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Abstract

With the rapid advancement of technology, industries are increasingly seeking

solutions that operate efficiently, autonomously, and reliably. Line clearance,

a critical procedure designed to ensure work areas are free of residual prod-

ucts or contaminants, is no exception, as it demands automation to enhance

productivity and reduce human error. This project explores the application of

anomaly detection techniques for automating line clearance across five distinct

views of a machine, leveraging two neural network architectures to evaluate

their feasibility and performance in operational scenarios.

The study employs advanced techniques such as masking, image registra-

tion, and data augmentation to enhance the robustness and precision of the

anomaly detection models. Comparative analyses focus on assessing detec-

tion accuracy across all views and the overall system reliability in industrial

workflows. This research aims to establish a robust framework for deploying

automated anomaly detection systems, contributing to safer, more efficient

manufacturing processes. Through a comprehensive evaluation, the study pro-

vides insights into the applicability and comparative strengths of the two net-

works for automating line clearance and highlights their potential for broader

industrial adoption.
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1 Introduction

Line clearance is an emerging procedure that is rapidly gaining acceptance in

the industrial sector. It is designed to ensure that equipment and work areas

are devoid of residual products, documents, and materials between production

batches. This process is divided into three distinct phases:

• Clearing: The physical removal of all materials from the previous batch,

including unused parts, labels, and packaging not required for the sub-

sequent process.

• Cleaning: Disinfecting and drying all surfaces and equipment used in

the previous process.

• Checking: A thorough inspection of the production line, conducted by

the operator, before resuming production.

This pipeline is crucial, if not essential, for processes within the Life Sci-

ences sector, where pharmaceutical products must be produced in a sterile en-

vironment free from external contamination. Nevertheless, machines are not

infallible and may occasionally fail to correctly process a batch, potentially

resulting in residual product remaining within the equipment. Such residual

material can pose a risk of contamination to subsequent batches and needs to

be cleared.

In this case study, two potential risk zones within the machine where the

product could become lodged were identified and evaluated. Additionally,

five possible camera placements were selected to capture images for anomaly

detection algorithm implementation.

As industrial processes become increasingly automated, the checking phase

is expected to be performed by an algorithm, specifically an anomaly detec-

tion system. This approach is anticipated to reduce the likelihood of errors

that may occur with manual inspection and offer greater speed and accuracy.

1
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Surface anomaly detection is a particularly challenging task due to the fact

that anomalies typically occupy only a small fraction of the image pixels and

often closely resemble the normal data distribution found in the training set.

Given the rarity of images containing anomalies and the time-consuming na-

ture of labeling them, datasets used in this domain are often highly imbalanced,

necessitating the use of anomaly-free images for training. This situation typi-

cally leads to an unsupervised learning approach.

Existing anomaly detection algorithms can be broadly categorized into

three main types:

• Reconstruction-based methods: These methods detect anomalies by

comparing the reconstructed image to the original image. The under-

lying assumption is that the model, trained solely on normal data, will

struggle to reconstruct anomalous features. However, modern convolu-

tional neural network (CNN) architectures, being highly adaptable, may

inadvertently learn to reconstruct anomalies as well, thereby reducing

the efficacy of this approach. Diffusion models, which also fall under

the category of reconstruction-based methods, have shown promise in

overcoming the limitations typically faced by other approaches. These

models have demonstrated improved performance, offering better anomaly

localization and detection results compared to traditional reconstruction

methods.

• Embedding-based methods: These approaches utilize pre-trained net-

works to extract and compress image features into a compact latent

space, aiming to separate the feature clusters of normal data from those

of anomalies. Nonetheless, this method may suffer from several lim-

itations, such as under-representation of anomaly features or a failure

to adequately distinguish between normal and anomalous data due to

insufficient anomaly representation in the feature space.

2
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• Synthesis-based methods: In this approach, anomalies are syntheti-

cally generated from normal samples to introduce anomaly-specific in-

formation into the detection model, thereby enhancing its performance.

An example of this would be the use of Perlin noise to simulate anoma-

lies.

This experiment involves two different architectures, the first one is DRÆM

[18], which follows a synthesis-based approach. Anomalies are synthetically

generated using the Describable Textures Dataset (DTD) [6] and Perlin noise,

as detailed in Section 3. The second architecture is DDAD (Denoising Diffu-

sion Anomaly Detection) [13], a reconstruction-based method that leverages

denoising diffusion probabilistic models (DDPM) for anomaly detection by

learning the normal data distribution and reconstructing clean outputs from

corrupted images. A unique aspect of this model is its integration of a feature

extractor such as wide resnets[10] [17], which helps enhance performance by

capturing detailed features. To ensure the pretrained feature extractor adapts to

the specific anomaly detection task, an unsupervised domain adaptation tech-

nique is applied, effectively shifting the domain to better address the problem

at hand.

Unlike other commonly used datasets, each view in our custom dataset

presents unique challenges, such as limited camera placement options to avoid

obstructing the machinery, cameras occasionally being out of focus, moving

machine parts, and difficult-to-learn regions. To address some of these chal-

lenges, masking is extensively applied during the network’s evaluation. Con-

sequently, performance metrics like AUROC, AUPRO, and AP are evaluated

both with and without masking to determine whether masking provides any

tangible benefit in improving the detection results.

3
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2 Related Works

The tasks of anomaly detection and anomaly classification have gained sig-

nificant attention due to their critical applications in domains like industrial

monitoring, healthcare, and cybersecurity. Anomaly detection typically in-

volves identifying data points that deviate significantly from the norm, of-

ten without prior knowledge of anomaly types, making it inherently unsuper-

vised or semi-supervised. In contrast, anomaly classification assumes labeled

datasets, enabling more granular categorization of detected anomalies. Both

tasks are challenging due to the rarity of anomalous samples and their high

variability, which necessitates the development of robust, generalizable mod-

els. Over time, various approaches have emerged to tackle these challenges,

ranging from reconstruction-basedmethods to embedding-based and synthetic

anomaly generation techniques.

Reconstruction-based methods are widely used in anomaly detection,

leveraging the assumption that models can accurately reconstruct normal data

but struggle with anomalous regions. Early approaches often utilized autoen-

coders and generative adversarial networks (GANs)[9]. However, these meth-

ods faced challenges in distinguishing between normal and abnormal samples,

as neural networks tend to generalize well, leading to good reconstructions of

both normal and anomalous data. To address this, more advanced techniques

such as Variational Autoencoders (VAEs)[11] and Latent Space Autoregres-

sion[1] have been proposed, improving the detection of outliers by focusing

on variations in latent space. Methods like the one proposed by Bergmann et

al.[4] introduced structural similarity measures in combination with autoen-

coders, offering improved results in defect segmentation tasks by emphasizing

pixel-wise differences.

Embedding-based methods focus on feature extraction and anomaly de-

tection in high-dimensional spaces. These methods rely on pre-trained net-

works that map data into a feature space, where anomalies are detected based

4
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on distancemetrics likeK-nearest neighbors (KNN). Techniques such as SPADE[16]

and PaDiM[7] extract features from normal samples and measure the anomaly

score of test samples by evaluating their distance from known normal in-

stances.

Synthetic-basedmethods focus on generating synthetic anomalies or aug-

menting datasets to improve the model’s robustness. One notable technique is

CutPaste[12], which uses self-supervised learning to train models by cutting

out sections of an image and pasting them onto different locations to simu-

late anomalies. The combination of synthetic anomaly generation with robust

embedding strategies has been crucial in addressing the scarcity of anomalous

training data, particularly in industrial applications where real anomalies may

be rare.

5
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3 Method

3.1 Data Labelling

While anomaly detection typically does not require data labelling for the ma-

jority of the process when using unsupervised methods, labelling becomes

valuable during the testing phase to generate evaluation metrics. Following

data acquisition, the first step was labelling the anomaly images. This task was

performed using an open-source web application called ”VGG Image Annota-

tor” (VIA) [8]. The results were saved in a .csv file, which was subsequently

used to create functional 2D masks, later passed as input for evaluation.

3.2 DRÆM

DRÆM is composed of two main components: a reconstructive sub-network

and a discriminative sub-network. The reconstructive sub-network focuses

on generating a reconstruction of the input image that excludes anomalies.

For images containing anomalies, the reconstruction quality tends to degrade

specifically in anomalous regions, making them easier to detect. The dis-

criminative sub-network, meanwhile, takes as input the concatenation of the

original and reconstructed images and produces refined anomaly segmenta-

tion maps. Typically, training is conducted on anomaly-free images, as real

anomalous examples are often limited. To address this, DRÆM synthetically

generates anomalous images just before they are passed to the discriminative

sub-network, allowing for effective training without real anomalous data.

Reconstructive Sub-Network

The Reconstructive Sub-Network employs a typical AutoEncoder structure,

aiming to recreate the original, anomaly-free version of the input image. By

comparing the reconstructed image to the input, anomalies can be identified

based on areas where the reconstruction diverges from the original. For this

6
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Figure 1: DRÆM architecture

type of task, SSIM (Structural Similarity Index Measure) loss is commonly

used, as it assesses image similarity in a way that captures structural informa-

tion.

SSIM is grounded in the concept that pixels exhibit strong inter-dependencies,

particularly among those in close spatial proximity. These dependencies are

significant as they contain structural details about the objects within the visual

scene. SSIM calculates similarity between two images, I and Ir, through three

key comparison metrics:

• luminance(l) : l(I, Ir) = 2µIµIr +c1
µ2

I+µ2
Ir

+c1

• contrast(c) : c(I, Ir) = 2σIσIr +c2
σ2

I +σ2
Ir

+c2

• structure(s) : s(I, Ir) = σIIr +c3
σIσIr +c3

whereµI andµIr are the pixel samplemean of I and Ir respectively, σ
2
I and

σ2
Ir
are the variances of I and Ir, σIIr is the covariance of I and Ir. c1 = (k1L)2

and c2 = (k2L)2 are two variables to stabilize the division with weak denom-

inator, where L is the dynamic range of the pixel-wise values (2bitsperpixel − 1

and k1 = 0.01 and k2 = 0.03, also c3 = c2/2).

7
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Finally SSIM can be computed as the weighted combination of these com-

parative measures:

SSIM(I, Ir) = l(I, Ir)α×c(I, Ir)β×s(I, Ir)γ = (2µIµIr + C1) + (2σIIr + C2)
(µ2

I + µ2
Ir

+ C1)(σ2
I + σ2

Ir
+ C2)

(1)

This formula represents the global SSIM, however, for our purposes, we

utilize a localized version of SSIM that calculates these components within a

window centered on each pixel (i, j) and will be written as SSIM(I, Ir)(i,j).

The SSIM can then be transformed into a loss function as:

LSSIM(I, Ir) = 1
Np

H∑
i=1

W∑
j=1

(1 − SSIM(I, Ir)(i,j)) (2)

where H and W are the height and width of image I , respectively. Np is

equal to the number of pixels in I . Ir is the reconstructed image output by the

network.

The network also incorporates the L2 norm to capture pixel-wise differ-

ences, supplementing the SSIM loss. SSIM can sometimes overlook minor

pixel-level anomalies because of its broader focus on local structure, the L2

norm, however, directly measures differences at each pixel, providing pre-

cise, localized feedback on pixel-level deviations. Thus, the combination of

L2 norm with SSIM provides a balance: L2 norm detects detailed pixel-wise

deviations, while SSIM verifies these differences in the context of their struc-

tural neighborhoods, reducing the likelihood of false positives due to isolated

pixel variations.

The final loss can be written as:

Lrec(I, Ir) = λLSSIM(I, Ir) + l2(I, Ir) (3)

where λ is a loss balancing hyper-parameter.

8
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Discriminative Sub-Network

The Discriminative Sub-Network receives as input the concatenated channels

of the original image I and the reconstructed image Ir generated by the Re-

constructive Sub-Network. This network is designed to generate a precise

anomaly map, Mo, which highlights regions in the input image where discrep-

ancies with the reconstruction indicate potential anomalies. The output Mo is

an anomaly score map, maintaining the same dimensions as the input image

I . For this pixel-wise anomaly scoring task, a Cross-Entropy loss could serve

as a basic loss function. However, using Cross-Entropy alone may be insuffi-

cient, as the generated synthetic anomalies can vary greatly in difficulty, and

the goal is to make the network consistently responsive to challenging exam-

ples. To address this, Focal Loss is applied instead, which down-weights well-

classified instances and focuses learning on harder examples. This adjustment

helps improve the model’s performance on difficult anomaly detection cases.

The Focal Loss can be expressed as:

Lseg = −αi

i=n∑
i=1

(1 − pi)γ ∗ ln(pi) (4)

Making the final loss of the entire network as:

L(I, Ir, Ma, M) = Lrec(I, Ir) + Lseg(Ma, M) (5)

Perlin Noise Generation

Autoencoders tend to over-generalize anomalies, while discriminative approaches

often over-fit to synthetic anomalies, limiting their ability to generalize to

real-world data. DRÆM addresses this by generating just-out-of-distribution

appearances, allowing the network to learn an effective distance function by

capturing deviations between normal and anomalous patterns.

To achieve this, DRÆM first generates a noise pattern using Perlin noise

[2], which is converted into a binary anomaly map Ma by applying a random

9
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threshold. Then, an anomaly texture image A, sourced from the DTD dataset,

which contains textures unrelated to the input distribution, undergoes several

random augmentations like posterization, sharpening, or changes in brightness

and color to create variation.

This anomaly texture A is blended with the original image I, guided by the

anomaly map Ma. This introduces anomalies that are unusual but not overly

distant from normal data, helping the network sharpen its ability to distinguish

anomalies. The process creates the augmented image Ia using the following

equation:

Ia = Ma � I + (1 − β)(Ma � I) + β(Ma � A) (6)

where Ma is the inverse of Ma, � represents element-wise multiplication,

and β is a blending opacity parameter, uniformly sampled from β ∈ [0.1, 1.0].

The random blending and augmentation allows for the creation of diverse

anomalous images from a single texture source, the process can be seen in

Figure 2.

This method allows for the creation of varied training data, consisting of

the original image I , the augmented image Ia containing simulated anomalies,

and the corresponding anomaly mapMa, helping the model better handle real-

world anomaly detection scenarios.

Cutout

Preliminary experiments with other networks revealed difficulties in detecting

anomalies like leaflets and sometimes blisters, which are primarily white in

color. Since both product types are found most of the times in a rectangular

shape, the cutout methodwas tested to see if it improved anomaly detection for

these cases. The process was straightforward: a white rectangle was randomly

added to the image at a feasible size (not too large or too small) and position.

During training, the images could follow one of three paths:

10
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Figure 2: Anomaly generation process. First Perlin noise is applied to create a

suitable maskMa, then an image is sampled from the DTD dataset and applied

to the original image according to Ma

• The image was left unaltered.

• Perlin noise was applied to the image.

• The cutout method was used.

Image level anomaly score

To calculate the image-level anomaly score from the output of the discrimi-

native sub-network, which produces a pixel-level anomaly detection map Mo,

a simple yet effective approach can be used. First, the anomaly map Mo is

smoothed using a mean filter convolution, which helps aggregate anomaly re-

sponses across neighboring pixels. This step ensures that local variations are

reduced, making the anomaly more evident.

The image-level anomaly score is then computed as the maximum value

of the smoothed anomaly score map. Mathematically, it can be expressed as:

η = max(Mo ∗ fsf ×sf
), (7)

11
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where fsf xsf
is a mean filter of size sf × sf and * is the convolution operator.

3.3 DDAD

Diffusion Models

Diffusion models are generative models that were originally inspired by non-

equilibrium thermodynamics,aiming to learn a distribution pθ(x) that closely

resembles the data distribution q(x). The model operates in two key phases:

the forward process and the reverse process.

In the forward process, Gaussian noise is incrementally added to an input

image (or data sample) over a series of steps, ultimately converting it into pure

noise. Mathematically, this can be expressed as:

q(xt|xt−1) = N(xt;
√

1 − βtxt−1, βtI) (8)

where xt represents the noisy version of the data at step t, and is a time-

dependent noise variance, while βt ∈ (0, 1) representing the variance schedule

that determines how noise is added at each timestep. The reverse process aims

to reverse this noise by learning to gradually denoise the image, step by step,

until the original data distribution is recovered. This is modeled as a Markov

chain, with each step predicting the denoised data from a noisy sample. The

goal is to approximate the posterior distribution:

pθ(xt−1|xt) = N(xt−1; µθ(xt, t), Σθ(xt, t)) (9)

where µθ and Σθ are the parameters learned by the model to estimate the mean

and covariance, and θ represents the model’s parameters. During training,

diffusion models minimize a variational bound on the negative log-likelihood

of the data, this function can be written as:

∇xtlogpθ
(xt) = − 1√

1 − αt

ε
(t)
θ (xt) (10)

12
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Here, αt is defined as the cumulative product of a noise schedule βt, where:

αt =
t∏

s=1
(1 − βs), (11)

The term ε
(t)
θ (xt) represents the noise predicted by the model at timestep

t, which approximates the true noise ε added to the data during the forward

diffusion process. This is used to compute the gradient of the log-probability

∇xt log pθ(xt), facilitating the denoising process.

Essentially, they learn to map noisy samples back to their original form

by estimating the noise at each step. Once trained, the model can sample

new data by reversing the diffusion process, starting from random noise and

progressively denoising it to generate realistic samples.

Conditioned Denoising Process for Reconstruction

As discussed in Section 3.3, reconstructing a target image y involves apply-

ing the reverse diffusion process, wherein a perturbed image xt is progres-

sively denoised. A critical component of this reconstruction lies in condition-

ing the score function on the target image, resulting in a posterior score func-

tion ∇xtlogpθ(xt|y). Nevertheless, directly computing this posterior score is

challenging due to the differing signal-to-noise ratios between xt and y. A key

assumption simplify this: if the reconstructed image x0 closely approximates

y, adding noise to y at the same level as xt will yield a noisy version yt that

aligns with xt. This approach facilitates guiding xt towards yt at each step of

the denoising process. The noisy image yt is derived by adding noise, pre-

dicted by the diffusion model as ε
(t)
θ (xt), to y. Consequently, the conditioning

on y is updated to yt, leading to the posterior score function ∇xtlogpθ(xt|yt),

which guides the denoising process. By applying Bayes’ rule, the posterior

score can be expressed as:

∇xt log pθ(xt | yt) = ∇xt log pθ(xt) + ∇xt log pθ(yt | xt). (12)

13
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A primary challenge lies in computing the conditional score ∇xtlogpθ
(yt|xt),

as it is often intractable. However, once yt is obtained, this likelihood can

be estimated. Intuitively, the conditional score serves as a correction factor

to account for the divergence between xt and yt at each denoising step. The

divergence is quantified as xt − yt, and the updated noise term ε̂ is given by:

ε̂ = ε
(t)
θ (xt) − w

√
1 − αt(yt − xt), (13)

where w is a weighting parameter that controls the influence of the condition-

ing. Using the updated noise term ε̂, the new prediction f̂
(t)
θ (xt) is computed

as previously described. The denoised image xt−1 is then obtained via the

following step:

xt−1 = √
αt−1f̂ θ(t)(xt) +

√
1 − αt − 1 − σ2

t ε
(t)
θ + σtεt, (14)

Reconstruction for Anomaly Detection

The denoising process aims to reconstruct a cleaner version of an image by

removing anomalies. Similar to the DRAEM architecture 3.2, the model is

trained exclusively on nominal data, with anomalies appearing in low-probability

regions of the distribution pθ(x). During the denoising trajectory, early steps

capture coarse, abstract features of the image, while later steps refine the finer

details. Since anomalies typically manifest in these finer details, the denoising

process can begin earlier in the trajectory (T ′ < T ), where the signal-to-noise

ratio remains sufficient to distinguish nominal patterns from anomalous ones.

Anomaly Scoring

To compute the anomaly score for the network, two complementary approaches

are employed: a pixel-wise comparison and a feature distance-based compari-

son, both performed between the input and its reconstruction. The use of both

methods addresses the limitations of relying solely on pixel-wise comparisons,

14



15

Figure 3: DDAD architecture

which may fail to capture subtle differences such as variations in edges, struc-

tures, or colors. By integrating these approaches, the detection capabilities are

significantly enhanced.

The pixel-wise metric Dp is computed using the L1 norm in pixel space.

For the feature distance Df , a method inspired by PatchCore [14] and PaDiM

[7] is used. Adaptive average pooling is applied to smooth each feature map

spatially, aggregating featureswithin a specified patch into a single representa-

tion while retaining the input dimensions. Cosine similarity is then employed

to calculate the feature distance.

Df (x0, y) =
∑
j∈J

(1 − cos(φj(x0), φj(y))), (15)

In this context,x0 is the input image, y it’s reconstruction, φ represents a pre-

trained feature extractor, and j ∈ J indicates the set of layers considered for

feature extraction. To maintain the generality of the features used, only lay-

ers j ∈ 2, 3 are selected. The pixel-wise distance Dp is normalized so that it

shares the same upper bound as the feature distance Df . The final anomaly

score is then derived by combining both the pixel and feature distances:

Danomaly = (vmax(Df )
max(Dp) )Dp + Df (16)

where v controls the importance of the pixel-wise distance.
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Domain Adaptation

Since the pretrained feature extractor was trained on ImageNet, it often strug-

gles to capture domain-specific nuances relevant to anomaly detection, partic-

ularly since we use our own custom dataset. To address this, domain adapta-

tion is employed. The approach involves selecting a random image x from the

training dataset, adding noise to generate a perturbed image xt, and choosing

a target image y also from the training dataset. The goal is to use a trained

denoising model θ to reconstruct an approximation of y by denoising xt to ob-

tain x0. Given the expectation that x0 ∼ y, their features, denoted as φj(x0)

and φj(y), should be closely aligned. Fine-tuning is done by minimizing the

feature distance, using a loss function LSimilarity based on cosine similarity,

transforming the pretrained model into a domain-adapted network φ̂.

To maintain the generality of the original model, a distillation loss is intro-

duced using a frozen feature extractorφ, representing the state of the networkφ

before domain adaptation. The domain adaptation loss is therefore expressed

as:

LDA = LSimilarity(x0, y) + λDLLDL(x0, y)

= ∑
j∈J(1 − cos(φj(x0), φj(y)))

+ λDL
∑

j∈J(1 − cos(φj(y), φj(y)))

+ λDL
∑

j∈J(1 − cos(φj(x0), φj(x0)))

where λDL is the significance of distillation loss LDL.

3.4 Masking

Empirical Masking

In this project, images often contained highly detailed sections or were occa-

sionally blurred due to the constraints of the camera’s position. This variabil-

ity caused the networks to identify numerous false positives. To mitigate this

issue, heavy masking was extensively applied across all images. However,
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no predefined masking strategy was used; the masking was entirely empiri-

cal. Each network was initially evaluated without masking, which allowed

for a thorough error analysis to identify key areas where masking might be

beneficial. Examples of masking across all views are shown in Figure 4.

The term ”heavy” masking is used because, in some cases, it covered por-

tions of the anomaly. Although this might not be ideal in many scenarios, the

goal here is not perfect segmentation. Instead, the objective is to highlight

areas that could help the user locate the anomaly. Therefore, even if a section

of the anomaly is masked, as long as the overall anomaly remains detectable,

the network’s performance is considered satisfactory.

Figure 4: Visualization of each view with heavy masking applied

Image Registration

A portion of the dataset consisted of images with slight shifts in the camera

angle or position. This was done to simulate a real-world scenario, where an

operator might accidentally nudge the camera, causing a change in its view-

point. A typical solution to handle this issue is Image Registration, which
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involves aligning different data sets to a common coordinate system. The pro-

cedure used here was simple: a secondary dataset containing shifted images

was created, then an image from the training set, captured with a consistent

camera angle, was chosen as the reference image.

The image registration process was carried out as follows:

• Convert Images to Grayscale: Both the reference and the image to be

aligned were first converted to grayscale for processing.

• Feature Detection: ORB (Oriented FAST and Rotated BRIEF)[15]

from the OpenCV[5] library was used to identify and extract key points

and their descriptors in both images. These key points represent distinc-

tive patterns in the images that can be matched.

• Feature Matching: The key points between the reference and the im-

age to be alignedwere compared usingBFMatcher (Brute ForceMatcher).

BFMatcher.match() was used to retrieve the bestmatch, while BFMatcher.kn-

nMatch() allowed the retrieval of the top Kmatches for further analysis.

• Filtering Matches: The top matches were selected, and noisy or irrel-

evant matches were filtered out to ensure accuracy.

• Homography Computation: A homography transform was calculated

based on the filtered matches. This transform describes how the image

needs to be warped to align with the reference.

• TransformationApplication: The computed homographywas applied

to the original unaligned image (and the ground truth if present) to pro-

duce the aligned output.

This process allowed the dataset to maintain consistency despite slight

shifts in the camera’s position, during Section 5 the method will be explored in

more depth to see if it actually gave any improvements, an example of image

registration can be seen in Figure 6.
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Figure 5: The image on the left shows the A view without any shifts, while

the one on the right demonstrates the same view after applying a shift.

Figure 6: Image registration applied on the A view. It can clearly be seen how

the image was shifted by looking at the bottom left and up right corners.
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Timing of masking

The timing of when masking is applied is critical in this experiment, as it can

significantly influence the results. There are two main stages where masking

can be introduced:

• Pre-Anomaly Map Computation: In this approach, masking is ap-

plied before any anomaly map is generated. Both the input image and

its reconstruction are masked prior to calculating the anomaly maps.

This means that the masked areas do not contribute to the computation,

potentially leading to less noise in the anomaly detection process.

• Post-Anomaly Map Computation: Here, masking is applied after the

anomaly map has been computed. In this case, the designated masked

regions are set to 0 in the anomaly map, effectively silencing any poten-

tial anomaly signals from those areas. This method ensures that masked

regions do not trigger false anomalies during the final evaluation.

Impact of masking on DRAEM

DRAEM applies a softmax operation to enhance anomaly regions while re-

ducing values in normal areas. Masking before or after the softmax affects

the result differently. When masking is applied before softmax, the masked

regions do not contribute to the softmax calculation. This means that if the

highest values were in the masked areas, the output distribution might shift.

Conversely, masking after softmax simply nullifies the output values in the

masked regions without altering the computed distribution.

Impact of masking on DDAD

The impact of masking is quite evident in DDAD. When masking is applied

before computing the anomalymaps, it affects both the pixel-wise and feature-

wise distance calculations, with portions of the image intentionally obscured.

Additionally, the pixel-wise distance undergoes normalization before the final

mask is produced. This preprocessing can lead to varying contributions when
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the final anomaly map is constructed, potentially altering the sensitivity to

certain types of anomalies.

3.5 Threshold selection

Setting the threshold is arguably the most crucial aspect of the entire anomaly

detection pipeline, as it can make the difference between an accurate anomaly

segmenter and a scenario where no anomalies are detected at all. Inspired by

the methodology used in the MVTEC paper [3], three distinct thresholding

methods were tested:

• Maximum Threshold.

• p-Quantile Threshold.

• k-Sigma Threshold.

All thresholds were initially determined using a validation dataset and later

applied during the evaluation phase.

Maximum Threshold

As the name implies, this method selects the highest anomaly score found

in the validation set as the threshold. In theory, images without anomalies

should not exhibit high scores; hence, if the method functions correctly, no

anomaly should be detected in anomaly-free images. However, this method

is sensitive to outliers, as a single pixel with a high anomaly value can set an

unusually high threshold. While this approach can minimize false positives,

it may increase the false negative rate, potentially missing some anomalies.

Segmentation quality may suffer slightly under this method, but it’s generally

acceptable given that the primary focus is on detection over precise localiza-

tion.
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p-Quantile Threshold

This thresholding method aims to mitigate the influence of outliers by consid-

ering the entire distribution of anomaly scores in the validation set. It allows

for a certain percentage of validation pixels to be classified as anomaly-free.

The threshold is determined by selecting a p-quantile, where p usually falls

within the range from 95% to 99%. This ensures that only a small percentage

of high anomaly scores (potentially anomalies) exceed the threshold, making

the estimation more robust.

k-Sigma Threshold

In the final method, the mean µ and standard deviation σ of the validation set’s

anomaly scores are calculated. The threshold is then set as t = µ + kσ where

k is typically 3, assuming a Gaussian distribution. A k-value of 3 captures

about 99% of the distribution’s area. However, anomaly scores rarely fol-

low a perfect Gaussian distribution, so the actual false positive rate may vary

significantly from this expectation. This approach balances sensitivity and ro-

bustness but may still be prone to some misclassifications if the distribution

deviates from Gaussian assumptions.
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4 Evaluation metrics

When evaluating the performance of anomaly detection and segmentationmeth-

ods, a range of metrics is used to capture different aspects of accuracy and ro-

bustness. Key metrics include the Area Under the Receiver Operating Charac-

teristic Curve (AUROC), the Per-Region Overlap (PRO), Average Precision

(AP), and the Intersection over Union (IoU). Each metric offers unique advan-

tages that make it suitable for different aspects of anomaly evaluation.

4.1 AreaUnder theReceiverOperatingCharacteristic Curve

AUROC is a common metric for binary classification tasks, measuring the

ability of a model to differentiate between normal and anomalous data. It cal-

culates the area under the ROC curve, which plots the true positive rate against

the false positive rate at various threshold settings. The primary advantage of

AUROC is its threshold-independence, providing a single performance score

that encapsulates how well the model separates normal from anomalous data

across all possible thresholds. In this experiment, AUROC will be computed

at two levels:

• Image-level AUROC: This measures the model’s ability to classify en-

tire images as either normal or anomalous, evaluating its global perfor-

mance in distinguishing between the two categories.

• Pixel-level AUROC: This evaluates the model’s performance in distin-

guishing normal and anomalous regions at a finer granularity, assessing

how accurately it identifies individual anomalous pixels within the im-

ages.

This dual-level evaluation provides a comprehensive understanding of the

model’s performance, both in terms of overall classification and precise anomaly

localization.
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4.2 Per-Region Overlap

PRO, or Per-Region Overlap, specifically measures the overlap between pre-

dicted and true anomalous regions. This metric accounts for the importance

of localizing anomalies accurately rather than just detecting them, which is

particularly crucial in segmentation tasks. It rewards predictions that closely

match the size and shape of true anomalies, making it a valuablemeasure when

accurate localization is essential.

4.3 Average Precision

Average Precision (AP) evaluates the precision-recall trade-off, summarizing

the precision at various recall levels. This metric is particularly sensitive to

class imbalances, often seen in anomaly detection tasks where anomalies are

rare compared to normal instances. AP is useful because it emphasizes the

importance of high precision (low false positives) at all levels of recall, making

it a strong indicator of a model’s robustness.

4.4 Intersection over Union

IoU, or Intersection over Union, quantifies the overlap between predicted and

ground truth segmentation masks by computing the ratio of the intersection

to the union of these areas. This metric is widely used in segmentation tasks

because it directly measures the accuracy of spatial predictions. Higher IoU

values indicate better alignment between predicted and true anomaly regions,

making it a crucial measure for assessing how precisely the anomalies are

localized.

24



25

5 Experiments and Results

5.1 Dataset

Anomaly detection datasets like MVTecAD [3] and VisA [19] typically fo-

cus on objects in the foreground, occupying most of the image. This setup

allows for assumptions about the potential location of defects, even if they are

small. In contrast, our dataset presents a more complex scenario, as it involves

images captured inside a machine, often cluttered with irrelevant details such

as moving parts, wires, and dents, which complicates the anomaly detection

task. The dataset was carefully curated, consisting of 193 images from five

different viewpoints. Of the 114 anomaly-free images, only 76 were selected

for training. This subset was further divided into training and validation sets,

with 80% used for training and 20% set aside for validation to later assist with

threshold computation. The remaining 38 anomaly-free images featured slight

shifts in camera angle and small variations such as moving wires and mechan-

ical parts. These were used during evaluation to assess the network’s robust-

ness to minor viewpoint change, which is an important consideration given

that, in real-world scenarios, cameras are rarely perfectly stationary and may

be slightly displaced by operators. The dataset also included 79 anomalous

images, which were used to evaluate the network’s ability to detect defects,

including those with slight viewpoint shifts combined with anomalies. Exam-

ples of both normal and anomalous images for each viewpoint can be seen in

Figure 7. Each image in the dataset has a high resolution of 2048x3072, which

introduces several challenges if not treated properly. Firstly, training becomes

impractical due to the excessive time andmemory requirements needed to pro-

cess such large images. Secondly, while evaluation speed may not be critical

for our task, the time difference can still be significant from a practical stand-

point. Processing a high-resolution image can take much longer, with times

ranging from 20 seconds or more, compared to the more efficient 1-5 seconds

that a lower resolution could achieve. This disparity can be crucial for end
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users, as faster evaluation times are generally preferred in real-world applica-

tions.

5.2 Batch size

In this study, the batch size was set to 1 due to several constraints. First, each

view contained a limited number of images, typically fewer than 16, which

restricted the feasible batch size as training was conducted independently for

each view. Furthermore, attempts to increase the batch size resulted in mem-

ory overflows, halting the training process. These interruptions were partly

due to the hardware limitations inherent to this project, as well as the larger

dimensions at which images were processed. In contrast, standard datasets,

such as MVTecAD, feature images at lower resolutions, and existing models,

such as DDAD, are trained at 256x256 (while DRAEM does not specify an

input size). In our project, however, images were trained and evaluated at a

resolution of 512x512 to preserve more fine-grained detail, which substan-

tially increased memory requirements.

5.3 DRAEM results

The networkwas trained for 3000 epochs, following the original paper’s setup.

The learning rate was initialized at 10−4 and reduced by a factor of 0.1 after

1200 and 2100 epochs. Additionally, Cutout augmentation was applied during

training.

Metrics overview

From epoch 2000 onwards, models were saved at intervals of 250 epochs, re-

sulting in five different saved models. Each saved model was evaluated across

eight scenarios, combining the factors of post-masking (PO) vs. pre-masking

(PRE), masking (M) vs. no masking (NM), and image registration (R) vs. no
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A view

A2 view

B view

B2 view

C view

Figure 7: Anomaly-free and anomalous images from each view of themachine
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image registration (NR). The results of these evaluations are presented in Ta-

bles 1, 2, 3, 4, and 5. Only the performance metrics of the best-performing

model are included in the final results.

The tables highlight the unique advantages of different techniques for each

view. For evaluation, eachmetric provides a distinct perspective on themodel’s

performance. However, accuracy stands out as the most critical metric, as it

directly reflects the system’s ability to identify anomalies without false posi-

tives or false negatives essential for end users.

For View A, the optimal configuration appears to be PO+M+NR, though a

similar setup not incorporating masking achieves comparable results with less

accuracy. This demonstrates that masking facilitates more effective anomaly

detection in this view.

ViewA2, on the other hand, exhibits robust performance across all masking-

based configurations. This resilience likely stems from the presence of con-

veyor belts in the images, which can lead to false positives if masking is not

applied. By integrating masking, the model effectively identifies anomalies

without interference from the conveyor belt.

View B presents significant challenges due to blurry images and small

anomalies. In this case, the combination of masking and image registration

proves instrumental in enhancing performance. Conversely, View B2 shows

great potential. Masking is less intrusive here, and the images provide a clear

view of anomaly locations. Each configuration offers distinct strengths, mak-

ing this view particularly adaptable and effective.

Lastly, ViewC is themost complex tomanage. It requires extensivemask-

ing and benefits substantially from image registration, both of which are cru-

cial for improving accuracy in anomaly detection.

Results visualization

A key aspect of the evaluation involves visualizing the detected anomalies for

the user. While an image may be labeled as anomalous, the localization of
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A view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (68.0,93.9) (60.0,99.5) (86.7,94.0) (61.3,99.6) (68.0,93.9) (60.0,99.5) (91.6,97.5) (69.1,98.7)

PRO 91.7 91.3 92.5 92.4 91.7 91.3 92.1 87.8

IoU 52.4 54.9 52.6 55.2 53.9 54.9 53.6 16.7

AP 75.2 78.0 75.0 80.3 75.2 78.0 76.0 60.6

ACC 70.0 70.0 75.0 70.0 75.0 70.0 75.0 75.0

Table 1: DRAEM Performance metrics under different configurations for A

view, the AUROC is divided into image level AUROC and pixel level AU-

ROC

A2 view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (100,99.7) (100,98.8) (100,99.7) (100,98.8) (100,99.7) (100,98.8) (100,99.7) (100,98.8)

PRO 97.3 86.7 97.3 86.7 97.3 86.7 97.3 86.7

IoU 58.2 54.7 58.2 54.7 57.4 54.7 57.4 54.7

AP 81.3 76.4 81.3 76.4 81.3 76.4 81.3 76.4

ACC 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0

Table 2: DRAEM Performance metrics under different configurations for A2

view

B view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (73.3,97.9) (61.3,99.1) (38.7,97.8) (38.7,99.2) (73.7,97.9) (61.3,99.1) (38.7,99.2) (38.7,99.2)

PRO 92.2 85.3 90.2 85.7 92.2 85.3 90.2 85.7

IoU 45.2 42.7 41.3 42.6 42.8 42.7 41.1 42.6

AP 73.3 70.7 70.7 72.2 73.3 70.7 70.7 72.2

ACC 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0

Table 3: DRAEM Performance metrics under different configurations for B

view

B2 view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (83.3,95.8) (75.0,99.8) (85.0,95.8) (73.3,99.8) (83.3,95.8) (75.0,99.8) (85.0,95.8) (73.3,99.8)

PRO 96.0 98.3 95.9 98.1 96.0 98.3 95.9 98.1

IoU 51.1 53.5 50.8 51.2 51.1 53.5 50.8 51.2

AP 88.2 86.8 87.5 83.8 88.2 86.8 87.5 83.8

ACC 78.9 78.9 78.9 78.9 78.9 78.9 78.9 78.9

Table 4: DRAEM Performance metrics under different configurations for B2

view

C view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (91.6,97.5) (69.1,98.7) (92.0,97.3) (70.3,98.4) (91.6,97.5) (69.1,98.7) (92.0,97.3) (70.3,98.4)

PRO 92.1 87.8 90.4 85.4 92.1 87.8 90.4 85.4

IoU 53.6 16.7 48.5 25.7 53.6 16.7 48.5 25.7

AP 76.0 60.6 73.4 63.3 76.0 60.4 73.4 63.3

ACC 85.4 60.4 81.2 62.5 87.5 60.4 85.4 62.5

Table 5: DRAEM Performance metrics under different configurations for C

view

the anomaly could still be inaccurate. In Figure 8, a correct localization is

demonstrated, where the predicted anomaly mask closely matches the ground

truth. In contrast, Figure 9 shows a case where the localization is correct,
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but the anomaly score is too low, causing the image to be classified as non-

anomalous. Finally, Figure 10 illustrates a poor localization example, where

the image is classified as anomalous, but the predicted anomaly map bears no

resemblance to the ground truth.

These examples highlight two important concerns. First, while the net-

work may accurately localize an anomaly, the image may be discarded due to

a low anomaly score. Second, an image labeled as anomalous may have the

anomaly predicted in entirely incorrect locations. These issues underscore the

challenges of using a threshold as a reliable indicator for anomaly classifica-

tion. Ultimately, these results point to the need for strategies to improve the

model’s robustness.

5.4 DDAD results

Metrics overview

DDAD followed a similar methodology to DRAEM in terms of model saving

and testing procedures. The results are summarized in Tables 6, 7, 8, 9, and

10.

For the A view, the model performs significantly better with masking and

without image registration, achieving an accuracy of 95.0%. This improve-

ment is largely attributed to the masking process, which effectively addressed

false positives caused by anomalies detected in anomaly-free images, partic-

ularly in challenging areas for the model to learn.

Similarly, the A2 view benefits from masking, which mitigates false posi-

tives arising from features like the conveyor belt that previously caused issues.

In contrast, the B view shows consistent accuracy across all implementa-

tions, indicating that the architecture struggles to reliably detect certain anoma-

lies, regardless of the applied techniques. However, some methods demon-

strate superior localization of detected anomalies, as evidenced by the metrics.
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Figure 8: DRAEM example of correctly localized anomaly of the C view,

from top left to bottom right, the original image, the reconstructed image with

masking applied, the anomaly map generated, the ground truth, the predicted

anomaly map and finally the anomaly displayed on the image

The B2 view yields strong results for both masking and non-masking ap-

proaches when image registration is not applied. This is consistent with ob-

servations in DRAEM, as the B2 view provides clear images where anomalies

are relatively easy to detect. Errors primarily stem from machine components

in areas unlikely to trap products. To better evaluate the model’s robustness,

anomalies were intentionally placed in these regions for testing.

Finally, the C view highlights the model’s inability to learn effectively

from this perspective as seen in Figure 11. The best performance occurs when

all images are labeled as anomalies, suggesting a lack of meaningful feature

extraction. Masking and image registration offer slight improvements, but

31



32

Figure 9: DRAEM example of correctly localized anomaly of the C view,

however the image anomaly score is too low and the final image is treated as

a normal image

the overall results remain suboptimal and require further refinement. Using a

lower threshold might solve some problems but could also lead to many false

negatives.

Results visualization

DDAD demonstrates strong performance in identifying anomalies. Unlike

DRAEM, which tends to produce highly detailed anomaly maps closely re-

sembling the ground truth, DDAD often encapsulates anomalies in a blob-like

feature. From a practical perspective, this behavior can be advantageous, as

it visually aids users in quickly locating anomalies within the image. A clear
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Figure 10: DRAEM example of uncorrectly localized anomaly of the C view

example of this can be observed in Figure 12.

However, DDAD is not without its limitations, as illustrated in Figures 13

and 14. The first example presents a challenging scenario due to the camera

setup and the inherent blurriness of the image, causing portions of the image to

be incorrectly flagged as anomalies, resulting in the entire image being classi-

fied as anomalous. In the second example, within the same view, some regions

of the image are mistakenly identified as anomalies. On the positive side, the

actual anomaly is still correctly localized, showcasing DDAD’s potential to

retain critical information despite occasional errors.

These results once again emphasize the critical importance of selecting

an appropriate threshold and employing more refined masking techniques to

minimize the occurrence of false anomalies.
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Figure 11: C view image after being processed with DDAD, the model is un-

able to extract meaningful features and treats most of the image as an anomaly

Figure 12: DDAD example of correctly localized anomaly in the B2 view
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Figure 13: DDAD example of a bad detection In the B view

Figure 14: DDAD example of a bad localization In the B view
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A view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (53.3,93.4) (44.0,98.0) (92.0,93.5) (80.0,98.6) (74.7,94.1) (44.0,98.0) (93.3,94.1) (80.0,98.6)

PRO 95.9 94.7 96.7 96.9 96.1 94.7 96.5 96.9

IoU 39.0 30.9 43.8 39.9 17.1 30.9 19.3 39.6

AP 55.5 46.1 59.5 58.3 56.9 46.1 59.4 58.3

ACC 75.0 75.0 95.0 75.0 75.0 75.0 90.0 75.0

Table 6: DDAD Performance metrics under different configurations for A

view

A2 view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (100,99.7) (75.0,99.5) (100,99.7) (75.0,99.5) (100,99.7) (75.0,99.5) (100,99.7) (75.0,99.5)

PRO 97.7 97.0 97.7 97.0 97.4 97.0 97.4 97.0

IoU 31.1 14.0 31.1 14.6 17.3 14.0 17.3 14.0

AP 77.5 72.4 77.5 72.4 78.4 72.4 78.4 72.4

ACC 90.0 80.0 90.0 80.0 100.0 80.0 100.0 80.0

Table 7: DDAD Performance metrics under different configurations for A2

view

B view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (45.3,96.4) (49.3,93.9) (80.0,95.8) (57.3,93.9) (66.7,97.5) (49.3,93.9) (85.3,97.1) (57.3,93.9)

PRO 90.8 76.8 87.7 81.9 89.7 76.8 88.6 81.9

IoU 31.6 26.4 32.2 32.4 27.2 25.1 27.2 32.4

AP 54.4 42.3 52.7 47.0 51.8 42.3 50.9 47.0

ACC 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0

Table 8: DDAD Performance metrics under different configurations for B

view

B2 view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (60.0,95.5) (55.0,99.6) (78.3,95.3) (78.3,99.4) (80.0,99.4) (55.0,99.6) (85.0,99.1) (78.3,99.4)

PRO 95.3 97.9 94.4 97.0 97.0 97.9 96.2 97.0

IoU 44.5 38.9 32.5 28.1 47.4 35.9 35.4 28.5

AP 76.5 75.3 71.8 74.5 78.7 75.3 74.6 74.5

ACC 78.9 78.9 89.5 89.5 78.9 78.9 89.5 89.5

Table 9: DDAD Performance metrics under different configurations for B2

view

C view

PO+M+R PO+NM+R PO+M+NR PO+NM+NR PRE+M+R PRE+NM+R PRE+M+NR PRE+NM+NR

AUROC (55.4,97.2) (34.1,99.0) (51.0,93.2) (51.0,93.4) (56.6,99.7) (34.1,99.0) (37.9,94.4) (51.0,93.4)

PRO 93.9 92.0 68.0 58.7 96.8 92.0 67.5 58.7

IoU 23.4 6.5 1.4 0.7 16.1 6.6 1.3 0.7

AP 63.4 37.0 31.4 32.0 62.4 37.0 25.7 32.0

ACC 54.2 54.2 54.2 54.2 54.2 54.2 54.2 54.2

Table 10: DDAD Performance metrics under different configurations for C

view

5.5 Threshold results

Throughout the document, the importance of threshold selection has been em-

phasized as a pivotal aspect, if not the most critical component, of the anomaly
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detection pipeline. To clarify this point, a brief overview of the three thresh-

olding methods tested is provided below.

Starting with max-threshold, this method is the ”safe” option. It generates

a significantly lower number of false positives compared to the other methods,

making it ideal for particularly challenging scenarios. However, this comes at

a cost: the lower false positive rate often translates to a lower true positive rate,

meaning the model maymiss true anomalies. This trade-off can be suboptimal

for tasks where detecting all anomalies is crucial.

On the other hand, p-quantile and k-sigma thresholds behave similarly in

most cases, often leading to comparable threshold values. Of the two, k-sigma

tends to yield slightly more accurate results than p-quantile. These thresholds

are well-suited for the majority of the views tested. However, their higher

accuracy comes with a downside: an increase in false positives and a greater

likelihood of poor anomaly localization. Despite these drawbacks, this be-

havior is often preferred, as the higher likelihood of detecting an anomaly

outweighs the inconvenience of additional false positives. In the worst-case

scenario, the user may need to inspect the machine before resuming operation,

a precaution that is generally acceptable in industrial settings.

An example with the same image tested with the different thresholds can

be seen in Figures 15, 16 and 17.

5.6 Neural Networks comparison

Graphs overview

For each configuration tested, the corresponding graphs were also computed,

including img_AUROC, pixel_AUROC, pixel_PRO, the precision-recall curve,

and the IoU curve. These graphs provide a visual summary of the metrics, of-

fering an additional layer of analysis.

To derive meaningful insights, two types of comparisons were conducted.
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Figure 15: Anomaly detection using k-sigma threshold

Figure 16: Anomaly detection using max threshold
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The first compared performance across different views for each saved check-

point, allowing for an assessment of how well the model generalized across

views. The second comparison focused on the same view, analyzing perfor-

mance across different model checkpoints. This was crucial for evaluating

whether training for additional epochs improved performance or yielded di-

minishing returns.

Starting with DRAEM, Figure 18 illustrates the view comparison for the

model’s checkpoint at epoch 3000, utilizing post-masking without image reg-

istration. All curves were generated using the optimal threshold, defined as the

one yielding the highest accuracy. In caseswheremultiple thresholds achieved

the same accuracy, themax-threshold was prioritized, followed by the k-sigma

threshold and then the p-quantile threshold. This prioritization was chosen be-

cause the max-threshold is more ”conservative”, ensuring a more stable and

reliable localization of anomalies.

The results reveal that the B view exhibits the greatest inconsistency, which

aligns with the findings presented in Section 5.3. Conversely, the DDAD re-

sults for the same checkpoint are displayed in Figure 21, showing significant

performance discrepancies in the C and B views compared to the others. These

observations are consistent with the analysis in Section 5.4, further highlight-

ing that these two views present the most significant challenges across both

models.

For the checkpoint comparison, the C view was selected as it posed the

greatest challenge among all the views. Figure 20 illustrates the performance

of View C using the DRAEM model. The results demonstrate a general trend

of improved performance with longer training durations, as models trained

for more epochs often achieve better results compared to earlier checkpoints.

This trend is consistent across all views, with models trained for higher epochs

often outperforming earlier checkpoints or, in some cases, matching their per-

formance. However, occasional drops in performance were observed, sug-

gesting that the benefits of extended training may plateau or vary depending
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on the view and specific configurations.

In contrast, DDAD results, shown in Figure 21, indicate that the model

struggles to extractmeaningful signals fromViewC. Performance across epochs

remains largely stagnant, particularly in terms of the image AUROC score,

which fails to show significant improvement. These findings align with previ-

ously discussed results, reinforcing the view’s status as a challenging scenario

for the model.

5.7 Visualization comparison

An additional evaluation was conducted by comparing the visualization re-

sults of the networks, as shown in Figures 22, 23, 24, 25, 26, and 27. Al-

though these figures represent only a subset of the dataset, similar trends were

observed across other examples. As previously noted, the DDADmodel tends

to envelop anomalies in blob-like shapes, prioritizing coverage over precision,

while the DRAEMmodel strives for precise segmentation, closely mimicking

the contours of the anomaly.

The performance of themodels varies significantly depending on the view.

For instance, in View C, the DRAEM model demonstrates superior strength

and robustness, effectively identifying anomalies with high accuracy. Con-

versely, for View A2, the DDAD model provides more reasonable results,

particularly in challenging scenarios. However, both models exhibit notice-

able shortcomings when masking is absent, highlighting the critical role of

masking techniques in improving anomaly localization.

In conclusion, the comparative evaluation underscores the importance of

model selection and view-specific adaptation in anomaly detection tasks. While

DRAEM and DDAD each have distinct strengths, their performance is highly

context-dependent, suggesting that a hybrid approach ormodel ensemble could

potentially leverage the strengths of both architectures.
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Figure 17: Anomaly detection using p-quantile threshold

Figure 18: Metrics visualization of DRAEMmodel utilising post masking and

no image registration, the model’s checkpoint is the epoch 3000

41



42

Figure 19: Metrics visualization of DDAD model utilising post masking and

no image registration, the model’s checkpoint is the epoch 3000
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Figure 20: Metrics visualization of DRAEMmodel on the C view, best model

configuration was taken
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Figure 21: Metrics visualization for all epochs of DDAD C view

Figure 22: Comparison between DRAEM and DDAD in the A view.
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Figure 23: Comparison between DRAEM and DDAD in the A2 view using

masking.

Figure 24: Comparison between DRAEM and DDAD in the A2 view, no

masking is applied and it can be seen that both networks struggle to detect

only the correct anomaly, hinting at the fact that masking is needed in this

context.
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Figure 25: Comparison between DRAEM and DDAD in the B view.

Figure 26: Comparison between DRAEM and DDAD in the B2 view.

Figure 27: Comparison between DRAEM and DDAD in the C view.
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6 Conclusion

This work presented an in-depth evaluation of two leading anomaly detection

networks, DRAEM and DDAD, applied to a challenging real-world indus-

trial scenario. Each network demonstrated unique strengths and weaknesses,

highlighting their suitability for different aspects of anomaly detection tasks.

DRAEM proved to be robust across various views, showcasing consistent

performance. However, it struggled with precise localization, often producing

more false positives compared to DDAD. On the other hand, DDAD excelled

in anomaly detection and localization in most views, yet its performance fal-

tered significantly on the C view, indicating a lack of generalization to certain

complex scenarios.

Several techniqueswere employed to enhance the performance of both net-

works, including masking and image registration. These techniques demon-

strated their utility, with specific combinations being more effective for par-

ticular views. Additionally, the choice of threshold played a critical role in

achieving optimal results. Three thresholdingmethodswere thoroughly tested,

each proving more suitable for specific conditions. This highlights the impor-

tance of tailoring hyperparameters and processing techniques to the nature of

the data and operational context.

While the networks showed promising results, this study also uncovered

some limitations. A significant concern is their dependence on training data

and settings that may not fully align with real-world applications. This over-

reliance could hinder their adaptability and robustness in dynamic environ-

ments.

6.1 Future Works

In industrial applications, solutions often evolve significantly to meet real-

world constraints and operational needs, and this project is no exception. This
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work was conducted several months ago and has provided a strong founda-

tion for improvements, but developments in the machine setup and use-case

requirements have necessitated a reevaluation and refinement of the approach.

One of the most significant changes has been to the dataset itself. Of the

five original views, only two or three have been deemed meaningful for the

final application, with one still under consideration. These adjustments stem

from the fact that the machine under test was not fully constructed during the

initial evaluation. Subsequent modifications to themachine, such as new com-

ponents added to the C view, have led to significant changes in how anomalies

need to be detected.

The C view, in particular, now features a new point of view and must

contend with a protective covering added to the blister area. While this en-

hancement improves safety and usability, it introduces potential challenges

for anomaly detection due to reflections, occlusions, or distortions caused by

the cover. For the other views, a new version of the A view has been captured,

featuring an improved angle that better highlights the areas of interest. Ad-

ditionally, a revised version of the B2 view is under consideration, aiming to

improve clarity and relevance.

To address the challenges posed by these changes, the use of specialized

illumination techniques is being explored. Improved lighting could help en-

hance visibility, especially for areas beneath the conveyor belt, making it eas-

ier to detect anomalies even in less accessible or darker regions.

These updates represent a critical step in adapting the anomaly detection

pipeline to evolving requirements. By refining the dataset and introducing

targeted improvements to the imaging setup, the system is becoming more

tailored to real-world industrial constraints. This iterative process underscores

the importance of flexibility and ongoing evaluation in developing effective

solutions for complex applications.

Future efforts could also focus on developing a new neural network or

refining existing architectures to better handle diverse scenarios, ensuring they
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can tackle challenges that current models struggle to resolve.
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