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Abstract

This thesis investigates the magnetic properties of the chromium trihalides series CrX3

with X = Cl, Br, I at both the bulk and monolayer limits, with a particular focus
on the effect of low-dimensionality and spin-orbit coupling. Combining the four-states
method with very accurate total energy calculations based on density functional theory,
we have systematically targeted the isotropic and anisotropic contributions to the ex-
change interactions within these materials. Our findings reveal that they are significantly
enhanced by the spin-orbit coupling of the associated halide atoms. To further under-
stand the behaviour of the monolayers at finite temperatures, we initialized a quadratic
spin Hamiltonian with the so obtained exchange couplings and consequently performed
Monte Carlo simulations. The results indicate a substantial overestimation of the Curie
temperatures for the monolayers. We finally suggest a reasonable explanation of the
reported discrepancy, but that is still an open question as it would require further tests
to be eventually confirmed.
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Introduction

The advent of two-dimensional (2D) materials is commonly associated with the first
realization and characterization of graphene [1] by A. Geim and K. Novoselov in 2004
and it paved the way to the discovery of 2D magnetic systems. Indeed, after several
unsuccessful attempts to exfoliate a single layer of K2CuF4 following the theoretical
suggestion in [2], ferromagnetism was finally reported in the CrI3 monolayer (ML) [3]
and the CrGeTe3 few-layer film [4] in 2017. Prior to this discovery, long-range magnetic
order in 2D systems with isotropic short-range exchange interactions was considered
impossible due to the Mermin-Wagner theorem, which for instance can be violated by
the effect of Spin-Orbit Coupling (SOC) on the magnetic anisotropy or by finite-size
effects [5].

During the last decade, a large variety of new 2D magnetic materials were prepared
experimentally, ranging from insulators such as CrCl3, CrBr3 and VI3 [6] to conductors
such as Fe3GeTe2 [7] and CrTe2 [8], and they are currently regarded as important can-
didates for next-generation electronic, optoelectronic and spintronic applications due to
their unique properties.

The growing interest in the field has highlighted the need for reliable theoretical
frameworks to learn more about the underlying exchange interactions. These methods
can be broadly categorized into two groups. The first case include those methods which
map derivatives of the total energies with respect to the spin tilting angles onto a classical
spin Hamiltonian, while those for the second one directly take the total energies of some
specific magnetic configurations.

Among the latter energy-mapping techniques, the four-states methodology stands out
as particularly effective and powerful, since it can be employed in any magnetic system
and also allows for an extensive description of the aimed Intersite Exchange Interaction
(IEI) and Single-Ion Anisotropy (SIA) tensors.

The scope of this thesis is to contribute to the current understanding of the exchange
interactions in the most relevant bulk and ML phases of the chromium trihalides series
CrX3 with X = Cl, Br and I, with a particular emphasis on the role of the halide’s SOC
and the low-dimensionality. We thus provide a comprehensive overview of the dominant
terms in the IEI and SIA tensors obtained by four-states method and compare them
to the available experimental and computational estimates in the literature. To further
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comment on the reliability of our finding, we plug the resulting couplings into a Monte
Carlo (MC) code that allows to locate the Curie temperature of the ML phases.

In particular, the body of the thesis is structured in four Chapters as follows.
The first Chapter presents a detailed treatment of some exemplary models for the

microscopic origin of magnetism, underlining the crucial role of the on-site Coulomb
repulsion, the Coulomb exchange and the allowed electron hopping processes in the
most common exchange mechanisms in transition metal compounds. Further, it includes
a brief introduction to the main anisotropic exchange interactions and the associated
quadratic spin Hamiltonians.

The second Chapter outlines the theoretical framework behind all the computational
methods that lead to our results. As a first step, we discuss the conceptual core of Density
Functional Theory (DFT) and derive the single-electron Kohn-Sham equations within
the spin-unrestricted scheme by a variational treatment of the total energy functional.
In order to compensate for the well known DFT limitations in capturing the correlation
effects of localized d or f orbitals, we introduce the Dudarev’s approach to Hubbard-U
correction as implemented in the Vienna Ab-initio Simulation Package (VASP) software.
Then, we explain how to constrain the direction of local magnetic moments in a sys-
tem by adding a penalty term to the standard DFT total energy functional. At this
point, we present two independent techniques to estimate the target exchange couplings,
namely the four-states energy-mapping method and the magnetic force theorem within
Hubbard-I (HI) approximation. Finally, we discuss the implementation of the Metropo-
lis MC algorithm for finite-temperature calculations within the Uppsala Atomistic Spin
Dynamics (UppASD) code.

The third Chapter provides a general overview of the main physical properties of the
chromium trihalides under study both at the bulk and ML limit.

To conclude, the fourth Chapter consists of a summary of the results with further
comments and some technical details concerning the adopted procedures.
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Chapter 1

Theoretical models of magnetism

This chapter is aimed to provide an overview of the main physical mech-
anisms, which induce local exchange interactions in magnetic systems.
Thus, we delve into a detailed description of kinetic and Coulomb ex-
change and how they explain the occurrence of magnetic order at finite
temperatures, while magnetostatic dipoles’ interaction cannot.
In particular, we distinguish between direct and indirect exchange mech-
anisms, including for example the so called Goodenough-Kanamori
rules for superexchange, which often fit to transition metal compounds
as in our case.
Finally, a brief introduction to most common anisotropic exchange in-
teractions allows the reader to explore their effects in realistic cases.

The energy difference due to the static interaction between two magnetic dipole
moments µ̂1 and µ̂2 located at R1 and R2 is given by

∆Edip =
µ0

4π|R12|3

[
µ̂1 · µ̂2 −

3

|R12|2
(R12 · µ̂1)(R12 · µ̂2)

]
(1.1)

with the dipoles’ connecting vectorR12 = R1−R2 and the vacuummagnetic permeability
µ0 = 4π× 10−7 H/m. Moreover, according to the quantum theory of angular momenta,
the magnetic dipole moment of an atom is related to the spin and orbital degrees of
freedom as follows

µ̂ = −µB

ℏ
(L̂+ 2Ŝ) (1.2)

where L̂ and Ŝ are the operators for the electronic orbital and spin angular momenta,
while µB = 5.7883818060(17) × 10−5 eV/T and ℏ = 6.582119569 × 10−16 eV · s are the
Bohr magneton and the reduced Planck constant respectively. Since the eigenvalues of
L̂ and Ŝ are usually expressed as low integer or half-integer multiples of ℏ, the typical
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order of magnitude for the atomic magnetic moments in solid state physics does not
exceed few units of µB. One can then conclude that the thermal energy required to
prevent any magnetic ordering due to magnetostatic dipoles’ interaction would be just
∼ 10−1 − 10−2 meV (i.e. ∼ 1 − 10−1 K in terms of temperature), which is in contrast
with the experimental observation of magnetic phases in a large variety of real materials.

The origin of such phenomena is indeed ascribable to the so called exchange in-
teractions between the local magnetic moments. In particular, we distinguish among
Couolomb and kinetic exchange interactions according to the underlying physical mech-
anism, which are discussed in the following sections.

1.1 Coulomb exchange interaction

The well known Pauli exclusion principle states that two or more electrons cannot occupy
the same quantum state simultaneously, or in other words that the associated many-
electrons wavefunction must be antisymmetric with respect to particles’ exchange. The
latter property is of significant relevance for the Coulomb repulsion energy between them,
as it turns out to encourage electrons with same spins to occupy different spatial orbitals.

We shall indeed prove this point via a simple two-electron model with an interacting
Hamiltonian of the form

Ĥ = Ĥ0 + ĤI =
2∑

i=1

[
−1

2
∇2

i + v(ri)

]
+

1

|r1 − r2|
(1.3)

with v(r) as a generic single-electron potential and r1, r2 as the position coordinates of
the two electrons, adopting atomic units. Moreover, let us assume that the solution of
the Schrodinger problem of the single-electron terms in Ĥ0 is already known and consists
of an orthonormal set of eigenstates {φα} with associated eigenvalues {ϵα}.

So, given two specific orbitals φα=a and φα=b, we construct the eigenstates of the
unpertubed two-electrons Hamiltonian Ĥ0 in terms of Slater determinants {Ψaσ;bσ′}, as
follows

Ψaσ;bσ′(r1, s1; r2, s2) =
1√
2

∣∣∣∣φa(r1)⊗ σ(s1) φa(r2)⊗ σ(s2)
φb(r1)⊗ σ′(s1) φb(r2)⊗ σ′(s2)

∣∣∣∣ =
=

1√
2
[φa(r1)φb(r2)⊗ σ(s1)σ

′(s2)− φb(r1)φa(r2)⊗ σ′(s1)σ(s2)] .

(1.4)

Since Ĥ0 is not affected by the spin degrees of freedom, these four wavefunctions are in
fact degenerate to the energy eigenvalue (ϵa + ϵb).

However, that condition changes when the Coulomb interaction ĤI is reintroduced.
In order to reveal its effect on the energetics of the system, we shall write its matrix
representation HI by computing the following integrals
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[HI ]lm =

∫
Ψ∗

l (r1, s1; r2, s2)
1

|r1 − r2|
Ψm(r1, s1; r2, s2)d

3r1d
3r2 (1.5)

where the indices l, m are just a shorthand notation to label all the available Slater
determinants, namely l,m ∈ {(a, ↑; b, ↑), (a, ↑; b, ↓), (a, ↓; b, ↑), (a, ↓; b, ↓)}. The only non-
vanishing terms in HI fall within three main case studies:

l = m = (a, σ; b, σ)

l = m = (a, σ; b,−σ)
l = (a, σ; b,−σ) ̸= (a,−σ; b, σ) = m

with σ =↑, ↓ (1.6)

and they can be parametrized by the Coulomb integral

Kab =

∫
|φa(r1)|2|φb(r2)|2

|r1 − r2|
d3r1d

3r2 (1.7)

and the exchange integral

Jab =

∫
φ∗
a(r1)φb(r1)φ

∗
b(r2)φa(r2)

|r1 − r2|
d3r1d

3r2. (1.8)

After some trivial algebraic steps, we end up with an interacting Hamiltonian matrix of
the form

HI =


Kab − Jab 0 0 0

0 Kab −Jab 0
0 −Jab Kab 0
0 0 0 Kab − Jab

 (1.9)

which is clearly symmetric and thus admits an orthonormal set of real-valued eigenvec-
tors, namely (1, 0, 0, 0), (0, 0, 0, 1), 1√

2
(0, 1, 1, 0) and 1√

2
(0, 1,−1, 0).

These four-dimensional vectors correspond to the Slater determinants Ψa,↑;b,↑, Ψa,↓;b,↓,
1√
2
(Ψa,↑;b,↓ + Ψa,↓;b,↑) and 1√

2
(Ψa,↑;b,↓ − Ψa,↓;b,↑). The first three states form a low-lying

triplet with energy ∆Et = Kab − Jab, while the last one constitutes a singlet with higher
energy ∆Es = Kab+Jab. Their order is demonstrated by the fact that both the Coulomb
and exchange integrals are positive.

Interestingly, one can map this problem into an effective Hamiltonian

Ĥeff =

(
Kab −

1

2
Jab

)
I1 ⊗ I2 −

1

2
σ̂1 · σ̂2 =

=
1

4
(∆Es + 3∆Et)− (∆Es −∆Et)ŝ1 · ŝ2

(1.10)

by introducing the Pauli vector operator σ̂ = (σ̂x, σ̂y, σ̂z) to represent the components of
the spin-1/2 operators {ŝj} in matrix notation as
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sxj =
1

2
σx =

1

2

(
0 1
1 0

)
, syj =

1

2
σy =

1

2

(
0 −i
i 0

)
, szj =

1

2
σz =

1

2

(
1 0
0 −1

)
. (1.11)

In particular, Eq. 1.10 describes the coupling between the two spins and also allows
to interpret the exchange integral as an exchange constant J = −(∆Es −∆Et) = −2Jab
that favours the maximization of the total spin quantum number (i.e. Hund’s first rule).

1.2 Kinetic exchange interactions

When more than one atom is involved, the electrons can perform hopping processes
from one site to the others if the Pauli exclusion principle allows for it. In this sense
the competition between the kinetic energy and the on-site Coulomb repulsion gains a
non-trivial spin dependence, which emerges as an effective kinetic exchange interaction.
The resulting effect is however influenced by the geometric arrangement of the given
atoms and orbitals.

1.2.1 Direct exchange mechanism

For the sake of simplicity, we consider a minimal two-sites Hubbard model with only
two atomic orbitals {φ1, φ2} and also we adopt the second quantization formalism to
simplify the notation of the problem. So, in the spirit of tight-binding models, we define
ĉ†iσ (ĉiσ) as the creation (annihilation) operator for a spin-σ electron in the atomic orbital
φi centered at the site i and they satisfy the usual anticommutation relation for fermions

{ĉiσ, ĉjσ′} = 0

{ĉ†iσ, ĉ
†
jσ′} = 0

{ĉiσ, ĉ†jσ′} = δijδσσ′

∀ij, σσ′. (1.12)

The Hamiltonian thus reads as

Ĥ = −t
∑
ijσ

ĉ†jσ ĉiσ + U
∑
i

n̂i↑n̂i↓, (1.13)

where the first term accounts for the allowed hopping processes, while the second one
represents the on-site Coulomb repulsion between electrons with opposite spins. Further,
the two parameters t and U are given by the following integrals

t =

∫
φ∗
1(r)

[
−1

2
∇2 + v(r)

]
φ2(r)d

3r (1.14)

and
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U =

∫
|φi(r)|2|φi(r

′)|2

|r− r′|
d3rd3r′ with i=1,2. (1.15)

Then, if we choose the two-electron basis set to consist of two purely covalent states
{ĉ†1↑ĉ

†
2↓|0⟩, ĉ

†
1↓ĉ

†
2↑|0⟩} and two purely ionic states {ĉ†1↑ĉ

†
1↓|0⟩, ĉ

†
2↑ĉ

†
2↓|0⟩} with |0⟩ as the vac-

uum, we can write the Hamiltonian matrix as

H =


0 0 −t −t
0 0 +t +t
−t +t U 0
−t +t 0 U

 (1.16)

and a convienent basis for its diagonalization is given by the following linear combinations
of the previous states

|cov±⟩ =
1√
2
(ĉ†2↓ĉ

†
1↑ ± ĉ†1↓ĉ

†
2↑)|0⟩,

|ion±⟩ =
1√
2
(ĉ†1↓ĉ

†
1↑ ± ĉ†2↓ĉ

†
2↑)|0⟩.

(1.17)

Indeed, the eigenvalue problem of H is solved by the eigenpairs

|Ψ±⟩ =

(
2
√
2t2|cov−⟩ − 2ϵ±|ion+⟩

)
√

8t2 + 2ϵ2±

|Ψcov⟩ = |cov+⟩
|Ψion⟩ = |ion−⟩

ϵ± =
U

2
±

√
U2 + 16t2

2
ϵcov = 0

ϵion = U

(1.18)

which show a non-trivial dependence on the two parameters t and U , depicted in Fig. 1.1.
In the strongly correlated limit U >> t, we have that the four eigenstates separate

into two distinct groups: one (|Ψ−⟩, |Ψcov⟩) settles down to very low energies and the
other (|Ψ+⟩, |Ψion⟩) instead grows linearly with U . Moreover, due to ϵ− → 0 the exact
ground state |Ψ−⟩ reduces to |cov−⟩, implying that the lowest-energy states have mainly
covalent character.

Therefore, the energetics of the system can be conveniently described using the so
called downfolding technique, which exploits the latter consideration to partition the
Hilbert space into lower-dimensional subspaces. This allows to project out the high-
energy eigenstates and express the essential physics of the problem in terms of an effective
Hamiltonian Ĥeff , that in our case reads as

Ĥeff = −2t2

U
(ĉ†2↑ĉ

†
1↓ĉ1↓ĉ2↑ − ĉ†2↓ĉ

†
1↑ĉ1↓ĉ2↑ − ĉ†2↑ĉ

†
1↓ĉ1↑ĉ2↓ + ĉ†2↓ĉ

†
1↑ĉ1↑ĉ2↓) =

=
4t2

U

(
ŝ1 · ŝ2 −

n̂1n̂2

4

) (1.19)
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Figure 1.1: Energy spectrum of the two-sites Hubbard model. Dependence of
the energy eigenvalues of the Hamiltonian in Eq. 1.13 on the on-site Coulomb repulsion
parameter U .

since the components of the spin-1/2 operator ŝj of the j-th site have the following second
quantized form

ŝxj =
1

2
(ĉ†j↑ĉj↓ + ĉ†j↓ĉj↑) ŝyj = − i

2
(ĉ†j↑ĉj↓ − ĉ†j↓ĉj↑) ŝzj =

1

2
(n̂j↑ − n̂j↓). (1.20)

To conclude, even though the model Hamiltonian does not depend on the electrons’
spins explicitly, it actually gives rise to a spin-spin interaction with a positive exchange
coupling J = 4t2/U . So the direct exchange mechanism favours states with antiparallel
spins, leading to antiferromagnetism in real materials.

1.2.2 Antiferromagnetic superexchange

The direct exchange interaction between neighbouring spins is not always sufficient to
justify the experimental observation of magnetic phases in real materials, as the inter-
atomic distance can reduce considerably the overlap between the atomic orbitals. Such
cases usually involve indirect exchange mechanisms, which instead are mediated by other
particles or fields.
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One among these is the so called superexchange mechanism that often occurs in
transition metal oxides, where the localized electrons can hop from one site to the other
via the intermediate O p orbital.

Similiarly to the previous section, we restrict ourselves to a system with two d orbitals
centered at the two magnetic sites and a doubly-occupied p orbital connecting them, as
shown in Fig. 1.2. Next, we introduce the creation (annihilation) operator for a spin-
σ electron in the d orbital of the i-th site as ĉ†iσ (ĉiσ) and the creation (annihilation)
operator for a spin-σ electron in the p orbital as ĉ†pσ (ĉpσ), which allow to write the
Hamiltonian for a generic 180◦-oriented superexchange path in second quantized form

Ĥ = ϵd
∑
iσ

n̂iσ + ϵp
∑
σ

n̂pσ − tpd
∑
iσ

(ĉ†iσ ĉpσ + ĉ†pσ ĉiσ) + Ud

∑
i

n̂i↑n̂i↓. (1.21)

The first (second) term sets the energy ϵd (ϵp) of the two d (p) electrons at the atomic
limit, while the third and fourth contributions account for the allowed hopping processes
between the neighbouring d and p orbitals and the on-site Coulomb repulsion at each
magnetic site, respectively.

By intuition, we can deduce that the lowest energy states will be those admitting two
unpaired d electrons and a doubly-occupied p orbital. This means that they will differ
by the relative orientation of the d-spins, specifically:

parallel configurations:

{
ĉ†2↑ĉ

†
p↓ĉ

†
p↑ĉ

†
1↑|0⟩

ĉ†2↓ĉ
†
p↓ĉ

†
p↑ĉ

†
1↓|0⟩

antiparallel configurations:

{
ĉ†2↑ĉ

†
p↓ĉ

†
p↑ĉ

†
1↓|0⟩

ĉ†2↓ĉ
†
p↓ĉ

†
p↑ĉ

†
1↑|0⟩

.

(1.22)

The Hilbert space generated by the first state and its elementary excitations is three-
dimensional and the corresponding Hamiltonian is represented by the following 3 × 3
matrix

H(para) =

 0 tpd tpd
tpd Ud +∆pd 0
tpd 0 Ud +∆pd

 (1.23)

with 2(ϵp + ϵd) as the zero of the energy scale and ∆pd = ϵd − ϵp. After downfolding, we
end up with a scalar effective Hamiltonian matrix of the form

H
(para)
eff = −

2t2pd
Ud +∆pd

(1.24)

and the same is also valid if we start from the second state and its elementary excitations.
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Differently, the Hilbert space generated by the last two states of Eq. 1.22 and their
elementary excitations is nine-dimensional. So if the basis states in question are properly
ordered, the Hamiltonian matrix H(anti) now reads as

0 0 +tpd +tpd 0 0 0 0 0
0 0 0 0 +tpd +tpd 0 0 0

+tpd 0 Ud +∆pd 0 0 0 −tpd 0 −tpd
+tpd 0 0 Ud +∆pd 0 0 0 −tpd −tpd
0 +tpd 0 0 Ud +∆pd 0 +tpd 0 +tpd
0 +tpd 0 0 0 Ud +∆pd 0 +tpd +tpd
0 0 −tpd 0 +tpd 0 Ud 0 0
0 0 0 −tpd 0 +tpd 0 Ud 0
0 0 −tpd −tpd +tpd +tpd 0 0 2Ud + 2∆pd


,

(1.25)
which reduces to a 2× 2 effective Hamiltonian matrix

H
(anti)
eff = −

2t2pd
Ud +∆pd

(
1 0
0 1

)
−

2t4pd
(Ud +∆pd)2

(
1

Ud

+
1

Ud +∆pd

)(
+1 −1
−1 +1

)
(1.26)

using both the downfolding technique to project out the high-energy states with at least
one doubly-occupied d orbital and second-order perturbation theory. As a consequence,
the associated operator only depends on the creation and annihilation operators for the
d electrons as follows

Ĥ
(anti)
eff = −2teff (ĉ

†
2↑ĉ

†
1↓ĉ1↓ĉ2↑ + ĉ†2↓ĉ

†
1↑ĉ1↑ĉ2↓)− 2t2eff

(
1

Ud

+
1

Ud +∆pd

)
·

· (ĉ†2↑ĉ
†
1↓ĉ1↓ĉ2↑ − ĉ†2↓ĉ

†
1↑ĉ1↓ĉ2↑ − ĉ†2↑ĉ

†
1↓ĉ1↑ĉ2↓ + ĉ†2↓ĉ

†
1↑ĉ1↑ĉ2↓)

(1.27)

with the effective hopping parameter defined as teff = t2pd/(Ud +∆pd).
This expression can be finally simplified by exploiting the relations in Eq. 1.20, which

lead to

Ĥ
(anti)
eff = −2teffI+ 4t2eff

(
1

Ud

+
1

Ud +∆pd

)(
ŝ1 · ŝ2 −

n̂1n̂2

4

)
(1.28)

where the effective Hamiltonian is decomposed into a constant additive term and a
spin-spin interaction energy that clearly reminds the last step in Eq. 1.19 for the di-
rect exchange mechanism. Indeed, the factor to the left of the spin operators can be
interpreted again as an antiferromagnetic exchange coupling J that is now given by

J = 4t2eff

(
1

Ud

+
1

Ud +∆pd

)
. (1.29)
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Figure 1.2: (Orbitals’ orientation for AFM and FM superexchange models)
Pictorial representation of the geometrical arrangement of the p and d orbitals adopted in
the treatment of 180◦-oriented (left) and 90◦-oriented (right) superexchange mechanisms.
Source: [9].

1.2.3 Ferromagnetic superexchange

As suggested by the curly arrows in Fig. 1.2, the hopping processes between p and d or-
bitals strongly depend on their relative orientation. Indeed, while the 180◦ configuration
on the left only requires a single p orbital to accomplish an effective electron transfer
between the two magnetic sites, for the 90◦ path on the right it is not sufficient. Thus,
we have to introduce the px and py orbitals, respectively pointing towards the d orbital
on site 1 and 2. This results in two main hopping channels (i.e. px-d1 and py-d2) with
associated energies tpx,d = tpy,d (= tpd) and a new model Hamiltonian of the form

Ĥ =ϵd
∑
iσ

n̂iσ + ϵp
∑
pσ

p∈{x,y}

n̂pσ − tpd
∑
σ

(ĉ†1σ ĉxσ + ĉ†xσ ĉ1σ + ĉ†2σ ĉyσ + ĉ†yσ ĉ2σ)+

+ Ud

∑
i

n̂i↑n̂i↓ − Jxy
∑
σ

n̂xσn̂yσ

(1.30)

that basically coincides with Eq. 1.21 if it was not for the creation-annihilation pair ĉ†xσ,
ĉxσ (ĉ†yσ, ĉyσ) for a spin-σ electron in the px (py) orbital and the Coulomb exchange
interaction between p-electrons at the intermediary site.

Due to the on-site Coulomb repulsion between d-electrons we expect the states with
at least one doubly-occupied d orbital to be at higher energy than the others. So again
we can separate the states of the latter group into parallel and antiparallel configurations
of the unpaired d-electrons’ spins, as follows
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parallel configurations:

{
ĉ†1↑ĉ

†
x↓ĉ

†
x↑ĉ

†
y↓ĉ

†
y↑ĉ

†
2↑|0⟩

ĉ†1↓ĉ
†
x↓ĉ

†
x↑ĉ

†
y↓ĉ

†
y↑ĉ

†
2↓|0⟩

antiparallel configurations:

{
ĉ†1↑ĉ

†
x↓ĉ

†
x↑ĉ

†
y↓ĉ

†
y↑ĉ

†
2↓|0⟩

ĉ†1↓ĉ
†
x↓ĉ

†
x↑ĉ

†
y↓ĉ

†
y↑ĉ

†
2↑|0⟩

.

(1.31)

In particular, the Hilbert space generated by each of the first two states and their ele-
mentary excitations is four-dimensional, implying that if the basis states of interest are
properly ordered the Hamiltonian of Eq. 1.30 can be represented as the 4× 4 matrix

H(para) =


0 tpd tpd 0
tpd Ud +∆pd 0 tpd
tpd 0 Ud +∆pd tpd
0 tpd tpd 2Ud + 2∆pd − Jxy

 (1.32)

which reduces to a mere scalar effective Hamiltonian

H
(para)
eff = −

2t2pd
Ud +∆pd

−
4t4pd

(Ud +∆pd)2
1

2(Ud +∆pd)− Jxy
(1.33)

by projecting out the high-energy states with doubly-occupied d orbitals using the down-
folding technique.

However, the relevant physical considerations pertain to the remaining two states in
Eq. 1.31, namely those from the antiparallel configurations. Not only they generate a
eight-dimensional Hilbert space with all their elementary excitations, but also they allow
to compute the 8× 8 Hamiltonian matrix H(anti)



0 0 tpd 0 tpd 0 0 0
0 0 0 tpd 0 tpd 0 0
tpd 0 Ud +∆pd 0 0 0 tpd 0
0 tpd 0 Ud +∆pd 0 0 0 tpd
tpd 0 0 0 Ud +∆pd 0 tpd 0
0 tpd 0 0 0 Ud +∆pd 0 tpd
0 0 tpd 0 tpd 0 2Ud + 2∆pd −Jxy
0 0 0 tpd 0 tpd −Jxy 2Ud + 2∆pd


(1.34)

Since now two states with unpaired d-electrons are actually included in the Hilbert space
under study, the downfolding technique provides a 2 × 2 effective Hamiltonian matrix
that reads as
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H
(anti)
eff = −

2t2pd
Ud +∆pd

(
1 0
0 1

)
−

4t4pd
(Ud +∆pd)2

1

4(Ud +∆pd)2 − J2
xy

·

·
(
2Ud + 2∆pd Jxy

Jxy 2Ud + 2∆pd

)
=

= −
[

2t2pd
Ud +∆pd

+
4t4pd

(Ud +∆pd)2
1

2(Ud +∆pd)− Jxy

](
1 0
0 1

)
+

+
4t4pd

(Ud +∆pd)2
Jxy

4(Ud +∆pd)2 − J2
xy

(
+1 −1
−1 +1

)
.

(1.35)

In analogy to Eq. 1.26, it can be mapped into an interacting spin Hamiltonian with a
negative exchange coupling

J = −
4t4pd

(Ud +∆pd)2
2Jxy

4(Ud +∆pd)2 − J2
xy

, (1.36)

which favours the ferromagnetic alignment of the d-electrons’ spins and shows a non-
linear dependence on the Coulomb exchange interaction parameter Jxy for the px and py
orbitals.

Despite the similarities of the here presented models for the superexchange interac-
tion, the predicted couplings (i.e. Eqs. 1.29 and 1.36) even have opposite signs, implying
that the angle between the magnetic and intermediary sites is a key feature for such kind
of exchange mechanisms. This was in fact demonstrated by Goodenough and Kanamori
in the papers [10–12], summarizing their findings in the form of two rules:

1. The electrons can only hopping between non-orthogonal orbitals with a non-negligible
overlap.

2. The effective interaction for the 180◦(90◦)-oriented superexchange path is antifer-
romagnetic (ferromagnetic).

The validity of the latter statement may be compromised for example when various
exchange mechanisms compete with each other or when the distinctive angle deviates
from 180◦ and 90◦.

1.3 Anisotropic exchange interactions

If we restrict ourselves to a quadratic dependence on the spin operators, the least sym-
metrical expression for the Hamiltonian describing the IEIs within a generic system of
N spins reads as
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ĤIEI =
∑
ij,αβ
i<j

Ŝ(i)
α J

(ij)
αβ Ŝ

(j)
β , (1.37)

which features Ŝ
(i)
α and J

(ij)
αβ respectively as the α-th component of the i-th spin oper-

ator and the IEI tensor element which couples Ŝ
(i)
α to Ŝ

(j)
β . In particular, since there

are no specific requirements on the values of the IEI tensor elements, all the possible
contributions are actually taken into account.

The leading term in Eq. 1.37 usually involves the diagonal elements of the IEI tensors
and follows the prescriptions of the well known Heisenberg model

Ĥheis =
∑

ij, i<j

J̄ (ij)Ŝ(i) · Ŝ(j) ⇝ J (ij) =

J̄ (ij) 0 0
0 J̄ (ij) 0
0 0 J̄ (ij)

 (1.38)

where the IEI tensor is assumed to be fully rotational invariant. In this sense the associ-
ated energy is isotropic, meaning that it only depends on the relative orientation of the
spins regardless of the crystalline axes.

Hence we can introduce anisotropy by breaking such a rotational symmetry condition
on the IEI tensor. As an example, we may allow the diagonal elements {J (ij)

αα } to deviate
from the isotropic contribution J̄ (ij) and thus to assign a preferential direction or plane
for the spins’ alignment. This case is in fact described by the so called XXZ and XYZ
Heisenberg models, which only differ by the number of degenerate diagonal elements (i.e.
two for XXZ and one for XYZ) and are encoded by the Hamiltonians

ĤXXZ =
∑

ij, i<j

[
J (ij)
xx

(
Ŝ(i)
x Ŝ(j)

x + Ŝ(i)
y Ŝ(j)

y

)
+ J (ij)

zz Ŝ(i)
z Ŝ(j)

z

]
⇝ J (ij) =

J
(ij)
xx 0 0

0 J
(ij)
xx 0

0 0 J
(ij)
zz


ĤXY Z =

∑
ij, i<j

[
J (ij)
xx Ŝ

(i)
x Ŝ(j)

x + J (ij)
yy Ŝ

(i)
y Ŝ(j)

y + J (ij)
zz Ŝ(i)

z Ŝ(j)
z

]
⇝ J (ij) =

J
(ij)
xx 0 0

0 J
(ij)
yy 0

0 0 J
(ij)
zz


(1.39)

For instance, by setting J
(ij)
xx = J

(ij)
yy = 0 we can also recover the Ising limit, which admits

exact analytical solutions in one and two dimensions and often serves as a benchmark
for testing novel computational techniques. However, since the size of the diagonal
anisotropic exchange interactions is typically much weaker than the associated isotropic
contribution, it is hardly applicable to real materials.

For what regards the off-diagonal terms instead, we shall distinguish among the
symmetric and antisymmetric parts of the IEI tensor. Indeed, the first one is usually
indicated as Γ(ij) and represented by the following 3× 3 matrix
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Γ(ij) =

Γ
(ij)
xx Γ

(ij)
xy Γ

(ij)
xz

Γ
(ij)
xy Γ

(ij)
yy Γ

(ij)
yz

Γ
(ij)
xz Γ

(ij)
yz Γ

(ij)
zz

 (1.40)

with six inequivalent elements, which couple the components of the i-th and j-th spin
operators in the same fashion as Eq. 1.37 for the whole IEI tensor.

On the other hand, the antisymmetric part can be mapped into a three-dimensional
vector D⃗(ij) in such a way that the corresponding Hamiltonian term reads as

ĤDM =
∑

ij, i<j

D⃗(ij) · (Ŝ(i) × Ŝ(j)) with


D

(ij)
x = 1

2
(J

(ij)
yz − J

(ij)
zy )

D
(ij)
y = 1

2
(J

(ij)
zx − J

(ij)
xz )

D
(ij)
z = 1

2
(J

(ij)
xy − J

(ij)
yx ).

(1.41)

This is commonly known as the Dzyaloshinskii-Moriya (DM) interaction [13, 14] after
the name of the two theoretical physicists, who identified its microscopic origin through
a second-order perturbative analysis of the SOC interaction and also provided a set of
rules for D⃗(ij). The key points are briefly enumerated in Tab. 1.1.

Local symmetry Condition Effect on DM vector

Inversion Center of inversion coincides with C D⃗(ij) = 0

Reflection
Mirror plane ⊥ AB passes through C D⃗(ij) ∥ mirror plane

Mirror plane includes both A and B D⃗(ij) ⊥ mirror plane

Rotation
Two-fold rot. axis ⊥ AB passes through C D⃗(ij) ⊥ rot. axis

n-fold rot. axis passes through A and B D⃗(ij) ⊥ rot. axis

Table 1.1: Summary of the Moriya rules. Schematic representation of the effect
of local crystal symmetries on the orientation of the DM vector, given that A, B and C
indicate the two associated magnetic sites and the midpoint of the line connecting them
respectively.

In addition, since the spin operators enter Eq. 1.41 in the form of a cross product, the
DM interaction acts as a source of spin canting in otherwise collinear magnetic phases
and thus leads exotic magnetic phenomena, such as spin spirals and skyrmions.

Another interesting feature of anisotropic exchange interactions involves the exper-
imental observation of magnetic ordering in 2D materials. As a matter of fact, the
Mermin-Wagner theorem [15] provides a remarkable result of statistical mechanics and
quantum field theory, asserting that any 1D or 2D system with continuous symmetry and
short-range interactions (e.g. fully rotational invariant IEI tensors) cannot exhibit spon-
taneous symmetry breaking at finite temperatures due to the low energy cost to excite

19



long-wavelength thermal fluctuations. So the emergence of non-negligible anisotropic
contributions is a sufficient condition to yield a violation of the initial assumptions and
thus help the system to stabilize long-range order.
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Chapter 2

Computational methods

During the last decades, several numerical techniques have been devel-
oped and employed by researchers to investigate the exotic phenomena
associated to materials with strongly correlated electrons. At the heart
of many of these tools we find DFT either within its Local Density
Approximation (LDA) or Generalized Gradient Approximation (GGA)
schemes, which alone are not sufficient to assess their physical proper-
ties with high precision.
Since chromium trihalides are featured by strong electronic correlations,
as well as SOC, we present two of the solutions available in literature
to overcome these limitations: firstly the Dudarev’s approach to the
Hubbard-U correction and secondly the formulation of a DFT+DMFT
framework within the HI approximation, where DMFT stands for Dy-
namical Mean Field Theory. The resulting magnetic interactions are
thus computed by two independent techniques, namely the four-states
energy-mapping method and the magnetic force theorem within HI ap-
proximation.
Finally, we employ Monte Carlo simulations for the determination
of some thermodynamical properties, such as the critical temperature,
from the temperature dependence of the average magnetization.

2.1 Density Functional Theory

The conceptual core and the most relevant equations of DFT were first outlined by the
papers [16,17] of Hohenberg, Kohn and Sham in 1964 and 1965, respectively. In the next
years, they were followed by the implementation of several DFT-based codes, such as
VASP [18–20], which have led the scientific community to ground-breaking achievements
in the fields of chemistry, materials’ science and condensed matter physics.

One of the main advantages of DFT against other quantum mechanical methods is
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indeed to solve the so called many-electrons Schrödinger problem employing a variational
principle on the total energy with respect to the net electron density, rather than the
individual electron orbitals. This aspect in particular significantly reduces the computa-
tional effort required to perform such a task with high accuracy and predicting power.

Even though it serves as a valuable tool for the development of new materials and the
elucidation of the underlying physical mechanisms of existing ones, it does have certain
limitations. As a matter of fact, scientists have faced and continue to face challenges
in elaborating more advanced theoretical frameworks. These include the formulation of
novel exchange-correlation functionals (e.g. PBE [21], SCAN [22], etc.), hybrid func-
tionals (e.g. HSE [23], PBE0 [24], B3LYP [25], etc.) and Hubbard-U corrections (e.g.
Liechtenstein’s or Dudarev’s approaches [26,27]), as well as the integration of DFT with
quantum many-body techniques such as GW [28] and DMFT [29].

2.1.1 The Hohenberg-Kohn formulation

A generic system of N electrons with coordinates {ri}Ni=1 and an external environment
with M nuclei fixed at the sites {Rn}Mn=1 is described by the following electronic Hamil-
tonian in atomic units

Ĥe = T̂e + Ûee + Ûen =

= −1

2

N∑
i=1

∇2
i +

1

2

N∑
i,j=1
i ̸=j

1

|ri − rj|
−

M∑
n=1

N∑
i=1

Zn

|ri −Rn|
(2.1)

with T̂e as the electronic kinetic energy and Ûee, Ûen as the Coulomb potential energies
from the pairwise electrons-electrons repulsion and the electrons-nuclei attraction. For
the sake of completeness, the symbol Zn stands for the atomic number of the n-th nucleus
in the system.

According to the Born-Oppenheimer approximation, the nuclear and electronic de-
grees of freedom can be treated separately due to the huge mass ratio mn

me
∼ 103 − 104,

implying that any functional dependence on the nuclear coordinates {Rn} reduces to a
mere parametrization. Thus, the electrons-nuclei Coulomb interaction becomes a system-
dependent single-electron external potential vext(r) that modifies the electronic Hamil-
tonian to

Ĥe =
N∑
i=1

[
−1

2
∇2

i + vext(ri)

]
+

1

2

N∑
i,j=1
i ̸=j

1

|ri − rj|
. (2.2)

The electronic Schrödinger problem is then given by

ĤeΨ({ri}) = ϵΨ({ri}) (2.3)
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with Ψ and ϵ as an energy eigenfunction that can be expressed as one or a linear com-
bination of Slater determinants of single-electron wavefunctions {ψi(ri)} due to Pauli
exclusion principle and the associated energy eigenvalue.

As mentioned above, DFT addresses this assignment by a variational approach to
the total energy

E0 ≤ ⟨Ψ|Ĥe|Ψ⟩ (2.4)

in terms of the electron density ρ, which is normalized to N and defined as

ρ(r) =
N∑
i=1

|ψi(r)|2, (2.5)

aiming at the estimation of the ground-state energy E0.
Now, the work of Hohenberg and Kohn [16] provides us with a solid link between ρ

and the ground-state properties of the many-electrons system.
For instance, the first Hohenberg-Kohn theorem states that the external potential

vext(r) is uniquely determined by the ground-state electron density ρ0 up to a constant
shift, allowing us to indicate it in the functional form vext[ρ]. This also implies that any
other observable can be expressed as a functional of the electron density and the total
energy is no exception, indeed:

E[ρ] = FHK [ρ] +

∫
ρ(r)vext[ρ](r)d

3r (2.6)

where the first term derives from the kinetic energy and the electron-electron Coulomb
interaction, while the second one accounts for the energy contribution from the external
potential. Since ideally FHK [ρ] would fit to any system, it goes under the name of the
universal Hohenberg-Kohn functional. However, its exact analytical expression is still
unknown. Hence one usually takes good approximations for it, which as a drawback
make it strongly system-dependent. For example, in non-relativistic cases the Levy
constrained-search method can be used to obtain an estimate of FHK [ρ] as

FHK [ρ] = minΨ→ρ⟨Ψ|T̂e + Ûee|Ψ⟩ (2.7)

with the minimization process confined to all the many-electrons wavefunctions Ψ that
yield the electron density ρ and also are eigenfunctions of the Ŝ2 operator.

On the other hand, the second Hohenberg-Kohn theorem offers the actual variational
principle for the total energy functional in Eq. 2.6. In fact, any well-defined electron
density leads to

E0 ≤ E[ρ] (2.8)

in the same fashion as Eq. 2.4.
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The here presented treatment has discarded the occurrence of energy degeneracies so
far, but it is actually a recurring eventuality in the study of magnetic systems where the
spin degrees of freedom play an essential role.

For spin-polarized calculations, the electron density can be separated into spin-up
(α) and spin-down (β) terms, as follows

ρ(r) = ρα(r) + ρβ(r), (2.9)

which respectively integrate to the number of spin-up Nα and spin-down electrons Nβ

with the constraint N = Nα +Nβ. So the total energy functional becomes

E[ρα, ρβ] = FHK [ρα, ρβ] +

∫
[ρα(r) + ρβ(r)]vext[ρα, ρβ](r)d

3r (2.10)

with the universal Hohenberg-Kohn functional in the Levy constrained-search formalism
as

FHK [ρα, ρβ] = minΨ→ρα,ρβ⟨Ψ|T̂e + Ûee|Ψ⟩. (2.11)

Finally, the variational principle is straightforwardly given by

E0 ≤ E[ρα, ρβ]. (2.12)

2.1.2 The Kohn-Sham scheme

Despite the exactness of the Hohenberg-Kohn formulation of DFT, it also presents some
non-trivial computational challenges: one for all, the approximation of the universal
Hohenberg-Kohn functional.

The solution proposed by Kohn and Sham in the paper [17] consists of introducing
a reference system of non-interacting electrons with the same electron density of the
true system of interacting electrons. Hereafter any physical quantity A of the reference
system will be labeled by a subscript character s, namely As.

Under such notation, this condition reads as

ρ(r) = ρs(r), (2.13)

but it is important to stress that the existence of the fictitious system is already quite a
strong assumption, since that is not always guaranteed.

Two different paths may be chosen to proceed with the treatment at issue: the so
called spin-restricted and spin-unrestricted schemes.

In the first case, only the total electron densities of the two systems are required
to meet the condition in Eq. 2.13, while in the second one both the spin-up and spin-
down components must agree. Indeed, the two approaches are basically equivalent for
closed-shell systems where Nα = Nβ = N

2
, but they strongly differ for open-shell ones.
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Since magnetism predominantly occurs in open-shell systems, we focus on the spin-
unrestricted scheme, which can also be regarded as a generalization of the other one.

In particular, the Hamiltonian for the reference system reads as

Ĥs =
N∑
i=1

{
−1

2
∇2

i +
[
vαs (ri) |↓⟩ ⟨↓|+ vβs (ri) |↑⟩ ⟨↑|

]}
(2.14)

with vαs (r) and v
β
s (r) being spin-dependent external potentials, which can be interpreted

as if an inhomogeneous magnetic field of the form

B⃗(r) = (0, 0, Bz(r) with Bz(r) = −2vSPIN
s (r) = [vβs (r)− vαs (r)] (2.15)

was applied to the electrons’ spins on top of a spin-independent external potential vs(r) =
1
2
[vαs (r) + vβs (r)]. This is supported by the following equalities

Ĥs =
N∑
i=1

{
−1

2
∇2

i +
[(
vs(ri) + vSPIN

s (ri)
)
|↓⟩ ⟨↓|+

(
vs(ri)− vSPIN

s (ri)
)
|↑⟩ ⟨↑|

]}

=
N∑
i=1

{
−1

2
∇2

i +
[
vs(ri) (|↓⟩ ⟨↓|+ |↑⟩ ⟨↑|) + vSPIN

s (ri) (|↓⟩ ⟨↓| − |↑⟩ ⟨↑|)
]}

=
N∑
i=1

{
−1

2
∇2

i + vs(ri)− vSPIN
s (ri)σ̂

i
z

}

=
N∑
i=1

{
−1

2
∇2

i + vs(ri) +Bz(ri)Ŝ
i
z

}
(2.16)

where σ̂i
z is the third component of the Pauli vector operator of the i-th electron.

The Schrodinger equation for such a Hamiltonian is solved by a Slater determinant
with single-electron spatial orbitals {ϕα

i , ϕ
β
i } which depend on the associated spin factors.

Therefore, we can separate the problem in the two spin channels and thus find the
single-electron equations[

−1

2
∇2

i + vγs (r)

]
ϕγ
i (r) = ϵγi ϕ

γ
i (r) with γ = α, β (2.17)

that must hold alongside with the following orthonormality conditions for the spatial
orbitals

⟨ϕα
i |ϕα

j ⟩ = ⟨ϕβ
i |ϕ

β
j ⟩ = δij. (2.18)

In addition, using the last step of Eq. 2.16 and the linearity of the commutator in
both the arguments, we can also conclude that
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[Ĥs, Ŝz] =
N∑
i=1

[
−1

2
∇2

i + vs(ri)

]
· [I, Ŝz] +

N∑
i=1

Bz(ri)[Ŝ
i
z, Ŝz] =

=
N∑
i=1

[
−1

2
∇2

i + vs(ri)

]
·

N∑
i=1

[I, Ŝi
z] +

N∑
i,j=1

Bz(ri)[Ŝ
i
z, Ŝ

j
z ] = 0

(2.19)

which allows the Slater determinant given by the solutions of Eq. 2.17 to be an eigen-
function of the Ŝz operator with the associated eigenvalue Ms satisfying |Ms| ≤ S. Fur-
thermore, since the ground-state configuration is found by filling all the spatial orbitals
of Eq. 2.17 from the lowest energy upwards, the value for Ms is fixed by the difference
in population of the two available spin channels.

In analogy to Eq. 2.10 from the previous section, the total energy functional for the
reference system reads as

Es[ρα, ρβ] = Ts[ρα, ρβ] +

∫
ρα(r)v

α
s [ρα, ρβ](r)d

3r+

∫
ρβ(r)v

β
s [ρα, ρβ](r)d

3r (2.20)

with two main differences: firstly the universal Hohenberg-Kohn functional reduces a
kinetic energy functional due to the absence of electron-electron interactions and secondly
the volume integration for the external potential separates into two additional terms
because of the two spin-dependent potentials.

For what regards the true system of interacting electrons instead, the universal
Hohenberg-Kohn functional has the non-trivial form

FHK [ρα, ρβ] = Ts[ρα, ρβ] + J [ρ] + Exc[ρα, ρβ] (2.21)

with the Coulomb integral functional as

J [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r− r′|
d3rd3r′ (2.22)

and the exchange-correlation functional Exc[ρα, ρβ] accounting for the energy amount to
keep the exactness of the Hohenberg-Kohn formulation. The total energy functional for
the true system is then given by the expression in Eq. 2.10.

Next, we target the minimization of the total energy functionals Es[ρα, ρβ] and
E[ρα, ρβ] of the two system in question. As a result of the spin-up and spin-down
electron densities being constrained to integrate to Nα and Nβ respectively, the task is
suitably solved by the method of Lagrange multipliers. Thus, we define the associated
Lagrange functionals as
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{
Ls[ρα, ρβ] = Es[ρα, ρβ]− µα

[∫
ρα(r)d

3r−Nα

]
− µβ

[∫
ρβ(r)d

3r−Nβ

]
L[ρα, ρβ] = E[ρα, ρβ]− µα

[∫
ρα(r)d

3r−Nα

]
− µβ

[∫
ρβ(r)d

3r−Nβ

] (2.23)

and proceed with their minimization by imposing{
δLs

δργ
[ρα, ρβ] = 0

δL
δργ

[ρα, ρβ] = 0
with γ = α, β (2.24)

which leads to

{
δTs

δργ
[ρα, ρβ] + vγs [ρα, ρβ](r)− µγ = 0

δTs

δργ
[ρα, ρβ] + vext[ρα, ρβ](r) + vcoul[ρ](r) + vγxc[ρα, ρβ](r)− µγ = 0

with γ = α, β

(2.25)
with the new potentials vcoul[ρ] =

δJ
δρ
[ρ] and vγxc[ρα, ρβ] =

δExc

δργ
[ρα, ρβ].

So the only way these two minimization processes return the same ground-state elec-
tron densities ρ0α and ρ0β is to set the spin-dependent potentials vαs [ρα, ρβ] and v

β
s [ρα, ρβ]

for the reference system to{
vαKS[ρα, ρβ](r) = vext[ρα, ρβ](r) + vcoul[ρ](r) + vαxc[ρα, ρβ](r)

vβKS[ρα, ρβ](r) = vext[ρα, ρβ](r) + vcoul[ρ](r) + vβxc[ρα, ρβ](r)
(2.26)

that go under the name of spin-dependent Kohn-Sham potentials.
If we substitute them into the single-electron equations in Eq. 2.17, we end up with

the so called Kohn-Sham equations[
−1

2
∇2

i + vγKS(r)

]
ϕγ
i (r) = ϵγi ϕ

γ
i (r) with γ = α, β (2.27)

that are solved for the single-electron energies {ϵαi , ϵ
β
i } and orbitals {ϕα

i , ϕ
β
i }.

These quantities are finally used to compute the ground-state electron densities

ρ0α(r) =
Nα∑
i=1

|ϕα
i (r)|2 and ρ0β(r) =

Nβ∑
i=1

|ϕβ
i (r)|2 (2.28)

and the associated total energy by substituting them into Eq. 2.10

E[ρ0α, ρ
0
β] =

∑
γ∈{α,β}

Nγ∑
i=1

ϵγi +Exc[ρ
0
α, ρ

0
β]−

∑
γ∈{α,β}

∫
vγxc[ρ

0
α, ρ

0
β](r)ρ

0
γ(r)d

3r− 2J [ρ0]. (2.29)
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It is worth to mention that the exact analytical expression for the exchange-correlation
energy is actually unknown and thus it requires the development of approximations. The
two most commonly chosen approaches are the LDA and the GGA. One relies on the
assumption that the electron density of many materials presents a local homogeneous
gas behaviour, the other instead is meant to improve the LDA accuracy by modeling the
functional dependence on the density gradient.

2.2 Dudarev’s approach to the Hubbard-U correc-

tion

The use of standard DFT calculations within LDA or GGA in the study of materials
with ions containing partially-filled d or f shells (e.g. transition metal oxides) often
predicts unphysical metallic ground-states, which in practice translates to non-vanishing
conducibility due to the underestimation or even the absence of a gap between the
valence and the conduction bands. On the side, the equilibrium lattice constants (binding
energies) are also underestimated (overestimated).

Such a problem can be attributed to an inaccurate description of the strong Coulomb
repulsion between localized d or f electrons. Indeed, if the effective on-site Coulomb
repulsion at play is comparable with the valence bandwidth, the probability of electronic
transfer between neighbouring sites becomes negligible, causing the system to undergo
the so called Mott transition.

One of the easiest ways to compensate for the DFT limitations was proposed by
Dudarev et al. in a paper [27] dating back to 1998. The starting point is a single-site
Hamiltonian of the form

ĤU =
Ū

2

∑
m,m′,σ

n̂m,σn̂m′,−σ +
Ū − J̄

2

∑
m,m′,σ
m ̸=m′

n̂m,σn̂m′,σ (2.30)

where Ū , J̄ are the spherically-averaged matrix elements of the screened Coulomb electron-
electron interaction and n̂m,σ indicates the number operator for localized electrons with
the orbital quantum number l (usually l = 2 or 3 for d or f cases), the orbital momentum
projection m ranging from −l to +l by unit steps and the spin projection σ = ±1

2
.

For an integer number of localized electrons, the energy expectation value is given by

⟨Nσ|ĤU |Nσ⟩ =
Ū

2

∑
σ

NσN−σ +
Ū − J̄

2

∑
σ

Nσ(Nσ − 1) (2.31)

with Nσ as the expectation value of the total number operator for spin-σ localized elec-
trons, namely N̂σ =

∑
m n̂m,σ.
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For a non-integer number of localized electrons instead, it can be approximated by
the Unrestricted Hartree-Fock (UHF) formula

⟨Nσ|ĤU |Nσ⟩UHF =
Ū

2

∑
m,m′,σ

nm,σnm′,−σ +
Ū − J̄

2

∑
m,m′,σ
m ̸=m′

nm,σnm′,σ (2.32)

where the number operators {n̂m,σ} have been substituted by the associated expectation
values {nm,σ} accordingly.

Therefore, the DFT total energy functional is supplied by an additional correction
that consists of the substraction between the two energy expectation values in Eqs. 2.31
and 2.32 as follows

EDFT+U = EDFT + [⟨Nσ|ĤU |Nσ⟩UHF − ⟨Nσ|ĤU |Nσ⟩] =

= EDFT +
Ū − J̄

2

 ∑
m,m′,σ
m ̸=m′

nm,σnm′,σ −
∑
σ

Nσ(Nσ − 1)

 =

= EDFT +
Ū − J̄

2

 ∑
m,m′,σ
m ̸=m′

nm,σnm′,σ −
∑

m,m′,σ

nm,σnm′,σ +
∑
m,σ

nm,σ

 =

= EDFT +
Ū − J̄

2

∑
m,σ

(nm,σ − n2
m,σ),

(2.33)

which is already quite a compact expression, but it can be further simplified by the
construction of the so called on-site occupancy matrix ñσ. In fact, the latter one takes a
diagonal form with eigenvalues {nm,σ} within the real spherical harmonics’ representation
of the orbital degrees of freedom, implying that the DFT+U functional becomes

EDFT+U = EDFT +
Ū − J̄

2

∑
σ

Tr[ñσ − ñσñσ] (2.34)

So the correction term proposed by Dudarev et al. can be interpreted as a penalty term
which forces the on-site occupancy matrix ñσ towards idempotency (i.e. ñσ = ñσñσ). As
a consequence, its eigenvalues {nm,σ} will tend to either 0 or 1, avoiding any fractional
occupation of the interested orbitals.
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2.3 Constraining local magnetic moments

Non-collinear magnetic phases can be investigated within VASP framework by imposing
constraints on the direction of the local atomic magnetic moments M⃗I in the physical
system under study. This task is achieved by adding a penalty term Ep to the standard
DFT total energy functional EDFT with a set of Lagrange multipliers {λI} [30].

An intuitive way to define the local magnetic moment reads as

M⃗I =

∫
ΩI

m⃗(r)d3r (2.35)

with the Wigner-Seitz sphere ΩI of radius RI centered on the atomic site rI and the
magnetization density vector m⃗(r) = 1

2
[ρα(r)− ρβ(r)], but in practical calculations it is

actually modified to

M⃗F
I =

∫
ΩI

m⃗(r)FI

(
π|r− rI |
|RI |

)
d3r, (2.36)

where FI(x) =
sinx
x

decreases to zero towards the boundary of ΩI .
As anticipated above, the minimization of the total energy functional is constrained

to a specific magnetic configuration by an additional term, which opposes any tilting of
the local magnetic moments from the chosen directions {êI} assigning positive energy
contributions as follows

E = EDFT + Ep = EDFT +
∑
I

λI(|M⃗F
I | − êI · M⃗F

I ) =

= EDFT +
∑
I

λI |M⃗F
I |(1− cos θI)

(2.37)

with θI being the angle between the current smoothly-integrated local magnetic moment
M⃗F

I and the unit vector for the desired direction êI .
The main parameters at play here are the radii {RI} of the Wigner-Seitz spheres and

the Lagrange multipliers {λI}, which respectively affect the volume integration for the
local magnetic moments and the energy scale of the penalty term. For an optimal choice
of {RI}, one should just avoid any overlap between adjacent Wigner-Seitz spheres. For
what concerns the values of {λI} instead, a more accurate analysis on the convergence
of the penalty energy is needed.

It all starts with the critical angles {θ′I} that are obtained by solving the variational
equations
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δE

δθI

∣∣∣∣
θI=θ′I

=
δEDFT

δθI

∣∣∣∣
θI=θ′I

+ λI |M⃗F
I | sin θ′I = 0

⇒ sin θ′I = − 1

λI |M⃗F
I |

δEDFT

δθI

∣∣∣∣
θI=θ′I

.

(2.38)

If the current magnetic configuration is a sufficiently good guess, one expects the solutions
{θ′I} to be small enough to apply first-order Taylor expansion to both sides, leading to

θ′I ≃ − 1

λI |M⃗F
I |

(
δEDFT

δθ′I

∣∣∣∣
θ′I=0

+
δ2EDFT

δθ′I
2

∣∣∣∣
θ′I=0

θ′I

)
⇒ θ′I ≃ − K1

λI |M⃗F
I |+K2

(2.39)

with the coefficients K1 =
δEDFT

δθ′I

∣∣∣
θ′I=0

and K2 =
δ2EDFT

δθ′I
2

∣∣∣
θ′I=0

.

As a result, the penalty energy close to the minimum behaves as follows

Ep ≃
∑
I

λI |M⃗F
I |
θ′I

2

2
≃ 1

2

∑
I

λI |M⃗F
I |

(
K1

λI |M⃗F
I |+K2

)2

(2.40)

implying that Ep ∼ λ−1
I for large λI . Then, for very accurate total energy calculations

it is often suggested to perform convergence tests of Ep against λI or eventually restart
the electronic self-consistent cycles with increasing values of λI .

2.4 Four-states energy-mapping method

The four-states methodology was firstly introduced by H. J. Xiang et al. in the papers
[31, 32] as an extension of the usual energy-mapping methods based on DFT electronic
structure calculations for the determination of both isotropic and anisotropic exchange
couplings. However, the actual derivation of the main equations without any assumptions
on the shape of the resulting interaction tensors was only presented in [33], which is
indeed the reference to this section.

The most convenient way to model quadratic spin-spin interactions for a magnetic
system is to introduce the so called generalized Heisenberg Hamiltonian

ĤI = ĤIEI + ĤSIA =
∑
ij,αβ
i<j

Ŝ(i)
α J

(ij)
αβ Ŝ

(j)
β +

∑
i,αβ

Ŝ(i)
α A

(i)
αβŜ

(i)
β (2.41)
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where Ŝ
(i)
α stands for the α-th component of the spin vector operator of the i-th magnetic

site, while J
(ij)
αβ and A

(i)
αβ represent the (α, β)-th matrix element of the IEI tensor for the

spin pair (ij) and the SIA tensor for the i-th spin respectively.
First, we focus on the procedure for the determination of an arbitrarily chosen ex-

change coupling J
(i∗j∗)
α∗β∗ , which is based on rewriting the two terms in Eq. 2.41 as

ĤIEI =
∑
αβ

Ŝ(i∗)
α J

(i∗j∗)
αβ Ŝ

(j∗)
β +

∑
j ̸=j∗

∑
αβ

Ŝ(i∗)
α J

(i∗j)
αβ Ŝ

(j)
β +

∑
i ̸=i∗

∑
αβ

Ŝ(i)
α J

(ij∗)
αβ Ŝ

(j∗)
β +

+
∑
i ̸=i∗

j ̸=j∗

∑
αβ

Ŝ(i)
α J

(ij)
αβ Ŝ

(j)
β

(2.42)

ĤSIA =
∑
αβ

Ŝ(i∗)
α A

(i∗)
αβ Ŝ

(i∗)
β +

∑
αβ

Ŝ(j∗)
α A

(j∗)
αβ Ŝ

(j∗)
β +

∑
i ̸=i∗j∗

∑
αβ

Ŝ(i)
α A

(i)
αβŜ

(i)
β (2.43)

in order to separate out all the contributions involving at least one of the components of
the spin operators under consideration, namely Ŝ(i∗) and Ŝ(j∗).

Next, the J
(i∗j∗)
α∗β∗ coupling can be isolated by computing the energies {E1, E2, E3, E4}

of four distinct magnetic states {Λ1,Λ2,Λ3,Λ4}, which differ by the direction of the spin

expectation values {S⃗(i) = ⟨Ŝ(i)⟩} at each site as follows

Λ1 : S⃗
(i∗) = +Sêα∗ , S⃗(j∗) = +Sêβ∗ and S⃗(k ̸=i∗j∗) = ±Sêγ ̸=α∗,β∗

Λ2 : S⃗
(i∗) = +Sêα∗ , S⃗(j∗) = −Sêβ∗ and S⃗(k ̸=i∗j∗) = ±Sêγ ̸=α∗,β∗

Λ3 : S⃗
(i∗) = −Sêα∗ , S⃗(j∗) = +Sêβ∗ and S⃗(k ̸=i∗j∗) = ±Sêγ ̸=α∗,β∗

Λ4 : S⃗
(i∗) = −Sêα∗ , S⃗(j∗) = −Sêβ∗ and S⃗(k ̸=i∗j∗) = ±Sêγ ̸=α∗,β∗

(2.44)

with {êx, êy, êz} as the set of unit vectors for the Cartesian axes of the global reference
frame. The basic idea behind such non-trivial configurations is to direct the interested
spins Ŝ(i∗) and Ŝ(j∗) respectively along êα∗ and êβ∗ towards the positive or negative sides

alternating parallel and antiparallel setups. All the other spins S⃗(k ̸=i∗j∗) are instead
perpendicular to Ŝ(i∗) and Ŝ(j∗) without any specific requirement about the sign factor.

The associated energies can be thus obtained by substituting the spin operators in
Eqs. 2.42 and 2.43 with the vectors in Eq. 2.44
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E1 =+ J
(i∗j∗)
α∗β∗ S

2 +
∑
k ̸=j∗

J
(i∗k)
α∗γ S

2 +
∑
k ̸=i∗

J
(kj∗)
γβ∗ S2 +

∑
k ̸=i∗

k′ ̸=j∗

J (kk′)
γγ S2+

+ A
(i∗)
α∗α∗S2 + A

(j∗)
β∗β∗S

2 +
∑

k ̸=i∗j∗

A(k)
γγ S

2

E2 =− J
(i∗j∗)
α∗β∗ S

2 +
∑
k ̸=j∗

J
(i∗k)
α∗γ S

2 −
∑
k ̸=i∗

J
(kj∗)
γβ∗ S2 +

∑
k ̸=i∗

k′ ̸=j∗

J (kk′)
γγ S2+

+ A
(i∗)
α∗α∗S2 + A

(j∗)
β∗β∗S

2 +
∑

k ̸=i∗j∗

A(k)
γγ S

2

E3 =− J
(i∗j∗)
α∗β∗ S

2 −
∑
k ̸=j∗

J
(i∗k)
α∗γ S

2 +
∑
k ̸=i∗

J
(kj∗)
γβ∗ S2 +

∑
k ̸=i∗

k′ ̸=j∗

J (kk′)
γγ S2+

+ A
(i∗)
α∗α∗S2 + A

(j∗)
β∗β∗S

2 +
∑

k ̸=i∗j∗

A(k)
γγ S

2

E4 =+ J
(i∗j∗)
α∗β∗ S

2 −
∑
k ̸=j∗

J
(i∗k)
α∗γ S

2 −
∑
k ̸=i∗

J
(kj∗)
γβ∗ S2 +

∑
k ̸=i∗

k′ ̸=j∗

J (kk′)
γγ S2+

+ A
(i∗)
α∗α∗S2 + A

(j∗)
β∗β∗S

2 +
∑

k ̸=i∗j∗

A(k)
γγ S

2,

(2.45)

finally implying that the target coupling constant reads as

J
(i∗j∗)
α∗β∗ =

1

4S2
(E1 + E4 − E2 − E3). (2.46)

A similar procedure also provides the matrix elements for the SIA tensor, which
indeed has to be symmetric (i.e. A

(i)
αβ = A

(i)
βα ∀i, α, β) due to the fact that the spin

components involved in the associated interaction terms are always referred to a single
site. The latter property reduces its inequivalent coupling constants to 6: namely, 3
along the diagonal and other 3 above (or below) the diagonal. Moreover, since (Ŝ

(i)
x )2 =

(Ŝ(i))2 − (Ŝ
(i)
y )2 − (Ŝ

(i)
z )2, the diagonal part of the SIA Hamiltonian becomes

Ĥdiag
SIA =

∑
i

[A(i)
xx(Ŝ

(i)
x )2 + A(i)

yy(Ŝ
(i)
y )2 + A(i)

zz (Ŝ
(i)
z )2] =

=
∑
i

A(i)
xx(Ŝ

(i))2 +
∑
i

∑
α∈{y,z}

(A(i)
αα − A(i)

xx)(Ŝ
(i)
α )2

(2.47)

where the first term acts as a mere additive constant and also the relevant target quan-
tities shrink to (A

(i)
yy − A

(i)
xx) and (A

(i)
zz − A

(i)
xx).
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As anticipated above, the determination of these parameters {A(i∗)
α∗α∗ −A

(i∗)
xx } reminds

the previous treatment for {J (i∗j∗)
α∗β∗ }. The main difference regards the definition of the

four distinct magnetic states

Λ1 : S⃗
(i∗) = +Sêα∗ and S⃗(k ̸=i∗j∗) = ±Sêγ ̸=α∗,x

Λ2 : S⃗
(i∗) = −Sêα∗ and S⃗(k ̸=i∗j∗) = ±Sêγ ̸=α∗,x

Λ3 : S⃗
(i∗) = +Sêx and S⃗(k ̸=i∗j∗) = ±Sêγ ̸=α∗,x

Λ4 : S⃗
(i∗) = −Sêx and S⃗(k ̸=i∗j∗) = ±Sêγ ̸=α∗,x,

(2.48)

which are thus associated with the energies

E1 =+
∑
k

J
(i∗k)
α∗γ S

2 +
∑
k ̸=i∗

k′>k

J (kk′)
γγ S2 + A

(i∗)
α∗α∗S2 +

∑
k ̸=i∗

A(k)
γγ S

2

E2 =−
∑
k

J
(i∗k)
α∗γ S

2 +
∑
k ̸=i∗

k′>k

J (kk′)
γγ S2 + A

(i∗)
α∗α∗S2 +

∑
k ̸=i∗

A(k)
γγ S

2

E3 =+
∑
k

J (i∗k)
xγ S2 +

∑
k ̸=i∗

k′>k

J (kk′)
γγ S2 + A(i∗)

xx S
2 +

∑
k ̸=i∗

A(k)
γγ S

2

E4 =−
∑
k

J (i∗k)
xγ S2 +

∑
k ̸=i∗

k′>k

J (kk′)
γγ S2 + A(i∗)

xx S
2 +

∑
k ̸=i∗

A(k)
γγ S

2.

(2.49)

So the summation of energies needed to extract the sought-for parameter is

A
(i∗)
α∗α∗ − A(i∗)

xx =
1

2S2
(E1 + E2 − E3 − E4) (2.50)

and it slightly differs from the previous Eq. 2.46.
Further details on the three inequivalent off-diagonal elements of the SIA tensor and

some related symmetry considerations can be found in Ref. [33].

2.5 Magnetic force theorem within Hubbard-I ap-

proximation

All the theoretical aspects about the here presented method are deeply described in
Ref. [34] and most of the computational details concerning its implementation can be
found in Ref. [35].

To summarize, the approach in question allows an in-depth characterization of both
the electronic structure and the magnetic interactions of strongly correlated materials
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at the quasi-atomic limit, combining self-consistent DFT cycles with DMFT calcula-
tions within the so called HI approximation. This merged theoretical framework will be
indicated as DFT+DMFT(HI) from here on out.

The standard procedure includes a preliminary DFT cycle for the paramagnetic phase
using the LDA exchange-correlation functional. The latter is indeed better suited to the
double-counting correction that must be introduced with the on-site Coulomb repulsion
at the DMFT level. Moreover, the relativistic SOC effect is also taken into account.

In the meantime, we identify the energy window W that contains the localized states
to be projected onto the Wannier-like basis by plotting the partial Density of States
(pDOS) at the DFT level. Ideally, the correlated bands should exhibit sharp peaks with
a negligible hybridization, otherwise a larger energy window should be taken. This would
imply a significant increase in the computational effort to achieve energy convergence or
even the loss of quasi-exactness for reasons that will be shortly detailed.

Once the DFT convergence criterion is met, the LDA+DMFT(HI) cycle can be finally
initialized. First of all, the wannierization of the selected localized states is addressed by
defining the matrix elements of the Wannier projectors P̂α,σ

l,m in k-space representation as

P jσ
lν (k) = ⟨χjσ

l |ψσ
kν⟩ (2.51)

where |χjσ
l ⟩ and |ψσ

kν⟩ respectively stand for the Wannier-like function of the orbital l
centered at the atom j and the DFT Bloch state with band index ν evaluated at the wave
vector k within the first Brillouin zone (1◦BZ). σ simply specifies the spin component.

Afterwards, the on-site Coulomb interaction term is introduced. The most general
expression within second quantization formalism reads as

ĤU =
∑
j

Ĥ
(j)
U =

∑
jlmnoσσ′

Ulmnoĉ
†σ
jl ĉ

†σ′

jmĉ
σ′

jnĉ
σ
jo (2.52)

with ĉ†σjl (ĉσjl) being the creation (annihilation) operator for an electron with orbital
configuration l, spin component σ and localized at the atomic site j.

However, it is needlessly complicated to treat computationally; so the following
parametrization fits better

ĤU = U
∑
jlσ

n̂σ
jln̂

−σ
jl +

∑
jlmσσ′

l ̸=m

(V − δσσ′JH)n̂
σ
jln̂

σ′

jm − JH
2

∑
jlmσ
l ̸=m

ĉ†σjl ĉ
−σ
jl ĉ

†−σ
jm ĉσjm+

− J̃

2

∑
jlmσ
l ̸=m

ĉ†σjl ĉ
†−σ
jl ĉσjmĉ

−σ
jm −

∑
jlσ

∆ϵn̂σ
jl

(2.53)

with the number operator n̂σ
jl = ĉ†σjl ĉ

σ
jl , the intra-orbital Coulomb repulsion U , the inter-

orbital Coulomb repulsion V (= U − 2JH), the Hund exchange JH , the pair-hopping

35



parameter J̃(= JH) and the double-counting correction ∆ϵ = U(nd − 1
2
)− JH(

nd

2
− 1

2
).

Such an interacting many-body Hamiltonian can be solved by DMFT, which is based
on mapping the true lattice problem into an effective periodic Anderson Impurity Model
(AIM) for each inequivalent correlated site. The single-site AIM Hamiltonian takes the
form

Ĥ
(j)
AIM =

∑
klσ

ϵl(k)â
†σ
kl â

σ
kl +

∑
klmσ

[Vlm(k)â
†σ
kl ĉ

σ
jm + h.c.]+

+
∑
mσ

ϵ0ĉ
†σ
imĉ

σ
jm + Ĥ

(j)
U

(2.54)

and consists of four parts. The first and third terms represent the kinetic energy for
the conduction electrons in the bath and the impurity electron respectively. Indeed, â†σkl
(âσkl) stands for the creation (annihilation) operator for a conduction electron with band
index l and spin component σ at wavevector k, while ĉ†σim (ĉσjm) is now interpreted as
the creation (annihilation) operator for an impurity electron with orbital configuration
m and spin component σ localized at site j. The second term instead provides the
hybridization effects, which originates from the chance of an impurity electron to hop
into the conduction bath or viceversa. Moreover, ϵl(k) and Vlm(k) indicate respectively
the l-th band dispersion relation for a conduction electron and the so called hybridization
potential energy.

As for the effective Weiss model of ferromagnetism, the DMFT mapping is ensured by
a self-consistency condition. In this case it requires that the interacting Green’s functions
(GF) of the two models, as well as the associated self-energies, coincide with each other.

This is encoded by

Gloc(iωn) = Gimp(iωn)

Σloc(iωn) = Σimp(iωn),
(2.55)

where Gloc and Σloc (Gimp and Σimp) are the k-integrated local interacting GF and the k-
independent self-energy for the lattice many-body (periodic Anderson impurity) model,
while ωn = π

β
(2n− 1) is the fermionic Matsubara frequency with β = (kBT )

−1.
The control variable is the so called Weiss field G0, namely the non-interacting GF of

the impurity model, that is given by the matrix elements

[G−1
0 (iωn)]

σ
lm = (iωn − µ− Σdc)δlm +

∑
k∈1BZ

νν′

P jσ
lν (k)Ekσ

LDA,νν′P
†jσ
mν′(k) (2.56)

within the spin-orbital degrees of freedom of the correlated space. In particular, µ,
Σdc and Ekσ

LDA,νν′ = ⟨ψσ
kν |Ĥkσ

LDA|ψσ
kν⟩ respectively symbolize the chemical potential, the

double-counting contribution to self-energy and the matrix elements for the LDA Hamil-
tonian in k-space representation Ĥkσ

LDA within the Kohn-Sham bands’ space.

36



However, the relation in Eq. 2.54 is only valid when the HI approximation is taken,
meaning that the hybridization effects are assumed to be negligible. Otherwise, the
complete version of Eq. 2.54 would also include a further additional term ∆(iωn).

Another interesting consequence of HI approximation involves the AIM Hamiltonian
in Eq. 2.52, which reduces to an atomic Hamiltonian of the form

Ĥ
(j)
at =

∑
lmσ

ϵlmĉ
†σ
jl ĉ

σ
jm + Ĥ

(j)
U (2.57)

with {ϵlm} as the orbital-resolved single-electron energies. Such an operator can be
diagonalized numerically to find its eigenvectors |γ⟩ (|γ′⟩) and energy eigenvalues Eγ

(Eγ′) if the total number of localized electrons per correlated site is nd (nd + 1). They
allow to determine the matrix elements of the atomic (i.e. impurity) interacting GF as

[Gat(iωn)]
σ
lm =

∑
γγ′

⟨γ|ĉσjl|γ′⟩⟨γ′|ĉ
†σ
jm|γ⟩

iωn + µ+ Eγ − Eγ′

[
X

(nd+1)
γ′ −X(nd)

γ

]
(2.58)

where X
(nd)
γ = 1

Z(nd)
e−β[Eγ−µ(nd)] and Z(nd) are the Boltzmann weight and the nd-particle

canonical partition function respectively.
The atomic self-energy is finally computed by inverting the k-integrated Dyson equa-

tion as follows

Σat(iωn) = G−1
0 (iωn)−G−1

at (iωn). (2.59)

This can be used to obtain a new trial charge density, which is then passed as input to
the next LDA+DMFT(HI) iteration unless a target quantity (e.g. the atomic self-energy,
the DFT total energy or the charge density) converges.

Once the final atomic self-energy is found, the focus shifts on the IEI tensors as they
were the target quantities from the beginning. The magnetic force theorem within HI
approximation comes at play now, as it allows to determine them by considering two-site
fluctuations of the J-multiplet density matrix ρ. In particular, the effective low-energy
Hamiltonian within the multipolar formalism takes the general form

ĤIEI =
∑
ij

KK′QQ′

V QQ′

KK′ (i, j)Ô
Q
K(i)Ô

Q′

K′(j) (2.60)

with V QQ′

KK′ (i, j) and ÔQ
K(i) being the IEI tensor between the two correlated sites (i, j)

and the multipolar operator of rank K ∈ {0, 1, ..., 2J} and projection Q ∈ {−K,−K +
1, ..., K − 1, K} defined within the J-multiplet ground state. The analytical expression
for the IEI tensors derived by the FT-HI method reads as

V QQ′

KK′ (i, j) =
∑
1234

⟨13|V (i, j)|24⟩
[
ÔQ

K(i)
]
21

[
ÔQ′

K′(j)
]
43

(2.61)
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where |1⟩ = |J,M1⟩ is one of J-multiplet basis states,
[
ÔQ

K(i)
]
21

= ⟨2|ÔQ
K(i)|1⟩ is a

generic matrix element of the multipolar operator and

⟨13|V (i, j)|24⟩ = 1

β
Tr

[
Gij

δΣat

δρ34
(i)Gji

δΣat

δρ12
(j)

]
. (2.62)

This last equation requires the knowledge of a formula for the intersite GF Gij. Its
matrix elements are given by

[Gij(iωn)]
σ
lm =

∑
k∈1BZ

νν′

e−ik·(Rj−Ri)P iσ
lν (k)·

· [(iωn + µ)− Ekσ
LDA,νν′ − P †jσ

mν (k)∆ΣP jσ
mν′(k)]P

†iσ
lν′ (k)

(2.63)

and for the derivative of atomic self-energy over a fluctuation of the density matrix
element (i.e. δρ12) at site j

δΣat

δρ12
(j) = G−1

at (j)

(
[Gat]12 −

Tr[Gat]

nd

δ12

)
G−1

at (j). (2.64)

2.6 Monte Carlo simulations

The Monte Carlo method is a powerful computational technique that expoits the gener-
ation of pseudo-random numbers to simulate the behaviour of a large variety of systems
and thus finds interesting applications in physics and many other areas of knowledge.

In particular, the here presented simulations are carried out using the UppASD pack-
age [36–39], which not only focuses on the numerical solution of the Landau-Lifshitz-
Gilbert (LLG) equations of motion for atomic magnetic moments in a solid, but also
provides an efficient implementation of MC algorithms to study interacting spin systems
at finite temperatures.

Among the available options we choose the Metropolis algorithm [40], which allows
to explore the phase space of magnetic configurations by applying a precise set of steps.
First of all, the atomic magnetic moments are aligned to the input directions defining
the initial phase Ξ0 and the associated energy is given by

E(Ξ) = −1

2

∑
ij,αβ
i ̸=j

m(i)
α J

(ij)
αβ m

(j)
β −

∑
i

(A(i)
zz − A(i)

xx)(m
(i)
z )2, (2.65)

including both IEI and SIA coupling terms. Then, we build a new candidate configuration
Ξ1 by randomly flipping some of the magnetic moments. If that is energetically favoured
(i.e. ∆E = E(Ξ1) − E(Ξ0) < 0), Ξ1 will be straightforwardly accepted as a new point
in the overall trajectory of the system within the magnetic phase space. Otherwise, we
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shall set an acceptance probability Pacc = e−β∆E < 1 with β = (kBT )
−1. Indeed, as

these last two steps of proposal and eventually acceptance are iterated, the system will
unavoidably tend to lower and lower energy phases.

However, since the initial configuration is most likely not close enough to thermal
equilibrium, it is common practice to start collecting data only after a quite large number
Ninit of preliminary MC iterations.

So once this thermalization process is concluded, we proceed with the calculation
of the thermodynamical properties of interest. For instance, the instantaneous average
magnetization at a generic MC iteration k is given by

⟨M⃗k⟩ =
1

N

N∑
i=1

m⃗(i) with m⃗(i) ∈ ΞNinit+k (2.66)

which contributes to the cumulated magnetization as

⟨M⃗⟩cum =
1

k

Ninit+k∑
k′=Ninit+1

⟨M⃗k′⟩ (2.67)

Similarly, we can also estimate the magnetic specific heat

Cmag =
∂E

∂T
=

⟨E2
k⟩cum − ⟨Ek⟩2cum

kBT
(2.68)

and the magnetic susceptibility

X =
∂M

∂T
=

⟨M2
k ⟩cum − ⟨Mk⟩2cum

kBT
, (2.69)

since they are good candidates to mark the typical fluctuations that emerge close to
magnetic phase transitions. A common approach to stabilize these effects is to initialize
more than a single replica of the spin system under study and let them evolve according
to instructions of the Metropolis algorithm independently. This will add more statistics
for the evaluation of the observables, leading to more stable results. Finally, we can also
minimize the effects of autocorrelation between consecutive averages by storing data at
regular intervals, rather than for all accepted magnetic configurations.
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Chapter 3

Chromium trihalides

This chapter outlines the current state of knowledge regarding the fun-
damental properties of chromium trihalides within the scientific com-
munity from a predominantly experimental perspective.
The growing interest in these compounds derives from their peculiar
van der Waals layered magnetic structure, which makes them suit-
able for the exfoliation into ultra-thin films. This feature is of signifi-
cant relevance in the field of next-generation spintronics, where low-
dimensionality finds numerous applications. However, the effect of
quantum confinement on their electronic, optical and magnetic prop-
erties is still widely debated both in theoretical and experimental collec-
tives.
Here we focus on a specific series of chromium trihalides, namely CrX3

with X = Cl, Br, I, where the ligand atom X is substituted by one of
the listed halogens with increasing atomic number Z = 17, 35, 53 in
order from left to right.

3.1 Crystal structure

The X-ray diffraction (XRD) measurements reported in [41–43] show that chromium
trihalides at the bulk limit crystallize into a rhombohedral phase at low temperatures
and also undergo a structural transition to a less symmetrical monoclinic one at about
240, 374 and 210 K respectively for CrCl3, CrBr3 and CrI3.

For instance, both the phases feature a van der Waals (vdW) layered structure, where
the Cr atoms at each layer arrange in a honeycomb net with an edge-sharing octahedral
coordination due to the surrounding ligand atoms.

However, they differ by three main aspects: the stacking geometry, the interlayer
distance and the in-plane symmetry. Indeed, adjacent layers in the rhombohedral phase
are displaced upon stacking by the shift vector s⃗ = a⃗ + b⃗ with a⃗ and b⃗ being the in-
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plane lattice vectors, while for the monoclinic phase the shift vector becomes s⃗ ≃ 1
4
a⃗.

This results in an ideal (approximate) ABC stacking pattern for the first (second) case.
Moreover, when passing from low to high temperatures, not only the interlayer distance
turns out to decrease by almost 5%, but also the in-plane symmetry is slightly broken.
As a matter of fact, the bond lengths and the characteristic angles split up into two
groups, implying non-negligible distortions to the octahedra.

(a) R3̄. (b) C2/m.

(c) P3̄1m.

Figure 3.1: Crystal structure of the CrX3 bulk and ML phases. Conventional
unit cells for the rhombohedral (a) and monoclinic (b) bulk phases, alongside with the
primitive one for the trigonal monolayer (c), using the VESTA software [44–47].
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Rhombohedral bulk phase (R3̄)

CrCl3
a CrBr3

b CrI3
c

a = b (Å) 5.942 6.306 6.867
c (Å) 17.33 18.37 19.81

dCr−Cr (Å) 3.431 3.641 3.965
θCr−X−Cr (

◦) 93.93 90.29 93.31
T (K) 225 273 90

Monoclinic bulk phase (C2/m)

CrCl3
a CrBr3 CrI3

c

a (Å) 5.959 — 6.866
b (Å) 10.32 — 11.89
c (Å) 6.114 — 6.984

dCr−Cr (Å) 3.441, 3.439 — 3.959, 3.965
θCr−X−Cr (

◦) 94.57, 94.26 — 93.63, 93.10
T (K) 298 — 250

a : Ref. [41]
b : Ref. [42]
c : Ref. [43]

Table 3.1: Experimental data on the CrX3 structures at the bulk limit. The lat-
tice constants (a, b, c), the Cr-Cr bondlength (dCr−Cr) and the Cr-X-Cr angle (θCr−X−Cr)
for the rhombohedral and monoclinic structures obtained in various XRD experiments.

For what regards the monolayer limit instead, the determination of the main struc-
tural properties is actually challenging for experimental physicists and cannot be achieved
by standard XRD experiments, since they typically require the samples to be at least
10 nm thick. A common approach to overcome this limitation is to perform scanning
tunneling microscopy. This technique provides useful insights on the height profile of the
CrX3 monolayers at the atomic level [48,49], but still cannot distinguish features ∼ 0.1
Å. Thus, their structure is usually extracted from the associated bulk counterparts and
later relaxed using DFT-based algorithms.

3.2 Electronic properties

The strong correlations between Cr d electrons are responsible for the insulating be-
haviour in all the chromium trihalides both at the bulk and the monolayer limit. This
mechanism in fact allows to classify them as standard Mott insulators with indirect
energy bandgaps, whose values scale as reported in Tab. 3.2.
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Rhombohedral bulk phase (R3̄)

CrCl3 CrBr3 CrI3

PBEb 1.45 1.18 0.91
HSE06b 3.31 2.40 1.29

Exp. Refs. 2.5a 2.0a 1.2b

Trigonal ML phase (P3̄1m)

CrCl3 CrBr3 CrI3

PBEb 1.52 1.33 1.14
HSE06b 3.44 2.54 1.52

a : Ref. [50]
b : Ref. [51]

Table 3.2: Energy bandgaps for the rhombohedral bulk phases and the
trigonal MLs. The experimental reference values are obtained via photoemission
spectroscopy and are only given in the first table, while the computational estimates
are derived from DFT-based electronic structure calculations with the PBE exchange-
correlation functional of the HSE06 hybrid functional.

As expected, the results from photoemission experiments are reproduced by the nu-
merical analogues only when the DFT treatment of d bands is improved using more
advanced approaches, such as hybrid functionals, Hubbard (+U) corrections or even
quantum many-body techniques.

Furthermore, according to crystal-field theory for edge-sharing octahedral systems,
the Cr d orbitals are energetically separated to form a low-lying triply-degenerate t2g
and high-lying doubly-degenerate eg levels. At the same time, the effective number of
d electrons localized at the Cr sites is actually lower than what we could expect from
the electronic configuration of the isolated Cr atom ([Ar]3d54s) and the cause of this
phenomenon has to be attributed to the strong electronegativity of ligands’ atoms.

Therefore, the ground state configuration is straightforwardly obtained by populating
the t2g states with three spin-up electrons in such a way that both the Pauli exclusion
principle and the empirical Hund’s rules are satisfied. This implies that the orbital and
spin quantum numbers for the whole d shell are respectively L = 0 and S = 3/2, using
the quantum mechanical laws for the summation of angular momentum operators. When
SOC is included, the Cr electronic ground state is indeed a J = 3/2 multiplet.
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3.3 Magnetic properties

All bulk chromium trihalides are known to undergo a magnetic phase tansition at low
temperatures, but the most stable spin configuration and the ordering temperature
strongly depend on the chosen halide. For instance, bulk CrBr3 and CrI3 become robust
ferromagnets below the Curie temperatures TC = 37 K [52] and 68 K [53] respectively,
while bulk CrCl3 turns out to be a layered antiferromagnet with the Néel temperature
TN = 17 K [54]. So basically the critical temperature TC/N grows with halide’s mass or
equivalently SOC, suggesting that the latter plays a key role in the enhancement of the
magnetically ordered phase’s tolerance to thermal excitations. Also the strength of the
local magnetic moments follow a similar trend and they tend to align to (lie on) the c
axis (a-b plane) for bulk CrBr3 and CrI3 (CrCl3).

Despite the results of the Mermin-Wagner theorem, the magnetic long-range order is
achieved at the monolayer limit, too. As anticipated in Sec. 1.3, such a violation derives
from the onset of non-negligible anisotropic contributions to the IEI or SIA tensors.
In the specific case of CrX3 MLs, the dominant anisotropic terms arises from second-
neighbour DM and diagonal symmetric exchange interactions, since the first Moriya rule
(see Tab. 1.1) is satisfied by the local environment of the 1◦NN bonds.

Since the Cr-X-Cr angles are always close to 90◦ for all the bulk and ML phases,
the 1◦NN intralayer exchange interaction is always governed by the competition between
the direct exchange and the 90◦-oriented superexchange. The first mechanism provides
a weakly AFM contribution due to the large distances between neighbouring Cr atoms,
while the second one is expected to be strongly FM. This results in an effective FM
exchange coupling that energetically favors a parallel alignment of the Cr spins within
each layer.

As a consequence, all the ML phases become ferromagnets at slightly lower Curie
temperatures TC = 13 K [55], 27 K [56] and 45 K [57] for CrCl3, CrBr3 and CrI3
respectively.

The only exception to this rule is the CrCl3 rhomboedral bulk phase, which in fact
differ by the sign of interlayer exchange coupling.
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Chapter 4

Results

Here we discuss the main results on the magnetic properties of the CrX3

series under study. In particular, this chapter is developped around
three objectives: the structural relaxation of ML phases, the evaluation
of exchange interactions for the initial few NN shells, and the character-
ization of the associated magnetic transitions. The procedures required
to accomplish these tasks are meticulously detailed.
Using DFT with PBEsol [58] exchange-correlation functional, Hubbard-
U correction and SOC term, we are able to reproduce the CrX3 ML
structures in good agreement with the experimental bulk analogues and
previous computational works. We also target the main IEI and SIA
parameters by applying the four-states method. The analysis of the so
obtained coupling constants focuses on underlining the crucial role of
the halide’s SOC and allows to identify the major contributions to the
overall exchange interactions. These results are finally used to per-
form Monte Carlo simulations, aiming at assessing the effect of finite
temperatures on a set of relevant observables, including the average
magnetization. The Curie temperatures of the CrX3 MLs can be thus
calculated and compared to the available experimental reference values,
which are however systematically lower than our estimates.

4.1 Structural relaxation

In contrast with the rhombohedral bulk phase, the current knowledge of the trigonal ML
structures is not accurate enough to take the available experimental data as a reliable
starting point for the investigation of their magnetic interactions, as they are in fact very
sensitive to small variations of the interatomic distances [59].
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CrCl3 ML

This work Bulk analoguea Previous workd

a (Å) 5.979 5.942 5.967
dCr−Cr (Å) 3.452 3.431 —
θCr−X−Cr (

◦) 94.57 93.93 —

CrBr3 ML

This work Bulk analoguea Previous workd

a (Å) 6.344 6.306 6.326
dCr−Cr (Å) 3.662 3.641 —
θCr−X−Cr (

◦) 93.86 90.29 —

CrI3 ML

This work Bulk analoguea Previous workd

a (Å) 6.894 6.867 6.856
dCr−Cr (Å) 3.980 3.965 —
θCr−X−Cr (

◦) 93.62 93.31 —
a : Ref. [41]
b : Ref. [42]
c : Ref. [43]
d : Ref. [60]

Table 4.1: Main structural parameters for the relaxed CrX3 FM MLs. The
in-plane lattice constant (a), the Cr-Cr bondlength (dCr−Cr) and the Cr-X-Cr angle
(θCr−X−Cr) for all the CrX3 FM MLs. Bulk analogous quantities and an exemplary
computational estimate are also reported to facilitate the comparison with our results.

So we chose to optimize the atomic positions of the ground-state FM ML phases
through a DFT-based structural relaxation method, as implemented in the VASP frame-
work. It goes under the name of Residual-Minimization Method Direct Inversion in the
Iterative Subspace (RMM-DIIS) algorithm [61] and provides the aimed search directions
from very accurate estimates of the forces and the stress tensor. One of the necessary
inputs is an initial guess for the ML structure, which in practice was built by substi-
tuting the second and third CrX3 layers in Fig. 3.1a with an empty region of about 20
Åalong the c axis in order to suppress any spurious interaction between the remaining
layer and its replicas due to the 3D periodic boundary conditions. Intending to ensure
a high accuracy, we also performed a series of convergence tests with respect to the to-
tal energy difference between two distinct magnetic configurations down to the ∼ 10−6

eV order of magnitude. This resulted in a 6 × 6 × 1 k-mesh grid and an energy cutoff
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Ecut = 450 eV, together with an electronic stop criterion of 10−6 eV and a Gaussian
smearing width of 0.01 eV for an improved k-space integration. Moreover, the electronic
self-consistent cycles were featured by the use of the PBEsol exchange-correlation func-
tional and the incorporation of the SOC effect and the Dudarev’s correction terms with
Ueff = U − J = 3.0 eV for Cr d orbitals, in accordance with the constrained Random
Phase Approximation (cRPA) data in [62]. Finally, the relaxation procedure was stopped
when the norms of all the forces were smaller than 1 meV/Å.

All the most relevant outcomes are presented in Tab. 4.1, along with the experimental
data for the rhombohedral bulk counterparts and some computational estimates from a
previous ab initio calculation that used the same exchange-correlation functional. As a
matter of fact, both the in-plane lattice constants and the Cr-Cr bondlengths exhibit an
increasing trend passing from a lower to a higher halide mass, while the Cr-X-Cr angles
remain nearly unchanged. At the same time, the comparison indicates a high degree of
compatibility with the reference values, as our results deviate by no more than 3 %.

4.2 Intersite exchange tensors

The computation of the here reported exchange couplings follows the instructions of the
four-states energy-mapping method detailed in Sec. 2.4. In particular, we extended the
previous setup for the electronic self-consistent cycles to account for all the necessary
spin configurations within VASP. For this purpose, we constrained the local magnetic
moments in the system along the desired directions as described in Sec. 2.3 and employed
a two-steps procedure to minimize the penalty energy contributions down to ∼1 µeV.
This turned out to be possible by first performing an electronic self-consistent cycle with
LAMBDA=10 and then by restarting the pre-converged calculation with LAMBDA=100.
Moreover, in order to isolate the spin pair of interest from their replicas, we adopted a
supercell solution that is briefly summarized in Tab. 4.2.

CrX3 rhombohedral bulk CrX3 ML
1◦NN 2◦NN 3◦NN 1◦NN 2◦NN

Supercell 2×2×2 2×2×2 2×2×3 2×2×1 3×3×1
K-mesh grid 3×3×3 3×3×3 3×3×2 3×3×1 2×2×1

Table 4.2: Supercell solutions for the four-states method in the CrX3 periodic
systems. The choice of the number of elementary unit cells within each supercell solu-
tion is aimed to minimize the spurious exchange interactions between spin pair’s replicas.
The elementary unit cell for the CrX3 rhombohedral bulk phases (trigonal MLs) consists
of the experimental (relaxed) primitive cell. Also, the changes in the k-mesh grid follow
the usual inverse proportionality with the number of unit cells per lattice vector, starting
from 6×6×6 (6×6×1) for the bulk (ML) primitive unit cell.
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For the sake of a practical distinction between the various anisotropic and isotropic
contribution to the so obtained IEI tensors {J = J (i∗j∗)}, we propose the following
parametrization of the associated 3×3 matrices

J =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

 =

 J̄ +Kx Γxy +Dz Γxz −Dy

Γxy −Dz J̄ +Ky Γyz +Dx

Γxz +Dy Γyz −Dx J̄ +Kz

 (4.1)

where

J̄ =
1

3
(Jxx + Jyy + Jzz),

D⃗ = (Dx, Dy, Dz) =
1

2
(Jyz − Jzy, Jzx − Jxz, Jxy − Jyx),

Γ⃗ = (Γxy,Γxz,Γyz) =
1

2
(Jxy + Jyx, Jxz + Jzx, Jyz + Jzy),

K⃗ = (Kx, Ky, Kz) = (Jxx, Jyy, Jzz)− J̄ .

(4.2)

This allows to represent the isotropic, the antisymmetric DM, the off-diagonal sym-
metric and the diagonal symmetric exchange interaction in terms of scalar or 3D vector
parameters. Their strength is thoroughly reported in Figs. 4.1, 4.2 and 4.3 for the first
few NN shells of the rhombohedral bulk phases and the trigonal MLs.

As the plots in Fig. 4.1a show, the isotropic contribution to the first NN intralayer
exchange interactions J̄ is always negative and thus favours a FM alignment of the Cr
local magnetic moments. It also turns out to decrease significantly as the associated
ligand’s SOC increases. This trend can be attributed to the dependence of the FM
superexchange coupling (see Eq. 1.36) on the effective hopping integral between Cr d
orbitals, which clearly grows as ∼ t2pd. Indeed, as the delocalization of the X p electrons
intensifies passing from CrCl3 to CrI3, we expect that the overlap between the X p and Cr
d orbitals considerably increases, leading to a larger tpd and thus an even lower isotropic
term. Further, we note that J̄ take lower values for the rhombohedral bulk phases than
for the trigonal MLs by almost ∼ 10%.

The anisotropic contributions to the first NN intralayer exchange interactions are
instead shown in Figs. 4.1b, 4.1c, 4.1d. The DM term |D⃗| is clearly weaker than the
others by at least an order of magnitude as a direct consequence of the first Moriya rule.
Differently, the symmetric exchange couplings |Γ⃗| and |K⃗| take non-negligible values that
are strongly enhanced by the increasing halide’s SOC. This feature is observed for both
the rhombohedral bulk phases and the trigonal MLs.
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(a) (b)

(c) (d)

Figure 4.1: 1◦NN intralayer exchange parameters as a function of the halide’s
SOC energy. The isotropic (a), the antisymmetric DM (b), the off-diagonal symmetric
(c) and the diagonal symmetric exchange (d) for all the CrX3 rhombohedral bulk phases

and trigonal MLs, stressing the impact of the halide’s SOC energy (∆E
(X)
SOC).

Besides, recent ferromagnetic resonance (FMR) experiments [63] have reported that
the first NN exchange interactions are indeed enhanced by the halide’s SOC as we pointed
out. However, some of their findings do not align well with our estimates. As a matter
of fact, they suggest that our |J̄ | values for the CrCl3 and CrBr3 MLs are actually
overestimated. Also they report quite different symmetric anisotropic contributions, for
instance |Γ| ≃ 0.08 meV and |K| ≃ 0.9 meV in the case of CrI3 ML.

Almost in continuity to the just commented IEI tensor, we find that the second NN
intralayer exchange interactions are also enhanced by the halide’s SOC. Nonetheless, the
anisotropic contributions hardly exceed the tens of µeV, if it was not for the exceptional
case of CrI3 ML where they even reach the hundreds of µeV.
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(a) (b)

(c) (d)

Figure 4.2: 2◦NN intralayer exchange parameters as a function of the halide’s
SOC energy. The isotropic (a), the antisymmetric DM (b), the off-diagonal symmetric
(c) and the diagonal symmetric exchange (d) for all the CrX3 rhombohedral bulk phases

and trigonal MLs, stressing the impact of the halide’s SOC energy (∆E
(X)
SOC).

The results of the previous computational work [60] further confirm that the first
(second) NN isotropic term should take higher (lower) values than our estimate.

Finally, the focus shifts to the features of the interlayer IEI tensors, which are sum-
marized in the plots of Fig. 4.3. Since only the diagonal anisotropic and the isotropic
contributions are actually non-vanishing, they reduce to a mere diagonal shape with a
strong out-of-plane anisotropy. More interestingly, the isotropic term for the CrCl3 rhom-
bohedral bulk phase becomes positive, in accordance with the experimental evidence of
layered antiferromagnetism in that case.
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(a) (b)

(c) (d)

Figure 4.3: 1◦NN interlayer exchange parameters as a function of the halide’s
SOC energy. The isotropic (a), the antisymmetric DM (b), the off-diagonal symmetric
(c) and the diagonal symmetric exchange (d) for all the CrX3 rhombohedral bulk phases

and trigonal MLs, stressing the impact of the halide’s SOC energy (∆E
(X)
SOC).

It is worth noting that the IEI tensors obtained by the four-states formula refer to
the specific spin quantization frame assumed by VASP during the total energy calcula-
tions. So, before any of the previous considerations, we made sure to express them in a
local reference frame common to all the CrX3 supercells. Since the choice is arbitrary,
we set the x and z axes to be aligned with the interested NN bond and the c lattice
direction respectively. If that was not the case by default, the defective IEI tensors J
were transformed into

J ′ = R−1
z JRz (4.3)
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with Rz as the matrix representation of the rotations around the z axis required to
adjust the orientation of the reference frame.

4.3 Single-ion anisotropy

Adopting the same exact computational setup as for the calculation of the first NN IEI
tensors, we can compute the dominant SIA term Azz −Axx according to the four-states
formula in Eq. 2.50 by imposing α∗ = z. As the plot in Fig. 4.4 shows, the strength
of this coupling is also enhanced by the halide’s SOC and reaches significantly non-zero
values in the specific case of CrI3.

Moreover, the vanishment of all other contributions can be ascribed to the symmetry
considerations in Ref. [33] for the CrX3 MLs. For what regards the rhombohedral bulk
phases instead, they are not valid. So we report the associated |Azz − Axx| values only
for comparative purposes.

Interestingly, the paper [33] also provides a following estimate of |Azz − Axx| = 0.08
meV for the CrI3 ML phase, which turns out to be in excellent agreement with our data
despite the different computational setups.

Figure 4.4: Out-of-plane SIA parameter as a function of the halide’s SOC
energy. The plots aim to stress the impact of the halide’s SOC energy (∆E

(X)
SOC) in the

enhancement of the modulus of Azz − Axx.
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4.4 Thermal properties

As a first step in the presentation of the MC finite-temperature calculations, we wish to
stress some important precautions to ensure a sufficient statistical stability of the MC
cumulated averages. For instance, before the sampling of the observables takes place, we
extend the system to a 100× 100× 1 supercell and perform 2× 105 thermalization steps,
allowing to suppress any spurious dependence on the initial magnetic configuration. It
is set to the FM ground-state predicted by the PBEsol+U+SOC method with the Cr
magnetic moments’ norms in Tab. 4.3.

CrCl3 ML CrBr3 ML CrI3 ML
|µ⃗Cr| (µB) 3.06 3.18 3.37

Table 4.3: The Cr magnetic moments at the FM ground-state of the CrX3

MLs. The values are compatible with the effective number of unpaired spin-up d elec-
trons at the Cr sites and also increase with the covalent character of the associated CrX3

MLs.

In order to optimize the representation of the thermodynamical equilibrium phase
at each temperature value, we extract the cumulated averages only after 5 × 105 MC
iterations. The behaviour of the resulting magnetization as the temperature grows is
plotted in Figs. 4.5, alongside with experimental data from recent X-ray Magnetic Cir-
cular Dichroism (XMCD) studies [55, 57] and polarization-resolved magnetophotolumi-
nescence (MPL) analyses [56]. By fitting both the experimental and MC data with a
function of the form

M(T )

M(0)
=

(
1− T

TC

)β

, (4.4)

we end up with two independent estimates for the Curie temperature TC and the critical
exponent β that are summarized in Tab. 4.4.

CrCl3 ML CrBr3 ML CrI3 ML

TC (K)
Exp. fit: 12.95±0.03 33±1 44.60±0.08
MC fit: 33.1±0.3 51.6±0.3 68.2±0.7

β
Exp. fit: 0.23±0.02 0.29±0.05 0.123±0.008
MC fit: 0.38±0.01 0.29±0.01 0.35±0.01

Table 4.4: The Curie temperature and the critical exponent for all the CrX3

MLs. The here presented estimates are obtained by fitting the experimental data and
the MC average magnetization values to the functional form of Eq. 4.4.
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(b)
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(c)

Figure 4.5: Temperature dependence of the magnetization in CrX3 MLs.
The cumulated average magnetization from the MC simulations are here plotted in the
temperature range [0 K; 100 K] with steps of 5 K for CrCl3 (a), CrBr3 (b) and CrI3 (c).
They are compared to the experimental data of Refs. [55–57] and are also fitted to the
functional form of Eq. 4.4.

They correctly reproduce the increasing trend with the halide’s mass, but also result
in a significant overestimation of the Curie temperatures of the CrX3 MLs. A candidate
hypothesis for such a discrepancy regards the input IEI tensors obtained by the four-
states method. Indeed, the isotropic contribution to the first NN intralayer exchange
coupling turned out to be considerably lower than the reference values for the CrCl3 and
CrBr3 MLs. However, this is not valid for the CrI3 ML. One would need to perform
further tests to identify the origin of the overestimated TC in this case.

For the sake of completeness, we also report the magnetic susceptibility, the magnetic
specific heat and the 4th order Binder cumulant as a function of the temperature in
Figs. 4.6, 4.7 and 4.8.
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Figure 4.6: Temperature dependence of the magnetic susceptibility in CrX3

MLs. The data shows a sharp peaked behaviour in correspondence to the MC estimates
of the Curie temperature of the CrX3 MLs.

Figure 4.7: Temperature dependence of the magnetic specific heat in CrX3

MLs. The data shows a broad peak just above the MC estimates of the Curie temper-
ature of the CrX3 MLs.

56



Figure 4.8: Temperature dependence of the 4th order Binder cumulant in
CrX3 MLs. The data shows a steady trend to ∼ 2

3
for low temperatures and a rapid

decrease in correspondence to the MC estimates of the Curie temperature of the CrX3

MLs. Also they approach ∼ 4
9
asymptotically in the high temperature range.
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Conclusions

This study aims to contribute to the extensive body of experimental and theoretical
research in the field of 2D magnetic materials, focusing specifically on the chromium
trihalide series CrX3 with X = Cl, Br and I. In particular, we present some fundamental
models explaining the intrinsically quantum mechanical origin of magnetism in solids
and propose the use of various computational methods to characterize the structural,
electronic, and magnetic properties of the materials in object at both bulk and ML
limits. The objective is to validate the accuracy of these techniques in calculating the
IEI and SIA tensors, and to use the so determined values to gain useful insights into the
magnetic behavior of the CrX3 MLs at finite temperatures.

To begin with, the output data from the structural relaxation of the CrX3 MLs,
using the DFT+U+SOC method and the PBEsol exchange-correlation functional show
an excellent agreement with previous XRD measurements for the analogous quantities
in bulk, as well as with prior computational relaxations.

The four-states methodology is thus employed to address the nature of the exchange
interactions in both the low-temperature rhombohedral bulk phases and the trigonal
MLs. As recent FMR experiments and ab initio calculations claim, our results evidence
the crucial role of the halide’s SOC in the enhancement of the isotropic and anisotropic
contributions to the IEI and SIA tensors, but also we report some non-negligible dis-
crepancies with the references. For instance, our findings on the first NN isotropic term
of the CrCl3 and CrBr3 MLs are significantly lower than the reference values and the

anisotropic-to-isotropic ratio |K|
|J̄ |

(
|Γ|
|J̄ |

)
for the first NN intralayer IEI tensor of the CrI3

ML is ∼ 0.26 (∼ 0.13) against the expected ∼ 0.40 (∼ 0.04). For what regargs the
second NN intralayer exchange interactions instead, we observe that the enhancement
effect of the anisotropic contributions due to the halide’s SOC is much stronger in the
trigonal MLs than in the rhombohedral bulk phases. Further, the interlayer IEI tensor
for the latter materials takes a diagonal form and its isotropic contribution changes sign
in the case of CrCl3.

In conclusion, we use the IEI and SIA tensors obtained by the four-states energy-
mapping method and we systematically perform MC simulations based on the Metropolis
algorithm for an efficient exploration of the magnetic configurations’ space to gain useful
insights on the behaviour of the CrX3 MLs at finite temperatures. The cumulated average
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magnetization is thus fitted to the functional form of Eq. 4.4 and compared to XMCD
and MPL data. We find that our estimates for the Curie temperatures are significantly
overestimated and this may be attributed to the discrepancies we have reported above for
the first NN intralayer IEI tensor of the CrX3 MLs. Further calculations could be used
to confirm or reject this hypothesis and also can investigate other interesting aspects
of the physics of these materials, such as the spin exchange stiffness and the adiabatic
magnon spectra.
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Appendix A

Input files

A.1 Structural relaxation by VASP

In this Appendix, we report all the VASP input files used for the structural relaxation
of the CrX3 MLs. Further details on the meaning of the flags can be found on the VASP
Wiki website.

� POSCAR

CrCl3 ML extracted from the bulk experimental structure

1.0

5.9419999123 0.0000000000 0.0000000000

-2.9709999561 5.1459228733 0.0000000000

0.0000000000 0.0000000000 20.0000000000

Cr Cl

2 6

Cartesian

2.971000045 1.715307676 0.017910640

0.000000000 3.430615351 -0.017910295

0.917741705 5.107328489 1.312108113

-1.910947041 3.387046260 1.312108113

-1.060052843 1.758876613 -1.312106821

0.993205408 1.797470998 1.312108113

1.977794548 3.348451875 -1.312106821

-0.917741726 5.184517294 -1.312106821

CrBr3 ML extracted from the bulk experimental structure

1.0

6.3060007095 0.0000000000 0.0000000000
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-3.1530003548 5.4611568107 0.0000000000

0.0000000000 0.0000000000 20.0000000000

Cr Br

2 6

Cartesian

0.000000000 3.640771316 0.000000000

3.153000449 1.820385658 -0.003489945

1.021414912 1.878401361 1.426585837

2.036964232 3.644157599 -1.426585837

2.131585349 -0.058015703 -1.426585837

4.168549769 -0.054629419 1.426585837

5.290451137 1.875015077 -1.426585837

4.269036349 3.637385032 1.426585837

CrI3 ML extracted from the bulk experimental structure

1.0

6.8669972420 0.0000000000 0.0000000000

-3.4334986210 5.9469940593 0.0000000000

0.0000000000 0.0000000000 20.0000000000

Cr I

2 6

Cartesian

3.433498723 1.982331412 -0.006866305

0.000000000 3.964662824 0.006866510

2.406882722 0.007136393 1.564158131

2.236237697 3.859004281 1.564158131

1.197260720 2.087989778 -1.564157393

5.657375411 2.080853442 1.564159311

4.460114589 -0.007136514 -1.564159754

4.643120316 3.866140795 -1.564157393

� KPOINTS

Gamma-centered K-mesh Grid

0

Gamma

6 6 1

� INCAR

SYSTEM = CrX3_ML
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# Parallelization Tags

NCORE = 32

KPAR = 2

# Electronic SC loop

GGA = PS

LREAL = .FALSE.

ENCUT = 450.0

PREC = A

EDIFF = 1E-6

NELM = 200

ISMEAR = 0

SIGMA = 0.01

# Ionic relaxation

NSW = 60

ISIF = 8

IBRION = 1

EDIFFG = -0.001

NELMIN = 6

# Method Settings

LDAU = .TRUE.

LSORBIT = .TRUE.

# Density Mixing

AMIN = 0.4

AMIX = 0.3

BMIX = 0.0001

AMIX_MAG = 0.6

BMIX_MAG = 0.0001

# Dudarev Approach to DFT+U

LDAUTYPE = 2

LDAUL = 2 -1

LDAUU = 3.0 0.0

LDAUJ = 0.0 0.0

LDAUPRINT = 1

LMAXMIX = 4
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A.2 Total energy calculation by VASP

All the VASP input files reported below refer to the CrI3 ML and specifically allow for
the determination of the total energy E3 in Eq. 2.46 if i∗ = 1, j∗ = 5, α∗ = y and β∗ = z.

� POSCAR

CrI3 ML after structural relaxation

1.0

13.7885494232 0.0000000000 0.0000000000

-6.8942747116 11.9412340818 0.0000000000

0.0000000000 0.0000000000 20.0794448853

Cr I

8 24

Cartesian

3.447137458 1.990205739 0.000000000

0.000000102 7.960822780 0.000000000

10.34141217 1.990205739 0.000000000

6.894274814 7.960822780 0.000000000

0.000000000 3.980411479 0.000000000

-3.44713735 9.951028520 0.000000000

6.894274712 3.980411479 0.000000000

3.447137356 9.951028520 0.000000000

2.434617123 0.000073928 1.569941179

-1.01252023 5.970690969 1.569941179

9.328891834 0.000073928 1.569941179

5.881754478 5.970690969 1.569941179

2.229892958 3.862139800 1.569941179

-1.21724439 9.832756841 1.569941179

9.124167670 3.862139800 1.569941179

5.677030314 9.832756841 1.569941179

1.217244193 2.108477241 -1.569940438

-2.22989316 8.079094282 -1.569940438

8.111518905 2.108477241 -1.569940438

4.664381549 8.079094282 -1.569940438

-1.21737275 2.108403370 1.569942363

-4.66451011 8.079020411 1.569942363

5.676901954 2.108403370 1.569942363

2.229764598 8.079020411 1.569942363

4.459657658 -0.00007405 -1.569942808

1.012520303 5.970542991 -1.569942808

11.35393237 -0.00007405 -1.569942808
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7.906795014 5.970542991 -1.569942808

-2.22976473 3.862213849 -1.569940438

-5.67690209 9.832830890 -1.569940438

4.664509977 3.862213849 -1.569940438

1.217372621 9.832830890 -1.569940438

� KPOINTS

Gamma-centered K-mesh Grid

0

Gamma

3 3 1

� INCAR

SYSTEM = CrI3_ML

# Parallelization Tags

NCORE = 32

KPAR = 2

# Electronic SC loop

ISTART = 1 ! the WAVECAR and CHGCAR file are read from

ICHARG = 1 ! a pre-converged calculation with LAMBDA=10

GGA = PS

LREAL = .FALSE.

ENCUT = 450.0

PREC = A

EDIFF = 1E-7

NELM = 200

ISMEAR = 0

SIGMA = 0.01

# Spin treatment

LORBIT = 11

LNONCOLLINEAR = .TRUE.

GGA_COMPAT = .FALSE.

LASPH = .TRUE.

I_CONSTRAINED_M = 1

LAMBDA = 100 ! or LAMBDA=10 for the preliminary calculation

MAGMOM = 0.0 -4.0 0.0 4.0 0.0 0.0 4.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 4.0 ...

M_CONSTR = 0.0 -4.0 0.0 4.0 0.0 0.0 4.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 4.0 ...
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RWIGS = 1.323 1.487 ! to be read from the POTCAR file

SAXIS = 0 0 1

# Density Mixing

AMIN = 0.4

AMIX = 0.2

BMIX = 0.0001

AMIX_MAG = 0.6

BMIX_MAG = 0.0001

# Method Settings

LDAU = .TRUE.

LSORBIT = .TRUE.

# Dudarev Approach to DFT+U

LDAUTYPE = 2

LDAUL = 2 -1

LDAUU = 3.0 0.0

LDAUJ = 0.0 0.0

LDAUPRINT = 1

LMAXMIX = 4

A.3 Monte Carlo simulations by UppASD

In this Appendix, we report all the UppASD input files used for the MC simulations that
allowed us to represent the magnetic behaviour of the CrX3 MLs at finite temperatures.
Further details on the meaning of the flags can be found on the UppASD Git-hub page.

� inpsd.dat

simid CrI3_ML

# System settings

ncell 100 100 1

BC P P 0

cell

5.970617241502998 3.447137471609976 0.0000000000000000

-5.97061724150299 3.447137471609976 0.0000000000000000

0.000000000000000 0.000000000000000 20.079445790521326

sym 0

mensemble 10
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# Verbosity settings

do_prnstruct 1

do_prn_poscar 1

do_hoc_debug 1

# Path to input files

posfile ./posfile

momfile ./momfile

exchange ./jfile

anisotropy ./kfile

# Reading specifics

do_jtensor 1

calc_jtensor .false.

do_anisotropy 1

posfiletype D

initmag 3

# Initial phase settings

ip_mode M

ip_temp TEMP

ip_mcnstep 200000

# Measurement phase settings

mode M

temp TEMP

mcnstep 500000

# Observables’ settings

do_avrg Y

plotenergy 1

do_cumu Y

� posfile

1 1 0.6666666864724036 0.33333334323749 0.1

2 1 0.3333333432374985 0.66666668647499 0.1

� momfile

1 1 3.37 0.0 0.0 1.0
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2 1 3.37 0.0 0.0 1.0

� jfile

1 1 -0.33334 0.33334 0.0 0.3551 -0.0056 0.0009 -0.0055 0.2472 -0.0488 ...

1 1 -0.66668 -0.33334 0.0 0.2694 -0.0440 -0.0418 -0.0439 0.3329 -0.0252 ...

1 1 -0.33334 -0.66668 0.0 0.2790 0.0494 -0.0427 0.0495 0.3233 0.0237 ...

1 1 0.33334 -0.33334 0.0 0.3551 -0.0056 -0.0009 -0.0055 0.2472 0.0488 ...

1 1 0.66668 0.33334 0.0 0.2694 -0.0440 0.0418 -0.0439 0.3329 0.0252 ...

1 1 0.33334 0.66668 0.0 0.2790 0.0494 0.0427 0.0495 0.3233 -0.0237 ...

1 1 -1.4e-17 -1.0 0.0 0.0606 -0.0142 0.0051 0.0147 0.0417 -0.0197 ...

1 1 1.0 1.4e-17 0.0 0.0467 -0.0227 -0.0145 0.0062 0.0556 -0.0143 ...

1 1 1.0 1.0 0.0 0.0462 -0.0064 -0.0196 0.0225 0.0561 0.0054 0.0415 ...

1 1 2.3e-16 1.0 0.0 0.0606 -0.0142 -0.0051 0.0147 0.0417 0.0197 ...

1 1 -1.0 3.5e-16 0.0 0.0467 -0.0227 0.0145 0.0062 0.0556 0.0143 -0.0239 ...

1 1 -1.0 -1.0 0.0 0.0462 -0.0064 0.0196 0.0225 0.0561 -0.0054 -0.0415 ...

� kfile

1 1 -0.0158013256 0.0 0.0 0.0 1.0 0.0

2 1 -0.0158013256 0.0 0.0 0.0 1.0 0.0
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Appendix B

Exchange interactions within
Hubbard-I approximation

The DFT+DMFT(HI) approach detailed in Sec. 2.5 requires the utilization of a series
of packages, specifically:

� WIEN2k [64] to perform electronic structure calculations using DFT within the
(Linearized) Augmented Plane Wave + localized orbital ((L)APW+lo) method,
eventually including the Hubbard (+U) term and/or the Spin-Orbit Coupling
(SOC) as a relativistic correction;

� dmftproj to build the projectors to a set of localized orbitals from the WIEN2k
output files;

� TRIQS [65–67] to implement fully self-consistent or one-shot DMFT calculations;

� MagInt [34,35] to compute the intersite exchange tensor by the Force Theorem in
Hubbard-I (FT-HI) using the DMFT atomic self-energy as input.

The chosen values for the on-site Coulomb repulsion and the Hund exchange param-
eters are U = 3.0 eV and JH = 0.8 eV, in accordance with most of the previous works
on chromium tihalides, such as Ref. [60].

This procedure was applied to all the CrX3 bulk and ML phases, but we could adopt
the experimental structure only in the first case due to the lack of XRD studies or the
insufficient accuracy of other techniques for ultra-thin films in the scientific literature.

Thus, the crystal structure for the CrX3 MLs were obtained by performing DFT-
based relaxations via the conjugate gradient algorithm, available on VASP software.
Differently from the WIEN2k code, VASP implements DFT using pseudopotentials [68]
or the Projector-Augmented-Wave (PAW) method [69].

The electronic calculations were featured by the blocked-Davidson iterative algorithm
for the diagonalization of the single-electron Koohn-Sham Hamiltonian matrices and
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the Pulay density mixing scheme as set by default. Moreover, the chosen exchange-
correlation functionals were standard PBE and PBEsol as it consists of a revised version
of PBE especially defined to improve the estimation of structural properties of solids.
As suggested by Ref. [51], the non-local optB88-vdW exchange potential [70] was also
tested.

CrCl3 ML

PBE PBEsol PBE+
optB88-vdW

Bulk
analoguea PBEsol+Ud

a (Å) 5.850 5.496 5.639 5.942 5.967
c (Å) 19.69 18.50 18.98 17.33 —

dCr−Cr (Å) 3.377 3.173 3.256 3.431 —
θCr−X−Cr (

◦) 93.78 87.74 89.16 93.93 —

CrBr3 ML

PBE PBEsol PBE+
optB88-vdW

Bulk
analogueb PBEsol+Ud

a (Å) 6.407 6.062 6.161 6.306 6.326
c (Å) 20.32 19.23 19.54 18.37 —

dCr−Cr (Å) 3.699 3.499 3.557 3.641 —
θCr−X−Cr (

◦) 97.27 91.93 91.73 90.29 —

CrI3 ML

PBE PBEsol PBE+
optB88-vdW

Bulk
analoguec PBEsol+Ud

a (Å) 7.013 6.746 6.775 6.867 6.856
c (Å) 20.42 19.65 19.73 19.81 —

dCr−Cr (Å) 4.049 3.895 3.911 3.965 —
θCr−X−Cr (

◦) 98.62 95.32 93.80 93.31 —
a : Ref. [41]
b : Ref. [42]
c : Ref. [43]
d : Ref. [60]

Table B.1: Main structural parameters for the relaxed CrX3 paramagnetic
MLs. The in-plane (a) and out-of-plane (c) lattice constants, the Cr-Cr bondlength
(dCr−Cr) and the Cr-X-Cr angle (θCr−X−Cr) for all the CrX3 paramagnetic MLs. Bulk
analogous quantities and an exemplary computational estimate are also reported to fa-
cilitate the comparison with our results.
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Next, both the cut-off energy Ecut and the number of k-points per reciprocal lattice
direction were carefully optimized until the total energy accuracy reached the threshold
0.1 meV per atom in the unit cell. The final values were Ecut = 450 eV (500 eV) for the
PBE (PBEsol) functional and 13× 13× 1 k-mesh grid for both cases.

To conclude, the stop criterion for the structural optimization loops were set to stop
as soon as the total energy difference between the current iteration and the previous one
was lower than 1 meV per atom in the unit cell.

First of all, we report the outcomes of the structural relaxation of the CrX3 param-
agnetic MLs into Tab. B.1, all together with reference values from the bulk experimental
structure and the PBEsol+U relaxation in [60]. The use of PBEsol and PBE+optB88−
vdW exchange-correlation functional turns out to underestimate significantly the in-
plane lattice constant a (Å) at equilibrium, resulting in lower Cr-Cr bondlengths dCr−Cr

(Å) and Cr-X-Cr angles θCr−X−Cr (◦) as a consequence. This would also impact the
evaluation of the IEI tensors via MagInt due to the undoubted relevance of orbitals’
overlapping for the hopping processes that are involved in both direct exchange and
super-exchange mechanisms. So we chose the PBE-relaxed structures as input to the
DFT+DMFT(HI) approach.

Table B.2 instead shows the strength of the isotropic and anisotropic contributions
to the IEI tensors of the first three (two) NN shells for the CrX3 bulk (ML) phases via
the LDA+DMFT(HI) approach. The related pDOS are plotted in Fig. B.1 and they
also allowed to have a rough estimation of the energy bandgap Egap (eV), as reported in
Tab. 3.2 with some computational and experimental references.

Due to the conventional choice of the Hamiltonian as specified in Eq. 2.60, the positive
isotropic exchange couplings imply that the antiparallel ordering of the Cr local magnetic
moments is energetically favoured. This is however in contrast with the results from
previous calculations and experiments in the scientific literature.

At the same time, one can also notice some aspects that are compatible with the
expectations. For instance, when the ligands’ SOC increases passing from CrCl3 to
CrI3 through CrBr3, an overall positive trend of the anisotropic terms (|Γ⃗|, |K⃗|, |D⃗|) is
registered. In particular, the dominant terms apart from the isotropic ones come from
the second-neighbour DM and the diagonal symmetric exchange interactions. A further
increase is reported when we compare the interaction parameters for the rhombohedral
bulk phase and those for the trigonal ML. This effect is especially enhanced for CrI3,
suggesting that the ligands’ SOC plays indeed a fundamental role in the determination
of the magnetic interactions for the CrX3 series as expected. Moreover, due to the lower
symmetry of the crystal structure for the monoclinic bulk phase the exchange couplings
within each NN shell split up into two groups with slightly different associated values.
So even variations of ∼ 5× 10−3 Å to the Cr-Cr bond lengths dCr−Cr impact on the IEI
tensors, especially their isotropic component. Another interesting feature concerns the
magnetic interactions of the interlayer bond, as they turn out to be purely isotropic (see
the 2◦NN column for the rhombohedral structures and 3◦NN for the monoclinic ones).
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CrCl3

Rhombohedral bulk Monoclinic bulk Trigonal ML
1◦NN 2◦NN 3◦NN 1◦NN 2◦NN 3◦NN 1◦NN 2◦NN

J̄ (meV) 10.03 0.768 0.635 9.977,9.839 0.450,0.474 0.243 13.02 0.410

|Γ⃗| (meV) 0.021 — — 0.021,0.062 — — 0.021 —

|K⃗| (meV) 0.011 — 0.001 0.011,0.021 — — 0.008 0.001

|D⃗| (meV) — — 0.014 — 0.012 — — 0.016

CrBr3

Rhombohedral bulk Monoclinic bulk Trigonal ML
1◦NN 2◦NN 3◦NN 1◦NN 2◦NN 3◦NN 1◦NN 2◦NN

J̄ (meV) 6.50 0.719 0.927 5.964,5.714 0.553,0.594 0.320 8.668 0.50

|Γ⃗| (meV) 0.019 — — 0.011,0.007 — — 0.017 —

|K⃗| (meV) 0.011 — 0.004 0.012,0.019 0.007,0.005 — 0.008 0.009

|D⃗| (meV) — — 0.063 — 0.047,0.050 — — 0.060

CrI3

Rhombohedral bulk Monoclinic bulk Trigonal ML
1◦NN 2◦NN 3◦NN 1◦NN 2◦NN 3◦NN 1◦NN 2◦NN

J̄ (meV) 2.772 1.170 0.861 2.899,3.041 0.775,0.868 0.480 8.919 0.752

|Γ⃗| (meV) 0.061 — 0.029 0.051,0.061 0.017,0.020 0.008 0.040 —

|K⃗| (meV) 0.013 — 0.033 0.047,0.045 0.047,0.045 0.018 0.102 0.199

|D⃗| (meV) — — 0.193 — 0.179,0.203 — — 0.224

Table B.2: IEI parameters by the magnetic force theorem within HI approx-
imation. The isotropic and anisotropic contributions are extracted from the estimated
IEI tensors by assuming the parametrization proposed in Eqs. 4.1 and 4.2.

Coming back to the main issue here, we have found out that the incorrect sign of the
isotropic term in the first NN exchange coupling cannot be attributed to an improper
choice of the exchange-correlation functional within the DFT framework or the U/JH
ratio. However, Refs. [62,71] claim that these systems require a more advanced treatment
of the X p orbitals. Indeed, one shows that the 1◦NN FM exchange coupling is not
governed by the standard 90◦-oriented Goodenough-Kanamori rule but a non-negligible
contribution from superexchange mechanisms involving higher-order hopping processes,
while the latter demonstrates that the incoming error may be ascribed to the exclusion
of X p orbitals from the wannierization step.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.1: Partial and total electronic DOS for all the CrX3 phases. The
first three plots (a)-(b)-(c) are referred to CrCl3, while the second (d)-(e)-(f) and third
triplets (g)-(h)-(i) respectively to CrBr3 and CrI3. From left to right instead we pass
from the rhombohedral and the monoclinic bulk phases to the trigonal MLs.

For example, if we include the Cl p orbitals into the localized basis for the CrCl3
rhombohedral bulk phase, the shape of the lowest-energy Cr d band is no longer featured
by a sharp peak, but rather it is broadened by the surrounding Cl p band as shown in Fig.
In order to restore the typical behaviour of ground-state peaks within HI approximation
the X p band is artificially shifted down in energy.
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(a) (b) (c)

Figure B.2: Partial DOS for bulk CrCl3 with shifted Cl p band. The plots in (a),
(b) and (c) differ by the size of the energy shift applied to the Cl p band, respectively
0, -1 eV and -5 eV.

The isotropic component of the resulting 1◦NN IEI tensors is reported in Tab. B.3,
but the agreement with the FM expectation does not improve. It even gets worse when
the quasi-atomic limit is restored by artificially shifting down the Cl p band.

∆Σp (eV) 0 -1 -5

J̄1 (meV) 7.673 9.429 15.86

Table B.3: 1◦NN isotropic exchange coupling as a function of ∆Σp for bulk
CrCl3.
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2023, Forschungszentrum Jülich. URL: https://juser.fz-juelich.de/record/
1018555, doi:{10.34734/FZJ-2023-04883}.

[10] John B. Goodenough. Theory of the Role of Covalence in the Perovskite-Type Man-
ganites [La,M(II)]MnO3. Physical Review, 100:564–573, Oct 1955. URL: https:
//link.aps.org/doi/10.1103/PhysRev.100.564, doi:{10.1103/PhysRev.100.

564}.

[11] John B. Goodenough. An interpretation of the magnetic proper-
ties of the perovskite-type mixed crystals La1-xSrxCoO3-λ. Jour-
nal of Physics and Chemistry of Solids, 6(2):287–297, 1958. URL:
https://www.sciencedirect.com/science/article/pii/0022369758901070,
doi:{https://doi.org/10.1016/0022-3697(58)90107-0}.

[12] Junjiro Kanamori. Superexchange interaction and symmetry properties of
electron orbitals. Journal of Physics and Chemistry of Solids, 10(2):87–
98, 1959. URL: https://www.sciencedirect.com/science/article/pii/

0022369759900617, doi:{https://doi.org/10.1016/0022-3697(59)90061-7}.

[13] I. Dzyaloshinskii. A thermodynamic theory of weak ferromagnetism of an-
tiferromagnetics. Journal of Physics and Chemistry of Solids, 4(4):241–
255, 1958. URL: https://www.sciencedirect.com/science/article/pii/

0022369758900763, doi:{https://doi.org/10.1016/0022-3697(58)90076-3}.

76

https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201808074
https://doi.org/10.1002/adma.201808074
https://doi.org/10.1038/s41586-018-0626-9
https://doi.org/10.1038/s41586-018-0626-9
https://doi.org/{10.1038/s41586-018-0626-9}
https://doi.org/10.1007/s12274-020-3021-4
https://doi.org/10.1007/s12274-020-3021-4
https://doi.org/{10.1007/s12274-020-3021-4}
https://juser.fz-juelich.de/record/1018555
https://juser.fz-juelich.de/record/1018555
https://doi.org/{10.34734/FZJ-2023-04883}
https://link.aps.org/doi/10.1103/PhysRev.100.564
https://link.aps.org/doi/10.1103/PhysRev.100.564
https://doi.org/{10.1103/PhysRev.100.564}
https://doi.org/{10.1103/PhysRev.100.564}
https://www.sciencedirect.com/science/article/pii/0022369758901070
https://doi.org/{https://doi.org/10.1016/0022-3697(58)90107-0}
https://www.sciencedirect.com/science/article/pii/0022369759900617
https://www.sciencedirect.com/science/article/pii/0022369759900617
https://doi.org/{https://doi.org/10.1016/0022-3697(59)90061-7}
https://www.sciencedirect.com/science/article/pii/0022369758900763
https://www.sciencedirect.com/science/article/pii/0022369758900763
https://doi.org/{https://doi.org/10.1016/0022-3697(58)90076-3}


[14] T. Moriya. Anisotropic superexchange interaction and weak ferromagnetism. Phys-
ical Review, 120:91–98, Oct 1960. URL: https://link.aps.org/doi/10.1103/
PhysRev.120.91, doi:{10.1103/PhysRev.120.91}.

[15] N. D. Mermin and H. Wagner. Absence of Ferromagnetism or Antiferromag-
netism in One- or Two-Dimensional Isotropic Heisenberg Models. Physical Review
Letters, 17:1133–1136, Nov 1966. URL: https://link.aps.org/doi/10.1103/

PhysRevLett.17.1133, doi:{10.1103/PhysRevLett.17.1133}.

[16] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review,
136:B864–B871, Nov 1964. URL: https://link.aps.org/doi/10.1103/PhysRev.
136.B864, doi:10.1103/PhysRev.136.B864.

[17] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Corre-
lation Effects. Physical Review, 140:A1133–A1138, Nov 1965. URL: https://link.
aps.org/doi/10.1103/PhysRev.140.A1133, doi:10.1103/PhysRev.140.A1133.

[18] G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-
metal-amorphous-semiconductor transition in germanium. Physical Review B, 49,
May 1994. doi:10.1103/PhysRevB.49.14251.
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[38] Garćıa-Palacios, JoséL. and Lázaro, Francisco J. Anisotropy effects on the non-
linear magnetic susceptibilities of superparamagnetic particles. Physical Review B,
55:1006–1010, Jan 1997. URL: https://link.aps.org/doi/10.1103/PhysRevB.
55.1006, doi:{10.1103/PhysRevB.55.1006}.

[39] L. Bergqvist O. Eriksson, A. Bergman and J. Hellsvik. Atomistic Spin Dynam-
ics: Foundations and Applications. Oxford University Press, 02 2017. URL:
https://doi.org/10.1093/oso/9780198788669.001.0001, doi:{10.1093/oso/

9780198788669.001.0001}.

[40] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller.
Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087–1092, 06 1953. URL: https://doi.org/10.1063/
1.1699114, arXiv:{https://pubs.aip.org/aip/jcp/article-pdf/21/6/1087/

18802390/1087\_1\_online.pdf}, doi:{10.1063/1.1699114}.

[41] B. Morosin and A. Narath. X-Ray Diffraction and Nuclear Quadrupole Resonance
Studies of Chromium Trichloride. J. Chem. Phys., 40, Apr 1964. doi:10.1063/1.
1725428.

79

https://doi.org/10.1103/PhysRevB.102.014457
https://doi.org/10.1103/PhysRevB.102.014457
https://doi.org/10.1103/PhysRevB.94.115117
https://doi.org/10.1103/PhysRevB.94.115117
https://doi.org/10.1016/j.commatsci.2023.112764
https://doi.org/10.1016/j.commatsci.2023.112764
https://dx.doi.org/10.1088/0953-8984/20/31/315203
https://dx.doi.org/10.1088/0953-8984/20/31/315203
https://doi.org/{10.1088/0953-8984/20/31/315203}
https://link.aps.org/doi/10.1103/PhysRevB.54.1019
https://link.aps.org/doi/10.1103/PhysRevB.54.1019
https://doi.org/{10.1103/PhysRevB.54.1019}
https://link.aps.org/doi/10.1103/PhysRevB.55.1006
https://link.aps.org/doi/10.1103/PhysRevB.55.1006
https://doi.org/{10.1103/PhysRevB.55.1006}
https://doi.org/10.1093/oso/9780198788669.001.0001
https://doi.org/{10.1093/oso/9780198788669.001.0001}
https://doi.org/{10.1093/oso/9780198788669.001.0001}
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://arxiv.org/abs/{https://pubs.aip.org/aip/jcp/article-pdf/21/6/1087/18802390/1087_1_online.pdf}
https://arxiv.org/abs/{https://pubs.aip.org/aip/jcp/article-pdf/21/6/1087/18802390/1087_1_online.pdf}
https://doi.org/{10.1063/1.1699114}
https://doi.org/10.1063/1.1725428
https://doi.org/10.1063/1.1725428


[42] S. Yang, X. Xu*, B. Han, P. Gu, R. Guzman, Y. Song, Z. Lin, P. Gao, W. Zhou,
J. Yang, Z. Chen, and Y. Ye. Controlling the 2D Magnetism of CrBr3 by van der
Waals Stacking Engineering. J. Am. Chem. Soc., 145, Dec 2023. doi:10.1021/

jacs.3c10777.

[43] M. A. McGuire, H. Dixit, V. R. Cooper and B. C. Sales. Coupling of Crystal
Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3. Chem.
Mat., 27, Dec 2015. doi:10.1021/cm504242t.

[44] K. Momma and F. Izumi. An integrated three-dimensional visualization system
VESTA using wxWidgets. Commission on Crystallographic Computing, IUCr
Newsletter, 7, Nov 2006.

[45] K. Momma and F. Izumi. Three-Dimensional Visualization in Powder Diffraction.
Solid State Phenomena, 130, 2007. doi:10.4028/www.scientific.net/SSP.130.

[46] K. Momma and F. Izumi. VESTA: a three-dimensional visualization system for
electronic and structural analysis. Journal of Applied Crystallography, 41, 2008.
doi:10.1107/S0021889808012016.

[47] K. Momma and F. Izumi. VESTA 3 for three-dimensional visualization of crystal,
volumetric and morphology data. Journal of Applied Crystallography, 44, 2011.
doi:10.1107/S0021889811038970.

[48] W. Chen, Z. Sun, Z. Wang, L. Gu, X. Xu, S. Wu and C. Gao . Direct
observation of van der waals stacking–dependent interlayer magnetism. Sci-
ence, 366(6468):983–987, 2019. URL: https://www.science.org/doi/abs/10.

1126/science.aav1937, arXiv:{https://www.science.org/doi/pdf/10.1126/

science.aav1937}, doi:{10.1126/science.aav1937}.

[49] S. Lu, D. Guo, Z. Cheng, Y. Guo, C. Wang, J. Deng, Y. Bai, C. Tian, L.
Zhou, Y. Shi, J. He, W. Ji and C. Zhang. Controllable dimensionality con-
version between 1d and 2d crcl3 magnetic nanostructures. Nature Communica-
tions, 14, 2023. URL: https://doi.org/10.1038/s41467-023-38175-4, doi:

{10.1038/s41467-023-38175-4}.

[50] I. Pollini. Electron correlations and hybridization in chromium compounds. Solid
State Communications, 106(8):549–554, 1998. URL: https://www.sciencedirect.
com/science/article/pii/S0038109898000349, doi:10.1016/S0038-1098(98)

00034-9.

[51] W. Zhang, Q. Qu, P. Zhu and C. Lam. Robust Intrinsic Ferromagnetism and Half
Semiconductivity in Stable Two-Dimensional Single-Layer Chromium Trihalides.
Journal of Materials Chemistry C, 3, Nov 2015. doi:10.1039/C5TC02840J.

80

https://doi.org/10.1021/jacs.3c10777
https://doi.org/10.1021/jacs.3c10777
https://doi.org/10.1021/cm504242t
https://doi.org/10.4028/www.scientific.net/SSP.130
https://doi.org/10.1107/S0021889808012016
https://doi.org/10.1107/S0021889811038970
https://www.science.org/doi/abs/10.1126/science.aav1937
https://www.science.org/doi/abs/10.1126/science.aav1937
https://arxiv.org/abs/{https://www.science.org/doi/pdf/10.1126/science.aav1937}
https://arxiv.org/abs/{https://www.science.org/doi/pdf/10.1126/science.aav1937}
https://doi.org/{10.1126/science.aav1937}
https://doi.org/10.1038/s41467-023-38175-4
https://doi.org/{10.1038/s41467-023-38175-4}
https://doi.org/{10.1038/s41467-023-38175-4}
https://www.sciencedirect.com/science/article/pii/S0038109898000349
https://www.sciencedirect.com/science/article/pii/S0038109898000349
https://doi.org/10.1016/S0038-1098(98)00034-9
https://doi.org/10.1016/S0038-1098(98)00034-9
https://doi.org/10.1039/C5TC02840J


[52] Tsubokawa Ichiro. On the magnetic properties of a crbr3 single crystal. Journal of
the Physical Society of Japan, 15(9):1664–1668, 1960. URL: https://doi.org/10.
1143/JPSJ.15.1664, arXiv:{https://doi.org/10.1143/JPSJ.15.1664}, doi:

{10.1143/JPSJ.15.1664}.

[53] Dillon, J. F., Jr. and Olson, C. E. Magnetization, resonance, and optical prop-
erties of the ferromagnet cri3. Journal of Applied Physics, 36(3):1259–1260, 03
1965. URL: https://doi.org/10.1063/1.1714194, arXiv:{https://pubs.aip.
org/aip/jap/article-pdf/36/3/1259/18334605/1259\_1\_online.pdf}, doi:

{10.1063/1.1714194}.

[54] J.W. Cable, M.K. Wilkinson, and E.O. Wollan. Neutron diffraction investigation of
antiferromagnetism in crcl3. Journal of Physics and Chemistry of Solids, 19(1):29–
34, 1961. URL: https://www.sciencedirect.com/science/article/pii/

0022369761900531, doi:{https://doi.org/10.1016/0022-3697(61)90053-1}.

[55] A. Bedoya-Pinto, J. Ji, A. K. Pandeya, P. Gargiani, M. Valvidares, P. Sessi,
J. M. Taylor, F. Radu, K. Chang and S. S. P. Parkin . Intrinsic 2D-XY
ferromagnetism in a van der Waals monolayer. Science, 374(6567):616–620,
2021. URL: https://www.science.org/doi/abs/10.1126/science.abd5146,
arXiv:{https://www.science.org/doi/pdf/10.1126/science.abd5146}, doi:

{10.1126/science.abd5146}.

[56] Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao and T. Yu. Direct Photo-
luminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3.
Nano Letters, 19(5):3138–3142, 2019. PMID: 30945874. URL: https://doi.

org/10.1021/acs.nanolett.9b00553, arXiv:{https://doi.org/10.1021/acs.

nanolett.9b00553}, doi:{10.1021/acs.nanolett.9b00553}.

[57] S. Jiang, L. Li, Z. Wang, K. F. Mak and J. Shan. Controlling magnetism in 2d cri3
by electrostatic doping. Nature Nanotechnology, 13:549–553, 2018. URL: https:
//doi.org/10.1038/s41565-018-0135-x, doi:{10.1038/s41565-018-0135-x}.

[58] John P. Perdew, Adrienn Ruzsinszky, Gábor I. Csonka, Oleg A. Vydrov, Gustavo E.
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