals and Image Processing (IWSSIP). 2020,
pp. 237–242. doi: 10.1109/IWSSIP48289.2020.9145130.

[46] Tae Ha Park et al. “SPEED+: Next Generation Dataset for Spacecraft Pose
Estimation across Domain Gap”. In: CoRR abs/2110.03101 (2021). arXiv:
2110.03101. url: https://arxiv.org/abs/2110.03101.

[47] Nancy J. Pekar. Fresh Eyes on Mars: Mars 2020 Lander Vision System Tested
through NASA’s Flight Opportunities Program. NASA. 2016. url: https:
/ / www . nasa . gov / missions / mars - 2020 - perseverance / fresh - eyes -

on-mars-mars-2020-lander-vision-system-tested-through-nasas-

flight-opportunities-program/.

[48] Swathi Pothuganti. “Review on over-fitting and under-fitting problems in Ma-
chine Learning and solutions”. In: Int. J. Adv. Res. Electr. Electron. Instrum.
Eng 7.9 (2018), pp. 3692–3695.

[49] PyTorch. 2025. url: https://pytorch.org/.

[50] Juan F Rodŕıguez et al. “Use of neural networks for tsunami maximum height
and arrival time predictions”. In: GeoHazards 3.2 (2022), pp. 323–344.

[51] Ivan Rodriguez-Ferrandez et al. “Exploring Total Ionizing Dose Radiation
Effects Across Generations of NVIDIA Jetson Devices: A Comparative Anal-
ysis”. In: 2024 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT). IEEE. 2024, pp. 1–6.

[52] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2018, pp. 4510–4520.

[53] Iqbal H Sarker. “Deep learning: a comprehensive overview on techniques, tax-
onomy, applications and research directions”. In: SN computer science 2.6
(2021), p. 420.

https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://arxiv.org/abs/2110.03101
https://arxiv.org/abs/2110.03101
https://www.nasa.gov/missions/mars-2020-perseverance/fresh-eyes-on-mars-mars-2020-lander-vision-system-tested-through-nasas-flight-opportunities-program/
https://www.nasa.gov/missions/mars-2020-perseverance/fresh-eyes-on-mars-mars-2020-lander-vision-system-tested-through-nasas-flight-opportunities-program/
https://www.nasa.gov/missions/mars-2020-perseverance/fresh-eyes-on-mars-mars-2020-lander-vision-system-tested-through-nasas-flight-opportunities-program/
https://www.nasa.gov/missions/mars-2020-perseverance/fresh-eyes-on-mars-mars-2020-lander-vision-system-tested-through-nasas-flight-opportunities-program/
https://pytorch.org/

Bibliography v

[54] Minghe Shan, Jian Guo, and Eberhard Gill. “Review and comparison of ac-
tive space debris capturing and removal methods”. In: Progress in aerospace
sciences 80 (2016), pp. 18–32.

[55] Himadri Sharma. What Is Deep Learning and How to Use It in Market-
ing. mailmodo. 2025. url: https://www.mailmodo.com/guides/deep-
learning-marketing/.

[56] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation functions
in neural networks”. In: Towards Data Sci 6.12 (2017), pp. 310–316.

[57] K Sindhu Meena and S Suriya. “A survey on supervised and unsupervised
learning techniques”. In: Proceedings of international conference on artificial
intelligence, smart grid and smart city applications: AISGSC 2019. Springer.
2020, pp. 627–644.

[58] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for con-
volutional neural networks”. In: International conference on machine learning.
PMLR. 2019, pp. 6105–6114.

[59] Juan Terven, Diana-Margarita Córdova-Esparza, and Julio-Alejandro Romero-
González. “A comprehensive review of yolo architectures in computer vision:
From yolov1 to yolov8 and yolo-nas”. In: Machine learning and knowledge
extraction 5.4 (2023), pp. 1680–1716.

[60] Josh Tobin et al. “Domain randomization for transferring deep neural net-
works from simulation to the real world”. In: 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE. 2017, pp. 23–30.

[61] Trends. Papers with code. 2025. url: https://paperswithcode.com/trends.

[62] Ultralytics Documentation. Ultralytics. 2025. url: https://docs.ultralytics.
com/.

[63] Qi Wang et al. “A comprehensive survey of loss functions in machine learning”.
In: Annals of Data Science (2020), pp. 1–26.

[64] Yanzhi Wang et al. “Non-structured dnn weight pruning considered harmful”.
In: arXiv preprint arXiv:1907.02124 2 (2019).

[65] Olivia Weng. “Neural network quantization for efficient inference: A survey”.
In: arXiv preprint arXiv:2112.06126 (2021).

[66] Qiang Wu and Kenneth R. Castleman. “Chapter Seven - Image Segmenta-
tion”. In: Microscope Image Processing (Second Edition). Ed. by Fatima A.
Merchant and Kenneth R. Castleman. Second Edition. Academic Press, 2023,
pp. 119–152. isbn: 978-0-12-821049-9. doi: https://doi.org/10.1016/
B978-0-12-821049-9.00003-4. url: https://www.sciencedirect.com/
science/article/pii/B9780128210499000034.

[67] Gui-Song Xia et al. “DOTA: A large-scale dataset for object detection in
aerial images”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 3974–3983.

https://www.mailmodo.com/guides/deep-learning-marketing/
https://www.mailmodo.com/guides/deep-learning-marketing/
https://paperswithcode.com/trends
https://docs.ultralytics.com/
https://docs.ultralytics.com/
https://doi.org/https://doi.org/10.1016/B978-0-12-821049-9.00003-4
https://doi.org/https://doi.org/10.1016/B978-0-12-821049-9.00003-4
https://www.sciencedirect.com/science/article/pii/B9780128210499000034
https://www.sciencedirect.com/science/article/pii/B9780128210499000034

Bibliography vi

[68] Weizheng Xu, Youtao Zhang, and Xulong Tang. “Parallelizing DNN training
on GPUs: Challenges and opportunities”. In: Companion Proceedings of the
Web Conference 2021. 2021, pp. 174–178.

[69] Raniah Zaheer and Humera Shaziya. “A study of the optimization algorithms
in deep learning”. In: 2019 third international conference on inventive systems
and control (ICISC). IEEE. 2019, pp. 536–539.

[70] Yasin Zamani et al. “A robust vision-based algorithm for detecting and classi-
fying small orbital debris using on-board optical cameras”. In: Advanced Maui
Optical and Space Surveillance Technologies Conference. M19-7620. 2019.

[71] Wei Zhou et al. “EARDS: EfficientNet and attention-based residual depth-
wise separable convolution for joint OD and OC segmentation”. In: Frontiers
in Neuroscience 17 (2023), p. 1139181.

	Introduction
	Space Debris
	Artificial Intelligence, Machine Learning and Deep Learning
	Artificial Intelligence for space applications

	Theoretical background
	Computer Vision
	Computer Vision techniques
	Computer Vision tasks

	Deep Learning
	Neural Networks
	Convolutional Neural Networks

	Neural Networks learning theory
	Supervised Learning
	Loss Functions
	Optimization algorithm
	Training limitations
	Accuracy metrics

	Inference speed optimization techniques
	GPU acceleration
	Parallelization
	Pruning
	Quantization

	Tools and Methodology
	Tools
	Dataset
	Albumentations
	PyTorch
	Inference engines
	Jetson Orin Nano
	Ultralytics

	Methodology
	Data collection
	Image transformations
	PyTorch training pipeline
	PyTorch Inferences
	ONNX Runtime pipeline
	Ultralytics pipeline

	Results
	Training results
	Inferences results
	Accuracy results
	Inference speed results
	Literature validation

	Conclusions
	Future works

