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Introduction

Quantum mechanics is, at the moment, the best theory available to us to
study the microscopic world in all its facets. In the hundred years since its
conception, it has resisted all attempts to invalidate it and still surprises us by
opening doors that perhaps in the past we didn’t even know existed. Even if it
will probably be overtaken in the future by some new theory that will include
it, its revolutionary significance is undeniable and still allows us to explore
worlds that are well beyond our imagination. It is a theory that may have
created and may create a certain amount of discomfort in those who face and
apply it. This characteristic can be an impediment in some ways, but at the
same time it can be a resource, since it forces us to keep an open mind and a
vigilant critical spirit, showing us, sometimes clearly and sometimes in a more
subtle way, the limits of our knowledge. It is important to underline that this
dynamic can occur not only in the context of its most advanced applications,
at the limits of our current possibilities - be they intellectual or experimental
-, but also when the very foundations of the theory are analyzed. In fact,
even the basics of the theory require us to question our way of reasoning,
the knowledge we took for granted and much more. They consist of a series
of complex postulates and laws, for which advanced mathematical tools are
required and which undermine the world we knew before studying it.

We could argue that, since its conception, the theory has, on the one hand,
been expanded from a more “technical” point of view to try to extend our
knowledge of the universe and, on the other, many scholars have also been
devoting themselves to trying to understand what it was telling us about the
universe we live in, in particular proposing various interpretations of the theory.

The numerous discussions that have arisen over the decades are very fas-
cinating and have allowed us to explore various paths in the search for an
answer. Although a clear and unequivocal answer has not yet been found -
who knows if it even exists! -, analyzing with an open mind and a critical spirit
the basis of the theory or its more advanced applications, reflects the human
need to ask questions and seek answers. Therefore I believe that a scientific
theory of this caliber is a wonderful fertile ground also for addressing questions
that perhaps could go beyond specific application contexts. We should study
it with the passion it deserves, in all its facets.

For this reason, in this thesis a possible reconstruction of the theory, pro-
posed by Rovelli, will be discussed, starting from assumptions different from
the original ones. This reconstruction consists of an approach, called “rela-
tional”, which aims to provide new meaning to the theory, while maintaining
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Introduction

its predictive power. As we said, quantum mechanics is made up of a series
of concepts and tools that can often create difficulties in their deep under-
standing. The intent is to keep the predictive and descriptive power of the
theory intact while trying to provide it with new foundations that can give us
a clearer image of the world - especially the microscopic one.

Therefore, after a review of the concepts underlying the theory in the first
chapter, Rovelli’s point of view will be discussed. In particular, the first chap-
ter has been divided into four sections, each of which concerns different aspects
of the foundations of the theory. The four sections of the first chapter are re-
lated to quantum states, measurement in quantum mechanics, the uncertainty
relation and quantum dynamics, respectively. In each section you will find the
postulates, laws and theorems underlying the theory in its standard formula-
tion. We are especially interested in the concept of quantum state, given that
it is taken up precisely by Rovelli. In fact, his idea, presented in the second
chapter, is based on the replacement of the concept of state meant in an abso-
lute sense - independent of the observer - with a new concept, namely, of state
relative to the observer. This is the main revolution proposed by Rovelli, in
which the state is meant as the set of information that an observer has about a
system. From here, the author conceives three postulates based on the notion
of information and reconstructs the formalism of the theory. From this, we
thus understand that the relational approach is meant as completely equiva-
lent to standard quantum mechanics in terms of predictions. What changes
are the foundations of the theory and in particular how we intend the physical
states of systems. This, as we said, was done with the intention of giving a
more precise meaning to the theory and the image of the world that it proposes
to us.

However, the main part of the thesis consists of the third and final chapter
which will take up a recent discussion on Rovelli’s approach. In this chapter
the points of view of Lawrence, Markiewicz and Żukowski (LMZ from now on),
who analyze the relational approach in a specific case, will be presented. Their
intent is to refute the relational approach by highlighting contradictions with
the predictions of quantum mechanics. In particular, the three authors apply
the concepts underlying the relational approach to the case of three qubits in
a Greenberger–Horne–Zeilinger (GHZ) state. As we will see, a system of this
kind is characterized by a series of constraints on measurement outcomes. In
other words, the measurements made on this system are not independent of
each other. Such constraints consist of a prediction of quantum mechanics, so
we expect that an interpretation or reconstruction of the theory will always
be able to respect the predictions of the theory it is trying to reinterpret
or reconstruct starting from different hypotheses. LMZ seem to show that
contradictions emerge when the relational approach is considered in such case
and thus, according to them, cannot be considered a valid approach.

Their article has been resumed several times to try to defend Rovelli’s point
of view. These responses will be analyzed, as will the counter-responses from
LMZ. From all these exchanges an interesting discussion was born which allows
us to get an idea of the status of the approach proposed by Rovelli.
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Introduction

The first response we will see will be that of Drezet, who re-discusses the
results presented by LMZ from a different point of view. In fact, Drezet puts
the concept of quantum state and not of event at the center of his argument,
as Rovelli does. Starting from this assumption, the author tries to dismantle
the criticism of LMZ by accusing them of assuming non-contextuality, namely,
of comparing what according to Drezet are different contexts; something that
is indeed not possible to do in the relational approach. This, according to the
author, together with mixing the results of different observers, would allow
LMZ to reach its own conclusions. We will also see the counter-response to
Drezet where LMZ defend themselves by arguing that such accusation has no
foundation and that the approach adopted by Drezet is problematic.

Secondly, we will see another response to LMZ from Cavalcanti, Di Biagio
and Rovelli himself. The latter also object to LMZ comparing measurements
from different observers. In particular, according to Cavalcanti et al. it is
necessary to introduce a new observer to deal with the constraints predicted
by the theory. In this way, however, the contradiction cited by LMZ does not
seem to emerge. Here too, LMZ’s counter-response will be analyzed and, as
we will see, the question still remains somewhat open.

Finally, we will present the work of Adlam and Rovelli, who introduce into
the theory a new postulate regarding the consistency of results from different
observers. We will mention the main consequences of this postulate, especially
from the ontological point of view of the theory. However, we will focus above
all on its connection with what was said before. For this reason, we will also
analyze the response of Markiewicz and Żukowski, who apply the relational
approach with the addition of the postulate to some situations - including,
again, the case of a three-qubit system in a GHZ state - bringing out some
interesting facts. For example, the authors argue that the postulate makes
the results of some observers hidden variables for others and that in the GHZ
case we still have contradictions, even by adding the postulate to the relational
approach.

In any case, this thesis does not claim to find a definitive answer to the issue,
but rather has the intention of providing a picture of the situation regarding
the aforementioned debate. The topics addressed are so complex and vast
that in order to arrive at something more substantial a much longer and more
in-depth study would be necessary. So, we are content to put the debate in
order and understand what the possible paths might be in light of it.

v



1 Fundamentals of QuantumMe-
chanics

If you want to understand the
universe, study physics.
If you want to understand
physics, study philosophy.

Lee Smolin

As we said, the first chapter will present the fundamental concepts of quan-
tum mechanics (QM). The choices made and the style adopted presuppose that
the reader already has a basic knowledge of the theory, it is a review rather
than a rigorous treatment. In fact, many demonstrations are omitted and we
will try to focus only on the reasons that lead to defining certain objects and
on the consequences of the results presented. Above all, we want to create a
common basis of topics covered, as well as adopt an unambiguous notation, to
better address the subsequent chapters.

I felt it was necessary to dedicate a chapter to the fundamental notions of
QM since I share the idea that before understanding what the theory means, it
is good to understand what the theory does. And to do this it is necessary to
first study its most “technical” part. In fact, the theory, in addition to being
conceptually rich, is also complicated from a mathematical point of view, many
advanced tools are needed to do QM.

The chapter is divided into four parts which correspond to four corner-
stones of the theory, in which we will find the postulates that form its basis.
Obviously, it is possible to present the theory differently; in fact, the postu-
lates of a theory are not rigid. What matters is the picture that is formed from
the set of postulates and laws, as well as the predictions that we can derive
from all this. A historical example is that of Schrödinger’s wave mechanics and
Heisenberg’s matrix mechanics. The two mechanics were developed starting
from different assumptions, but they lead to the same results and, if adequately
reformulated, they converge into the modern QM.1 This reminds us that the
hierarchical order of principles and laws depends on the formulation we choose,
the important thing is that the predictions of measurable quantities are kept
unchanged, otherwise we are talking about another theory.

1Their equivalence was demonstrated only in 1932 thanks to von Neumann [19]
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Section 1.1

1.1 Quantum state, superposition principle, ob-

servables

So, let us start by trying to understand the mathematical context we are in
and therefore the tools we need. In the second section we will find the link
between this formalism and the physical world, thus giving physical meaning
to the mathematical objects introduced.

Let us consider a generic physical system, meant as a portion of the universe
that we want to study. We can imagine carrying out measurements on it to
determine the values assumed by the system for each of the observables we
measure. To do this we would need a measuring instrument, which is always
a macroscopic object, which interacts with the system and, as a result of the
instrument-system interaction, we will obtain a real number that corresponds
to the outcome of the measurement and the value of the observable. The values
obtained correspond to the information we have about the system. We call
“system state” the set of information we can have about that system. We can
imagine identifying states of the system such that, by measuring the quantity
in each of these, we will obtain a defined value.

If we indicate one of these values with α, we can use it to label the corre-
sponding state:

|α⟩ . (1.1.1)

In quantum mechanics this state is to be considered a vector (“state vector”,
or “ket”) of a complex vector space (more precisely a Hilbert space). The
dimension of the complex vector space depends on the number of possible
outcomes of the measurement of the corresponding quantity. Depending on
the observable, the dimension will correspond to a certain finite N or countable
infinity with continuous and real variable α.

Within the vector space associated with a quantity, it is possible to have
linear combinations of state vectors.

|γ⟩ = a |α⟩+ b |β⟩ , (1.1.2)

with complex coefficients a and b. Such combination will still be a state vector
belonging to the same vector space. The vector spaces in question are there-
fore linear. Furthermore, two vectors that differ only by a non-zero complex
multiplicative constant represent the same state. This means that, for the
purposes of the physical description of a certain system, what matters is the
“direction” of the vector and not its “module”. Because of this, two different
vectors can correspond to the same physical state.

The physical quantities, in QM, are identified by linear operators that act
on complex vector spaces:

A |α⟩ . (1.1.3)

Here the operator A acts on the state vector |α⟩.
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Section 1.1

We know that in a vector space, when applied to a generic vector, operators
generally produce another vector. In the particular case in which the result is
the same vector times a multiplicative constant, then the vector in question is
called the “eigenvector” or “eigenstate” of the operator and the multiplicative
constant is the corresponding “eigenvalue” (generally it corresponds to the
label of the eigenstate):

A |α⟩ = α |α⟩ . (1.1.4)

The eigenstates of an observable are those particular state vectors that are not
modified by the measurement process, i.e. by the application of the operator:
the measurement simply produces the same eigenstate multiplied by the cor-
responding eigenvalue, which coincides with the outcome of the measurement
itself. As such, the eigenvalue of an observable must be real. In fact, any
measuring instrument produces real numbers.

There is also the dual space, i.e. a vector space that is “symmetrical” to
the vector space of kets. The vectors of the dual space are called “bras” and
each bra corresponds to a ket (“dual correspondence”),

|α⟩ ←→ ⟨α| . (1.1.5)

The new vector space always refers to the same observable and enables us to
introduce an internal scalar product, which corresponds to a complex number
given by the product between a ket vector and a bra vector,

⟨β|α⟩ = (⟨β|)(|α⟩). (1.1.6)

The internal product, in turn, enables us to define a norm for the vectors
which will therefore be real. In QM it is assumed that the product of a vector
by itself is non-negative. This postulate is called the “positive definite metric
postulate” and is the basis of the probabilistic treatment of the measurement of
observables. In this way the product of a vector by itself can be square-rooted
and we have the norm of the vector:√︁

⟨α|α⟩. (1.1.7)

Additionally, you can also define an external product, which is an operator:

|β⟩ ⟨α| . (1.1.8)

Returning to physical observables, we want them to be represented by linear
operators acting on vectors in a Hilbert space. We also want the eigenvalues
of the operators representing the observables to be real, since the goal is to
identify them with the outcomes of our measurements. For this purpose, these
operators must be Hermitian, i.e. they must correspond to their conjugated
Hermitians,

A = A†. (1.1.9)
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Section 1.1

It is possible to prove that the eigenvalues of a Hermitian operator A are real
and the eigenstates {|a1⟩ , |a2⟩ , |a3⟩ , ...} corresponding to distinct eigenvalues
are orthogonal to each other. This allows us to say that the set of eigenvectors
of a Hermitian operator, appropriately normalized, constitute an orthonormal
and complete basis for the space of state vectors. This implies that it is possible
to write every vector |α⟩ of the space as a linear combination of the eigenstates:

|α⟩ =
∑︂
j

cj |aj⟩ , (1.1.10)

where j covers all eigenstates (finite or infinite). In other words, each state
vector can be uniquely represented as a set of complex numbers cj, which cor-
respond to the coefficients of the linear combination of eigenstates. Having
complete information on the state of a system is therefore equivalent to know-
ing the coefficients of the decomposition of the vector representing that state
in the chosen basis.

The eigenstates of an operator also enable us to express the operators in the
form of a square matrix in which the dimension of the matrix depends on the
dimension of the space and thus on the number of eigenstates. For example, we
can represent the generic operator X with the eigenstates {|a1⟩ , |a2⟩ , |a3⟩ , ...}
of the operator A:

X =

⎛⎜⎜⎜⎝
⟨a1|X|a1⟩ ⟨a1|X|a2⟩ ⟨a1|X|a3⟩ . . .
⟨a2|X|a1⟩ ⟨a2|X|a2⟩ ⟨a2|X|a3⟩ . . .
⟨a3|X|a1⟩ ⟨a3|X|a2⟩ ⟨a3|X|a3⟩ . . .

...
...

...

⎞⎟⎟⎟⎠ (1.1.11)

In this way we represent the operators and therefore the physical quantities
with matrices. Let us keep in mind that we can use different bases and thus
different matrices to express the same operator and, if the operator is Hermi-
tian, then the elements of the diagonal are real. In the particular case in which
we use the eigenstates of the operator to represent that same operator in the
form of a matrix then we obtain a diagonal matrix in which the elements of
the diagonal correspond to the eigenvalues of the operator.

The representation of vectors with n-tuple of numbers and operators with
square matrices allows us to use all the rules of linear algebra: the products
between operators become products between matrices, the application of an
operator on a state vector becomes a matrix-vector product, the inner product
a row-by-column product of two vectors, etc.

The discussion made so far is valid whether the observable is discrete or
continuous. We know that in physics there are observables that admit only
discrete values. For example, the spin of a particle can take on only two
values. In cases like this, we say that the observable is characterized by a
discrete spectrum (where “spectrum” means the spectrum of the observable’s
eigenvalue) and the dimension of the corresponding vector space will be a finite
number, equal to the number of possible outcomes.

Obviously, however, there are observables that can take on an infinite num-
ber of real values, i.e. the measurable values form a continuum. This is for
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Section 1.2

example the case of position and momentum. The measurement of these ob-
servables gives us a real number in a continuous set. In this case we talk
about a continuous spectrum. We can therefore represent the physical state
of a system as a linear combination of the position or momentum eigenstates.
The difference compared to a discrete observable is that the summation in
the combination will be replaced by an integral since the eigenstates of these
observables are infinite. As an example, we can consider the decomposition of
|α⟩ using the position basis:

|α⟩ =
∫︂ ∞

−∞
dx′ |x′⟩ ⟨x′|α⟩ . (1.1.12)

Since the dimension of the Hilbert space representing a continuous observable
is infinite, the integral goes from −∞ to +∞. Furthermore, the complex
coefficient ⟨x′|α⟩ is a complex function of the position variable and is called
a wave function. We will see in the next section on measurement what its
physical meaning is.

So far we have seen that in QM the physical state of a system is represented
by a vector in a vector space and contains the information we can have about
the system. On the other hand, observables are operators that act on this
space and we can associate with them a set of state vectors, called eigenstates,
which can constitute an orthonormal and complete basis for the space. In
this way, knowing that a superposition principle holds, any state vector can be
written as a linear combination of the eigenstates of an observable. Eigenstates
also allow us to represent operators in the form of matrices, so we can resort
to the rules of linear algebra when dealing with these objects. Now we look
for a connection with the physical and experimental world by focusing on the
central theme of measurement in QM.

1.2 Measurement in Quantum Mechanics

What do we mean first of all by measurement? In physics, measurement
typically means an interaction between a physical system that we want to study
and a measurement device. This interaction provides us with a real number
- in the form of digits on a display, bits stored on a computer, etc. - which
corresponds to the outcome of the measurement. The standard formulation of
the MQ, which essentially corresponds to the standard interpretation, is based
on a postulate that predicts a collapse of the state of the system during the
measurement process.

Suppose we want to measure the observable A in a given system prepared
in a pure state |α⟩. Let {|a1⟩ , |a2⟩ , |a3⟩ , ...} be the eigenstates normalized to 1
of the Hermitian operator A, corresponding to the real eigenvalues a1, a2, a3, ....
The eigenstates form a basis on which |α⟩ can be decomposed in this way:

|α⟩ =
∑︂
i

ci |ai⟩ =
∑︂
i

|ai⟩ ⟨ai|α⟩ . (1.2.1)
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Section 1.2

We postulate that the act of measuring consists in making the state of the
system collapse (or precipitate) in one of the eigenstates of A and that the
value measured coincides with the corresponding eigenvalue of A. For example,

|α⟩ −→ |aj⟩ , (1.2.2)

when the measured value of the observable A is aj. We further postulate that
the probability P of obtaining the value aj in a series of measurements carried
out on the same system prepared in same conditions, is equal to

P (aj) = |cj|2 = | ⟨aj|α⟩ |2. (1.2.3)

This is the measurement postulate. The probability relation becomes empir-
ically effective when we carry out many measurements on the system - or if
we have multiple equivalent systems prepared in the same way - in order to
extract a probability from a frequency of events. In the particular case in
which the state corresponds to one of the eigenstates of operator A, then the
measurement does not change the state. After the measurement we will find
the system in the state in which we prepared it and the measurement will
correspond to the eigenvalue of that eigenstate. In all other cases, the state
changes and it is not possible to know which value of the observable we will
obtain, we can only calculate the probability of obtaining it. This postulate
is fundamental for the theory so that it is anchored to reality through the
comparison between its predictions and the results of the experiments. Given
the intrinsically probabilistic nature of the predictions, the comparison must
be carried out on replicas of the same system prepared in the same state.

The measurement process presented here is therefore an indeterministic
process. It must be underlined that there are various schools of thought re-
garding the topic of measurement in QM. Many physicists and philosophers
reject the collapse of the state of the system as a consequence of the act of
measurement. A particularly interesting position is that of realists - among
whom we find Einstein to name one - who support the idea that measurement
does not have the power to change the state of a system, but the system was
already in the final state and the measurement simply revealed this fact. Real-
ists argue that since QM is unable to provide support for this hypothesis, then
it is incomplete. The position of the Orthodox - which essentially corresponds
to the Copenhagen interpretation - supports the cited postulate. For them it
is therefore not possible to talk about a “defined” state for a system if it is in
a superposition of states and the measurement changes the state causing it to
collapse into one of the eigenstates of the observable. We could spend a long
time debating what the state of the system was before carrying out the mea-
surement and it would also be very interesting, but it is not the purpose of this
thesis. What matters is that we know that the postulate we have seen works
since the probabilities predicted by the theory on measurement outcomes have
excellent agreement with the experiments.

It is also possible to calculate an expectation value for an observable out
of many measurements carried out on the same system prepared in the same
state:
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Section 1.2

⟨α|A|α⟩ = ... =
∑︂
i

|ci|2ai =
∑︂
i

P (ai)ai. (1.2.4)

It is a weighted mean where the weights are the probabilities of obtaining a cer-
tain eigenstate as outcome of the collapse. To further underline the agreement
with experiments, we point out that, if we carry out repeated measurements
of this kind then the mean value of these measurements will tend to the ex-
pectation value, if the number of measurements is large.

As we said, the formalism of the theory applies to both discrete and con-
tinuous observables. However, it is necessary to make changes since, with
continuous observables, the eigenvectors are associated with a continuous set
of possible real outcomes of the measurements (for example the summations
become integral and for some relations it is necessary to replace some discrete
mathematical objects with others that work in the continuos) , but the defini-
tions and relations remain basically the same. The principles underlying the
theory apply in both cases.

An important conceptual difference, however, concerns the probabilities
of measurement outcomes. To discuss about this, we can take position as
“representative” of continuous observables. In the case of discrete spectra we
said that the probability of obtaining a certain eigenvalue aj in a measurement
is given by | ⟨aj|α⟩ |2. Can we say something equivalent for the position? The
answer is no: the probability of finding the particle somewhere makes sense
only for spatial intervals and not for points. The question should be changed by
considering the probability of finding the particle in a certain spatial interval,
centered around a point. When this interval tends to zero, we can exploit the
formalism of differentials, writing:

P (x′) = dx′| ⟨x′|α⟩ |2, (1.2.5)

where we used the fact that we expect the probability to be proportional to the
interval when dx′ is small. Therefore, the quantity | ⟨x′|α⟩ |2 has the meaning
of probability density per unit length, or more simply probability density, and
is a function of the position x and depends on how we have prepared the
system. We can consider this discussion as an integration to the measurement
postulate, including the case of continuous spectrum observables.
For finite intervals the probability is calculated thanks to the integral:

P =

∫︂ x2

x1

dx′| ⟨x′|α⟩ |2. (1.2.6)

Of course we can also consider the position of the particle in three-dimensional
space. For this, it is simply a matter of defining a three-component observable
r = (x, y, z) where x, y, z are observables themselves. In order to assign a posi-
tion r to the system it is necessary that these three observables are compatible
with each other since we make three measurements and we do not want the
state to change between one measurement and another.

The mathematical treatment for other continuous observables other than
position is completely similar. The probability density, for example, has the
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Section 1.2

same definition, simply the probability will refer to the eigenvalue space of the
new observable and no longer to the x coordinate space.

To conclude this section, let us now discuss about the wave function of
a system. We noted that the quantity ⟨x′|α⟩ in (1.2.5) is a complex func-
tion of the position variable. We called this quantity wave function and its
square modulus corresponds to a probability density. It is possible to express
inner products, decomposition of state vectors and other quantities in terms
of the wave function. For example, the linear combination of the state vectors
becomes:

ψα(x
′) =

∑︂
i

ciϕi(x
′), (1.2.7)

where the functions ϕi(x
′) are the wave functions of the eigenstates of the

observable A and for this reason are called eigenfunctions of A. Obviously,
all this can be generalized to three spatial dimensions by considering a ψ(r)
function.

It is worth underlining that a wave function can also be defined in the
momentum space, thus taking the observable momentum to study the state
of a system. The treatment is completely similar to that of the position.
The observable momentum is in fact characterized by its complete basis of
orthonormal eigenstates |p′⟩ and therefore an |α⟩ state can be written as a
linear combination of these eigenstates:

|α⟩ =
∫︂
dp′ |p′⟩ ⟨p′|α⟩ . (1.2.8)

And we can calculate the probability that the measured momentum lies in a
continuous range of values centered around p thanks to ψ̃α(p) = ⟨p|α⟩.

As with discrete spectra, even in the case of continuous spectra it is possible
to move from one basis to another. For discrete observables, it is necessary to
use unitary matrices whose matrix elements are the internal products between
the elements of the respective basis. In the case of position and momentum, it
is possible to show that plane waves are used to pass from one basis to another,
i.e. the wave function representing an eigenstate of momentum in coordinate
space is a plane wave, and vice versa:

⟨x′|p′⟩ = 1√
2πℏ

exp

(︃
ip′x′

ℏ

)︃
, (1.2.9)

and

⟨p′|x′⟩ = 1√
2πℏ

exp

(︃
−ip

′x′

ℏ

)︃
. (1.2.10)

The plane wave formalism is consistent with the position-momentum uncer-
tainty relation, which will be discussed shortly. Such relation tells us that,
if the indeterminacy of one of the two observables tends to zero, as when we
have an eigenstate of that observable, then the indeterminacy of the other goes
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Section 1.3

to infinity since the wave function, in the corresponding space, has constant
modulus everywhere.

If, however, we consider a generic state |α⟩, then in order to move from one
wave function to another we have to use the Fourier transforms which enable
us to move from one representation space to another:

ψα(x) =
1√
2πℏ

∫︂
dp ψ̃α(p) exp

(︃
ip′x′

ℏ

)︃
(1.2.11)

and

ψ̃α(x) =
1√
2πℏ

∫︂
dx ψα(x) exp

(︃
−ip

′x′

ℏ

)︃
. (1.2.12)

And, again, all this is generalizable to the three-dimensional case. The theory
of Fourier transforms is also consistent with the uncertainty relation. In fact,
if ∆x corresponds to the interval in which the wave function is significantly
different to zero, the amplitude of the values of k, ∆k, is not independent of
∆x. For a Gaussian function, for example, we know that the product ∆x∆k is
a constant of order 1. So, again, the more determined one of the two variables
is, the more indeterminate the other will be.

1.3 Uncertainty Relation

Suppose two observables A andB defined for the same system are characterized
by a complete common set of eigenstates. When this happens, we will say
that the observables are compatible, otherwise they are incompatible. What
has to do the coincidence of the eigenstates of two observables with theirs
compatibility? If an eigenstate |ab⟩ of A is also an eigenstate of B, with
eigenvalue a and b respectively, then we can apply the product operator AB
or BA on |ab⟩ always obtaining the same vector:

AB |ab⟩ = ab |ab⟩
BA |ab⟩ = ba |ab⟩ .

(1.3.1)

This means that the order of application of A and B on their common eigen-
states is irrilevant. It can be shown that two observables are compatible if and
only if the commutator of the operators associated with them is zero:

[A,B] = AB −BA = 0. (1.3.2)

From a physical point of view, if two observables commute, then, as we have
defined measurement, we can measure A, obtaining its eigenstate, and then
measure B without this second measurement changing the state of the sys-
tem. In this way, the final state corresponds to well-defined values of both
observable A and B and the order of the measurements is irrelevant. If the
observables are incompatible then it is not possible to state all this and the
order of measurement becomes crucial.
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If we mean the physical state as the set of information we have about a
system relative to observables, we could argue that - if observables A and B
commute - a measurement of B after measuring A does not “destroy” the
information on the state of the system relatively to A.
An important consequence of the compatibility and incompatibility of observ-
ables is a theorem that concerns the distribution of measurement results on
the same physical state of a system.

Given a generic observable A, it is possible to define the quantity

∆A =
√︁
⟨A2⟩ − ⟨A⟩2, (1.3.3)

called the standard deviation. Under the square root there is the difference
between the expectation value of the observable A squared and the square of
the expectation value of A. The standard deviation provides an estimate of
how much the outcomes of the measurements performed on the same state are
dispersed compared to the average value of that observable. In the case in
which the system is prepared in an eigenstate of A, then the dispersion is zero
and all the measurements will result in the average value of A. In the general
case, we have a more or less dispersed distribution and the uncertainty of the
single measurement will be larger the larger ∆A is. As usual, these quantities
take on an empirical sense when we carry out many repeated measurements
on the same system, or copies of a system, always prepared in the same way.

Having said that, the theorem states that if A and B are two any observ-
ables and ∆A and ∆B are the standard deviations of measurement outcomes
of A and B on a generic state represented by vector |α⟩, then

∆A∆B ≥ |⟨α|[A,B]α⟩|. (1.3.4)

We will not prove the theorem, for those interested it is possible to find a
proof on any good book on the basics of QM. Here we focus only on some
considerations.

The theorem states that, if we take two incompatible observables, there is a
minimum value for the product of the indeterminacies set by the commutator
of the two operators representing the observables. This means that it is not
possible to obtain two values with zero uncertainty for both. In fact, if the
system is prepared in such a way as to reduce the uncertainty on one of the
two observables as much as possible, then the uncertainty on the other grows.
In other words, having all the information on the state of a system relative to
an observable does not imply knowing exactly the value of all the observables
that we can define for that system, but only of those that are compatible
with each other. The theorem places intrinsic limits - in the sense that they
do not depend on our ignorance or on the measurement instruments - to the
information we can have on the state of the system.

We have already mentioned the case of position and momentum. In this
case, the relation becomes the well-known Heisenberg uncertainty principle.
In particular, the position along a generic x direction and the momentum
component along the same direction, px, obey the canonical commutation rule

10
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[x, px] = iℏ. (1.3.5)

The inequality ∆x∆px ≥ ℏ
2
follows. We underline the fact that a consequence

of the position-momentum incompatibility is that, unlike classical physics, in
QM it is not possible to define a trajectory for an object, for example a particle,
since this would require contextual knowledge of both position and velocity
instant by instant, but this is not admitted by the Heisenberg principle.

In this formulation of the theory, the uncertainty relation is not a principle,
but a theorem that derives from the postulates of the theory; in particular, it
comes from the fact that observables in quantum mechanics in general do not
commute.

1.4 Time evolution and the Schrödinger equa-

tion

So far we have not considered yet the problem of introducing time into the
physical description of systems. We considered the state of a prepared system
at a certain instant, but we did not care what instant it was. Now let us try to
introduce time and thus time evolution of physical states into the theory. To do
this, first of all it is necessary to ask ourselves whether the dynamics we want to
develop should be invariant under Galilean transformations, as in Newtonian
mechanics, or under Lorentz transformations, as in special relativity. Here
we will focus only on non-relativistic dynamics, since we are discussing only
the basics of the theory, but it is good to remember that it is possible to
reformulate everything so that it adapts to the study of systems traveling at
speeds comparable to the speed of light , thus arriving to quantum field theory.

Time and space, therefore, are independent quantities. We have already
talked about space and we have seen that it is a continuous spectrum observable
represented by a Hermitian operator (or three operators in three-dimensional
space). We also know what it means to make a measurement of such observable
on a system and that we can ask ourselves what the probability of observing
the system in a certain spatial interval is. As for time, however, we need to be
a little careful. In fact, what was said for position or other observables does not
apply to time. It is in fact a parameter, something that passes independently of
the systems’ configurations. It is not possible to associate a Hermitian operator
with it and it makes no sense to ask what the probability of obtaining a certain
value as measurement outcome of time is. What we need to focus on is rather
what the state of a system is at a certain moment.

Therefore we add the time parameter to the physical state of the systems:

|α, t0⟩ . (1.4.1)

Basically the label t0 indicates that the system is in the |α⟩ state precisely
at the instant t0. In general, the state of the system at a subsequent instant
t > t0 may be different and we indicate the evolution in this way:

11
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|α, t0⟩ −→ |α, t0; t⟩ . (1.4.2)

This transformation can be represented by an operator U (“time evolution
operator”) that acts on the states. In our case we can rewrite the evolution in
(1.4.2) as the action of U on the state at time t0:

|α, t0; t⟩ = U(t, t0) |α, t0⟩ . (1.4.3)

However, the new operator must comply with some requests. First of all, it
must reduce to the identity if the time interval goes to zero. Furthermore,
the norm of the vectors must be constant over time, so that the probabilistic
interpretation of measurement results is always valid, and this means that
the operator U must be unitary (U †U = UU † = 1). Finally, it must be
composable for subsequent time intervals, i.e. U(t2, t0) = U(t2, t1)U(t1, t0)
when t0 < t1 < t2. It can be shown that the three properties are respected, for
infinitesimal time intervals, if we define U as

U(t+ dt) = 1− iΩdt, (1.4.4)

where Ω is a Hermitian operator with the dimensions of time−1. Therefore we
are representing U as the generator of time translations.

At this point we can make a conjecture: given that Ω has the dimensions
of time−1 and we know from old quantum theory that E = hν, then we write

H = ℏΩ, (1.4.5)

where H is a new operator having the dimensions of energy which we call
the Hamilton operator, or Hamiltonian for simplicity. We also assume that
the Hamilton operator can be obtained from the Hamilton function H(q, p)
which in classical physics represents the energy of the system as a function of
positions and momenta. In particular, we are conjecturing that the quantum
treatment of a system admitting a classical limit is obtained by replacing the
spatial coordinates and momenta appearing in the classical Hamilton function
with the respective quantum operators. This relation between operator H
and function H(q, p) is just a conjecture that can be seen as a tentative to
keep in QM the same classical symmetries. In fact, temporal translations
are associated with energy in classical physics; for example, if the system is
invariant for temporal translations then energy conserves. Let us now look at
what its consequences may be.

It is easy to demonstrate that, given a state evolving from t0 to t and from
t to t+dt, we can write a differential equation for the time evolution operator,
knowing that it is possible to write the differential of an operator just like one
does with functions dU = dU

dt
dt:

iℏ
∂

∂t
U(t, t0) = HU(t, t0). (1.4.6)

All quantum dynamics is inside this equation. Let us see its application to a
state vector |α, t0⟩:

12
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iℏ
∂

∂t
|α, t0; t⟩ = H |α, t0; t⟩ . (1.4.7)

This equation gives us the time evolution of state vectors.
The two fundamental equations (1.4.6) and (1.4.7) are general but abstract.

To translate them into numbers we can consider an observable, for example
position. We know that we can associate with it a complete basis of eigenstates
that does not depend on time, by definition. We can also insert the time
parameter into the wave functions:

⟨x|α, t0; t⟩ = ψα(x, t). (1.4.8)

Let us replace H with the classical expression H = p2

2m
+ V (x), where every

quantity corresponds to a Hermitian operator, including the Hamilton opera-
tor. It is possible to demonstrate that we can arrive to the equation:

iℏ
∂

∂t
ψ(x, t) =

(︃
− ℏ2

2m

∂2

∂x2
+ V (x)

)︃
ψ(x, t), (1.4.9)

which can be extended to the three-dimensional case.
This is the Schrödinger equation. He obtained it starting from analogies

with geometric optics, thus with different conjectures from those seen here,
but the result is the same.

We underline that the Schrödinger equation (1.4.9) is a special case of the
equation (1.4.7), which also applies to observables that do not have a classical
correspondent.

At this point, we can take the following postulate as valid: the time evolu-
tion of the physical states of a system is given by the Schrödinger equation.

We note that the equation (1.4.7) is linear in time and therefore determin-
istic with respect to physical states. This means that, given a state vector at
a generic instant and the Hamiltonian (namely, the interaction between the
system and the universe), it is possible to uniquely determine the state vector
at any other instant. However, this only applies to physical states and not to
measurement outcomes for which a probabilistic rule applies. In this sense, we
can say that QM is a deterministic theory in a very particular sense, namely
with regard to states’ evolution within Hilbert spaces.

Thus determinism concerns only the physical states’ evolution. There have
been attempts to reformulate the theory so as to make it deterministic also with
regard to measurement. The most famous is probably the Bohmian mechanics,
developed by David Bohm in 1952. From considerations on the measurement
process in QM, Bohm rejected the completeness of the theory, adding to it
variables, called “hidden”, which could complete it and make it deterministic.
The universe thus constructed is hidden (in the sense of not accessible to us
in its entirety) and deterministic. Unfortunately, however, Bohm’s attempt
was not very successful; the theory has very strong hypotheses and is not
Lorentz invariant thus does not allow a field theory. Einstein did not consider
it adequate to the need to complete the theory.
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Let us get back where we were. The Hamiltonian operator H may or may
not depend on time. In the first case the solution of equation (1.4.6) is simple:

U(t, t0) = exp

(︃
−iH(t− t0)

ℏ

)︃
. (1.4.10)

IfH changes over time, things get a bit more complicated. H might be different
for two different moments t1 and t2 and, furthermore, H(t1) and H(t2) might
not commute. If the operators commute, then the method is similar to the
case of time-independent H and we arrive to the result:

U(t, t0) = exp

(︃
−
(︃
i

ℏ

)︃∫︂ t

t0

dt′H(t′)

)︃
. (1.4.11)

If, however, they do not commute, then the order of the operators becomes
crucial and the solution is given by the so-called Dyson series. Nevertheless,
for our purposes, we can focus on the case of time-independent Hamiltonians.

It is important to see what happens for observables that commute with the
operator H (we are assuming that H does not change over time). We know
that if two observables commute then they admit a complete set of common
eigenstates. If we take the time evolution operator U and apply it to one of the
eigenstates of the observable A that commutes with H, then its time evolution
corresponds to a simple multiplication by a phase factor, where the frequency
is fixed by the energy value for that eigenstate:

|α, 0; t⟩ = U(t, 0) |ai⟩ = exp

(︃
−iEit

ℏ

)︃
|ai⟩ . (1.4.12)

Eigenstates of this kind are called stationary states. The state of the system
does not change over time and, if a measurement of A is performed, the same
value will always be obtained. For this reason, an observable that commutes
with H is called a constant of motion.

However, when the initial state is a generic vector, written as a linear
combination of the eigenstates of A, it is possible to see that the time evolution
corresponds to a multiplication by a phase factor of each coefficient of the
decomposition, with frequency fixed by the energy of that stationary state:

|α, t0; t⟩ =
∑︂
j

cj(t) |aj⟩ , (1.4.13)

with

cj(t) = cj(0) exp

(︃
−iEjt

ℏ

)︃
. (1.4.14)

As a consequence, the probability of obtaining a certain eigenvalue as mea-
surement outcome of A does not depend on time. The probabilities do not
depend on when I measure the constant of motion.

In terms of the wave function, it means that if the system is initially in a
stationary state of energy E, then its temporal evolution can be represented
by the function:
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ψ(r, t) = ψ(r, 0) exp

(︃
−iEt

ℏ

)︃
. (1.4.15)

If we insert this expression into the Schrödinger equation (1.4.9), we obtain
the stationary, or time-independent, Schrödinger equation:(︃

−ℏ2∇2

2m
+ V (r)

)︃
ψ(r) = Eψ(r). (1.4.16)

The search for one or more solutions boils down to solving a second-order
differential equation in spatial coordinates.

Regarding observables, it is also possible to show that, if the system is
initially prepared in a stationary state, then the average value of any observable
(even one not compatible with H) does not depend on time. Otherwise, the
expectation value may change over time.

At this point we can stop our presentation of the theory. We have seen the
fundamental concepts. At the basis of the theory is the notion of quantum
state, treated as a vector in a vector space. In these spaces a superposition
principle applies and the observables are represented by operators that act
on the state vectors. Moreover, we saw the measurement postulate and thus
the collapse of state vectors, or of wave functions. It is an indeterministic
process and we can only calculate the probability of obtaining a certain value
as measurement outcome. The uncertainty relation is a consequence of the
fact that observables in QM do not commute, in general. Finally, we talked
about the time evolution of systems, governed by the Schrödinger equation.

We have not seen any application of the theory to any system. A typical
example in courses on the foundations of QM is the calculation of the energy
spectrum of a harmonic oscillator, a useful prototype for many systems in
physics. However, our aim was to lay, or rather review, the foundations of the
theory in order to be able to tackle the next chapters more easily, so we can
stop here. In the next chapter we will discuss an alternative approach to the
theory, which starts from different hypotheses in an attempt to give it a more
precise meaning.
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2 Relational Approach to Quan-
tum Mechanics

I stand upon my desk to remind
myself that we must constantly
look at things in a different way.
The world looks very different
from up here.

Professor Keating

Let us now discuss the relational approach coined by Rovelli in [21]. Typi-
cally when we talk about reinterpretations of QM, we mean theories that try to
make sense of the quantum results. Therefore, we add something to a theory
that already exists and that we know works, with the - often unsuccessful -
aim of providing meaning to the quantum concepts which are often counterin-
tuitive, far from our way of reasoning. Having said this premise, the relational
approach (“RQM” for Relational Quantum Mechanics) is not to be intended as
a reinterpretation of QM in this sense, but as an attempt to “reconstruct” the
theory, its formalism and its predictions, starting from different assumptions.

So, what we will do in this chapter is try to arrive at the same notions
that we saw in chapter 1 on the basis of specific hypotheses, supported by
experimental evidence. In other words, the issue is not to replace or fix QM, but
rather to understand what it tells us about the world thanks to new postulates.
Rovelli explains all this well by drawing a parallel with special relativity. The
author reminds us how Einstein rediscovered the Lorentz formalism, which
already existed, starting from his two postulates, giving a new and convincing
meaning to the formulas and predictions that were already at our disposal.
The author’s hope is to do the same in the field of quantum physics, which
often still remains obscure to a profound understanding. Furthermore, as the
author claims, this approach is not intended to be antagonistic to other visions
of QM, but rather an attempt to combine them and complete some of their
aspects.

RQM is based on a critique of a notion that constitutes one of the founda-
tions of QM, and is often assumed uncritically, namely the notion of absolute,
or observer-independent, state of a system. We know that the state of a phys-
ical system can be meant as the set of values of the physical quantities that
we have measured on that system, thus, in other words, the criticism refers
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to the hypothesis that these values are absolute, equal for every measuring
apparatus. We will use the terms “measuring apparatus” and “observer” as
synonyms, even if the second, although more common, is more easily subject
to ambiguity.

Anyway, Rovelli points out that the experimental evidence leads us to ques-
tion all this, since in some situations, as we will see, different observers provide
different descriptions of the same events. The idea is to replace the absolute-
ness of the quantum state with a new notion of state relative to something.
According to Rovelli, as in the limit v → c the concept of absolute time is
no longer suitable, in the limit ℏ → 0 the concept of observer-independent
quantum state becomes inappropriate.

Hence, RQM was conceived starting from two ideas. First of all, that of
deriving the formalism of the theory starting from some reasonable principles
from the experimental point of view in order to make more sense of the theory
and, secondly, the idea of rejecting the concept of absoluteness of physical
quantities when we do QM.

2.1 A theory about information

To begin, let us consider a simple experiment involving the measurement of
an observable on a system. We want to study the same sequence of events
from the point of view of two different observers, one observer who carries out
the measurement and the second who does not. Let us therefore consider a
system S and an observable A. Suppose that A is characterized by only two
possible outcomes. This means, as we saw in section 1.1, that the Hilbert
space associated with the observable A will be two-dimensional and we call its
eigenstates |1⟩ and |2⟩, which constitute a complete basis.

Suppose that, at time t1, the system S is in a generic state, given by the
linear superposition of the eigenstates |1⟩ and |2⟩:

α |1⟩+ β |2⟩ , (2.1.1)

with α and β complex numbers, and that at time t2 > t1 the observer O
carries out a measurement on S obtaining the eigenvalue “1” as outcome of
the measurement. We can schematically describe the process as:

t1 −→ t2

α |1⟩+ β |2⟩ −→ |1⟩ ,
(2.1.2)

where the collapse of the S’s state - in O’s view - is represented in the second
line. We call “ϵ” the sequence of events in (2.1.2).

Let us now consider a second observer P , which describes the sequence
of events ϵ. To do this, P must consider the system S − O consisting of the
system S and the observer O interacting. Suppose that P does not make any
measurements on S − O, but that it knows the initial states of S and O, so
that it is able to provide a description of ϵ.
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If S is described by a vector in a Hilbert space HS, O will similarly be
described by a vector in a HO space. Therefore the S − O system will be
described by the tensor product HS−O = HS ×HO.

We know that S is described by the eigenstates of A, but what about O?
Let us suppose that |init⟩ is the initial state of O in the HO space at t = t1.
At t = t2 the state of O will change since the measurement is a physical inter-
action. Given that A can provide only two outcomes, O, similarly to S, can
“collapse” into two possible states, that we call |O1⟩ and |O2⟩, corresponding
to the scenario S collapses - according to O - into |1⟩ or |2⟩ respectively. We
can think of the states of O as states in which the observer’s measurement
instrument is providing the observer - in the form of bits, digits or perhaps it
has an indicator on a graduated scale - with the values “1” or “2” after having
carried out the measurement on S. In P ’s view, the S’s states and O’s states
are correlated; this means that P knows O has information about S, as far as
the observable A is concerned.

After these premises, we can schematically represent the experiment ϵ also
from the point of view of P :

t1 −→ t2

(α |1⟩+ β |2⟩)⊗ |init⟩ −→ α |1⟩ ⊗ |O1⟩+ β |2⟩ ⊗ |O2⟩ .
(2.1.3)

Let us note that, in P ’s view, the S − O system is in a superposition at time
t2. Such superposition reflects the fact that P knows that O performed a
measurement on S but does not know what value O obtained, since P has
not made any measurement yet. In other words, according to P , S is not
necessarily in the state |1⟩ and O is not necessarily in the state |O1⟩.

Since a consistency condition must hold, Rovelli claims that if P carried
out an experiment on S − O, it would obtain consistent outcomes; hence, P
would observe O in the state |O1⟩ if O measured “1” on S, and would obtain
the |O2⟩ state if O measured “2” on S, and vice versa. In all scenarios, the
observable A and the state of O are correlated according to P . Such correlation
is a property of the system S −O and is measurable by any third observer P .
We will come back again to this delicate topic in section 3.4.

However, the description in (2.1.3) states that, for P at time t = t2, S has
no determined value relative to A. On the other hand, (2.1.2) tells us that,
for O, A has value “1”. As a result, we conclude that two different observers
provide different descriptions of the same sequence of events.

Let us now try to understand what this simple experiment allows us to
conclude, supporting the hypotheses underlying the new approach. First of
all, we have seen that in the context of QM different observers, in general,
can provide a different description of the same event or sequence of events.
In particular, when we talk about “description” by an observer, we mean the
quantum state associated with a certain system, according to the observer
itself, as a result of a measurement. Therefore, we can conclude that the
quantum state - or, equivalently, the values of the measured physical quantities
of a system - is not absolute, but depends on the observer. Secondly, we have
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seen that there is no clear distinction between quantum systems and classical
systems since even an observer - which we would typically consider a classical
macroscopic system - can be described by another observer as is done with any
quantum system. In other words, all systems appear to be equivalent. Another
hypothesis concerns the completeness of the theory: we postulate that QM is
a complete theory, in the sense that it is able to provide a complete and
consistent description of physical reality.

All these considerations can also be summarized in a single hypothesis:
quantum mechanics is a theory about the physical description of physical sys-
tems relative to other systems, and this is a complete description of the world.
Therefore physics is completely relational and any description of the same
system is correct, even if it refers to different observers.

Now that we have talked about the hypotheses underlying the new ap-
proach, supporting these with the help of an experiment, let us look at how
Rovelli wishes to change the way we should conceive the quantum state and
other key concepts of QM.

We have understood that relations are established between observed sys-
tems and observers when they interact. In particular we talked about a cor-
relation between the observer O and the system S, which is reflected in the
synthetic expression “A = 1 for observer O” and which concerns the state of
the S−O system, which has sense in reference to another observer P . In other
words, the state of the S−O system (as well as the state of any other system)
does not have an absolute meaning, but we can talk about it and study it only
from the point of view of another observer.

Now let us express this correlation in terms of “information” in the sense of
information theory and replace the sentence above with “O has the information
that A = 1” or, if we want to highlight the fact that such expression has
meaning from the point of view of another observer P only, we can say “with
respect to P , there is some correlation between the states of S and O”. We
acknowledge that the two statements just seen are equivalent, they are referring
to the same ϵ experiment. In other terms, the information O has about S is
explained only in terms of information possessed by P about the S−O system.
From this, it is clear how the notion of information reflects the relational
features of physics. What is more, the information possessed by P about the
S − O system is probabilistic. That means P is able to analyze the relation
between S and O only quantum mechanically.

We saw that information can be exchanged via physical interaction between
any kind of system. Information expresses the fact that a system is in a certain
state, and its state is correlated to the state of another system. In this approach
information is meant as discrete and thus any acquisition of information can
be decomposed into acquisition of elementary bits of information. Because of
this, it is possible to characterize any observed system by a family of yes or
no questions that an observer may ask, where any information is meant as
the ascription of values to observables. In other words, the act of measuring
observables is meant as the creation of a question-answer set that specifies the
systems’ relative states.
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2.2 On the reconstruction of QM

Let us now focus on reconstructing the theory starting from some new postu-
lates. The postulates are three in total.

We already discussed that information possessed by systems about other
systems play a crucial role in this formulation. How can we express the in-
formation characterizing systems? Let us imagine it is possible to “ask” a
certain amount of questions to a system. The questions coincide to the mea-
surable observables and can be represented by a string (Q1, Q2, ...) which will
correspond to a string of possible answers (e1, e2, ...), where each ei can be 0
or 1 and represents the answer to the Qi question about the observed system.
Knowing a portion of (e1, e2, ...) provides indications about subsequent answers
(en+1, en+2, ...). The relevant information an observer has about a system is
the part of (e1, e2, ...) significant for making predictions about future questions.

However, the first postulate states that:

Postulate 1 There is a maximum amount of relevant information
that can be extracted from a system.

This means that any observed system S is characterized by a finite subset of
answers s = (e1, ..., eN) that represents the maximal relevant knowledge any
observer O can have about S. The amount of relevant information N can be
different for each system. Theoretically, the observer could ask a number of
questions bigger than N , but, once it gathered all relevant information about
S, it has nothing more to say about it: the N bits constitute the “information
capacity” of S.

Nevertheless, if O has gathered the N relevant information about S and
asks a further question, the second postulate tells us that:

Postulate 2 It is always possible to acquire new information about
a system.

Postulate 2 is motivated by experimental facts: it is always possible to “learn”
something new about a system by carrying out a measurement of an observable
such that the state of the system is not an eigenstate of that observable.

To prevent postulate 1 and 2 from contradicting each other, when new
information is acquired part of the “old” relevant information has to become
irrelevant. In other words, at least one bit of the previous information is lost
so that new “room” in the s = (e1, ..., eN) string is available to gather new
information, but the total amount of relevant information does not exceed N.

Notice that the number of questions one can ask to a system can be much
larger than N since some of these questions may be not independent. They
could be related by implication, union or intersection. We call W (S) such set
of possible questions.

From Postulate 1, we may assume that one can select inW (S) an ensemble
c of N questions Qi, with c = {Qi, i = 1, ..., N}, that are independent from
each other. There may be many distinct families of N independent questions
in W (S) which correspond to different questions, or, equivalently, to different
kind of description of S by observer O.
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The answers can be represented as a string sc = (e1, ..., eN)c which cor-
responds to the information O has about S as a result of experiments that
allowed O to ask the questions in c. The string sc can take up to 2N = k
values s

(1)
c , s

(2)
c , ..., s

(k)
c such that:

s(1)c = (0, 0, ..., 0), s(2)c = (0, 0, ..., 1), ..., s(k)c = (1, 1, ..., 1), (2.2.1)

and they are mutually exclusive by construction.
We could also define 2N new questions such that a yes answer to Q

(i)
c cor-

responds to the string of answers s
(i)
c . Therefore, a yes answer to any Q

(i)
c

of the new set enables us to know the answers of all questions in c; in other
words, any Q

(i)
c potentially corresponds to N bits of information. The new

questions considered
{︂
Q

(1)
c , ..., Q

(k)
c

}︂
are referred to as “complete questions”

and constitute a Boolean algebra. If we consider a different family of indepen-
dent questions b, a different set of complete questions is obtained. Therefore,
the set of questions W (S) has a natural structure of an orthomodular lattice.

It is possible to study the relation between a string of information, like sc,
and another question Q considering the probability that a yes answer to Q
will follow the string sc:

p(Q,Q(i)
c ), (2.2.2)

where we used Q
(i)
c for simplicity. Basically, the probability in (2.2.2) is a

conditional probability.
If we have two complete families of information b and c, it is possible to

consider the probabilities:

pij = p(Q
(i)
b , Q

(j)
c ), (2.2.3)

which constitute a 2N × 2N matrix.
The pij probabilities must comply with some conditions, such as 0 ≤ pij ≤ 1

and
∑︁

i p
ij =

∑︁
j p

ij = 1. Such features are satisfied if

pij =
⃓⃓
U ij

⃓⃓2
, (2.2.4)

where U ij is a unitary matrix (not fully determined by pij though).
We may also consider probabilities of the form:

pi(jk)i = p(Q
(i)
b , Q

(jk)
c Q

(i)
b ), (2.2.5)

where Q
(jk)
c = Q

(j)
c ∨ Q(jk)

c (union). It is possible to prove that pi(jk)i is given
by

pi(jk)i =
⃓⃓
U ijU ji + U ikUki

⃓⃓2
. (2.2.6)

Having said that, the third postulate states that
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Postulate 3 If c and b are two complete families of questions, then
the unitary matrix Ucb in

p(Q(i)
c , Q

(j)
b ) =

⃓⃓
U ij
cb

⃓⃓2
(2.2.7)

can be chosen so that for every c, b and d, we have Ucd = UcbUbd and
the effect of composite questions is given by eq. (2.2.6).

Postulate 3 reflects the fact that a superposition principle holds for probabili-
ties and limits the structure of the set of questions.

As a consequence, any question can be considered as a vector of a Hilbert
space, a basis |Q(i)

c ⟩ can be fixed and any other question |Q(j)
b ⟩ can be repre-

sented as a linear combination of it:

|Q(j)
b ⟩ =

∑︂
i

U ji
bc |Q

(i)
c ⟩ . (2.2.8)

After all, we saw that any complete question Q
(i)
c corresponds to a string of

possible answers s
(i)
c that contains N bits of information about the system.

Because of this, representing a question with a vector is not so strange at this
point. Any complete question |Q(i)

c ⟩ related to the questions c represents the
system state since it contains the maximal amount N of relevant information
extractable from that system but it is always possible to obtain a different set
of relevant information (Postulate 2). The two sets are related as in (2.2.8)

and the matrices U ji
bc emerge as unitary change of basis from the Q

(i)
c to the

Q
(j)
b basis.

To sum up, the Hilbert spaces constituted by the vectors |Q(i)
c ⟩ are no

longer associated with a specific observable since the vectors |Q(i)
c ⟩ may con-

tain information about more than one observable. Nevertheless, as the basis
of an observable gave us all the possible system’s configurations - relatively
to that observable -, similarly a set of k = 2N complete independent ques-

tions
{︂
|Q(1)

c ⟩ , ..., |Q(k)
c ⟩

}︂
constitute a complete basis for all possible system’s

descriptions - relatively to N specific questions.
Moreover, if the system is initially in a state |Q(i)

c ⟩, then the probability of

measuring the state |Q(j)
b ⟩ is given by:⃓⃓⃓

⟨Q(i)
c |Q

(j)
b ⟩

⃓⃓⃓2
, (2.2.9)

which corresponds to pij = |U ij|2. Therefore the three postulates lead to the
conventional formalism of the theory and to the probability rules.

So far we did not discuss about dynamics. Any question is characterized
by a set of operations, which are performed by the observer at a certain time.
If these same operations are performed at different times, we might consider
the respective questions as different. Therefore, the time parameter t at which
the question is asked becomes relevant. We can add a t label to any question
Q:
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|Q(t)⟩ . (2.2.10)

If we consider two subsequent moments t1 and t2, with t1 < t2, then, like in
section 1.4, it is possible to represent the evolution of Q as:

|Q(t1)⟩ −→ |Q(t2)⟩ , (2.2.11)

and, in general, the family of questions Q defined by the same procedure
performed at different times can be represented as t −→ Q(t).

Since the set of questions at time t2 has to be isomorphic to the set of
questions at time t1 if we assume time evolution is a symmetry of the theory,
there should be a unitary operator U(t2 − t1) such that

|Q(t2)⟩ = U(t2 − t1) |Q(t1)⟩U−1(t2 − t1), (2.2.12)

for any question |Q⟩. Such relations reflects the fact we used the Heisenberg
picture instead of the Schödinger’s, but the unitary operator U is the same
of section 1.4. Indeed, from this follows equation (1.4.6) and U(t2 − t1) =
exp(−i(t2 − t1)H) if H does not depend on time.

In conclusion, we can re-discuss our considerations of section 2.1 in light of
the new notions introduced. We saw that any system S is characterized by a
set of N relevant information that can be known by a observer O in the form
of bits of information. If O extracts all the relevant information about S, it
can associate with S a specific state |Q⟩ - relative to O - which is a vector in a
Hilbert space and contains N yes or no answers. Such process is possible only
if an interaction between the observer and the observed system occurs.

So, we can say that “O has information about S”. However, such statement
refers to the state of O and, as such, it has to be relative to another observer,
say P , observing O. P can get information about the information possessed
by O about S only by interacting with the S − O system. In P ’s view, the
information possessed by O is expressed by the fact that O and S’s states are
correlated and P would obtain consistent results if it carried out measurements
on S and O. Relative to P , the interaction between S and O is a fully unitary
evolution. On the other hand, O is incapable of giving a full description of the
interaction between S and itself, since there is no meaning in being correlated
with oneself. Because of this, its description of the unitary evolution of S
breaks down at the time of the interaction.

To sum up, we saw how Rovelli, starting from some postulates, reconstructs
the formalism of QM. As we said at the beginning of the chapter, his intent is
to understand what the theory is telling us about the world. We could state
that, in some way, Rovelli wanted to concretize what many physicists and
philosophers have argued throughout history, namely that properties become
relational in the microscopic. In fact, many situations suggest this idea.

Having said that, each case has its specificity, it is necessary to see if the
theory actually works in individual contexts leading to intuitively acceptable
consequences. There are many situations where RQM could be applied; in
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this thesis we will look at the case of three entangled qubits in a GHZ state
recently presented in [16] and the related discussion that has arisen.
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3 Relative facts

To know, is to know that you
know nothing. That is the
meaning of true knowledge.

Plato, Apology of Socrates

As we said, our analysis continues with an interesting discussion that has
arisen in recent years regarding an application of RQM. Our presentation be-
gins with the work [16] of Lawrence, Markiewicz and Żukowski (LMZ from
now on), where the case of a three-qubit GHZ state is presented. The authors
of [16] argue that in such situation the RQM’s predictions give rise to inconsis-
tencies with the QM’s ones based on GHZ correlations. Because of this, RQM
seems to be incompatible with QM. The context of a three-qubit system has
been considered several times, even by Rovelli himself, since the publication
of [16]. We will focus on the relevant aspects of this discussion, trying to put
it sufficiently in order.

In addition, at the end of the chapter, we will delve deeper into what has
been said, focusing on an important postulate introduced in [1] by Adlam
and Rovelli and the related response by Markiewicz and Żukowski in [17] who
resume the GHZ case and make other interesting considerations.

3.1 A three-qubit GHZ state and quantum cor-

relations

Our analysis begins considering an experiment with two observers carrying
out measurements on a system of three qubit. So, let us consider a system S
consisting of three entangled qubits Sm, with m = 1, 2, 3, in a GHZ state.

A qubit is typically meant as a simple system that can take up two values
relatively to three non-commutative observables. An example is the spin of a
particle measured in the three axial directions x, y and z. However, in order
to be as general as possible, we will not use such notation; instead, the indices
n = 1, 2, 3 will be considered (z, x, y respectively for the spin case) when
referring to the three observables.

The relative bi-dimensional basis consists of |+1(n)⟩ and |−1(n)⟩ (for n =
1, 2, 3) and we add the subscript Sm in order to indicate the considered qubit,
|±1(n)⟩Sm

, with m = 1, 2, 3. The basis are related as following:
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|±1(2)⟩Sm
=

1√
2
(|+1(1)⟩Sm

± |−1(1)⟩Sm
), (3.1.1)

and

|±1(3)⟩Sm
=

1√
2
(|+1(1)⟩Sm

± i |−1(1)⟩Sm
), (3.1.2)

for a given qubit Sm.
The GHZ state for S, |GHZ⟩S, in terms of the state of each Sm, in the

n = 1 basis is:

|GHZ⟩S =
1√
2
(|+1(1),+1(1),+1(1)⟩S1S2S3

+|−1(1),−1(1),−1(1)⟩S1S2S3
), (3.1.3)

where S1⊗S2⊗S3 = S1S2S3 for the sake of brevity and, as in the next formulas,
the labels in the kets refer respectively to S1, S2 and S3.

Hence, relative to the n = 1 basis, there are only two scenarios: all qubits
Sm are concurrently either in the state |+1(1)⟩ or in the state |−1(1)⟩. In the
spin case, the superposition (3.1.3) can be written as 1√

2
(|↑↑↑⟩zzz + |↓↓↓⟩zzz),

where the subscripts specify the basis. If an observer carries out measurements
on S, the outcomes of the qubits are not independent from each other.

We can schematically re-express the |GHZ⟩S state as:

|GHZ⟩S =
1√
2
(⊗3

m=1 |+1(1)⟩Sm
+⊗3

m=1 |−1(1)⟩Sm
). (3.1.4)

Let us consider now an observer A that carries out measurements on S, thus
on every qubit Sm, in the n = 3 basis. In order to study such experiment, we
would need to re-write the |GHZ⟩S state in terms of the n = 3 basis. This is
not a big deal, the |GHZ⟩S state will be of the form:

|GHZ⟩S =
∑︂

p,q,r=±1

c333pqr |p(3)⟩S1
|q(3)⟩S2

|r(3)⟩S3
, (3.1.5)

where the coefficients c333pqr are given by inner products of vectors of the n = 1
and n = 3 basis. Note that there are no correlations between measurement
outcomes in the n = 3 basis, since all possible scenarios - eight in total - are
characterized by the same probability given by |c333pqr |2 = 1

8
.

As we saw in chapter 2, any RQM-measurement provides an outcome rel-
ative to the observer. Because of this, we call such outcomes “relative facts”
obtained by an observer. As the relative approach argues, an outcome which
is a relative fact for an observer is not a relative fact for a different observer.
Hence, A obtains three relative facts {A1,A2,A3}, where every Ai can be
either +1 or −1 and refers to the measurement on the qubit Si.

Furthermore, we saw that any RQM-measurement is a quantum interaction
between the observer A and the system S resulting in a entangled state of the
the system S − A:
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|init⟩A |GHZ⟩S −→ |GHZ⟩SA , (3.1.6)

where SA is for S ⊗ A.
In this case, S is composed of three subsystems so, if the entangling pro-

cesses commute, we can see the entangling mechanism as regarding each qubit:

|init⟩A
∑︂

p,q,r=±1

c333pqr |p(3)⟩S1
|q(3)⟩S2

|r(3)⟩S3
−→

∑︂
p,q,r=±1

c333pqr |p(3)⟩SA1
|q(3)⟩SA2

|r(3)⟩SA3
,

(3.1.7)
and such process (although [16] does not specify it) is to be meant as “seen”
from the point of view of another observer.

Let us now consider a second observer B that carries out measurements on
the S − A system in the n = 2 basis - namely, three measurements for each
subsystem SAm. Similarly to A, B will obtain three relative facts {B1,B2,B3},
relative to the n = 2 basis.

Again, the S − A system is to be studied in the n = 2 basis and thus its
state will be of the form:

|GHZ⟩SA =
∑︂

p,q,r=±1

c222pqr |p(2)⟩SA1
|q(2)⟩SA2

|r(2)⟩SA3
, (3.1.8)

and the quantum interaction between B and the S − A system results in an
entangled |GHZ⟩SAB state, where SAB = S ⊗ A⊗ B, relative to an external
observer. Explicitly, the final state of the system SAB will be:

|GHZ⟩SAB =
∑︂

p,q,r=±1

c222pqr |p(2)⟩SAB1
|q(2)⟩SAB2

|r(2)⟩SAB3
. (3.1.9)

Now we are going to see the correlations between measurement outcomes.
If we explicit a generic GHZ state in the n = 2 basis (like (3.1.8)) the result

will be:

|GHZ⟩S =
1√
2
(|+1(2),+1(2),+1(2)⟩S1S2S3

+ |+1(2),−1(2),−1(2)⟩S1S2S3
+

|−1(2),+1(2),−1(2)⟩S1S2S3
+ |−1(2),−1(2),+1(2)⟩S1S2S3

.

(3.1.10)

It is clear how the products of all possible sets of measurement outcomes are
always +1. Hence, the first correlation between outcomes is:

p(2)q(2)r(2) = +1, (3.1.11)

for p, q, r = ±1.
Note that the correlation (3.1.11) is a quantum prediction for a system of

this kind, thus is independent of the approach chosen. In other words, if a the-
ory claims to be a re-interpretation of QM (we use the term “re-interpretation”
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for simplicity), it has to respect the quantum predictions, otherwise it is in-
compatible. We will see four constraints in total and all of these correspond to
quantum predictions, so we expect all four to be respected by re-interpretations
of the theory.

The remaining three correlations are similar, so we can focus on just one of
those. For example, we can imagine an experiment in which we want to make
a measurement in the n = 2 basis on the S1 qubit and a measurement in the
n = 3 basis for each of the remaining qubits S2 and S3. The global GHZ state
of S would be:

|GHZ⟩S =
1√
2
(|−1(2),−1(3),−1(3)⟩S1S2S3

+ |−1(2),+1(3),+1(3)⟩S1S2S3
+

|+1(2),−1(3),+1(3)⟩S1S2S3
+ |+1(2),+1(3),−1(3)⟩S1S2S3

.

(3.1.12)

It is not so confusing if we keep in mind that the first label in the kets refers
to S1 in the n = 2 basis and the remaining ones refer respectively to S2 and
S3 in the n = 3 basis.

In this case, the correlation arises from the fact that the products of mea-
surement outcomes give −1 in all four scenarios. Hence:

p(2)q(3)r(3) = −1, (3.1.13)

for p, q, r = ±1.
If we permute the qubits, similar correlations emerge:

p(3)q(2)r(3) = −1, (3.1.14)

and

p(3)q(3)r(2) = −1. (3.1.15)

The four correlations (3.1.11), (3.1.13), (3.1.14) and (3.1.15) can be put to-
gether:

p(2)q(2)r(2) = +1

p(2)q(3)r(3) = −1
p(3)q(2)r(3) = −1
p(3)q(3)r(2) = −1,

(3.1.16)

and those are individually true, although it is not possible to verify all of
them in a single experiment, since there are six possible variables in total.
Furthermore, it is not even possible to solve them simultaneously, given that
there are not six numbers that solve all the four constraints. In the context of
standard QM, such contradiction leads us to only a few options. Either QM is
to be considered non-local and that means signals can travel faster than speed
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of light or QM’s values are indefinite before measurement - that is similar
to an agnostic approach to QM. Actually, there is also a little known third
option, namely “superdeterminism” [13], which preserves locality and value
definiteness.

Now, in the RQM context, we said that observer A gets three relative
facts {A1,A2,A3} after measuring the S system in the n = 3 basis and,
similarly, observer B obtains three relative facts {B1,B2,B3} after carrying
out measurements on the S−A system in the n = 2 basis. We can put together
all the outcomes in a unique set {A1,A2,A3,B1,B2,B3} and re-express the
four constraints in terms of relative facts of A and B:

B1B2B3 = +1

B1A2A3 = −1
A1B2A3 = −1
A1A2B3 = −1,

(3.1.17)

and, if we multiply all equations, we get:

A2
1A

2
2A

2
3B

2
1B

2
2B

2
3 = −1. (3.1.18)

Now, only two scenarios are possible at this point. We can have that observer
A obtained three relative facts {A1,A2,A3}, but B can not produce relative
facts {B1,B2,B3} that satisfy the constraints in (3.1.17). On the other hand,
B could obtained three relative facts {B1,B2,B3}, but A could not obtain
three relative facts satisfying (3.1.17).

In light of this, the authors of [16] argue that RQM’s relative facts arise
contradictions with quantum predictions and, thus, RQM is incompatible with
QM.

To sum up, we saw that a system S composed of three entangled qubits Sm

(m = 1, 2, 3) is characterized by the four constraints (3.1.16). If the numbers
p, q, r in the formulas are interpreted as relative facts of two different observers
A and B, we obtain eq. (3.1.18) that apparently shows the impossibility of
contextually having two sets of real numbers {A1,A2,A3} and {B1,B2,B3}.

Remember that the quantum predictions (3.1.16) are independent of RQM
or any other re-interpretation. As we said, any prediction of QM is to be
satisfied by RQM. In the next sections, we are going to discuss whether this
line of reasoning is somehow justified or, in other words, whether LMZ really
proved the incorrectness of RQM.

3.2 Density matrix - a first attempt to save

RQM

Let us discuss the results presented in [9] by Aurelien Drezet, in which the
author re-express the experiment in terms of the density matrix.
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As we saw, a system’s state can be described by a vector |α⟩ in the form
of a linear combination of eigenstates relative to an observable. |α⟩ is a pure
state. We could have a mechanism that casually produces several copies of the
same system in different pure states |α1⟩, |α2⟩, |α3⟩, ..., and the probability of
obtaining the |αp⟩ pure state out of the mixture is wp (with

∑︁
pwp = 1). Such

set of pure states corresponds to a mixed state.
The mixed state can be described by the operator:

ρ =
∑︂
p

wp |α⟩ ⟨α| , (3.2.1)

and, as any other operator, is expressible in terms of a matrix by using the
eigenstates of any operator. ρ is called the density matrix.

In the case of a system composed of two subsystems M and N , each of the
subsystem is described by a reduced density matrix. For example, if we want
to describe the subsystem M , its reduced density matrix will be:

ρ
(red.)
M = Tr[ρMN ], (3.2.2)

where ρMN is the density matrix of the global system.
In the context of RQM, any quantity describing a system, including the

density matrix, is to be meant as relative to a certain observer. Because of
this, in our experiment involving system S and observers A and B, the density
matrix of S, in A’s view, can be written as:

ρ
(red.)
SA

=
1

8

∑︂
p,q,r

|p(3)⟩S1 S1
⟨p(3)| ⊗ |q(3)⟩S2 S2

⟨q(3)| ⊗ |r(3)⟩S3 S3
⟨r(3)|, (3.2.3)

in which we sum the entangled states of the subsystems Sm relative to A in
the n = 3 basis.

Observer A can use ρSA
in order to evaluate the expectation value of any

observables associated with the qubits. In the spin notation the observables are
of the form σnSm (with n = x, y, z) and, due to decoherence [9], the expectation
values after the measurement are:

TrS(σxS1σxS2σxS3ρ
(red.)
SA

) = 0

TrS(σxS1σyS2σyS3ρ
(red.)
SA

) = 0

TrS(σyS1σxS2σyS3ρ
(red.)
SA

) = 0

TrS(σyS1σyS2σxS3ρ
(red.)
SA

) = 0,

(3.2.4)

while before the measurement the expectation values were:

TrS(σxS1σxS2σxS3ρ
(red.)
S ) = +1

TrS(σxS1σyS2σyS3ρ
(red.)
S ) = −1

TrS(σyS1σxS2σyS3ρ
(red.)
S ) = −1

TrS(σyS1σyS2σxS3ρ
(red.)
S ) = −1.

(3.2.5)
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It is not so clear what ρ
(red.)
S means since it is a quantity given by the possible

states of S but it is not specified respect to whom such states are considered.
Anyway, we may consider the expectation values in (3.2.5) as the outcomes
that A should expect before measuring the spins since the constraints are to
be satisfied.

In any case, Drezet argues that the expectation values become zero since
the measurement from A causes loss of coherence and correlations between the
qubits. This is part of the central reasoning of Drezet. The author claims that
the measurement process is more “invasive” than what LMZ think.

The measurement performed by B on the entangled system S ⊗ A in the
n = 2 basis gives us the state (3.1.9) and the density matrix used by B to
describe the S ⊗ A system will be:

ρ
(red.)
SAB

=
1

4

∑︂
p,q,r

|p(2)⟩SA1 SA1
⟨p(2)|⊗|q(2)⟩SA2 SA2

⟨q(2)|⊗|r(2)⟩SA3 SA3
⟨r(2)|, (3.2.6)

where the states of the SAm qubits are explicit.
Again, B uses ρ

(red.)
SAB

to evaluate the expectation values after its measure-
ment:

TrSA(σxSA1σxSA2σxSA3ρ
(red.)
SAB

) = +1

TrSA(σxSA1σySA2σySA3ρ
(red.)
SAB

) = 0

TrSA(σySA1σxSA2σySA3ρ
(red.)
SAB

) = 0

TrSA(σySA1σySA2σxSA3ρ
(red.)
SAB

) = 0,

(3.2.7)

where a partial coherence is preserved.
Furthermore, associated with the state (3.1.9), Drezet explicits the con-

straint

p
(2)
SAB1

q
(2)
SAB2

r
(2)
SAB3

= +1. (3.2.8)

Drezet agrees with LMZ about the fact that the three variables p, q, r in the
constraint (3.2.8) are to be meant as relative facts of B. In contrast, he argues
that the remaining three constraints do not enable us to mix the relative facts
of A and the relative facts of B and that we cannot compare the constraints
with one another. In other words, those cannot be used as a proof supporting
the incorrectness of RQM. His reasoning goes as following.

Drezet argues that the remaining constraints should be associated respec-
tively with a single interaction between B and a qubit SAm. Such interactions
can be meant as interactions between a qubit of B, Bm, and the respective
qubit SAm. For example, the constraint (3.1.13) is associated with a process
leading to the entangled state:

|GHZ ′⟩SAB =
1

2

∑︂
p,q,r

|p(2)⟩SAB1
|q(2)⟩SA2

|init⟩B2
|r(2)⟩SA3

|init⟩B3
, (3.2.9)
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where B1 interacted with SA1 while B2 and B3 remained in their initial state.
Basically, while the authors of [16] argue that B’s measurements can be

considered simultaneous since the three entangling processes commute, Drezet
focuses on each interaction Bm − SAm thinking that LMZ considered those
non-contextual and absolute.

In the context of RQM, the correlation (3.1.13) becomes:

p
(2)
SAB1

q
(3)
SA2

r
(3)
SA3

= −1, (3.2.10)

associated with state |GHZ ′⟩SAB and we could associate similar relations with
analogous processes for m = 2 and m = 3 leading to states |GHZ ′′⟩SAB and
|GHZ ′′′⟩SAB. In total we would have three constraints.

Now, LMZ interpreted the variables in the three constraints as relative
facts: in (3.2.10), p

(2)
SAB1

is a relative fact for B and q
(2)
SA2

and r
(2)
SA3

are relative

facts for A. In constrast, Drezet argues that, while p
(2)
SAB1

is a relative fact for

B, there is no reason to consider q
(2)
SA2

and r
(2)
SA3

relative facts for A.
In Drezet’s view, the authors of [16] compared the three constraints with

the first (3.2.8) because they thought the interactions Bm − SAm were non-
contextual. This, together with the possibility of mixing the relative facts of
A and B as in (3.2.10) enable LMZ to reach their conclusion, Drezet thinks.

For the latter, in the process leading to |GHZ ′⟩SAB, B should describe the
S ⊗ A system by using the density matrix:

ρ
(red.)
SAB

=
1

2
|+1(2)⟩SA1 SA1

⟨+1(2)|

⊗ |ϕ⟩SA2,SA3 SA2,SA3
⟨ϕ|

+
1

2
|−1(2)⟩SA1 SA1

⟨−1(2)|

⊗ |ψ⟩SA2,SA3 SA2,SA3
⟨ψ|,

(3.2.11)

where

|ϕ⟩SA2,SA3
=

1√
2
(|+1(3)⟩SA2

|−1(3)⟩SA3
+ |−1(3)⟩SA2

|+1(3)⟩SA3
), (3.2.12)

and

|ψ⟩SA2,SA3
=

1√
2
(|+1(3)⟩SA2

|+1(3)⟩SA3
+ |−1(3)⟩SA2

|−1(3)⟩SA3
). (3.2.13)

Again, B uses the density matrix to calculate the expectation values after
the interaction B1 − SA1:

TrSA(σxSA1σxSA2σxSA3ρ
(red.)
SAB

) = +1

TrSA(σxSA1σySA2σySA3ρ
(red.)
SAB

) = −1

TrSA(σySA1σxSA2σySA3ρ
(red.)
SAB

) = 0

TrSA(σySA1σySA2σxSA3ρ
(red.)
SAB

) = 0,

(3.2.14)

32



Section 3.3

where a partial coherence is preserved. The second line is not the same of
(3.2.10), since the traces in (3.2.14) concern only B and not A. Therefore,
following Drezet’s reasoning, B gives a description of S ⊗ A that seems to
provide a constraint on the outcomes. However, such relation regards B’s
description of S ⊗ A and we are not allowed to mix B’s relative facts with
the ones of A. Furthermore, Drezet says, the process leading to (3.1.9) and
the processes leading to |GHZ ′⟩SAB , |GHZ ′′⟩SAB and |GHZ ′′′⟩SAB belong to
different contexts and we can not compare the relative constraints to deduce
an incorrectness of RQM, given that different contexts are not comparable in
RQM.

Now, is it really true that the authors of [16] assume non-contextuality?
And, is it appropriate to use an approach based on quantum states for RQM,
as Drezet does?

Regarding the first question, LMZ do not assume non-contextuality, but
simply replace the variables in the constraints with the relative facts of A and
B. It is not even a matter of comparing relative facts of different observers -
this would in fact be against the axioms of the theory [8] - but simply verify-
ing whether the relative facts satisfy the predictions of QM, as they should do,
given that they must follow the same constraints as the eigenvalues of observ-
ables in the standard formulation. To do this, LMZ study products between
relative facts of different observers and deduce a contradiction.

Secondly, an approach like that of Drezet, thus based on the concept of
physical state, is not similar to Rovelli’s conception of RQM, given that the
latter bases the ontology of the theory not on states but on relative facts [8].
Drezet instead gives a central role to the physical states of the systems from an
ontological point of view. As a consequence, his equations are less correlated
than those of LMZ. For example, in (3.2.14) we do not mix relative facts of A
and B since the equations simply regard B’s description of S⊗A and thus do
not reveal any contradiction. However, this is precisely due to the fact that we
are focusing on states and not on relative facts, and not because the theory -
at least as Rovelli intends it - predicts that there are no correlations.

As the authors of [16] remind us, Rovelli conceives RQM as a theory that
concerns facts, i.e. events, relative to observers, and not physical states. This
is Rovelli’s conception. Then obviously it is not a given that we can not
deviate from what he says and create different approaches within RQM, thus
changing the hierarchical order of the fundamental concepts of the theory.
Many philosophers - rather than physicists - tried to give reality to the physical
state, but this is a controversial deviation from the more accepted idea that
the physical state is simply a useful object for making predictions. In any case,
Drezet seems to combine the principles presented by Rovelli with his own view
and ultimately creates an approach partly different from the relational one
that is unable to answer the issue raised in [16].
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3.3 Quantum predictions: directions for use -

a second attempt to save RQM

Another interesting response to LMZ is [5] from Cavalcanti, Di Biagio and
Rovelli (CDR from now on). In this latter article the issue raised in [16]
is criticized by re-discussing the experiment of A and B from the point of
view of a third observer W . The main criticism made by CDR concerns the
“comparison” that LMZ do between outcomes obtained by different observers.
We used the inverted commas to specify that it is necessary to decide whether
LMZ really compare relative facts of different observers, as the authors of [5]
argue.

So, CDR remind us that “it is meaningless to compare events relative to
different systems, unless this is done relative to a (possibly third) system”
and “comparisons can only be made by a (quantum-mechanical) interaction”.
Hence, following their reasoning, the constraints do not make sense if the three
observers do not interact with each other or with another external observer.

Hence, the authors consider an external observer (W ) who interacts with A
and B after their measurements. W obtains relative facts that must satisfy the
constraints (3.1.16). For example, if W interacts with one of the qubits of B,
e.g. B1, after it made the measurement, W would obtain a relative fact, BW1

1 ,
where the 1 in “W1” stands for “first set of measurements of W”. Similarly,
if W interacts with B2 and B3, W would obtain relative facts BW1

2 and BW1
3 ,

respectively. This first set of relative facts of W satisfies (3.1.11). Explicitly:

BW1
1 BW1

2 BW1
3 = +1, (3.3.1)

where we simply substituted the variables in (3.1.11) with the relative facts of
W .

Let us now suppose that, in a second experiment, W interacts with B1 and
then with A2 and A3. Analogously, W would obtain three relative facts: BW2

1 ,
AW2

2 and AW2
3 . The second set of relative facts satisfies (3.1.13). Explicitly:

BW2
1 AW2

2 AW2
3 = −1. (3.3.2)

We could obtain similar equations associated with (3.1.14) and (3.1.15) con-
sidering analogous experiments.

The point made by CDR is that, for observerW , all four constraints (3.1.16)
are to be individually satisfied by its relative facts and W might use those to
predict its outcomes before a specific set of measurements, but one can not
argue that all four constraints are to be simultaneously satisfied, given that
W can only perform one set of measurements and can not simultaneously
possess all six corresponding relative facts that we would substitute inside the
constraints (3.1.16). As we said, W can at most verify that the constraints
hold individually and use them to predict its triplet of outcomes.

Now, are we really sure that Lawrence et al. compared the relative facts of
different observers? In other words, is it really necessary to introduce a third
observer W to discuss about the constraints (3.1.16) in the context of RQM?
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LMZ responded to[5] in a recent paper [14]. They are not sure that CDR
actually have proved them wrong.

The authors point out that the situation presented in [5] is very different
from the one they consider. CDR consider six different observers Ai, Bj (with
i, j = 1, 2, 3) and an external observer W . The latter can have access to the
measurement results (relative facts) of the other observers by interacting with
them. In particular, they consider four scenarios - experiments performed
by W - in which several sets of interactions between different systems are
considered. We can associate with each set of measurements a constraint for
the relative facts obtained W .

The point - as we have seen above - is that each constraint is satisfied if
we consider one specific experiment of W , but not all of them can be satisfied
at the same time since they refer to different scenarios, thus the relative facts
that appear in different constraints are not comparable to each other.

However, LMZ consider a different situation. For them the experiment (i.e.
the sequence of measurements) is only one and is conducted by two different
observers, namely A and B. Thus their criticism - that it makes no sense
to claim that the four constraints are to be satisfied simultaneously - is not
applicable to their case since CDR arrive at this criticism starting from a very
different situation. In other words, the two articles seem to start from two
different points that lead to the same constraints. One demonstrates that the
relative facts do not satisfy the constraints, the other does not.

To sum up, LMZ are not convinced that it is necessary to split the two
observers A and B into three sub-systems or even introduce a new observer W
to discuss the constraints. To them, it looks like a forced effort by CDR to solve
a problem that does not actually emerge. The central point of the discussion is
to understand whether LMZ make an actual comparison between relative facts
of different observers or not. In the first case we must give credence to [5] and
thus it is not possible to demand that all four constraints are to be satisfied. In
such scenario, RQM is free from criticisms regarding inconsistencies in the case
of a GHZ state for three spins. On the other hand, if LMZ have not carried out
a comparison, then inconsistencies with quantum predictions actually emerge.

The situation we described in section 3.1 can be reformulated in these
terms. Systems A and B make a measurement on S. This act can be meant as
the attribution of one or more properties to S - i.e. the value of one or more
of the observables n = 1, 2, 3 - with respect to observer A or B. If we call any
of the attributions Z, we can say that Z is absolute. However, if I somehow
want to talk about Z, I cannot do so except by considering another systemW .
This is simply a reformulation of what has already been said. According to
CDR, LMZ are wrong since they talk about Z independently of any external
system W . On the other hand, for LMZ this is not necessary.

Finally, LMZ do not agree with an operation introduced in [5] regarding
the measurement of one of the qubits of B. In their article, CDR explain
that the measurement performed by B1 on the entangled system SA1, for
example, can be meant as an operation that includes a “re-establishment” of
the measurement previously made by A1 and a measurement of B1 “directly”
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on S1 (and not on the entangled system). It is as if the initial states of A1 and
S1 were re-established, and then the measurement by B1 on S1 was considered.
However, this does not convince LMZ; according to them, it conflicts with the
postulates of RQM and it opens up a question about what it means to realize
a relative fact by an observer. For example, if A is human, he or she will
witness the measurement process on one of S’s qubits and see the process as
non-unitary. But, what remains of this non-unitary interaction, as we inverse
such process? Is it destroyed? And, if A is a simple qubit, what does it mean
for a qubit to realize a relative fact? LMZ believe that such “re-establishment”
of the measurement process is meaningless in QM and that it can not be tested
by any experiment.

These questions are related to other issues in [5], which the authors of [14],
or rather two of them, address in a recent article that we will discuss in the
next section.

3.4 Are relative facts hidden variable?

In this last section we will see a postulate introduced in [1] by Adlam and
Rovelli with the aim of solving some problems of RQM. The postulate leads
to some interesting consequences which we will mention, but what interests us
most is the connection with relative facts. For this reason, we will also analyze
the response from Markiewicz and Żukowski in [17], which attempt to show
other inconsistencies of the theory, even with the new postulate. Markiewicz
and Żukowski propose a new scenario with two entangled photons where to
apply the postulate and finally consider again the context of a three-qubit
system in a GHZ state.

So, in section 2.1 we mentioned that a consistency condition regarding out-
comes of different observers must hold. If an observer A makes a measurement
on a system S, it will obtain a relative fact. Let us consider also a second ob-
server B who performs a measurement on S and interacts with A to find out
what value A obtained in its previous measurement. The consistency condition
tells us that the two measurements of B will be coherent. We can consider
this a fundamental postulate of RQM.

Anyway, RQM, in this formulation, does not guarantee that the measure-
ment of A on S and the interaction of B with A are coherent [1]. Indeed, asking
whether these two results are consistent does not even make sense within the
theory because a comparison presupposes an interaction and thus an observer
with respect to which this comparison can actually be made - this is typically
referred to as “postulate of relativity of comparisons”. However, even when
considering a third observer W the problem persists. Indeed, the third ob-
server would be able to do nothing but take measurements on the systems -
that is interact with them - and obtain relative facts. Nevertheless, what W
has obtained is information valid only for W ; even if these are consistent with
each other, we can not argue that the measurement made by A on S is consis-
tent with the measurement that B made on A. In fact, the third observer is
comparing its relative facts and not the relative facts of A and B. To be sure
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one would have to compare their relative facts, but with this formulation of
the theory this is not possible. Therefore, it seems that each observer can only
rely on its own results and can not state anything about the results obtained
by other observers. All this might make us think that it is not even possible
to make comparisons between measurements and data from different observers
to empirically confirm hypotheses.

The authors of [1] present the so-called “cross-perspective links (CPL)”
postulate to overcome this problem. The CPL postulate is meant to substitute
the postulate about relativity of comparisons and it tells us that relative facts
obtained by two different observers - under appropriate conditions - will be
consistent. Now, thanks to this postulate, the measurement of B on A will
be consistent, not only with the measurement of B on S - which was already
guaranteed -, but also with the measurement of A on S. Hence, previously,
B used to have information only on its representation of A’s knowledge, but
now B has information also on A’s knowledge - namely, B is certain that, for
A, S has a certain value relative to the observable considered. In the CPL
postulate, information on the knowledge of A are physical variables (or rather
are contained in variables) accessible to other observers. In a nutshell, by
transitive property, the measurement of B on S and the measurement of A on
S will be consistent.

The authors explain that the act of measurement of B on A is conceivable
as looking back in time to the moment of A’s last interaction - in this case with
S - in which the variable took on a defined value for A. Therefore, interacting
with a system means this and not looking at the state of A at the moment of
the interaction with A. Furthermore, the authors point out that, in order to
understand which information is accessible to other observers, it is necessary
to understand when information, in general, is no longer accessible. This, they
argue, happens when another variable that does not commute with the variable
we are interested in takes on a defined value. According to Adlam and Rovelli,
this hardly happens if the observer is human, it is more likely if the observer
is, for example, another qubit.

Moreover, the authors point out that by adding the CPL postulate, it is
no longer necessary to say that the facts obtained by a certain observer are
relative to that observer, since any other observer could theoretically know
the information. In any case, until an interaction between observers occurs,
it is fair to say that the value obtained is relative to the observer who made
the measurement. This reflects a change in RQM from an ontological point of
view.

The state of one system with respect to another consists in the descrip-
tion of the common history of the two systems, thus it concerns the set of
interactions between the two systems (and the “indirect” interactions, i.e. in-
teractions of one of the two systems with an external system that is somehow
connected to the second system by some continuous chain of interactions) and
allows us to predict the results of a possible future interaction between the
two. Therefore, the state always concerns the common history, so it can hap-
pen that there will be irrelevant information that concerns one system but
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not the other. The authors also underline the fact that when a new interac-
tion occurs the relative state must update since, when this happens, one or
more past interactions become irrelevant, in the sense that they are not useful
for predicting new interactions. Indeed, the purpose of a relative state is to
describe information regarding the common history of the two systems that
is relevant for their future interactions. This is what Rovelli says in his first
article [21], when he states that if new information is acquired, part of the old
information that was relevant is now no longer relevant (Postulate 2).

Moreover, the authors of [1] claim that, in general, the state of one system
with respect to another is an objective physical fact and not simply a set of
knowledge possessed by one system about another - in this sense “informa-
tion is physical”. In any case, when the observer has a consciousness we can
state without fear that the state of a system he/she wants to describe essen-
tially corresponds to the information that the observer has about the system
- therefore it corresponds to his knowledge. This is also because the theory,
for practical purposes during experiments, must assume that this can be said.
Furthermore, an interesting thing that the authors highlight is that, if the
information on a certain system is physical, it means that our knowledge of
that system is a physical object and all this brings new life to the dichotomy
that often exists between epistemic and ontic, since, in this picture, knowledge
becomes ontological.

Finally, it is pointed out that, in general, an interaction between two sys-
tems does not have the form of a measurement process, since it will not gen-
erally result in the definition of a single variable with respect to the observing
system. This means that we could have that during the interaction more than
one variable, with respect to the observer, takes on a defined value. This is
because the interaction Hamiltonian can be written using a different basis than
that of the observable that interests us so as to describe the measurement of
another quantity. The authors propose two solutions for this issue. The first
looks like an ad hoc solution. An idea could be to note that all measurements
can be traced back to position measurements, so we could use the position ba-
sis as a privileged basis with respect to which a defined value will be assumed.
An alternative could be to consider that, in general, there are more variables
that take on a defined value with respect to the observer. In the case of two
qubits the theory does not say what happens, so it is sufficient to concentrate
on the case of a macroscopic observer and show that in this case there is only
one variable that takes on a defined value in the interaction. According to the
authors, the solution could be decoherence since it seems to be the process
that allows us to “select” a privileged basis with respect to which a certain
observable of the observed system takes on a defined value, while all the others
are no longer accessible.

In conclusion, the main novelty brought by Adlam and Rovelli is the intro-
duction of the CPL postulate which guarantees consistency between relative
facts of different observers. This postulate leads us to reconsider what is meant
by measurement - in particular what is meant by exchange of information be-
tween observers. Indeed, the information possessed by an observer becomes
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accessible to other observers. Because of this, the postulate revolutionizes our
way of understanding events in RQM, given that, although physical states are
still relative - they describe the relation between the observer and the system,
rather than an absolute feature of the system -, quantum events are to be
meant as objective. As a matter of fact, if a system interacts with two dif-
ferent observers, the relative facts obtained by the two observers must match.
We can never have the situation in which the values are defined but different
for the two observers. At most, it can happen that the value is defined for one
of the two observers and still related to the system preparation for the other
observer.

Now we continue our discussion regarding the coherence of relative facts
of different observers by analyzing a recent article, [17], by Markiewicz and
Żukowski, in which some scenarios are discussed that allow to study RQM in
detail with the addition of the CPL postulate.

The authors of [17] consider the case of a system composed of two entangled
photons S1 and S2 which constitute a single system S:

|ENT ⟩S =
∑︂
l=0,1

cl |l⟩S1
|l⟩S2

, (3.4.1)

and the two photons can be meant as two qubits. Note that the observable
considered is either 0 or +1 for both photons.

We also consider two observers in two different laboratories who measure
the same observable on one of the two photons. Observer A performs the
measurement on S1 and observer B on S2. Let us begin by considering A who
interacts with S1 and therefore obtains - in an RQM measurement - a relative
fact with respect to itself.

B does not know what the state of the composite system S = S1 ⊗ S2

is, but it knows that the system S ⊗ A is entangled, since it knows that A
and S interacted. The point is that - if we follow RQM - B can only state
that the probability of obtaining a certain value of the observable for S2 will
be given by the square of the modulus of the corresponding coefficient in the
decomposition of the state S ⊗ A:

|ENT ⟩SA =
∑︂
l=0,1

cl |l⟩S1
|l⟩S2
|l⟩A . (3.4.2)

As a matter of fact, the state (3.4.2) that B attributes to S ⊗ A contains
all the information at its disposal to make predictions on future results. The
most important aspect is that, if we imagined changing A’s result on S1, we
would have no change in B’s attributions about the results of his measurement.
Indeed, the probabilities would not change since A’s result is not contained in
the state (3.4.2), which is the one and only “source” of information for B to
make predictions. The authors claim that the relative facts of A and B are
not “EPR correlated”, although perhaps it would be more correct to say that
there is no causal nexus.

In a standard QM situation, B will always be able to say that - if B knows
that A has made the measurement - its result on S2 will have to match A’s
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result on S1. And, if A tells B its result, B’s attribution of probability on its
results will change - it becomes a deterministic attribution. We might wonder
what happens in an RQM context in case B interacts with A to “know” its
result on S1. Without the CPL postulate, this operation is an end in itself since
B, by interacting with A, obtains a certain relative fact which we cannot argue
will be consistent with the relative fact obtained by A after its measurement
on S1. As we said before, a third observer W would be needed, but even this
does not solve the problem since the relative facts of W are valid only for W .

However, if we consider A and B entangled as a single system which per-
forms measurements on the system S, then we have correlated results also in
RQM - and the order of the measurements does not matter in this case. The
reason for this is that, in the case where A and B are entangled, the measure-
ment of A on S1 and the measurement of B on S2 are to be considered as a
single measurement on the system S by the system A⊗ B. Indeed, system S
will be described by system A⊗B by a state of two entangled qubits. There-
fore, the measurements of A and B - that is the measurement of the A ⊗ B
system - will always be correlated. Hence, the predictions of RQM change
depending on whether we consider the two observers separately or as a single
system. On the other hand, in a standard QM context, the results are always
correlated.2

If, however, we assume the CPL postulate is valid, the relative fact of A
is to be considered a hidden variable for B. The reason lies in the fact that,
if B interacts with A to know the result of its measurement on S1, B will be
able to say, in light of the CPL postulate, that A’s measurement on S1 will
be consistent - thus correlated - with its measurement on S2. As a matter of
fact, the CPL postulate guarantees coherence between relative facts of different
observers obtained by making measurements on the same system. S1 and S2

are entangled systems which are part of a single system S and therefore what
was said previously about the coherence of the results also applies to them.
As a consequence, A’s relative facts causally influences the results of B since
it is precisely the result of A which implies that the result of B must be 0 or
+1, depending on the scenario.

However, RQM does not predict that A’s relative fact is available to B in
the state (3.4.2) of S ⊗ A to make predictions, so it is not included in the
formalism. This means that - according to the authors of [17] - relative facts
have no predictive power; instead, if we assume the CPL postulate to be true,
then they become hidden variables - therefore RQM becomes a theory with
hidden variables, and this is against one of the axioms of the theory.

As we said, the authors also revisit the situation studied in the first article
[16] in which a system composed of three qubits in a GHZ state and two ob-
servers are considered. They show that, even considering the CPL postulate,
we arrive at contradictions equivalent to the case of RQM without CPL. Fur-
thermore, they show that CPL is in disagreement with another postulate of
RQM. In particular, the one which states that, from the point of view of an ex-
ternal observer, a measurement/interaction between two systems is described

2Regarding this, Rovelli’s article [23] is interesting.
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as a unitary process that entangles the two systems.
Let us look at this last thing first. After A has performed its measurement

on system S, for B the system S ⊗ A is entangled. In order to know some-
thing about the two systems, B must make a measurement. In B’s view the
entangled state of S ⊗ A is of the form:∑︂

j

cj |Sj⟩S |Aj⟩A . (3.4.3)

Suppose B makes a measurement on A. At this point, B is entangled with the
system S⊗A and it is possible to describe the global system with a state that
includes the kets of all three entangled subsystems:∑︂

j

cj |Sj⟩S |Aj⟩A |Bj⟩B . (3.4.4)

By applying Born’s rule to (3.4.4), there is a non-zero probability that B gets
a “wrong” result - namely, inconsistent with the result of A. This is what the
axiom we mentioned predicts: according to it, the systems S, A and B are
entangled after the measurement of B and thus there are coefficients that lead
to a non-zero probability of obtaining a wrong outcome.

However, if we assume CPL to be true, then we find a contradiction. In
fact, CPL guarantees that the relative facts of A and B match, therefore the
probability that B obtains a “wrong” result is zero. All this shows that the
cross-perspective axiom can only be considered as something that introduces
hidden variables into the theory. Indeed, A’s relative fact causally forces B’s
relative fact to be consistent with A’s one. And this is not included in the
RQM formalism if we consider the state (3.4.3) as the proper description of
the situation in B’s view. These hidden variables - unlike what happens for
other hidden variable theories - are produced during the measurement process
and not before. So the question may arise as to when exactly they are produced
during the measurement process.

Finally, the authors show that the same contradictions as in [16] emerge
even by including the CPL postulate in the case of a three-qubit system in
a GHZ state. Here, again, we have two observers A and B. A makes three
measurements and obtains three relative facts. Then it is B’s turn. B obtains
three relative facts by performing measurements on S. Then, B decides to
make measurements on A and obtains three relative facts here as well. How-
ever, given that CPL holds, B is able to state that the results it obtained from
the measurements on A match the results obtained by A in A’s measurements
on S.

Furthermore, the same relation (3.1.11) which reflects a constraint on B’s
results holds. And, if B decides to apply the CPL postulate, then B can infer
that A’s relative facts must be such that:

B1A2A3 = −1, (3.4.5)

which is simply (3.1.13) applied to the case of relative facts B1, A2 and A3.
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Section 3.4

Analogously, B could state that, if, again, we substitute the variables with
the relative facts of A and B, (3.1.14) and (3.1.15) will hold. It is easy to
show that all this leads to something absurd because it would mean that the
product between the three relative facts of A should be:

A1A2A3 = ±i, (3.4.6)

when we know that the relative facts of A must be real numbers.
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Conclusion

We have reached the end. We started from the application of the relational
approach to the case of three qubits in a GHZ state and returned there. What
we have said obviously goes well beyond the single case we have considered,
given that, as we have seen, the application considered has allowed us to extend
our knowledge of the relational approach in its various facets.

We have presented Rovelli’s approach which aims to maintain the descrip-
tive and predictive power of quantum mechanics while giving it a new mean-
ing. We then considered the application of this approach by discussing the
attempted confutation by Lawrence, Markiewicz and Żukowski (LMZ). We
know that in the case of three qubits in a GHZ state, constraints on the re-
sults emerge. These constraints lead to some possible consequences within
standard quantum mechanics. In the case of the relational approach, LMZ
believe that contradictions emerge which make this approach invalid.

We have seen a first response from Drezet who adopts an approach based
on the concept of physical state and not of event. An argument of this kind
does not reveal any contradiction with quantum mechanics, but is somewhat
unconvincing given that the attempt to base the theory on the concept of state
and consider it an element of reality is controversial.

A more convincing answer is that of Cavalcanti, Di Biagio and Rovelli. The
three authors argue that LMZ compare facts relative to different observers,
thus it is necessary to introduce a third observer W in order to discuss the
constraints provided by the theory. Cavalcanti et al. discuss what was said in
[16] inW ’s view and underline that it makes no sense to expect the constraints
to be satisfied at the same time since those refer to different contexts - namely,
different sets ofW ’s measurements. In this case the question probably remains
more open, since it would be necessary to understand whether what is done in
[16] is actually a comparison between results relative to different observers or
simply a replacement of eigenvalues with relative facts of A and B.

As regards the last section, we saw a brief in-depth analysis in which we dis-
cussed the main consequences of the CPL postulate. We analyzed Markiewicz
and Żukowski’s response according to whom the postulate merely reiterates
their point of view on relative facts. In fact, the essence of our discussion does
not change: Markiewicz and Żukowski argue that contradictions still arise in
the case of a GHZ state, even with the CPL postulate. Here too, however,
it would be necessary to understand whether a third observer is necessary to
draw their conclusions with a right justification.
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