
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA
CESENA CAMPUS

MSc in Engineering and Computer Science

Development of a System for
Monitoring the Energy Consumption
of a Renewable Energy Community

Thesis in:
Concurrent and Distributed Programming

(IT: Programmazione Concorrente e Distribuita)

Supervisor
Prof. Alessandro Ricci

Co-supervisors
Ing. Andrea Diotallevi
Ing. Marco Diotallevi

Candidate
Riccardo Omiccioli

IV Graduation Session

Academic Year 2023-2024

ii

Abstract

Economic growth caused the world’s energy demand to drastically rise in the course
of the last decades, and is projected to rise in the future. With this increasing de-
mand, the introduction of new energy sources is becoming increasingly important.
However, the creation and building of new infrastructure is not straightforward,
and it would take decades to accomplish.

In this context, Renewable Energy Communities are a novel concept that aims
at supporting the energy transition to renewable sources, serving as middle enti-
ties between the consumer and the supplier. Renewable Energy Communities allow
users to share energy locally through a decentralized model and offer a method
to lower energy transportation costs and wastes, while encouraging the use and
creation of new renewable energy sources with state-backed incentives. Further-
more, direct connections from the main power plants to the final consumers can
be inefficient and susceptible to moments of high demand. There have been pre-
vious initiatives on this topic, which primarily focused on a Renewable Energy
Community’s management. However, raising awareness among Renewable En-
ergy Community’s members could prove essential for optimizing the community’s
effectiveness.

This project seeks to improve the local communities’ general experience, incor-
porating a tool to monitor the overall consumption of energy, as well as receiving
alerts when a localized shared consumption opportunity presents. The system em-
ploys a low-cost Internet of Things device, connected to each member’s electrical
system to measure each member’s production and consumption in order to reach
this goal. The obtained data is analyzed to determine desired or unwanted behav-
iors, and to deliver a summary of the community’s current state. Additionally, a
mobile application is provided, acting as a graphical user interface for receiving
system notifications and an overview of the community state.

iii

iv

Contents

Abstract iii

Introduction 1

1 Domain Analysis 3
1.1 Project Idea and Initial Analysis . 3
1.2 State of the Art . 9
1.3 Ubiquitous Language . 15

2 Requirements 19
2.1 User Stories . 20
2.2 User Scenarios . 20
2.3 Expected Use Cases . 24
2.4 Domain Storytelling . 33
2.5 Functional Requirements . 36
2.6 Non-Functional Requirements . 38
2.7 Implementation Requirements . 40
2.8 Prototypes . 41
2.9 Subdomains . 43

3 Design 47
3.1 Domain Model . 49
3.2 System Operations . 52
3.3 Bounded Context . 54
3.4 General Architecture . 59
3.5 Detailed Architecture . 62
3.6 Deployment . 69

4 Implementation 71
4.1 Service . 72
4.2 App . 76

CONTENTS v

CONTENTS

4.3 Device . 77
4.4 DevOps . 79

5 Evaluation 83

Conclusions and Future Work 93

97

Bibliography 97

vi CONTENTS

List of Figures

1.1 General structure of a Renewable Energy Community (REC) 8
1.2 State of the Art comparison table for devices 14
1.3 State of the Art comparison table for software platforms 14

2.1 Use case diagram of the system . 32
2.2 User story for community creation and update 33
2.3 User story for device installation . 34
2.4 User story for energy data reading and monitoring 35
2.5 User story for user notifications when excess energy is available . . . 35
2.6 Mockups of the user interface showing the main features of the system 42
2.7 Render of the device . 42
2.8 Core Domain Chart . 44

3.1 Mapping of subdomains to contexts and services 48
3.2 Energy Data domain model . 49
3.3 Device domain model . 50
3.4 User domain model . 50
3.5 Community Management domain model 51
3.6 Engagement domain model . 51
3.7 Bounded contexts relationships . 58
3.8 Bounded contexts map . 58
3.9 Component diagram of the system 60
3.10 Designed microservices architecture 61
3.11 Clean Architecture for Community Management service 65
3.13 Overview of device fleet provisioning with claim certificate 67
3.14 User authentication flow with AWS Cognito 68
3.16 Deployment diagram . 70

4.1 Model schema for Community Management service 73
4.2 Single Table Design for the Community Management service database 74
4.3 Example of data for the Community Management service database 74

LIST OF FIGURES vii

LIST OF FIGURES

4.4 Implemented screens of the mobile application 77
4.5 Activity diagram for the device . 78
4.6 Schematic of the prototype device 79
4.7 Example of the workflow used for this project 81

5.1 Photograph of the device prototype 94
5.2 Screenshots of the mobile application 96

viii LIST OF FIGURES

List of Listings

4.1 Example of a microservice stack using AWS CDK 76
4.2 Example of a code pipeline for a microservice 82
5.1 Jest component tests for the Community Management microservice 85
5.2 k6 scenario for get items of a user operations 87
5.3 k6 results for the Community Management microservice 87
5.4 k6 results for the Energy Data microservice 88

LIST OF LISTINGS ix

LIST OF LISTINGS

x LIST OF LISTINGS

Introduction

This thesis describes the development of a project targeted to the monitoring of

a REC1, a recent concept designed to promote sustainable collaboration in the

consumption and production of renewable energy. World energy consumption has

been steadily increasing over the past decades, with no signs of slowing down. Con-

tinuing to use traditional energy sources, which are mainly based on fossil fuels,

will not be sustainable in the long term due to the environmental impact and the

limited availability of these resources[MH12]. Since large production plants are un-

likely to be replaced with better alternatives in the short term, the introduction of

new renewable energy sources is becoming increasingly important. In the context

of the energy transition to renewable energy sources, Renewable Energy Commu-

nities (RECs) are a useful instrument that can help ease the transition by sharing

resources locally [LHv20]. The ultimate goal of this project is to develop a compre-

hensive system that includes energy value monitoring, community management,

and active user engagement to increase system efficiency. Every consideration

thereafter depends on the regulations and guidelines that are specifically tailored

to Italian communities, or “Comunità Energetiche Rinnovabili (CER)”, which are

the project’s main focus. However, the idea of REC is not limited to Italy; it is

also found in other nations, with each having its own rules and regulations.

Structure of the Thesis This document is structured in chapters that reflect

the main phases of the development cycle of a generic project. Although there

are different methodologies for development, almost every approach used for an

engineering project requires analyzing the problem, formally defining what will be

realized, designing a solution that meets the needs, and finally implementing the

1www.e-distribuzione.it

LIST OF LISTINGS 1

https://www.e-distribuzione.it/a-chi-ci-rivolgiamo/casa-e-piccole-imprese/comunita-energetiche.html

LIST OF LISTINGS

solution, validating the choices made throughout the process. Following this struc-

ture, the document starts with a detailed analysis of the domain relative to the

project, highlighting non-trivial concepts that emerge during the first approach

with the project environment. Subsequently, the requirements that the project

must meet are formally defined, using different methodologies to identify the func-

tionalities and characteristics that the system must provide. After defining what

will be done, the design phase will discuss how the system will realize the desired

solution. Finally, the implementation process will be described, documenting the

methodologies used to provide a high-quality solution and analyzing the results

obtained, outlining possible improvements and future developments.

2 LIST OF LISTINGS

Chapter 1

Domain Analysis

The initial phase of domain analysis is a fundamental activity that allows to study

and understand the context in which the project is inserted [Eva04]. This process

aims to identify the entities, concepts, activities, and relationships that define the

project environment. The ultimate goal of this phase is to gather all the necessary

knowledge of the external context, familiarizing with concepts and dynamics that

could initially be unknown to the people involved in the project. The domain

analysis begins by considering the project idea and expanding it through a series of

questions, answers, and information collected during the exploration of the project

environment. Subsequently, the characteristics of the project are compared with

those of existing solutions, in order to identify the innovative elements that the

project seeks to introduce. Finally, all the terms and key concepts encountered

during the analysis are collected, providing a shared and ubiquitous language to

avoid misunderstandings in the communications that will take place during the

project’s life cycle.

1.1 Project Idea and Initial Analysis

The project was born with the aim of creating a system to measure and consult the

consumption and production of electrical energy within a REC. Before proceeding

with the analysis of the domain, it is necessary to define the concept of REC.

REC are legal entities formed by members who can be private citizens, companies,

CHAPTER 1. DOMAIN ANALYSIS 3

1.1. PROJECT IDEA AND INITIAL ANALYSIS

public entities, or small and medium-sized enterprises. The members of a REC

voluntarily join together to virtually share the energy produced by one or more

participants. The shared energy, characterized by self-consumption within a REC,

is subject to incentives granted by the state to promote localized production and

consumption of electrical energy and the generation of electrical energy through

renewable sources.

The idea is to measure the consumption and production of each member, for

example, through Internet of Thing (IoT) devices connected to the electrical

system of each member. All measurements will then be stored and analyzed to

provide a real-time overview of the energy situation within the community. The

members of a community holds a key role in the success of a REC, as they are the

ones who consume the energy produced and therefore must be actively involved in

the management of the community. The final goal is to realize a tool that members

can use not only to monitor consumption, but also to notify consumers of the best

times for consumption.

Question and Answers Session Following the definition of the project idea,

a questions and answers session was conducted to better understand the context

of the project. Here are some of the most interesting aspects that emerged during

the session to better understand some peculiar aspects of the REC domain.

Question: Do the members of a REC have to be in the same geographical area?

Answer: Yes, the members must be under the same primary substation. This

constraint arises from the fact that the infrastructure present in the primary sub-

stations is used to locally share electrical energy, partially alleviating the load on

the national electrical grid.

Question: What does it mean that the produced energy is shared virtually?

Answer: The electrical energy produced is exchanged through the primary sub-

station. There is no direct electrical connection between the producer and the

consumer.

Question: How can electrical energy be produced? Does it necessarily have to be

solar energy?

Answer: No, within a community it is possible to produce energy using any re-

newable energy source. In fact, some communities have introduced small wind

4 CHAPTER 1. DOMAIN ANALYSIS

1.1. PROJECT IDEA AND INITIAL ANALYSIS

turbines plants. However, usually most of the energy is produced using solar pan-

els.

Question: What types of members are there within a REC?

Answer: Members can be of three types: consumers, producers, and self-consumers.

Consumers and producers are users who can only consume or produce electrical

energy. Self-consumers are members who have an electrical system suitable for

direct self-consumption.

Question: Why is it particularly important to involve the consumers of a REC?

Answer: Incentives and lower operational costs are obtained only when members

virtually exchange energy. In other words, a member who consumes electrical en-

ergy must do so while energy is being produced within the community to obtain

the benefits provided.

General information on RECs RECs represent only one of the possible con-

figurations provided for the self-consumption of electrical energy. Two other con-

figurations that are quite common and relevant in the context of renewable energy

consumption are individual remote self-consumers (IT: “autoconsumatori individ-

uali a distanza”) and groups of self-consumers (IT: “gruppi di autoconsumatori”).

Unlike RECs, individual remote self-consumers are final customers who produce

and directly consume their electrical energy. Groups of self-consumers, although

similar to RECs, have some important differences, such as the constraint of be-

longing to the same building. In addition, large companies can also participate in

groups of self-consumers, which is not allowed for RECs.

Of these configurations, RECs represent the most flexible solution; however,

they are subject to some constraints imposed by current regulations. As a first

aspect, it is specified that RECs must be formed by a minimum of two members,

who can be private citizens, entities, or companies, excluding large companies. All

the plants of a REC must also be connected to the same primary substation, have

a power of less than 1 MW, and have been put into operation after December

16th, 2021. Each production or consumption plant must belong to one and only

one REC, even if it is specified that the same individual can participate in the

same REC with multiple, distinct facilities.

CHAPTER 1. DOMAIN ANALYSIS 5

1.1. PROJECT IDEA AND INITIAL ANALYSIS

Incentives and benefits for RECs The main incentive for the creation of a

REC is the possibility for users to obtain a series of economic benefits. Each REC

receives a series of incentives for the self-consumed electrical energy, produced and

consumed at the same time by the members of the community. These incentives

are granted to promote the use of renewable sources and reduce the load on the

national electrical grid, using the infrastructure present in the primary substation

to connect a producer with the relative consumer. Each hour, the calculation of the

energy produced and consumed within the community is automatically calculated

and reported by the Gestore dei Servizi Energetici (GSE).

The incentives are composed of an incentive tariff and valorization fee granted

by Autorità di Regolazione per Energia Reti e Ambiente (ARERA). The incentive

tariff is composed of a fixed part, which depends on the size of the production plant,

and a variable part that depends on the market value of electrical energy. The

ARERA fee is recalculated annually, remaining fixed within each period. Moreover,

for regions in central and northern Italy, additional bonuses are provided depending

on the region of the community. The following table briefly reports the details of

the calculation of the incentive tariff for each plant, which will be useful to reference

during the calculation of the incentives.

Plant power Incentivizing tariff

power < 200 kW 80€/MWh + (0 → 40) €/MWh

200 kW < power < 600 kW 70€/MWh + (0 → 40) €/MWh

power > 600 kW 60€/MWh + (0 → 40) €/MWh

Table 1.1: Table of incentivizing tariff values

Regional bonuses, provided to compensate for the lower solar radiation in the

central and northern regions are reported in the following Table 1.2. Receiving

capital contributions from the National Recovery and Resilience Plan (NRRP)

for the realization of new plants will result in a proportional reduction in the

incentivizing tariff. The total incentive obtained for a production plant is therefore

calculated as:

(Tfix + Tvar) ∗ C +B + V

6 CHAPTER 1. DOMAIN ANALYSIS

1.1. PROJECT IDEA AND INITIAL ANALYSIS

Bonus Region

4€/MWh Lazio, Marche, Toscana, Umbria, Abruzzo
10€/MWh Emilia-Romagna, Friuli-Venezia Giulia, Liguria, Lom-

bardia, Piemonte, Trentino-Alto Adige, Valle d’Aosta,
Veneto

Table 1.2: Table of regional bonus values

Where T is the incentive tariff, C the reduction factor caused by the receipt of

capital contributions from the NRRP, B the regional bonus, and V the ARERA

valorization fee. The following calculation allows to obtain a rough estimate of the

incentives that a member of a REC can obtain, that can span approximately from

0.07€/kWh up to a maximum of 0.14€/kWh.

Electricity Meter A key factor that has allowed RECs to develop in recent

years is the transition towards second-generation electronic meters. This new

generation of meters began to spread following the Deliberation 646/2016/R/eel

of November 2016, in which the Autorità per l’Energia Elettrica il Gas e il Sistema

Idrico (AEEGSI) set the regulations for the commissioning of these new meters

over a span of 15 years. Compared to first-generation meters, these new meters

offer a series of important advantages, including:

• detailed monitoring of energy consumed, produced, and fed into the electrical

grid;

• real-time reading of the electrical power for a facility;

• bidirectional communication between the meter and electricity distributors;

• integration with IoT devices through the Chain 2 protocol for direct data

reading on the meter.

These new electronic meters provide a series of fundamental advantages without

which RECs would not have been able to easily spread. The new second-generation

meters are divided into three categories based on the maximum power allowed for

the plant in which they are installed:

CHAPTER 1. DOMAIN ANALYSIS 7

1.1. PROJECT IDEA AND INITIAL ANALYSIS

Representative Community

Owner Property (industrial)

Meter

Device

Facility

Meter

Device

Facility

RepresentativeCommunity

Owner

Meter

Device

FacilityUser

Meter

Device

FacilityUser

Meter

Device

Facility

Property (residential)

User
Meter

Device

Facility

Property (apartment)

User

Owner

RepresentativeCommunity

Facility

Meter

Property (home)

Device

Figure 1.1: General structure of a REC

• Single-phase GEMIS, for plants with a maximum power of 3 kW. Typically

used in homes, shops, and small businesses, is one of the most common

meters;

• Three-phase GETIS, for plants with a maximum power of 30 kW. Used in

medium-sized plants such as companies or public buildings;

• Three-phase GESIS semi-direct, which uses current transformers for semi-

direct measurement. This meter is used in large plants with a power greater

than 30 kW. For each plant, a constant transformation value K is defined,

which is the ratio of reduction between the current used by the plant and

that read by the meter. Some examples of values for the transformation

constant are 125/5 and 300/5, which provide a reduction factor of 25 and

60, respectively.

General Structure The general structure of a REC can be summarized into a

tree structure, as shown in Figure 1.1. This schema represents a very primitive

structure of how a REC is generally organized.

8 CHAPTER 1. DOMAIN ANALYSIS

1.2. STATE OF THE ART

1.2 State of the Art

The analysis of the state of the art is a fundamental activity that allows to un-

derstand the context in which the project is inserted. Analyzing the solutions

present on the market is useful to frame the project context in order to evaluate

the novelties introduced by the proposed project.

MAPS Digital Energy Community MAPS Group1 is a company that op-

erates in the field of Big Data applied to healthcare, energy, and environmental

social and governance sectors. It offers a cloud software to simulate and forecast

the economic performance of a REC, managing the onboarding of new members

and the collection of adhesions.

This system also provides the possibility, thanks to third-party devices, to

measure the consumption and production of electrical energy. These devices used

for the measurement, are inserted into a power outlet and communicate directly

with the electronic meter through the Chain2 protocol to obtain the necessary

data on the energy situation of the facility.

Different software modules are available, each designed for a specific purpose,

such as the preliminary simulation of a REC, the collection and management of

adhesions, and the monitoring and operational management2 of a REC. A mo-

bile app is also available that allows access to numerous functions and, above all,

to actively engage the members of the REC by providing useful suggestions to

optimize the consumption habits of electrical energy. AI algorithms are also avail-

able to analyze the situation of a REC and suggest an optimal use of resources,

improving the overall efficiency of the system. The software also offers additional

customization possibilities3 by providing Representational State Transfer (REST)

Application Programming Interface (API) and Message Queuing Telemetry Trans-

port (MQTT) protocols to integrate other external systems. However, no detailed

information is publicly available on the system functionalities, especially for the

energy data collection and analysis part that seems to rely on third-party solutions.

1energy.mapsgroup.it
2energy.mapsgroup.it/energy-community-manager
3energy.mapsgroup.it/faq

CHAPTER 1. DOMAIN ANALYSIS 9

https://energy.mapsgroup.it/comunita-energetiche/
https://energy.mapsgroup.it/energy-community-manager
https://energy.mapsgroup.it/faq

1.2. STATE OF THE ART

SmartDHOME SmartDHOME4 is a company that offers a series of IoT devices

designed for both energy communities and renewable energy production in general.

In addition to meters that monitor the production or consumption of energy,

some Z-Wave interfaces are available for ModBus devices and systems for acquir-

ing data from photovoltaic strings. The IoT meters available are designed to be

installed in series with the electronic meter on a DIN rail and transmit the mea-

surements detected through the Narrowband Internet of Things (NB-IoT) or

Second Generation (2G) network.

The software realized mainly consists of a platform called Contact Pro CER,

designed to meet various management needs of a REC. This platform is aimed

primarily at the representatives of a REC and offers various functionalities, in

addition to real-time monitoring. The platform allows, for example, to manage

the members and the accounting of the REC and to view the environmental impact,

making the administrators aware of the ecological benefits obtained. The system

also implements AI algorithms to analyze and improve the efficiency of a REC.

For the members, a separate app is available that allows real-time control of

consumption or production and receive personalized advice to optimize the use of

electrical energy.

CloE Energy Team CloE Energy Team5 is a company that realized an app

called “Comunità Energetiche” designed to monitor and manage REC. The app

is specifically designed to be used by the managers of the communities to evaluate

the efficiency and operate through a series of tools that simplify the management

activities of a community. Through the application, it is possible to obtain a

summary of various information, such as the energy performance of a commu-

nity, the economic incentives obtained, and the environmental impact generated.

This application also implements functionalities to simplify the onboarding of new

members and the company provides technical assistance during the configuration

phase.

4www.smartdhome.com
5www.cloe-energy-team.it

10 CHAPTER 1. DOMAIN ANALYSIS

https://www.smartdhome.com/prodotti-smartdhome/soluzioni-comunita-energetiche-rinnovabili.html
https://www.cloe-energy-team.it/comunita-energetiche/

1.2. STATE OF THE ART

MyCER This project6 is developed by Higeco Energy, a startup belonging to

the Higeco group, created to address issues in the management of a REC. Since

the beginning of the project, in January 2023, more than 35 RECs have been

created using this system.

The project offers a somewhat complete solution that includes IoT measure-

ment devices and software for the management and administration of a REC. The

IoT meters realized for the project use the Chain2 protocol to communicate di-

rectly with the electronic meter and obtain the energy consumption and production

values.

A platform called “MyCER” is available to meet the needs of administrators

and users, allowing the monitoring and management of the community. The func-

tionalities available include monitoring of energy consumption and production,

the creation of personalized rules for the redistribution of incentives obtained, and

the visualization of historical data. Each member can consult the history of their

energy profile and obtain an estimate of the incentives that will be conferred to

them. The system also integrates with energy storage systems, electric vehicle

charging stations, and the management of large energy loads. However, analyzing

the publicly available information, there do not seem to be functions for direct

engagement with the members of the REC.

SUN4U SUN4U7 is a project that began in 2023 in the province of Rome, with a

planned duration of 24 months. The main focus is on the organization and creation

of a REC, providing useful tools to facilitate the organization and coordination

between members. This project focuses on identifying other users in the same

area who may be interested in forming a community, providing also a simulation

and forecasting tool to estimate the possible benefits obtained from the creation

of a specific REC. Despite the functionalities provided, this project does not

include energy monitoring elements or direct engagement with the members of the

community.

6www.mycer.it
7sun4u.it

CHAPTER 1. DOMAIN ANALYSIS 11

https://www.mycer.it/
https://sun4u.it/

1.2. STATE OF THE ART

FlexyGrid FlexyGrid8 is a project that aims to provide a platform for the man-

agement of REC through a web platform. The project has obtained funding from

the European Union Horizon 2020 program, created to promote sustainable initia-

tives.

The system promises to monitor the performance of a community, consump-

tion and production, and the convenience of self-consumption considering external

factors such as the cost of different hourly rates. Although IoT measurement de-

vices and AI algorithms are mentioned, the information on these aspects is scarce,

indicating that the project is probably still in development. A hybrid architecture

is proposed, which includes traditional database elements with novelty blockchain

technologies and IoT devices for data collection.

NRG2PEERS This project9 was developed during research activities at the

university Politecnico di Milano. Unlike the other projects considered, it focuses

on supporting REC through the implementation of two tools aimed at the social

aspects and preliminary evaluation of a community constitution. The project

therefore proposes a complementary approach compared to the other projects,

focusing on support and social features rather than monitoring and managing an

established REC.

The first tool, the Readiness Level Indicator Tool, is a software that allows

to evaluate the readiness level of the members to verify that the requirements

for a successful community are met. The second tool, called Advisori App, is an

interactive platform with social elements that offers references to useful resources

and allows users to interact with each other to share success stories or clarify any

doubts by sharing their knowledge.

City Green Light This project10 was started in 2023 by City Green Light in

collaboration with Sidora and realizes an open-data platform called “OpenCER”.

This platform aims to facilitate the monitoring and analysis of energy consump-

tion through the use of Artificial Intelligence (AI) algorithms to optimize the

8it.flexygrid.com
9www.behavioralchange4sustainability.polimi.it/catalogo/nrg2peers

10citygreenlight.com

12 CHAPTER 1. DOMAIN ANALYSIS

https://it.flexygrid.com/
https://www.behavioralchange4sustainability.polimi.it/catalogo/nrg2peers/
https://citygreenlight.com/opencer-la-piattaforma-per-gestire-le-comunita-energetiche-rinnovabili/

1.2. STATE OF THE ART

performance of a REC. This project also introduces gamification elements to fur-

ther engage the members while promoting virtuous behaviors aimed at optimizing

energy consumption. In the available information, some aspects of energy data

acquisition and analysis through measurement devices and a cloud architecture

are also mentioned. The platform also provides services for the design and real-

ization of photovoltaic systems for electricity generation, as well as technical and

administrative assistance for the establishment of a REC. Despite the numerous

features listed, the project lacks detailed public information, and it is not specified

how active user engagement is intended to be integrated, possibly indicating that

the system is still under development.

Bryo Bryo is a company that has developed an app11 to support the creation and

preliminary evaluation of a REC. This app allows users to fill out a questionnaire

to evaluate the suitability of joining or creating a REC. All other monitoring,

management and interaction functionalities are absent, and the project realizes a

solution complementary to that proposed by this project.

State of the Art summary The following tables, shown in Figure 1.2 and

Figure 1.3 compare some key features of the different projects considered in the

state of the art analysis, related to the REC domain. The first row of each table

indicates the features that this project aims to realize, while the rows labeled with

the letters from A to I refer to the above-mentioned projects.

The table in Figure 1.2 compares the characteristics of the energy measurement

devices. Of the projects considered, only some provide devices capable of directly

measuring the amount of energy consumed or produced. It is important to notice

that the effective amount of energy produced or consumed is also measured and

made available to the members of the community by GSE; however, the data is

not meant to be used for real-time monitoring. This project aims to create a

metering device that is easy to install and uses the Chain2 protocol to retrieve

the measurements directly from the new generation of electronic meters. It is also

expected that the cost of such a device will be far lower than that of the devices

used in the other projects, according to the pricing information available online.

11comunitaenergetica.bryo-spa.it

CHAPTER 1. DOMAIN ANALYSIS 13

https://comunitaenergetica.bryo-spa.it/2021/11/05/da-bryo-unapp-per-sviluppare-le-comunita-energetiche/

1.2. STATE OF THE ART

Availability Measurements Format Connection OTA Updates Cost

First party Chain2 Plug WiFi + BT 5 ✔ $

A Third party Chain2 Plug WiFi + BT 4.2 ✔ $$$

B First party Direct DIN Rail NB-IoT + 2G ? $$

C ✘

D First party Chain2 DIN Rail Modbus (RS485) ✘ ?

E ✘

F ✘

G ✘

H ✘

I ✘

Figure 1.2: State of the Art comparison table for devices

Simulation Users
Management

Incentives
Policies

Real-time
Monitoring

Efficiency
Advices

Real-time
Engagement AI Algorithms

✘ ✔ ✔ ✔ ✔ ✔ ✘

A ✔ ✔ ✔ ✔ ✔ ✔ ✔

B ✘ ✔ ✔ ✔ ✔ ✔ ✔

C ✘ ✔ ✔ ✘ ✘ ✘ ✘

D ✘ ✔ ✔ ✔ ✘ ✘ ✘

E ✔ ✔ ✘ ✘ ✘ ✘ ✘

F ✘ ✔ ✔ ✘ ✘ ✘ ✔

G ✔ ✘ ✘ ✘ ✘ ✘ ✘

H ✔ ✔ ✘ ✘ ✔ ✘ ✔

I ✔ ✘ ✘ ✘ ✘ ✘ ✘

Figure 1.3: State of the Art comparison table for software platforms

14 CHAPTER 1. DOMAIN ANALYSIS

1.3. UBIQUITOUS LANGUAGE

The table shown in Figure 1.3 provides a summary of the software functional-

ities provided by the various projects considered. From the point of view of the

platforms made available, this project seeks to realize, at least in part, some func-

tionalities similar to those already implemented. However, this project focuses

primarily on direct monitoring and interaction with the user, providing limited

management functionalities for a REC, while the other projects are mainly aimed

at facilitating the management of the community.

1.3 Ubiquitous Language

The domain analysis phase has allowed to identify the main concepts and enti-

ties that characterize the REC domain. The Ubiquitous Language constitutes the

vocabulary of all the terms used within the project to ensure a clear and shared

vision of all the relevant terms. The purpose is to avoid ambiguities and mis-

understandings that could arise when using the same words to indicate different

concepts. Conversely, different words could be used to indicate the same concept,

and the ubiquitous language collects such synonyms into a single shared term. The

following Table 1.3 reports the terms used within the project, indicating the term,

the corresponding translation in Italian, and a brief definition of the concept.

Italian Term English Term Definition

Comunità ener-

getica rinnov-

abile,

Comunità

Community A community that aggregates producers

and consumers who share the renewable

electrical energy produced by one or more

members

Membro della

comunità energet-

ica,

Membro

Member A subject who participates in at least one

energy community

Utente User A generic person who interacts with the

system after authentication

CHAPTER 1. DOMAIN ANALYSIS 15

1.3. UBIQUITOUS LANGUAGE

Referente Representative A subject who plays the role of legal rep-

resentative for the energy community

Proprietario Owner A subject to whom the electrical supply

contract for one or more facilities located

in a generic building

Energia elettrica,

Energia

Energy Measure of the quantity of electrical en-

ergy consumed, produced, or stored

Impianto Facility A generic plant for which an electrical

energy supply or production contract is

provided

Contatore Meter An electronic meter installed by the elec-

trical supplier that manages and mea-

sures the electrical energy for a facility

Sistema System The overall set of devices, software, and

other technologies realized in a project

Dispositivo,

Misuratore

Device An electronic device that measures the

quantity of electrical energy consumed

and eventually produced by a facility

Applicazione,

Portale

App Software used to enable people to interact

with the system in all its functionalities

Tariffa incenti-

vante

Incentive tariff A tariff applied to incentivize the produc-

tion of renewable energy

Contributo di val-

orizzazione

Valorization fee An economic contribution recognized to

the REC to incentivize them to share lo-

cally produced renewable energy without

burdening the national energy grid

Contributo in

conto capitale

Capital grant Financing aimed at the realization of new

plants for the production of renewable en-

ergy

16 CHAPTER 1. DOMAIN ANALYSIS

1.3. UBIQUITOUS LANGUAGE

Interazione,

Suggerimento,

Notifica

Engagement A generic data sent by the system to a

user to communicate relevant informa-

tion

Autoconsumo Self-

consumption

Consumption of electrical energy that oc-

curs at the same time as electrical energy

is produced within the REC

Registrare Sign Up Create a user profile in the system by pro-

viding required credentials

Accedere Sign In Authentication procedure to access the

functionalities provided by the system by

providing the user credentials

Monitorare un

impianto

Monitor Facility Consult the information related to a fa-

cility

Ricevere notifiche Receive notifica-

tions

Receive a notification through some com-

munication channel about the status of

the system

Gestire un

impianto

Manage Facility Add or remove facilities from the system

Modificare un

impianto

Update Facility Update relevant information of a facility.

Add or remove other users to a facility

Gestire un dispos-

itivo

Manage device Add or remove a device within a facility

Gestire una comu-

nità

Manage commu-

nity

Create or remove a community

Modificare una

comunità

Update commu-

nity

Add or remove facilities from a commu-

nity

Misurare Measure Detect the quantity of electrical energy

consumed or produced by a facility

Inviare mis-

urazioni

Send measure-

ments

Send the data detected by a device to the

system

CHAPTER 1. DOMAIN ANALYSIS 17

1.3. UBIQUITOUS LANGUAGE

18 CHAPTER 1. DOMAIN ANALYSIS

Chapter 2

Requirements

After the completion of the domain analysis phase, it is necessary to identify and

formalize what needs to be done in terms of functionalities and characteristics

that the system must provide. This phase is known as requirements analysis and

is fundamental to collect in a structured way what will be implemented and act

as a guide during the subsequent design, implementation, and validation.

This project follows a Domain Driven Design (DDD) approach to requirements

analysis, using different methodologies to identify requirements under different

perspectives. Using DDD methodologies allows for a requirement analysis that

closely align with the business domain and the needs of the stakeholders involved

in the project. This analysis will start by identifying user stories and scenarios that

will be further refined into use cases to provide a more detailed view of the expected

behavior of the system from the point of view of the actors involved. After this

initial phase, a domain storytelling session and mock-ups are used to validate the

requirements and provide visual feedback on the expected functionalities. Finally,

the requirements are divided into functional, non-functional, and implementation

requirements and subdomains are identified to classify requirements based on their

role and importance in the scope of the project.

CHAPTER 2. REQUIREMENTS 19

2.1. USER STORIES

2.1 User Stories

User stories are short descriptions of a system feature, as seen from the user’s

perspective. As the name suggests, these stories mock a user’s interaction with

the system and are useful to understand the needs of different user roles and why

a specific functionality could prove valuable for that user.

• As a User, I want the ability to sign up, so that I can add a new user to the

system.

• As a User, I want the ability to sign in, so that I can access the system and

its features.

• As a User, I want to be able to monitor a facility, so that I can get information

about energy production or consumption.

• As a User, I want to receive notifications, so that I can be informed about

some relevant information of the system.

• As a Owner, I want to be able to manage my facilities, so that I can add or

remove a facility from the system.

• As a Owner, I want to be able to update my facilities, so that I can update

the information of the facility and add or remove other users to the facility.

• As a Owner, I want to be able to manage my devices, so that I can add or

remove a device within a facility.

• As a Representative, I want to be able to manage a community, so that I

can add or remove a community.

• As a Representative, I want to be able to update a community, so that I can

add or remove facilities from a community.

2.2 User Scenarios

User scenarios are a more detailed view of the user stories, providing a step-by-

step description of the actions that a user can perform within the system. These

20 CHAPTER 2. REQUIREMENTS

2.2. USER SCENARIOS

scenarios are expressed in terms of Given, When, and Then to indicate the

initial conditions, the action performed by a subject, and the expected result.

Given a user

And some credentials provided by the user in the form of email and password

When the user sign up to the system

Then then a new unverified user is created

And a confirmation code is sent to the specified user email

Given a user

And the confirmation code received by the user

When the user completes the registration by entering the code

Then the user is confirmed

Given a user

And some credentials provided by the user in the form of email and password

When the user sign in

Then the user is signed in

Given a user

And the user is signed in

And the user has access to at least one facility

When the user access the monitoring page

Then all production and consumption information are shown for the user’s fa-

cilities

Given a user

And the user is signed in

And the user has access to at least one facility

And the facility is in a community

When an excess of energy production in the community is detected

CHAPTER 2. REQUIREMENTS 21

2.2. USER SCENARIOS

Then a notification is sent to the user

Given a user

And the user is signed in

When the user adds a new facility

Then the facility is added to the user’s facilities

Given a user

And the user is signed in

And the user is the owner of a facility

When the user removes a facility

Then the facility is removed from the user’s facilities

And all devices associated with the facility are removed

Given a user

And the user is signed in

And the user is the owner of a facility

When the user updates the facility

Then facility information is updated

Given a user

And the user is signed in

And the user is the owner of a facility

When the user adds a new device

Then the device is added as the facility device

Given a user

And the user is signed in

And the user is the owner of a facility

And the facility has a device

When the user removes a device

22 CHAPTER 2. REQUIREMENTS

2.2. USER SCENARIOS

Then the device is removed from the facility

Given a user

And the user is signed in

When the user creates a new community

Then the community is added to the user’s communities

Given a user

And the user is signed in

And the user is the representative of a community

When the user updates the community

Then the community information is updated

Given a user

And the user is signed in

And the user is the representative of a community

When the user adds a facility to the community

Then the facility is added to the community

Given a user

And the user is signed in

And the user is the representative of a community

When the user removes a facility to the community

Then the facility is removed from the community

Given a device

And the device is added to a facility

When the device measures the energy

Then the device sends consumption information

CHAPTER 2. REQUIREMENTS 23

2.3. EXPECTED USE CASES

2.3 Expected Use Cases

In the context of a software development project, use cases are a fundamental

tool to define the functionalities that the system must provide viewed from the

perspective of the actors involved [JC23]. The following use cases help to sum-

marize the expected behavior of the system and provide a structured view of the

functionalities that the system must provide, each with an associated actor.

Title: Sign Up

Primary Actor: User

Goal: A user signs up to the system by providing the required credentials

Scope: System

Level: User Goal

Precondition: The user is not yet signed up into the system

Minimal Guarantee: The system records the request

Success Guarantee: The user is signed up into the system

Main Success Scenario:

1. The user accesses the sign up page

2. The user provides the required credentials

3. The user confirms the sign up

4. The system sends an email with a confirmation code

5. The user completes the sign up by entering the received code

6. The user is signed up into the system

Extensions:

1. The user does not provide the required data: the system shows a specific

error message

2. The user does not complete the sign up: the system sends the code again

after a new request

Title: Sign In

Primary Actor: User

Goal: A user signs in to the system with the provided credentials

Scope: System

24 CHAPTER 2. REQUIREMENTS

2.3. EXPECTED USE CASES

Level: User Goal

Precondition: The user is signed up into the system

Minimal Guarantee: The system records the request

Success Guarantee: The user is authenticated to the system

Main Success Scenario:

1. The user accesses the sign in page

2. The user provides the required credentials

3. The user confirms the sign in

4. The system authenticates the user

Extensions:

1. The user does not provide the required data: the system shows a specific

error message

Title: Monitor Facility

Primary Actor: User

Goal: A user monitors one or more facilities to obtain information on energy

production or consumption

Scope: System

Level: User Goal

Precondition: The user is signed in into the system

Success Guarantee: The user views the requested information

Main Success Scenario:

1. The user accesses the monitoring page

2. The user selects the facility to monitor

3. The system shows the requested information

Extensions:

1. The user does not have access to any facility: the system shows an error

message

Title: Receive Notifications

Primary Actor: User

CHAPTER 2. REQUIREMENTS 25

2.3. EXPECTED USE CASES

Goal: A user receives a notification in case of excess energy production within

the community

Scope: System

Level: User Goal

Precondition: The user is signed in into the system

Success Guarantee: The user receives the notification

Main Success Scenario:

1. The system detects an excess of energy production within the community

2. The system sends a notification to the user

3. The user views the notification

Extensions: None

Title: Add Facility

Primary Actor: User

Goal: A user adds a new facility

Scope: System

Level: User Goal

Precondition: The user is signed in into the system

Success Guarantee: The facility is added correctly

Main Success Scenario:

1. The user accesses the facility management page

2. The user provides the required data

3. The user confirms the addition

4. The system adds the facility

5. The user views the added facility

Extensions:

1. The user does not provide the required data: the system shows an error

message asking the user to correct the data

Title: Delete Facility

Primary Actor: Owner

Goal: An owner removes a facility

26 CHAPTER 2. REQUIREMENTS

2.3. EXPECTED USE CASES

Scope: System

Level: User Goal

Precondition: The user is signed in into the system and is the owner of the

facility to remove

Success Guarantee: The facility is removed correctly

Main Success Scenario:

1. The user accesses the facility management page

2. The user selects the facility to remove

3. The system asks for confirmation

4. The user confirms the removal

5. The system removes the facility

6. The system removes the device associated with the facility if present

Extensions:

1. The user does not confirm the removal: the system cancels the operation

Title: Update Facility

Primary Actor: Owner

Goal: An owner updates the information of a facility

Scope: System

Level: User Goal

Precondition: The user is signed in into the system and is the owner of the

facility to update

Success Guarantee: The facility is updated correctly

Main Success Scenario:

1. The user accesses the facility management page

2. The user selects the facility to update

3. The user provides the required data

4. The user confirms the update

5. The system updates the facility

Extensions:

1. The user does not confirm the update: the system cancels the operation

CHAPTER 2. REQUIREMENTS 27

2.3. EXPECTED USE CASES

Title: Create Device

Primary Actor: Owner

Goal: An owner adds a new device to a facility

Scope: System

Level: User Goal

Precondition: The user is signed in into the system and is the owner of the

facility where to add the device

Success Guarantee: The device is added correctly

Main Success Scenario:

1. The user installs the device

2. The user accesses the facility management page

3. The user selects the facility where to add the device

4. The user starts the device association procedure

5. The system associates the device to the facility

Extensions:

1. The procedure fails: the system shows an error message

Title: Delete Device

Primary Actor: Owner

Goal: An owner removes a device from a facility

Scope: System

Level: User Goal

Precondition: The user is signed in into the system and is the owner of the

facility where to remove the device

Success Guarantee: The device is removed correctly

28 CHAPTER 2. REQUIREMENTS

2.3. EXPECTED USE CASES

Main Success Scenario:

1. The user accesses the facility management page

2. The user selects the facility where to remove the device

3. The user starts the device removal procedure

4. The system removes the device from the facility

Extensions:

1. The procedure fails: the system shows an error message and cancels the

operation

Title: Create Community

Primary Actor: User

Goal: A user creates a new community

Scope: System

Level: User Goal

Precondition: The user is signed in into the system

Success Guarantee: The community is created correctly

Main Success Scenario:

1. The user accesses the community management page

2. The user provides the required data

3. The user confirms the addition

4. The system adds the community

5. The user views the added community

Extensions:

1. The user does not provide the required data: the system shows an error

message asking the user to correct the data

Title: Delete Community

Primary Actor: Representative

Goal: A representative removes a community

Scope: System

Level: User Goal

CHAPTER 2. REQUIREMENTS 29

2.3. EXPECTED USE CASES

Precondition: The user is signed in into the system and is the representative

of the community to remove

Success Guarantee: The community is removed correctly

Main Success Scenario:

1. The user accesses the community management page

2. The user selects the community to remove

3. The system asks for confirmation

4. The user confirms the removal

5. The system removes the community

Extensions:

1. The user does not confirm the removal: the system cancels the operation

2. The community has associated facilities: the system shows a warning mes-

sage

Title: Update Community

Primary Actor: Representative

Goal: A representative updates the information of a community

Scope: System

Level: User Goal

Precondition: The user is signed in into the system and is the representative

of the community to update

Success Guarantee: The community is updated correctly

Main Success Scenario:

1. The user accesses the community management page

2. The user selects the community to update

3. The user provides the required data

4. The user confirms the update

5. The system updates the community

Extensions:

1. The user does not confirm the update: the system cancels the operation

30 CHAPTER 2. REQUIREMENTS

2.3. EXPECTED USE CASES

Title: Measure

Primary Actor: Device

Goal: A device measures the quantity of electrical energy consumed or produced

in a facility

Scope: System

Level: User Goal

Precondition: The device is installed and working

Success Guarantee: The device detects the data correctly

Main Success Scenario:

1. The device detects the electrical energy data

2. The device saves the detected data locally

Extensions:

1. The device is not able to detect the data: the device shows an error

Title: Send Measurements

Primary Actor: Device

Goal: A device sends the measures data to the system

Scope: System

Level: User Goal

Precondition: The device is installed and working

Success Guarantee: The system receives the data correctly

Main Success Scenario:

1. The device sends the measures to the system

2. The system receives the data

3. The system saves the received data

Extensions:

1. The device is not able to send the data: the device shows an error and

retries later

Following the first phase of analysis, different roles that users can assume begin

to emerge, each with different responsibilities. In Figure 2.1, it is possible to notice,

in addition to a generic user, Owners and Representatives roles that respectively

CHAPTER 2. REQUIREMENTS 31

2.3. EXPECTED USE CASES

Delete Device

Delete
Community

Delete Facility

Update
Community

Update Facility

Representative

Create Device

Create
Community

Receive
Notifications

Create Facility

Send Measurements

Measure Device

Monitor Facility

Sign in

Sign up

User

Owner

System

«extends»

Figure 2.1: Use case diagram of the system

32 CHAPTER 2. REQUIREMENTS

2.4. DOMAIN STORYTELLING

represent the owner of a facility and the representative of a REC. These roles are

all specializations of a generic User, that is, a user who registers to the system,

logs in, monitors one or more facilities, and receives some relevant notifications.

All operations provided for a User require the user to sign in before accessing the

available functionalities. In Figure 2.1, a device is also shown as an actor of the

system which performs measurements and sends the detected data.

2.4 Domain Storytelling

The Domain Storytelling is a technique that helps to reduce misunderstandings

during the analysis phase, representing some meaningful scenarios in the form of

stories that illustrate graphically the interactions between the different entities of

the system. This approach allows validating in an intuitive way the information

collected up to the moment, making it understandable to all persons involved in

the project. For this purpose, different scenarios have been developed, focusing on

those considered most significant.

In the story shown in Figure 2.2, the management of a community is illus-

trated, that is the creation of the community itself and the addition of facilities

to it. Moreover, the owners of the facilities can add other users to a facility after

obtaining some information about them, in order to allow more people to monitor

the energy consumption data.

Representative

User

Owner

User info

adds
3

from

gets
2

adds

5

into

gets
4

from

into

Facility info

Signed up &
Signed in

System

Community
info

adds
1

into

Figure 2.2: User story for community creation and update

CHAPTER 2. REQUIREMENTS 33

2.4. DOMAIN STORYTELLING

The scenario shown in Figure 2.3 highlights the association of a measuring

device to a facility. In particular, a user who is signed up and signed in the system,

proceeds to add a device through an interface that allows to obtain information

about the device’s identity to be added to the system to complete the association.

Owner
connect

into

generate
2

using
1

bind

3
for

Signed up &
Signed in

Device SystemInterface

Device
information

Figure 2.3: User story for device installation

The story in Figure 2.4 shows the scenario in which a device measures the

energy data and sends it to the system. The device, after reading the energy data

from a meter, sends the data to the system, which receives and saves it. After the

data is saved, the system can provide the data to the users.

Finally, the scenario shown in Figure 2.5 illustrates the notification function-

ality provided to notify users when excess energy is available. After the system

analyzes the data sent by the devices, it can detect an excess of energy production

within a community. In this case, the system sends a notification to the users who

have access to the facilities in that community.

34 CHAPTER 2. REQUIREMENTS

2.4. DOMAIN STORYTELLING

User

Signed up &
Signed in

into

read
3

read
1

from

from

send
2

Energy data System

MeterDevice

Figure 2.4: User story for energy data reading and monitoring

MeterEnergy data

into

send
2

to

fromread
1

send
3

SystemNotificationUser

Device

Signed up &
Signed in

Figure 2.5: User story for user notifications when excess energy is available

CHAPTER 2. REQUIREMENTS 35

2.5. FUNCTIONAL REQUIREMENTS

2.5 Functional Requirements

Functional requirements detail the features that the system must provide to meet

the needs that the project intends to achieve. Those requirements are expressed

in terms of a numbered list, organizing the functionalities in a structured way, and

providing a guide to verify the complete implementation of all the features.

1. user sign up

1.1. sign up providing:

• mandatory: email, password, verification code

1.2. show error message if sign up procedure fails

1.3. verify a new user with a validation code sent via sign-up email

2. user sign in

2.1. sign in providing:

• mandatory: email, password

2.2. show error message if sign in procedure fails

2.3. sign out

3. monitor facility

3.1. view the facility status of user’s facilities

• power consumed

• power produced

3.2. view the REC status of user’s communities

• power consumed

• power produced

• excess power available

• electric energy consumed in the last 24h

• electric energy produced in the last 24h

4. reveice notifications

36 CHAPTER 2. REQUIREMENTS

2.5. FUNCTIONAL REQUIREMENTS

4.1. receive notifications when excess energy is available

5. manage a facility

5.1. add a facility

5.2. remove a facility

5.3. show error message if facility management fails

5.4. show error message if user is not authorized to manage the facility

6. update a facility

6.1. add and remove users to a facility

6.2. change facility settings

6.3. show error message if facility update fails

6.4. show error message if user is not authorized to update the facility

7. manage a device

7.1. add a device to a facility

7.2. remove a device from a facility

7.3. show error message if device management fails

7.4. show error message if user is not authorized to manage the device for

the facility

8. manage a REC

8.1. add a REC

8.2. remove a REC

8.3. show error message if REC management fails

8.4. show error message if user is not authorized to manage the REC

9. update a REC

9.1. add and remove facilities to a REC

CHAPTER 2. REQUIREMENTS 37

2.6. NON-FUNCTIONAL REQUIREMENTS

9.2. show error message if REC update fails

9.3. show error message if user is not authorized to update the REC

10. measure energy data

10.1. read energy data from a device

10.2. send energy data to the system

10.3. show error if energy data measurement fails

10.4. show error if energy data sending fails

2.6 Non-Functional Requirements

Non-functional requirements detail aspects related to the quality of the system to

be implemented, rather than features to be added. However, these requirements

are crucial to the success of the project, as they influence the final quality of the

system. These requirements specify elements related, for example, to performance,

reliability, scalability, and usability of the system.

For each non-functional requirement, a quality attribute scenario is provided,

which describes how to measure the system’s behavior in specific situations in

order to verify the compliance with the requirement. The scenario also includes the

source of the stimulus, the type of stimulus, the artifact involved, the environment

in which the stimulus occurs, the expected response, and how to measure the

response.

1. Performance Scenario:

• Source of Stimulus: user

• Stimulus: initiate a request

• Artifact: system

• Environment: normal operation

• Response: the request is processed

• Response Measure: average response time is less than 2 seconds

38 CHAPTER 2. REQUIREMENTS

2.6. NON-FUNCTIONAL REQUIREMENTS

2. Compatibility Scenario:

• Source of Stimulus: user

• Stimulus: installs the application on a device

• Artifact: user application

• Environment: normal operation

• Response: the application successfully installs and operates as in-

tended

• Response Measure: the application is compatible with all devices

running Android 11 or later

3. Modifiability Scenario:

• Source of Stimulus: developer

• Stimulus: changes the system code

• Artifact: codebase

• Environment: normal operation

• Response: the update is automatically deployed

• Response Measure: the system is updated and deployed in less than

10 minutes

4. Availability Scenario:

• Source of Stimulus: user

• Stimulus: use the application

• Artifact: system

• Environment: normal operation

• Response: the system is highly available

• Response Measure: the system is available at lest 99% of the time

5. Usability Scenario:

CHAPTER 2. REQUIREMENTS 39

2.7. IMPLEMENTATION REQUIREMENTS

• Source of Stimulus: user

• Stimulus: use the application

• Artifact: user application

• Environment: normal operation

• Response: the application is easy to use

• Response Measure: all the application functionalities can be com-

pleted successfully in less than 1 minute

6. Accessibility Scenario:

• Source of Stimulus: user with color blindness

• Stimulus: use the application

• Artifact: user interface

• Environment: normal operation

• Response: the interface is accessible

• Response Measure: the interface is accessible according to WCAG

AAA for text and main graphical elements

2.7 Implementation Requirements

Implementation requirements define the tools and technologies with which the

system must be implemented. Defining these aspects is necessary, for example, to

plan the use of some innovative technologies crucial for the success of the project,

or to respect any business or pre-existing system constraints. These requirements

are essential to ensure that the system is developed in a way that meets the needs

of the project.

• The system must be implemented using a serverless microservices architec-

ture to make the system as modular and scalable as possible;

• The mobile application that acts as the system dashboard must be developed

using React Native so that it can be distributed on multiple platforms if a

need arises;

40 CHAPTER 2. REQUIREMENTS

2.8. PROTOTYPES

• The measuring device must use an ESP32-based System on Chip (SoC) due

to the low costs, reliability, well-documented development framework, and

integrated Wi-Fi module;

• The source code and essential resources must be managed through the Git

Distributed Version Control System (DVCS), using GitHub repository host-

ing;

• The workflow adopted during the development of the software components

should be inspired by the model provided by Gitflow;

• To identify successive versions of the released software, the convention pro-

vided by Semantic Versioning 2.0.01 must be used.

2.8 Prototypes

The realization of prototypes in the early stages of the project allows evaluating

in advance some aspects and obtain validation early on. These artifacts should be

considered disposable and serve only as a guide for the subsequent development

phases.

For this project, mock-ups have been created for the user interface used to

interact with the system. The most important screens are shown in Figure 2.6,

which includes the sign-up, monitoring, and community management pages. This

tool not only allows to validate some aspects emerged during the domain analysis

but also provides an intuitive way to visualize the elements expected for the system.

Simulating user interactions with fictitious screens is extremely useful to identify

some aspects to be deepened in the subsequent phases. Even if a general style is

presented for the interface, it is more important to identify the screens and the

components expected for each of them rather than focusing on the look and feel

of the proposed interface.

Figure 2.7 shows a render of the device that is then realized as a prototype to

show stakeholders the expected outcome for the measuring device.

1semver.org

CHAPTER 2. REQUIREMENTS 41

https://semver.org/

2.8. PROTOTYPES

Sign up

Email

Password

Sign up

Already have an account?
Login

Appname Community

0 6 12 18 0 6 12 18

Energy kW/h

24h production 45kW/h

24h consumption 5kW/h

Community Facility

Community Name

info

info

Community Name

Figure 2.6: Mockups of the user interface showing the main features of the system

Figure 2.7: Render of the device

42 CHAPTER 2. REQUIREMENTS

2.9. SUBDOMAINS

2.9 Subdomains

The subdomains divide and organize the parts that make up the project, making

the structure of the system clearer. Each subdomain represents a component of the

overall domain, with its own functionalities, purpose, and distinctive task. This

division allows to address the problem in a modular way, focusing on each subdo-

main independently and assigning to each of them a different level of complexity.

• Energy Data: manages the data related to electrical energy measurements.

It includes the addition and storage of data in the system and the analysis

activities on them.

• User: deals with the management of the system users, that is their regis-

tration and authentication, and management of active sessions and security

aspects.

• Community Management: manages all aspects related to an energy com-

munity, that is the management and updating of communities, facilities, and

devices.

• Device: includes all the functionalities provided for a device, that is the

operations of measurement and verification of the correct functioning of the

devices.

• Engagement: analyzes the current state of the system and provides sug-

gestions to users to improve the performance of the community.

The identified subdomains have been classified according to their complexity and

the business value they bring to the project. Figure 2.8 shows how the subdomains

are positioned with respect to the business value and complexity factors of the do-

main model. The business value refers to the value that distinguishes a particular

aspect of the project from others already existing, that is, it indicates what makes

the project unique and innovative compared to those already existing. The com-

plexity of the domain model indicates the complexity of the system in terms of

the functionalities provided by a specific component. In particular, according to

the core domain chart of Figure 2.8, the various subdomains have been arranged

in the graph according to the following considerations:

CHAPTER 2. REQUIREMENTS 43

2.9. SUBDOMAINS

Generic Supporting Core

Low HighBusiness Differentiation

Lo
w

H
ig

h
M

od
el

 C
om

pl
ex

ity

energy data

community
management

engagementdevice

user

Figure 2.8: Core Domain Chart

44 CHAPTER 2. REQUIREMENTS

2.9. SUBDOMAINS

• Energy Data: includes the addition of energy data to the system, as well as

reading and analysis operations on them. This subdomain is characterized by

a low complexity of the model and low business value, as there are no innova-

tive aspects brought by this project. Given the simplicity of the subdomain,

it is considered a generic domain. However, some future developments could

significantly increase the complexity of this subdomain, while also slightly

increasing its business value. For example, through AI tools, energy data

could be used to make estimates on consumption and production, anticipat-

ing the overall state of the community based on observed behaviors in the

past. These data could be used to further optimize consumption and receive

a greater amount of incentives. However, even considering these possible

future developments, this subdomain remains of a generic type, as the ex-

pected developments would directly use existing technologies. Furthermore,

there are already other projects that provide these expected functionalities.

• User: this subdomain is classified as generic, as it uses already implemented

technologies without introducing innovative elements or personalized func-

tionalities. These functionalities include user registration and authentication

and the control of the user sessions that occur during the interaction with

the system.

• Community Management: this subdomain deals with the management

of communities, facilities, and devices. Even if it does not introduce partic-

ularly innovative aspects compared to other projects, it is still considered a

supporting domain, as it implements an important component for the over-

all functioning of the system. This component implements and manages the

structure of a community as observed in the domain analysis, and the parts

related to this subdomain will have to be implemented without reusing ex-

isting solutions as it will have to be customized to adapt to the project’s

needs.

• Device: includes the management of devices and all the functionalities nec-

essary to measure, send data, and control the correct functioning of the

devices. This subdomain is considered a supporting domain, as it provides

CHAPTER 2. REQUIREMENTS 45

2.9. SUBDOMAINS

an important element for the operation of the system, without introducing

particularly innovative aspects compared to other projects.

• Engagement: constitutes one of the fundamental aspects of the project,

and for this reason, it is considered a core domain. This subdomain presents

innovative business aspects compared to other projects considered and deals

with the analysis of the system and the mechanisms that interact with users

to make them an active component of the system. This subdomain is re-

sponsible for notifying users in real-time of certain conditions based on the

current state of the system, an aspect that is often completely absent or only

partially implemented. Even if the functionalities provided for this project

are not trivial, some future developments could be expected to further im-

prove the quality of the information sent to users, for example, using AI

algorithms to predict future system states ahead of time.

46 CHAPTER 2. REQUIREMENTS

Chapter 3

Design

The design phase of the project elaborates on the results obtained during the

analysis phase, in order to define how the system will be implemented. Here the

architecture of the system is defined, the components that make up the system are

further detailed, and relevant decisions are made to ensure a solution that meets

the requirements and constraints of the project.

While the system includes different components, such as a mobile application,

and a measuring device, the focus of this project resides primarily on the service

component. Each identified subdomain represents a modular and independent

component that divides the overall business domain into distinct parts, each with

its objectives and characteristics. In this project, each subdomain is associated

with a bounded context, that is, a distinct scope in which the entities appear

and specific rules of the domain are valid. Each microservice will realize one of

the bounded contexts, encapsulating the domain model specific to that context.

Figure 3.1 illustrates how each subdomain is mapped and realized by a different

bounded context, within which a specific domain model is defined and enforced.

Each domain model represents, at a high level of abstraction, the concepts, entities,

and relationships relevant inside a particular bounded context.

CHAPTER 3. DESIGN 47

Engagement Context

Community Management Context

User Context

Device Context

Energy Data Context
REC Domain

maps to

maps to

maps to

maps to

maps to

Engagement domain model

Management domain model

User domain model

Device domain model

Energy Data domain model

Engagement
Subdomain

Community Management
Subdomain

User
Subdomain

Device
Subdomain

Energy Data
Subdomain

Figure 3.1: Mapping of subdomains to contexts and services

48 CHAPTER 3. DESIGN

3.1. DOMAIN MODEL

3.1 Domain Model

The domain model represents the structure of the domain, that is, the entities and

the relationships between them. The starting point to create the domain model

is obtained from the terms and subjects collected in the User Stories and User

Scenarios during the previous analysis phase. These terms have been highlighted

in the sections Section 2.1 and Section 2.2, respectively, using blue for the subjects

and green for the terms and actions. The following figures show the domain models

for each subdomain identified during the analysis.

The domain model for the Energy Data subdomain, shown in Figure 3.2, is

minimal and only reports the monitoring by users of the energy data of the con-

sumption and production detected previously and stored in the system.

The Device domain model, shown in Figure 3.3, illustrates how a device reads

energy data from a meter and sends it to the system. This model highlights the

independence of the device from the rest of the system, as it only needs to know

how to send the data to the system without having to know the structure of the

community.

Figure 3.4 shows the domain model for the User subdomain, which includes the

sign up, confirmation, and sign in operations. The model highlights the presence

of the email and password values, which are necessary for the registration and

access operations.

The domain model for the Community Management subdomain is shown in

Figure 3.5 includes the management of communities, facilities, and devices. The

model highlights the relationships between the entities, such as the association of a

device with a facility, and the presence of the Owner and Representative roles. The

User
Consumption Info

consumed energy
produced energy
time

monitor
*1..n

Figure 3.2: Energy Data domain model

CHAPTER 3. DESIGN 49

3.1. DOMAIN MODEL

Consumption Info

consumed energy
produced energy
time

MeterFacility

Device

send *1

measure from
1

1

in
1 1

Figure 3.3: Device domain model

Signed In UserConfirmation Code

code

Confirmed User

Credentials

email
password

Unverified UserUser

sign in

sign in
using

confirm using

confirm

confirm using

sign up

sign up using

Figure 3.4: User domain model

50 CHAPTER 3. DESIGN

3.1. DOMAIN MODEL

Community Info

name

Facility Info

name
max production
...

User

Representative

Device

Facility

Community

Owner

for

for

add/remove
1..n

1

add/remove
1..n1

has
2..n

1

update
has

1

1

add/remove
1..n1

update

Figure 3.5: Community Management domain model

Owner is responsible for managing and updating the facilities and devices, while

the Representative is responsible for managing and updating the communities.

Finally, Figure 3.6 shows the domain model for the Engagement subdomain,

which includes the analysis of the system and the mechanisms that interact with

users through notifications. This subdomain ensures that users are notified in

real-time of certain conditions based on the current state of the system.

CommunityUser
Notification

text
for

1*
receive

1..n *

Figure 3.6: Engagement domain model

CHAPTER 3. DESIGN 51

3.2. SYSTEM OPERATIONS

3.2 System Operations

Once the domain model is defined, the system operations are identified, which

represent the interactions and relationships between the different objects of the

domain. These operations describe the behavior of the system and the interactions

between the entities, defining the functionalities that the system must provide.

Usually, these operations are related to the requests that a user can make to the

system through the user interface. The operations are defined at a high level of

abstraction and are divided into two categories: commands and queries.

• Commands: operations that modify the state of the system, such as creat-

ing, updating, or deleting an entity.

• Queries: operations that return information about the state of the system,

such as reading the data of an entity.

Operation signUp(email, password)

Returns -

Preconditions There is no user with the same email

Postconditions A new unconfirmed user is added to the system

Operation confirmSignUp(email, code)

Returns -

Preconditions There is an unconfirmed user with the same email

Postconditions The user is confirmed and can sign in

Operation signIn(email, password)

Returns -

Preconditions The user is signed up and confirmed

Postconditions The user is signed in

Operation signOut()

Returns -

Preconditions The user is signed in

Postconditions The user is signed out

Operation receiveNotification()

Returns message

52 CHAPTER 3. DESIGN

3.2. SYSTEM OPERATIONS

Preconditions The user monitors a facility inside the community

Postconditions The user receives a notification

Operation addFacility(facilityInfo)

Returns facilityId and facility info

Preconditions The user is signed in

Postconditions A new facility is added to the system

Operation removeFacility(facilityId)

Returns -

Preconditions The user is signed in and the user is the owner of the

facility

Postconditions The facility is removed from the system

Operation updateFacility(facilityId, facilityInfo)

Returns -

Preconditions The user is signed in and the user is the owner of the

facility

Postconditions The facility is updated with the new information

Operation addDevice(facilityId, deviceId)

Returns -

Preconditions The user is signed in and the user is the owner of the

facility

Postconditions A new device is added to the facility

Operation removeDevice(deviceId)

Returns -

Preconditions The user is signed in and the device is in a facility that

belongs to the user

Postconditions The device is removed from the facility

Operation addCommunity(communityInfo)

Returns communityId

Preconditions The user is signed in

Postconditions A new community is added to the user

Operation removeCommunity(communityId)

Returns -

CHAPTER 3. DESIGN 53

3.3. BOUNDED CONTEXT

Preconditions The user is signed in and the community belongs to the

user

Postconditions The community is removed from the user

Operation updateCommunity(communityId, communityInfo)

Returns -

Preconditions The user is signed in and the community belongs to the

user

Postconditions The community is updated with the new information

Operation getConsumption(facilityId)

Returns consumptionInfo

Preconditions The user is signed in and the facility can be monitored by

the user

Postconditions The user receives the consumption information

Operation measure()

Returns energyData

Preconditions The device is connected to a meter

Postconditions The energy data is measured

Operation sendEnergyData(deviceId, energyData)

Returns -

Preconditions The device is in a facility

Postconditions The energy data is sent to the system

3.3 Bounded Context

An additional step in the design of the system is the definition of bounded contexts,

that is, the delimited contexts in which the domain model is valid. Each bounded

context represents an area of the domain in which the model is consistent and

coherent, and the specific ubiquitous language valid within that context is defined.

In the case of this project, each bounded context is associated with one and

only one subdomain, but usually, a bounded context can be associated with mul-

tiple subdomains. The following tables show the name, a brief description, the

associated subdomain, the specific ubiquitous language for that context, and, if

54 CHAPTER 3. DESIGN

3.3. BOUNDED CONTEXT

present, some business decisions related to the context. Regarding the ubiqui-

tous language of each context, if there are variations or new terms specific to the

context, these are reported in detail, while for terms already defined previously,

reference is made to those identified in Table 1.3.

Name: Energy Data

Description: This is the context of energy data measurements, where consump-

tion and production values are stored and monitored by users

Subdomain: Energy Data (generic)

Term Definition

User An authenticated user that has access to at least a facility

Business decisions: -

Table 3.2: Energy data bounded context

Name: User

Description: The context where new users are added or authenticated in the

system

Subdomain: User (generic)

Term Definition

User A generic person interacting with the system before sign-

ing up

Unverified user A user that has signed up but is not yet confirmed

Confirmed user A user that has completed the sign up procedure and is

confirmed

Signed in user Same definition as User in Table 1.3

Business decisions: Required credentials are email and password. Confirmation

requires email and a generated confirmation code

Table 3.3: User bounded context

Name: Community Management

CHAPTER 3. DESIGN 55

3.3. BOUNDED CONTEXT

Description: The context of the community management, from the community

itself to facilities and bounded devices

Subdomain: Community Management (supporting)

Term Definition

User Same definition as User in Table 1.3

Representative Same definition as Representative in Table 1.3

Owner Same definition as Owner in Table 1.3

Community Same definition as Community in Table 1.3

Facility Same definition as Facility in Table 1.3

Device Same definition as Device in Table 1.3

Business decisions: Only the representative for a community can change the

community information. Only the owner of a facility can change information for

that facility

Table 3.4: Community Management bounded context

Name: Device

Description: The context for device management and measurement of electric

energy

Subdomain: Device (supporting)

Term Definition

Device Same definition as Device in Table 1.3

Meter Same definition as Meter in Table 1.3

Facility Same definition as Facility in Table 1.3

Business decisions: The device is not directly aware of the facility where the

device is installed. Consumption information sent to the system includes the

identifier of the device

Table 3.5: Device bounded context

Name: Engagement

56 CHAPTER 3. DESIGN

3.3. BOUNDED CONTEXT

Description: The context for the notification of users

Subdomain: Engagement (core)

Term Definition

User Same as User in Table 1.3

Notification Same as Engagement in Table 1.3

Community Same as Community in Table 1.3

Business decisions: A notification is sent when there is an excess in energy

production relative to the consumption value of the community

Table 3.6: Engagement bounded context

The diagram in Figure 3.7 shows the different bounded contexts, each with its

own domain model. In particular, the diagram highlights the relationships between

the entities of the domain model in different contexts, showing when two entities

in different contexts are related. However, the image in Figure 3.7 does not show

the interactions between the different bounded contexts, limiting itself to show

only the conceptual relationships between the entities of different contexts.

Figure 3.8 shows the map of the bounded contexts, highlighting the interactions

between the different contexts. The map indicates how the different bounded

contexts interact with each other, through the use of interfaces exposed between

one context and another.

CHAPTER 3. DESIGN 57

3.3. BOUNDED CONTEXT

Community Info

name

Facility Info

name
max production
...

Consumption Info

consumed energy
produced energy
time

Meter

Engagement context

CommunityUser
Notification

text

User

Representative

Community Management context

Device

Facility

Community

Owner

Signed In User
Confirmation Code

code

Confirmed User

Credentials

email
password

Unverified User User

User context

Facility

Device

Device context

User
Consumption Info

consumed energy
produced energy
time

Energy Data context

sign out

for

for

add/remove
1..n

1

add/remove
1..n1

has
2..n

1

for
1*

receive
1..n *

update
has

1

1

add/remove
1..n1

update

sign in

sign in
using

confirm using

confirm

confirm using

sign up

sign up using

measure from
1

1

in
1 1

monitor
*1..n

send *1

Figure 3.7: Bounded contexts relationships

Community
Management

context

User
context

Energy Data
context

Device
context

Engagement
context

Figure 3.8: Bounded contexts map

58 CHAPTER 3. DESIGN

3.4. GENERAL ARCHITECTURE

3.4 General Architecture

What follows is a high-level overview of the system architecture, showing the var-

ious components identified and explaining the decisions made during the design

of their architecture. As already mentioned in the implementation requirements,

the chosen architecture for the system is a microservices architecture, in particular

using a serverless approach. This choice was made to ensure maximum scalability

and modularity of the system, as well as to reduce the management costs of the

system[VGO+17]. In particular, by using services oriented to a serverless architec-

ture, the management of resources is completely delegated to the service provider,

avoiding having to manually manage the allocation of resources.

Figure 3.9 shows the view of the components and the system, providing a

high-level view of the software components considered during the execution of the

system. This view also shows the two “clients” of the system, the mobile applica-

tion and the measuring device, which interact respectively via Hypertext Transfer

Protocol (HTTP) and MQTT protocols with the system. Each microservice is

designed as a different component, which is responsible for a specific area of func-

tionality, following the structure proposed by the different subdomains identified.

Each component can be composed of different subcomponents, depending on the

needs of the specific microservice, while the interactions between the different com-

ponents happens through the use of exposed interfaces. For example, the Energy

Data microservice has a database component that stores and provides basic op-

erations on the data, and an application logic component that manages the data

at a higher level to provide the expected functionalities. As already stated, each

component interacts with the others through ports that expose the functionalities

of the component and the expected interactions are shown in Figure 3.9.

The designed architecture is illustrated in Figure 3.10, reporting the different

microservices identified. The diagram reports the microservices for the manage-

ment of users, the sending of measurements by a device, the management and

analysis of energy data, the management of an energy community, and the no-

tification of users. Each microservice will have its own exposed interface, which

will be used for interactions with other services. Furthermore, some microservices

will manage the data of their competence within a specific database in order to

CHAPTER 3. DESIGN 59

3.4. GENERAL ARCHITECTURE

Device ServiceDevice
Client

Energy Data Service

Energy Data
Database

Energy Data
Management

User
Database

User Service

Community Management Service

Community
Database

App
Client

Engagement
Service

Community
Mangement

User
Management

role
check

notification

send measurement

add measurement

community consumption

community
lookup

facility consumption

check auth

check
auth

sign up
sign in

community structure

Figure 3.9: Component diagram of the system

guarantee the separation of data based on the functionality implemented.

Having defined the general architecture of the system, it is also possible to

design observability and monitoring patterns to ensure the correct functioning of

each microservice. The following Table 3.7 highlights the patterns expected for

each microservice, which can differ depending on the specific needs and importance

of the microservice.

Microservice Patterns

User -

Device Logging, Tracing, Metrics

Energy Data Logging, Distributed tracing, Exception tracking, Application

metrics

Community

Management

Logging, Distributed tracing, Exception tracking, Application

metrics

Engagement Logging, Tracing, Metrics

Table 3.7: Observability and monitoring patterns

60 CHAPTER 3. DESIGN

3.4. GENERAL ARCHITECTURE

Engagement Serv.

Device Service«device»
Device

Device

«device»
Smartphone

«device»
Smartphone

Owner

Representative

User

Energy Data Serv.

Community
Management Serv.

User Service

API Gateway

«device»
Smartphone

REST
API

REST
API

REST
API

AWS SNS
Adapter

MQTT

REST
API

REST
API

AWS Cognito
Adapter

REST
API

REST
API

REST
API

Figure 3.10: Designed microservices architecture

CHAPTER 3. DESIGN 61

3.5. DETAILED ARCHITECTURE

3.5 Detailed Architecture

The general architecture of the system has been defined, and the components have

been identified, however, it is necessary to further detail the architecture of each

component. The three main artifacts of the system are the Service, the App,

and the Device, which respectively represent the application service, the mobile

dashboard app, and the measuring device. The following sections analyze in detail

each of the three components, justifying the design choices made and reporting

the proposed architecture for each of them.

Service The Service component serves as the backend of the application and

has the purpose of receiving, storing, and making available the data related to

electrical measurements, as well as providing the necessary to manage users and

the structure of a REC. Service is composed of five different microservices, each of

which is responsible for a distinct functionality requiring different characteristics

for its implementation.

Referring to the diagrams of Figure 3.10 and Figure 3.9, it can be noted the

presence of numerous interfaces exposed by the different microservices, which are

necessary to allow the interaction between them and with the outside. Most of the

exposed interfaces are of the REST API type, which allows exposing the function-

alities offered by the microservices in a simple and standardized way, using MQTT

for the communication between the measuring device and the Device microservice.

The following tables summarize the exposed interfaces, indicating the available

methods and a brief description of the functionalities offered. For the Community

Management and Energy Data microservices, the interfaces have been documented

in more detail using the OpenAPI standard version 3.1.01. The User microservice

uses directly the interface implemented at Amazon Web Services (AWS) Cognito,

the documentation of which is available in the documentation provided by AWS2.

Table 3.8 and Table 3.9 show the exposed interfaces for the Community Man-

agement and Energy Data microservices, respectively. The type of these interfaces

is REST API, which allows to expose the functionalities of the microservices in a

1www.openapis.org
2docs.aws.amazon.com/cognito-user-identity-pools

62 CHAPTER 3. DESIGN

https://www.openapis.org/
https://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/Welcome.html

3.5. DETAILED ARCHITECTURE

simple and standardized way.

Method Path Description

GET /community Get all communities

POST /community Add a new community

GET /community/{communityId} Get community info

PUT /community/{communityId} Update community info

DELETE /community/{communityId} Delete a community

GET /community/{communityId}
/device

Get all devices in a community

GET /community/{communityId}
/facility

Get all facilities in a community

PUT /community/{communityId}
/facility/{facilityId}

Add a facility to a community

DELETE /community/{communityId}
/facility/{facilityId}

Delete a facility from a commu-

nity

POST /facility Add a new facility

GET /facility/{facilityId} Get facility info

PUT /facility/{facilityId} Update facility info

DELETE /facility/{facilityId} Delete a facility

GET /facility/{facilityId} /device Get device of a facility

PUT /facility/{facilityId} /device/ Update device of a facility

GET /facility/{facilityId} /commu-

nity

Get community of a facility

GET /facility/{facilityId} /user Get all users of a facility

GET /user/facility Get all facilities of a user

GET /user/community Get all communities of a user

PUT /user/{userId} /facili-

ty/{facilityId}
Update role of a user in a facility

DELETE /user/{userId} /facili-

ty/{facilityId}
Remove a user from a facility

Table 3.8: Community Management microservice REST API

CHAPTER 3. DESIGN 63

3.5. DETAILED ARCHITECTURE

Method Path Description

POST /energy-data/ Add new consumption informa-

tion

GET /energy-

data/device/{deviceId}
Get consumption information of

a device

GET /energy-

data/community/{communityId}
Get consumption information of

a community

Table 3.9: Energy Data microservice REST API

Table 3.10 summarizes the exposed interface for the Device microservice, which

uses the MQTT protocol to receive data from the measuring device. The API for

the Device microservice is asynchronous and documented using the AsyncAPI

standard version 3.0.03.

Action Topic Payload

PUBLISH energy-data { deviceId: string, energyValue: number, times-

tamp: string }

Table 3.10: Device microservice Async API

The following diagrams show each microservice in terms of clean architecture,

reporting on multiple levels of detail various aspects of each service. In particular,

the highest level, that of the domain, summarizes the main entities, taking up

concepts that had already been identified in the previous phases, while the appli-

cation level reports the title of the relevant use cases for the service. Finally, the

lowest level, which in this case includes both interfaces and infrastructure layers,

provides more details on the technologies that have been chosen to implement the

service.

Figure 3.11 shows the clean architecture for the Community Management mi-

croservice, reporting the entities and use cases related to the management of the

structure of a REC. In the interfaces and infrastructure level, three components

are reported that will be used to implement the service, namely API Gateway,

3www.asyncapi.com

64 CHAPTER 3. DESIGN

https://www.asyncapi.com/

3.5. DETAILED ARCHITECTURE

User

Owner

Facility Device

Community

Representative

Create FacilityCreate
Community

Delete
Community

Update
Community

Delete Facility

Update Facility

Create Device

Delete Device

Lambda

API Gateway DynamoDB

Figure 3.11: Clean Architecture for Community Management service

Lambda, and DynamoDB. These three components are used, respectively, to im-

plement the REST API interface, execute serverless code to implement the ap-

plication logic related to the management of a community, and store the data

related to the structure of a REC. For the functionalities to be implemented in

the Community Management service, API Gateway, Lambda, and DynamoDB

represent a recommended choice to implement a serverless architecture that can

offer scalability and high performance[Pat19].

Similarly, Figure 3.12a and Figure 3.12b show, respectively, the clean architec-

ture for the Energy Data and Device microservices. In these diagrams, the entities

and use cases related to the two microservices are reported, but different tech-

nologies are used compared to Community Management. In particular, for Energy

Data, a time-dependent database is used through AWS Timestream, which unlike

other types of databases allow storing and querying data based on their tempo-

CHAPTER 3. DESIGN 65

3.5. DETAILED ARCHITECTURE

User

Monitor Energy
Data

API Gateway
Lambda Timestream

(a) Clean Architecture for Energy Data
service

Device

Facility

Send
Measurements

IoT CoreLambda

(b) Clean Architecture for Device ser-
vice

rality. In addition to increasing performance, the use of Timestream allows to

reduce costs, using for older and therefore less used data a different storage policy

with lower costs at the expense of longer reading times[Win22]. Instead, for the

Device microservice, AWS IoT Core is used, which includes various functionalities

designed specifically for IoT applications. In addition to providing a highly per-

forming MQTT broker for communication with devices, AWS IoT Core allows to

manage the security and scalability of an IoT application.

Figure 3.13 summarizes the sequence of operations necessary to configure a

device with AWS IoT Core, so that energy data can be sent securely from the

Device to the Device service. The use of a claim certificate has been chosen to

allow the device to authenticate itself initially with the service and perform the

provisioning, as it was considered a good compromise between security and ease

of implementation for this project. This procedure allows to communicate data

securely, however, it is necessary to avoid that the claim certificate is compro-

mised, as it could be used by a malicious actor to gain access to the service and

compromise its correct functioning by inserting fake data and potentially reducing

the availability of the service.

Figure 3.15b shows the clean architecture for the User microservice, which is

responsible for managing the registration and authentication of users within the

66 CHAPTER 3. DESIGN

3.5. DETAILED ARCHITECTURE

IoT CoreDevice

ESP32-S3-W
R

O
O

M
-1

Device connects with claim certificate to AWS IoT Core

Device publishes parameters, hardware secret and certificate ownership token

Fleet Provisioning service publishes certificate, private key and ownership token

Device publishes {} to $aws/certificates/create/json

Fleet Provisioning service creates new certificate and
private key signed with AWS CA

Device writes unique private key and certificate to
secure storage

Figure 3.13: Overview of device fleet provisioning with claim certificate

system. In this case, the main entity is the user, which registers and authenti-

cates with the system. At the interfaces and infrastructure level, AWS Cognito

is used, as it provides a managed platform for storing users and registration and

authentication procedures.

Figure 3.14 shows the authentication flow for a user within the system, us-

ing AWS Cognito. By using the Cognito platform, it is possible to obtain nu-

merous advantages in terms of security, such as the use of zero knowledge au-

thentication protocols, which offer greater security than traditional authentication

methods[PPP+21]. Access to system resources is authenticated using JSON Web

Token (JWT) tokens, which provide an authentication mechanism without hav-

ing to maintain a server-side state, also using automatic token renewal to ensure

greater security in accessing resources.

Finally, Figure 3.15a shows the clean architecture for the Engagement microser-

vice, which is responsible for interacting with users through notifications. In this

case, the main entity is the notification, which is sent to users when certain con-

ditions are met. At the interfaces and infrastructure level, AWS SNS is used, as it

provides a managed platform for sending notifications through various channels,

such as Short Message Service (SMS), email, and push notifications. The use of

CHAPTER 3. DESIGN 67

3.5. DETAILED ARCHITECTURE

User App API GatewayCognito

Request sign-in

Challenge response

Challenge

Connect to app

Provide access token

Provide token and sign-in

Figure 3.14: User authentication flow with AWS Cognito

SNS allows sending notifications in a simple and standardized way, using a single

platform to manage the sending of notifications through different channels. This

microservice also uses AWS Lambda to execute the application logic, which decides

when to send notifications based on the data read from the other microservices.

User

Community

Receive
Notifications

SNSLambda

(a) Clean Architecture for Engagement
service

User

Sign Up Sign In

Cognito

(b) Clean Architecture for User service

68 CHAPTER 3. DESIGN

3.6. DEPLOYMENT

App The App component is designed to play the role of an interface between the

user and the system, allowing to view the data and interact with the system. To

develop this user interface, it was chosen to create a mobile application, as it allows

greater flexibility in choosing the technologies to use to receive notifications. In

particular, it was chosen to use React Native to develop the mobile application, as

it allows to create a multi-platform mobile application with a single source code,

an aspect that could reduce future costs for adapting the application to other

platforms.

Device Device realizes the measuring device, which has the role of measuring

and sending the data related to energy consumption and production of a facility

to the system. An SoC belonging to the ESP32 family was chosen, given the

high performance compared to competing microcontrollers, the presence of an

integrated Wi-Fi module, and the low cost[MSV17]. In particular, it was chosen to

use the ESP32-S3 module, one of the latest additions to the ESP32 family, which

offers more powerful hardware and modern technologies compared to previous

models4. In addition to the hardware advantages, the ESP32-S3 module offers

extensive documentation and a feature-rich development framework, which could

greatly simplify the implementation of the device software. The device is designed

to be installed at a user’s location, connected to the electricity meter to measure

consumption and using the Wi-Fi module to send the data to the system.

3.6 Deployment

Figure 3.16 shows the deployment diagram of the system, summarizing at a high

level of abstraction how the system is composed of different elements, each neces-

sary for the correct functioning of the overall system. In this diagram, three main

entities are shown, namely the mobile application, the measuring device, and the

set of services that provide the required functionalities. The mobile application

is designed to be simple and allow a user to interact and view the status of the

system from their mobile device. This interface communicates with the services

4docs.espressif.com

CHAPTER 3. DESIGN 69

https://docs.espressif.com/projects/esp-idf/en/v4.4/esp32/hw-reference/chip-series-comparison.html

3.6. DEPLOYMENT

«component»
API GATEWAY

Engagement
Service

Community
Management Service

User
Service

Device
Service

Energy Data
Service

«device»
Microcontroller

«device»
Smartphone

«execution environment»
AWS

MQTT

HTTPS
REST API

Figure 3.16: Deployment diagram

provided through the HTTP protocol using the REST APIs exposed by the differ-

ent services. The measuring device is designed to be installed at a user’s location

and send the measurement data to the system through the MQTT protocol. Fi-

nally, the different services are executed within a serverless architecture, in this

case using the services offered by AWS. For an external observer, the different

services could be seen as if they were within the same execution context, even

if in reality they will be executed in different execution contexts, an aspect that

remains transparent from the user’s point of view. However, by implementing a

microservices architecture based on a serverless approach, each of them is designed

to be modular and independent of the others, allowing to scale and manage them

independently and automatically.

70 CHAPTER 3. DESIGN

Chapter 4

Implementation

This chapter will report some relevant or non-trivial aspects encountered during

the implementation phase of the system. Where necessary, detailed technical el-

ements will be introduced to show some interesting aspects both regarding the

software and hardware used. However, the main objective of this chapter is to

show how the different components designed have been implemented and not to

act as a guide to the installation or use of the system.

The identified requirements are considered to be stable and not subject to

change, however, the implementation is carried out following an incremental ap-

proach, integrating Kanban methodologies. This decision was made to allow the

implementation of each functionality incrementally with frequent releases, thanks

to a division of the overall system into independent elements. Using an incremen-

tal approach allows to implement and deliver early parts of the system, allowing to

have a partially working system that can be tested and analyzed earlier. A Kanban

board was used to keep track of the progress of the various components, allowing

to have a clearer overview of the remaining elements. The following are some of

the tools that were used for the project documentation and activity management:

• Miro1 is an online collaboration platform that allows to create diagrams,

schemes, and organize activities. It was used especially during the analysis

phase to visually present some concepts to domain experts. It was also used

to keep track of the implemented work through a Kanban board.

1miro.com

CHAPTER 4. IMPLEMENTATION 71

https://miro.com

4.1. SERVICE

• Egon.io2 is an online platform for diagrams, it was used to create the domain

storytelling diagrams.

• Umlet3 is an open source tool for creating UML diagrams, it was used to

create numerous diagrams included in this document.

• LaTeX4 is a markup language for document creation, it was used to cre-

ate this document. Unlike a traditional word processor, LaTeX allows to

create structured documents more efficiently and to maintain a consistent

formatting.

• Affinity Designer5 is a vector graphics software, it was used to create some

images and diagrams inserted in this document. This program was also

chosen to create mock-ups of the mobile application.

4.1 Service

The following section will show the implementation details for the identified mi-

croservices, showing how they were developed and how they were configured to

work within the system. Considering the domain model designed for the Com-

munity Management microservice, shown in Figure 3.5, the data schema for the

DynamoDB database was designed, as shown in Figure 4.1. In this schema, the

main entities of the subdomain are shown, namely Community, Facility, Device,

and User, which include some relevant information and the relationships between

them.

By combining the schema in Figure 4.1 with the access patterns identified in

Section 3.2, it is possible to design the access pattern for the database. The access

pattern is fundamental to define how the data will be read and written within the

database, in order to guarantee optimal performance and scalability of the sys-

tem. To implement the database for the Community Management microservice,

DynamoDB was chosen, a NoSQL database service offered by AWS. DynamoDB

2egon.io
3www.umlet.com
4www.latex-project.com
5affinity.serif.com

72 CHAPTER 4. IMPLEMENTATION

https://egon.io
https://www.umlet.com
https://www.latex-project.org
https://affinity.serif.com/en-us/designer

4.1. SERVICE

User

userId*: string
role*: string

Facility

facilityId*: string
facilityName*: string
deviceId: string
maxProduction: integer
regionalBonus: float
incentivesReduction: float
maxConsumption: integer
KT: float

Community

communityId*: string
communityName*: string

1..n *1..n

*

1 *

Figure 4.1: Model schema for Community Management service

is a fully managed, highly scalable, and versatile service, which allows to store and

retrieve data in an efficient way with latencies of a few milliseconds. However, the

use of a NoSQL database requires designing the database differently from a tradi-

tional database, as it does not support the classic join operations between tables

and requires to design the database based on the queries that will be performed.

DynamoDB distributes data across multiple physical partitions based on hashing

functions performed on the Partition Key (PK), in order to guarantee scalability

and high performance, an aspect that in the case of non-optimal design can cause

hot partitions problems, that is, partitions that receive a very high load of requests

compared to others. The analysis of the access pattern is therefore fundamental

to identify which data will be frequently read and written, in order to design the

tables considering these access criteria.

Access pattern Query by

1 Get facility info by facility facilityId

2 Get device by facility facilityId

3 Get all facilities by community communityId

4 Get community info by community communityId

5 Get community by facility facilityId

6 Get all facilities for a user userId

CHAPTER 4. IMPLEMENTATION 73

4.1. SERVICE

7 Get all users for a facility facilityId

8 Get all communities for a user userId

9 Get user role in facility userId, facilityId

10 Get user role in community userId, communityId

11 Get all communities

12 Get all devices for a community communityId

The database for the Community Management microservice was designed fol-

lowing the Single Table Design pattern, which involves storing all data within a

single table. This design pattern allows to access data very efficiently, however it

requires careful design of the table. Figure 4.2 shows the table design for the Com-

munity Management microservice, where through the use of PK, Sort Key (SK),

and Global Secondary Index (GSI) it is possible to access data efficiently accord-

ing to the identified access patterns. Figure 4.3 shows an example of data for

Primary Key Global Secondary Index
Attributes

Partition key PK Sort key SK Partition key GSI_PK Sort key GSI_SK

facility#facilityId
INFO facilityName maxProduction regionalBonus incentivesReduction maxConsumption KT
DEVICE deviceId ...

community#communityId
INFO COMMUNITY COMMUNITY communityName ...
facility#facilityId facility#facilityId community#communityId

user#userId
facility#facilityId facility#facilityId user#userId role
community#communityId community#communityId user#userId role

Figure 4.2: Single Table Design for the Community Management service database

the Community Management microservice, in the case of a community with two

facilities, each with a device associated and some users.

Primary Key Global Secondary Index
Attributes

Partition key PK Sort key SK Partition key GSI_PK Sort key GSI_SK

facility#001
INFO "Apartment 1" 0 0.0 0.0 3000 1
DEVICE "001" ...

facility#002
INFO "Apartment 2" 10000 4.0 0.0 4500 1
DEVICE "002"

community#001
INFO COMMUNITY COMMUNITY "City community" ...
facility#001 facility#001 community#001
facility#002 facility#002 community#001

user#001
facility#001 facility#001 user#001 OWNER
facility#002 facility#002 user#001 OWNER

user#002 facility#002 facility#002 user#002 USER
user#003 community#001 community#001 user#003 REPRESENTATIVE

Figure 4.3: Example of data for the Community Management service database

74 CHAPTER 4. IMPLEMENTATION

4.1. SERVICE

Access pattern Query structure

1 Get facility info by facility PK=facility#facilityId

SK=”INFO”

2 Get device by facility PK=facility#facilityId

SK=”DEVICE”

3 Get all facilities by community PK=community#communityId

SK=facility#

4 Get community info by community PK=community#communityId

SK=”INFO”

5 Get community by facility GSI PK=facility#facilityId

GSI SK=community#

6 Get all facilities for a user PK=user#userId

SK=facility#

7 Get all users for a facility GSI PK=facility#facilityId

GSI SK=user#

8 Get all communities for a user PK=user#userId

SK=community#

9 Get user role in a facility PK=user#userId

SK=facility#facilityId

10 Get user role in community PK=user#userId

SK=community#communityId

11 Get all communities GSI PK=”COMMUNITY”

12 Get all devices for a community PK=community#communityId

SK=device#

Each microservice is realized using an Infrastructure as Code (IaC) approach,

using the Cloud Development Kit (CDK) framework to define the infrastructure

and the application logic. The CDK framework allows to define the infrastructure

using a programming language, in this case TypeScript, which allows to define

the infrastructure in a more structured and maintainable way. The following code

listing demonstrates a simplified example of a microservice that defines a simple

REST API route using AWS Lambda, API Gateway, and DynamoDB.

CHAPTER 4. IMPLEMENTATION 75

4.2. APP

Listing 4.1: Example of a microservice stack using AWS CDK�
1 export class ExampleService extends cdk.Stack {

2 constructor(scope: Construct , id: string , props ?: cdk.StackProps) {

3 super(scope , id, props);

4

5 // Lambda

6 const exampleLambda = new lambda.Function(this , ‘ExampleLambda ‘, {

7 runtime: lambda.Runtime.NODEJS_18_X ,

8 code: lambda.Code.fromAsset(’lambda/example ’),

9 handler: ’example.handler ’,

10 environment: {...},

11 });

12

13 // DynamoDB

14 const exampleTable = new dynamodb.Table(this , ‘ExampleTable ‘, {

15 partitionKey: { name: ’PK’, type: dynamodb.AttributeType.STRING },

16 sortKey: { name: ’SK’, type: dynamodb.AttributeType.STRING },

17 });

18 exampleTable.grantReadWriteData(exampleLambda);

19

20 // API Gateway

21 const api = new apigateway.RestApi(this , ‘ExampleApi ‘, {...});

22 const example = api.root.addResource(’example ’);

23 example.addMethod(’GET ’, new apigateway.LambdaIntegration(exampleLambda));

24 }

25 }
� �
4.2 App

The mobile application was developed using React Native, a framework that allows

to create multi-platform mobile applications using a single source code. There

are no significant implementation details to report, as the application realizes a

simple prototype to show the functionalities of the system. The diagram reported

in Figure 4.4, shows the structure of the screens implemented, as well as the main

functionalities offered by each of them to the user.

76 CHAPTER 4. IMPLEMENTATION

4.3. DEVICE

«screen»
Update Facility

updateFacility(info)

«screen»
Add Facility

addFacility(info)

«screen»
Update Community

updateCommunity(info)

«screen»
Add Community

addCommunity(info)

«screen»
Profile

signOut()

«screen»
Manage Facility

loadCommunity()

«screen»
Manage Community

loadCommunity()

«screen»
Dashboard

loadConsumptionInfo()

«screen»
Sign In

signIn(email, password)

«screen»
Confirm Sign Up

confirmSignUp(email, code)

«screen»
Sign Up

signUp(email, password)

Figure 4.4: Implemented screens of the mobile application

4.3 Device

The measuring device is implemented using an ESP32-S36 module, using the ESP-

IDF framework to develop the software. The final version of the device will use

dedicated hardware to implement the Chain2 protocol and retrieve energy data

directly from the electricity meter, while being connected to whichever electric

socket available in a user’s facility. This communication is possible by using the

ST75MM7 SoC, which allows power line communication with the electricity meter.

The prototype device realized to test the system uses a simple current sensor

to measure the current flow in the lines of the facility, this requires installing a

current clamp around the electrical cable after the electricity meter. Figure 4.5

shows the activity diagram for the device, which illustrates the main activities that

the device performs during its operation. The diagram of the circuit realized for

the prototype device is shown in Figure 4.6.

6www.espressif.com/en/products/socs/esp32-s3
7www.st.com/interfaces-and-transceivers/st75mm

CHAPTER 4. IMPLEMENTATION 77

https://www.espressif.com/en/products/socs/esp32-s3
https://www.st.com/en/interfaces-and-transceivers/st75mm.html

4.3. DEVICE

wait

send
measurement

measure

provision
certificate

connect to
broker

check MQTT
connection

SSID and password

sync time from
NTP server

current time

generate
deviceId

start WiFi
provisioning

check deviceId

init hardware
and storage

[new measure
command]

[finish command]

[check success]

[check fail]

[no id]

[id found]

Figure 4.5: Activity diagram for the device

78 CHAPTER 4. IMPLEMENTATION

4.4. DEVOPS

Figure 4.6: Schematic of the prototype device

4.4 DevOps

This project uses a DevOps [EGHS16] methodology to increase the quality of the

system by making development and validation easier. DevOps techniques aim to

eliminate the gap between code in development and code released, using a series

of mechanisms to automate various release and integration processes. The two

fundamental principles are in fact Continuous Integration (CI) and Continuous

Delivery (CD), that is, the frequent integration and distribution of the software.

This approach allows to frequently evaluate the complete system, significantly

reducing potential integration problems and errors related to human factors. It

also improves development efficiency by automating repetitive processes wherever

possible, freeing the developer from this aspect and providing automatic and pre-

dictable mechanisms.

Workflow Before defining the CI and CD techniques to be used, it is useful to

establish the project workflow, that is how the system development is managed,

so that automation can be added to the identified processes. This project uses

CHAPTER 4. IMPLEMENTATION 79

4.4. DEVOPS

a branching model strongly inspired by GitFlow, making some modifications to

simplify it and better adapt it to the development context.

As in GitFlow, there are two main branches, one dedicated to production code

called “main” and one dedicated to integrating code during development, called

“dev”. On these two main branches, commits are never made directly, and the code

is integrated from other branches through merge commits. In fact, starting from

the development branch, numerous branches dedicated to different features are

created, which are then merged back into the development branch through a merge

commit to integrate the developed features once they are considered complete.

When it is considered that the code integrated on the development branch is

ready for release, a merge to the main branch is made. In case of urgent problems

in production, hotfixes are implemented in hotfix branches before being directly

brought into the main branch. When a bug discovered is less urgent and affects

a significant part of the code, which therefore affects the code of more than one

feature, a bugfix branch is used. Very contained bugs that affect only one feature

can be managed directly in the feature branch, considering them as an expansion

of the feature itself.

The main differences with the model introduced by GitFlow are the absence of

a specific branch for release, called release branch, where the features are evaluated

before being merged with the production code. This aspect has been integrated

directly into the development branch, considering the absence of a large team and

the presence of continuous integration and deployment tools, significantly reducing

the need for a dedicated branch. The second difference is the presence of bugfix

branches, absent in GitFlow and introduced here to solve non-urgent problems that

affect multiple features, maintaining more coherence and consequently a cleaner

history of the source code.

The image in Figure 4.7 shows an example of the workflow used, indicating

some of the typical scenarios that could occur during the development phase. In

addition, the messages of the commits made will use the Conventional Commits

1.0.0 specification8, using, in particular, the following tags: feat, fix, refactor, and

docs.

8www.conventionalcommits.org

80 CHAPTER 4. IMPLEMENTATION

https://www.conventionalcommits.org/en/v1.0.0/

4.4. DEVOPS

feature/...

bugfix/...

hotfix/...

feature/...

dev

main

Figure 4.7: Example of the workflow used for this project

Versioning To version the code, the Semantic Versioning 2.0.09 rules are used,

using numbers with the format MAJOR.MINOR.PATCH to indicate specific re-

leased versions of the software. The first released version is indicated with 0.1.0,

while the first production release of the software is indicated with 1.0.0, indicat-

ing the end of the initial development period. When a new feature is released, the

number of MINOR is increased, resetting the number of PATCH, which is reserved

to indicate software updates aimed at fixing bugs without adding new features.

Continuous Integration & Deployment To implement CI and CD tech-

niques, AWS CodePipeline was used to automatically deploy the CDK application.

The system provides two pipelines for each microservice, one for the production

environment and one for the development environment. A dedicated stage is cre-

ated for each environment, which is activated by the detection of updates on the

main and dev branches. In this way, it is possible to separate two separate en-

vironments to add and test changes during development without affecting the

production environment.

Each microservice can be configured and deployed using the AWS Manage-

ment Console, but a better solution is to implement the system with an IaC

approach[Mor20]. In this way, the infrastructure is defined through code, ensuring

automation and speed in the creation of the infrastructure, but also increasing the

simplicity in managing aspects of scalability and flexibility. Other advantages of

using IaC include managing through Version Control System (VCS) to track and

undo changes if necessary, as well as providing automatic configuration validation

9semver.org

CHAPTER 4. IMPLEMENTATION 81

https://semver.org/

4.4. DEVOPS

tools before deployment. It is also possible to automate multi-cloud deployments

without the need to use different consoles for each service provider. Finally, con-

sistency is guaranteed between different deployments, eliminating possible errors

that could arise during manual configuration.

The code in Listing 4.2 shows a simplified example of a pipeline for a microser-

vice. This pipeline automatically fetches the latest changes published to a GitHub

repository branch, executes some build steps, and finally deploys the application

to the AWS environment.

Listing 4.2: Example of a code pipeline for a microservice�
1 export class ExamplePipeline extends cdk.Stack {

2 constructor(scope: cdk.App , id: string , props?: cdk.StackProps) {

3 super(scope , id, { env: { ... }, ... props });

4

5 const examplePipeline = new CodePipeline(this , ’ExamplePipeline ’, {

6 pipelineName: ’ExamplePipeline ’,

7 synth: new ShellStep(’Synth ’, {

8 input: CodePipelineSource.gitHub(serviceConfig.repository , ’main ’, {

9 authentication: cdk.SecretValue.secretsManager(’github -token ’),

10 }),

11 commands: [’npm install ’, ’npm run build ’, ’npx cdk synth ’],

12 }),

13 });

14 examplePipeline.addStage(new ServiceStage(this , ’ExampleStage ’, {

15 env: { ... }, stageName: ’Prod ’,

16 }));

17 }

18 }

19

20 interface ServiceStageProps extends cdk.StageProps {

21 stageName: string;

22 }

23

24 class ServiceStage extends cdk.Stage {

25 constructor(scope: Construct , id: string , props: ServiceStageProps) {

26 super(scope , id, props);

27

28 new ExampleService(this , ‘ExampleService -${props.stageName}‘, {

29 stageName: props.stageName ,

30 });

31 }

32 }
� �

82 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

This chapter will evaluate the system developed, focusing on the main aspects that

have been implemented and the results obtained. The evaluation will be carried

out by analyzing the system from different points of view, from the validation

of single components to the integration of the system as a whole. Furthermore,

the evaluation will consider observability patterns, which are used to monitor the

system and identify possible problems or anomalies.

The validation of each microservice can be verified statically using the Synth

tool, which is included in the CDK framework. This tool allows to verify the

correctness of the infrastructure configuration before deploying it, intercepting

configuration errors even before deployment.

For each microservice, CloudWatch provides all the necessary tools to view

the logs generated during execution, allowing to identify problems or anomalies

during development or execution of a service. In addition, CloudWatch allows to

set alarms to monitor resources and generate notifications in case of problems,

defining customized rules and thresholds for different metrics of a service. The

metrics that can be monitored include, for example, the number of errors generated

by a service, the response time of an API call, or the number of requests received

by a service. In case the observed metric enters a trigger state, a notification is

generated, which can be sent through different channels, such as email, SMS, or a

Lambda function invocation. The following list shows the main channels that can

be used to send notifications:

CHAPTER 5. EVALUATION 83

Service Metric Threshold Action
Community Management 5XX Errors 1 Email
Community Management 4XX Errors 10 Email
Community Management Latency 3000ms Email
Community Management Count 1000 Email
Energy Data 5XX Errors 1 Email
Energy Data 4XX Errors 10 Email
Energy Data Latency 3000ms Email
Energy Data Count 1000 Email

Table 5.1: CloudWatch alarms for the implemented services, assuming a threshold
reset period of 1 minute

• Email: sending a notification through a list of specified email addresses;

• SMS: sending a notification through an SMS message to the specified phone

numbers;

• Lambda Function: executing a custom Lambda function;

• HTTP/HTTPS Endpoint: sending an HTTP/HTTPS request to a specified

endpoint;

• SQS Queue: sending a message to an AWS SQS queue;

• Application: sending a notification to a mobile application through AWS

SNS.

All these channels can be used to send notifications to different recipients,

allowing to customize the notification system according to the needs of the system.

Table 5.1 shows the alarms implemented for the different services.

Integration test To test the integration between the different services, AWS

offers a tool called X-Ray, which allows to monitor the interaction flows between the

different services. X-Ray allows to trace the requests made between the different

services, showing the time taken for each operation and any calls made, allowing

to identify any performance problems or integration errors. Although it is not

considered a testing tool, X-Ray is still useful for identifying dependencies between

84 CHAPTER 5. EVALUATION

the various components of the system, whether internal or external, and identifying

any runtime integration problems.

Component test Testing of the single components is carried out using Jest1,

a testing framework that allows to test JavaScript and TypeScript code. Jest

allows to test single components, simulating the necessary resources and verifying

the behavior of a component in an isolated way. The components that have been

tested include mainly the Community Management service, for which tests have

been implemented to verify the correct functioning of the main operations. The

Listing 5.1 summarizes the tests implemented for this service.

Listing 5.1: Jest component tests for the Community Management microservice�
1 PASS test/jest/management/getUserCommunity.test.ts

2 getUserCommunity

3 * should return unauthorized if request is unauthorized

4 * should return all communities of a user

5 * should return an empty array if user has no communities

6 * should return internal server error if an error occurs

7

8 PASS test/jest/management/postFacility.test.ts

9 postFacility

10 * should return unauthorized if request is unauthorized

11 * should return bad request if request body is null

12 * should return bad request if facility name is null

13 * should create a new facility

14

15 PASS test/jest/management/facility.test.ts

16 Facility

17 * should create a new Facility object from query data

18 * should create a new Facility object using the constructor

19 * should create a new Facility with users

20

21 PASS test/jest/management/getCommunityId.test.ts

22 getCommunityId

23 * should return unauthorized if request is unauthorized

24 * should return bad request if userId or communityId is missing

25 * should return forbidden if user does not have the required role

26 * should return not found if community does not exist

27 * should return an empty array if user has no communities

28 * should return community data if community exists

29 * should return internal server error if an exception occurs

30

31 PASS test/jest/management/getUserFacility.test.ts

1jestjs.io

CHAPTER 5. EVALUATION 85

https://jestjs.io/

32 getUserFacility

33 * should return unauthorized if request is unauthorized

34 * should return all facilities of a user

35 * should return an empty array if user has no facilities

36 * should return internal server error if an error occurs

37

38 PASS test/jest/management/community.test.ts

39 Community

40 * should create a new Community object

41 * should create a new Community object from query data

42

43 PASS test/jest/management/postCommunity.test.ts

44 postCommunity

45 * should return unauthorized if request is unauthorized

46 * should return bad request if request body is null

47 * should return bad request if community name is null

48 * should create a new community

49

50 PASS test/jest/management/getFacilityId.test.ts

51 getFacilityId

52 * should return unauthorized if request is unauthorized

53 * should return bad request if userId or facilityId is missing

54 * should return forbidden if user does not have the required role

55 * should return not found if facility does not exist

56 * should return an empty array if user has no facilities

57 * should return facility data if facility exists

58 * should return internal server error if an exception occurs

59

60 Test Suites: 8 passed , 8 total

61 Tests: 35 passed , 35 total
� �
End-to-end test To test the system as a whole, end-to-end tests have been

implemented through the definition of user journey test. User journey tests are

acceptance tests that test the system as a whole, simulating the interaction of

a user with the system. These tests are carried out with the entire system in

operation, simulating an interaction with the system as a user would do.

Performance Tests The system’s performance has been evaluated only on some

components of the system, in particular for the Community Management and

Energy Data microservices. To evaluate the system performance, k62 was used,

an open-source tool to perform load tests and evaluate the performance of an

2k6.io

86 CHAPTER 5. EVALUATION

https://k6.io/

application. For the Community Management microservice, it was chosen to test

the read and write operations of the information related to the entities of an

energy community, in order to evaluate the performance of the system under load

conditions. For the Energy Data microservice, it was chosen to test the read

operations of the energy measurements sent previously by the devices, in order

to evaluate the performance of the retrieval of the data. The load was simulated

by using different virtual users that simulate the interaction with the system,

performing read and write operations of the information concurrently. To perform

the test, it was chosen to use a base load of 10 virtual users, with an additional

variable load composed of 40 virtual users. The variable load of virtual users

was gradually increased over 30 seconds and then returned to 0 over the next 30

seconds. The test performed has a total duration of 60 seconds. Listing 5.2 shows

the scenario created during the performance tests.

Listing 5.2: k6 scenario for get items of a user operations�
1 * constantLoad: 10 looping VUs for 1m0s (gracefulStop: 30s)

2 * rampingLoad: Up to 40 looping VUs for 1m0s over 2 stages (gracefulRampDown: 30s,

gracefulStop: 30s)

3

4 running (0m22.3s), 39/50 VUs , 454 complete and 0 interrupted iterations

5 constantLoad [=============>------------------------] 10 VUs 0m22.3s/1m0s

6 rampingLoad [=============>------------------------] 29/40 VUs 0m22.3s/1m00.0s
� �
Listing 5.3 shows the results obtained during the performance test. In particu-

lar, the results obtained show that the system is able to handle a load of 50 virtual

users with an average response time of 157.35 ms and a 95th percentile response

time of 252.3 ms. In addition, the number of operations successfully completed is

99.90%.

Listing 5.3: k6 results for the Community Management microservice�
1 checks: 99.90% 3157 out of 3160

2 data_received: 1.2 MB 19 kB/s

3 data_sent: 133 kB 2.2 kB/s

4 http_req_blocked: avg =1.18ms min =52ns med =202ns max =45.14 ms p

(90) =320ns p(95) =417ns

5 http_req_connecting: avg =565.76 us min=0s med=0s max =23.89 ms p

(90)=0s p(95)=0s

6 http_req_duration: avg =157.35 ms min =44.1ms med =143.19 ms max =618.42 ms p

(90) =217.07 ms p(95) =252.3 ms

CHAPTER 5. EVALUATION 87

7 { expected_response:true }: avg =157.56 ms min =75.58 ms med =143.19 ms max =618.42 ms p

(90) =217.08 ms p(95) =252.34 ms

8 http_req_failed: 0.18% 3 out of 1580

9 http_req_receiving: avg =123.29 us min =5.76 us med =20.77 us max =41.32 ms p

(90) =232.79 us p(95) =428.6 us

10 http_req_sending: avg =23.17 us min =5.79 us med =21.06 us max =238.89 us p

(90) =34.78 us p(95) =38.71 us

11 http_req_tls_handshaking: avg =619.26 us min=0s med=0s max =23.01 ms p

(90)=0s p(95)=0s

12 http_req_waiting: avg =157.2 ms min =44.08 ms med =143.03 ms max =618.29 ms p

(90) =217.02 ms p(95) =251.82 ms

13 http_reqs: 1580 25.846283/s

14 iteration_duration: avg =1.15s min =1.04s med =1.14s max =1.61s p

(90) =1.21s p(95) =1.25s

15 iterations: 1580 25.846283/s

16 vus: 4 min=4 max=50

17 vus_max: 50 min=50 max=50
� �
Similarly, Listing 5.4 shows the results obtained during the performance test

for the Energy Data microservice. In this case, the results obtained show that the

system is able to handle a load of 50 virtual users with an average response time

of 187.11 ms and a 95th percentile response time of 250.81 ms. The number of

operations successfully completed in this case is 99.83%.

Listing 5.4: k6 results for the Energy Data microservice�
1 checks: 99.83% 1176 out of 1178

2 data_received: 1.8 MB 29 kB/s

3 data_sent: 61 kB 978 B/s

4 http_req_blocked: avg =3.76ms min =200ns med =1.01us max =50.63 ms

p(90) =1.63us p(95) =43.09 ms

5 http_req_connecting: avg =1.7ms min=0s med=0s max =24.45 ms

p(90)=0s p(95) =19.41 ms

6 http_req_duration: avg =187.11 ms min =89.29 ms med =162.88 ms max =1.42s

p(90) =222.07 ms p(95) =250.81 ms

7 { expected_response:true }: avg =187.44 ms min =120.09 ms med =162.93 ms max =1.42s

p(90) =222.19 ms p(95) =250.87 ms

8 http_req_failed: 0.33% 2 out of 589

9 http_req_receiving: avg =181.6 us min =27.51 us med =118.31 us max =3.61ms

p(90) =430.27 us p(95) =558.49 us

10 http_req_sending: avg =99.02 us min =19.58 us med =97.07 us max =358.87 us

p(90) =133.3 us p(95) =142.84 us

11 http_req_tls_handshaking: avg =2.03ms min=0s med=0s max =29.55 ms

p(90)=0s p(95) =23.06 ms

12 http_req_waiting: avg =186.83 ms min =89.03 ms med =162.28 ms max =1.42s

p(90) =221.83 ms p(95) =250.42 ms

13 http_reqs: 589 9.509176/s

14 iteration_duration: avg =3.19s min =3.12s med =3.16s max =4.47s

88 CHAPTER 5. EVALUATION

p(90) =3.23s p(95) =3.25s

15 iterations: 589 9.509176/s

16 vus: 12 min=11 max=50

17 vus_max: 50 min=50 max=50
� �
Quality Attribute Scenarios The validation of the system also includes the

verification of the different quality scenarios identified during the requirement anal-

ysis. For each of the different scenarios, reported in Section 2.6, it was verified

that the system meets the requirements identified during the analysis. The quality

scenarios identified include:

• Performance: the system must respond in less than 2 seconds for the oper-

ations performed by a user. In the two services with which a user interacts,

Community Management and Energy Data, the average response time is less

than 2 seconds, as indicated by the performance tests performed.

• Compatibility: the system must be usable on a numerous devices, ensuring

high compatibility. The mobile application developed to interact with the

system is compatible with Android operating systems that have an API level

of 30 or higher, meeting the compatibility requirement. Devices with an API

level greater or equal to 30 represent 82.2% of all devices currently in use

according to API Level reports3.

• Modifiability: the system must be easily modifiable, ensuring a quick de-

ployment for the implemented changes. This aspect has been addressed for

the services part of the system using dedicated pipelines for each service,

which allow automatic deployment of the service following the publication

of a new version of the code in the corresponding repository. Through AWS

CodePipeline it is possible to verify the correct functioning of the deploy-

ment pipelines and the necessary times, allowing to verify the correctness of

this scenario.

• Availability: the system must be available to the user continuously, ensur-

ing an uptime of the system of 99% of the time. The implemented system

3apilevels.com

CHAPTER 5. EVALUATION 89

https://apilevels.com/

uses highly available AWS services, which provide uptime guarantees higher

than the required value. In addition, for the Community Management and

Energy Data services, the availability of the system was verified during a

realistic usage scenario using load tests, obtaining results higher than those

required.

• Usability: all system functionalities must be easily usable by the user,

requiring a maximum time of 1 minute for the completion of each operation.

This scenario was verified through user journey tests, which simulate the

interaction of a user with the complete system, verifying the time required

for the completion of each operation.

• Accessibility: this scenario requires that the system be accessible to color-

blind users, in accordance with the guidelines expressed by WCAG. The

mobile application, the only component of the system that requires direct

interaction with the user, was verified using color contrast detection tools,

allowing to measure the level of accessibility of the application. The color

contrast table used for verification is shown in Table 5.2, where any contrast

ratio greater than 7:1 is considered accessible for normal text, while anything

above 4.5:1 is suitable for large text. Any graphical object or user interface

component is considered compliant with the WCAG guidelines if it has a

contrast ratio greater than 3:1.

90 CHAPTER 5. EVALUATION

Foreground Background Contrast Compliance

#B3B3B3 #0D0D0D 9.26:1 AAA

#E6E6E6 #0D0D0D 15.57:1 AAA

#F2F2F2 #0D0D0D 17.36:1 AAA

#B3B3B3 #1A1A1A 8.3:1 AAA

#E6E6E6 #1A1A1A 13.94:1 AAA

#F2F2F2 #1A1A1A 15.54:1 AAA

#FFD500 #0D0D0D 13.66:1 AAA

#FFD500 #1A1A1A 12.24:1 AAA

#0D0D0D #FFD500 13.66:1 AAA

#E5D1FA #7317CF 5.38:1 AA*/AAA

Table 5.2: Accessibility color contrast table for the mobile application

CHAPTER 5. EVALUATION 91

92 CHAPTER 5. EVALUATION

Conclusions and Future Work

This document describes the development of a system for monitoring RECs that

also includes a measuring device to gather energy data and a mobile application to

interact with the system. Although similar systems are already being worked on or

are currently in use in this new and growing field, the developed system differs from

the others due to some unique qualities. This project aims to reduce operating

expenses and meet the need for a solution that benefits the entire community, not

only representatives.

The system that was designed is capable of meeting the identified requirements;

therefore, the primary goals that were established have been accomplished. As

stated in Chapter 5, the validation of the accomplishment of the objective was

assessed from many perspectives.

The implemented system, however, might still be enhanced and expanded upon.

The first step is to improve the mobile application since the current version is to

be considered a prototype that only allows interaction with the system for the

bare minimum of features. To complete the application, a variety of adjustments

are required, particularly to increase the user experience. Additionally, in order

to enable the application to be used on a larger number of devices, the future

expansion of the mobile application to the iOS platform should be assessed.

Some improvements are also needed for the measuring device in order to in-

crease its effectiveness and reliability. The project was validated using a prototype

that uses a current sensor to take measurements, as shown in Figure 5.1, instead

of using the Chain2 communication protocol to exchange data with the electronic

meter. Since it necessitates specialized and in-depth knowledge of the protocol

and the hardware components required for communication, implementing commu-

nication through the Chain2 protocol is outside the scope of this thesis. Based

CHAPTER 5. EVALUATION 93

Figure 5.1: Photograph of the device prototype

on the insights gained during the prototype development, an improved version

that incorporates the Chain2 protocol is currently being worked on and will later

undergo validation.

Instead, the implemented services, realized following a microservice architec-

ture with a serverless approach, are the most comprehensive component of the

system and might only need minimal adjustments to be prepared for a production

environment. The designed services are built to be scalable and maintainable,

with some initial tests conducted to assess the system’s performance and reliabil-

ity. However, further testing could prove extremely beneficial to fine-tune some

configurations in order to ensure reliability under heavier load conditions.

A representative of a nearby REC was also consulted during the project, who

expressed interest in the system and a wish to use it for a real-world REC mon-

itoring scenario. In addition to validating the project’s concepts, this meeting

94 CHAPTER 5. EVALUATION

provided feedback on the project’s usefulness, which might be a valuable resource

for the energy community’s members. The system’s compliance with the user’s

needs was judged by presenting the outcomes of the system and, specifically, the

realized mobile application that a user would interact with, as seen in Figure 5.2.

Figure 2.8 partly reports upon some of the future developments for the system

of broader scope in comparison to those that were just discussed. There definitely

are better tools for analyzing consumption, which is one of the other features that

may be interesting to include in a later version of the system. Other improvements

could allow each user to monitor not just the production and consumption values

but also to determine in real time the incentives that will be given out in the com-

munity, based on some criteria that the community representative can customize.

To maximize community self-consumption, a second idea that might result in ma-

jor advancements is the application of AI algorithms to forecast energy output and

consumption with a high degree of accuracy.

CHAPTER 5. EVALUATION 95

(a) Screenshot of the app showing the
dashboard

(b) Screenshot of the app showing the
facility detail

Figure 5.2: Screenshots of the mobile application

96 CHAPTER 5. EVALUATION

Bibliography

[EGHS16] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Ser-

rano. Devops. IEEE Software, 33(3):94–100, 2016.

[Eva04] Eric Evans. Domain-driven design: tackling complexity in the heart of

software. Addison-Wesley Professional, 2004.

[JC23] Ivar Jacobson and Alistair Cockburn. Use cases are essential: Use cases

provide a proven method to capture and explain the requirements of a

system in a concise and easily understood format. Queue, 21(5):66–86,

November 2023.

[LHv20] J. Lowitzsch, C.E. Hoicka, and F.J. van Tulder. Renewable energy com-

munities under the 2019 european clean energy package – governance

model for the energy clusters of the future? Renewable and Sustainable

Energy Reviews, 122:109489, 2020.

[MH12] Patrick Moriarty and Damon Honnery. What is the global potential

for renewable energy? Renewable and Sustainable Energy Reviews,

16(1):244–252, 2012.

[Mor20] K. Morris. Infrastructure as Code. O’Reilly Media, 2020.

[MSV17] Alexander Maier, Andrew Sharp, and Yuriy Vagapov. Comparative

analysis and practical implementation of the esp32 microcontroller

module for the internet of things. In 2017 Internet Technologies and

Applications (ITA), pages 143–148, 2017.

BIBLIOGRAPHY 97

BIBLIOGRAPHY

[Pat19] S. Patterson. Learn AWS Serverless Computing: A beginner’s guide to

using AWS Lambda, Amazon API Gateway, and services from Amazon

Web Services. Packt Publishing, 2019.

[PPP+21] Adwait Pathak, Tejas Patil, Shubham Pawar, Piyush Raut, and Smita

Khairnar. Secure authentication using zero knowledge proof. In 2021

Asian Conference on Innovation in Technology (ASIANCON), pages

1–8, 2021.

[VGO+17] Mario Villamizar, Oscar Garces, Lina Ochoa, Harold Castro, Lorena

Salamanca, Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos Va-

lencia, Angee Zambrano, and Mery Lang. Cost comparison of running

web applications in the cloud using monolithic, microservice, and AWS

lambda architectures. Serv. Oriented Comput. Appl., 11(2):233–247,

2017.

[Win22] Philip Winston. Time-series databases and amazon timestream. IEEE

Software, 39(3):126–128, 2022.

98 BIBLIOGRAPHY

Acknowledgements

I want to sincerely thank everyone who has helped me along this journey, support-

ing and encouraging me as I have grown into the person I am today. Although

there are too many names to list everyone who has participated in this period of

my life, it has been an immense privilege to be surrounded by so many wonderful

people.

In particular, I want to express my appreciation to my family, which includes

my father Aldo, mother Marinella, sister Sofia, and brother Lorenzo. They have

always acted as a point of reference for me, supporting me in both my studies and

personal life. They have provided me with everything I could have possibly asked

for, offering me all the tools necessary to improve, grow, and fulfill my curiosity.

Additionally, I want to extend my gratitude to my girlfriend Nicole, who has

been by my side for many years. She always had trust in me, and her love, patience,

and support have been essential to me; helping me get through every obstacle I

faced. I have shared countless moments of joy and happiness with her, always

feeling loved and accepted for who I am, and knowing that I have a partner that

I can always rely on.

I also had the great fortune to make plenty of awesome friends, who together

make up the “Bewolla” group. They are genuinely amazing people, each with

qualities and traits that make them unique and special. I will always be grateful

to them for the moments we shared together, which I will always cherish.

Finally, I would like to thank my supervisor, Prof. Alessandro Ricci and my

co-supervisors Ing. Andrea Diotallevi and Ing. Marco Diotallevi. Despite their

numerous work commitments, they always found time to assist me, and their

advice and support have been invaluable.

BIBLIOGRAPHY 99

	Abstract
	Introduction
	Domain Analysis
	Project Idea and Initial Analysis
	State of the Art
	Ubiquitous Language

	Requirements
	User Stories
	User Scenarios
	Expected Use Cases
	Domain Storytelling
	Functional Requirements
	Non-Functional Requirements
	Implementation Requirements
	Prototypes
	Subdomains

	Design
	Domain Model
	System Operations
	Bounded Context
	General Architecture
	Detailed Architecture
	Deployment

	Implementation
	Service
	App
	Device
	DevOps

	Evaluation
	Conclusions and Future Work
	
	Bibliography

