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Abstract

Given a combinatorial problem, there could be multiple ways to model it into
a constraint optimization model that could be solved by a solver. Choosing the
right combination of a model and a target solver can have significant impact on the
effectiveness of the solving process. Furthermore, the choice of the best combina-
tion of constraint model and solver can be instance-dependent, i.e., there may not
exist a single combination that works best for all instances of the same problem.
In this thesis, we consider the task of building machine learning models to auto-
matically select the best combination for a problem instance. A critical part of the
learning process is to define instance features, which serve as input to the selection
model. The choice of the feature set can widely impact the final performance of
the machine learning model. During the year, most of the work has focussed on
building the feature set of an instance starting from a low-level representation and
a brief execution of the instance on a solver. Here, we aim to learn the instance
features directly from the high-level representation of a problem instance using a
transformer encoder. This approach not only allows us to incorporate high-level
semantics which could be lost in the low-level representation but it also removes the
necessity of running the instance saving time. Furthermore, using a transformer
encoder to learn the features eliminates the need to hand-craft the feature set, a
process which may be very long and error-prone. We evaluate the performance of
our approach using the Essence modelling language with a case study involving
three different problem classes.
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Chapter 1

Introduction

The following chapter serves as an introduction to this thesis. It will start with
a general introduction to the research field in Section 1.1. Section 1.2 illustrates
the reasons behind the choose of this thesis topic. Section 1.3 will, then, focus on
the main contributions of our research and, finally, Section 1.4 will describe the
organization of this document.

1.1 Research Area
The field of Combinatorial Optimization [31] is a well-established and extensively
studied area that lies at the intersection of mathematics and computer science. Its
primary objective is to determine the optimal solution for a given combinatorial
problem. Over the years, numerous techniques have been developed to express
and model combinatorial problems, each requiring varying levels of expertise to be
effectively utilized. Alongside these modelling techniques, such as SAT and Con-
straint Programming, a variety of programs capable of interpreting the resulting
models and automatically computing solutions have been created. These programs
are commonly referred to as solvers.

To facilitate the modelling phase of a combinatorial problem, the researchers
have developed many high-level languages such as Essence and Minizinc. These
languages abstract much of the complexity of the modelling process and also intro-
duce automatic reformulations that enhance the final model performances. Fur-
thermore, they make it very easy to reuse the same model over multiple solvers as
their formulation is solver-independent.

Despite the significant progress made in developing such techniques and solvers,
none have been able to entirely overcome the inherent complexity of combinatorial
optimization problems. Indeed, it has been formally proven that many of these
problems, such as the well-known Traveling Salesman Problem (which involves
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finding the shortest possible route that visits a set of cities exactly once and returns
to the starting point) [30], are NP-complete. Consequently, any solver capable of
solving such problems must also be NP-complete. However, in practice, it has
long been observed that there is no single algorithm that performs best on all
problems or even on all instances of the same problem [39, 44, 66]. To solve difficult
problems, it has been often proven effective to employ a portfolio of algorithms
with complementary strengths.

The area of research dedicated to identifying the best algorithm of a portfolio
for solving a specific problem is known as Algorithm Selection. This field had,
during the years, been successfully applied to many research domains including
Boolean Satisfiability [80], Constraint Programming [62, 52], AI planning [75],
and combinatorial optimisation [45]. Since it is often difficult to determine which
solver will perform best on a given instance, the authors of SATzilla [80] (along
with many subsequent researchers) have employed machine learning algorithms to
establish a correlation between solvers and their performance on different problem
instances.

Most existing Algorithm Selection tools for Combinatorial Optimization prob-
lems, such as SATzilla and SunnyCP [8], rely on traditional machine Learning
algorithms, such as Random Forest [13]. These algorithms typically require nu-
merical features that effectively represent the input in order to make accurate pre-
dictions. In the context of Algorithm Selection, the input to the Machine Learning
algorithm is a problem instance. However, identifying appropriate features to rep-
resent problem instances is a challenging task. Different tools adopt different sets
of features, which are generally derived by partially executing the instance on a
solver and then collecting relevant statistics from the execution process.

1.2 Motivations
As previously discussed, determining the most effective set of features to use for Al-
gorithm Selection in combinatorial optimization is far from straightforward. More-
over, to the best of our knowledge, no prior research has focused exclusively on
the feature extraction process in this specific context.

The standard approach used to extract instance features is to convert the in-
stance to a low-level representation and run it on a solver. The final result is
a combination of running statistics gathered from the solver execution and some
static features gathered from the low-level instance. Although this process has
been proven effective in multiple works [80, 8], it also presents some drawbacks:
Firstly, converting the instance and running it takes a non-negligible amount of
time limiting the possible time savings of the algorithm selection process. Fur-
thermore, during the conversion from a high to a low-level representation, some
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relations in the instance can be lost. Relations that could, instead, be really useful
during the selection process. Finally, the features extracted using this methodology
had to be manually hand-crafted and selected by some field experts. This process
can be long and error-prone and could, ultimately, decrease the effectiveness of the
final result.

1.3 Contributions
In this work, we introduce a novel approach for feature extraction based on a
Transformer Encoder, which directly processes the textual representation of in-
stances without requiring either parsing or partial execution by a solver. This
offers three different advantages: Working at the high-level instance offers both a
lower computational cost and captures the semantics that may get lost at a lower-
level representation. Finally, our approach removes the need to hand-crafting the
features to use. Using a transformer encoder also allows to automatically learn
the features that better suit the task at hand. Although our methodology was
empirically tested on Essence instances, it remains highly general and applicable
to a wide range of combinatorial optimization problems, without imposing any
assumptions on the underlying solving strategies.

Furthermore, for our work, we used a portfolio of models as well as a portfolio
of solvers to choose from. The final algorithm, as we intend in this work, is in fact
the result of a combination of a model and an algorithm.

To the best of our knowledge, there is only one prior work based on Transformer
Encoders used in a similar context but it was applied to a much more limited
scope and it was limited to only one problem class [68]. We will present the neural
network architecture employed in our feature extraction process and describe the
training methodology designed to capture the semantics of the input instances.
Following this, we will evaluate the extracted features across various algorithm
selection approaches and provide a comparative analysis of our results against
those obtained using an existing feature set developed for similar purposes.

1.4 Organization
This thesis is structured as follows:

Chapter 2 provides a comprehensive overview of the foundational technologies
and concepts necessary to understand the work presented in this thesis, along with
a discussion of prior research closely related to our contributions. Specifically, this
chapter delves into the fields of Combinatorial Decision Making and Optimiza-
tion, Machine Learning, and Deep Learning. In addition, it offers an in-depth
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exploration of the field of Algorithm Selection.
Chapter 3 describes in detail the methodology employed to achieve the results

presented in this thesis. It includes a thorough discussion of the deep neural net-
work architectures utilized, explaining the rationale behind their selection and the
way in which they are trained to extract meaningful features from problem in-
stances. Moreover, this chapter outlines how the extracted features are integrated
into various algorithm selection algorithms to enhance solver performance.

Chapter 4 focuses on the different problem classes selected for evaluation, as
well as the datasets constructed based on these classes. A detailed description is
provided regarding the modelling of each problem class into combinatorial opti-
mization models, the subsequent translation of these models into lower-level rep-
resentations, and the solvers employed for executing those models. Additionally,
this chapter specifies the number of instances generated for each problem class,
explaining the process followed to gather and organize them into datasets suitable
for experimentation.

Chapter 5 begins by detailing the training procedures followed for the deep
neural networks used in this study, including the hyper-parameters and configura-
tions adopted. It then presents a systematic outline of the experiments conducted
to assess the efficacy of our feature extraction methodology. This chapter provides
a detailed analysis of the experimental results, comparing the performance of our
approach against baseline results obtained using alternative features drawn from
existing literature.

Finally, Chapter 6 concludes the thesis by summarizing the main findings and
contributions of our work. It discusses both the strengths and limitations of the
proposed approach, providing a critical evaluation of its practical applicability.
The chapter also outlines potential directions for future research, suggesting possi-
ble improvements and extensions that could further enhance the results obtained.
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Chapter 2

Background

This chapter offers an overview of all the technologies and concepts needed to
develop this project as well as a view of the current landscape of the related fields.

Section 2.1 will focus on the fields of combinatorial decision-making and Op-
timization which is the field we will apply our research on. Section 2.2 will give
an overview of the field of Machine Learning while Section 2.3 mainly focuses on
neural networks. Section 2.4 will focus on algorithm selection and its application
to constraint programming and related fields. Finally, Section 2.5 will give an
overview of the relevant related topics and research.

2.1 Combinatorial Decision Making and Opti-
mization

This section will focus on discussing the field of combinatorial decision-making and
optimization by, firstly, giving a formal definition of it. Then, Section 2.1.2 will
give an overview of the exact methods to solve combinatorial problems while 2.1.1
will focus on approximate methods.

A combinatorial problem is a problem whose solution consists of an assignment
of values to a set of variables with, typically, a discrete domain such that a set
of constraints are satisfied. More formally, we can define a combinatorial problem
with a tuple (V, C, D) where V is a set of variables, C a set of constraints over
those variables and D a set of domains for the variables such that Dv is the domain
of the variable v. The goal is to find an assignment for all variables such that all
constraints hold true. Combinatorial problems come in two forms: (i) satisfaction
problems where any valid assignment is a satisfactory solution. For example, the
N-queen problem [40] is a satisfaction problem where we want to find a position for
N different queens in an N × N chess board in such a way that all queens do not
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attach each other. Chess rules apply. (ii) Optimization problems where, on top
of finding a feasible solution, the problems also require minimising/maximising an
objective variable. For optimization problems, a scoring function F is also needed
to assess the quality of the solution. An example of an optimization problem is
the travelling salesman problem (TSP) [30]. The TSP problem is the problem of
finding the circuit with the smallest length in a graph. The study of algorithms and
techniques for solving combinatorial problems is called Combinatorial Decision-
Making and Optimization which we will call Combinatorial Optimization from now
on. Given a combinatorial problem, there are several ways we can use to find a
feasible solution for it. Among the possible categorizations of the solving methods,
we will focus on the approximate methods vs exact methods categorization.

2.1.1 Approximate Methods
Approximate methods are fast algorithms that find solutions for combinatorial
problems. They can generally find nearly optimal solutions but often get stuck
on local minima or maxima and never converge to an optimal solution. These
methods are generally meant for optimization problems but can be easily adapted
for decision ones.

Local Search Local search methods are iterative optimization techniques that
start with an initial solution and iteratively move to a neighbouring solution with
the aim of improving an objective function. Unlike global search methods, local
search restricts the exploration to a neighbourhood of the current solution, which
makes it computationally efficient but prone to getting stuck in local optima.
Prominent examples of local search include hill climbing, simulated annealing [43],
and variable neighbourhood search [29]. These methods are widely used in practice
due to their simplicity, speed, and effectiveness for large combinatorial search
spaces.

In general, local search relies on the concept of neighbourhood structures, which
define the set of possible moves from one solution to another. The choice of the
neighbourhood structure plays a crucial role in the algorithm’s performance, as it
affects the search space’s connectivity and the ability to escape local optima. While
basic local search can terminate at a local optimum, more advanced variants, such
as simulated annealing, introduce mechanisms to accept worse solutions with a
certain probability, promoting exploration and improving the likelihood of finding
better solutions.

Meta-Heuristic Methods Meta-heuristic methods are higher-level strategies
designed to explore the search space more broadly, making them effective at solving
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complex Combinatorial Optimization problems where traditional methods strug-
gle. Unlike local search methods, which primarily rely on neighbourhood struc-
tures, meta-heuristics incorporate additional mechanisms for escaping local optima
and balancing exploration (searching new areas) and exploitation (refining known
good solutions). Popular meta-heuristic algorithms include genetic algorithms [47],
ant colony optimization [23] or particle swarm optimization [24].

These methods typically use a population-based or memory-driven approach.
For instance, genetic algorithms simulate the process of natural selection by iter-
atively evolving a population of solutions using operators like selection, crossover,
and mutation. Ant colony optimization uses a decentralized agent-based approach
where artificial ”ants” traverse the problem space and deposit pheromones to guide
future searches. Meta-heuristics are highly adaptable and can be tailored to spe-
cific problem domains, making them suitable for applications ranging from logistics
and scheduling to Machine Learning and network optimization.

2.1.2 Exact Methods
Exact methods will always find the optimal solution for a Combinatorial Optimiza-
tion problem given enough compute time. However, in order to prove optimality,
the algorithm may have to navigate the entire search space making exact methods
much slower in contrast to approximate ones. Generally, these algorithms build the
solution by navigating a search tree where each node corresponds to a sub-problem
derived from the original problem. A naive attempt at solving combinatorial op-
timization problems could be to navigate the search tree until all search variables
have been assigned and then verify the correctness of the solution. This is called a
“pure search” algorithm. While correct, this algorithm is exponential in time com-
plexity making it very hard to converge to a solution. Different approaches have
found different ways to cut down the search space, for example, many OR-solvers
algorithms use a process called “relaxation“ which aims at solving a simplified
version of the problem to obtain a bound to the actual problem.

Branch and Bound A better approach to pure search is to use the branch and
bound paradigm [48]. At each step of the algorithm, a selected node from the
search tree is expanded (or “branched”) into smaller sub-problems by partitioning
the decision space. For each sub-problem, the algorithm computes a bound—either
an upper or lower bound on the optimal solution that could be obtained from that
sub-problem. If this bound indicates that the sub-problem cannot lead to an
improvement over the current best solution, it is discarded (pruned) from further
consideration. This process continues iteratively, focusing only on sub-problems
that have the potential to improve the current solution until the optimal solution
is found or no further sub-problems remain.
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Constraint Propagation [11] is a popular technique to cut the search space
used in constraint programming. Constraint propagation exploits the set of con-
straints to reduce the domain of unassigned variables based on the assigned vari-
ables in the current solution. A common method to propagate constraint is General
Arc Consistency (GAC) which ensures that every value in the domain of each vari-
able is consistent with the constraints involving that variable. Formally, a variable
vi with a domain Dvi

is considered GAC if, for every constraint C involving vi,
each value di ∈ Dvi

can be extended to a complete set of assignments that satisfies
C. This process iteratively removes inconsistent values from the domains of the
variables until a fixed point is reached, significantly reducing the search space for
Combinatorial Optimization problems.

To further improve constraint propagation, many solvers have also included
dedicated algorithms for some common constraints. These constraints are called
global constraints [76]. Unlike basic constraints that operate on individual pairs
of variables, global constraints involve a larger set of variables and exploit their
interrelationships to achieve stronger propagation. Examples of commonly used
global constraints include AllDifferent, which ensures that a set of variables take
unique values, and Cumulative, which enforces resource constraints in scheduling
problems.

Even if each of the strategies discussed above has been proven effective [48, 54],
many combinatorial problems have been proven to be NP-Complete and NP-hard
[41] and, therefore, no polynomial algorithm exists to solve these problems.

2.1.3 Modelling
The process of solving a Combinatorial Problem comprises two fundamental steps:
(i) constructing an appropriate model, and (ii) instantiating and solving the model
using a solver. Both steps are critical to obtaining feasible solutions effectively; a
well-structured model can significantly improve solver performance and the like-
lihood of finding an optimal solution. This section will focus specifically on the
modelling phase.

There is no single correct approach to writing a combinatorial model [70],
but the objective is generally to maximize the search efficiency. Some general
techniques to design a good model are:

1. Minimize the Number of Variables: Reducing the number of variables in
the model helps simplify the search space and reduces computational over-
head. Where feasible, leverage auxiliary variables only when they signifi-
cantly enhance model expressiveness or propagation.

2. Constrain Variable Domains: Limit the domains of variables as tightly
as possible. Narrowing domains through upper and lower bounds or other
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constraints can avoid unnecessary exploration of infeasible regions in the
solution space, expediting convergence to optimal solutions.

Despite these general principles, determining the most effective model can be
challenging. Often, different models are more suitable for distinct problem in-
stances, and achieving an optimal formulation may require iterative refinement.
To aid in this process, researchers have developed high-level modelling languages
that can be transpiled automatically to lower-level representations. This tran-
spilation enhances model flexibility and allows solvers to make use of specialized
propagation algorithms.

Modelling Languages Over the years, a variety of modelling languages have
been developed to support the modelling process. These modelling languages often
rely on constraint programming techniques due to the expressiveness and flexibility
of this paradigm. each offering different levels of abstraction and functionality.
These languages simplify the process by allowing users to express constraints more
intuitively while enabling advanced solver optimizations. Key languages include:

• Minizinc [58]: A high-level language that includes support for numerous
global constraints and search heuristics, offering a rich modelling framework.
Models in Minizinc are typically transpiled to Flatzinc, making them com-
patible with a wide array of CP solvers.

• Essence Prime [61]: Similar to Minizinc, Essence Prime is a high-level
language designed to simplify constraint modelling. It employs a different
reformulation pipeline compared to Minizinc that allows for different refor-
mualtions.

• Essence [27]: Essence aims to provide maximum abstraction in modelling,
enabling highly general and compact models. It supports a broader range of
combinatorial constructs, making it suitable for modelling complex problems
with minimal effort from the user.

These languages facilitate experimentation with different model formulations and
enable modellers to leverage built-in heuristics and optimizations, ultimately im-
proving the efficiency and flexibility of constraint programming approaches. Essence
Prime and Minizinc offer a similar level of abstraction, Essence, on the other
hand, offers higher abstraction compared to other languages. To translate the
model into a lower lever it is necessary to translate the model into an Essence
Prime one and the translation must be assisted by the user whenever a non-trivial
transformation must be done.
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2.1.4 The Essence Pipeline
While also Minizinc has a translation and reformulation pipeline that results in
an enhanced model, this section will only focus on the Essence pipeline since it
is the one used in this project.

The Essence pipeline is designed to systematically transform a high-level,
abstract Essence model into a concrete form that can be efficiently solved. This
transformation is accomplished in two main stages, utilizing the tools Conjure
[2] and Savile Row [60].

Conjure—Translating Essence to Essence Prime Starting from a high-
level Essence model, a user can employ Conjure to translate it into Essence
Prime. This translation step converts abstract modelling constructs into a more
concrete form that is compatible with solving engines, bridging the gap between
the user’s conceptual model and the solver’s operational model. The translation
process in Conjure is driven by rule-based heuristics and includes the following
key features:

• Automated Decision-Making: Conjure can assist in making non-trivial
modelling decisions by querying the user when needed. Alternatively, it can
autonomously select variable representations (e.g., compact vs. sparse) using
predefined heuristics. The last option available is to produce all possible
Essence Prime models. This option can be helpful to create a portfolio of
models or to manually test all the available options.

• Symmetry Recognition and Breaking: The rule-based translation ap-
proach employed by Conjure not only refines the model iteratively but also
identifies and breaks symmetries within the model. Symmetry breaking is
essential in reducing the search space, which accelerates the solving process.

Savile Row—Refinement and Encoding for Solvers Once the Essence
Prime model is produced, it is further processed by Savile Row, a modelling
assistant tool that performs additional refinement and translates the model into
a syntax compatible with the chosen solver. The refinement process applied by
Savile Row involves a series of transformations that enhance the model’s com-
putational efficiency:

• Abstract Syntax Tree (AST) Transformation: Initially, Savile Row
converts the model into an AST representation. Various transformation rules
are then applied to optimize the AST, such as flattening nested expressions,
unrolling loops and quantifiers, and breaking down complex expressions into
simpler components.
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• Sub-expression Elimination: Savile Row performs sub-expression elim-
ination to identify and consolidate repeated expressions within the model.
For instance, given the constraints:

1. w + x + y + z = 6
2. z + y + w = 5

the common sub-expression z + y + w is replaced with a new variable a, sim-
plifying the model and revealing that x = 1 (since x+a = 6 and a = 5). This
process reduces redundancy and improves solver efficiency by simplifying the
model structure.

• Tabulation of Constraints: Savile Row supports the aggregation of
multiple constraints into a single table constraint, an operation known as
tabulation [3]. By organizing constraints in tabular form, the solver can
process them as a unified entity, enhancing propagation and reducing com-
putational overhead.

• SAT Encoding Option: Savile Row provides the flexibility to translate
CP models into SAT (Boolean satisfiability problem) formulations, enabling
the use of SAT solvers as a back end for constraint programming. This
approach leverages the efficiency of SAT solvers for certain types of combi-
natorial problems and allows the CP model to be evaluated within the SAT
framework.

After the Savile Row’s reformulation has been completed, the model passes
to the chosen solver which finds a solution. The solution can then be fed back to
Savile Row and Conjure to be consistent with the original Essence model.

2.2 Machine Learning
In this section, we will explore the field of Machine Learning (ML), explain the dif-
ferences between supervised and unsupervised techniques, and provide an overview
of the models used in this project. In particular, Section 2.2.1 defines supervised
methods, the decision tree model and its implementation and gives an overview
of the random forest model as well. Section 2.2.2 gives a detailed description
of unsupervised machine learning and of the K-means and hierarchical clustering
algorithms.

ML is a subfield of artificial intelligence (AI) that focuses on creating algorithms
and statistical models that enable computers to improve performance on tasks
through experience, rather than relying on explicit programming [81]. Essentially,
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it is the process of automatically identifying patterns in data and using those
patterns to make predictions or decisions. In practice, an ML algorithm takes in
a dataset (referred to as training data) and generates a model: a mathematical
function that, when presented with new data, can make predictions based on
patterns found in the training set.

Rather than using raw data as input, ML models typically rely on specific
measurable properties of the input, known as features. For example, features that
describe a person might include attributes like height, gender (if applicable), and
hair colour. These features are carefully selected to align with the specific task the
model is designed to perform.

ML algorithms can be classified into three main categories: supervised, unsu-
pervised and mixed. While is it also possible to make this distinction basing it on
the need for the algorithm to receive data (supervised) or being able to generate
it itself (unsupervised), here we will base our distinction on the presence of labels
for the data, for supervised learning that will be discussed in Section 2.2.1, or the
absence of labels in the case of unsupervised learning that will be discussed in Sec-
tion 2.2.2. In this case, we define mixed approaches as those methods that rely on
both labelled and unlabelled data in different steps of the training process. Neural
Networks can often be classified as mixed approaches methods. Also notable is the
existence of ML algorithms that can automatically generate data to be trained on,
Reinforcement learning approaches [36] appertain in this category because their
training process implies a simulation step where the actions taken by the model
are simulated and then the ML algorithm is updated based on the outcome of the
simulation step.

The most common tasks in ML include:
• Classification: A supervised task where the model assigns discrete labels

(e.g., spam or not spam) to data points.

• Regression: Another supervised task similar to classification, but instead of
predicting a category, the model outputs continuous values (e.g., predicting
house prices).

• Clustering: An unsupervised task that involves grouping data points into
clusters based on shared features, without pre-existing labels (e.g., segment-
ing customers into groups with similar behaviours).

Every ML algorithm undergoes a tuning phase, during which it processes the
training data to learn how to label or predict future data points. The tuning
method varies for each algorithm and plays a crucial role in the model’s effective-
ness. The quality and quantity of training data are particularly important; models
trained on data that closely resembles the real-world distribution are more likely
to perform well in real-world applications.
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A key challenge in ML is achieving the right balance between generalization and
specificity. If a model is too simple (underfitting), it will not capture the underlying
patterns in the data, resulting in poor performance. Conversely, if the model is
overly complex and fits the training data too closely (overfitting), it may capture
noise or irrelevant details, leading to poor generalization and performance on new,
unseen data. Finding the right balance between these two extremes is critical to
building robust ML models. To allow the user to avoid under or overfitting, most
ML algorithms offer a number of hyper-parameters: values that will be used to
guide the training of the model. To measure the quality of the trained model before
going through some test data which is data we already know how to categorize
(similarly to the training data) but we do not show to the model during training.
It is also common to use a validation set which is a dataset the model is not trained
on and that we can use to evaluate the model.

2.2.1 Supervised Machine Learning
A supervised ML algorithm requires labelled data, meaning the input data comes
with known outcomes (labels). The algorithm learns by mapping inputs to the
correct outputs, building a model that can predict labels for new, unseen data.

Decision Trees A decision tree [14] is a classification and regression model struc-
tured as a tree, where each leaf represents a label or prediction, and each internal
node represents a decision or condition that splits the data. For classification
tasks, each leaf contains a class label, while for regression tasks, each leaf contains
the average of the training values assigned to that leaf. To make a prediction, the
decision tree starts at the root and traverses down by selecting child nodes based
on the condition at each node, eventually arriving at a leaf with the predicted label
or value.

The training process of a decision tree is a recursive algorithm that splits the
data at each node based on selected features. The base case occurs when the data
at a node belongs to a single class (for classification) or is small enough, in which
case the node becomes a leaf. Otherwise, the algorithm selects a condition to split
the data into child nodes and continues the process recursively.

For classification trees, the criteria for selecting the splitting condition include:

• Information gain: Information Gain measures the reduction in uncertainty
or entropy after a split. For a node T it is defined as IG(T ) = H(T )−H(T |c)
where H(T ) is the entropy of the node T , and H(T |c) is the weighted sum
of the entropies of its child nodes. Entropy H(X) quantifies the uncertainty
in the dataset and is calculated as H(X) = −∑

j pjlog2(pj) where pj is the
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probability of class j. A split with high information gain effectively reduces
the uncertainty in the data.

• Gini index: The Gini Index measures node impurity, evaluating how often
a randomly chosen element would be incorrectly classified. It is computed
as IG(T ) = 1 − ∑

i p2
i where pi is the probability of class i at node T . A

lower Gini Index indicates a purer node, meaning most data points belong
to a single class.

For regression trees, the criteria for choosing splits are based on minimizing error:

• Mean squared Error (MSE): MSE quantifies the difference between pre-
dicted and true values. It is calculated as MSE = 1

N

∑N
i (ŷi − yi)2 where N

is the number of elements, ŷi is the predicted value for element i and yi the
true value of element i.

• Residual Sum of Squares (RSS): RSS measures the total squared differ-
ence between the actual values and the model predictions. It is computed
as ∑P

p

∑Np

i (yi − ŷp)2 where P is the number of children resulting from the
split, yi it the ground truth of element i and hatyp is the average value in
each child node.

• Variance: Variance reduction measures how much splitting a node reduces
the variability in the target variable. A successful split creates child nodes
where the target values are more similar, indicating a more accurate predic-
tion.

Additionally, decision trees include hyper-parameters that influence their struc-
ture and complexity, such as the maximum depth of the tree, the minimum number
of samples required to split a node, and the minimum number of samples in a leaf.
Proper tuning of these hyper-parameters is essential to balance model complexity
and prevent overfitting or underfitting.

To prevent overfitting, decision trees often incorporate pruning techniques.
Pruning reduces tree complexity by removing branches that do not provide signif-
icant predictive power. Pre-pruning stops the growth of the tree during training,
whereas post-pruning removes branches after the tree is fully grown, often based
on performance on a validation set.

Random Forest Random Forest is a robust machine-learning ensemble method
known for its high accuracy and versatility. Unlike traditional ML approaches
that rely on a single predictive model, ensemble methods combine the outputs
of multiple sub-models to improve predictive performance. In a random forest,
these sub-models are individual decision trees 2.2.1. The final prediction in a
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random forest is typically the majority vote for classification tasks or the average
of predictions for regression tasks, effectively reducing variance and enhancing
model stability.

First introduced by Breiman in 2001 [13], random forests work by constructing
multiple decision trees, each trained on a different subset of the training data (a
technique known as bootstrap sampling) and a random subset of features at each
split. This approach results in an aggregate model that significantly improves
prediction accuracy compared to individual trees, as each tree is less prone to
overfitting due to its exposure to varied training data and feature sets.

A notable variant within ensemble learning is Tree Boosting [26], which uses
an iterative approach to refine predictions. Unlike random forests, where trees
are built independently, tree boosting sequentially builds trees, with each new tree
learning from the errors of the previous ones. This process is guided by the gradient
of a loss function, a measure of the difference between the predicted and true labels.
At each iteration, the algorithm adds a tree that reduces the loss, thus enhancing
prediction accuracy. Each tree’s contribution is scaled by a learning rate hyper-
parameter, which controls the model’s sensitivity to new trees and helps manage
overfitting.

A popular implementation of tree boosting is XGBoost [16], which efficiently
builds shallow trees (typically one node and two leaves) to correct residuals from
prior trees. XGBoost is recognized for its speed and performance, particularly on
large datasets, due to optimized regularization and a scalable training algorithm.

2.2.2 Unsupervised Machine Learning
An unsupervised ML algorithm works with unlabelled data, where no predefined
labels or outcomes are provided. The algorithm must discover patterns or struc-
tures in the data on its own.

K means Clustering The K-means algorithm [1] is one of the most popular and
widely used unsupervised machine-learning techniques for clustering. It is based
on the concept of centroids, which represent the centres of data clusters. The
algorithm aims to partition the dataset into k clusters, each defined by a centroid,
by iteratively refining the centroids to minimize within-cluster variance.

In each training iteration, the algorithm assigns each data point to the nearest
centroid based on a distance function. After all points have been assigned, each
centroid is recalculated as the mean of the points in its cluster, shifting toward
the central position of its assigned points. This process repeats until the centroids
stabilize, or until a set number of iterations is reached. The need for a distance
function is a strong limitation of this algorithm, however, it can be neglected in
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most of the ML applications since they rely on a feature vector for which it is
possible to use the Euclidean distance, Cosine similarity or Manhattan distance.

K-means can also be formulated to minimize the distortion function, which
measures the total squared distance between each data point and its nearest cen-
troid. Formally, this function can be written as:

D =
N∑
1

(xi − decode(encode(xi))2

where the encode function maps each data point to its nearest centroid, and the
decode function maps each centroid back to its vector representation. Minimizing
the distortion function helps ensure that centroids represent their assigned points
accurately. To optimize this function, K-means often relies on algorithms like
gradient descent [73] or, in some cases, genetic algorithms [47].

A known limitation of K-means is its sensitivity to the initial placement of
centroids. If a centroid is initialized far from any data point, it may result in
an unpopulated cluster, reducing the algorithm’s effectiveness. To address this,
K-means algorithms may reinitialize any centroid without assigned points by po-
sitioning it near the cluster with the highest distortion, ensuring it participates in
clustering.

Additionally, K-means++ initialization [38] has been developed to improve the
placement of initial centroids. This technique places centroids iteratively with a
probability proportional to the squared distance from existing centroids, increasing
the likelihood of well-distributed initial centroids and enhancing convergence speed
and clustering quality.

K-means clustering is best suited for datasets where clusters are spherical and
well-separated, as it relies on the assumption that clusters are isotropic (having
similar spread in all directions). This reliance on Euclidean distance as a similar-
ity measure makes it less effective for identifying clusters with irregular shapes,
varying densities, or overlapping regions. For example, in cases where clusters are
elongated, concave, or intertwined, K-means may fail to distinguish between them
and could assign points inaccurately. This limitation can result in suboptimal
clustering performance, particularly for data with complex structures, where algo-
rithms like DBSCAN [20] or spectral clustering [59] might provide better results.
Recognizing these shape and density limitations is essential when considering K-
means for any real-world application to ensure appropriate clustering outcomes.

The algorithm always converges to a local optimum and it is impossible to get
stuck on a loop since the number of possible states is finite given a fixed amount
of training points and a fixed amount of centroids.

Hierarchical Clustering Hierarchical clustering [67] is another prominent un-
supervised machine learning algorithm that organizes data into a tree-like structure
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of nested clusters, known as a dendrogram. This method is based on the principle
of connectivity, grouping data points based on their relative proximity.

There are two main approaches to hierarchical clustering: agglomerative and di-
visive. The agglomerative approach, also known as ”bottom-up” clustering, starts
with each data point as its own cluster and successively merges the closest pairs of
clusters based on a linkage criterion, such as single linkage (minimum distance),
complete linkage (maximum distance), or average linkage. Conversely, divisive
clustering, or ”top-down” clustering, begins with all data points in a single cluster
and recursively splits clusters until each point forms its own cluster.

The resulting dendrogram provides a comprehensive visualization of the cluster
hierarchy, allowing users to identify meaningful clusters by ”cutting” the tree at
different levels. This flexibility enables the algorithm to handle datasets with
complex cluster shapes and varying densities effectively. Moreover, the distance
metric and linkage criterion can be customized to suit specific data characteristics,
such as using Euclidean distance for continuous data or Jaccard similarity for
binary data.

However, hierarchical clustering has notable limitations. Its computational
complexity, typically O(n3), makes it less suitable for large datasets compared to
other clustering algorithms. Additionally, once clusters are merged or split, the
algorithm cannot revise these decisions, potentially leading to suboptimal cluster-
ing outcomes. Despite these challenges, hierarchical clustering remains a valuable
tool for exploratory data analysis, particularly when the underlying structure of
the data is unknown or complex.

2.3 Neural Networks
This section will discuss neural networks. Section 2.3.1 details the components
of neural networks, then, Section 2.3.2 describes the principal steps of training a
neural network. Section 2.3.3 makes an important distinction between feed-forward
and recurrent models. Finally, 2.3.4 describes the Transformer architecture and
its use.

A Neural Network (NN) or Deep Neural Network (DNN) is a specialized type
of supervised ML algorithm grounded in the universal approximation theorem
[55]. Structurally, a NN is composed of a sequence of layers, each followed by
an activation function. Networks with more than two layers are classified as deep
neural networks, whereas networks with two or fewer layers are called shallow. A
visual representation of a NN can be seen in figure 2.1

A particular advantage of NNs with respect to other ML approaches is their
ability to be able to work with raw data by automatically generating the needed
features. This removes the complex process of feature engineering and extraction.
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Figure 2.1: Visual representation of a neural network
Source:

https://lassehansen.me/post/neural-networks-step-by-step/

2.3.1 Neural Networks Architecture
The architecture of a NN can strongly impact its performance. Therefore, design-
ing a model is a crucial part of the development of a NN. This section will cover
the key components of each NN that shape its architecture.

Types of Layers There are multiple types of layers, each composed of a set of
neurons which compute a linear function. The primary distinction between layer
types is the linear function each neuron computes. Regardless of layer type, each
layer has a set of weights, which are the actual parameters of the linear function.
Some of the most common types of layers are:

• Linear Layer: In a linear layer, each neuron computes an affine function
represented as:

f(x1, . . . , xn) = w1x1 + · · · + wnxn + β.

This type of layer is widely used due to its capacity to approximate diverse
functions. The output of the entire layer can be obtained through matrix
multiplication as follows

In,m · Wk,n + B,

24



where I is the input matrix with each row representing an n-dimensional
input vector, W is the weight matrix where each column represents one
of k neurons’ affine functions (excluding bias), and B is the bias vector.
Computing the output always in this way allowed the hardware maker to
create specialized chips that made the computation extremely efficient.

• Convolutional layer: Convolutional layers are particularly effective for
image-processing tasks. The convolution operation, represented here by oi,j,
is influenced by a central input value ii,j and its neighbouring values. This
spatially-aware approach makes it well-suited for images, where neighbouring
pixels often carry relevant contextual information. Convolutional layers share
weights across neurons, making them computationally feasible even with
high-dimensional inputs. The convolution operation is defined as:

(S ∗ W )i,j =
⌊M/2⌋∑

m=−⌊M/2⌋

⌊N/2⌋∑
n=−⌊N/2⌋

Si+m,j+n · Wm,n,

where S represents the input matrix, and W is the weight matrix of size
M × N .

• Attention layer: The attention layer is particularly prominent in Natu-
ral Language Processing due to its ability to handle long input sequences
by selectively focusing on relevant parts of the data. This selective focus
is achieved by weighting input features according to their interdependen-
cies and relevance to the current processing task. The attention mechanism
operates on three primary vectors:

– Query (Q): Represents the current processing state.
– Key (K): Encodes representations of all positions in the input se-

quence.
– Value (V ): Contains the actual information that needs to be aggre-

gated.

The attention scores, which determine the alignment between different parts
of the input and the processing state, are computed by taking the dot product
between the query and each key, followed by scaling and normalization into
a probability distribution. The attention computation is given by:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V,

where softmax is the normalization function explained in the following para-
graph, and dk denotes the dimensionality of the key vector.
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Activation Functions After each layer, usually, there is an activation func-
tion. The primary purpose of the activation function is to introduce non-linearity
between layers, which enhances the network’s capacity to generalize and approx-
imate complex target functions using fewer parameters. Additionally, activation
functions must be differentiable to enable gradient-based optimization techniques
during training.

Some widely used activation functions include:

• Sigmoid: This function constrains the input to the range 0 to 1, calculated
as:

Sigmoid(x) = 1
1 + e−x

.

Due to its output range, Sigmoid is often selected as the final activation in
NNs, particularly when the output represents a probability.

• ReLU (Rectified Linear Unit): Defined as ReLU(x) = max(x, 0), this func-
tion is both simple and effective. Although ReLU is technically non-differentiable
at x = 0, this issue is typically resolved by assigning its derivative at this
point to 1. ReLU gained popularity through the work of Krizhevsky [46] as
its straightforward formulation helps mitigate the vanishing gradient prob-
lem that affects traditional activation functions.

• Tanh: it is similar to the Sigmoid activation but squeezes the input between
−1 and 1. Its formula is:

Tanh(x) = ex − e−x

ex + e−x
.

• Softmax: Like Sigmoid, Softmax transforms the input values to fall within
the range 0 to 1. However, unlike Sigmoid, Softmax considers the entire set
of inputs, ensuring that the sum of the output values is 1. This property
makes Softmax particularly useful for representing categorical distributions.
The Softmax function is defined as:

Softmax(xi) = exi∑n
j=1 exj

.

Similar to Sigmoid, Softmax is frequently used as the final activation layer,
especially in classification tasks where the output can be interpreted as a
probability distribution.
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2.3.2 Training a Neural Network
Training an NN involves optimizing the weights of its layers to approximate a
target function as accurately as possible.

Each NN can be conceptualized as a composition of simpler, differentiable func-
tions. This compositional structure allows us to apply the chain rule to compute
the partial derivatives of the loss with respect to each layer’s input and parame-
ters. These partial derivatives, which represent the gradients of the loss function
with respect to the weights, are then used to update the weights during training.

To formally express this, let us denote a NN as a sequence of functions f1, f2, . . . , fn,
where each function fi represents the transformations applied in a given layer.
Given an input x, the output of the network f(x) can be written as:

f(x) = fn(fn−1(. . . f2(f1(x)) . . . )).

Since each function fi is differentiable, we can apply the chain rule to compute
the gradient of the loss L with respect to any intermediate variable zi at layer i.
Specifically, if zi = fi(zi−1), then the gradient of the loss with respect to zi can be
written as:

∂L

∂zi

= ∂L

∂zn

n∏
j=i+1

∂fj

∂zj−1
.

This recursive application of the chain rule is known as backpropagation, and it
enables the efficient computation of gradients throughout the network.

To adjust the weight, the gradient descent algorithm is employed, with back-
propagation serving as its computational backbone. Gradient descent leverages
the gradient of the loss function, which indicates the direction and rate of steepest
increase, to adjust weights in the opposite direction—toward a local minimum.
This iterative process helps to reduce the error over time by taking steps pro-
portional to the negative gradient of the loss with respect to each weight. The
gradient descent update rule is generally expressed as follows:

Θt+1 = Θt − α∇L(NN(x, Θt), y).

Where Θ are the NN’s weights, L is a special function called loss function that we
want to minimize, x is the input, y is the target output and α is a hyper-parameter
called learning rate used to set the amount of tweaking done to the parameters.

Loss functions The loss function, or simply “loss”, is a crucial component of the
NN training process. The loss quantifies the discrepancy between the target results
(ground truth) and the predictions produced by the model. By minimizing the
loss through backpropagation, the network effectively reduces incorrect predictions
and improves its ability to approximate the target function accurately. Selecting
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an appropriate loss function is crucial, as each type is tailored to specific tasks and
data characteristics.

Some commonly used loss functions include:

• Cross-Entropy Loss: Widely used for multi-class classification tasks, Cross-
Entropy loss is well-suited for scenarios where each instance belongs to one
class out of multiple possible categories. Often combined with the Softmax
activation function in the output layer, Cross-Entropy measures the differ-
ence between the true label distribution y and the predicted distribution ŷ.
It penalizes misclassified predictions more heavily, leading to faster conver-
gence in classification tasks. The formula for Cross-Entropy loss is:

CrossEntropy(y, ŷ) = −
n∑

i=1
yi log(ŷi).

• Binary Cross-Entropy Loss: A specialized variant of Cross-Entropy loss,
Binary Cross-Entropy is typically used for binary classification tasks (i.e.,
two classes) or for multilabel classification problems where each instance may
belong to multiple classes. It is particularly effective when paired with the
Sigmoid activation function in the output layer, as it helps produce outputs
in the range [0, 1], interpretable as probabilities. This loss function measures
the error between the binary ground truth y and the predicted probability
ŷ, with the following formula:

BinaryCrossEntropy(y, ŷ) = − (y log(ŷ) + (1 − y) log(1 − ŷ)) .

• Mean Squared Error (MSE) Loss: Also known as squared loss, MSE is
commonly used for regression tasks, where predictions are continuous values.
MSE computes the average of the squared differences between the target
values y and the predicted values ŷ, effectively penalizing larger errors more
than smaller ones. While useful, MSE can be sensitive to data with large
variance, leading to potentially high loss values if the target values vary
significantly. The MSE loss is defined as:

MSE(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2.

Optimizer Training a NN requires a systematic approach to update its weights,
reducing the error between predictions and actual values as calculated by the
loss function. However, computing the loss on the entire dataset at once is often
infeasible, both in terms of computational resources and memory requirements.
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For this reason, Stochastic Gradient Descent (SGD) is commonly employed as a
practical solution.

Stochastic Gradient Descent (SGD) is an iterative optimization technique that
updates the model weights by calculating the gradient of the loss function for
a small subset of the training data, known as a batch. Each batch is used to
compute an estimate of the gradient, and weights are updated accordingly. By
iterating through all batches in the dataset, the model completes one epoch.

Many variations of SGD exist to improve convergence. One of the most famous
is Adam, or Adaptive Moment Estimation [42], which combines the advantages of
both Momentum [53] and RMSprop [71]. Momentum adds a sort of “inertia” to
the gradient making it faster at first and slower at later epochs. RMSprop, instead,
scales the gradient based on the frequency of its component making the updates
larger for infrequent features and smaller for frequent ones. This dual approach is
achieved by maintaining both an exponentially weighted average of past gradients
(first moment) and squared gradients (second moment). This dual adaptation
enables Adam to adjust the learning rate for each parameter while leveraging
momentum to accelerate convergence. The Adam update rules are given by:

m(t+1) = β1m
(t) + (1 − β1)∇L(w),

v(t+1) = β2v
(t) + (1 − β2) (∇L(w))2 ,

m̂(t+1) = m(t+1)

1 − βt
1
, v̂(t+1) = v(t+1)

1 − βt
2
,

w(t+1) = w(t) − η√
v̂(t+1) + ϵ

m̂(t+1),

where m and v are the first and second-moment estimates, and β1, β2 are decay
rates, commonly set to 0.9 and 0.999, respectively. The adjustments m̂ and v̂
correct for bias in the initial estimates, enhancing stability. Adam’s adaptive
learning rates, combined with momentum, make it particularly effective for deep
networks and models with large parameter spaces.

2.3.3 Feed-Forward and Recurrent Neural Networks

NN architectures can be categorized in several ways, but a foundational distinction
exists between feed-forward and recurrent neural networks. This classification
is based on how data flows through the network and how the network handles
sequential dependencies within input data.

29



Figure 2.2: Visualization of a Recurrent Neural Network model
Source: https://www.researchgate.net/figure/
llustration-of-the-recurrent-neural-network-RNN-structure_fig2_
346468428

Feed-Forward Neural Networks (FNN) are the simplest form of neural net-
work architecture. In these networks, information flows in one direction only—from
input nodes, through hidden layers, to output nodes in one step. These kinds of
networks are well-suited for any task with a fixed input size. FNNs are highly
parallelizable both during training and at test time.

Recurrent Neural Networks (RNNs) are specifically designed to handle se-
quential data by introducing connections that form directed cycles within the
network. These cycles enable the network to maintain a form of memory or state,
which is updated at each time step. This internal state allows RNNs to process
arbitrary-length sequences by retaining information about previous inputs in the
sequence, making them well-suited for tasks involving inherently sequential data,
such as natural language processing, time-series forecasting, and speech recog-
nition. A visual representation of an RNN architecture can be seen in figure 2.2
Despite their utility in handling sequential data, recurrent NNs face two significant
challenges:

1. Limited Parallelization: Training RNNs is inherently sequential, as each
time step depends on the state from the previous steps. This dependency re-
stricts the possibility of parallelizing the training process across different time
steps, making RNN training significantly slower compared to feed-forward
architectures.

2. Vanishing Gradient Problem: The gradient at any given time step t in
an RNN depends on the gradients of all previous time steps. Consequently,
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Figure 2.3: Visualization of a transformer model
Source: Attention is all you need, https://arxiv.org/pdf/1706.03762

when backpropagating through many time steps, gradients can diminish ex-
ponentially, especially for long sequences. This issue, known as the vanishing
gradient problem, can prevent effective weight updates, particularly for ear-
lier time steps in a sequence. As a result, RNNs may struggle to retain
information over long sequences, making them less effective for tasks that
require long-term dependencies.

2.3.4 The Transformer Architecture
The Transformer [77] architecture represents a major breakthrough in the NN
world making a difference in all the related fields. The transformer was excep-
tionally revolutionary in the field of Natural Language Processing, fundamentally
shifting how language models are designed. Unlike RNNs, which process sequences
step-by-step, the Transformer uses an attention-based mechanism to process entire
sequences simultaneously, enabling efficient parallel computation. Not only that.
the attention mechanism allows each input token to have a dedicated state vector
that could selectively choose what to focus on in the current sentence removing
the limitation of a shared state that had to encode the whole semantic meaning.
A visualization of the Transformer architecture can be seen in figure 2.3

The Transformer is based on an encoder-decoder structure, where both the
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encoder and decoder consist of multiple layers of self-attention and FNNs:

• Self-Attention Mechanism: At the core of the Transformer is the self-
attention mechanism, which allows each position in the input sequence to
focus on (or “attend to”) other positions. This capability is crucial for cap-
turing context over long distances in a sentence. Given an input sequence, the
self-attention mechanism calculates three vectors—query, key, and value—for
each word and computes a weighted sum based on their dot product.

• Multi-Head Attention: To capture different types of relationships between
words, the Transformer uses multiple self-attention heads, which allows the
model to focus on various parts of the sequence simultaneously. Each head
computes its attention separately, and the outputs are concatenated and
linearly transformed to form the final attention representation.

• Position-wise Feed-Forward Networks: After the attention layers, the
output is passed through a FNN. This step applies a non-linearity and further
refines the representation learned by the attention layers.

• Positional Encoding: Since the Transformer processes sequences in paral-
lel, it lacks the inherent ordering found in RNNs. To incorporate information
about the order of tokens, positional encodings are added to the input embed-
dings. These encodings are computed using sinusoidal functions that allow
the model to differentiate between the positions of words in a sequence.

Variants and Extensions of the Transformer Since its introduction, several
variants and extensions of the Transformer have been proposed, each designed to
enhance its performance for specific tasks:

• BERT (Bidirectional Encoder Representations from Transformers)
[22]: uses only the encoder part of the Transformer and trains it in a bidi-
rectional manner. BERT has shown state-of-the-art results on tasks like
question answering, sentiment analysis, and named entity recognition. Be-
ing the encoder part of the transformer architecture, BERT-like models are
extremely good at encoding the semantics of the input and, thus, are espe-
cially good for classification problems.

• GPT (Generative Pre-trained Transformer) [64]: uses the decoder
portion of the Transformer in an autoregressive fashion for text generation.
GPT models have achieved remarkable success in tasks such as text com-
pletion, summarization, and dialogue generation. Using only the decoder
part of the transformer, allows the model to become exceptionally good with
tasks that do not involve a lot of context.
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2.4 Algorithm Selection
This section details the field of Algorithm Selection (AS), starting from section
2.4.1 with some theoretical foundation and different approaches to AS. Section
2.4.2 describes some application of AS to Combinatorial optimization problems
and the evaluation metrics used to develop the algorithms.

2.4.1 Foundation
AS is the process of identifying the most appropriate algorithm for solving a given
problem or set of problem instances, with the objective of optimizing performance
according to a given metric such as accuracy, computational efficiency, or robust-
ness. This section explores the core aspects of algorithm selection, including the
theoretical foundations and methods for selection.

AS stems from the no free lunch theorem [78], which posits that no single algo-
rithm outperforms all others across all possible problems. This theorem suggests
that the selection of an algorithm should be tailored to the characteristics of the
problem at hand. As a result, the algorithm selection problem can itself be framed
as an ML task, where we seek to learn a mapping from problem features to the
most suitable algorithm.

Rice introduced the foundational framework for algorithm selection [66], who
proposed a four-component model:

1. Problem Space: The space of instances P that the algorithm aims to
solve, each instance being characterized by a set of features F describing the
problem instance.

2. Algorithm Space: The set of candidate algorithms A that can be applied
to the problem space.

3. Performance Space: A set of performance metrics M (e.g., runtime, solu-
tion quality) which quantify the effectiveness of applying an algorithm to a
given problem instance.

4. Selection Mapping: A mapping S : P → A that selects an algorithm
a ∈ A for a problem p ∈ P based on maximizing performance metrics in M .

Several methods have been developed to address algorithm selection, leveraging
statistical, ML, and meta-heuristic approaches. Broadly, these methods can be
divided into two categories: deterministic selection and predictive selection.
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Deterministic Selection Methods Deterministic methods rely on fixed rules
or heuristics for algorithm selection, often informed by domain knowledge. These
methods are simple and interpretable but may lack flexibility. Deterministic meth-
ods include: (i) Rule-Based Selection: Uses predefined rules to map problem
features to algorithms. (ii) Hierarchical Decision Trees: Use a series of deci-
sions based on instance features to narrow down the choice of algorithms.

Predictive Selection Methods Predictive methods employ ML models trained
on past performance data to predict the best algorithm for new problem instances.
They can leverage any kind of ML algorithm but usually, the AS problem is in-
tended as a classification problem that selects the appropriate algorithm given a
problem instance or a regression problem where, for each algorithm, the ML model
tries to predict the future performance of such algorithm on the given problem in-
stance. Other possible approaches also leverage clustering techniques to cluster
together problem instances with similar characteristics that make them suitable
to be solved with an algorithm.

2.4.2 Applications in Combinatorial Optimization
There have been multiple applications of algorithm selection in the field of com-
binatorial optimization. The most popular is probably SATzilla [80] which won
multiple competitions as the best SAT solver. This tool extracts some key proper-
ties of the instance such as the number of variables or connectivity of the graph and
then uses a regression model to predict the performance of each solver in its port-
folio. Afterwards, SATzilla chooses the solver with the best-predicted performance
to solve the instance.

In the Constraint programming world, a notable algorithm selection tool is
Sunny CP [52]. This tool extracts a set of features from the instance and uses
them to compute a similarity measure with previously seen instances. It then
selects the algorithm or portfolio of algorithms to use in a scheduled manner.
If the system is allowed to run multiple solvers concurrently, it also implements
information sharing between solvers to guide the search. The tool can also be
updated by constantly adding the newly solved instance to the historical data.

Furthermore, Autofolio [51] is a general algorithm selection approach that can
work for any combinatorial optimization problem due to its generality. It takes as
input, for each instance, a feature vector and a score associated with each algorithm
in the portfolio. Then the model is trained to maximise/minimize the given score.
It is also possible to add the time necessary to compute the features, this way, the
model can decide when computing the features could improve performance or if it
would be enough to just choose the single best option of the portfolio.
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[44] presents a survey on general AAS techniques and how they can tackle
combinatorial problems resulting in better performances. It shows different tech-
niques that can be used to optimize the final runtime such as directly selecting
one algorithm or predicting a schedule of algorithms to run for a finite amount of
time.

The effectiveness of algorithm selection strategies is measured by evaluating
improvements in performance metrics, often through cross-validation on bench-
mark datasets. In particular, the best overall algorithm (Single Best) is selected
as a baseline and the most optimal combination of all algorithms (Virtual best) is
selected as a lower bound. While the goal is to get as close as possible to the vir-
tual best, the overall performances are measured as improvements over the single
best.

For robust evaluation, a standard approach involves using benchmark problem
sets or cross-validation to assess generalizability. Additionally, ablation studies are
often conducted to evaluate the impact of individual instance features and model
components on algorithm selection accuracy.

2.5 Related Work
In examining the field of combinatorial optimization and algorithm selection, this
project stands out due to its focus on feature extraction rather than introducing
new selection methods. Most related work presents innovative approaches to al-
gorithm selection, where feature extraction is only one component of a broader
pipeline. In this project, however, feature extraction is the primary focus. In
a similar way, NNs have previously been applied to combinatorial optimization
tasks, but generally with goals that differ from those addressed here.

This section reviews the state of the art in feature extraction for combinatorial
optimization problems, in Section 2.5.1, and then explores the application of NNs
in combinatorial optimization research in Section 2.5.2.

2.5.1 Feature Extraction for Algorithm Selection in Com-
binatorial Optimization

Feature extraction processes for algorithm selection across combinatorial optimiza-
tion applications often follow a consistent framework. Initially, low-level features
are extracted automatically from the instance, including attributes such as the
maximum constraint arity, average and maximum domain size, and counts of vari-
ables and constraints. These features can often be gathered by analysing the
instance’s structure and properties alone. Following this, a brief preliminary run
of the instance on a solver is performed to gather additional information, such
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as the solver’s choice patterns and search statistics. All the tools that will be
presented will share this approach.

Notable algorithm selection tools especially tailored at constraint programming
include SUNNY [52] and CPHydra [15], which employ a k-Nearest Neighbors
approach to create a solver schedule aimed at maximizing the probability of solving
a given instance within a specified time constraint. In contrast, Proteus [32] uses
a hierarchical, portfolio-based approach that could solve the combinatorial problem
using both CP and SAT. Tools initially developed for SAT problems can often be
adapted to other paradigms, and vice versa. For example, [6] and [8] present
empirical comparisons of SUNNY with other algorithm selection tools originally
developed for SAT scenarios, such as 3S [35] and SATzilla [80]. In general, it
is not hard to translate a combinatorial problem instance written with a specific
paradigm in mind to any other paradigm and, as such, it is easy to adapt any AAS
algorithm to work with all the combinatorial optimization solving strategies.

2.5.2 Neural Networks in Combinatorial Optimization
There are several uses for NNs in the Combinatorial Optimization space. Here,
we address the three possible directions one could take to intersect the two fields.
In particular, we will focus on assisted modelling via Language Models, using
NNs to improve the search process of a solver and using NNs for AS within the
Combinatorial Optimization world.

The modelling phase of Combinatorial problems can be assisted by Language
Models to make the process easier and faster. One line of research focuses on
using language models to generate CP models from natural language descriptions
of problems, as seen in works like [74] and [5]. Chatbots Like ChatGPT [79] can
be used to automatically model a problem starting from natural language even
without any specific training on the subject as demonstrated, for example, by [57].

Including an NN in the search process of a solver can enhance the search.
Some studies have demonstrated the use of NNs for feature extraction from search
algorithm trajectories, which can then assist in heuristic algorithm selection for
specific problem domains such as, for example, bin packing [4]. [56], Instead, offers
an overview on how to apply ML algorithms, including NN, into the search process
of a solver. Other studies have focussed on the use of NNs to directly generate a
solution for a given instance problem. For example, [10] uses reinforcement learning
techniques to generate a solution from an instance. This can be extremely helpful
to find an initial solution to feed to a solver and improve upon as done by [25]
who proposes a mixed approach to solve scheduling jobs by leveraging graph NNs
to find initial solutions that are then refined via a CP solver. This dual method
allows them to leverage the speed of NNs while also solving the limitations of their
stochastic approach by using CP to prove correctness and optimality.
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NNs in the field of AS have been applied in a similar manner to our intents,
notably, transformers have been successfully applied to specific combinatorial prob-
lems for feature learning; for instance, [68] demonstrates how transformer architec-
tures can effectively learn instance features for the Traveling Salesman Problem.
The current work differs in that it focuses on general instance feature extrac-
tion across a broad range of Combinatorial Optimization problems, specifically for
models expressed in the Essence language, broadening the potential application
to any instance encoded within this specification framework. Furthermore, our
approach, while tailored to Essence instances, is completely agnostic to the un-
derlying algorithms making it suitable for all possible solvers without focusing on
a specific solving paradigm.
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Chapter 3

Methodology

This section outlines the methodology utilized in this work, detailing the processes
of feature learning, extraction, and application. Section 3.1 examines the feature
learning procedures and the diverse strategies applied, while Section 3.2 introduces
different AS methods developed to exploit these features effectively.

Recall that, for the purposes of this study, an algorithm is defined as a pairing
of an Essence Prime model with a solver. Using a set of solvers alongside an
Essence model, we employ Conjure to create a portfolio of algorithms available
for each instance. The objective of an AS task is to select the optimal algorithm
for a given instance from this portfolio. While there are various definitions of
“optimal”, we define it here as the algorithm that yields the shortest runtime.
Addressing the task through machine learning involves two key steps: (i) defining
a set of features that accurately characterize an instance, and (ii) using these
features to predict the best-performing algorithm.

In practice, we often impose a cut-off time on every algorithm. When an
algorithm fails to solve an instance within the cut-off, we penalise the run using
the Penalised Average Runtime (PAR) method [51], where the runtime of a failed
run is recorded as k times the cut-off time. Following the existing AS literature [49],
we set k = 10.

For the first step, we employed an NN to identify the features that best rep-
resent each instance. The input to this model is the raw text of an Essence
instance. Transformer Encoders are particularly well-suited for this purpose, as
they efficiently capture complex linguistic correlations. Using a transformer en-
coder like BERT [22] has multiple advantages: BERT-like architectures are known
for their ability to capture high-level features and relationships, enabling auto-
mated feature learning without requiring domain-specific, handcrafted inputs.

For the second step, there are two primary approaches: integrating feature
learning and algorithm selection within a single neural model or utilizing an ex-
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Figure 3.1: Different ways of performing AS starting from the core architecture.

ternal ML algorithm to perform AS on the learned features. While the first ap-
proach seems natural and more straightforward, the latter approach allows us to
incorporate state-of-the-art AS tools from existing literature and experiment with
alternative AS strategies.

3.1 Feature Learning Using a Transformer En-
coder

To address the first point, we propose employing an NN that encapsulates a trans-
former encoder to deal with textual input. This approach has many advantages.
First, transformer encoders such as BERT have been proven to be effective in cap-
turing high-level language features [22], eliminating the need to run a solver to
extract the necessary features. Second, an NN model can automatically generate
the necessary features starting from the raw input. This eliminates the need for
handcrafting an effective feature set. We build two NN models, called BNN and
CNN, both of which receive as input the raw text of the Essence instance in tok-
enized form (where each input word and symbol are transformed into a number).

BNN Model This model learns the best algorithm for a given instance. The
learning is modelled as a multi-label, single-class classification task where the as-
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Figure 3.2: The two neural network architectures’ common part (core).

signed class is the best algorithm. The final activation function is SoftMax, which
generates a probability distribution over all the algorithms in the portfolio, where
a higher probability indicates a higher likelihood to be the best. The SoftMax ac-
tivation is well-suited for this purpose since the best algorithm is just one and we
would like the highest probability to be associated with that particular algorithm.

CNN Model Learning one algorithm as the best may be restrictive and error-
prone when multiple algorithms exhibit similarly good performance. The CNN
model thus learns the competitivenes of the algorithms in the portfolio. We con-
sider an algorithm to be competitive if it solves an instance in less than ten seconds
or in less than double the time taken by the best algorithm for that instance. Mul-
tiple algorithms can be marked as competitive for a given instance. For example,
if the best algorithm takes 15 seconds, any algorithm that completes the task in
under 30 seconds is deemed competitive.

The learning is modelled as a multi-label, multi-class classification task where
each algorithm is associated with a competitiveness fraction. The final activation
function Sigmoid, which yields a probability for each algorithm, is well-suited
for this purpose. While we still want a probability value as in the BNN model,
there could be multiple equally competitive algorithms and the competitiveness
probability of one algorithm is uncorrelated with that of the other algorithms.

As shown in Figure 3.1, the two models share the same architecture with the
only difference being in their final activation function. The probability values in
the output of the models will be part of the extracted features for AS, as we detail
in Section 3.2. The common part of the models (referred to as Core) is composed
of three components: (i) Transformer Encoder, (ii) Feature Elaborator, and (iii)
Output Layer. The core architecture can be seen in Figure 3.2 and, more in details,
it is composed of:

1. Transformer Encoder: Based on the BERT-base-uncased architecture
but, unlike the base BERT model, it accepts inputs up to 2048 tokens, allow-

41



ing it to process extensive Essence instances with numerous parameters.
The BERT transformer architecture has been successfully applied to text
classification tasks before [63].

2. Feature Elaborator This component is further divided in four sub-components
with the purpose of projecting the output features of the Encoder into the
desired dimensions. The sub-components are applied in order and are:

(a) Feature Layer: A linear layer that condenses the output of the trans-
former to a smaller feature vector, mitigating the risk of dimensionality
issues in subsequent ML applications [18].

(b) Tanh Activation: The output is passed through a Tanh activation to
limit values between -1 and 1. Its output will be part of the extracted
features for AS, as we detail in Section 3.2.

(c) Post-Features Layer: A linear layer up-projecting the feature vec-
tor. This allows the NN to further elaborate the features and avoid
underfitting [65].

(d) Relu Activation: Non-linearity is introduced through a ReLU activa-
tion function applied to the post-feature layer’s output.

3. Output Layer: The final common linear layer, assigns a value to each
algorithm in the portfolio, which will later be transformed into probabilities.

3.2 Algorithm Selection Using the Learnt Fea-
tures

To address the second point of our ML-based AS, which is using the extracted
features to predict the best algorithm for an instance, we propose two approaches:
integrating feature learning and AS within a single NN model (referred to as fully
neural), or exploiting an external ML-based AS algorithm using the extracted fea-
tures (referred to as hybrid). While the first approach seems natural and more
straightforward, the latter allows exploiting state-of-the-art AS tools and experi-
menting with alternative AS strategies.

Once the NN models are trained, we can use the BNN model alone as a fully
neural approach to predict the best algorithm. To do so, we simply use the prob-
ability values in the output as features and pick the algorithm associated with the
highest probability. For the hybrid approach, we can extract features from each NN
model by combining the probability values in the output with the output of Tanh
in a single feature vector. This combined vector integrates the encoder-derived
semantic representation with informative prediction. We refer to such combined
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feature vectors as bNN (when extracted from the BNN models) and cNN (when
extracted from the CNN models) features, as depicted in Figure 3.1.

Subsequently, any ML-based AS algorithm can utilize the extracted features.
Here, we explore two approaches: a state-of-the-art AS model from literature and
a simpler alternative inspired by AS principles.

Autofolio[51] is a state-of-the-art AS algorithm able to perform both classi-
fication and regression tasks. It is possible to tune it using SMAC[50]. The
base model is a standard random forest model, however, the tuning process can
choose between random forest for classification, random forest for regression and
XGboost[16]. The ASs that use Autofolio will be denoted by A.

As an alternative AS algorithm, we opted to use K-means clustering to cluster
the instances based on their similarities and assign a different algorithm to each
cluster. To optimize the K-means clusters, we pre-define a set of hyper-parameter
configurations to configure the K-means algorithm. After clustering, each clus-
ter is assigned the algorithm with the lowest PAR10 score within that cluster’s
instances. This assignment is validated on evaluation data to select the configu-
ration with the lowest cumulative PAR10 score. The K-means approach draws on
the proven effectiveness of clustering for AS[9] and the spatial characteristics of the
transformer encoder embeddings[28], where semantically similar instances are rep-
resented by similar vectors. At test time, an unseen instance is clustered according
to the best-fit configuration, with the best algorithm for that cluster deemed as
the best. The ASs that use the K-means-based approach will be denoted by K.

In summary, we have five ML-based AS approaches: fully neural BNN and
four hybrids (bNN,A), (bNN,K), (cNN,A), (cNN,K) (A, K denote Autofolio and
K-means).
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Chapter 4

Datasets

This section provides an in-depth exploration of the datasets used to train the
model. The discussion begins with Section 4.1, which details the problem classes,
their corresponding instances, and the methods used to gather these datasets. Sec-
tion 4.2 examines the extraction and differentiation of models and solvers employed
across the datasets. Finally, Section 4.3 discusses the complementary nature of the
algorithms included in the datasets.

It is noteworthy that all datasets utilized in this study are publicly accessible
on GitHub1.

4.1 Problem Description and Instance Set
This section outlines the problem classes represented in our datasets and de-
scribes how they are formalized using the Essence modelling language. All three
problems—Car sequencing, Covering array, and Social golfers—are known to be
computationally challenging, making them valuable case studies for algorithm se-
lection. They also cover a broad spectrum of Essence features (such as matrix,
function, and relation variables, plus unnamed types) and vary in dataset size: Car
sequencing includes a large number of parameters, whereas Covering array and So-
cial golfers have only integer parameters. Moreover, as we show in Section 4.3 the
different solver/model combinations exhibit complementary performance on these
problems, further motivating their use as benchmarks.

For all three problems, we use the instances from [69], generated using the
AutoIG framework [19]. AutoIG systematically varies problem parameters to pro-
duce a diverse and challenging set of instances. These instances we use are publicly
available in the Essence Catalogue [21].

1https://github.com/SeppiaBrilla/EFE_project/tree/master/data/datasets
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1 given n_cars, n_classes, n_options : int(1..)
2 letting Slots be domain int(1..n_cars),
3 Class be domain int(1..n_classes),
4 Option be domain int(1..n_options)
5 given quantity : function (total) Class --> int(1..),
6 maxcars : function (total) Option --> int(1..),
7 blksize : function (total) Option --> int(1..),
8 usage : relation of ( Class * Option )
9 find car : function (total) Slots --> Class

10 such that forAll c : Class . |preImage(car,c)| = quantity(c)
11 such that forAll opt : Option .
12 forAll s : int(1..n_cars+1-blksize(opt)) .
13 (sum i : int(s..s+blksize(opt)-1) .
14 toInt(usage(car(i),opt))) <= maxcars(opt)

Figure 4.1: Essence model of the car sequencing problem.

4.1.1 Car Sequencing

The car sequencing problem involves sequencing a series of cars for production,
where each car may require different optional features. The production line is
structured into stations, each responsible for installing specific options, such as
air conditioning or sunroofs. Each station has a limited capacity, processing only
a fixed percentage of cars. To ensure an even workload distribution and prevent
bottlenecks, cars requiring the same option must be distributed evenly along the
sequence. For instance, if a station can handle a maximum of 50% of cars, the
sequence must limit cars requiring the corresponding option to at most one in
every two.

An Essence model is used to formally define the problem (Figure 4.1). This
model defines three integer parameters: n cars, n classes, and n options, repre-
senting the number of cars, classes, and options, respectively. From these, the
domains Slots, Class, and Option are derived to define further parameters and de-
cision variables. Three parameters with function domains are defined to represent
the quantity of each class of car required, a maximum number of cars (maxcars)
that can appear in any block of cars, and block size (blksize) for each option. The
usage parameter is a relation that indicates which classes use which options.

The only decision variable (car) in the model is a mapping from car production
slots to classes. The problem constraints are captured in two top-level constraints
(denoted by the keywords such that). The first set of constraints ensures that the
number of cars in each class matches the required quantity. The second set of
constraints ensures that for each option, in any block of blksize(opt) consecutive
cars, the number of cars requiring that option does not exceed maxcars(opt).

The dataset consists of 10,214 instances.
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1 given t : int(1..)
2 given k : int(1..)
3 given g : int(2..)
4 given b : int(1..)
5 where k>=t, b>=g**t
6 find CA: matrix indexed by [int(1..k), int(1..b)] of int(1..g)
7 such that
8 forAll rows : sequence (size t) of int(1..k) .
9 (forAll i : int(2..t) . rows(i-1) < rows(i)) ->

10 forAll values : sequence (size t) of int(1..g) .
11 exists column : int(1..b) .
12 forAll i : int(1..t) .
13 CA[rows(i), column] = values(i)
14 such that forAll i : int(2..k) . CA[i-1,..] <=lex CA[i,..]
15 such that forAll i : int(2..b) . CA[..,i-1] <=lex CA[..,i]
16

Figure 4.2: Essence model of the covering array problem.

4.1.2 Covering Array
The covering array problem is a well-known NP-complete problem [37], originating
from applications in hardware design. A covering array CA(t, k, g) of size b and
strength t is defined as an array A of dimensions k × b, whose elements are drawn
from the set Zg = {0, 1, 2, . . . , g − 1}. This array satisfies the following property:
for any t distinct rows r1, r2, . . . , rt (1 ≤ r1 < r2 < · · · < rt ≤ k) and any tuple
(x1, x2, . . . , xt) ∈ Zt

g, there exists at least one column c such that A[ri, c] = xi for
all 1 ≤ i ≤ t.

The smallest number of columns b for which such a CA(t, k, g) exists is referred
to as the covering array number, CAN(t, k, g).

This research focuses on the decision version of the covering array problem,
which determines whether a covering array CA(t, k, g) can be constructed for a
given number of columns b. The model used in this study is presented in Figure
4.2.

The input parameters for the model are: t, the strength, k, the rows, g the
array’s values domain, b the number of columns of the covering array. All the
parameters are in the integer domain therefore, no new domain is needed.

The only decision variable is CA: an integer-indexed matrix of integer values
in the range 1 to g. The matrix has size k × b. The matrix is constrained by three
high-level constraints that capture the problem specifications. The first constraint
is enough to model the entire problem since it makes sure that, for every t distinct
rows, for all integer values up to g, exists a column where the value indexed by
the i-th row and that column has the i-th value. The last two constraints are
symmetry-breaking constraints that enforce a lexicographic ordering of rows and
columns.

The dataset used for this problem consists of 2,236 instances.
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1 given w, g, s : int(1..)
2 letting Golfers be new type of size g * s
3 find sched : set (size w) of
4 partition (regular, numParts g, partSize s) from Golfers
5 such that
6 forAll g1, g2 : Golfers, g1 != g2 .
7 (sum week in sched . toInt(together({g1, g2}, week))) <= 1
8

Figure 4.3: Essence model of the social golfers’ problem.

4.1.3 Social Golfers
The social golfers problem [72] was derived from a post by bigwind777@aol.com
(Bigwind777) in 1998 on sci.op-research. The original problem required scheduling
a set of golf games between 32 golfers each of whom plays once a week in groups
of 4. The objective is to maximise the number of weeks so that no golfer plays in
the same group as any other workers on more than one occasion. There are several
possible variations such as to maximise the “socialization” (as few repeated pairs
as possible) over a 10-week schedule or finding a schedule of minimum length such
that each golfer plays with every other golfer at least once. The last variation is
called “full socialization”. This problem can be then easily generalized to m groups
and n golfers over p weeks such that no golfer plays any other golfers twice.

The model employed for this research is shown in figure 4.3 and solves the
decision version of the problem. In this version of the problem, we want to find a
schedule over w weeks for g groups of s golfers each. Each input parameter has an
integer domain. The schedule (sched), the only decision variable, is represented
as a set of partitions of size w. Each partition has g elements. Each element
is composed of s Golfers. Golfers is a new type declared for the model which
represents all the golfers in the schedule and has size g × s. The only constraint
set on the sched variable, imposes that every pair of golfers meet at most one time
for the full duration of the schedule.

We use a dataset of 1,039 instances for this problem.

4.2 Combinations of Models and Solvers
In this section, we will establish the process we used to obtain the different algo-
rithms and the differences of the Essence Prime models generated for each prob-
lem class. Our portfolio of algorithms is composed of every possible combination
of the model generated using Conjure on the Essence model and four solvers.
The solvers are Kissat, Chuffed, CPLEX, and OR-Tools CP-SAT, each chosen
for their potential complementary characteristics in combinatorial optimization.
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Kissat [12] is a modern clause-learning Satisfiability (SAT) solver. Chuffed [17] is a
Constraint Programming (CP) solver enhanced with clause learning. CPLEX [34]
is a commercial Mixed-Integer Programming (MIP) solver that excels in solving
problems that heavily use arithmetic constraints. OR-Tools CP-SAT 2 is a hybrid
solver developed by Google that integrates clause learning, CP-style constraint
propagation, and MIP-solving methods. We use Savile Row [60] to target these
solvers. The Essence Prime models are obtained using Conjure in its portfolio
mode, with variations arising from different representations of the variables and
constraints formulations.

4.2.1 Car Sequencing

For the car sequencing problem, multiple possible translations arise from the repre-
sentation of the car decision variable and the usage parameter, as well as the way
problem constraints are formulated. The car decision variable has two possible
representations. The first is a one-dimensional array indexed by cars, containing
decision variables with integer domains, where each entry represents the class se-
lected for that car. The other is a two-dimensional Boolean array, indexed by both
cars and classes, where a true value indicates the assignment of a car to a class.
The usage parameter also has two possible representations: a two-dimensional
Boolean array or a set of tuples. The second problem constraint in the Essence
model that refers to the usage parameter is refined with an element constraint
when the Boolean array is chosen, instead with a table constraint when the set of
tuples is chosen.

Using a combination of these model fragments, Conjure constructs three
distinct Essence Prime models. The first model M1 has a one-dimensional array
of integer variables for car and a set of tuples with a table constraint for the usage
parameter. The second model M2 couples the same one-dimensional array for car
with a Boolean array for usage and the element constraint. The third model M3
uses a two-dimensional Boolean array for car, and a set of tuples and the table
constraint for usage.

4.2.2 Covering Array

For the covering array problem, the Essence model generated only one Essence
Prime version. Due to the simplicity of the parameters and the single variable,
the final Essence Prime model shares them with the original version and no
auxiliary variables are needed. Similarly, the lexicographic constraints can be easily

2https://developers.google.com/optimization/cp/cp_solver
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translated using the same constraint. For the remaining constraint, Conjure uses
arrays to represent the sequences for the rows and values variables.

4.2.3 Social Golfers

For Social golfers, Conjure produces four distinct Essence Prime models, each
offering a different matrix-based encoding of the weekly partitions. The first model
uses a single 3D matrix indexed by weeks × groups × slots, where each entry is
an integer indicating which golfer is in a particular part of the partition for a
particular group and week. The second model represents the same structure with
a 3D Boolean matrix, this time indexed by weeks, groups, and golfers, storing
true or false values to indicate whether a given golfer is in a specific part of the
partition.

The third model splits the partitioning into multiple matrices, capturing infor-
mation such as the number of parts, which golfer goes into each position, and how
many slots are used in each group. By breaking down the partition into several
matrices, this approach can exploit different constraint formulations within the
same overall representation. Finally, the fourth model combines two matrix en-
codings: one storing explicit integer assignments for each slot and another tracking
membership via Booleans.

These variations arise because Conjure can refine the partition domain in
multiple ways, translating high-level sets of groups into different low-level data
structures. Each resulting Essence Prime model may be advantageous for cer-
tain solver strategies or types of instances, and all of them feed into our portfolio
of solver-model combinations.

4.3 Dataset and Algorithm Complementarity

This section presents an analysis of the portfolio of algorithms employed for each
problem class and evaluates the potential benefits of applying AAS to the selected
problems. Each subsection provides a detailed discussion of a specific problem
class. Before delving into the individual analyses, we establish the shared method-
ology for recording algorithm runtimes.

All experiments were conducted on a computational setup equipped with an
AMD EPYC 7763 CPU. Each algorithm was allocated a single CPU core and
subjected to a one-hour cut-off time per instance.
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Figure 4.4: PAR10 value of each algorithm and the VB on the car sequencing (left),
covering array (centre) and social golfers (right) instance sets (lower is better),
where the algorithms are grouped by their models (top) or solvers (bottom). The
results are in log scale.

4.3.1 Car Sequencing
The car sequencing problem class utilizes a portfolio of 12 algorithms derived from
the combination of three Essence Prime models and four constraint solvers. The
PAR10 scores for these algorithms, evaluated across the entire instance set, are
shown in Figure 4.4. Additionally, the figure includes the Virtual Best Solver (VB),
a theoretical construct representing the optimal algorithm selector that always
identifies the best algorithm for each instance.

A key observation from Figure 4.4 is the lack of a dominant model or solver.
The remaining algorithms, excluding those involving M3, which always underper-
form no matter the solver, exhibit diverse performance characteristics. Notably,
the gap between the VB and the best standalone algorithm, (M2-Chuffed) is signifi-
cant, with the SB achieving only 0.01% of the VB’s performance. This underscores
the potential for AAS to leverage complementary strengths among algorithms.

The complementarity of the algorithms in the portfolio can be further observed
in Figure 4.5, where we plot on the left the average participation to VB (as the
percentage of the instances where the algorithm is the best) and on the right the
average competitiveness (as the percentage of the instances where the algorithm is
competitive). We can see that even though M2-Chuffed appears as the best overall
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Figure 4.5: Participation, as a percentage, to VB (top) and competitiveness, as
a percentage, (bottom) for the car sequencing (left), covering array (centre) and
social golfers (right) instance sets.

algorithm in Figure 4.4, it is the winner on a fairly small number of instances
according to the left plot of Figure 4.5. Instead, M1-CPLEX, M1-Chuffed and M1-
OR-Tools have significantly higher numbers of instances where they win. These
three algorithms cover a significant part of the instance space.

While many algorithms do not appear to participate at all to VB, they are all
competitive in some instances (with varying percentages), as shown in the right
plot of Figure 4.5. An exception is M2-CPLEX which in fact resulted in the worst
overall algorithm in Figure 4.4.

4.3.2 Covering Array

For this problem class, only one Essence Prime model is present but the solvers
are still four, therefore, the final portfolio is composed of four algorithms. Figure
4.4 shows the PAR10 score of each algorithm in the full instance set with VB
included as well. Contrary to the car sequence case, for this problem class the
gap between SB and VB is much smaller with M1-Kissat being the SB achieving
a performance ratio of 0.72 compared to the VB.

Even though the gap between SB and VB is much smaller compared to the car
sequencing case, figure 4.5, on the left side, shows that each algorithm contributes
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to VB, even M1-Cplex which has the worst PAR10 score. M1-OR-Tools is the least
contributing algorithm while M1-Chuffed and M1-Kissat both contribute similarly
to VB with M1-Chuffed contributing slightly more than 50% of the time and M1-
Kissat roughly 45% of the time. A similar story can be told by watching the right
side of figure 4.5 which shows the percentage of competitiveness of each algorithm
in the instance set. We can see that M1-Chuffed and M1-Kissat are almost always
competitive, M1-Cplex is competitive around 60% of the time and M1-OR-Tools
roughy 50% of the time. This second picture of the datasets shows a different story
compared to 4.4 where M1-Kissat seems the clear winner. In fact, 4.5 suggests a
much more complex instance set where AAS could take advantage of the different
algorithms.

4.3.3 Social Golfers
The social golfers problem has four possible Essence Prime models, resulting in
sixteen different algorithms in conjunction with the four solvers. The PAR10 scores
for social golfers, shown in figure 4.4, are very different from the ones for the other
classes: in this case, 6 algorithms dominate all the other with similar bad results.
The algorithm including the models M1 and M2 have the best performance when
coupled with Chuffed, Kissat and OR-Tools. The same cannot be said for CPLEX
because it performs similarly to the other algorithms. Here the gap between SB
and VB stands in the middle between car sequencing and covering array since VB
as a percentage of SB is 0.65.

The participation to VB and the competitiveness of each algorithm, shown in
figure 4.5 tell a similar story to figure 4.4, there are clear winners: VB is almost
entirely represented by M2-Chuffed with a very small inclusion of M2-Kissat and,
on the competitive side, the same two algorithms are overwhelmingly the best ones
with M1-Chuffed, M1-Kissat, M1-OR-Tools and M2-OR-Tools being the only one
being competitive more than 10% of the time. This may seem a less-than-ideal
scenario, however, the still-interesting gap between SB VB shows that whenever
M2-Chuffed is not the best algorithm, it is worse by a considerable margin making
an AAS approach more interesting.
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Chapter 5

Experimental Study

Having established the methodology for our work and the potential advantages of
AS for the datasets presented, we now experimentally evaluate the effectiveness of
our approaches. As described in Chapter 3, given an Essence instance as input,
we can either learn to directly predict the best algorithm for the given instance
within a single BERT-like neural network (the fully neural approach, denoted as
BNN, or we can split the learning into two phases (the hybrid approach). In the
hybrid approach, the first phase focuses on feature learning using either the same
BERT-like architecture (bNN) or a slightly modified version where algorithm com-
petitiveness is used as the target (cNN). The second phase makes used of the learnt
features as input and employs commonly-used machine learning models from AS
literature, including K-means (K) and the well-known AS tool AutoFolio [51](A). In
summary, we consider four hybrid variants, denoted as (bNN,K), (bNN,A), (cNN,K)
and (cNN,A). To guide this evaluation, we aim to answer the following research
questions (RQs):

• RQ1: Can we use either the Tanh features or the output of models as
features or do we need to combine them to obtain an effective feature set?

• RQ2: Can a single neural network effectively produce an AS model, or is it
necessary to split the learning process into two phases?

• RQ3: How do the learned features compare to the existing fzn2feat fea-
tures in terms of performance?

• RQ4: What is the computational cost of extracting the learned features,
and how does this cost influence the final results compared to the fzn2feat
extraction cost?

his chapter begins by detailing the experimental design and the training process
for the neural networks. Subsequently, it addresses each of the research questions
through a systematic experimental study.
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5.1 Experimental Design

All experiments were conducted using Python 3.11 with PyTorch1 and scikit-learn2

for neural network implementation and K-means clustering, respectively. Python
3.6 was utilized for experiments involving AutoFolio.3 The complete codebase
supporting this work is publicly available in the project repository.4

Algorithm selection setup. As described in Section 3, we use the Penalised
Average Runtime with a factor of 10 (PAR10) to measure the performance of an
AS model on a set of problem instances. Each AS approach is evaluated using
10-fold cross-validation. During each fold, 10% of the training data is served as a
validation set to support the neural network training process and hyper-parameter
optimisation. All experiments are run on a computer with an AMD EPYC 7763
CPU where, each time, we limit the number of cores available for an algorithm
depending on our necessities.

In the hybrid approaches, we make use of K-means and the AS tool AutoFolio
for the AS task. AutoFolio offers a tuning mode using the hyper-parameter opti-
misation tool SMAC [33], which we employ in our experiments with a single CPU
core and a tuning budget of 5 hours.

K-means Hyper-parameters In Chapter 3, we have introduced the K-means
clustering algorithm and how we have used it as an AS approach. During the
optimization phase of the clustering scheme, we use a set of hyper-parameters
to combine to get the best clustering scheme for our purpose. In particular, the
hyper-parameters we set are: the number of clusters which ranges between 2 and
21, the initialization method which could be random or using the K-means++
methodology, the number of maximum iterations which could be 100, 200 or 300,
the tolerance which could be 10−3, 10−4 or 10−5. Finally, the last hyper-parameter
we set is the number of possible initializations the algorithm can use which can be
5. 10, 15 or ”auto”. A detailed explanation of the use of each of these values can
be found on the official Scikit-learn documentation.5

Normalised PAR10 scores. Due to the different scales of PAR10 across folds,
following existing AS literature [51], we use a normalised version of the PAR10

1https://pytorch.org/
2https://scikit-learn.org/stable/index.html
3https://github.com/automl/AutoFolio/tree/master
4https://github.com/SeppiaBrilla/EFE_project
5https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.

html
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score in our comparison. The normalised PAR10 score is calculated as:

score = p(AS) − p(V B)
p(SB) − p(V B) (5.1)

where p(AS), p(V B) and p(SB) are the PAR10 scores of an AS approach, the
VB, and the SB on the same fold, respectively. The VB has a score of 0 and
the SB has a score of 1, and we want to minimise this normalised score. An AS
approach is only considered effective if its normalise score is less than 1, i.e., it
performs better than the SB (i.e., the AS approach without any learning required).
Unless specified otherwise, reported prediction times include feature computation
times.

5.2 Neural Network Training
For each dataset, the neural network models were trained from scratch to evaluate
their learning capabilities independently, without leveraging any form of pretrain-
ing. The exploration of transfer learning and multi-problem feature learning is left
for future work. All NN models were trained on a GPU with an NVIDIA A5000
accelerator.6.

For approaches in which feature learning and algorithm selection were per-
formed separately, the same data splits were used for the ML algorithm selector.
Specifically, if an instance appeared in the test set of the NN, it was also included
in the test set of the ML model using the extracted features.

Models hyper-parameters For both the BNN and CNN models, we need to
set the sizes of the feature and post-feature layers as they are arbitrary and their
values can vastly impact both the size of the models and their ability to learn the
task effectively. After some manual tuning, we set the size of the feature layer to
100 neurons and the size of the post-feature layer to 200 neurons. These values are
big enough to allow a lot of flexibility in the model’s parameters while still being
small enough not to cause over-parametrization problems (for the post-feature
layer) or issues with the external ASs (for the feature layer).

5.2.1 BNN Models
The BNN models employed the Cross-Entropy loss function in conjunction with
the Adam optimizer. For each dataset, the models were trained using distinct
hyper-parameter configurations, including variations in learning rates, the total
number of training epochs, and batch sizes.

6https://www.nvidia.com/en-us/design-visualization/rtx-a5000/
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Figure 5.1: Loss values for the BNN models across all folds for the Car sequencing
problem, shown for training (left) and validation (right) sets.

Figure 5.1 illustrates the evolution of the loss values for both the training and
validation sets at the end of each epoch for the BNN models trained on the Car
sequencing dataset. For this dataset, the models were trained for a total of 15
epochs using a learning rate of 7 × 10−6. Due to memory constraints, the batch
size was limited to only two elements per batch. The loss trends for the training
and validation sets are generally consistent, with both following a similar overall
trajectory. With the exception of a single case, the majority of networks exhibit
diminishing improvements after the 6th epoch. In certain instances, the loss value
increases during the final epochs, suggesting overfitting. Notably, the fifth fold
displays the poorest performance, characterized by a more unstable trend and a
substantially higher final loss value.

The BNN models trained on the Covering array problem were trained for a total
of 100 epochs with a learning rate of 1×10−5 and a batch size of 32 items per batch.
Their loss values during training can be seen in Figure 5.2. Among the datasets
analysed, the models trained on the Covering array exhibited the least favourable
trend. The loss curves reveal a pronounced tendency toward overfitting, as the
loss for the training set continues to decrease while the validation loss stagnates or
increases after approximately 25 epochs. This behaviour suggests that the models
struggle to generalize effectively.

In Figure 5.3 we show the loss values for the training and validation sets for
the BNN models when trained on the Social golfers dataset. The models for this
dataset were trained for 50 epochs using a learning rate of 6 × 10−6 and a batch
size of 32 items per batch. Similar to the trends observed in the Car sequencing
models, the loss values for the training and validation sets follow comparable tra-
jectories. However, unlike the Car sequencing models, the loss in the Social golfers
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Figure 5.2: Loss values for the BNN models across all folds for the Covering array,
shown for training (left) and validation (right) sets.
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Figure 5.3: Loss values for the BNN models across all folds for the Social golfers,
shown for training (left) and validation (right) sets.

models continues to improve, albeit at a slower rate, after stabilization around
the 20th epoch. Two folds exhibit distinct behaviours worth highlighting: fold 9
achieves a notably lower validation loss compared to the other folds, while fold 8
demonstrates signs of overfitting beginning around the 60th epoch, with its vali-
dation loss subsequently increasing, ultimately leading to the worst performance
among all folds.
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Figure 5.4: Loss values for the hybrid approach models across all folds for the Car
sequencing problem class, shown for training (left) and validation (right) sets.

5.2.2 CNN models
The CNN models shared most of their characteristics with the BNN ones. How-
ever, instead of using the Cross-Entropy loss function, the Binary Cross-Entropy
(BCE) loss function was employed due to the nature of the task, which involved
multilabel classification. The optimizer remained the Adam optimizer. As with the
BNN models, each dataset was trained using a distinct set of hyper-parameters.
Furthermore, similar to the fully NN-based approach, model performance was
evaluated on the validation set at the end of each epoch. To mitigate the risk of
overfitting, the model with the lowest validation loss was saved during training.

Figure 5.4 illustrates the evolution of the loss values for the training and valida-
tion sets for the CNN models trained on the Car sequencing dataset. The models
were trained for 15 epochs with a learning rate of 7 × 10−6 and a batch size of 2
items per batch, a constraint imposed by memory limitations similar to the fully
neural approach. The overall loss trend remains consistent across all folds, with a
similar trajectory observed for both the training and validation sets. Unlike the
BNN models, where the training process often stagnates or slows down after a cer-
tain number of epochs, the hybrid approach maintains a steady reduction in loss
throughout all epochs. Two folds demonstrate particularly noteworthy behaviour:
fold 8 experiences a small but noticeable loss spike at the 4th epoch, while fold 6
exhibits a more significant spike at the 11th epoch. Interestingly, in both cases,
the loss subsequently returns to a downward trend, and the spikes are observed in
both the training and validation sets.

The CNN models trained on the Covering array dataset (whose loss can be
seen in figure 5.5) were trained for 100 epochs with a learning rate of 7 × 10−6

and a batch size of 32 items per batch. All folds exhibit a relatively slow start,
with the loss decreasing at a sluggish pace during the initial epochs, followed by a
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Figure 5.5: Loss values for the hybrid approach models across all folds for the
Covering array problem class, shown for training (left) and validation (right) sets.
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Figure 5.6: Loss values for the hybrid approach models across all folds for the
Social golfers problem class, shown for training (left) and validation (right) sets.

more rapid convergence in subsequent epochs. This pattern is observed in both the
training and validation sets, with all folds reaching a similar loss value by the end
of training. Interestingly, only the 9th fold displays a slightly lower final validation
loss than the other folds. This consistent convergence across folds suggests that
the peculiar shape of the loss curves is likely a result of the inherent characteristics
of the dataset or the loss landscape, rather than fold-specific anomalies.

Figure 5.6 illustrates the evolution of the loss values for the training and vali-
dation sets for the CNN models trained on the Social golfers dataset. The models
were trained for 100 epochs with a learning rate of 9 × 10−6 and a batch size of 32
items per batch. The loss values for the Social golfers dataset follow a trend similar
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Figure 5.7: Comparison of the cNN features, the probabilities-only features (p)
and the tanh-only features (t) for the covering array and social golfers problems.

to that observed in the BNN models. Specifically, there is a rapid convergence in
the early epochs, after which the rate of improvement slows. Notably, the valida-
tion loss is more stable in the hybrid approach compared to its BNN counterpart.
However, similar to the BNN models, the CNN models exhibit a few spikes in loss
during training although, in this case, the spikes are at approximately the same
epochs and across multiple folds, suggesting that they may be due to the structure
of the loss landscape rather than the idiosyncratic behaviour of specific folds.

5.3 Ablation Study
In this section, we will answer RQ1: Can we use either the Tanh features or the
output of models as features or do we need to combine them to obtain an effective
feature set?

Figure 5.7 illustrates the benefits of combining the Tanh with the output proba-
bilities. As shown, using only the output probabilities (p) in Figure 5.7 significantly
hinders the learning process and leads to poorer performance for the K-means AS
compared to the cNN features. In contrast, when only the Tanh features are
used (t), the performances are more comparable to those obtained from the cNN
features. Interestingly, for the covering array problem, both approaches achieve
identical results. However, in the case of the social golfers problem, both the aver-
age and mean performance metrics indicate worse outcomes compared to the cNN
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Figure 5.8: Normalized PAR10 scores of different AS approaches trained using
neural features across 10 folds for the Car sequencing dataset. The red line indi-
cates SB (1).

features, despite sharing the same total range. Although this part of the study is
far from exhaustive, we still think these results are significant and we will only use
the combined features (bNN and cNN) in the following sections.

5.4 Feature Learning and Algorithm Selection:
Combining vs Splitting

In this section, we investigate RQ2: Can a single neural network effectively pro-
duce an AS model, or is it necessary to split the learning process into two phases?
Furthermore, we aim to evaluate which training methodology yields the most effec-
tive semantic representation of problem instances, thereby enabling the accurate
and consistent prediction of the best-performing algorithm.

Overall, the performance (Figures 5.8, 5.10 and 5.9) of the fully neural approach
BNN is subpar compared to the hybrid ones. Even on the training set, a majority
of BNN runs result in worse performance than the SB (which does not require
any learning). Among the hybrid approaches, (cNN, K) consistently obtains the
best overall performance across the three problem classes. Among the five studied
approaches, (cNN, K) is the only one that consistently achieves better performance
than SB.

A likely explanation for the underperformance of the fully neural approach
lies in the inherent imbalance of the training data in the multi-class classification
task. Algorithms that excel on only a small subset of instances are underrepre-
sented, making them harder to predict correctly despite their significant impact
on the overall PAR10 score. The competitive approach mitigates this imbalance
by emphasizing performance differences across algorithms, allowing for better gen-
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Figure 5.9: Normalized PAR10 scores of different AS approaches trained using
neural features across 10 folds for the Social golfers dataset. The red line indicates
SB (1).
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Figure 5.10: Normalized PAR10 scores of different AS approaches trained using
neural features across 10 folds for the Covering array dataset. The red line indicates
SB (1).

eralization and improved instance characterization. This generalization makes the
learning process very effective resulting in a PAR10 score that significantly im-
proves SB in every dataset.

It is also interesting to see that the combination of cNN features and the K-
means AS approach results in much better performance compared to (cNN,A),
despite K-means’ simplicity compared to a state-of-the-art AS framework like Aut-
ofolio. Our finding illustrates that simpler ML-based AS approaches can be quite
effective for certain AS tasks compared to the more sophisticated approaches com-
monly used in AS literature.
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Figure 5.11: PAR10 scores of AS approaches cNN or F2F features across 10 folds
for the Car sequencing dataset. The red line indicates SB (1)

5.5 Learnt features vs Fzn2feat
In this section, we address RQ3: How do the learned features compare to the
existing fzn2feat features in terms of performance?

Building on the findings from Section 5.4, which demonstrated the superiority
of the (cNN, K) approach, we now compare its performance against the fzn2feat
(F2F) features [7]. These features have been chosen as a baseline as they have
been used in literature before in AS tools to perform similar tasks. We will use
the same AS algorithms as for the cNN features but train them using the F2F
features instead. To extract the F2F features, it is necessary to run the instance
on a solver and, therefore, convert the instance to FlatZinc [58]. To do so, we
have used the default model output by Conjure (M1) and used Saville Row to
output the FlatZinc instance to use with the feature extractor. All the instances
have been computed using a machine with 2 CPU cores and 8GB of available RAM.
On some instances, the extraction process crashed due to an excessive amount of
RAM usage. While the feature extraction process for the bNN and cNN features
requires dedicated hardware (a GPU), it’s still noteworthy the fact that in no case
the amount of used memory on the GPU surpassed a few GB.

Figure 5.11 shows the PAR10 scores for AS approaches trained on F2F features
and the (cNN, K) approach for the Car sequencing dataset. (cNN, K) Outper-
forms (F2F, K) on 7 out of 10 folds.(F2F,A) demonstrates more consistent perfor-
mance across folds, yielding a better mean PAR10 score compared to (cNN, K).
In contrast, (cNN, K) achieves a lower median PAR10 score, indicating greater
robustness in capturing instance semantics and potential for better generalization.

For the Covering array dataset (Figure 5.12), the results reveal a clear advan-
tage for the and the (cNN, K) approach. The system consistently outperforms
SB across all folds and even approaches the performance of the VB in some cases.

65



0.27
1.52

2.76
4.01

PAR10

(F2F, A)

(F2F, K)

(cNN, K)

         Covering array - Train         

0.22
1.99

3.77
5.55

PAR10

(F2F, A)

(F2F, K)

(cNN, K)

       Covering array - Validation      

0.18
48.20

96.22
144.24

PAR10

(F2F, A)

(F2F, K)

(cNN, K)

          Covering array - Test         

Figure 5.12: PAR10 scores of AS approaches cNN or F2F features across 10 folds
for the Covering array dataset. The red line indicates SB (1)
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Figure 5.13: PAR10 scores of AS approaches cNN or F2F features across 10 folds
for the Social golfers dataset. The red line indicates SB (1)

In contrast, AS systems trained on F2F features fail to surpass the performance
of SB, even on the training set. This outcome persists even when feature extrac-
tion costs are excluded from the evaluation, suggesting that F2F features do not
sufficiently capture the semantic properties of instances for this dataset.

The results for the Social golfers dataset, shown in Figure 5.13, exhibit a similar
trend to that observed for the Covering array dataset. Here, (cNN,K) is the only
approach that consistently outperforms SB. In contrast, AS models trained using
F2F features consistently fail to outperform SB. However, in this dataset, the cost
of feature extraction plays a more critical role. Excluding the feature extraction
time, (F2F,K) does surpass SB algorithm in three different folds. Additionally, it
is noteworthy that, for some problem instances, the F2F extraction process failed
due to memory crashes. Although these crashes prevented the AS from making
predictions, the system still incurred computational overhead, further impacting
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fold Car sequencing Covering array Social golfers
F2F + E F2F cNN + E cNN F2F + E F2F cNN + E cNN F2F + E F2F cNN + E cNN

0 132.51 127.17 300.57 300.52 23.23 19.23 14.85 14.85 1,547.11 1,224.51 209.45 209.44
1 301.97 296.69 156.22 156.17 28.60 25.00 20.99 20.99 1,163.31 848.11 268.35 268.35
2 273.85 268.54 212.42 212.37 26.48 22.65 15.95 15.95 518.72 199.68 234.85 234.85
3 229.78 224.35 179.38 179.33 25.37 21.80 18.60 18.60 1,175.69 857.06 253.20 253.20
4 348.88 343.56 441.89 441.83 20.79 17.27 14.78 14.78 528.35 216.90 275.22 275.22
5 246.55 241.23 177.89 177.84 27.93 24.43 18.21 18.21 481.67 176.76 181.12 181.11
6 283.33 277.90 359.54 359.49 20.56 17.04 14.40 14.40 841.24 535.98 221.02 221.02
7 352.25 346.96 183.32 183.27 15.95 12.44 10.82 10.82 849.04 548.80 268.51 268.51
8 284.51 278.98 203.13 203.07 16.89 13.37 11.72 11.72 911.93 594.83 280.15 280.15
9 179.17 173.60 151.15 151.10 504.62 501.03 21.22 21.22 1,228.29 916.30 168.23 168.23

Table 5.1: Average AS predicted times with (+ E) and without feature extraction
cost for each fold in the Car sequencing, Covering array, and Social golfers problem
classes. The AS used for all the problems is K-means.

overall performance.
Across the three datasets, (cNN, K) consistently outperforms F2F-based ap-

proaches. The cNN-based approach achieves lower PAR10 scores and exhibits
greater robustness across folds. In two datasets (Covering array and Social golfers),
AS models trained on F2F features fail to outperform SB, even before consider-
ing feature extraction costs. These results suggest that cNN features are more
effective in capturing the semantic properties of instances, leading to improved AS
performance.

5.6 Feature Extraction Cost
In this section, we analyse and address RQ4: What is the computational cost
associated with extracting the learned features, and how does this cost influence
the final results compared to the F2F extraction cost?

The computational cost of feature extraction for all the problems is presented in
Table 5.1. For the Car sequencing dataset, the feature extraction cost significantly
affects the final AS score when F2F features are utilized. While the final results
still outperform SB, the average instance time increases substantially. Conversely,
the inclusion of the feature extraction cost has little to no impact on the final AS
score for the cNN-based approach, as the computational time required for cNN
feature extraction is minimal.

A similar pattern is observed in the Covering array problem. The inclusion
of feature extraction costs causes the F2F-based AS to exhibit significantly worse
average scores compared to when the extraction cost is excluded. Even though
the F2F-based AS never outperforms SB, the detrimental impact of the extraction
time remains consistent. In contrast, the cNN-based approach is unaffected, as
the inclusion of feature extraction time does not change the AS results due to the
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relatively low computational cost of cNN feature extraction.
The Social golfers problem demonstrates the most severe impact of feature

extraction time on the F2F approach. For 3 folds in particular, the extraction
cost significantly negatively impacts the corresponding AS’s overall performance
and alters their ranking, while (cNN,K) achieves a better score on the remaining 7
folds no matter what. In some instances, the extraction process failed to complete,
forcing the system to resort to the single best strategy while accounting for the
wasted extraction time. As with the previous problem classes, the cNN-based AS
remains unaffected, as its low computational overhead ensures that average scores
do not change.
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Chapter 6

Conclusions

This chapter serves as a concluding evaluation of our work, starting with a sum-
mary of the main contributions presented in this thesis and then proposing some
possible future work to explore and improve on what we have presented.

6.1 Summary of Contributions
In this thesis, we have investigated a novel approach to feature extraction based on
a Transformer Encoder within the context of algorithm selection for combinatorial
optimization problems. Our proposed approach uniquely focuses on high-level
instance characteristics, offering three significant advantages:

(i) The extracted features capture the high-level semantics of the problem in-
stance, whereas existing methods predominantly rely on low-level details that can
only be obtained after partially executing the instance using a solver. (ii) Our
method enables faster feature extraction since it eliminates the need to execute
the solver, potentially resulting in considerable time savings. (iii) Our features are
automatically learned for the task eliminating the need for designing a rich and
diverse feature set to characterize an instance.

We have introduced two distinct strategies for training a neural network to
learn the desired features and have empirically validated the superiority of one
training approach over the other.

Our methodology was evaluated on three diverse datasets, each representing
different problem classes. Across all three datasets, our feature extraction approach
yielded improvements over the single best solver strategy. Additionally, in two
out of the three datasets, our approach outperformed the baseline Fzn2feat
features, while in the third dataset, our features achieved performance comparable
to the baseline. Furthermore, we obtained competitive results, especially when
our features were paired with the K-means strategy. These outcomes highlight
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both the effectiveness and generalizability of our approach, suggesting that it is a
viable solution for integration into any algorithm selection tool designed to address
combinatorial optimization problems.

6.2 Future Work
This research primarily aimed to demonstrate the feasibility of our approach by
training several neural network models from scratch and evaluating the effective-
ness of our training strategies and final feature extraction results. Consequently,
the scalability of this approach across multiple problem classes remains an open
question. A notable challenge lies in determining how to extract features for dif-
ferent problem classes, given that each class may be associated with a distinct set
of algorithms. As a result, both the number of features and the architecture of the
neural network may vary depending on the specific problem class.

Once the aforementioned scalability issue is addressed, we believe it will be
essential to evaluate our features in conjunction with a state-of-the-art algorithm
selection tool, such as SunnyCP [52]. Specifically, we propose testing our features
as a direct replacement for the features currently employed by existing tools, as well
as developing a specialized algorithm selection tool designed to fully leverage our
proposed feature extraction methodology. Finally, all our methods used a simple
AS strategy where the model predicts a single algorithm to use. In the literature,
there exists a number of different approaches that also significantly improve the
performance over the single best algorithm. As an example, many tools predict
a schedule of algorithms to run ranging from the most to the least promising one
[39].
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[41] Sami Khuri, Thomas Bäck, and Jörg Heitkötter. An evolutionary approach
to combinatorial optimization problems. In ACM Conference on Computer
Science, pages 66–73, 1994.

74

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer


[42] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[43] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[44] Lars Kotthoff. Algorithm selection for combinatorial search problems: A
survey. In Data mining and constraint programming: Foundations of a cross-
disciplinary approach, pages 149–190. Springer, 2016.

[45] Lars Kotthoff, Pascal Kerschke, Holger Hoos, and Heike Trautmann. Improv-
ing the state of the art in inexact tsp solving using per-instance algorithm
selection. In Learning and Intelligent Optimization: 9th International Con-
ference, LION 9, Lille, France, January 12-15, 2015. Revised Selected Papers
9, pages 202–217. Springer, 2015.

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[47] Annu Lambora, Kunal Gupta, and Kriti Chopra. Genetic algorithm-a litera-
ture review. In 2019 international conference on machine learning, big data,
cloud and parallel computing (COMITCon), pages 380–384. IEEE, 2019.

[48] Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.
Operations research, 14(4):699–719, 1966.

[49] M. Lindauer, Jan N van R., and L. K. The algorithm selection competitions
2015 and 2017. AI, 272:86–100, 2019.

[50] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
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