
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Static Analysis of Aggregate
Programs through Compiler Plugins

Tesi di laurea in:
Software Process Engineering

Relatore
Danilo Pianini

Correlatori
Nicolas Farabegoli
Angela Cortecchia

Candidato
Francesco Magnani

IV Sessione di Laurea

Anno Accademico 2023-2024



ii



Abstract

Static analysis is crucial in ensuring software quality, detecting potential errors,
and enforcing coding standards. However, such tools are often unavailable for novel
programming paradigms, limiting their adoption and development. This work
explores the application of static analysis in the context of Aggregate Computing,
a paradigm for designing and managing distributed systems. Specifically, it focuses
on Collektive, a Kotlin-based framework that provides an internal Domain Specific
Language (DSL) for Aggregate Computing.

To improve the reliability of Collektive programs, a compiler plugin was de-
veloped to perform static analysis during compilation. The plugin extends the
Kotlin compiler using the new and experimental Frontend Intermediate Repre-
sentation (FIR) checkers to detect potential issues in aggregate computations,
particularly regarding domain alignment and misuse of DSL constructs. Various
detection patterns were identified and implemented, using techniques ranging from
direct API inspections to tree traversal via the visitor pattern.

The development process, testing methodologies, challenges encountered, and
the trade-offs of integrating static analysis within the compilation pipeline are dis-
cussed. While the plugin provides useful checks and integrates with development
environment, it also highlights the limitations of the approaches explored, suggest-
ing potential directions for further refinement and improvements in static analysis
for internal DSL-based frameworks.

iii



iv



Contents

Abstract iii

1 Introduction 1
1.1 Static Analysis for novel paradigms . . . . . . . . . . . . . . . . . . 2
1.2 The role of Domain Specific Languages . . . . . . . . . . . . . . . . 3
1.3 Enabling static analysis through Compiler Plugins . . . . . . . . . . 5

1.3.1 Types of Compiler Plugins . . . . . . . . . . . . . . . . . . . 6
1.3.2 Advantages of Compiler Plugins . . . . . . . . . . . . . . . . 7
1.3.3 Main challenges and requirements . . . . . . . . . . . . . . . 8

2 Background: the Collektive case 9
2.1 Aggregate Computing: a novel paradigm . . . . . . . . . . . . . . . 9

2.1.1 Applications and critical aspects . . . . . . . . . . . . . . . . 10
2.1.2 The Domain Alignment problem . . . . . . . . . . . . . . . . 11

2.2 Collektive: an Aggregate Computing framework . . . . . . . . . . . 12
2.2.1 Collektive DSL: main concepts . . . . . . . . . . . . . . . . . 12
2.2.2 Collektive Compiler Plugin . . . . . . . . . . . . . . . . . . . 14

2.3 Kotlin Compiler Plugins: general structure . . . . . . . . . . . . . . 14
2.3.1 Kotlin K2 and frontend plugins . . . . . . . . . . . . . . . . 15

2.4 DSL and Compiler Plugins . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 The importance of Build Tools . . . . . . . . . . . . . . . . . 18
2.4.2 Main motivations . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Frontend plugin development 21
3.1 Interaction with the Kotlin compiler . . . . . . . . . . . . . . . . . 22

3.1.1 Extension mechanism . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Static analyzer architecture . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Adding new rules . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Adopted workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 First approach: direct Kotlin API usage . . . . . . . . . . . . . . . 27

3.4.1 Pattern 1: explicit align/dealign . . . . . . . . . . . . . . . . 27

CONTENTS v



CONTENTS

3.5 Second approach: declarative and modular API . . . . . . . . . . . 29
3.5.1 Pattern 2: simple aggregate operations in loops . . . . . . . 29

3.6 Third approach: visitor pattern . . . . . . . . . . . . . . . . . . . . 35
3.6.1 Pattern 3: unnecessary Yielding usage . . . . . . . . . . . . 36
3.6.2 Pattern 4: unnecessary construct usage . . . . . . . . . . . . 40

3.7 Fourth approach: mixed approach . . . . . . . . . . . . . . . . . . . 44
3.7.1 Pattern 5: complex aggregate operations in loops . . . . . . 44
3.7.2 Pattern 6: improper Evolve construct usage . . . . . . . . . 48

4 Evaluation and Testing 57
4.1 Initial testing approaches . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Avoiding repetitions through template files . . . . . . . . . . . . . . 59

4.2.1 Initial template system . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Templates flexibility and limitations . . . . . . . . . . . . . . 60

4.3 Code generation: a small DSL leveraging Kotlin Poet . . . . . . . . 62
4.3.1 General structure and usage . . . . . . . . . . . . . . . . . . 62
4.3.2 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Custom testing framework: Subjekt . . . . . . . . . . . . . . . . . . 65
4.4.1 Main ideas behind the framework . . . . . . . . . . . . . . . 65
4.4.2 Core structure of Subjekt . . . . . . . . . . . . . . . . . . . 66
4.4.3 Final usage inside tests . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusions 71
5.1 Opportunities of Compiler plugins . . . . . . . . . . . . . . . . . . . 71
5.2 Approaching meta-level analysis . . . . . . . . . . . . . . . . . . . . 72
5.3 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

75

Bibliography 75

vi CONTENTS



List of Figures

2.1 Execution model of an Aggregate Computing system. . . . . . . . . 10
2.2 Kotlin compiler architecture. . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Kotlin compiler general workflow. . . . . . . . . . . . . . . . . . . . 16

3.1 Class diagram representing the top-level structure of the Collektive
backend compiler plugin. Note: the frontend plugin is not included
yet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Components of the Collektive project after the application of the
frontend plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Class diagram summarizing the structure of the frontend plugin . . 25
3.4 Flowchart representing the procedure to detect Pattern 2 . . . . . . 33
3.5 Summarized class diagram of the visitors inside the Kotlin compiler 36
3.6 Summarized workflow of the Pattern 6 detection . . . . . . . . . . . 52

4.1 Top-level class diagram of the Subjekt library . . . . . . . . . . . . 67

LIST OF FIGURES vii



LIST OF FIGURES

viii LIST OF FIGURES



List of Listings

2.1 Example of a Collektive program using the DSL. . . . . . . . . . . . 13
3.1 Example of Pattern 1 detection in code . . . . . . . . . . . . . . . . 28
3.2 Implementation of the Pattern 1 checker: ExplicitAlignDealign . 29
3.3 Corner case related to Pattern 2, where the construct is used inside

a nested function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Some utility functions of the small API developed . . . . . . . . . . 33
3.5 Utility functions added to help in the detection of Pattern 2 . . . . 34
3.6 Implementation of the Pattern 2 checker: NoAlignInsideLoop . . . 35
3.7 Example of usage of the yielding context in the Collektive DSL,

taken from the Collektive documentation . . . . . . . . . . . . . . . 37
3.8 Example of Pattern 3 detection in code, with an unecessary usage

of a yielding context, this time with the sharing construct . . . . . 38
3.9 Implementation of the Pattern 3 checker: UnnecessaryYielding . . 39
3.10 Implementation of the Pattern 3 Visitor . . . . . . . . . . . . . . . 40
3.11 Examples of Pattern 4 detection in code, with both the cases described 42
3.12 Implementation of the Pattern 4 Visitor . . . . . . . . . . . . . . . 43
3.13 Examples of Pattern 5 detection in code, with the case of delegated

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.14 Utility function to check if a function call has an aggregate parameter 46
3.15 Utility function to get the declaration of a function call . . . . . . . 47
3.16 Implementation of the Pattern 5 Visitor . . . . . . . . . . . . . . . 49
3.17 Example of Pattern 6 detection in code . . . . . . . . . . . . . . . . 50
3.18 Visitor method to visit an anonymous function . . . . . . . . . . . . 53
3.19 Visitor methods to implement a symbol and expression marking

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.20 First support visitor to extract the return expression of an anony-

mous function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.21 Second support visitor to extract the receiver of a yielding construct 55
3.22 Visitor method to visit the return expression . . . . . . . . . . . . . 56
4.1 One of the first developed test for the Pattern 2 checker. It uses

static resource files to load the source code to be compiled and checked 59

LIST OF LISTINGS ix



LIST OF LISTINGS

4.2 A example of the templates created for testing multiple cases at once 59
4.3 Part of the test for Pattern 2 revised using template files . . . . . . 60
4.4 Listing 4.3 revised using the new utilities . . . . . . . . . . . . . . . 61
4.5 Example of Kotlin Poet extensions used to generate code . . . . . . 63
4.6 Example of a test suite using the Kotlin Poet extensions . . . . . . 63
4.7 Example of a Subjekt configuration file used for Pattern 2 testing. . 68
4.8 Example of a test suite using Subjekt . . . . . . . . . . . . . . . . . 69

x LIST OF LISTINGS



Chapter 1

Introduction

Analyzing characteristics of the source code without necessarily building and ex-

ecuting it — i.e., static analysis — is a process that has been studied and imple-

mented in various forms during the last decades. Various tools have been devel-

oped to perform such a task (e.g., Checkstyle1 for Java, Detekt2 for Kotlin and

also multi-language ones, like PMD3 and many more), each with its own strengths

and weaknesses. The need for such a tool is often evident in the software develop-

ment process, where ensuring the quality and robustness of software systems is

a critical concern. Using code quality analysis techniques is also a powerful mean

to avoid situations of “technical debt” [EBO+15], that targets the system quality

in maintenance and evolution.

As the system grows in complexity, so does the variety of errors and vulnera-

bilities that can be detected through tools (e.g., concurrency management issues,

error handling, etc.). At the same time, adhering to coding standards helps to

avoid both trivial and non-trivial errors. Many tools exist to enforce these coding

standards (e.g., Ktlint4 for Kotlin) and to detect violations and, moreover, these

are usually among the easiest types of tools to integrate, often already included

within Integrated Development Environments (IDEs) [Tho21]. The effectiveness

of static analysis tools has been the subject of various studies [LPS+23], evaluat-

1https://checkstyle.org/
2https://detekt.dev/
3https://pmd.github.io/
4https://pinterest.github.io/ktlint/latest/

CHAPTER 1. INTRODUCTION 1

https://checkstyle.org/
https://detekt.dev/
https://pmd.github.io/
https://pinterest.github.io/ktlint/latest/


1.1. STATIC ANALYSIS FOR NOVEL PARADIGMS

ing their detection capabilities, agreement, and precision. Some of these studies

revealed a low degree of agreement among the tools and highlighted the need for a

better understanding of their actual capabilities. Highly advanced tools have been

used also to rewrite code and help with the development of very complex systems,

like Coccinelle for collateral evolutions inside the Linux kernel [PLHM08]. More

over, in the last years, the static analysis tools have become more popular and eas-

ier to use, becoming protagonists of many Continuous Integration (CI) pipelines

[ZSO+17] that automatically performs checks on the entire source code, embracing

change and evolution of the software without making it a threat, backed by a solid

safety net.

1.1 Static Analysis for novel paradigms

Despite all this, these tools are not always available out-of-the-box, especially in

the case of new and experimental language paradigms. Developing useful static

analysis tools means having a deep understanding of the programming lan-

guage used to write the code, as well as knowing the paradigm well enough

in order to reason about the main pitfalls and points of failure present within it.

Beyond this, static analysis tools are inherently difficult to develop, as they must

be exceptionally reliable and robust. They serve as critical foundations for soft-

ware development, and they are among the last places where one would want to

encounter a bug. Any flaw in these tools can lead to incorrect analysis, misguiding

developers and potentially introducing severe issues into a codebase.

A major challenge in static analysis is balancing accuracy while minimizing

false positives and false negatives [Tho21]. A false positive occurs when the

tool incorrectly flags a valid piece of code as problematic. This can lead to unnec-

essary developer frustration, wasted time, and, in extreme cases, a loss of trust in

the tool itself. On the other hand, a false negative happens when the tool fails

to detect an actual issue, giving developers a false sense of security and allowing

critical bugs to slip through undetected: this kind of error is also harder to detect

when evaluating and testing the tool. For novel paradigms, where best practices

and common pitfalls are still being explored, finding this balance is even more com-

plex, increasing the risk for these kinds of errors when there are no well-established

2 CHAPTER 1. INTRODUCTION



1.2. THE ROLE OF DOMAIN SPECIFIC LANGUAGES

rules and patterns to guide analysis. Finally, from a technical standpoint, devel-

oping such tools also requires building a substantial integration layer with other

systems to ensure their usability. For instance, they need to seamlessly integrate

with IDEs, code editors, and development pipelines, further increasing the com-

plexity of their implementation.

Even considering all of this, the challenge of developing these tools extends

beyond technical complexity. For a static analysis tool to be developed, the tar-

get paradigm often needs to generate sufficient interest and gain adoption among

developers, otherwise it is not worth the effort of creating it. However, the growth

and adoption of a new paradigm are often inhibited by the very absence of these

tools, which have become essential in most development contexts. This creates a

self-perpetuating cycle: without adequate tooling, a paradigm struggles to gain

traction, yet without widespread adoption, there is little incentive to develop the

necessary tools. As a result, developers and industry stakeholders tend to fall

back on well-established tools with mature and certified ecosystems, reinforcing

the dominance of existing paradigms and limiting the emergence of new possibil-

ities. This, in turn, leads to significant technical debt, as developers are forced

to work within paradigms that may not be the most suitable for the problem at

hand.

Knowing how to break this cycle could represent a great incentive to the de-

velopment of new paradigms and tools.

1.2 The role of Domain Specific Languages

When introducing a new programming paradigm, DSLs are often among the pre-

ferred means of implementation. A DSL is a specialized language designed for

a specific domain, rather than a general-purpose programming language. Since

many new paradigms do not require extensive general-purpose functionality, DSLs

often provide a natural and efficient way to express the paradigm’s core concepts.

One of the key advantages of DSLs is their ability to naturally represent the do-

main within the code, as they are specifically designed for it. This often results in

a syntax that is more intuitive, sometimes even resembling natural language, and

encourages a more declarative way of writing code. Additionally, because DSLs

CHAPTER 1. INTRODUCTION 3



1.2. THE ROLE OF DOMAIN SPECIFIC LANGUAGES

are inherently more restricted in scope than general-purpose languages, developing

static analysis tools could focus on a smaller set of rules and patterns, making it

easier to ensure their accuracy and reliability. Essentially, their limited expres-

siveness reduces the complexity of the analysis, making it more feasible to create

robust and effective tooling [MHS05].

Recently, many new DSLs have been implemented as internal to a host lan-

guage (e.g., the Kotlin-based DSL for the Gradle build tool5). Internal DSLs are

embedded within a general-purpose language, using the host language’s syntax and

semantics to define the domain-specific constructs. This approach offers several

advantages, including the ability to leverage the host language’s ecosystem and

tooling, without having to develop a compiler from scratch and manage all the

necessary checks. It also makes easier for the tool to be distributed and used by

a broader audience, as it can be published as a library for the host language. Fi-

nally, internal DSL users can also exploit already existing libraries available for the

host language to make their life easier. This approach, however, also comes with

its disadvantages, the main one being the limitations in their expressiveness, as

the host language’s capabilities can constrain syntax and semantics. For this

reason, developing internal DSLs could suffer from scalability issues when the lack

of full control over the language becomes an obstacle to the paradigm reflection

in the code. Moreover, implementing custom static checks over the code could be

difficult when the host language does not provide the necessary mechanisms to do

so (i.e., meta-programming capabilities).

In conclusion, even though internal DSLs can be a solution to the first half of

the problem — i.e., the adoption and implementation of the paradigm with less

technical challenges — they still suffer from the lack of proper tooling for specific

static analysis.

5https://docs.gradle.org/current/userguide/kotlin_dsl.html

4 CHAPTER 1. INTRODUCTION

https://docs.gradle.org/current/userguide/kotlin_dsl.html


1.3. ENABLING STATIC ANALYSIS THROUGH COMPILER PLUGINS

1.3 Enabling static analysis through Compiler

Plugins

If looked from another perspective, automated static analysis tools and compilers

share significant similarities in their operations. Both perform thorough examina-

tions of source code without executing it, aiming to identify errors, enforce coding

standards, and optimize performance. Most of what compilers do on the static

analysis side is to facilitate code optimization and error detection during the com-

pilation process. Essentially, a compiler can be viewed as a form of static analysis

tool, as it analyzes code to generate executable programs and associated debugging

information [Tho21]. Specialized static analysis tools, on the other hand, extend

beyond the capabilities of standard compilers by offering additional functionali-

ties and broader diagnostic capabilities. They enable detection for specific and

uncommon bugs that compilers might overlook but are also, however, distributed

as separated software programs, that need to be integrated in some way with the

development process.

In the end, compilers offer a possibly more limited range of already included

static checks (as the compiler is a necessary tool for building the software) while

specialized tools can offer a broader range of checks but need to be integrated exter-

nally. What if, however, the compiler were extended beyond its core functionality,

incorporating specialized capabilities that go beyond the scope of a general-purpose

environment? These extensions could be designed to address the unique require-

ments of a specific project or domain. This is precisely where compiler plugins

come into play.

Compiler plugins are dynamic modules that interact with the compiler during

its various phases, enabling the introduction of new functionalities or the modifica-

tion of existing behaviors. They serve as intermediaries that can inspect, modify,

or enhance the compilation process, providing developers with the flexibility to

implement domain-specific checks, optimizations, or transformations, all without

altering the compiler’s core architecture. For instance, in the context of the GNU

Compiler Collection (GCC), plugins allow for the addition of new features without

necessitating modifications to the compiler itself (mostly, again, for optimization

purposes).

CHAPTER 1. INTRODUCTION 5



1.3. ENABLING STATIC ANALYSIS THROUGH COMPILER PLUGINS

1.3.1 Types of Compiler Plugins

Compiler plugins can be broadly categorized based on the phase of compilation

they target:

• Frontend Plugins: These plugins operate during the initial stages of com-

pilation, focusing on tasks such as syntax analysis, semantic analysis, and

Intermediate Representation (IR) generation (i.e., an internal data structure

used by the compiler). They are useful also for implementing custom syntax

extensions, enforcing coding standards, or performing static code analyzes.

For example, in the Rust programming language, compiler plugins can in-

troduce new syntax extensions and lint checks.

• Backend Plugins: Functioning in the latter stages of compilation, backend

plugins are concerned with code optimization, machine code generation, and

platform-specific adjustments. They can be utilized to implement custom

optimizations, support additional hardware architectures and more.

Compiler Plugins in Kotlin

Kotlin, a statically typed programming language developed by JetBrains, offers

robust support for compiler plugins, allowing developers to highly customize the

compilation process to their specific needs. Kotlin’s compiler architecture facili-

tates the creation of plugins that can modify or extend its behavior during compi-

lation. For example, a popular plugin is the all-open one: some frameworks (e.g.,

Spring6) require all classes to be open (i.e., classes that can have subclasses, the

contrary of final classes, which are default in Kotlin). Instead of having to man-

ually annotate each class with the open keyword, this plugin does it automatically,

facilitating this operation.

When guiding developers towards the creation of compiler plugins, JetBrains

compares them to Annotation Processors7. Annotation processors are a pow-

erful feature in many modern programming languages, including Java and Kotlin,

6https://spring.io/projects/spring-framework
7https://resources.jetbrains.com/storage/products/kotlinconf2018/slides/5_

Writing%20Your%20First%20Kotlin%20Compiler%20Plugin.pdf

6 CHAPTER 1. INTRODUCTION

https://spring.io/projects/spring-framework
https://resources.jetbrains.com/storage/products/kotlinconf2018/slides/5_Writing%20Your%20First%20Kotlin%20Compiler%20Plugin.pdf
https://resources.jetbrains.com/storage/products/kotlinconf2018/slides/5_Writing%20Your%20First%20Kotlin%20Compiler%20Plugin.pdf


1.3. ENABLING STATIC ANALYSIS THROUGH COMPILER PLUGINS

that allow developers to generate code, validate code, and perform various compile-

time checks based on annotations present in the source code. In Java, annota-

tion processors are part of the Java Compiler API and can be used to generate

additional source files, validate the correctness of the code, and even modify the

Abstract Syntax Tree (AST) of the code being compiled. They are commonly

used in frameworks and libraries to reduce boilerplate code and enforce coding

standards. Kotlin also supports annotation processors through the Kotlin Anno-

tation Processing Tool (KAPT) — which is, in fact, a compiler plugin itself —

that allows Kotlin code to interoperate with Java annotation processors and, more

recently, the Kotlin Symbol Processing (KSP), another compiler plugin introduced

as “an API that you can use to develop lightweight compiler plugins”. The former

enables developers to leverage existing Java annotation processors in their Kotlin

projects and the latter, on the other hand, provides a more efficient and Kotlin-

specific way to generate code at compile time, offering a new approach that is

much more integrated with Kotlin symbols.

1.3.2 Advantages of Compiler Plugins

Compiler plugins and Annotation Processors, however, have some very distinct

functionalities. While Annotation Processors are limited to generating source code

and performing checks based on annotations, compiler plugins can exploit a very

powerful API that can create and modify byte-code, elements inside the IR and

more, allowing the developers to solve a whole new class of meta-programming

problems. In addition, the use of annotations in the code could make it more

“cluttered” from the perspective of a DSL, since it would add elements that strictly

belong to the host language and that clash with a more natural language-like view.

The compiler plugin, instead, would not need these annotations, and could remain

clear and untouched. Of course, Annotation Processors are typically easier to write

and maintain than compiler plugins, but this extra cost can be worth in several

cases, for example in the scenario that will be presented in this thesis.

CHAPTER 1. INTRODUCTION 7



1.3. ENABLING STATIC ANALYSIS THROUGH COMPILER PLUGINS

1.3.3 Main challenges and requirements

At the time of writing, the development of frontend compiler plugins in Kotlin

is still a relatively less explored area compared to the backend ones. Due to

the limited documentation and examples available, the development of frontend

compiler plugins can be a challenging task, that quite often requires inspecting

the Kotlin compiler source code directly to understand how to interact with it.

Frontend compiler plugins can be implemented using Extensions to the Kotlin

compiler, a topic which will be explored in more detail in the following chapters.

This thesis presents the development process of a frontend compiler plugin

designed to build upon an existing backend plugin, built for enhancing the ca-

pabilities of an internal DSL. The primary purpose of this frontend plugin is to

perform static checks on the source code, ensuring compliance with specific rules

related to the functionality of the pre-existing target framework. To better under-

stand the target rules developed within this frontend plugin and its context, it is

necessary to first introduce the backend plugin and the project it is part of.

Structure of the Thesis This thesis follows the development process of a fron-

tend compiler plugin from its initial steps, addressing the key challenges encoun-

tered as well as the solutions proposed during the research and implementation

phases. The next chapter, chapter 2, provides an overview of the ongoing project

for which this frontend plugin is being developed, alongside the technical back-

ground necessary to understand how a plugin can interact with the Kotlin com-

piler. Chapter 3 delves into the core development process of the plugin, discussing

the design decisions, alternative approaches considered, and the final implemen-

tation of the proposed checkers. Subsequently, chapter 4 evaluates the plugin’s

behavior, with a particular focus on the testing methodology adopted, including

the integration of a custom testing framework named Subjekt, developed specifi-

cally for this purpose. Lastly, chapter 5 summarizes the primary contributions of

this thesis and outlines potential directions for future work, building on the results

and insights gained throughout this research.

8 CHAPTER 1. INTRODUCTION



Chapter 2

Background: the Collektive case

As mentioned earlier, the development of the frontend compiler plugin presented

in this thesis will be built on top of an existing backend plugin. This one is

part of a larger project named Collektive, a Kotlin multiplatform framework that

provides an internal DSL for the Aggregate Computing [BPV15] paradigm.

This chapter will provide an overview of the concepts behind Collektive as well as

the features behind its backend plugin and Kotlin compiler plugins development

in general.

2.1 Aggregate Computing: a novel paradigm

The Aggregate Computing (AC) paradigm is a novelmacro-programming approach

that enables collective behaviors within a heterogeneous set of devices, inside an

adaptive Internet of Thing (IoT) system [BPV15]. The paradigm shifts the focus

from individual devices to regions of devices, abstracting away the details of their

number, position, and behavior. This abstraction enables developers to reason

about distributed systems in terms of collective operations over computational

fields, rather than device-to-device interactions.

The foundation of Aggregate Programming is built on field calculus [BPV15],

a set of constructs that enable manipulations of data structures named Fields,

which map points in space-time. These constructs enable the implementation of ro-

bust coordination mechanisms that are self-stabilizing, meaning they can adapt to

CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE 9



2.1. AGGREGATE COMPUTING: A NOVEL PARADIGM

Field Computation

Single Program Result
device neighborhood

Figure 2.1: Execution model of an Aggregate Computing system.

changes in the environment and input values, gaining scalability to large networks

and preserving resilience properties [BPV15] [VAB+18] [VBD+19]. Applications

of aggregate programming are particularly impactful in large-scale scenarios, such

as crowd management during public events, where distributed devices coordinate

to provide services like crowd density estimation, dispersal advice, and navigation

support.

Aggregate computing formalism has been proposed in various ways, introducing

syntaxes and semantics to support distributed, collective behaviors in dynamic

systems. Tools like Protelis [PBV17], ScaFi [CV16] and FCPP [Aud20] extend field

calculus principles, providing programming frameworks and language constructs

to bridge the gap between theoretical models and practical implementations.

2.1.1 Applications and critical aspects

In Aggregate Computing, the main model of the system consists of a network of

intercommunicating devices : each device can be close to one another therefore

introducing a concept of neighborhood of devices. Equipped with sensors and

actuators, they can interact with an environment and communicate with other

devices through a message-passing system.

A key aspect of AC regards the execution model, which is based on a local pro-

gram identical for all devices. The system is governed by a continuously executed

loop that makes the devices (1) receive messages, (2) produce a result through a

round of execution of the aggregate program and finally (3) send values to neigh-

10 CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE



2.1. AGGREGATE COMPUTING: A NOVEL PARADIGM

bors. This structure allows for the system to show collective behaviors emerging

from the network of devices, and contemplates even complex interactions of the

devices with the environment through their sensors and actuators.

Finally, as already said, the field calculus model can be implemented through

an ad-hoc API and syntax to perform operations on a computational field (i.e., a

mapping from device locations to values, in our example) manipulating it over time,

defining interactions between devices and finally creating the emergent behavior.

2.1.2 The Domain Alignment problem

In AC, distributed devices execute the same program and interact with each other

to compute a collective result. To do so, data is exchanged during its execution and

a field of values is created, mapping the devices’ locations to values in time. In ag-

gregate computations, devices can “observe” these values in neighbors as they are

being computed, therefore mapping the other devices to the result of an interme-

diate computation. Since this mapping evolves over time, devices must be able to

observe only a specific portion of it, corresponding to neighbor devices that have ex-

ecuted the same intermediate program and are, therefore, called domain-coherent.

This necessary restriction is called domain alignment, and represents a main

challenge in Aggregate Computing, faced in several studies [DVPB15] [ADVC16].

In other words, domain alignment is a necessary step to ensure that when a

device computes a value that depends on neighbor devices (e.g., through particular

Aggregate constructs), those devices have computed the same expression in the

same evaluation round. This guarantees that shared computations remain consis-

tent across devices: it is necessary in order to maintain consistency between

field values and prevent information leakage. Without domain alignment,

devices may execute the same function in different rounds, making it impossible

to refer to the same part of the aggregate program, which is the same for all

devices, and therefore referring to different “domains” during the execution.

The alignment problem has been approached with several strategies [ADVC16]

for its run-time management, each one with different degrees of tolerance on the

domain of the devices. Even though these differences will not be explored in details

in this thesis, it is important to note that domain alignment cannot be guar-

CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE 11



2.2. COLLEKTIVE: AN AGGREGATE COMPUTING FRAMEWORK

anteed in all situations. In some Aggregate programs, domain alignment could

fail due to the impossibility for the devices to align on some specific computation,

resulting in inconsistencies. As proven in [ADVC16], the problem of statically

determining whether an aggregate program guarantees domain alignment is in

general undecidable, and many implementations disallow certain expressions that

could lead to domain misalignment only via run-time checks.

In the following chapters of this thesis, the domain alignment problem will be

examined during the static analysis of Aggregate Computing programs, written in

a specific AC framework. Before proceeding, however, it is necessary to introduce

the tool in question, that will be the target of the frontend plugin in this thesis:

Collektive.

2.2 Collektive: an Aggregate Computing frame-

work

Collektive is a modern Aggregate Computing framework developed in Kotlin that

allows developers to easily write Aggregate Computing programs (also called “ag-

gregate programs”) through a flexible internal DSL. The framework is designed

to be multiplatform, targeting JVM, JavaScript and native platforms. Compared

to some other existing AC frameworks, Collektive offers a modern and idiomatic

approach to writing aggregate programs, with a static type system (as it is internal

to Kotlin) and few, expressive constructs like neighboring and exchange, which

can be used to implement a broad variety of interactions between devices (and

also Aggregate Computing patterns).

The project is organized in modules, with the main one being the dsl and

compiler-plugin, and also provides an integration for Alchemist [PMV13], a

simulator for pervasive, aggregate, and nature-inspired computing.

2.2.1 Collektive DSL: main concepts

In order to understand how to work on Collektive programs, we first need to

understand its main usage. Note for the reader: during this explanation and

in the rest of the document, a sufficient knowledge of the Kotlin programming

12 CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE



2.2. COLLEKTIVE: AN AGGREGATE COMPUTING FRAMEWORK

Listing 2.1: Example of a Collektive program using the DSL.�
1 aggregate(localId) {

2 share(initialValue) { field ->

3 field.max(field.localValue)

4 }

5 }
� �
language is necessary to grasp a large part of concepts exposed, and therefore will

be assumed in many parts of the elaboration.

Collektive DSL is centered around the aggregate function, which is the entry

point for the aggregate program. The function uses a local ID to identify the device

on which is executed on and then accepts a function as parameter that performs

the aggregate computation using the Aggregate interface members. This inter-

face provides several functions that represent the main constructs of Collektive’s

implementation of the AC paradigm. The most important ones are:

• exchange: is the base construct that can be used to implement the behavior

of the other constructs. This operator models an anisotropic communication

with neighbors — i.e., different information is sent to different neighbors;

• share: models the space-time evolution of the field with an isotropic com-

munication — i.e., information is sent uniformly in all directions;

• neighboring: observes expressions on neighbors, returning the related field;

• evolve: updates an initial value iteratively computing an expression at each

device.

Some of these constructs also have a variant that allows the program to re-

turn a value of a different type than the one sent to the neighbors; the name

of the variant is the same of the original function but with the suffix -ing (e.g.,

exchanging, evolving etc.). In listing 2.1 is shown an example of an aggre-

gate program using the Collektive DSL: it starts identifying each device using a

localId and then shares the maximum value of the field with neighbors starting

from an initialValue.

CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE 13



2.3. KOTLIN COMPILER PLUGINS: GENERAL STRUCTURE

Just by using these four constructs, already complex collective behaviors can

be achieved. Besides that, the Collektive DSL hides several operations through

the already mentioned compiler plugin.

2.2.2 Collektive Compiler Plugin

As previously introduced, Collektive provides an already integrated backend

compiler plugin. This plugin is responsible for managing the already intro-

duced domain alignment inside aggregate programs — i.e., the alignment of de-

vices that execute aggregate programs. Essentially, Collektive backend compiler

plugins works by analyzing call sites and function definitions in the code, inter-

cepting the ones that involve aggregate computation and that should, therefore,

be “aligned”. Essentially, this is done by looking at Aggregate interface’s usage in

functions, especially when used as receiver, and visiting their declarations, wrap-

ping aggregate constructs usages with special align and dealign functions that

perform domain alignment under the hood. As it will be shown in section 3.5.1 of

the next chapter, this is not always automatic or safe in certain situations (e.g.,

loops), and the frontend extension will take care of these extra checks.

But how do Kotlin compiler plugins work in general? Before diving into the

core development of the frontend plugin, it is necessary to understand their main

structure and how they interact with the Kotlin compiler.

2.3 Kotlin Compiler Plugins: general structure

Since Kotlin is a multiplatform language, the same source code can be compiled

into low-level code specific to different targets, such as the JVM, JavaScript, and

native platforms. In order to work with different targets, the Kotlin compiler

architecture is divided into two sub-parts: the frontend and the backend1. The

frontend is independent of the target, and for this reason the result of its part

of the pipeline — i.e., the frontend IR — can be reused when targeting different

1The following explanation is greatly inspired from the work of Marcin Moskala in his book
“Advanced Kotlin (Kotlin for Developers)”, which provides a more comprehensive overview of
the Kotlin compiler plugins architecture.

14 CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE



2.3. KOTLIN COMPILER PLUGINS: GENERAL STRUCTURE

Kotlin file

.class file

.so file

.js file

Frontend

K1

K2

Backend

JVM

JS

Native

Figure 2.2: Kotlin compiler architecture.

platforms. Starting from the version 2 of the Kotlin Compiler, the frontend has

been upgraded to a new structure called K2, which is supposed to be much more

efficient than the previous K1 version. The backend, on the other hand, is mostly

specific to the target platform, and uses the output of the frontend to generate the

final code. In reality, the backends for JVM, JS and Native share some parts that

will be analyzed later. The general structure is summarized in fig. 2.2.

2.3.1 Kotlin K2 and frontend plugins

The frontend’s output is not only used by the backend for the final one, but it is

also responsible for communicating with IDEs and build tools, providing APIs to

present errors, warnings, code completions and so on. To make this architecture

modular, the Kotlin compiler provides a set of IRs, that the various steps of the

workflow can use to process the preceding steps’ output. Both the frontend and

the backend creates this data structure, although they are very different. The

backend’s one is created starting from the output IR of the frontend, while the

frontend’s one is created from the Kotlin source code. The general workflow is

summarized in fig. 2.3.

Before the so-called K2 frontend, the compiler’s frontend worked by building

the Programming Structure Interface (PSI), a syntactic model of the parsed source

code, and the BindingContext, that holds semantic information such as types and

symbol bindings (represented in fig. 2.3 as a whole). The new K2 frontend, on the

other hand, builds the FIR, a more powerful and complete representation of Kotlin

CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE 15



2.3. KOTLIN COMPILER PLUGINS: GENERAL STRUCTURE

Backend

JVM

backend

IR

JS

Backend

IR

Native

Backend

IR

IR generator + optimizer

Kotlin file

Native

Backend

PSI 
+ Binding 

Context

Frontend

FIR

K2K1

.class file .so file.js file

Checkers

Figure 2.3: Kotlin compiler general workflow.

16 CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE



2.4. DSL AND COMPILER PLUGINS

parsed code, capable of offloading some of the work that was previously done by the

backend and enabling powerful optimizations and caching mechanisms. The raw

PSI is still being produced, but it is now transformed into the raw FIR, which again

transforms in different stages, filling the tree with semantic information. Finally,

the resolved tree is passed to the backend, which takes care of the platform-specific

(backend) IR, used to generate the final code.

As we can see in fig. 2.3, there is still another process that hasn’t been men-

tioned yet: the checkers. During their stage of execution, the checkers can inspect

the FIR and reports different diagnostics. If some of them is considered “critical”,

meaning that the compilation should not proceed (e.g., a type error), the compila-

tion is stopped, and the backend is not executed: otherwise, the final IR is passed

to it. Checkers play a crucial role in this thesis, and will be the main focus of the

frontend plugin development, explored in chapter 3.

2.4 DSL and Compiler Plugins

In relation to what stated in section 1.2, the feature that is missing in most internal

DSLs is the ability to perform static analysis on the code that is written, and this

is particularly difficult since the developers struggle to intervene in the compilation

process of the host language. Compiler plugins seem perfect for this task since,

in the case of Kotlin compiler plugins at least, they can greatly influence the

compilation process on the frontend side and take care of the static analysis of the

code. Collektive is in fact internal to Kotlin and its main pitfalls — and the ones

of Aggregate Computing in general — which are currently not captured can be

spotted by a frontend plugin made for the job.

In other words, the frontend plugin can take care of the “second half of the

problem” introduced in section 1.2, that is the static analysis of the code that

is written in the internal DSL, made specifically for approaching new paradigms

with less technical challenges.

CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE 17



2.4. DSL AND COMPILER PLUGINS

2.4.1 The importance of Build Tools

Considering all of this, it is important to mention the role of build tools in the

development process of a compiler plugin. Without a seamless integration of the

compiler plugin during the compilation process (and, as it will be shown, the test-

ing process as well), the development of a compiler plugin would be cumbersome

and error-prone due to integration steps that are not automated. A well-configured

build tool appeared as a fundamental requirement in the context of this thesis.

The tool used for the development of the frontend plugin is Gradle2, a build

automation tool that is used for Kotlin projects and that provides a plugin system

that can be used to extend the build process.

2.4.2 Main motivations

Before diving into the development of the frontend plugin, let’s briefly summarize

the motivations behind the project. As previously mentioned, Aggregate Comput-

ing is still a relatively new paradigm, and some studies [ADVC16] already pointed

out subtle bugs that can occur when using some of its possible implementations.

Collektive is not an exception and, in this particular case, developing a frontend

compiler plugin is motivated by three main reasons:

1. The backend plugin: since a backend plugin is already present and nec-

essary for the correct functioning of the framework, the frontend plugin can

be simply built on top of it, extending its functionalities and ensuring that

the user’s operations are safe and within the scope of Collektive DSL correct

usage principles.

2. The presence of an internal DSL: when building a DSL, a developer

must choose to make it internal to a host language, like Kotlin, or external,

like Protelis [PBV17], and so take care of the parsing and the compilation

process in general. As already said, internal DSLs are typically easier to

use and to develop, but they can also be less flexible and more error-prone,

because the developer does not have full control over the parsing process and

therefore cannot always enforce the constraints that the DSL should have.

2https://gradle.org/

18 CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE

https://gradle.org/


2.4. DSL AND COMPILER PLUGINS

This is the case with Collektive, and the frontend plugin can help in this

regard.

3. The integration with the other development tools: developing a fron-

tend plugin integrates very well with the other tools that are already used

in most projects, for example:

• IDE: since the IntelliJ IDEA IDE is the most indicated for Kotlin

development and it has a very good support for the Kotlin compiler, the

frontend plugin can leverage this support to provide real-time feedback

for diagnostics and errors it produces, without the need of developing

specific IDE plugins.

• Build tools: the Gradle plugin that is used to apply the compiler

plugin requires low effort to be developed and needs almost zero mod-

ifications when extending the compiler plugin, differently from what

would happen in the case of Gradle plugins wrapping external tools

(e.g. Ktlint, one of the Kotlin linters available, needs a Gradle plugin

to be maintained along with the main tool). This means that it can be

easily maintained and integrated into other Gradle projects with low

effort.

• Rest of the pipeline: the frontend plugin can be developed very

closely to the rest of the Collektive framework through submodules,

adding dependencies between subprojects in a very clean and maintain-

able way.

Considering these motivations, we can now proceed with the actual develop-

ment in the next chapter.

CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE 19



2.4. DSL AND COMPILER PLUGINS

20 CHAPTER 2. BACKGROUND: THE COLLEKTIVE CASE



Chapter 3

Frontend plugin development

In this chapter we will present the development process that lead to the creation

of the frontend plugin inside the Collektive project.

Structure of this chapter In this chapter, we will first present the general

structure of Kotlin K2 checkers as well as the architecture of the static analyzer

developed within the plugin, then we will proceed presenting several patterns that

were detected observing the Collektive DSL codebase. These patterns represent

bad or inappropriate use cases of the Collektive DSL that are not captured by de-

fault. The way these patterns will be presented does not follow the chronological

order of their development, but rather an order with an increasing level of com-

plexity. For this purpose, the patterns will be categorized into four main groups,

reflecting the design decisions that were taken to approach the related problems,

highlighting the pros and cons of each approach.

Note: the features of the Kotlin compiler explained and shown in this chapter

are experimental, and therefore subject to possible instability and frequent changes.

The code snippets and examples provided are based on the current state of the

Kotlin compiler at the time of writing.

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 21



3.1. INTERACTION WITH THE KOTLIN COMPILER

3.1 Interaction with the Kotlin compiler

As already introduced in section 2.3.1, the Kotlin K2 frontend performs static

checks using checkers that inspect the FIR and report diagnostics. To interact

with this system, the developer can create extensions.

3.1.1 Extension mechanism

Kotlin compiler extensions are mechanisms that allow developers to modify various

phases of the compilation process, either by analyzing and transforming code at

the FIR level or by modifying the backend IR. These extensions enable advanced

features such as additional type checks, automated code generation, and optimiza-

tions, empowering Kotlin’s extensibility. Like with compiler stages, extensions can

be either frontend or backend as well: while frontend extensions impact code anal-

ysis, syntax resolution, and IDE support, backend extensions act right after the

IR generation + optimization phase seen in fig. 2.3 of the previous chapter. This

distinction makes frontend extensions more suitable for language-level changes

and linting rules, whereas backend extensions are primarily used for performance

optimizations and bytecode transformations.

K2 introduces multiple frontend extensions, all following a specific naming

convention: Fir[Name]Extension. In relation to what was previously discussed

about checkers, the FirAdditionalCheckersExtension is particularly important

in this context, since it is a frontend extension that allows developers to register

additional checkers to run during compilation. These checkers can enforce custom

coding rules, report warnings, or even prevent compilation by issuing errors. More-

over, errors and warnings generated by this extension appear in IDEs like IntelliJ

IDEA, improving real-time code feedback. This extension is used by Kotlin plu-

gins like Kotlin Serialization, which ensures that serialization-related constraints

are properly followed, and Arrow Meta, which enforces functional programming

best practices.

The extension mechanism is also used in the backend, where backend plugins

can intervene, but the extension that needs to be used in only one: Ir Generation

Extension. This extension is invoked after the FIR phase has completed and the

22 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.1. INTERACTION WITH THE KOTLIN COMPILER

collektive

kotlin

AlignmentComponentRegistrar

supportsK2: Boolean = true

ExtensionStorage.registerAlignmentComponent(configuration: CompilerConfiguration)

AlignmentIrGenerationExtension

generate(moduleFragment: IrModuleFragment, pluginContext: IrPluginContext)

IrGenerationExtension

generate(moduleFragment: IrModuleFragment, pluginContext: IrPluginContext)

CompilerPluginRegistrar

supportsK2: Boolean

ExtensionStorage.registerExtensions(configuration: CompilerConfiguration)

Figure 3.1: Class diagram representing the top-level structure of the Collektive
backend compiler plugin. Note: the frontend plugin is not included yet.

IR has been generated. It allows modifications to the IR tree before it is used

for bytecode generation. Because IR sits between the frontend and the platform-

specific backend, changes made here can impact the generated machine code with-

out altering the high-level source representation — and, for this reason, it does not

influence code analysis in IDEs like IntelliJ IDEA. This extension is widely used in

performance-critical applications. For instance, Jetpack Compose leverages it to

transform composable functions into an optimized internal representation. Sim-

ilarly, Kotlin Serialization uses it to generate serialization methods dynamically,

ensuring they are both efficient and lightweight. However, modifying IR directly

can introduce breaking changes if not handled carefully. Since IR transformations

occur at a low level, even minor alterations can lead to unintended consequences,

making this extension a powerful but complex tool.

IR generation inside Collektive

Collektive backend plugin uses the IrGenerationExtension to perform the opera-

tions we already discussed. To register an extension, the developer needs to declare

a class that extends CompilerPluginRegistrar. Inside that, the developer can

register the extension using the registerExtension method that depends on the

type of extension that is being registered. The core logic of the plugin is then

implemented in the extension itself. In the case of the Collektive backend plugin,

the class structure is summarized in fig. 3.1.

Finally, to include the plugin, a META-INF/services file is needed, where the

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 23



3.2. STATIC ANALYZER ARCHITECTURE

Collektive

«KotlinCompilerPluginSupportPlugin»
Gradle plugin

«CompilerPlugin»
AlignmentComponentRegistrar

«BackendExtension»
AlignmentIrGenerationExtension

«FrontendExtension»
CollektiveFrontendExtensionRegistrar

Collektive DSL

PLUGIN_ID

The thesis's objective

External Gradle Project

«uses» «uses»

«uses» «uses»

Figure 3.2: Components of the Collektive project after the application of the
frontend plugin

fully qualified name of the AlignmentComponentRegistrar is written, and the

plugin is wrapped in a Gradle plugin that can be applied to the project build1.

After the application of the frontend plugin also, the structure of the project’s

components will be the one described in fig. 3.2.

3.2 Static analyzer architecture

The frontend plugin that will be added to the Collektive project represents the

static analyzer for the Collektive DSL, target of this thesis. To detect patterns

in the code, this plugin needs the already cited checkers, the main components of

the static analysis. The architecture of this static analyzer is therefore obtained

through a bottom-up approach, operating on the compiler internals in order to add

new rules to the static analysis. Rules can target different type of elements of the

1Compiler plugins are, at the time of writing, supported only through the Gradle build system.
For this and other reasons that regard the state of the Collektive project, future comments on
the build environment will take the use of this tool for granted.

24 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.2. STATIC ANALYZER ARCHITECTURE

FirExtension

FirCheckerWithMppKind

FirExtensionRegistrar

configurePlugin()

FirAdditionalCheckersExtension

CollektiveExtension

FirCheckerWithMppKind[] checkers

CollektiveFrontendExtensionRegistrar

configurePlugin()

FirExpressionChecker

check(expression: E, context: CheckerContext, reporter: DiagnosticReporter)

«Singleton»

CustomExpressionChecker

check(expression: E, context: CheckerContext, reporter: DiagnosticReporter)

1

1

1

n

1

n

Figure 3.3: Class diagram summarizing the structure of the frontend plugin

FIR tree, for example function calls or property declarations. The targeted type

defines the type of the built checker.

Note: a checker does not necessarily correspond to a single rule, but for the

sake of clarity and to embrace Single-Responsibility Principle (SRP) the static

analyzer will be built enforcing this one-to-one correspondence.

After defining the CollektiveFrontendExtensionRegistrar class that wraps

the frontend plugin, already introduce in the previous section, the first step is to

register the actual extensions to the compiler using the configurePlugin method.

For this plugin, the extension that will be used is the already cited Fir Additional

Checkers Extension, which allows registering additional checkers to run during

compilation. This extension can contain an arbitrary number of checkers, each of

them assigned to different elements of the FIR tree (e.g., expressions, declarations

etc.). All the checkers that will be presented are added through this extension.

The final class structure is summarized in fig. 3.3.

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 25



3.3. ADOPTED WORKFLOW

3.2.1 Adding new rules

To add a new rule, the developer needs to create a new object that extends one

of the FirChecker types, depending on the type of element that will be targeted.

The checker will then be added to the frontend extension by adding the singleton of

the checker. The checker’s internal behavior is defined by its method check, which

is called by the compiler when the element is encountered in the FIR tree. The

method takes a FirElement as parameter, which is the element that is being ana-

lyzed, and two more objects, the CheckerContext and the DiagnosticReporter.

The first one is used to provide contextual information to the checker, while the

second one is used to report diagnostics to the compiler. Inside the check method,

the developer can inspect the element and its contextual information using both

the FirElement and the CheckerContext objects. Finally, in case of a positive

detection, the DiagnosticReporter will be used to report it.

The checker object is added to the frontend extension inside a set of checkers

corresponding to its type of inspected element. An example of implementation

can be found in the first pattern’s checker, shown in listing 3.2.

3.3 Adopted workflow

From this point on, the workflow of the plugin development will be as follows:

1. Pattern detection: when a new pattern that needs to be captured by

the plugin is detected, several examples of Collektive programs expecting a

positive or negative diagnostic (i.e., cases in which the diagnostic should be

reported and cases where it should not) are written;

2. Test arrangement: the examples previously written are used to create a

test suite that will be used as certification of the pattern’s correct capture,

following a Test-Driven Development (TDD) approach;

3. Checker creation and implementation: a new checker is created and

added to the frontend extension, implementing the logic that will detect and

correctly report positives of the pattern’s usages;

26 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.4. FIRST APPROACH: DIRECT KOTLIN API USAGE

4. Adjustments and identification of corner cases (optional): during

the development of a checker, certain corner cases may emerge that require

handling and should be added as regression tests. Once these cases are

properly identified, the process loops back to step 2, refining and extending

the existing checker accordingly.

In this chapter, we will present these steps for each pattern, except for step 2,

which will be covered in chapter 4.

Note: Unless explicitly stated otherwise in the code, the snippets presented

in the following sections are assumed to be inside an Aggregate block. This

means they are either within a function that has the Aggregate interface as its

receiver or inside an aggregate entry point block, as these are the designated

contexts where the Collektive DSL can be used to specify aggregate behaviors.

This choice has been made to enhance brevity and clarity.

3.4 First approach: direct Kotlin API usage

The API that Kotlin provides to interact with the FIR is sufficiently powerful to

be used to perform a wide range of operations and checks. The first approach to

the development of the checkers was to use this API directly, without the need of

any additional constructs or classes. This approach is the most direct, but it was

used only for the pattern with the lowest complexity.

3.4.1 Pattern 1: explicit align/dealign

One of the first pattern detected is the explicit usage of the align and dealign

functions of the Collektive DSL. For how the Collektive DSL is structured, it was

not possible to prevent the usage of these functions directly through the API’s

design, so the frontend plugin was put in charge of this task.

Rationale

These functions are not supposed to be used directly by the developer because they

are already managed by the backend plugin, which uses them when inspecting call

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 27



3.4. FIRST APPROACH: DIRECT KOTLIN API USAGE

Listing 3.1: Example of Pattern 1 detection in code�
1 align(null) // Pattern detected

2

3 dealign () // Pattern detected

4

5 otherAggregateMethod () // Pattern not detected
� �
sites of the functions that need alignment, wrapping these calls with the alignment

constructs. The direct usage of these functions can lead to inconsistent behavior

and unexpected results, since it might also interfere with the already working

backend plugin, so the frontend part should prevent the presence of these calls in

the code.

Pattern detection

Given two functions align and dealign available in the Aggregate interface, the

pattern is satisfied when any of these functions are used explicitly in the code.

Listing 3.1 shows an example of this pattern.

Design and Implementation

One of the type of checkers available among FIR checkers is the Fir Function

Call Checker, which is just a type alias for a FirExpressionChecker— that is, a

checker that takes care of expressions in the code — typed with a FirFunctionCall

— i.e., an element of the FIR tree representing a function call in the code. This

type of checker can inspect function calls usages, calling the check method of

the checker with a FirFunctionCall as parameter. To performs checks on the

function call, we can inspect the properties of this parameter. In this case we only

need to compare the fully qualified name of the function with the one of the

interested functions.

Getting the fully qualified name of the function is not directly supported by

the FIR API, but it is possible to build a small utility function that retrieves it

(whose implementation is omitted). The final implementation of the checker is

shown in listing 3.2: some portions of the code are omitted for brevity.

The reportOn method of the reporter object is used to report a diagnostic

28 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.5. SECOND APPROACH: DECLARATIVE AND MODULAR API

Listing 3.2: Implementation of the Pattern 1 checker: ExplicitAlignDealign�
1 object ExplicitAlignDealign : FirFunctionCallChecker(MppCheckerKind.Common) {

2 override fun check(

3 expression: FirFunctionCall ,

4 context: CheckerContext ,

5 reporter: DiagnosticReporter ,

6 ) {

7 val fqnCalleeName = expression.fqName ()

8 if (fqnCalleeName in FORBIDDEN_FUNCTIONS) {

9 reporter.reportOn(

10 expression.calleeReference.source ,

11 FirCollektiveErrors.FORBIDDEN_FUNCTION_CALL ,

12 fqnCalleeName ,

13 context ,

14 )

15 }

16 }

17 // ...

18 }
� �
when the pattern gets detected. The parameter passed to this method determine

where the diagnostic is going to be reported (i.e., the position in the code) and

the message shown to the user (in these checkers, specified inside an object called

FirCollektiveErrors). It is possible to see that the checker is quite general, as

it can be used to detect the presence of any function call with a specific name.

3.5 Second approach: declarative and modular

API

Even though the API available in the checker is flexible and feature-rich, it can

appear quite verbose if we need to implement utilities even for relatively simple

operations like obtaining the fully qualified name of a function. To simplify the

development of the checkers and make them more modular, a small API was

developed to make declarative checks on the FIR tree, implemented during Pattern

2 checker development.

3.5.1 Pattern 2: simple aggregate operations in loops

The second pattern that was inspected is the usage of aggregate operations inside

loops. This pattern is more complex because it reflects cases that are not always

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 29



3.5. SECOND APPROACH: DECLARATIVE AND MODULAR API

inappropriate usages, but if not properly handled can lead to problems during the

alignment phase.

Rationale

As presented in section 2.1.2, the domain alignment inside an AC program cannot

be statically guaranteed in all cases. There are, however, particular constructs that

can lead to misalignment, and in the case of Collektive programs, since it is internal

to Kotlin, an example of these constructs are loops. When an aggregate construct

(i.e., a function call that needs alignment between devices) is called inside a loop

(e.g. a for loop), the alignment of the computation fails because multiple devices

are not able to align to the same “instance” of the call between the iterations.

However, the alignment can succeed if the loop contains a custom alignment op-

eration, that can be done using the alignedOn method, another construct of the

DSL, that manually performs domain alignment with manual constraints. This

method accepts an anonymous function that will be the subject of the alignment.

Again, this behavior cannot be captured through the internal DSL alone, so the

frontend plugin is needed to handle this case.

It could seem that this pattern is not overly complex to detect compared to

the previous one, but in reality just adding one more small constraint makes the

range of possible cases that can be captured following this pattern much broader

and more varied. Consider the cases presented in listing 3.3. These corner cases

are exceptions to the general rule that we previously stated, in fact:

• In the first case, although, technically, the construct is “present” inside the

loop, it is not directly called by the loop itself, but by a nested function.

Note that even though this can be seen as a corner case, this is valid Kotlin

code and might appear, maybe as slightly modified versions of this one, in

real use cases;

• In the second case, we have the required alignedOn operation wrapping

the Aggregate function call, but it is placed outside the loop, making the

alignment operation useless (since the multiple calls inside the loop will still

not be aligned);

30 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.5. SECOND APPROACH: DECLARATIVE AND MODULAR API

Listing 3.3: Corner case related to Pattern 2, where the construct is used inside a
nested function�

1 // Nested function

2 for(/* loop condition */) {

3 fun Aggregate <Int >. nested () {

4 neighboring ({ 2 * 2 })

5 }

6 }

7

8 // AlignedOn outside the loop

9 alignedOn(/* ... */) {

10 for(/* loop condition */) {

11 neighboring ({ 2 * 2 })

12 }

13 }

14

15 // Loop outside the ‘aggregate ‘ block

16 for (/* loop condition */) {

17 aggregate {

18 neighboring ({ 2 * 2 })

19 }

20 }
� �
• In the third case, the loop is done without alignment, but this is in fact

correct because the construct is not iterated by the loop since a new aggregate

instance is created at each iteration. This makes each of them like a separate

Aggregate program, and the alignment is not necessary.

Many more cases regarding this pattern can be found, but some of these will

be presented as another, separated pattern in section 3.7.1, both because it was

treated in a separated moment during the development and since the growth in

complexity is not negligible. For now, we will deal with simpler cases, described

in the following, more precise description.

Pattern detection

Given a construct that loops through various iterations (e.g., a for statement, an

anonymous function called when cycling collection’s elements, like map, forEach

etc.) inside an “aggregate” block, the pattern is satisfied when an aggregate

construct is used inside the loop body satisfying both the following conditions:

1. There is no alignedOn operation that wraps the construct inside the loop;

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 31



3.5. SECOND APPROACH: DECLARATIVE AND MODULAR API

2. The construct is not part of a nested static declaration (e.g., a nested func-

tion) whose use is not iterated by the loop.

Design and Implementation

The description might still seem incomplete or vague to some extent, and the

reason is that some potential cases are still not captured. For now, though, the

developed checker will be able to capture the most common cases, and the rest, as

we will see, will be integrated when covering the Pattern 5.

One possible way to approach this pattern is reasoning in terms of containing

blocks: starting from the aggregate function called, we could be able to determine

if the pattern is detected or not just by looking at the sorted list of containing

blocks of the function call. Starting from there, we first inspect if a loop is, in

fact, containing the function call, and if so, we check for other elements, like the

presence of the alignedOn, in the correct order. This procedure is summarized in

fig. 3.4.

As we can see from the diagram, the procedure ends immediately if the func-

tion name is one of alignedOn, align or dealign, since these are functions that

do not require alignment. Thanks to Kotlin nullability system, we can perform

these subsequent checks in a declarative way, adding utilities to the API that we

previously introduced and making it more extensible for other checks like this.

This API is composed of a set of functions with receiver that can be used to

perform common operations on the FIR elements, for example to check if a Checker

context is inside an Aggregate function or block. Some of these utilities are

shown in listing 3.4.

As shown, we can perform checks on the FIR tree using built-in methods like

containingElements: we can use this method to check if a FirElement is con-

tained inside a function that has a receiver parameter of a certain type, in this

case the Aggregate one, by inspecting the name of the Class-like Symbol (i.e., the

symbol referred to a class or similar entities like interfaces) to which it is related.

Encapsulating this composed operations in functions makes them still reusable

and declarative in the context of domain-specific checkers like the ones we are de-

veloping. This greatly empowers the Kotlin FIR API, making it more interesting

32 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.5. SECOND APPROACH: DECLARATIVE AND MODULAR API

I have a function to check

Take the list of elements containing the function, sorted from the outer to the inner

Take the elements starting from the end of the list until the first loop (not included)

Pattern detected

No

In the obtained elements, is there a call to the function 'alignedOn'?
Yes

No

In the obtained elements, is there a call to the function 'aggregate'?
Yes

No

In the obtained elements, is there a function declaration?
Yes

Yes

Do I see a loop?
No

Yes

Is the function aggregated?
No

No

Is its name `alignedOn`, `align` or `dealign`?
Yes

Figure 3.4: Flowchart representing the procedure to detect Pattern 2

Listing 3.4: Some utility functions of the small API developed�
1 fun CheckerContext.isInsideAggregateFunction (): Boolean =

2 containingElements.any { (it as? FirSimpleFunction)?. receiverParameter ?.

isAggregate(session) == true }

3

4 fun FirReceiverParameter.isAggregate(session: FirSession): Boolean =

5 typeRef.toClassLikeSymbol(session)?.name?. asString () == AGGREGATE_CLASS_NAME

6

7 fun FirFunctionCall.isAggregate(session: FirSession): Boolean {

8 val callableSymbol = toResolvedCallableSymbol ()

9 return callableSymbol ?. receiverParameter ?. isAggregate(session) == true ||

10 callableSymbol ?. getContainingClassSymbol ()?.name?. asString () ==

AGGREGATE_CLASS_NAME

11 }
� �

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 33



3.5. SECOND APPROACH: DECLARATIVE AND MODULAR API

Listing 3.5: Utility functions added to help in the detection of Pattern 2�
1 fun CheckerContext.wrappingElementsUntil(

2 predicate: (FirElement) -> Boolean ,

3 ): List <FirElement >? =

4 containingElements

5 .takeIf { it.any(predicate) }

6 ?. dropLast (1) // the element itself

7 ?. takeLastWhile { !predicate(it) }

8

9 fun List <FirElement >. discardIfFunctionDeclaration (): List <FirElement >? =

10 takeIf { elements -> elements.none { it is FirSimpleFunction } }

11

12 fun List <FirElement >. discardIfOutsideAggregateEntryPoint (): List <FirElement >? =

13 takeIf { it.none(isFunctionCallsWithName("aggregate")) }

14

15 fun isFunctionCallWithName(name: String): (( FirElement) -> Boolean) = {

16 it is FirFunctionCall && it.functionName () == name

17 }
� �
also for more complex cases that will be presented later. We first add these small

functions shown in listing 3.5 to the API, and then we can finally implement the

checker, as shown in listing 3.6. Many portions of the code are omitted for brevity.

The wrappingElementsUntil function is used to get the list of elements that

wrap a certain element until a certain condition is met. This is used to get the list

of containing blocks of the function call, and then check if the pattern is satisfied

only by looking at this list. The other functions are used to provide conditions

to the previous function, “discarding” the result — i.e., returning null — if the

condition is not met. The result shown in the checker of listing 3.6 shows how this

API can be used to chain these conditions in a declarative way, leveragin Kotlin’s

nullability system.

As we can already see, implementing a checker with this approach has several

advantages: the code is more readable and modular, and the logic is sufficiently

declarative and easier to understand. This approach is also extensible and can be

adapted to other patterns that require similar checks. This is, however, a very

particular case that can be caught only by looking at containing elements. Once

the pattern becomes more complex, adding concepts like symbol’s usage references

or structured operations with specific requirements, for example nested anonymous

calls or subsequent statements that need to be checked together, this approach

quickly becomes less effective and more verbose, as it requires a very effective

and carefully designed API that cover as many cases as possible. During the

34 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.6. THIRD APPROACH: VISITOR PATTERN

Listing 3.6: Implementation of the Pattern 2 checker: NoAlignInsideLoop�
1 object NoAlignInsideLoop : FirFunctionCallChecker(MppCheckerKind.Common) {

2 // inside a ‘for ’ or ‘while ’ construct

3 private fun CheckerContext.isInsideALoopWithoutAlignedOn (): Boolean =

4 wrappingElementsUntil { it is FirWhileLoop }

5 ?. discardIfFunctionDeclaration ()

6 ?. discardIfOutsideAggregateEntryPoint ()

7 ?.none(isFunctionCallWithName(AggregateFunctionNames.

ALIGNED_ON_FUNCTION_NAME)) ?: false

8

9 // inside a function like ‘forEach ’ or ‘map ’ of Kotlin Collections

10 private fun CheckerContext.isInsideIteratedFunctionWithoutAlignedOn (): Boolean =

11 wrappingElementsUntil { it is FirFunctionCall && it.functionName () in

collectionMembers }

12 ?. discardIfFunctionDeclaration ()

13 ?. discardIfOutsideAggregateEntryPoint ()

14 ?.none(isFunctionCallWithName(AggregateFunctionNames.

ALIGNED_ON_FUNCTION_NAME)) ?: false

15

16 // the ‘check ’ method verifies that the function is aggregate and uses these two

methods ...

17 }
� �
development of the rest of the checkers, it appeared natural to cover corner cases

and patterns that reflect many possible FIR trees with an approach more suitable

to this kind of data structures.

3.6 Third approach: visitor pattern

One of the main design patterns that can be used to traverse a tree-like data

structure is the visitor pattern. This pattern is particularly useful when the tree

structure is complex and the operations that need to be performed on it are varied

and not easily encapsulated in a single class. It is no coincidence that many of

the available static analysis tools use this kind of approach [LPS+23]. The visitor

pattern well fits the context of the Kotlin FIR, since the structure resembles the

one of the AST built by the Kotlin parser. Visitors are naturally used during the

compilation process even if we don’t explicitly define any, since the compiler itself

needs to traverse the tree to perform the various operations needed to compile the

code. Kotlin provides a set of utilities that can be used to implement Visitors that

fit the developer needs and that can be easily integrated into the checkers, in order

to explore the FIR structure behind the FirElements (i.e., the nodes of the tree)

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 35



3.6. THIRD APPROACH: VISITOR PATTERN

«Singleton»

FirTree

Element

name: String,
propertyName: String,
kind: Kind

FirElement

source: KtSourceElement?

accept(visitor: FirVisitor<R, D>, data: D): R
accept(visitor: FirVisitorVoid)

FirVisitor
R, D

visitElement(element: FirElement, data: D): R

FirVisitorVoid

visitElement(element: FirElement): Unit

«contains»

«generates»

«generates»

«visits»

«visits»

Figure 3.5: Summarized class diagram of the visitors inside the Kotlin compiler

that are passed to the checkers.

Kotlin FIR visitors are automatically generated inside the Kotlin compiler code

in order to have a specific method for each type of FirElement that can be used

to visit that element. All that is left to the developer is to choose which type of

visitor to extend in order to implement their own:

• FirVisitor<R, D>: a visitor where each visit method accepts a D parameter

that can be used to pass data between the visit calls, and a return type R

that can be used to return a result from the visitor;

• FirVisitorVoid: a visitor where each visit method accepts only the element

to visit and returns nothing. Under the hood is simply a FirVisitor<Unit,

Nothing?>.

Depending on the specific task assigned to the visitor, the developer will choose

one of these two types of visitors and extend it into a new class. Their structure

is summarized in the class diagram of fig. 3.5.

3.6.1 Pattern 3: unnecessary Yielding usage

Having introduced the visitor pattern, we can now see it in practice having to

deal with the next pattern, whose implementation in the checkers exploits FIR

36 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.6. THIRD APPROACH: VISITOR PATTERN

Listing 3.7: Example of usage of the yielding context in the Collektive DSL, taken
from the Collektive documentation�

1 // Normal version

2 exchange(initial = 1) { field ->

3 field.map { it + 1 }

4 }

5

6 // Version with yielding context

7 exchanging(initial = 1) { field ->

8 val fieldResult = field.map { it + 1 }

9 fieldResult.yielding { fieldResult.map { "return $it" } }

10 }
� �
visitors. This pattern regard the unnecessary usage of the yielding contexts in

the Collektive DSL.

Rationale

The yielding context is a specific feature inside the Collektive DSL, briefly intro-

duced in section 2.2.1, that allows the developer to call a construct of the DSL, like

exchange for instance, returning a value different from the result of the construct.

To use this feature, instead of using the actual construct, the variant with the

-ing suffix is used, like exchanging in this case: these variants are called yielding

operations. Essentially, a YieldingContext<Initial, Return> is used inside

yielding operations to act on an Initial value — that can, for example, be ex-

changed with neighbors — but return a different value of type Return to the

caller, without having to return the same value as for the normal version.

In listing 3.7 we can see an example of the usage of this yielding context, taken

from the Collektive documentation. In the example provided, the exchanging

construct will still perform like the normal one, which sends the results from the

evaluation of the provided function to other devices and returns an object of type

Field<Int, Int>. The entire operation, however, will return another object of

type Field<Int, String>, resulted from the map call inside the yielding action.

As can be observed from listing 3.8, the usage of this feature can be redundant:

nothing prevents the developer from using this construct and return the same value

as the one been computed and sent to the other devices by the construct, resulting

in a useless yielding that could be safely substituted with the normal version

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 37



3.6. THIRD APPROACH: VISITOR PATTERN

Listing 3.8: Example of Pattern 3 detection in code, with an unecessary usage of
a yielding context, this time with the sharing construct�

1 sharing(initial) {

2 // ...

3 value.yielding { value }

4 }
� �
of the construct. Since it represents an inappropriate usage of these methods, its

detection is a task for the static analyzer.

Pattern detection

Given a Collektive yielding operation (e.g., exchanging, evolving, etc.), the pat-

tern is satisfied when the expression returned inside the anonymous function passed

as parameter to the yielding call is equivalent to the one used as its receiver,

therefore resulting in a redundant usage of the yielding context.

Design and Implementation

As previously introduced, this Pattern’s checker will be based on the Visitor pat-

tern. The checker can perform an initial check on the function name to intercept

a Collektive yielding operation based on a set of predefined, fully-qualified names.

Once one of these constructs is found, the checker will delegate the inspection of

the anonymous function to the implemented visitor, that will traverse the small

part of the FIR tree that is contained within the construct’s parameters (i.e., the

anonymous function passed as parameter to the construct) Finally, the visitor will

return a boolean value used to report the successful or unsuccessful detection of

the pattern.

The implementation of the checker can be seen in listing 3.9. The core part

is the visitor method call containsUnnecessaryYielding, whose implementation

will be briefly discussed in the following.

Visitor implementation

To check if a function call corresponding to a construct with a yielding context

matches the pattern, we need to inspect the anonymous function that is passed as

38 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.6. THIRD APPROACH: VISITOR PATTERN

Listing 3.9: Implementation of the Pattern 3 checker: UnnecessaryYielding�
1 object UnnecessaryYielding : FirFunctionCallChecker(MppCheckerKind.Common) {

2

3 private fun FirFunctionCall.usesAnUnnecessaryYieldingContext (): Boolean =

4 with(YieldingUnnecessaryUsageVisitor ()) {

5 containsUnnecessaryYielding ()

6 }

7

8 override fun check(

9 expression: FirFunctionCall ,

10 context: CheckerContext ,

11 reporter: DiagnosticReporter ,

12 ) {

13 if (expression.fqName () in constructs // FQ names of the yielding operations

14 && expression.usesAnUnnecessaryYieldingContext ()) {

15 // report as in the other checkers

16 }

17 }

18 }
� �
parameter. When the visitor encounters a function call to the yielding operation,

it will save the explicit receiver of the call and then visit the anonymous function

that is passed as parameter to yielding. When visiting a return expression of

the anonymous function passed to the yielding construct, the visitor will check if

the expression is equivalent to the saved receiver of the yielding construct. If so,

the visitor will return true, meaning that the pattern is detected, otherwise it will

return false.

A behavior like this can be implemented using the FirVisitorVoid class: the

listing 3.10 summarizes the visitor’s implementation.

The function isStructurallyEquivalentTo is a utility function that uses

Kotlin expression rendering to check if two expressions are equivalent. For brevity

purposes, its implementation is omitted. The function containsUnnecessaryYielding

is also omitted, but its implementation consists only of a call to the visiting meth-

ods, returning a boolean variable set during the exploration.

Using the visitor approach to this task revealed itself to be more effective and

limited in complexity compared to using the FIR API on the elements directly.

However, this still represents a relatively simple case, often solved by common

static analysis checks for programming languages in similar situations (e.g., same

expression on both sides of an assignment). We will now see how to approach more

complex cases with the visitor pattern.

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 39



3.6. THIRD APPROACH: VISITOR PATTERN

Listing 3.10: Implementation of the Pattern 3 Visitor�
1 class YieldingUnnecessaryUsageVisitor : FirVisitorVoid () {

2 // ... private fields declarations ...

3

4 override fun visitFunctionCall(functionCall: FirFunctionCall) {

5 if (functionCall.fqName () == YIELDING_FUNCTION_FQ_NAME) {

6 insideYielding = true

7 yieldingReceiver = functionCall.explicitReceiver // we save the receiver

8 functionCall.argumentList.arguments.forEach (:: visitElement) // we visit the

arguments

9 insideYielding = false

10 return

11 }

12 super.visitFunctionCall(functionCall)

13 }

14

15 override fun visitReturnExpression(returnExpression: FirReturnExpression) {

16 if (insideYielding) { // inside the anonymous function passed to yielding

17 containsUnnecessaryYielding = returnExpression

18 .result

19 .isStructurallyEquivalentTo(yieldingReceiver) // we check if the return

value is the receiver

20 return

21 }

22 super.visitReturnExpression(returnExpression)

23 }

24 // ...

25 }
� �
3.6.2 Pattern 4: unnecessary construct usage

In order to prove the effectiveness of the visitor pattern in more complex cases, we

will now present a more complex pattern that can be detected using this approach.

This pattern regards the unnecessary usage of constructs in the Collektive DSL.

Rationale

Kotlin compiler won’t, by default, warn the developer when an anonymous function

that can have one or more parameters is created without using them in the body

(and maybe passed to another function as a parameter). For example, in the code

shown in the following snippet:�
1 listOf(1, 2, 3).map { 5 }
� �

The anonymous function passed to the map function is not using the it pa-

rameter and, in general, this cannot always be interpreted as an error because,

depending on the function, the parameter might not be needed. Some Collektive

40 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.6. THIRD APPROACH: VISITOR PATTERN

constructs, however, are designed to work with the parameters of these anonymous

functions, since their internal actions work based on that: in many cases, the con-

struct would simply appear useless, and the absence of these parameters could be

a sign of misinterpretation of the construct’s behavior and intended usage

as well as an unnecessary network exchange that results in a waste of resources.

Consider the evolve construct, for example: not using its parameter would mean

that the evolution is not taking the field state into consideration, depending on

some other values that do not regard the aggregate computation, resulting in a

bad and unnecessary usage. In other words, the usage of these constructs without

using the parameters can always be considered a misuse of the construct, and the

frontend plugin should be able to detect it.

Not all constructs behave in the same way: for example, the neighboring and

neighboringViaExchange constructs are different from the rest. Since these two

functions evaluate expressions in neighbors devices, if the expression to evaluate

is provided as an anonymous function, this does not accept parameters. In this

case, the construct usage is considered unnecessary if the anonymous function has

an empty return — i.e., a return of type Unit. An example of both the cases is

shown in listing 3.11. Note: the code shows the usage of explicit parameters, but

the pattern is valid also when the parameters are used implicitly (e.g., using the

it keyword).

Pattern detection

Given a Collektive construct that accepts an anonymous function as parameter,

the pattern is satisfied when the body of the anonymous function does not use

the parameters that its signature declares or when the body of the anonymous

function returns Unit in absence of accepted parameters (i.e., the neighboring

and neighboringViaExchange constructs).

Design and Implementation

Similarly to the previous pattern, the checker will be implemented with very little

logic, exploiting more complex visitors to inspect the pattern matching and, for

this reason, its implementation is omitted. In this case, the checker will only detect

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 41



3.6. THIRD APPROACH: VISITOR PATTERN

Listing 3.11: Examples of Pattern 4 detection in code, with both the cases de-
scribed�

1 // example with anonymous function that takes parameter (pattern detected)

2 evolve(initial) { value ->

3 // but ‘value ‘ is not used inside the body

4 10

5 }

6

7 // example with anonymous function that takes parameter (pattern not detected)

8 evolve(initial) { value ->

9 // ‘value ‘ is used inside the body

10 value + 10

11 }

12

13 // example of a parameter -less anonymous function (pattern detected)

14 neighboring {

15 val example = 0

16 }

17

18 // example of a parameter -less anonymous function (pattern not detected)

19 val example = 10

20 neighboring { example }
� �
if a function call is one of the Collektive constructs to check. If so, it will delegate

the inspection on one of two visitors, whether the construct is one that accept

anonymous functions with parameters or not.

The two visitors are the ConstructCallVisitor and EmptyReturnVisitor.

The latter’s implementation is not particularly surprising compared to the previous

visitor (and, therefore, will be explained without code): it behaves like a default

visitor, but when visiting a FirReturnExpression element, it checks if the return

type is FirUnitExpression. If so, the pattern is detected.

The second visitor is more complex: when checking for usages of parameters, we

cannot simply check the return expression of the anonymous function

and see if it uses the parameters, because the parameters can be used in other

expressions to create dependent symbols — i.e., symbols that depend on and

can be used instead of the parameters in the return expression. To solve this

problem in a simpler way, the visitor will not check if the dependent symbols are

used in the return expression, therefore implementing a symbol marking system

(i.e., a program that marks symbols inside expressions depending on their role,

in this case dependent symbol), but instead it will simply consider the pattern as

detected once it sees at least one usage of the parameter inside the anonymous

42 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.6. THIRD APPROACH: VISITOR PATTERN

Listing 3.12: Implementation of the Pattern 4 Visitor�
1 class ConstructCallVisitor : FirVisitorVoid () {

2 private var checkedParametersDeclarations = listOf <FirValueParameterSymbol >()

3 private val found = true

4

5 override fun visitAnonymousFunctionExpression(anonymousFunctionExpression:

FirAnonymousFunctionExpression) {

6 if (! nestedAnonymousFunction) { // we don ’t check the parameters of nested

anonymous functions

7 val anonymousFunction = anonymousFunctionExpression.anonymousFunction

8 val parameters = anonymousFunction.valueParameters // usage of FIR API

9 checkedParametersDeclarations = parameters.map { it.symbol } // we save the

symbols to check

10 if (checkedParametersDeclarations.isEmpty ()) {

11 found = false // no parameters -> skip check

12 return

13 }

14 nestedAnonymousFunction = true

15 }

16 super.visitAnonymousFunctionExpression(anonymousFunctionExpression)

17 }

18

19 // Visits (resolved) name references in the code (variables usage for example)

20 override fun visitResolvedNamedReference(resolvedNamedReference:

FirResolvedNamedReference) {

21 if (resolvedNamedReference.resolvedSymbol in checkedParametersDeclarations) {

22 checkedParametersDeclarations = // we filter out the parameter that are used

23 checkedParametersDeclarations.filter { it != resolvedNamedReference.

resolvedSymbol }

24 if (checkedParametersDeclarations.isEmpty ()) {

25 found = false // if all the parameters have been used , we are done

26 }

27 }

28 }

29 }
� �
function body.

The implementation of the ConstructCallVisitor is shown in listing 3.12.

The variable found starts off with the value true and will be set to false when the

visitor encounters a usage of all parameters. Its value is the result obtained by the

visitor when used externally (i.e., in the checker).

The visitor approach works sufficiently well also in this case: the code is able

to perform checks for the pattern in a simpler way than it would have with the

FIR API alone. Even though the logic is more complex compared to the previous

cases, however, we are not yet dealing with patterns that require to visit more

distant elements in the FIR tree, for example visiting the function declaration

of a function call or linking the usage of a symbol to its declaration.

Despite these considerations, it is already possible to see some drawbacks of

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 43



3.7. FOURTH APPROACH: MIXED APPROACH

this approach: the code is already becoming less declarative, having to use flags

to keep track of the state of the visitor, for example preventing some visit methods

to be called in contexts we do not want them to be called (e.g., in the visitor just

presented, the case of nested anonymous functions). This approach would clearly

benefit from a more structured and modular API to simplify this kind of logic.

3.7 Fourth approach: mixed approach

In order to avoid the possible pitfalls of the visitor pattern that would make this

approach less scalable to the increasing complexity of the pattern, we can use a

mixed approach that combines the visitor pattern with the small API we previously

introduced. The main advantage over other static analysis tools, in fact, is that the

tree we are visiting is already enriched with a lot of information that the visitor can

use inside its visit methods to perform checks, therefore avoiding the need to visit

the tree in a more complex way. Moreover, this information is the same used by

the Kotlin compiler to compile the code. We can also create utility functions that

call other visitors to extract data useful for the checker or another visitor. Making

this structure modular and extensible is key for the success of this approach.

3.7.1 Pattern 5: complex aggregate operations in loops

The case of aggregate operations in loops was already treated in section 3.5.1, but

the pattern was not completely covered, (intentionally) presenting the pattern’s

description in a non-complete way. In particular, a special usage case was omitted,

here called the case of delegated functions.

Rationale

In this case, the construct is not directly called inside the loop, but it is delegated

to another function that is called inside the loop. This function is not necessarily

a nested function, as in the case already seen in section 3.5.1, but it can be a

function that is defined elsewhere in the code: from now on, this will be called

the delegated function or simply the delegate. In order to contain aggregate calls,

the delegate must have a parameter of type Aggregate to use as a receiver for

44 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.13: Examples of Pattern 5 detection in code, with the case of delegated
functions�

1 // One of the simplest examples of Pattern 5: this should raise a warning

2 fun delegate(aggregate: Aggregate <Int >) {

3 aggregate.evolving (0) { ... } // Pattern detected

4 }

5

6 fun Aggregate <Int >.entry () {

7 listOf(1, 2, 3).forEach { delegate(this) }

8 }

9

10 // One , more complex example of Pattern 5: this should NOT raise any warning

11 fun delegate(aggregate: Aggregate <Int >) {

12 fun delegate2 () {

13 aggregate.alignedOn (0) {

14 aggregate.evolving (0) { ... } // Pattern NOT detected

15 }

16 }

17 delegate2 ()

18 }

19

20 fun Aggregate <Int >.entry () {

21 listOf(1, 2, 3).forEach { delegate(this) }

22 }
� �

the aggregate constructs (if, instead the delegate would have an explicit receiver

of type Aggregate, in fact, the pattern would be trivially detected by the Pattern

2 checker, as the delegate would appear as an aggregate construct itself). When

the delegate is called without alignment, the same problem as the one described

in section 3.5.1 arises: the body of the delegated function could use the aggregate

parameter to perform some computation that requires alignment, resulting in non-

safe DSL usage, but the pattern would still not be captured because the delegate

is technically not an Aggregate function. Not only the delegate could be called

inside a loop, but it could also be part of a chain of function calls that ends with

a call inside the loop, and detecting a possibly wrapping alignedOn operation

could be quite complex, as shown in the corner cases of listing 3.13. The plethora

of possible cases that can be captured in the code by this pattern is quite large,

and seeing the second example should give an idea of how many possible code

variations are related to this pattern, and why this additional constraint has been

treated as a separated pattern with respect to Pattern 2.

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 45



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.14: Utility function to check if a function call has an aggregate parameter�
1 fun FirFunctionCall.hasAggregateArgument (): Boolean =

2 getArgumentsTypes ()?.any {

3 it.classId == ClassId.topLevel(AGGREGATE_CLASS_FQ_NAME.toFqNameUnsafe ())

4 } ?: false
� �
Pattern detection

Given a looping construct (like the ones already seen for Pattern 2) and a declared

function, here called delegate, that satisfies two requirements:

1. Its signature accepts at least one parameter of type Aggregate;

2. Its body contains an aggregate construct call, different from alignedOn.

The pattern is satisfied when delegate is called inside the loop or in a chain of

other function calls that ends with a call inside the loop, and neither delegate nor

the functions in the chain contain an alignedOn operation wrapping one of the

calls.

Design and Implementation

To implement this pattern, a new condition will be added to the checker seen in

listing 3.6 that will handle the case of delegated functions. The new condition will

perform the same checks as the previous one (i.e., is inside a looping construct,

and it is not aligned) but instead of checking if the function call being examined

is an aggregate one, it will check if one of its parameters is of type Aggregate. To

do this, a new utility function is implemented: hasAggregateParameter, shown

in listing 3.14. This uses the getArgumentsTypes and toFqNameUnsafe extension

methods that have been implemented for the job (and are omitted for brevity).

Once this condition is satisfied, the visitor will be called to inspect the delegate

function and check if it contains an aggregate construct call or a call to another

function that contains an aggregate construct call (possibly in a chain of calls).

Note: we cannot reuse the existing code for Pattern 2 to check for the presence of

the alignedOn operation, as its invocation may occur within a different function

that is called inside the delegate but is not directly one of the containing elements

46 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.15: Utility function to get the declaration of a function call�
1 @OptIn(SymbolInternals :: class)

2 fun FirFunctionCall.getDeclaration (): FirSimpleFunction? =

3 calleeReference.toResolvedFunctionSymbol ()?.fir as? FirSimpleFunction
� �
of the aggregate construct call. Therefore, the presence of alignedOn will be

verified within the visitor.

To implement this visitor, we need a way to visit the function declaration

associated with the function call that is being visited. Thanks to Kotlin API, this

can be done like seen in listing 3.15. The @OptIn is necessary in order to access the

fir field. Once this is done, we need to visit the function declaration and check

its body for the pattern presence. In addition, however, we also need to be careful

to detect nested function declarations, and for this reason a functionCounter

variable is used to keep track of the nesting level of the function declarations. The

other elements we need to visit are the function calls contained in the body of the

delegate. The only functions we are interested in are of two types:

1. Aggregate function calls: function calls that require alignment — i.e.,

alignedOn operations;

2. Function calls with aggregate parameter (i.e., delegates): this func-

tions could recursively contain dangerous function calls, so are targeted by

other checks.

In the first case, we check if the function call is an alignment operation, and

if so we accept its anonymous function parameter with the visitor keeping track

that we are inside an alignment, so other aggregate operations are considered safe

within it. If the aggregate function is not an alignment operation and we are not

inside an alignment or nested function, the pattern is detected.

In the second case we simply instantiate another visitor and recursively visit

the function call in question, checking if the pattern is detected in the delegate.

The implementation just explained is summarized in listing 3.16. Although the

code is still short like for the other visitors, in this case we need to take multiple

visiting calls of the same method and even recursive visiting with an another visitor

into consideration.

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 47



3.7. FOURTH APPROACH: MIXED APPROACH

Considerations on this pattern

Unfortunately, some corner cases are not still captured by this checker and visitor:

the main reason is that some corner cases that involve the usage of local variables

from nested functions, similar to the second case shown in listing 3.13 without

alignment present, are difficult to capture with the current approach. Since it

is not a common usage case, it was decided to leave it for future works. It is

a good opportunity, however, to reason about how what has been developed so

far presents, from time to time, some branching conditions in the code or some

particular programming “tricks” that appear as fragile or poorly maintainable

code. This aspect is related to the “defensive” approach for developing these

static checkers: one could think that detecting the pattern is the core of the

implementation but, in reality, one of the most important aspects is being careful

not to introduce false positives [LPS+23] to the static analysis. The cases

we are trying to capture, in fact, are actually a very small subset of the possible

programs using the Collektive DSL (and Kotlin in general). This is also the reason

why adding more complex checks like the one just described has to be taken with

much caution, and it is of main importance to add more tests for cases where

the pattern is not detected than for cases where it is detected. The approach

taken for testing this important factor will be discussed in the next chapter: for

now, we will move to the final pattern, the one that was considered the most

complex to detect, where multiple types of visitors were used together to inspect

the code.

3.7.2 Pattern 6: improper Evolve construct usage

The last pattern presented in this chapter involves three of the constructs of the

Collektive DSL that we have seen: evolve, neighboring and share (and their

variants with the yielding context). Since we have not really explained their be-

havior in detail, they will be briefly discussed here.

The evolve construct is used to “evolve” the value of a device, iteratively

updating it with the results of a function that is passed as a parameter. This

function accepts also an initial value, from which starting the evaluation. The

neighboring construct is used to evaluate an expression in neighbors, constructing

48 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.16: Implementation of the Pattern 5 Visitor�
1 class FunctionCallWithAggregateParVisitor () : FirVisitorVoid () {

2 // ...

3

4 override fun visitFunctionCall(functionCall: FirFunctionCall) {

5 if (functionCall.isAggregate ()) { // Case 1

6 if (functionCall.fqName () == ALIGNED_ON_FUNCTION_FQ_NAME) {

7 insideAlignedOn = true

8 functionCall.acceptChildren(this)

9 insideAlignedOn = false

10 } else if (! isInsideAlignedOnOrNestedFun ()) { // utility function omitted

11 found = true // Pattern detected

12 }

13 } else if (functionCall.hasAggregateArgument () && !isInAlignedOnOrNestedFun ())

{ // Case 2

14 val visitor = FunctionCallWithAggregateParVisitor () // recursion

15 found = visitor.visitSuspiciousFunctionCallDeclaration(functionCall)

16 }

17 }

18

19 // Visit function declaration

20 override fun visitSimpleFunction(simpleFunction: FirSimpleFunction) {

21 functionCounter ++

22 simpleFunction.body?. accept(this)

23 functionCounter --

24 }

25 }
� �
a Field object mapping the neighbors to the results of the evaluation. The share

construct is used to compute a space-time evolution of the field, computing an

expression over time and sharing it with the neighbors.

Rationale

Since the evolve construct too can be used to evolve a field over time, its com-

bination with the neighboring construct can behave exactly like a share, since

the second one can be used to map the space aspect. This is not always true, of

course, but using the evolve construct could easily lead to this inefficient usage

of the DSL constructs, especially if the developer is not aware of constructs like

share. Using this last construct, in fact, would be more efficient and clear in this

case, since it would be more explicit in the code that the field is being shared with

the neighbors and evolved over time.

This pattern consists specifically in this type of usage of the evolve construct.

Since the anonymous function passed to it as a parameter must return a value of

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 49



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.17: Example of Pattern 6 detection in code�
1 // Evolve + Neighboring substitutable by Share

2 evolve(initial) { value ->

3 val newValue = value + 1

4 val field = neighboring(newValue) // use of neighboring

5 field.max(0) // field reduction with max

6 }

7

8 // Share

9 share(initial) { value ->

10 val newValue = value.map { it + 1 }

11 newValue.max (0) // field reduction with max

12 }

13

14 // Evolve + Neighboring NOT substitutable by Share

15 evolve(initial) { value ->

16 val newValue = value + 1

17 val field = neighboring(other) // separated use of neighboring

18 newValue // new value of the evolution

19 }
� �
the same type of the one gave to it as initial, a user could first use the neighboring

construct to evaluate the expression in neighbors and then perform a field reduction

operation — e.g., finding the max value in the field — and return that as the

result of the anonymous function. Different is the case in which the neighboring

construct is used to evaluate a different expression that does not depend on

the value updated by evolve and therefore will share a value independently

of the one evolved. The cases in which these constructs can be replaced with

share represent a specific, small sub-portion of their general usage. At the same

time, however, they could often appear as the first choice for a developer who

is not aware of the share construct, since this way of composing the constructs

can result being intuitive. It represents, however, a misuse of the constructs, that

results in a less efficient and clear code, and therefore it should be detected by the

static analyzer.

These examples of usage and the related version with the share construct

substituted are shown in listing 3.17.

Pattern detection

Given an evolve construct, or its variant, that is passed a function that contains

a neighboring construct, the pattern is satisfied when the expression evaluated

50 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.7. FOURTH APPROACH: MIXED APPROACH

by neighboring depends on the value of evolve — i.e., the parameter inside the

anonymous function — and it is used to compute the value returned by the body

of evolve.

Design and Implementation

The mixed approach previously introduced will be fully exploited to implement this

checker. In order to trace the dependencies between the expressions that relate to

the evolved value — i.e., the parameter inside the evolve anonymous function —

we need a system to mark expressions that uses this value and then maintains a

list of symbols that are dependent on the evolved value. When these symbols are

used in other expressions, we then mark these as dependent on the evolved value as

well and so on. When we encounter a neighboring construct, we can immediately

know if the expression evaluated by it depends on the evolved value, and if not

the check can immediately end. If the expression depends on the evolved value,

instead, we must save the evaluated expression and continue the visit until the

end of the anonymous function with the return expression. Obtained the return

expression, we must first extract the receiver of the yielding construct if we are

inside evolving and not evolve, or simply the expression itself if not. This extra

step is necessary for the variants of the construct because the value returned by the

yielding is not really relevant to the pattern detection, since it will be returned

externally as is. Finally, we must check if the return expression is not equivalent to

the one evaluated by the neighboring construct, and if so the pattern is detected.

Since the workflow could appear as not really straightforward, a diagram of

the process is shown in fig. 3.6. As for the previous patterns implemented using

visitors, the implementation of the checker is quite similar and therefore omitted.

The visitor, however, will need a specific section to be treated in detail.

Visitor implementation

The first element the visitor is going to visit is, again, a function call corresponding

to a Collektive DSL construct, specifically the evolve one and its variant. In this

case, the visitor will simply access the construct and look inside its parameters

— i.e., the anonymous function. When this is done, the visitor will switch to the

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 51



3.7. FOURTH APPROACH: MIXED APPROACH

Initialize a list of dependent symbols with the anonymous function's parameters

Mark this expression as dependent

Add the assignment's target symbol to the list

yes

Is this expression used in an assignment?

yes

Does it use a dependent symbol?

Analyzing expressions
No more expressions to analyze

Save the expression of the neighboring construct

Continue visit until end of anonymous function

Obtain return expression

Aggregate construct with yielding context?
yes no

Extract receiver of yielding construct Use the expression itself

yes

Is this expression marked as dependent?
no

yes

Encounter neighboring construct?
no

Check if expression is not equivalent to the one evaluated by neighboring construct

Pattern detected

yes

Not equivalent?

Figure 3.6: Summarized workflow of the Pattern 6 detection

52 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.18: Visitor method to visit an anonymous function�
1 override fun visitAnonymousFunctionExpression(anonymousFunctionExpression:

FirAnonymousFunctionExpression) {

2 if (nestingLevel == 0) {

3 val anonymousFunction = anonymousFunctionExpression.anonymousFunction

4 val parameters = anonymousFunction.valueParameters

5 parametersDeclarations = parameters.map { it.symbol }

6 }

7 nestingLevel ++

8 super.visitAnonymousFunctionExpression(anonymousFunctionExpression)

9 nestingLevel --

10 }
� �
Listing 3.19: Visitor methods to implement a symbol and expression marking
system�

1 override fun visitResolvedNamedReference(ref: FirResolvedNamedReference) {

2 if (ref.resolvedSymbol in parametersDeclarations ||

3 ref.resolvedSymbol in tracedDependentSymbols

4 ) {

5 markExpression = true

6 }

7 }

8

9 override fun visitProperty(property: FirProperty) {

10 if (markExpression) {

11 tracedDependentSymbols += property.symbol // add the symbol to the list

12 markExpression = false

13 }

14 }
� �
visit method of the anonymous function, where first it will check if this function

is at top nesting level and not a nested function (for the first visit it obviously

is) and will access the function parameters and add them to a list of dependent

symbols kept by the visitor. In listing 3.18 this procedure is shown. The visitor will

then visit the body of the anonymous function. Every time the visitor encounters

a FirResolvedNameReference, corresponding to a symbol usage, it will check if

the symbol is contained in the list of dependent symbols. If so, the visitor will set

a variable markExpression to true, meaning that the expression is dependent on

the evolved value. In this way, when the visitor encounters a property (i.e., local

variable), it will check if the expression is marked as dependent and, if so, it will add

the property to the list of dependent symbols. This is shown in listing 3.19. These

methods take care of the tracing of the dependent symbols, now it is necessary to

approach the core of the visitor: the neighboring and return expressions.

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 53



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.20: First support visitor to extract the return expression of an anonymous
function�

1 fun FirAnonymousFunctionExpression.extractReturnExpression (): FirExpression? =

2 object : FirVisitorVoid () {

3 private var returnExpression: FirExpression? = null

4 // ...

5 override fun visitReturnExpression(expression: FirReturnExpression) {

6 returnExpression = expression.result

7 }

8

9 fun extractReturnExpression (): FirExpression? {

10 visitElement(this@extractReturnExpression)

11 return returnExpression

12 }

13 }. extractReturnExpression ()
� �
The first one can be inspected when the visitor encounters a function call,

and then check for the fully-qualified name of the construct. In that case, we can

extract the expression used as parameter of the function and perform the necessary

checks. The neighboring construct can be used essentially in two ways:

1. Direct expression: for example, a numerical expression like a sum between

two numbers;

2. Computation: for example, an anonymous function. In that case the field

returned by the construct has the “computation” as a result, in the form of

a field of functions.

In the first case, we can obtain the first argument of the construct, verify if

the expression is marked when visiting it and, if so, save the expression into a

variable for later. In the second case, we must first visit the anonymous function

and obtain the return expression, and then perform the same operations. To do

this, a utility function is implemented that extracts the return expression of

an anonymous function using another visitor. The implementation is shown

in listing 3.20. As shown, we create a visitor on the fly and visit the anonymous

function, returning the expression found. This is an example of how composing

visitors with the FIR API can help detecting a pattern.

Once we have saved the expression evaluated by the neighboring construct,

a comparison with the return expression of the anonymous function is needed to

complete the detection of the pattern. When the visitor encounters the return

54 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.21: Second support visitor to extract the receiver of a yielding construct�
1 private class YieldingReceiverVisitor : FirVisitorVoid () {

2 // ...

3 override fun visitFunctionCall(functionCall: FirFunctionCall) {

4 if (functionCall.fqName () == YIELDING_FUNCTION_FQ_NAME) {

5 returnExpression = functionCall.explicitReceiver

6 }

7 }

8 fun FirReturnExpression.getYieldingReceiver (): FirExpression? {

9 visitElement(this)

10 return returnExpression

11 }

12 }
� �
expression, it must first check if the nesting level is correct and if the expression

of the neighboring construct if present. If not, the pattern is skipped. Finally, to

compare the return expression with the one we previously saved, we can use the

isStructurallyEquivalentTo utility function already introduced. However, the

check is not finished since we must also handle a special case: the yielding context.

In the case of the yielding context, the expression returned by the yielding

construct is not relevant to the pattern detection, and so its receiver must be

used instead. To get the receiver, another support visitor is implemented, shown

in listing 3.21.

The visitor is used in the visit method of the return expression, performing

the final check on the equivalence of the expressions. If these are not equivalent,

the pattern is detected. The implementation of this last visit method is shown in

listing 3.22.

Final considerations

With this last visitor, all the patterns that were considered for the Collektive

DSL static analysis have been implemented. As discussed in this chapter, many

approaches were considered through the development, and in some cases mixed to-

gether to achieve the desired results. Since the presented patterns were not shown

in their order of implementation, it is possible to see some areas of improvement,

especially in the first ones implemented using the visitor pattern. Other consider-

ations about this development process as well as other possible ways to implement

the checkers will be matter of discussion in the conclusions of chapter 5. First, the

CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT 55



3.7. FOURTH APPROACH: MIXED APPROACH

Listing 3.22: Visitor method to visit the return expression�
1 override fun visitReturnExpression(returnExpression: FirReturnExpression) {

2 super.visitReturnExpression(returnExpression)

3 if (neighboringExpression != null && isCorrectNestingLevel ()) {

4 val expressionToCheck = neighboringExpression as FirExpression

5 if (constructNameFQName == EVOLVING_FUNCTION_FQ_NAME) {

6 // case with yielding context

7 val yieldingReceiver =

8 with(YieldingReceiverVisitor ()) {

9 returnExpression.getYieldingReceiver ()

10 } ?: return

11 isReplaceable = !yieldingReceiver.isStructurallyEquivalentTo(

expressionToCheck)

12 } else {

13 isReplaceable = !returnExpression.result.isStructurallyEquivalentTo(

expressionToCheck)

14 }

15 return

16 }

17 }
� �
testing strategy that was adopted during these checkers’ implementation will be

presented.

56 CHAPTER 3. FRONTEND PLUGIN DEVELOPMENT



Chapter 4

Evaluation and Testing

When developing tools that need to inspect and modify source code, where de-

velopers have freedom to write code in many ways and leveraging the full power

of the used programming language, a solid and comprehensive testing strategy is

crucial to ensure that the tool is working as expected and that it is able to capture

all the cases that it is supposed to capture. If static analysis tools can be tedious

to develop, due to the need to cover a plethora of possible cases often with a uni-

fied approach, testing static analysis tools must be even more comprehensive and

flexible than development, trying not to fall into verbosity and repetition.

In this chapter we will present the testing strategy that was adopted to test the

Collektive frontend plugin, starting from the initial approaches and moving into

the development of an ad-hoc testing framework named Subjekt. Several snippets

will be shown in this chapter: a basic understanding of the Kotest framework, the

one used in the project, is required to fully understand them.

4.1 Initial testing approaches

The first approach taken was the simplest one: the tests were written using static

Kotlin sources as resource files, loading them in the test suites written using

the Kotlin testing framework Kotest. The first problem that arose regarded the

compilation process and the check for resulting diagnostics. To test the checkers,

in fact, the code must be compiled programmatically also providing the plugin to

CHAPTER 4. EVALUATION AND TESTING 57



4.1. INITIAL TESTING APPROACHES

the compiler, and then collect all the produced messages and compare them with

the expected ones. Fortunately, a library already exists for this purpose: Kotlin

Compile Testing by Thilo Schuchort (tschuchortdev on GitHub)1. This library

provides a concise way to create objects that represent Kotlin source files by pass-

ing a string source code, and then compiles them giving a list of compiler plugins

or annotation processors that should be used during the compilation process. All

of this is done inheriting the class path of where the compilation process is run-

ning, so the Collektive plugin can be added without any problem also using the

corresponding library. Finally, the diagnostics produced are contained inside the

KotlinCompilation.Result object as a single string that can be easily split and

filtered to get the relevant messages and compare them with the expected ones.

With this library, it is now possible to write tests only by reading the resource

files that contain the source code that should result or not in a pattern being

detected. These testing cases should be the same that were extracted from the

codebase during the development of the checkers, as explained in section 3.3. An

example of a test suite using this method can be seen in listing 4.1. As we can see,

the testing process is quite short and sufficiently clear: TestAggregateInLoop.kt

is a source file contained in the resource folder and contains a small source code

with an aggregate construct used inside a loop, which is the case that should be

detected by the checker for Pattern 2.

As one might expect, however, this approach quickly proves to be not scalable

and highly repetitive. For a single pattern, there can be numerous variations

in source code where the checker must operate, resulting in many test cases. In

most instances, the differences between these cases amount to only a line or two

of code. Following this method, the test suite would have required numerous

static files, many of which would be nearly identical. Additionally, the Kotest

specification would have become excessively verbose, even when leveraging Kotest

utility functions like forAll to minimize redundancy.

1The actual library that was used is a fork of the original one, maintained by Zac Sweers
(ZacSweers on GitHub). The switch to the fork was necessary due to some issues encountered
during the building process of the project with Kotlin 2.0 which, at the time of writing, is still
not supported by the original library. More information is available here: https://github.com/
tschuchortdev/kotlin-compile-testing/issues/411

58 CHAPTER 4. EVALUATION AND TESTING

https://github.com/tschuchortdev/kotlin-compile-testing/issues/411
https://github.com/tschuchortdev/kotlin-compile-testing/issues/411


4.2. AVOIDING REPETITIONS THROUGH TEMPLATE FILES

Listing 4.1: One of the first developed test for the Pattern 2 checker. It uses static
resource files to load the source code to be compiled and checked�

1 @OptIn(ExperimentalCompilerApi ::class)

2 class TestAlignRawWarning : FreeSpec ({

3 "A single aggregate function called inside another one" - {

4 val fileName = "TestAggregateInLoop.kt"

5 val program = // get text from resource file ...

6 val sourceFile = SourceFile.kotlin(fileName , program)

7 "should compile" - {

8 val result = KotlinCompilation ().apply {

9 sources = listOf(sourceFile)

10 compilerPluginRegistrars = listOf(AlignmentComponentRegistrar ())

11 inheritClassPath = true

12 }. compile ()

13 val expectedWarningMessage = // warning to check ...

14 result.exitCode shouldBe KotlinCompilation.ExitCode.OK

15 result.messages shouldContain expectedWarningMessage

16 }

17 }

18 })
� �
4.2 Avoiding repetitions through template files

One of the first solutions to the problem of repetition when dealing with textual

files very similar to each other is to use template files. The approach is the

following: for each pattern to test, collapse all the testing cases that are similar to

each other into a single file containing placeholders for the parts that change, and

then dynamically replace these placeholders with the correct values during the test

execution.

4.2.1 Initial template system

The initial template system consisted of Kotlin files containing the source code to

be compiled with placeholders like the ones used in classical string formatting —

i.e., %s. An example is shown in listing 4.2.

Listing 4.2: A example of the templates created for testing multiple cases at once�
1 %s

2 for (j in listOf(1, 2, 3)) {

3 %s

4 neighboring (0)

5 %s

6 }

7 %s
� �
CHAPTER 4. EVALUATION AND TESTING 59



4.2. AVOIDING REPETITIONS THROUGH TEMPLATE FILES

Then, instead of compiling the string obtained from the resource file directly, re-

place the placeholders cycling through a list of possible, hard-coded configurations

in the test suite and for each perform the correct check on the diagnostics pro-

duced. In addition, a small utility was extracted in order to make the process of

reading resources, compiling and comparing messages more concise and readable

using Kotlin infix methods. The result looks similar to the one shown in listing 4.3.

Only a relevant part of the test suite is shown, the rest is omitted for brevity.

Listing 4.3: Part of the test for Pattern 2 revised using template files�
1 "A single aggregate function called inside a loop" - {

2 val testingProgramTemplate =

3 CompileUtils.testingProgramFromResource("TestAggregateInLoop.kt")

4

5 "without a specific alignedOn" - {

6 val program = testingProgramTemplate.formatCode("", "", "", "")

7 "should produce a warning" - {

8 program shouldCompileWith warning(EXPECTED_WARNING_MESSAGE)

9 }

10 }

11 "with a specific alignedOn" - {

12 val program = testingProgramTemplate.formatCode("", "alignedOn (0) {", "}", "")

13 "should compile without any warning" - {

14 program shouldCompileWith noWarning

15 }

16 }

17 }
� �
4.2.2 Templates flexibility and limitations

Even though this approach gained some flexibility and reduced repetitions on the

template files side, it still requires a lot of boilerplate code to be written be-

tween each test case. Another step is necessary to make the testing process even

more concise: integrating the created utility with a string interpolation mecha-

nism that allows configurable parts without repeated and obscure code for format-

ting. This allows to write templates that are more clear and readable, because

instead of writing placeholders with %s we can write variables with names like

%(nameOfTemplateVariable) and then pass a configurable map through the test

code that will replace these variables with the correct values. All of these utilities,

contained in the singleton object CompileUtils, permit writing tests like the ones

60 CHAPTER 4. EVALUATION AND TESTING



4.2. AVOIDING REPETITIONS THROUGH TEMPLATE FILES

Listing 4.4: Listing 4.3 revised using the new utilities�
1 val testingProgramTemplate = // like before

2 listOf(

3 "exampleAggregate" to "exampleAggregate ()",

4 "neighboring" to "neighboring (0)",

5 ).forEach { (functionName , functionCall) ->

6 "using $functionName without a specific alignedOn" - {

7 "should produce a warning" - {

8 val testingProgram = testingProgramTemplate

9 .put("aggregate", functionCall)

10 testingProgram shouldCompileWith warning(EXPECTED_WARNING_MESSAGE.format(

functionName))

11 }

12 }

13 "using $functionName wrapped in a specific alignedOn" - {

14 val testingProgram = testingProgramTemplate

15 .put("beforeAggregate", "alignedOn (0) {")

16 .put("afterAggregate", "}")

17 "should compile without any warning" - {

18 testingProgram shouldCompileWith noWarning

19 }

20 }

21 }
� �
shown in listing 4.4. Variables also have default values, making the tests more

concise and easier to write.

The test methodology not only gained in readability, but it is much more

scalable and can be used to test many more cases adding only a few lines of

code. The obtained result, however, is still far from optimal: the testing code still

depends too much on the structure of the template files, exploiting hard-coded

names of variables inside the template files and in the test suite. The problem

still relies on the fact that the testing resource does not encapsulate the

possible values of its variables, making it more flexible indeed but also less

maintainable and more error-prone. Without using a system more similar to a

template engine, it would be difficult to build the testing process without occurring

in scale issues, especially for more complex patterns discussed in chapter 3 where

the number of possible cases to test is much higher than the ones presented in the

examples. Even in that case, however, the testing process would have to interact

with the templates in order to determine values of its variable parts, also for

identifying the expected outcomes of the resulting source code’s compilation.

In other words, there still would be too much coupling between the testing code

and resource files.

CHAPTER 4. EVALUATION AND TESTING 61



4.3. CODE GENERATION: A SMALL DSL LEVERAGING KOTLIN POET

4.3 Code generation: a small DSL leveraging

Kotlin Poet

A possible approach to solve the problem of coupling between the testing code and

the resource files is code generation done directly inside tests. Instead of

using external files, a developer could create an appropriate configuration in the

tests to capture a multitude of cases, declaratively specifying how the source code

should be structured and therefore knowing at prior what the expected diagnostics

should be. The task is certainly not an easy one, since generating multiple source

codes in a declarative way using the same programming language as the target one

is not trivial. Thankfully, an already existing and well-known library can be used

for the generation: Kotlin Poet by Square Inc2.

Kotlin Poet is a library with a Java and Kotlin API to generate Kotlin sources.

Its main use cases are generating code for annotation processors or interacting with

metadata files, and it is inspired by another library by the same authors, Java Poet.

The library is quite powerful and allows generating code in a declarative way, using

a fluent API to create complex structures with few lines of code. One way to use

it is through a builder pattern, where methods are chained to create the desired

structure. This particular way of generating code can reveal itself as very useful

for our purpose, since it can be manipulated to build a DSL that facilitates some

operations for the developer.

4.3.1 General structure and usage

To make the generation of code more concise and readable, a DSL has been cre-

ated using extension methods to the Kotlin Poet builders. Encapsulating

the generation of common code and frequent and repeated operations inside these

methods, allows for a completely customizable output with a few lines of code,

using constructs tailored for our testing cases. Take the extensions shown in list-

ing 4.5 for example: in this case we create utilities to build programs with blocks

and specific wrapping functions, like the alignedOn seen in section 3.5.1 during

the explanation of Pattern 2. This way, the developer can pass other extension

2https://square.github.io/kotlinpoet/

62 CHAPTER 4. EVALUATION AND TESTING

https://square.github.io/kotlinpoet/


4.3. CODE GENERATION: A SMALL DSL LEVERAGING KOTLIN POET

Listing 4.5: Example of Kotlin Poet extensions used to generate code�
1 fun FunSpec.Builder.block(

2 header: String = "",

3 content: FunSpec.Builder .() -> FunSpec.Builder ,

4 ): FunSpec.Builder =

5 beginControlFlow(header)

6 .content ()

7 .endControlFlow ()

8

9 fun FunSpec.Builder.alignedOn(content: FunSpec.Builder .() -> FunSpec.Builder):

FunSpec.Builder =

10 block("alignedOn (0)", content)
� �
methods — e.g., parameter content visible in listing 4.5 — to these DSL-like

keywords to highly customize the final output, therefore maintaining Kotlin Poet

benefits but also making it more directed to our needs.

Finally, it is possible to rewrite the tests, using no external resource file and

reusing the same pieces of code that do not change across the several checks. A

small snippet of how this small DSL can be used in tests is shown in listing 4.6.

Listing 4.6: Example of a test suite using the Kotlin Poet extensions�
1 // creates a file with the needed imports and an example Aggregate function

2 val sourceFile = simpleTestingFileWithAggregate ()

3 // create a function with ‘Aggregate ‘ receiver of type Int

4 val startingFunction = simpleAggregateFunction(INT)

5

6 forAll(testedAggregateFunctions) { functionCall ->

7

8 "using $functionCall wrapped in a specific alignedOn" - {

9 val generated =

10 startingFunction + { // customization of a common function

11 loop {

12 alignedOnS {

13 functionCall

14 }

15 }

16 }

17 "should compile without any warning" - {

18 sourceFile withFunction generated shouldCompileWith noWarning

19 }

20 }

21 // ...
� �
Imagining various checks to be done for Pattern 2 — the one the examples of

this chapter are based on— this approach greatly reduces the amount of boilerplate

CHAPTER 4. EVALUATION AND TESTING 63



4.3. CODE GENERATION: A SMALL DSL LEVERAGING KOTLIN POET

code, intervening only inside the function containing the call to the aggregate and

loop constructs, and then customizing it with other parts, like the alignedOn

construct that wraps the tested function call. At last, the expected diagnostics

are formulated starting from the case that is being generated then tested and

compared with the one produced by the compilation thanks to the Kotlin Compile

Testing library already cited. This last operation is encapsulated inside the small

utility library already implemented for the previous testing approaches, adding

also the customized function to the source code: this summarizes what is done at

line 18 of listing 4.6.

4.3.2 Considerations

Considering the context of this project, the approach of code generation seems to

be the most flexible and scalable solution to the problem at hand: even though

it was not considered worth the effort to integrate a system like this in the first

stages of the development, patterns examined further in the thesis showed how

many possible cases required a proper a more complete testing strategy without

falling into verbosity and repetition (e.g., Pattern 5 and Pattern 6). Nevertheless,

more complex test cases, where more than just a couple of lines of code change, still

require considerable effort to create Kotlin sources subject to compilation. With

the small DSL created, the approach just described tends to become less readable

and harder to interpret, to the point that in cases where there isn’t enough common

code, it becomes easier to write the code directly as a single string.

It seems that the problem still regards static resource files in a sense: even

though common parts of the code are reused and customized with the DSL, the

“variability” of general-purpose languages like Kotlin makes it difficult to reduce

possible Kotlin sources to something like templates or customizable parts of code.

For these reasons, this small DSL was not integrated into the Collektive project,

but it was used as a starting point to develop a more complete and flexible testing

framework that could be used to test the Collektive frontend plugin in a more

comprehensive way.

64 CHAPTER 4. EVALUATION AND TESTING



4.4. CUSTOM TESTING FRAMEWORK: SUBJEKT

4.4 Custom testing framework: Subjekt

Subjekt3 is a tool for generating textual results starting from a configuration in

YAML or JSON format. It can be used to generate multiple results from permu-

tations of parameters defined in the configuration, easily creating many variations

of the same output. This tool started as a small utility to generate multiple Kotlin

sources from a starting configuration and then integrate them inside Collektive

test projects. Later in the development process, it was decided to expand its ca-

pabilities to directly generate test cases for the Collektive plugin from inside the

test suites, adding only the configurations as resources.

The development of Subjekt was mainly motivated by the need to expand the

number of testing cases, since the testing strategy adopted so far was not scalable

enough to cover sufficient cases to ensure the correctness of the checkers. After the

code generation strategy was considered, it appeared clear that a more flexible and

readable approach was needed to make this approach feasible as a testing method.

The main goal was to extract common notions of constructs or structures (e.g.,

loop constructs) that were repeated across the testing cases, notions that could

be easily understood and that could assume several “aspects”, equally important

to the testing process and whose permutations with other variable structures were

needed to be tested as well. Since this was not possible without an ad-hoc tool,

Subjekt development started.

Subjekt is a small Kotlin multiplatform library available on Maven Central,

npmjs and GitHub packages repositories. In this section we will present the main

benefits of using a tool like this for testing static analysis projects like the Collektive

frontend plugin.

4.4.1 Main ideas behind the framework

The main inspiration behind Subjekt is the testing strategy used by the Scala

compiler4 (re-invented on a smaller scale). Essentially, the core idea is to set up

a suite of test cases having expected positive or negative outcomes. In the Scala

compiler, source code and expected outcomes are separated into .scala and .check

3https://github.com/mini-roostico/subjekt
4https://github.com/scala/scala3/tree/main/tests

CHAPTER 4. EVALUATION AND TESTING 65

https://github.com/mini-roostico/subjekt
https://github.com/scala/scala3/tree/main/tests


4.4. CUSTOM TESTING FRAMEWORK: SUBJEKT

files, respectively. Subjekt follows a similar approach, but linking together source

and expected outputs. The developer can write a configuration file in YAML or

JSON format reflecting a suite of test subjects that are related to a similar

pattern to be tested. As for Scala, every testing case has a unique identifier, and

in the case of Subjekt can be extracted from the result of the generation to refer

to a specific test case in the suite.

4.4.2 Core structure of Subjekt

In Subjekt, each configuration file defines a Suite, composed by a list of Subjects.

Each Subject is essentially a map with string keys and values, where the latter

contain Expressions: strings with expressions are called Resolvables. The ex-

pressions are strings that are parsed to generate a multitude of results: Subjekt

will extract these results and produce a set of outputs considering all the permu-

tations of the expressions contained in the subjects. Special delimiters ${{ and

}} are used in order to extract expressions from strings, inspired by the GitHub

actions expressions syntax5. The diagram in fig. 4.1 shows the class diagram of

the general concepts of the library.

The main entities that produce permutations are Parameters and Macros.

Both of them can have multiple values to substitute in the expressions where

they are used, but the difference is that the former’s values do not contain other

expressions, while the latter’s ones are actually other Resolvables and can accept

arguments to substitute in their expressions, similar to a function that returns

multiple values, leading to an exponential growth of the number of results (for

example, when other Parameters are passed to the Macro, making Subjekt produce

permutations of the passed Parameter’s values and with Macro’s ones). When

a Resolvable needs to be “resolved”, the library will determine all the possible

Contexts that can be generated from the Parameters and Macros. Each Context

will contain one “fixed” value for each of them — i.e., DefinedParameter and

DefinedMacro — and will therefore correspond to one of the total permutations.

The Resolvable will finally produce one Instance for each of the Contexts.

5https://docs.github.com/en/actions/writing-workflows/

choosing-what-your-workflow-does/evaluate-expressions-in-workflows-and-actions

66 CHAPTER 4. EVALUATION AND TESTING

https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/evaluate-expressions-in-workflows-and-actions
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/evaluate-expressions-in-workflows-and-actions


4.4. CUSTOM TESTING FRAMEWORK: SUBJEKT

Suite

suiteId: String
subjects: Collection<Subject>
symbolTable: SymbolTable

Subject

subjectId: String
resolvables: Map<String, Resolvable>

Parameter

parameterId: String
values: Collection<String>

Macro

macroId: String
arguments: Collection<String>
values: Collection<Resolvable>

SymbolTable

macros: Collection<Macro>
parameters: Collection<Parameter>

ResolvedSubject

parentSubjectId: String
instances: Map<String, Instance>

Context

parameters: Collection<DefinedParameter>
macros: Collection<DefinedMacro>

DefinedParameter

parameterId: String
value: String

DefinedMacro

macroId: String
value: Resolvable

Instance

Resolvable

1

n

«produces»

n

1

n

1

n

1

n

1

n

1

n

1

n

1

n

«produces»

n

«uses»

Figure 4.1: Top-level class diagram of the Subjekt library

CHAPTER 4. EVALUATION AND TESTING 67



4.4. CUSTOM TESTING FRAMEWORK: SUBJEKT

The final results are the ResolvedSubjects. Each of these is essentially one

of the generated outputs, and can be configured to contain one of the source codes

to be compiled and the expected diagnostics to be checked. The output is actually

a set of these objects to avoid testing the same case multiple times in case of

collisions, due to the permutations of the expressions.

4.4.3 Final usage inside tests

As previously introduced, Subjekt can be configured using YAML or JSON format.

To use it inside Collektive in order to produce testing cases, a resource file will

be created for each pattern to be tested, containing the entirety of cases for that

pattern. In order to test them, we will create a Kotest specification for each

Subjekt configuration, that gets loaded using the Subjekt library and then executed

comparing the diagnostics produced by the compilation with the expected ones.

Ultimately, the Kotlin Compile Testing library was abandoned in favor of a

custom solution that uses a utility singleton named CollektiveK2JVMCompiler

that automatically compiles a list of source files returning the diagnostics produced

via a MessageCollector and using the Collektive compiler plugin.

Listing 4.7: Example of a Subjekt configuration file used for Pattern 2 testing.�
1 name: "Invalid iteration of aggregate calls"

2 # ...

3

4 subjects:

5 - name: Iteration$ {{ prettify(AGGREGATE , loop(AGGREGATE)) }}

6 code: |-

7 fun Aggregate <Int >.entry () {

8 ${{ loop(AGGREGATE) }}

9 }

10 outcomes:

11 warning: |-

12 Aggregate function ’${{ AGGREGATE }}’ has been called ...

13 # ...
� �
In listing 4.7 a small example of a reduced Subjekt configuration used for the

tests of Pattern 2 is shown. In this configuration loop, prettify and AGGREGATE

are respectively two Macros and one Parameter that are omitted for brevity. The

first one wraps the argument with several types of iteration constructs, for example

a for loop or a map method call on a list. The second is a Macro exposed by

68 CHAPTER 4. EVALUATION AND TESTING



4.4. CUSTOM TESTING FRAMEWORK: SUBJEKT

Listing 4.8: Example of a test suite using Subjekt�
1 val testSubjects =

2 subjekt {

3 addSource("src/test/resources/subjekt/IterationWithAggregate.yaml")

4 }. toTempFiles () // creates a map of names -> temporary source files

5

6 forAll(testedAggregateFunctions) { functionCall ->

7 forAll(formsOfIteration) { iteration , iterationDescription ->

8 "using $functionCall in $iterationDescription without alignedOn" - {

9 // uses a utility function to retrieve the source from ‘testSubjects ’

10 val code = getProgramFromCase("Iteration")

11

12 "should compile producing a warning" - {

13 code shouldCompileWith

14 warning(

15 expectedWarning(functionName),

16 )

17 }

18 }

19 // ...
� �
Subjekt in all of its configurations and that is used to concatenate any number

of arguments into a camel case, special characters-free formatted string. The last

one is a Parameter that contains a list of aggregate constructs to be tested in the

source code (e.g., neighboring).

The configuration file is then loaded inside the test specification, and the sub-

jects are resolved and executed. The expected diagnostics are then compared with

the ones produced by the compilation, and the test is considered successful if they

match. In listing 4.8 a small snippet of the test suite using Subjekt is shown.

As we can see, the test suite is more concise and readable compared to pre-

vious approaches, and can be easily expanded to test more cases by adding more

configurations to the resource file. Moreover, inside the Kotest specification the

developer does not have to worry about the details of the source being compiled or

the diagnostics produced and, with an appropriate implementation of the check, it

is relatively easy to immediately see the source code that caused an eventual fail-

ure and the expected diagnostics that were produced or not, leading to an efficient

test-driven development cycle.

Subjekt is still a small library that can be expanded and improved in order to

make the creation of tests even more automatized and with less repetitions, but

its approach represents a possible solution to the problem of testing static analysis

CHAPTER 4. EVALUATION AND TESTING 69



4.4. CUSTOM TESTING FRAMEWORK: SUBJEKT

tools that was faced during the development of the Collektive frontend plugin for

this thesis.

70 CHAPTER 4. EVALUATION AND TESTING



Chapter 5

Conclusions

In this chapter we will present the conclusions of the work done during the thesis,

starting from the main contributions and the results obtained, and then moving

to the discussion of the limitations and possible future works that can be done to

improve the Collektive frontend plugin as well as static analysis tools via compiler

plugins in general.

5.1 Opportunities of Compiler plugins

Compiler plugins could represent a very powerful tool for developers that want

to customize a specific “environment” within a framework written in a general

purpose language. If brought to a sufficient degree of integration, they can greatly

enhance internal DSLs capabilities, breaking some remaining barriers between

the domain and the host language. If added to an automatically integrated

static analysis tool like a frontend compiler plugin, it can also help developers

to avoid common obstacles to the adoption of new tools and “languages” in their

projects, speeding up the learning process of the new constructs and spreading

new paradigms’ usage.

In this thesis, the development of the Collektive frontend plugin showed an

example of how this can be approached in a real use case, and how the interaction

with the compiler can happen in a seamless way, potentially leading to libraries

made specifically to build Kotlin compiler plugins enhancing the already existing,

CHAPTER 5. CONCLUSIONS 71



5.2. APPROACHING META-LEVEL ANALYSIS

still limited and experimental, K2 frontend API. Through the development of the

plugin, it was interesting to see how spotting new patterns to be caught with static

analysis immediately corresponded to their implementation directly in the same

tool used to enable the target DSL. This helped understand just how much bring-

ing static analysis towards the tool that is being analyzed can be beneficial, since

it allowed to immediately spot bad usages inside already existing code, therefore

leading to the formulation of new patterns to be detected and building a virtuos

cycle of improvement of the whole framework. Moreover, such a development could

exploit this opportunity to delegate bad usages of the DSL to the compiler, making

the developer’s life easier and the codebase more robust, without having to rely on

“programming tricks” or forced limitations of the language to avoid bad usages.

Finally, using a unified approach to the static analysis tool development, in this

case the frontend compiler plugin, can greatly facilitates the inclusion of such a

tool in the development environment, making it interact with the IDE and build

system automatically and without the need of additional IDE plugins or other

types of necessary integrations, often developed by third parties and not always

up-to-date with the latest versions of the framework.

In order to show a solid development process of such a plugin, covering the

full spectrum of the cycle, notable effort was put into building an effective testing

strategy that could be used to test also a bigger number of patterns even more

complex than the ones presented in this thesis. This led to the exploration of

different testing approaches, each one with its own pros and cons, and finally to

a more scalable and flexible method, accompanied by the small testing framework

Subjekt, developed exactly for this purpose.

5.2 Approaching meta-level analysis

In this thesis, multiple techniques have been employed to build checkers capable

of identifying increasingly complex patterns, ultimately relying on the widely used

visitor pattern. This choice was necessary to align with Kotlin’s FIR API, which,

while offering extensive capabilities, remains closely tied to the compiler’s internal

structures. However, this strong coupling highlights a broader challenge: the lack

of a higher-level abstraction for static analysis within compiler plugins. As demon-

72 CHAPTER 5. CONCLUSIONS



5.3. FUTURE WORKS

strated, performing pattern-based checks requires directly traversing and manipu-

lating the tree, making the implementation more intricate and less maintainable.

This underlines the importance of elevating compiler plugins to a meta-level,

where analysis can be expressed through a specialized meta-language rather than

being deeply intertwined with compiler internals. Such an approach, similar to

what other static analysis tools already provide, enhances at least three aspects of

the analysis tool:

• expressiveness: meta-level languages already exists in order to capture

complex patterns and relationships between code constructs, and can be

used to express the analysis in a more concise and readable way;

• maintainability: by decoupling the analysis logic from the compiler-level

representation, it becomes easier to adapt to language evolution and ensure

more scalable and reliable checks;

• modularity: the analysis can be split into smaller, more manageable com-

ponents, focusing on specific aspects of the pattern being checked.

Thus, while the FIR API enables powerful static analysis, the need for a higher-

level abstraction remains crucial to making these techniques more accessible, flex-

ible, and efficient in the long term.

5.3 Future works

At the moment of writing, the Kotlin API that enables static analysis in frontend

plugins like the one seen in this thesis is still highly experimental, therefore subject

to changes and improvements. Developing a meta-level language tool for this API

could be a possible future work, but it would require a more stable and mature

version of the API to be effective. Despite this, working on a unified language

similar to the one used in other static analysis tools could be a good starting point,

maybe based on tree-based pattern matching techniques or other more advanced

methods. This could allow compiler plugins to become easier to use and more

accessible to developers, leveraging the full power of this type of system.

CHAPTER 5. CONCLUSIONS 73



5.3. FUTURE WORKS

The proposed static analysis also has a lot of room for improvements: the static

analyzer could switch to a more rule-based approach, allowing for a declarative

definition of the patterns, that could be recognized by-name. In other words, this

would consist of a top-down approach where the developer defines the rules that

the code must follow, without starting from the compiler in order to implement

the rule itself. One possible way to refactor the current analyzer’s architecture

would be to introduce a rule engine that could be used to define the patterns

to be detected, using a general set of checkers to run the rules on the codebase.

Another possible strategy could be a code generation one, where the checkers are

created and added to the compiler plugin automatically starting from a set of rules

defined by the developer, maybe using another compiler plugin made for the job.

More for the static analysis side, allowing compiler plugins to use configuration

files already used by other tools like Detekt would strengthen the idea of the unified

approach even more, making the compiler plugin approach an interesting choice

as a standard for static analysis tools on the Kotlin platform.

Another possible future work could involve the testing method, expanding the

automatized approach taken with the Subjekt framework to be more inclusive and

flexible, allowing the developer to test more complex patterns with less effort,

maybe even in a way that is tied to the meta-level language used for the checks.

Finally, the development of the Collektive frontend plugin could be expanded to

include more patterns and more complex checks, maybe arose after a more in-depth

usage of the DSL in a real project, in order to make the plugin more complete and

effective in spotting bad usages of the available constructs.

The Kotlin ecosystem is one of the most vibrant and fast-growing, thanks to

its flexibility and the wide range of platforms it can target. Compiler plugins

are a powerful tool that can be used to enhance the development process and

the quality of the code produced, bringing paradigms that struggle to be adopted

into the mainstream. Empowering developers to use these tools more seamlessly

across this vast landscape of platforms and projects could unlock their true hidden

potential, turning them into a powerful asset rather than a niche solution.

74 CHAPTER 5. CONCLUSIONS



Bibliography

[ACD+24] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Sal-

vaneschi, and Mirko Viroli. The exchange calculus (XC): A functional

programming language design for distributed collective systems. J.

Syst. Softw., 210:111976, 2024.

[ADVC16] Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Roberto

Casadei. Run-time management of computation domains in field calcu-

lus. In Sameh Elnikety, Peter R. Lewis, and Christian Müller-Schloer,

editors, 2016 IEEE 1st International Workshops on Foundations and

Applications of Self* Systems (FAS*W), Augsburg, Germany, Septem-

ber 12-16, 2016, pages 192–197. IEEE, 2016.

[Aud20] Giorgio Audrito. FCPP: an efficient and extensible field calculus frame-

work. In IEEE International Conference on Autonomic Computing and

Self-Organizing Systems, ACSOS 2020, Washington, DC, USA, August

17-21, 2020, pages 153–159. IEEE, 2020.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming

for the internet of things. Computer, 48(9):22–30, 2015.

[CV16] Roberto Casadei and Mirko Viroli. Towards aggregate programming in

scala. In First Workshop on Programming Models and Languages for

Distributed Computing, PMLDC@ECOOP 2016, Rome, Italy, July 17,

2016, page 5. ACM, 2016.

[DVPB15] Ferruccio Damiani, Mirko Viroli, Danilo Pianini, and Jacob Beal. Code

mobility meets self-organisation: A higher-order calculus of computa-

BIBLIOGRAPHY 75



BIBLIOGRAPHY

tional fields. In Susanne Graf and Mahesh Viswanathan, editors, For-

mal Techniques for Distributed Objects, Components, and Systems -

35th IFIP WG 6.1 International Conference, FORTE 2015, Held as

Part of the 10th International Federated Conference on Distributed

Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4,

2015, Proceedings, volume 9039 of Lecture Notes in Computer Science,

pages 113–128. Springer, 2015.

[EBO+15] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and

Ian Gorton. Measure it? manage it? ignore it? software practition-

ers and technical debt. In Elisabetta Di Nitto, Mark Harman, and

Patrick Heymans, editors, Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,

Italy, August 30 - September 4, 2015, pages 50–60. ACM, 2015.

[LPS+23] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimäki, Savanna Lu-

jan, and Fabio Palomba. A critical comparison on six static analysis

tools: Detection, agreement, and precision. J. Syst. Softw., 198:111575,

2023.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how

to develop domain-specific languages. ACM Comput. Surv., 37(4):316–

344, 2005.

[PBV17] Danilo Pianini, Jacob Beal, and Mirko Viroli. Practical ag-

gregate programming with protelis. In 2nd IEEE International

Workshops on Foundations and Applications of Self* Systems,

FAS*W@SASO/ICCAC 2017, Tucson, AZ, USA, September 18-22,

2017, pages 391–392. IEEE Computer Society, 2017.

[PLHM08] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles

Muller. Documenting and automating collateral evolutions in linux

device drivers. In Joseph S. Sventek and Steven Hand, editors, Pro-

ceedings of the 2008 EuroSys Conference, Glasgow, Scotland, UK, April

1-4, 2008, pages 247–260. ACM, 2008.

76 BIBLIOGRAPHY



BIBLIOGRAPHY

[PMV13] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented

simulation of computational systems with ALCHEMIST. J. Simula-

tion, 7(3):202–215, 2013.

[Tho21] Patrick Thomson. Static analysis: An introduction: The fundamental

challenge of software engineering is one of complexity. ACM Queue,

19(4):29–41, 2021.

[VAB+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and

Danilo Pianini. Engineering resilient collective adaptive systems by self-

stabilisation. ACM Trans. Model. Comput. Simul., 28(2):16:1–16:28,

2018.

[VBD+19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto

Casadei, and Danilo Pianini. From distributed coordination to field

calculus and aggregate computing. J. Log. Algebraic Methods Program.,

109, 2019.

[ZSO+17] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Can-

fora, and Massimiliano Di Penta. How open source projects use static

code analysis tools in continuous integration pipelines. In Jesús M.

González-Barahona, Abram Hindle, and Lin Tan, editors, Proceedings

of the 14th International Conference on Mining Software Repositories,

MSR 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 334–344.

IEEE Computer Society, 2017.

BIBLIOGRAPHY 77



BIBLIOGRAPHY

78 BIBLIOGRAPHY



Acknowledgements

I would like to sincerely thank my advisor, Prof. Danilo Pianini, for guiding and

supporting me throughout this work. I especially thank him for proposing a thesis

topic that aligned as closely as possible with my interests and for helping me learn

many new things along the way. I also extend my thanks to my co-advisors, Nicolas

Farabegoli and Angela Cortecchia, for their helpful discussions and for proposing

interesting ideas that contributed to the project.

Finally, I am very grateful to my friends and family for their constant sup-

port throughout my master degree. Their encouragement has been essential in

completing this journey.

BIBLIOGRAPHY 79


	Abstract
	Introduction
	Static Analysis for novel paradigms
	The role of Domain Specific Languages
	Enabling static analysis through Compiler Plugins
	Types of Compiler Plugins
	Advantages of Compiler Plugins
	Main challenges and requirements


	Background: the Collektive case
	Aggregate Computing: a novel paradigm
	Applications and critical aspects
	The Domain Alignment problem

	Collektive: an Aggregate Computing framework
	Collektive DSL: main concepts
	Collektive Compiler Plugin

	Kotlin Compiler Plugins: general structure
	Kotlin K2 and frontend plugins

	DSL and Compiler Plugins
	The importance of Build Tools
	Main motivations


	Frontend plugin development
	Interaction with the Kotlin compiler
	Extension mechanism

	Static analyzer architecture
	Adding new rules

	Adopted workflow
	First approach: direct Kotlin API usage
	Pattern 1: explicit align/dealign

	Second approach: declarative and modular API
	Pattern 2: simple aggregate operations in loops

	Third approach: visitor pattern
	Pattern 3: unnecessary Yielding usage
	Pattern 4: unnecessary construct usage

	Fourth approach: mixed approach
	Pattern 5: complex aggregate operations in loops
	Pattern 6: improper Evolve construct usage


	Evaluation and Testing
	Initial testing approaches
	Avoiding repetitions through template files
	Initial template system
	Templates flexibility and limitations

	Code generation: a small DSL leveraging Kotlin Poet
	General structure and usage
	Considerations

	Custom testing framework: Subjekt
	Main ideas behind the framework
	Core structure of Subjekt
	Final usage inside tests


	Conclusions
	Opportunities of Compiler plugins
	Approaching meta-level analysis
	Future works
	
	Bibliography




