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Abstract

This thesis presents the development of a mission analysis toolkit for simulating controlled re-entry

of spacecraft. The work was conducted during an internship at Deimos Space and aims to improve

and expand an existing software solution. The developed tool, implemented in Python, provides a

comprehensive framework for simulating sequences of perigee-lowering maneuvers and incorporates

new functionalities, including orbit propagation and timeline generation. The software has been tested

extensively to ensure accuracy and reliability.

A key focus of the thesis is the computation of the ∆ V needed and the optimization of maneuver

strategies, adhering to ESA guidelines for controlled re-entry. The tool allows for detailed scenario

analysis, addressing complex mission constraints, such as casualty risk mitigation and precise landing

area targeting. In addition to serving as a report on the work performed, this thesis also acts as a

user manual, offering comprehensive guidelines for the proper use of the developed software within

Deimos Space. The developed toolkit remains available for future mission analyses at Deimos Space.

By enhancing operational capabilities and improving the simulation of controlled re-entry scenarios,

this thesis contributes to sustainable space operations and the reduction of space debris in low Earth

orbit.
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1 | Introduction

Our planet is surrounded by Spacecraft (S/C) carrying out important work to study our changing cli-

mate, deliver global communication and navigation services and help us answer scientific questions.

In recent years the number of Resident Space Object (RSO) has grown exponentially. While this is a

positive symptom of scientific and technological improvement, it also endangers our future capabil-

ity to access the space environment. Earth’s orbital environment is a finite resource and it is rapidly

becoming overcrowded. We are moving to the non-return point predicted by Kessler, the in-famous

Kessler syndrome after which a-cascade collisions will be inevitable, turning Earth’s space environ-

ment into a graveyard of deadly, fast moving pieces of defunct S/Cs and rockets. It is thus fundamental

to manage the formation of new debris, by adopting strategies to better handle the disposal of existing

S/Cs and by developing rules and guidelines to keep a cleaner environment.

Figure 1.1: Space debris around Earth [1].
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1.1. Space debris situation

Computer simulations have shown that the orbital debris population already present on orbit is self-

propagating, that is, the orbital debris density will continue to increase through random collisions

alone, unless reduced by outside efforts [7]. This may well result in a cascade effect that eventually

renders some orbits impractical for space operations. The rapid growth of space activities over recent

decades, shown in Figure 1.2, has led to an increasing awareness of the challenges posed by orbital

debris. Defunct S/Cs, rocket stages, and fragments from collisions threaten operational S/Cs and

future space missions. The awareness of the risk of the accumulation of man-made objects became

significant in the late 1970s, and since then, a number of space debris mitigation guidelines have been

published by various organizations. As a result, the space community has emphasized the importance

of sustainable practices, including End-Of-Life (EOL) management for S/Cs. This process is critical

not only for compliance with international space debris mitigation guidelines such as[3, 8], but also

for the long-term sustainability of space activities. Since it is not yet economically practical to remove

a significant amount of existing debris from their orbit, it is critical for current and future missions

to practice a responsible EOL, thus potentially mitigating the rate of increase of mission-lethal debris

objects in commonly used orbits.

Figure 1.2: Evolution of number of RSO [2].

In particular, [8] defines two protected regions, where the guidelines must be strictly followed. The

regions are shown in Figure 1.3 and are defined as follows:

• LEO protected region: spherical region that extends from the Earth’s surface up to an altitude

of 2,000 km.
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• Geostationary Earth Orbit (GEO) protected region: a segment of the spherical shell defined by:

– lower altitude: geostationary altitude minus 200 km

– upper altitude: geostationary altitude plus 200 km

– latitude: between -15 and +15 degrees

Figure 1.3: LEO and GEO protected regions. [3]

1.2. EOL disposal

A significant amount of effort is dedicated to planning and executing successful mission operations.

However, it is equally important to consider the end-of-mission phase during the planning, design and

operational stages of any space mission. EOL refers to the processes and strategies implemented to

ensure the safe and controlled disposal of a S/C once its operational life has concluded. According

to international guidelines [3] a S/C must limit its post-mission presence in the LEO protected region

to a maximum of 25 years after the end of its mission and to a maximum of 100 year in the GEO. In

this work we will focus mostly on the guidelines for the LEO protected region. Figure 1.4 shows the

importance of implementing the 25-year deorbiting strategy. Even tough its application is crucial, is

not yet sufficient in mitigating the accumulation of space debris. Due to this reason, new guidelines

such as [8], lowered the deorbiting time in LEO protected region to a maximum 5 years, following the

so called “ZeroDebris” European SpaceAgency (ESA) policy. In addition to that, other improvements

where made, particular to the system passivization and to the collision avoidance maneuvers.
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Figure 1.4: Debris evolution using the 25 years rule [4].

When dealing with the re-entry of a S/C, a fundamental figure of merit to consider is the casualty

risk. The casualty risk is defined as the statistical probability that one or more fragments surviving the

atmospheric re-entry of a space object, such as a S/C or rocket stage, may cause injuries, fatalities, or

property damage to people or infrastructure on the Earth’s surface. The casualty risk is a key parameter

for assessing the safety of S/C re-entries and is regulated by international standards [9], which typically

set an acceptable risk threshold around 10−4 (1 in 10,000 chance). So, the re-entry must be fast and

safe. The general aim of the guidelines [3, 8, 9] is to reduce the growth of space debris by ensuring that

space systems are designed, operated and disposed of in a manner that prevents them from generating

debris throughout their orbital lifetime and assures sustainable space utilization. A part of the re-entry

analysis must be accounted in the∆V budget, as explained in section 1.3. There are several strategies

for managing the EOL of a S/C, depending on its orbit, mass, and mission parameters. The main

strategies for the disposal of a S/C, as explained by [8] are:

1. Controlled re-entry: a faster and safer re-entry. It allows for the re-entry in less than a month

while controlling the impact point on Earth’s surface.

2. Uncontrolled re-entry: a slower re-entry, since it follows the 5 years rule stated in [8], and

doesn’t allow the control of the impact point on Earth’s surface.

These strategies are different by nature, and they will be explained later. For both of them however, the

complete re-entry analysis consider a lot of aspects, such as passivization of the systems, management

of payloads and others, as explained in [9, 8]. Another fundamental part is the atmospheric simulation,

where the fragmentation of the S/C happens. This work will focus on the part related to the ∆V

analysis, although some hints to the atmospheric part will be given in section 4.3.
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1.2.1. Uncontrolled re-entry

Uncontrolled re-entry refers to the descent of S/C back to Earth without any active control over its tra-

jectory. Debris release limitation requirements intend to reduce the risk of a debris collision occurring

by controlling the presence of S/C components in the LEO protected region over a period that exceeds

5 years. If necessary, the disposal strategy of a LEO S/C will then foresee a manoeuvre to lower the

orbit perigee to an altitude that guarantees safe uncontrolled decay within 5 years. Usually, the EOL

strategy consists in a perigee-lowering manoeuvre, aiming to minimize the required propellant. If

needed, the EOL disposal manoeuvre consists in an impulsive tangential manoeuvre (Hohmann trans-

fer), lowering the perigee, or both the perigee and apogee, to the selected altitude. For missions that

are planning for an uncontrolled re-entry, but do not comply to the casualty risk requirements by a

narrow margin, a set of measures can be applied.

The measures mentioned above can be included in two categories:

• Refinement of S/C modelling: usually following ESA guidelines [10].

• Design-for-demise (D4D): represent different engineering solutions to aid demise (changing the

component’s material, triggering a partial break-up of the S/C structure during re-entry, ...)

Figure 1.5: ∆V needed for uncontrolled re-entry in LEO [4].

Figure 1.5 illustrates the typical∆V required to transition from a circular LEO orbit to an orbit that will
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re-enter the atmosphere within 5 years. It is important to note that solar flux, which varies significantly

over the solar cycle, is a critical factor in predicting re-entry timelines, and it adds complexity to these

calculations.

1.2.2. Controlled re-entry

For missions incompatible with an uncontrolled re-entry scenario due to non-compliance with the

casualty risk requirements, a controlled re-entry should be performed. For a controlled entry the

compliance with the ESA guidelines [9, 8] is ensured by the selection of the timing and entry gate state

for the de-orbit manoeuvre to conduct debris fall-out towards non-populated areas (open ocean, e.g.

South Pacific Oceanic Unhabited Area (SPOUA)). In practice, controlled re-entry is best performed

using at least three separate maneuvers. This is done for mainly two reasons. Firstly, to ensure a limit

on the gravity losses per maneuvre and secondly, to better control and refine the orbit, with a final

perigee of less than 50 km, to prevent atmospheric skip [6]. To accomplish this, the S/C design must

incorporate sufficiently large thrusters to ensure adequate control authority at low altitude. Controlled

re-entry also requires the vehicle to save sufficient fuel to reliably perform the reentry maneuvers at

the end of the mission, which will result in a larger fuel mass at launch. The evaluation of this is the

key point around which this work focuses.

Figure 1.6: Controlled Re Entry strategy [5].

The idea of the controlled re-entry is to perform a sequence of perigee lowering maneuvres following

a given scheme, such as the one shown in Figure 1.6. During this phase the maneuvres, as well as the
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time between them, can be tuned in order to obtain the desired behavior.

1.3. ∆V budget

The ∆V budget is an estimate of the total change in velocity required for a space mission. Since the

change in velocity is strictly related to the propellant consumption, the result of this analysis is not

only the distribution of ∆V among the different stages of a mission, but also the plot of propellant

consumption, as well as the initial wet mass of the S/C. ESA guidelines [11] describe the steps that

must be followed for the computation of the ∆V budget. This is a fundamental concept in space

mission design, representing the total change in velocity required to perform all planned maneuvers

throughout a S/C’s lifetime. This includes a wide range of operations, such as orbit insertion, station-

keeping, collision avoidance, deorbiting, and, in some cases, interplanetary trajectory corrections. The

∆V budget is directly tied to the amount of propellant a S/C needs, making it a critical parameter for

both mission planning and S/C design. Each maneuver in a mission contributes to the total∆Vbudget.

For example:

• Orbit Acquisition: The maneuver to transition from the launcher parking orbit to the intended

operational orbit.

• Station-Keeping: Small adjustments to maintain a S/C’s position and inclination

• Collision Avoidance: Unplanned maneuvers to mitigate risks of conjunction with other objects

in space.

• EOL Operations: ∆V required for deorbiting.

Proper management of the ∆V budget ensures that the S/C can fulfill its mission objectives while

maintaining flexibility for contingencies. Factors influencing the ∆V budget include the S/C’s mass,

propulsion system efficiency, orbital parameters, and mission duration. Additionally, advancements

in propulsion technology, such as electric propulsion, have enabled more efficient use of∆V, allowing

S/Cs to achieve longer operational lifetimes and greater mission capabilities.
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Figure 1.7: Approach for ∆V and fuel budget computation in LEO.

Referring to Figure 1.7, it can be seen that the way in which this analysis is performed is backward,

according to [11]. This means that even though the EOL disposal will happen last in the mission

timeline, it is actually the first analysis to be performed, since its output wet mass will be the input

dry mass for the next analysis. In addition to that, some margins are applied in order to account for

uncertainties. In particular, referring to the controlled re-entry, ESA guidelines [11] impose to consider

a 15%margin on the last maneuvre. For the other phases margins, one should always refer to [11]. As

briefly said in section 1.2, the common idea between the two re-entry strategy is the use of maneuvres

to lower the initial orbit, even tough for the uncontrolled re-entry this is not always necessary, but it

depends on the initial orbit itself. The computation of the propellant needed for those maneuvre is the

part that interest the ∆V budget.

1.4. Scope of the thesis

This work focuses on the development of a toolbox capable of simulating the sequence of maneuvers

needed to perform the controlled re-entry providing both an update and an expansion to a previous

software. Specifically:

• The existing MATLAB code base has been re-implemented into Python scripting language for

the integration with the exiting tool explained in Figure B.
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• The code has been expanded to handle more complex scenarios.

.

In particular, the original MATLAB code only allowed for the simulation of the sequence of maneu-

vres, without accounting for the time elapsed between them and the effect of the perturbation. In fact,

it could only be used for early mission analysis phases, in particular from phase 0 to phase B. Further-

more, the code was poorly commented and detached from the main tool environment. The scope of

the work of my internship was to transport this software in the correct framework while enhancing its

functionalities and output capabilities to handle more complex scenarios. In addition to that, the idea

is to make the tool more operational, guaranteeing the possibility to obtain a timeline of the whole

re-entry process and making it a viable software for the latest mission analysis phases.

The objective is to have a flexible tool that could:

• Simulate both easy and complex controlled re entry scenarios

• Output the quantities of interest

• Provide a timeline of the mission

• Allow for fast post-processing

• Abilitate the communication between different departements to fullfill the complete re-entry

analysis.

The software was then used on real ESA mission of the Copernicus programme, during phase C, and

will remain available to Deimos (DMS) for the analysis of more mission, from phase 0 to phase C.

This thesis will report both the problem and the solution used to tackle it.
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2 | Problem formulation

The aim of the software is to simulate the controlled re-entry of a S/C and compute the required ∆V.

The simulation requires a sequence of perigee-lowering maneuvers, which are separated by a given

time. Before delving into the modeling approach employed, it is essential to establish the underlying

assumptions and to define the required inputs and outputs.

The necessary inputs are shows in Table 2.1 and they will always be considered as known.

Inputs Description

Dry Mass Final satellite mass

Initial Orbit Set of parameters that defines the orbit (keplerian element,

repeat cycle, ... see Appendix A)

Propulsive System Thrust level and specific impulse associated with each

maneuver

Propagation Time Time elapsed between two consecutive maneuvers

Target Perigees Sequence of perigees to be followed

Table 2.1: Simulation inputs.

It is then assumed that the thrust, F , specific impulse, Isp and the mass flow rate, ṁ, that is computed

as ṁ = F
Isp·g0 , are all constant within the same maneuvre, even tough they can change among different

ones. In addition, some problem simplifications will be described when needed.

The required outputs are various, but the main ones are showed in Table 2.2.
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Output Description

Wet Mass Initial satellite mass

Parameter Evolution Evolution of keplerian parameters during the maneuvers and

propagation

Maneuver Execution Maneuver-associated quantities (∆V , propulsive arc duration, gravity

losses, ...)

Mission Timeline Epoch and state before and after an event on the mission

Table 2.2: Simulation Outputs.

Next, we will talk about each step of the modelization process.

2.1. Maneuvre modellization

First of all, it’s important to highlight that the S/C state will be always rapresented using mean keple-

rian elements expressed in the True Of Date (ToD) frame, defined as illustrated in Appendix A.

According to the guidelines set by ESA [11], the implemented maneuver must be modeled as a contin-

uous process. Specifically, the simulated maneuver is an in-plane, perigee-lowering maneuver. This

means the maneuver is performed around the apocenter, with the ∆V vector aligned with the orbital

velocity, but in the opposite direction to reduce the semi-major axis. The rationale behind this mod-

eling approach is to approximate a finite maneuver as a sequence of impulsive and ideal maneuvers.

To achieve this, the first step is to define the number of ideal maneuvers per second, denoted with f ,

to be used for the approximation.

Let us assume, for the moment, that the duration of the maneuver T , is known. Also, let’s assume

that the maneuvre is symmetric with respect to the absidis line, that is the line connecting apocenter

and pericenter. Since the maneuvre must be performed around the apocenter, we can easily find the

initial mean anomaly at which the maneuvre should start. Let’s call T0 the orbital period and define

the mean orbital angular velocity as n =
√

µ
a3
, then we can use Equation 2.1 to compute the initial

mean anomalyM0.
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M0 = nref ·
T0 − T

2
(2.1)

Next, we can define the total number of infinitesimal maneuvres performed during the propulsive arc

as round(T · f), and then discretize it into infinitesimal arcs of duration dT , that can be calculated

using Equation 2.2. It has been found out that a good value for f , that achieves the right value between

computational velocity and accuracy is f = 2, thus each infinitesimal arc duration will last dT=0.5

seconds.

dT =
T

round(T · f)
(2.2)

At the beginning of each arc, the state vector of the S/C is given by x⃗ = [a, e⃗, ω,M ], where a is the

semi-major axis, e⃗ the eccentricity vector, ω is the pericenter argument, andM is the mean anomaly.

Since this is an in-plane maneuver, the inclination, i, and the right ascension of the ascending node,

Ω are not considered, as they remain unaffected.

At the start of each infinitesimal arc, the S/C’s position in the orbit is defined by M , whereas a and

e define the shape of the orbit, and ω defines the orbit rotation. At this point, an impulsive infinites-

imal dV , computed using Equation 2.4, is applied, with mp expressing the propellant mass used per

infinitesimal arc.

mp = ṁ · dT (2.3)

dV = Isp · g0 · ln
M

M −mp

(2.4)

After the application of the dV , that is assumed impulsive, the position vector, r⃗, remains the same,

whereas the velocity modulus is updated according to Vnew = Vold−dV , causing a change in the state

x⃗. In fact, we can write r⃗ and V⃗new in the orbital frame; next using Equation 2.5 and Equation 2.6 we

can obtain the updated semi-major axis and eccentricity vector.
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anew =
−µ

V 2
new −

(
2·µ
r

) (2.5)

e⃗new =
V⃗new ∧

(
r⃗ ∧ V⃗new

)
µ

− r⃗

∥r⃗∥
(2.6)

The eccentricity vector holds two different information. Its norm defines the new eccentricity of the

infinitesimal arc, whereas its direction gives information about the rotation of the new infitesimal arc.

Referring to Figure 2.1, where the red quantities are the post dV quantities, it can be seen how the

change in eccentricity direction directly affects both ω and the true anomaly Θ. The changes can be

computed according to equations Equation 2.7 and Equation 2.8. Obviously, the change in Θ can

easily be reported as change inM using the standard angle conversion formulas.

Θnew = arctan2(
r⃗ · e⃗new
r · enew

,
∥r⃗ ∧ e⃗new∥
r · enew

) (2.7)

∆ω = Θ−Θnew (2.8)

Figure 2.1: Schematization of the effect of eccentricity direction change.

So, after the impulsive dV is applied, the infinitesimal arc is updated according to the changes in the

state x⃗ described above, thus the S/C finds itself in a new updated orbit. In order to account for the

gravity losses, the S/C now stays in this updated orbit for a time dT , changing the state, in particular

the anomaly and the radius, according to the standard keplerian model. Then, the end conditions of a

given arc will be the initial condition for the subsequent arc. At the beginning of it a new impulsive
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dV is applied, causing the state, and thus the arc, to vary. Then the satellite spans again that arc

according to the keplerian motion. This is repeated until the last infinitesimal arc. Figure 2.2 shows

the portion of the orbit where the maneuvre happens that is around the apocenter. Figure 2.3 shows a

portion of the propulsive arc discretization. Lastly, Figure 2.4 shows the discontinuity caused by the

impulsive infinitesimal dV that changes the orbit. At the end of the upper arc the dV is applied, then

the subsequent arc is updated and the spacecraft spans it for a time dT.

Figure 2.2: The maneuvre arc happens around the apocenter.

Figure 2.3: Portion of the maneuvre arc dis-

cretizion.

Figure 2.4: Discontinuity between two consecu-

tive arcs.

If we simulate 3 maneuvres with the perigees drop shown in Figure 2.6, the obtained results are shown

in Figure 2.5 and the gravity losses are reported in Figure 2.7. These results highlight how the gravity
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losses accumulate over time. Thus the bigger the maneuvre is the higher the∆V will deviate from the

∆Videal, due to gravity losses.

Figure 2.5: ∆V and ∆Videal.

Index Perigee drop [km]

Maneuvre 1 21

Maneuvre 2 98

Maneuvre 3 200

Figure 2.6: Perigees sequence.

Man ID Gravity losses %

1 0.08

2 1.03

3 9.69

Figure 2.7: Gravity losses.

Then, in order to take into consideration the perturbations during the whole propulsive arc, an heuristic

approach is used. This method relies on the fact that the orbit is propagated bewtween two subsequent

maneuvres and that the propagation is not stopped at the initial maneuvre point, but goes on at least

for another orbit. During the propagation the perturbations are taken into consideration, refining the

results. During the maneuvre, it is considered that the semi-major axis and the eccentricity are ef-

fected only by the ∆V, since the changes caused by it are much higher than the ones given by the
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perturbations. For i and Ω instead, only the effect of the perturbation is considered, since they are

out of plane quantities and thus not affected by the maneuvre. For ω instead, a superposition is used

and the final value is obtained by summing the value at the end of the propulsive arc given by the

propagation, that however do not consider the maneuvre, and the sum of all the∆ω during the propul-

sive arc. Further details will be provided in section 2.3. Obviously, following this approach, we are

making a lot of simplifying assumption. In fact a component in the value of ω is obtained trough the

propagation on an orbit that is not the real one, and this also hold for i and Ω. However, even with

all these assumptions, this method is able to simulate finite manoeuvres with good accuracy, without

the need to solve differential equations. The accuracy of the maneuvre simulations have been tested,

comparing its results to a DMS internal software. The latter simulates the maneuvre considering both

the ∆V and the perturbations inside differential equations, and then solving them at each integration

step, guaranteeing a better accuracy. Nonetheless, the comparison shows a percentage relative error

below 1 % in all orbital parameters, and other maneuvre associated quantities, ensuring the maneuvre

simulation to be good enough for mission analysis purposes.

2.2. Optimal maneuvre duration

The maneuvre simulation explained in section 2.1 relies on the fact that the maneuvre duration is

known. Unfortunately, that is not known a priori and only the starting and ending conditions in terms

of perigee altitude of the maneuvre are known.

Let’s recall that the maneuvre is a perigee lowering one, so the idea is that we fix the next perigee to

be reached and we perform a maneuvre to reach it.

This means that the reached perigee altitude is the parameter that we need to control in order to find

the optimal maneuvre duration. If the maneuvre is too long, then the perigee altitude would be too

small with respect to the one chosen, since we have slowed down too much; conversely, if the duration

is too short the perigee would end up being too high, meaning that we haven’t slowed down enough.

Thus, in order to find the optimal duration, an iterativemethod can be set up. A simple and reliable way

is to use a bisection method, using as check parameter the perigee altitude reached after the maneuvre.

In order to implement this logic we need first of all to set the boundaries, around which the bisection

will occur.

The idea is to use the time needed to perform the maneuvre considering the ∆VIdeal, and then build

some boundaries around it. To begin, we need to compute ∆VIdeal. This can be easily done using
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standard orbital mechanics formulas. Calling with the pedix in the initial quantities and with the pedix

target the final ones, we can compute ∆Videal using Equation 2.9, where Ra stands for apocenter

radius.

∆Videal =

√
µ · ( 2

Rain
− 1

ain
)−

√
µ · ( 2

Rain

− 1

atarget
) (2.9)

Inverting Equation 2.4 we can find the amount of propellant needed, following Equation 2.10, where

M0 is the initial mass.

Mp = M0 · [1− exp
(

−∆V

Isp · g0

)
] (2.10)

Then, knowing the mass flow rate relative to the considered maneuvre, the burnout time can be easily

computed as Tb =
Mp

ṁ
Then, the bounds are set as follows:

• lower bound = 0.8 · Tb.

• upper bound = 3 · Tb.

Note that, the bounds are not symmetric as it is expected that the real duration to be larger than the

ideal one. Once the bounds are set, the bisection can be run, thus the initial duration guess is set as the

middle point of this interval and then the maneuvre is simulated according to the procedure described

in section 2.1. After the maneuvre is simulated, the reached pericenter is calculated and the pericenter

error ϵp = rptarget − rpreached is computed. Based on the value of ϵp, one half of the initial interval

is discarded, the bounds are changed and a new duration guess is used. The procedure stops when

ϵp < 1 m. Figure 2.8 summarized the iterative process required for the computation of the maneuvre

optimal duration.
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Figure 2.8: Block diagram of optimal duration.

2.3. Orbit propagation

As previously cited, the possibility to consider the time elapsed between two consecutive maneuvres

propagating the orbit is a fundamental new feature added to the exiting tool capabilities. The propa-

gation is done trough a DMS internal tool. The tool consists of an high precision numerical integrator

that allows for the propagation of the orbit considering gravitational perturbations, as well as third

body, drag and solar radiation pressure. This tool is a Design Engineering Suite for Earth Observation

(desEO) executable (see Appendix B) and it needs a proper xml input file, where one must specify all

the needed informations accepted by the program. In particular, one must select the perturbations to

consider, which degree and order of the gravity field to consider, information about the satellite like

mass, Cd, initial orbit, epoch, etc... The issue comes with the final point of the propagation. In fact,

the propagation starts at the end point of the previous maneuvre, and it ends at the starting point of the

following maneuvre, that is not known a priori since the maneuvre duration is found trough the proce-

dure described in section 2.2. Thus, in order to be conservative and to implement the procedure stated
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in section 2.1, the initial state considered for the maneuvre simulation is the last apocenter reached.

This means that the last apocenter state is used as initial condition for the maneuvre simulation, even

though it is not the real initial point of the maneuvre. However, the propagated state after the apoc-

enter is still saved because it will be used to take into consideration the perturbations, as explained in

section 2.1. By doing so, we are ignoring the effect of the perturbations between the apocenter and

the maneuvre starting point. In reality, we are considering that the perturbations act on the reference

orbit also for half of the maneuvre duration as such, the approach is said to be conservative. Even with

this approximation, the results are satisfactory for the scope of the tool. To conclude, the real prop-

agation duration never match exactly the input duration, since from that number we need to subtract

the amount of time needed to reach the last apocenter.

2.4. Optimal mass

It is defined optimal the initial mass that, after the execution of all the maneuvres, has consumed all the

propellant. So, we are looking for the minimum amount of propellant mass that is needed to fullfill all

the maneuvre. Each set of maneuvres is performed with a given initial wet mass; however, since the

maneuvre duration is not known a priori and since the duration itself depends on the initial mass, as it

affects the dV in each arc, the initial wet mass is not known a priori. In addition to that, the propagation

can lead to changes in the apocenter and pericenter, causing the maneuvres to change their intensity in

a unpredicatble way. Also in this case the problem is not linear, thus an analytical expression for the

initial mass doesn’t exists; therefore, as it was for the maneuvre duration, a bisection method is used

to find the optimal mass using as performance index the residual mass. As we did for the maneuvre

duration, we need to set the boundaries. In this case the boundaries are set as follows:

• lower boundary: S/C dry mass.

• upper boundary: problem-knowledge-based. Note that the upper boundary is not so important;

if it is too large the code will need more iterations to converge.

As usual, the wet mass guess is taken as the middle point. Then, all the maneuvres are performed, and

after each maneuvre the amount of fuel needed is subtracted from the wet mass. After the simulation

of all of the maneuvre, the residual mass is computed according to Equation 2.11. It shall be pointed

out that for the last maneuvre, the margin explained in section 1.3 is taken into consideration.

Mresidual = M0 −
∑

Mpropellant −Mdry (2.11)
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This value is then comparedwith a threshold, called residual fuel, that represents themaximum amount

of unusued fuel remaining. The number was set based on guidelines [11], and its value was 10−2 Kg.

If the residual mass is below this value, then we have found the optimal value for the initial mass.

Otherwise, a new initial mass is chosen according to the bisection method. Figure 2.9 summarized

the iterative process required for finding the optimal initial mass.

Figure 2.9: Block diagram of optimal mass.
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3 | Software implementation

In this chapter the structure and performance of the code will be analyzed. In order to have a software

that is in line with the DMS framework, it was developed in Python. To obtain a really flexible code

that could easily accepts a lot of inputs, a class was developed, called ControlledReEntry. A UML

scheme of the class is shown in Figure 3.1.

ControlledReEntry
- excel_file : str

- xml_file : str

- simulation_folder : str
+ run(mode : str)

+ generateOutput()

+ setExcelValue(cell : str, value : Any)

Figure 3.1: UML class diagram of the ControlledReEntry class.

As one may have understood, the code needs a lot of inputs to be run since it requires informations

about the propulsive system, the maneuvre sequence, the propagation time as well as the input files

needed to run the desEO executables. To facilitate the inputs definition, two files are created: an

Excel, which contains all the information about the controlled re-entry, and an XML, which run the

desEO executables. These input files will be better described in section 3.1. They are then fed to the

ControlledReEntry class, and once an istance of the class is created, three main methods can be run.

• run(mode): Executes the re-entry simulation.

• generateOutput(): Produces output data in a structured format.

• setExcelValue(cell, value): Allows the modification of specific values in the Excel input
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file.

All of the methods will be better described in section 3.2. This type of structure guarantees an easy

and intuitive interface for the user, allows for either complex or simple analysis, and permit to tune

parameters in case of parametric analysis.

3.1. Software input

An instance of the class is generated as follows:

1 excel_file = "name.xlsx"

2 xml_file = "name.xml"

3 simulation_folder = "path_to_simulation_folder"

4 EOL = ControlledReEntry(excel_file, xml_file, simulation_folder)

Where:

• excel_file: it is the file that defines the maneuvre input.

• xml_file: it is the file that setups the desEO executables.

• simulation_folder: it is the path to the folder where to store the simulation results. Note that

by default this is set to the current directory.

3.1.1. Excel file

The excel file defines the inputs needed for the maneuvre, a snapshot of it can be seen in Figure 3.2.

Figure 3.2: Excel input file structure

Note that the structure of this file is fixed. The flexibility is obtained by allowing the user to change

as he wants the values, but the structure must be unchanged. In particular, the user can be personalise

the inputs as follows:
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• Thrust, as well as Specific Impulse, can be given as scalar or as vectors, and they rapresent

the values that will be considered for a specific maneuvre. If given as a scalar, the value will

be considered constant for all the maneuvres. If instead vectors are given, at each maneuvre the

corresponding value will be considered. Note that for the case of input vector the length must

be equal to the number of maneuvres.

• Intermediate perigee rapresent the sequence of perigee altitudes, to be followed. It can be

given as scalar or as vector. If given as a scalar, one must input the second-to-last perigee

altitude, and the perigee sequence will be computed as an equispaced vector from the initial

altitude to the intermediate perigee given; whereas, if given as a vector, one shall put all the

intermediate perigees up to the second-to-last. Note that in the vector case, the intermediate

perigee must have as first entry the starting altitude.

• Propagation durationmust be a vector with length equal to the number of burns, with the first

entry rapresenting the propagation before the first maneuvre, and the remaining representing

the propagation after each maneuvre. If a propagation should not be considered, one must put

0 has the duration.

The rest of the inputs is self-explanatory. It is worth noticing, however, that the final perigee altitude

is set to 50 km as recommended by [12], and it represents the last perigee altitude to be reached, such

that the last maneuvre will be from the last entry of intermediate perigee to the final perigee. Note that

the code has internal checks on both the excel structure and the input vector length, so it’s fundamental

to accurately build the excel file.

3.1.2. XML file

The XML file is needed in order to run the executables, as explained in Appendix B. The code uses 3

executables, namely

• OrbitWizard: it allows for the all the conversions among orbit definitions.

• OrbitPropagation: it allows for the propagation of the orbit.

• PropagationTransformations: it allows for the conversion of the output of OrbitPropagation.

To make the code as flexible as possible, the executable OrbitWizard is used. This allows for the
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definition of the orbit in any manner (keplerian elements, repeat cycle, etc...) and then transforms

the input to mean keplerian elements expressed in the ToD frame, which, as explained in section 2.1,

is fundamental for the code to work. Then, OrbitPropagation is needed to propagate the orbit, as

explained in section 2.3. However, since the propagation is numerical, it outputs the results in cartesian

elements expressed in the Mean Earth Equator at J2000 (MEE2000) frame. That’s the reason why

PropagationTransformations is needed, as it allows to convert back to mean keplerian elements

in the ToD frame the output of the propagation. For this file, the user needs to define the initial orbit

in the OrbitWizard node, and the integration settings in the OrbitPropagation node. A snapshot

of the structure of the XML is shown below.

1 <algorithms>

2 <propagation>

3 <orbitPropagation>

4 <scenarioItems>

5 <satellite/>

6 </scenarioItems>

7 <propagationType>

8 <numericalPropagation>

9 <epoch>

10 ...

11 </epoch>

12 <duration unit="day"> ... </duration>

13 <timeStep unit="s"> ... </timeStep>

14 <perturbations>

15 ...

16 </perturbations>

17 </numericalPropagation>

18 </propagationType>

19 </orbitPropagation>

20 </propagation>

21

22 <tools>

23 <propagationTransformations>

24 <input>

25 ...

26 </input>

27 <output>
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28 <stateVector>

29 <referenceFrame>TrueOfDate</referenceFrame>

30 <elementsType>MeanKeplerian</elementsType>

31 </stateVector>

32 </output>

33 </propagationTransformations>

34

35 <orbitWizardCalculation>

36 <epoch> ... </epoch>

37 <orbitDefinition> ... </orbitDefinition>

38 <stateVector>

39 <outputReferenceFrame>TrueOfDate</outputReferenceFrame>

40 <outputElementsType>MeanKeplerian</outputElementsType>

41 </stateVector>

42 </orbitWizardCalculation>

43 </tools>

44 </algorithms>

3.1.3. __init__ method

As soon as the instance of the class is created, the __init__ module is run. This module simply reads

the inputs and run the OrbitWizard tool; then, it stores the results in a dictionary. The dictionary is the

object that will be updated step by step during the simulation.

3.2. Software functionality

Once the instance of the class is created, the methods stated in chapter 3 can be run as follows:

1 EOL.run(mode)

2 EOL.generateOutput()

3 EOL.setExcelValue(cell, value)

The .runmethod needs one additional input, that is the mode to be considered. In fact, as explained in

section 1.4, the code extends the functionalities of the originalMATLAB code; however, depending on

the phase of the mission analysis, one may not need the enanched features, so also the basic simulation
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can be run. So, again, to provide the most flexibility, two modes can be run. Mode 1 allows for the

simulations of the sequence of maneuvres only, like the MATLAB code did, a feature commonly

used in the first phases of a mission analysis. Conversely, mode 2, allows for the simulations of the

maneuvres considering also the delay among them. This feature is used for finer simulation, usually in

more advanced phases of themission. It has been found out that runningmode 2with large propagation

time can lead to huge software run time, since for each mass iteration all the propagations should be

performed. Thus, when mode 2 is run, actually the mode 1 is launched, but its results are not stored

a part from the wet mass. This, in fact, will be used as a refined initial guess for the mass bisection

method. From this value, symmetric bounds based on experience and previous results are calculated

(a value of ±30 kg was used), and the simulation goes on. It this way, the heavy iteration, where also

the propagation is accounted for, are limited, thus guaranteeing a faster code.

The .generateOutput() method instead generates all the output files, which will be discussed in

depth in section 4.2.

The method .setExcelValue(cell,value) allows the user to change the value of a cell in the

excel file. This allows for an automated routine in case of parametric analysis. In fact, as it will

be discussed in section 4.3, it turns out that the propagation time is an important tuning parameter to

ensure the proper landing in a given Designated Landing Area (DLA). The method .setExcelvalue

was coded to permit a fast and easy way to obtain the optimal condition.

3.3. Software perfomances

The software was developed in Python as an evolution of the original MATLAB code. While MAT-

LAB proved to be significantly faster, this difference in performance is largely due to intrinsic dispar-

ities between the two languages. By profiling the Python code, it was discovered that some functions,

such as those for angle conversions (e.g., from true anomaly to mean anomaly), were called over 2

million times during the simulation of 9 maneuvers. This behavior was consistent in both MATLAB

and Python, yet MATLAB consistently outperformed Python in execution speed.

To quantify the difference, a simple test was conducted: an angle conversion function was executed 2

million times in both languages. The MATLAB implementation completed the task in approximately

0.5 seconds, while Python required around 6 seconds. However, by leveraging Python’s math pack-

age for optimized mathematical operations, the runtime was reduced to about 2 seconds, as shown in
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Table 3.1

It is important to note that Python is free and open-source, unlike MATLAB, which requires a license.

This makes Python a more accessible and cost-effective choice despite its slower performance. Fur-

thermore, the accuracy of the results produced by the Python implementation was identical to that of

the MATLAB version, ensuring that the change in language did not compromise precision.

Number of Calls Python Runtime (s) MATLAB Runtime (s)

2,000,000 6.0 0.5

2,000,000 (with math) 2.0 0.5

Table 3.1: Comparison of runtime for different implementations and optimizations.

3.4. Software testing

An extensive testing campaign has been conducted to assess the validity of both modes. In particular,

the critical point were the maneuvre model for mode 1 and the state update for mode 2. In fact, the

maneuvre model should match exatcly the model implemented in MATLAB, that was tested against

some DMS internal software, whereas the state update should be coherent among all the different

maneuvres, and no conflicts should arise.

3.4.1. Mode 1 testing

The reference to test mode 1 was the MATLAB code. In order to test the maneuvre simulation, the

same inputs were given to both codes; then a .txt file with the quantities to be checked was pro-

ceduced and compared. For a more effective comparison, a set of 9 maneuvres, including small and

big ones, were given. The output .txt file contains several informations, including ∆Videal, ∆V ,

propelled arc duration, gravity losses, sequence of the perigee reached, sequence of the semi-major

axis reached, sequence of the eccentricity obtained and the wet mass. It was then checked that all the

quantites matched up to the 5th decimal digit.
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3.4.2. Mode 2 testing

Finding a reference software for mode 2 was not straightforward as it was for mode 1; in fact, no

code aimed at the simulation of a sequence of maneuvres and propagations existed in the DMS mis-

sion analysis framework explained in Appendix B. The answer was found in an operational software,

called Flight Formation Simulation, that is not build for the re-entry, but can simulate a sequence of

maneuvres considering also the effect of perturbation. This operational software needs an accuracy

level higher than the one developed; in fact, the finite maneuvre is not approximated as the sum of

infinitesimal ideal maneuvre, but the contribution of the ∆V is directly considered inside the differ-

ential equations, together with the perturbation, and step by step the solution is integrated. Also, the

propagation is performed with different means rather than using the desEO executables, so an exact

match of all the quantities was not possible. What was checked was the relative error, computed using

Equation 3.1, where X is a generic quantity, rapresenting either a keplerian element or a maneuvre-

associated quantity. In order to consider the testing a success, the relative error among all the quantities

must remain below 1%.
∥Xffsim −Xpython∥

∥Xffsim∥
(3.1)

In this case, the input given to both software was a sequence of propagation, maneuvre, propagation

and maneuvre. To check if errors would accumulate over time, the first maneuvre was set as a small

30 km perigee lowering, whereas the second one was a large 150 km perigee lowering.
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4 | Application Case

Let’s consider as an example the re-entry of a S/C whose orbit is a Sun Synchronous Orbit (SSO), with

frozen condition and whose mean keplerian elements, referred to the ToD frame, are the one shown

in Table 4.1.

Semi-major axis [km] Eccentricity [-] Inclination [deg] Ω [deg] ω [deg]

7010.271 0.001054 97.938 142.431 90.0

Table 4.1: Initial orbital parameters

Assume that the re-entry is due to start on February, 12, 2025 at 12:00. Now, assume that the number

of maneuvres to be performed is 6, and that some constraints exist such that the choice of the sequence

of perigee altitudes is not free. For example, let’s consider the following setup:

• 1st and 2nd maneuvre shall be equal in ∆V with a precision level of 10%.

• 3rd and 4th maneuvre shall be equal in ∆V but its value shall be 85% of the previous one with

a precision level of 10%.

• 5th maneuvre shall be small, so that any errors in previous states can be easily corrected, and

bring the S/C to a perigee altitude of 250 km.

• 6th maneuvre shall bring the perigee to an altitude of 50 km.

For this sequence of maneuvre, consider that the propulsive system is the one described in Table 4.2.
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Man ID Thrust [N] Specific Impulse [s]

1 66.5 213.5

2 65 213

3 64 212.7

4 62 212.4

5 60.5 212.1

6 58 212

Table 4.2: Propulsive system performance

In addition, let’s suppose that also the propagation time must take into consideration some constraints.

For example, let’s say that:

• Before the 1st maneuvre at least 3 days shall pass to start the passivation of the systems.

• The whole re-entry shall be not longer than 2 weeks.

• After the 1st and 2ndmaneuvre 2 days shall pass to guarantee good orbit determination.

• After the 3rd and 4th maneuvre 1 days± 12 hours shall pass. The uncertainty in the propagation

time is needed to adjust the landing area of the S/C and shall be found.

• After the 5th maneuvre 10 orbits shall pass.

In addition to that, the perturbation to consider, a part from the gravitational ones, are drag and the

solar radiation pressure. With these informations, the input excel and xml file can be easily filled and

the simulation can be run.

To generate the outputs the method .GenerateOutput() can be run, and a series of folders and doc-

uments will be generated, according to the structure reported in Figure 4.1. In the following sections

each folder and file will be described.
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EOL

Plots

All plots.png

Results

Inputs

Inputs..txt

Inputs.csv

Outputs

Outputs..txt

Outputs.csv

Element Change During Maneuvre.xlsx

Mission Timeline.csv

Figure 4.1: Directory structure generated by the generateOutput() method.

4.1. Plots

The generated plots aim at showing the variation of the main quantities during all the phases of the

simulation. The main events happening are the maneuvres, so the focus is on the value of the quan-

tities before the maneuvre (which coincide with the end condition of the propagation) and after the

maneuvre. In particular, plots of all the mean keplerian quantities, except the anomaly, are produced,

as well as the perigee altitude, Figures 4.2 and 4.3 show the semi-major axis trend. It is worth noticing

that based on the mode run, slight changes happens among the plots. The differences between the two

graphs are mainly formal. In fact, with mode 1 the epoch is not treated, so the x-axis shows only the

maneuvre ID to be considered, and the variation of the quantity is instantaneous; instead, for mode 2,

where the epoch is considered and updated, the x-axis correctly shows it, while also considering the

true separation between dates. This is the reason why some lines are almost vertical, as the maneuvre

duration is in the order of minutes, whereas the propagation is in the order of days.
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Figure 4.2: Mode 1 semi-major axis plot.

Figure 4.3: Mode 2 semi-major axis plot.
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4.2. Results

Despite their usefulness for interpreting a simulation outcome, plots provide solely a qualitative glance

on the results.

To assess the results obtained, correct tuning the parameter and making considerations or corrections,

precise numbers are needed. To do so, various file are generated within the output folder, whereas a

copy of the input file is generated inside the input folder. It is worth noticing that the redundancy of

files is present due to precise mission analysis reasons.

For example, even tough the inputs are specified through the excel and xml files, it’s important to

create a further input file that allows for the repeatability of the simulation. In fact, the excel and

xml file are meant to be changed for each simulation performed, thus the corresponding input file may

be lost if not immediately saved. This is why the input file is generated, so that each simulation has

attached within itself a file stating the input. Nonetheless, two versions of the input file are generated,

a .txt and a .csv one. This is done because the .txt is clearly readable, whereas the .csv is easily

imported in any software if some post-processing is needed. To maintain the order, the output and

input folders are put inside a result folder.

4.2.1. Input subfolder

In order to asses the inputs used and to guarantee the repeatability of the simulation, a file with the

input used is generated. This file must contain all the values used, and it must be readable. Table 4.3

shows a snapshot of the input file in csv version.

SIMULATION INPUTS

Parameter Value

Initial altitude [km] 632.135

Initial eccentricity [-] 0.001054

Final perigee altitude [km] 50.0

Specific impulse (1st maneuver) [s] 213.5
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Specific impulse (2nd maneuver) [s] 213.0

Specific impulse (3rd maneuver) [s] 212.7

... ...

Thrust (1st maneuver) [N] 66.5

Thrust (2nd maneuver) [N] 65.0

Thrust (3rd maneuver) [N] 64.0

... ...

Target pericenter (1st maneuver) [km] 537.0

Target pericenter (2nd maneuver) [km] 439.0

Target pericenter (3rd maneuver) [km] 355.0

... ...

Initial propagation duration [days] 3.0

Time between maneuvers 1 and 2 [days] 2.0

Time between maneuvers 2 and 3 [days] 2.0

... ...

Dry mass [kg] 1700.0

Number of burns [-] 6

Table 4.3: Input file. Dots indicate omitted data for brevity.
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4.2.2. Output subfolder

This folder sligtly changes its elements based on the type of simulation that has been run. Note that

even though the differences between the two modes output are stated, all the reported results refer

to mode 2. Independently of the mode run, a file called Output is generated, both as a .txt and as

a .csv file. In this file the maneuvre quantities are reported, such as ∆V, propulsive arc duration,

gravity losses, etc... In addition to that, a sort of written representation of the plots is presented. This

means that keplerian quantities are stated before and after the maneuvre. If mode 2 is run, also the

effect of the propagation is shown in the file. A snapshot of the .csv version of the file is shown in

Table 4.4.

SIMULATION OUTPUTS

Parameter Value

Starting altitude [km] 632.135

Total ∆V for DeOrbiting [m/s] 170.0165

Total ∆V for DeOrbiting with 15% margin [m/s] 179.681

Deorbiting period [min] 91.147

Initial mass [kg] 1844.438

INITIAL PROPAGATION (DURATION: 3.0 days)

Orbital Quantities Before - After

Semi major axis [km] 7010.271 - 7010.227

Eccentricity [-] 0.001054 - 0.001053

Perigee altitude [km] 624.746 - 624.704

BURN 1

Parameter Value
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∆V [m/s] 27.275

∆Videal [m/s] 26.807

Gravity losses [m/s] 1.0287

Arc duration [min] 11.054

Propellant mass used [kg] 21.059

Orbital Quantities [Units] Before - After

Semi major axis [km] 7010.227 - 6965.906

Eccentricity [-] 0.001053 - 0.00728

Perigee altitude [km] 624.704 - 537.000

PROPAGATION 2 (DURATION: 2.0 days)

Orbital Quantities Before - After

Semi major axis [km] 6965.906 - 6965.842

Eccentricity [-] 0.00728 - 0.00728

Perigee altitude [km] 537.000 - 536.990

...

Table 4.4: Output.csv. The dots indicate that the table has been truncated for brevity.

Several information can be extracted from this file. For example, Table 4.5 shows the initial mass and

the ∆V needed to complete the controlled re-entry. This value will be used as dry mass for the next

part of the ∆V budget, as explained in section 1.3. Obviously, the ∆V information is strictly related

to the mass needed, and it is compliant with the guidelines and margins cited in section 1.3.
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Wet Mass [kg] Total ∆V [m/s]

1844.438 179.681

Table 4.5: Wet mass and ∆V results.

Also, it can be seen how the requirement on the∆V are satisfied. The graph in Figure 4.4 shows that

the first two maneuvers have very similar ∆V values. The second two maneuvers also have similar

∆V values, which are approximately 85% of the ∆V of the first two. In contrast, the fifth maneuver

has a significantly smaller ∆V.

Figure 4.4: ∆V required to perform the first 5 maneuvres.

In addition, Table 4.6 summarizes the maneuvre result, again showing that the requirement are fully

satisfied.
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Man ID 1 2 3 4 5 6

Arc duration [min] 12.055 12.739 11.108 11.519 2.925 31.967

∆V 27.275 27.426 23.839 24.225 6.045 64.429

Gravity losses [%] 1.40 1.43 1.10 1.19 0.08 9.69

Propellant mass [kg] 23.060 23.776 20.443 20.565 5.102 53.490

Perigee reached [km] 537.000 439.001 355.000 271.000 250.000 50.001

Table 4.6: Maneuvre associated quantity result.

Another file generated, independently from themode run, but with slight changes in its form depending

on it, is the file Element Change During Maneuver. This is an excel file with a number of sheets equal

to the number of maneuvres. In each sheet, the variation of the parameters affected by the maneuvre is

shown. Basically, as explained in section 2.1, the propulsive arc is discretized in infinitesimal pieces,

and at each piece the state is updated. This file collects all of this information and store them nicely.

This file basically rapresents the integration process done during the maneuvre, and it is useful to

compare the maneuvre implementation step by step. Note that the epoch, again, is only treated if

mode 2 is run.

A snapshot of the file can be seen in Table 4.8. The table has been divided for readability, but the first

row of both tables is common. The table shows the first rows of the sheet relative to the 1st maneuvre;

similar tables are generated for all maneuvres. This file is useful to have a glance on what’s really

happening during the maneuvre and can be used as a “sanity check” on the hypothesis used. For

example, as said in section 2.1, the maneuvre is assumed symmetric with respect to the absidis line.

This file shows that this is not exactly true, since the apocenter condition, that is anomaly = 180°, is

not reached at half the maneuvre duration. However it’s close enough for the needed precision of the

software.

Epoch [UTC] Time elapsed [min] SMA [km] Ecc [-] Anomaly [°]

2025-02-15T10:58:59 0 7010,233578 0,0010535 159,5762842
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Epoch [UTC] Time elapsed [min] SMA [km] Ecc [-] Anomaly [°]

2025-02-15T10:59:00 0,012495926 7010,200103 0,001057982 159,6973317

2025-02-15T10:59:00 0,020826544 7010,166628 0,001062467 159,8174886

2025-02-15T10:59:01 0,029157161 7010,133153 0,001066955 159,9367654

2025-02-15T10:59:01 0,037487779 7010,099679 0,001071447 160,0551726

…

AoP [°] AoP Variation [°] Perigee Altitude [km] Mass [kg] Mass burnt [kg]

89,9071865 0 624,8482946 1844,438477 0

89,81694423 -0,090242273 624,7834398 1844,422606 0,015870229

89,72759281 -0,089351415 624,7185608 1844,406736 0,015870229

89,63912171 -0,088471101 624,6536578 1844,390866 0,015870229

89,55152053 -0,087601178 624,5887313 1844,374996 0,015870229

…

Table 4.8: Element change during manoeuvre. The dots indicate that the table has been truncated for

brevity.

Lastly, the file Mission Timeline.csv is only generated if mode 2 is run, which is also the most useful

file. It shows the state, epoch, and mass, before and after an event of the mission, that is, a maneuvre.

This file allows for quick and clear insights on the whole procedure, and also it allows for an easy

collaboration with other divisions to ensure the correct execution of the controlled re-entry, as it will

be discussed in section 4.3. A snapshot of the files can be seen in Table 4.10.
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Time [UTC] Mean Sma (ToD) [km] Mean Ecc (ToD) [-] Mean Inc (ToD) [deg]

2025-02-12T12:00:00 7010.271 0.00105 97.9389

2025-02-15T10:59:00 7010.227 0.00105 97.9383

2025-02-15T11:10:03 6965.906 0.00728 97.9383

2025-02-17T09:36:43 6965.842 0.00728 97.9377

... ... ... ...

Mean Ω (ToD) [deg] Mean ω (ToD) [deg] Mean Anomaly (ToD) [deg] Mass [kg]

142.431 90.0 270.120 1844.438

145.346 89.921 159.581 1844.438

145.354 89.936 200.605 1823.378

147.304 84.462 156.163 1823.378

... ... ... ...

Table 4.10: Mission Timeline.csv. The dots indicate that the table has been truncated for brevity.

This file is really representative of the whole mission. In fact it summarizes the mission in steps and

allows to check all the requirement. In fact, not only the wet mass is shown, but also the re-entry

duration can be easily computed looking at the first and last row. The total duration is about 9 days,

satisfying the requirement.

4.3. Iterative process to complete the controlled re entry

As it has been said in subsection 1.2.2, the idea of the controlled re-entry is to make sure that the

re-entry of the S/C happens in a controlled way and over a DLA. A common DLA is the SPOUA, a

portion of the pacific ocean that is inhabited.
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In order to address that, two more things are needed. First of all, we need a plot of the S/C ground

track; secondly, we need a fragmentation model to assess the point where the fragments will end up.

These parts are out of the scope of the presented software, since they are dealt by the atmospheric

flight department, which implements the physics needed to deal with this problem. Nonetheless, to

achieve the correct execution of the controlled re-entry, a collaboration between the mission analysis

team and the atmospheric team is needed.

To resolve the landing area problem, one is mainly interested in the last maneuvre point. In particular,

the point of main interest is called intermediate perigee, that is the second-to-last perigee reached.

This point can be characterized by its state using the keplerian elements and by its epoch. However,

since the anomaly of the perigee is fixed, it is substituted with the epoch. Considering the example that

is being analyzed, the intermediate perigee state is shown in Table 4.11, and can be easily extracted

as third-to-last row in the mission timeline output file.

Semi-major axis [km] Eccentricity [-] Inclination [deg] Ω [deg] ω [deg] Epoch [UTC]

6819.728 0.02809 97.937 151.461 71.678 2025-02-21T08:32:49

Table 4.11: Intermediate perigee state.

The state at the intermediate perigee is assumed to be very precise, since previous errors can be cor-

rected before and will serve as reference state for the following analysis. As stated in chapter 4, before

making the last maneuvre 10 orbits shall pass. When the last maneuvre is performed, it is assumed

that the control over the S/C is no more present. As discussed in subsection 4.2.2, the needed∆V, the

propellant mass, and the maneuvre duration are known. These information will then be passed to the

atmospheric re-entry department, that will then continue the simulation according to ESA guidelines

[12] and [6].

The next analysis consists in varying a list of parameters to account for different scenarios and ensure

that all surviving fragments land in uninhabited areas with the statistical compliance required by the

applicable standards and requirements. A list of dispersed parameters is identified to cover all the

uncertainties at system level that cannot be corrected before the last perigee-lowering manoeuvre.

The uncertainties related to the disposal manoeuvres are considered in orbital simulations, resulting in

a set of dispersed initial conditions at the Earth Interface Point (EIP) (defined at 120 km as the interface
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between exo-atmospheric and endo-atmospheric conditions). Besides that, other uncertainties related

to the atmospheric re-entry are considered, such as uncertainties on the atmospheric density, break-up

altitude, etc. All of this is used as input for a simulation using an ESA approved software, called

Debris Risk Assessment and Mitigation Analysis (DRAMA). The output of the simulation consists

of the on-ground footprint of the surviving fragments. Based on the resulting footprint, safety boxes

are defined for which the probability that a fragment falls outside the boundaries of these safety boxes

is below a certain threshold. For a controlled re-entry, the DRA, that represents the area where the

debris are enclosed with a probability of 99%, and SRA, that represents the area where the debris are

enclosed with a probability of 99.999%, should be computed. An example of those areas is reported

in Figure 4.5.

Figure 4.5: Example of DRA and SRA [6]

So, a typical iteration consists in simulating the sequence of maneuvres and then passing the interme-

diate perigee state, as well as the last burn characteristic, to the atmospheric simulation. Then those

quantities will be used as nominal and perturbations will be inserted on the EIP to run a Monte Carlo

simulation to make sure that the landing area is reached in a statical sense.

A typical output ground track plot with the end point reached is shown in Figure 4.6.
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Figure 4.6: Ground track plot from the intermediate perigee to the fragmentation. The blue dots

represents the fragments.

In the graph the intermediate perigee is shown as well as other point of interest such as the Start of

deorbiting boost, End of deorbiting boost, and EIP. Basically, from the End of deorbiting boost, the

orbit is propagated until the EIP is reached. There, more uncentarties are added and a Monte Carlo

procedure is run to see where the fragments end up.

As it can be seen from the graph, the debris fell outside the SPOUA. In this case we need to adjust

some parameters to make sure that the landing actually ends up in the right place. Since everything

after the intermediate perigee is more or less fixed, as the maneuvre is fixed and varies only slightly,

while the propagation time is fixed, we need to tune the planetodic latitude and planetodic longitude

of the intermediate perigee. This is obtained by tuning some parameters in the intermediate perigee

state.
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The planetodic longitudine λ and latitude ϕ can be computed using Equation 4.1 and Equation 4.2.

λ = arctan
(
YECEF
XECEF

)
(4.1)

ϕ = arcsin
(
ZECEF

r

)
(4.2)

Where r is the orbit altitude, whereas the vector X⃗ECEF = [X,Y, Z]ECEF is the cartesian position

vector in the Earth-Centered Earth-Fixed (ECEF) frame. To obtain the X⃗ECEF vector from the orbital

elements we need first to transform the keplerian state into X⃗ECI , the cartesian vector in the Earth

Centered Inertial (ECI) frame (see Appendix A for the frame definitions). Defining as Θ the true

anomaly, the orbital state X⃗ORB is obtained as X⃗ORB = [r · cosΘ, r · sinΘ, 0]T Then, using the 3-

1-3 rotation of Euler angles, we can easily obtain the cartesian vector in the ECI frame as shown in

Equation 4.3.

X⃗ECI = Rz(ω) ·Rx(i) ·Rz(Ω) · X⃗ORB (4.3)

Then, in order to pass to the ECEF frame, we need to take into consideration the Earth rotation. This is

done using Equation 4.4, where ΘGST is the Greenwich-Sidereal-Time, defined as the angle between

the Greenwich meridian and the inertial X axis at a given epoch.

X⃗ECEF = Rz(ΘGST) · X⃗ECI (4.4)

It’s important to point out that we are looking at the condition to change λ and ϕ of the intermediate

perigee, whose altitude is fixed at 250 km. This means that any combination of semi-major axis and

eccentricity should lead to that value. This leads to the conclusion that none of semi-major axis and

eccentricity play a role in changing the intermediate perigee position.

Instead, Euler angles and the epoch play an important role in changing the coordinates. In particular,

the Euler angles change the orbital plane, changing consequently the position of the intermediate

perigee on the Earth, wheareas the epoch do not interfere with the orbital plane, but accounts for the

Earth rotation.

Table 4.12 summarizes the effects of those parameters.
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Parameter Effect on λ Effect on ϕ

Ω Small None

i Small High

ω High Small

Epoch High None

Table 4.12: Effect of parameters on λ and ϕ.

In summary, the effect of the parameters can be stated as follows:

• Ω: it rotates the orbit around the z-axis, so there is no effect on ϕ, but we have a contribution

on λ.

• i: it changes a lot ϕ influencing the maximum ϕ that can be reached. It also has a smaller effect

on λ due to the rotation of the plane.

• ω: it changes the pericenter position and has an effect on both ϕ and λ. However, the effect on

ϕ is more direct, whereas the effect on λ is non-linear and difficult to predict.

• Epoch: a change in the epoch causes a change in Earth rotation, causing a change in λ

It is important to point out that this table should be read as how much a change in a given parameter

affects λ and ϕ. For example, looking at the effect on λ, a change of 5° in Ω has a smaller effect than

the same change in ω.

Now, looking again at Figure 4.6, we need to figure out what we can do to adjust the intermediate

perigee position.

Obviously, each case should be studied on his own. In our case the latitude ϕ is ok, since it falls inside

the SPOUA bounds. If that is not the case, looking at Table 4.12, we can only play with i and ω. Some

solutions might be:

• To consider an out-of-plane maneuvre to change i. This solution is really expensive in terms of

∆V and not really viable.
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• To consider a pure∆ω maneuvre. This solution is not so expensive in terms of∆V but a further

maneuvre should be performed.

• To consider to increment/decrement the propagation time to allow the perturbation to naturally

change ω until the wanted value is reached. This solution is obviously the best in terms of∆V,

but it’s not always applicable due to time constraint.

In the end, the solution is not so trivial and it really depends on the application.

Luckily, in our case the ϕ is not a problem; however we need to fix the λ. To tune this parameter,

again looking at Table 4.12, we can play with basically all the parameters, however Ω and i should

be immediately discarded since their effect is too small to be easily implemented. It turns out that the

easiest parameter to play with is the epoch. In fact, λ is really sensitive to the epoch. In fact, the epoch

effect is proportional to the Earth rotation velocity, that is around 15 deg/hour. Also, it is not worth to

act on ω to change λ since it has combined non linear effect also on ϕ.

In the requirement, stated in chapter 4, the third and forth propagation could be adjusted with ±12

hours, meaning that we can use this to adjust λ. Also, since we need to adjust the epoch just by a

couple of hours, the value of the other parameters won’t be affected so much, since the perturbation

don’t change so much over such small period. In particular, we expect an increment of the propagation

time to lead to an increase in λ, thus the intermediate perigee will move to the right. Let’s add, for

example, 3 hours on the third propagation and run again the simulation. Now the intermediate perigee

state will be the one shown in Table 4.13.

Semi-major axis [km] Eccentricity [-] Inclination [deg] Ω [deg] ω [deg] Epoch [UTC]

6819.728 0.02809 97.937 151.461 71.678 2025-02-21T11:32:49

Table 4.13: Intermediate perigee updated state.

After the atmospheric department simulation, we get the plot shown in Figure 4.7. By modifying the

propagation time we adjusted the position of the intermediate perigee just enough so that now the

fragments ends right in the middle of the SPOUA.
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Figure 4.7: Ground track plot from the intermediate perigee to the fragmentation.

In summary, a back and forth process between the maneuvre simulation and the atmospheric analysis

is needed to obtain the optimal conditions of the parameters to make sure that the landing is correct.

Of note, each case should be treated differently, and ad hoc solutions must be implemented for each

case. This procedure explains the reasoning that one should do in order to change the intermediate

perigee conditions.
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5 | Conclusion

The rapid increase in the number of artificial satellites in Earth orbit over recent decades has brought

about significant challenges, particularly the growing issue of orbital debris. These debris fragments

pose a substantial collision risk to operational satellites, threatening the safety and sustainability of

space operations. To mitigate these risks, international guidelines and best practices have been devel-

oped, aiming to reduce the proliferation of debris and manage EOL scenarios effectively.

Among these guidelines, specific recommendations address the disposal of satellites at the end of their

operational lives. Two primary strategies are typically considered for EOL disposal: uncontrolled re-

entry and controlled re-entry. While uncontrolled re-entry relies on natural orbital decay processes

to bring the satellite back into Earth’s atmosphere, controlled re-entry involves precise maneuvering

to ensure the satellite’s re-entry occurs over designated uninhabited areas, minimizing risks to people

and property.

This thesis focuses on the controlled re-entry strategy, with a particular emphasis on its application

within the context of a specific software framework used in satellite mission design, developed during

an internship at the Earth Observation Mission Analysis (EOMA) team in DMS. The main objective

of the work was to develop a robust, flexible, and easy-to-use software module that facilitates the

planning and execution of controlled re-entry maneuvers.

The ease of use of the software stems from the development of a dedicated class, allowing the entire

program to run with just a few lines of code. Flexibility was achieved through the straightforward

customization of inputs, enabling the software to cover a wide range of application cases.The module

underwent a rigorous testing campaign to ensure its reliability and accuracy under various operational

scenarios. As a result, the module has been successfully integrated into the company’s proprietary

software suite and is currently being utilized for an ESA mission in the design phase.

By addressing the challenges associated with controlled re-entry and delivering a practical solution,
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this thesis contributes to the advancement of sustainable space operations and aligns with international

efforts to mitigate the risks posed by orbital debris.



A | Orbital definitions and reference

frames

To describe the motion of a satellite in space, it is crucial to define its orbit using appropriate parame-

ters and frames of reference. An orbit can be characterized in several ways, depending on the desired

level of precision, the context of the analysis, and the type of mission. The most common methods in-

volve the use of Mean Keplerian elements, Osculating Keplerian elements, repeat cycle, and cartesian

elements. Additionally, a proper understanding of the reference frames used to express these elements

is fundamental for interpreting orbital data. This chapter provides an overview of these methods and

reference frames.

Orbital definition

Cartesian elements

Cartesian elements describe the position and velocity of a satellite in a three-dimensional space. These

are represented by the following six parameters:

• Position (x, y, z): The satellite’s location in a chosen reference frame.

• Velocity (vx, vy, vz): The satellite’s velocity components along the x, y, and z axes.

These elements are often used in numerical simulations and are particularly advantageous for integra-

tion in differential equation solvers. While cartesian elements provide a straightforward representation

of a satellite’s state, they are less intuitive for understanding orbital characteristics like shape, orien-

tation, and period.



Mean Keplerian elements

Mean Keplerian elements provide an averaged representation of an orbit over time. They are de-

rived by removing the short-period oscillations caused by perturbations, such as those due to Earth’s

oblateness, solar radiation pressure, or gravitational influences from the Moon and Sun. These ele-

ments are particularly useful for long-term analyses and mission planning, as they describe the secular

(long-term) and periodic (medium-term) evolution of the orbit without focusing on rapid variations.

The six classical mean Keplerian elements are:

• Semi-major axis (a): Defines the size of the orbit.

• Eccentricity (e): Represents the shape of the orbit.

• Inclination (i): The tilt of the orbital plane with respect to the reference plane.

• Right Ascension of the Ascending Node (Ω): Describes the orientation of the ascending node.

• Argument of Perigee (ω): Specifies the orientation of the orbit within its plane.

• Mean Anomaly (M): Indicates the satellite’s position along the orbit at a specific time.

Mean elements are often used for initial orbit design and mission analysis, where short-term pertur-

bations are not critical.

Osculating Keplerian elements

OsculatingKeplerian elements represent the instantaneous orbital parameters at a specific epoch. They

describe the orbit the satellite would follow if all perturbative forces were removed, leaving only the

two-body gravitational interaction with the central body. These elements capture the actual state of

the satellite at any given time, including the effects of perturbations. The six classical osculating

Keplerian elements use the same parameters as the mean ones, but instead of the mean anomaly, they

use the true anomaly. Osculating elements are ideal for precise orbit determination and short-term

predictions. However, their values can vary rapidly due to perturbations, making them less suitable

for long-term analysis without additional processing.



Repeat cycle

A repeat cycle orbit is designed so that the satellite passes over the same ground track after a specific

number of orbital revolutions and days. These orbits are particularly important for Earth observation

missions, where consistent imaging of the same area is required. Repeat cycle orbits are defined by:

• Revisit Period: The number of days before the satellite repeats its ground track.

• Revolutions per Day: The integer ratio of orbital revolutions to Earth rotations that ensures

repeatability.

These orbits require precise tuning of the semi-major axis and inclination to achieve the desired re-

peatability, often balancing the effects of perturbations to maintain consistency.

Reference systems

ECI

The ECI coordinate system is a reference frame in which the origin is at the center of the Earth, and

the axes are fixed with respect to distant stars. The axes are typically defined as follows:

• The x-axis points toward the vernal equinox, which is the point in the sky where the Sun crosses

the celestial equator moving from south to north.

• The y-axis lies in the plane of the celestial equator perpendicular to the x-axis

• The z-axis is aligned with the Earth’s rotation axis, pointing towards the North Pole.

This system is inertial, meaning it does not experience accelerations or rotations relative to distant

stars, providing a stable and non-rotating frame of reference. It is used in orbital calculations, such as

those for satellites or space trajectory tracking, as it allows for the description of an object’s motion

in space without accounting for the Earth’s rotation.

ECEF

The ECEF coordinate system is a rotating coordinate system that is fixed to the Earth. Its origin is at

the Earth’s center, and the axes rotate along with the Earth, meaning the system is aligned with the



Earth’s surface at any given time. The axes in the ECEF system are defined as:

• The x-axis points toward the intersection of the equator and the Prime Meridian (Greenwich).

• The y-axis lies in the equatorial plane and is 90° east of the x-axis.

• The z-axis is aligned with the Earth’s rotation axis, pointing toward the North Pole.

The ECEF system rotates with the Earth, making it ideal for applications related to positioning, nav-

igation, and geospatial data. It is commonly used for tasks such as GPS positioning and geodetic

measurements, where the Earth’s rotation must be accounted for.

MEE2000

The MEE2000 frame is a widely used inertial reference frame based on Earth’s mean equator at the

epoch J2000.0 (January 1, 2000, 12:00 TT). In this frame:

• The x-axis points toward the vernal equinox.

• The z-axis is aligned with Earth’s rotational axis at the epoch J2000.

• The y-axis completes the triad and lies in the equatorial plane xy.

The MEE2000 frame is particularly suitable for long-term analyses and is often the default reference

frame used in celestial mechanics and orbit design.

Mean of Date

The Mean Of Date (MoD) frame is defined similarly to the MEE2000 frame, but it is referenced to

the considered epoch and averages out short-period variations of Earth’s spin axis, such as nutation.

This frame accounts only for periodic and secular perturbations. In the MoD frame:

• The x-axis points toward the vernal equinox.

• The z-axis is oriented toward the averaged Earth’s spin axis.

• The y-axis completes the triad and lies in the equatorial plane xy.

This frame is commonly used when focusing on longer-term orbital dynamics while neglecting short-



term variations.

True of Date

The ToD frame is defined by Earth’s orientation at a specific moment in time. In this frame:

• The x-axis points toward the vernal equinox.

• The z-axis aligns with Earth’s rotational axis at the given time.

• The y-axis completes the triad and lies in the equatorial plane xy.

The ToD frame accounts for precession and nutation, offering an accurate representation of Earth’s in-

stantaneous orientation. It is commonly used for applications requiring precise alignment with Earth’s

current rotational position.



B | Deimos Space

Deimos Space is a leading European aerospace company and part of Elecnor Group, even though

recently bought from Indra, a multinational corporation with extensive experience in engineering and

technology. Founded in 2001, Deimos Space specializes in providing cutting-edge solutions for space

systems and applications. The company is known for its expertise in the design, development, and

operation of mission-critical software and engineering systems across various domains of the space

sector. Deimos Space stands out for its advanced capabilities in trajectory design and optimization,

mission analysis, and ground segment systems, including mission control, satellite operations, and

data processing. The company has been involved in several high-profile missions in collaboration

with major space agencies such as ESA, contributing to programs in the realm of Earth observation,

satellite navigation, and space exploration. Key strengths of Deimos Space include:

• Earth Observation and Remote Sensing: Development of advanced algorithms and processing

tools for extracting valuable insights from satellite data.

• Satellite Navigation: Expertise in Global Navigation Satellite Systems (GNSS), including pre-

cise orbit determination and timing solutions.

• Space Mission Design: Proficiency in trajectory optimization and mission planning for inter-

planetary, orbital, and re-entry missions.

• Ground Segment Systems: Comprehensive solutions for ground-based satellite monitoring,

control, and data distribution.

• Software Development: High-reliability software for mission-critical applications, including

real-time systems and onboard processing.

Deimos Space differentiates itself through its strong emphasis on innovation, customer-driven solu-



tions and a versatile portfolio that spans the entire space value chain. Its multidisciplinary teams and

commitment to quality make it a key player in the development of state-of-the-art technologies that

address current and future challenges in the aerospace industry. During my internship I had the pos-

sibility to collaborate with the EOMA team. My main duties were to develop some mission analysis

toolkits that the team could use during their analysis. During my 7-months internship I developed 2

main toolkits:

• ControlledReEntry class: A Python class that simulates the sequence of maneuver needed to

perform the Controlled Re-Entry strategy

• TransformationTool class: A Python class that transforms the state among different defini-

tions (mean keplerian, osculating keplerian and cartesian) and among different frames (ToD,

MoD and MEE2000).

This thesis focused on the functionality and development only of the ControlledReEntry class,

since due to time constraints, the TransformationTool could not be finished. In particular, the

testing campaign was not finished, and the software was not fully checked. For these reasons it was

not discusses in this work. In addition to that I also had the opportunity to collaborate with the team on

a real mission, working on the re-Entry of a satellite that for privacy reasons will not be cited. During

this collaboration I had the pleasure to discuss the obtained results, debate about solutions to adopt,

and collaborate with other department to fulfill the objective of the mission. The next sections explain

briefly the software environment in which my project was inserted. In fact, the mission analysis team,

even though it can rely over a large variety of softwares, it mainly uses the functionalities of the desEO

software, which are embedded in a very precise enviroment.

Software environment

The mission analysis software environment can be divided as follows:

• SMAT: A C++ code, whose aim is to generate executables, which are launchable application,

covering over 40 possible analyses such as OrbitPropagation, CoverageAnalysis, GroundSta-

tionContact, etc...

• desEO: A Java coded software that presents as a very user friendly Grafical User Interface (GUI)

where the SMAT generated executables can be run in an easy fashion.



• pydesEO: An internal Python API that allows to launch the SMAT generated executables di-

rectly from Python.

In a few words, the SMAT code represents the core of the environment, where all the physics and

formulas are written for all the possible analyses. desEO and pydesEO are simply interfaces that relies

on the use of executables to perform simulations. The main difference between the two is simply on

the flexibility. In fact pydesEO can be seen as a ”pythonification” of the GUI, having the plus of

working in a flexible environment, giving the possibility to perform easy post-processing, parametric

analyses or generate new plots.

DesEO

DMS was responsible, under ESA guidelines, to develop a software, called desEO that contained all

the main analyses relative to Earth Observation (EO). desEO is a software toolkit to support mission

analysis and preliminary system/subsystem design activities of EO missions, aimed at providing a

unique instrument for supporting the work of system and mission analysts. desEO has been designed

to be used by mission and system engineers throughout all phases of an EO mission (from Phase 0 to

Phase E), whenever they need accurate and fast quantitative results to support design trade-offs and

assessment analyses [13]. desEO is a tool capable of covering the most common and repetitive anal-

yses that system and mission analysts encounter in their everyday work in EO missions. It currently

comprises 40 modules, i.e. applicable analisys, that can be operated via a GUI. The analyses include

orbit propagation, attitude computation, atmospheric analyses, coverage analyses, ground station con-

tact analyses, power budget analysis and basic astrodynamics computations (geometric calculations,

analytical formulas) and others. The desEO GUI is divided into sections, as shown in Figure B.1.

The content of each area is summarized below, with reference to the numbers in Figure B.1.

• Area 1: it shows the project name, the selected analysis, and contains the scenario items needed

for the project, displaying those applicable to the selected analysis. A drop-down menu allows

changing the analysis.

• Area 2: it lists all the already executed analyses in the current project, grouped by analysis

name.

• Area 3: it lists the history of all the already executed simulations of the analysis selected in Area



Figure B.1: desEO GUI

2. They are timestamped and each entry can be renamed.

• Area 4: it lists all the available outputs of the simulation selected in Area 3. When double-

clicking on one output, the corresponding plot is opened in Area 7. This area also contains a

button to export results to CSV format and a button to create user-customized plots.

• Area 5: it contains 4 panels with quick analysis tools (Coordinates Transformations, TimeTrans-

formations, Orbit-Wizard calculation, and Geodetic Distance Calculation) and the Integrity

Check panel, which shows messages to the user to complete all the required inputs before run-

ning a simulation.

• Area 6: it contains 3 panels: a panel with the log of the simulation run, a panel to run an analysis

manually, and a panel showing the progress of the simulation.

• Area 7: it contains by default a welcome panel, and upon user request, the input and output

panels of the analyses.

SMAT

This software, also internally developed byDMS, is responsable to generate the executable uponwhich

desEO relies on and rapresents the core of every possible analysis. Basically, desEO is simply a user



friendly interface of SMAT. In order to run the executables, an input XML file shall be generated.

Those files must have a very precise structure, that must validate against some preset schemas. The

idea is to have a general form that works for almost every simulation, but then to add specific nodes

relative to the analysis that one wants to perform. In general, the main nodes that one shall specify

are:

• Scenario: Defines the setup of the analysis.

• Algorithm: Defines the algorithm chosen.

Inside the scenario node, one shall specify:

• Space segment: Defines the satellite orbits and parameters.

• Environment: Defines the central body characteristics.

Inside the algorithm node, one shall specify a node depending on the analysis that one wants to perform

and all the specifics that that analysis requires (e.g. target area for Coverage Analysis, integration time

for OrbitPropagation) and no general rule exists.

pyDESEO

Even tough the executables are very strong and widely applicable, they are somewhat limited, not in

terms of amount of analysis, but in terms of combinations, parametric analysis and postprocessing.

This is why pyDESEO was developed. PyDESEO allows the user to run the executables directly

from python. This is achieved by reading the input XML file relative to the analysis that one wants

to perform and then giving it as input to a function that launches the right executable. The Python

flexibility allows the user to setup iterative and automated routines, in an easy and fast fashion, while

maintaing the accuracy of the desEO simulations. In addition to that, Python offers the possibility to

build structures, such as classes, upon those executable, enanching the flexibility and possibility of

the analysis. Obviously, the toolkits developed during my intership were built according to the library

standards. In this way, these added analyses could be directly imported and launched.
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