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Abstract

This thesis provides a moduli stabilisation mechanism for the Dark Dimension (DD)
scenario within the framework of type IIB superstring theory. The DD scenario is a
recent proposal which involves one large extra dimension with associated Kaluza-Klein
(KK) scale around the cosmological constant scale, a tower of light sterile neutrinos and
dark matter from massive KK gravitons. Realising a model with just one large extra
dimension out of the six extra dimensions of string theory requires an anisotropic moduli
stabilisation. This is achieved in the context of the type IIB Large Volume Scenario (LVS)
which allows to obtain a low Kaluza-Klein scale thanks to the fact that the Calabi-Yau
volume is exponentially large in string units. Anisotropy is realised by considering a
Calabi-Yau threefold which is a K3 fibration over a P1 base. The volume of the K3 fibre
is stabilised at relatively small values by perturbative corrections to the effective action,
in particular string loops and higher derivative effects. This leaves an exponentially
large volume of the 2-dimensional P1 base. Thanks to a hierarchical stabilisation of the
complex structure moduli, one can then ensure that the P1 is deformed into an elongated
cigar, leading to a model with just one large extra dimension. Interestingly, the desired
anisotropy and low KK scale can be obtained for natural choices of the microscopic
parameters.
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Chapter 1

Introduction

The last century has been, without any doubt, the most flourishing for physics. We have
seen the birth of Special Relativity (SR) and Quantum Mechanics (QM) . The former
has later been extended to General Relativity (GR), while SR and QM have been unified
into a single coherent structure called Quantum Field Theory (QFT), as illustrated in
Fig. 1.1. Since the 1960s, when QFT established itself as the best framework to describe
nature at the quantum level, a countless number of physicists has tried to unify GR and
QFT into a theory named quantum gravity (QG), but without any success. A QG theory
is in fact necessary whenever we want to describe regions of space where quantum and
gravitational effects are both non-negligible, such as the singularity of black holes or the
moments immediately after the Big Bang. The issue is that the ultra-violet divergencies
we meet when quantising gravity cannot be cured by the traditional renormalization
methods employed for other QFTs, pure QG is not finite at 2-loops [1] and with matter
coupling the divergences are already incurable at 1-loop [2]. Many ideas have since been
suggested to try and find a way around this issue, some remaining in a QFT context and
some changing paradigm completely.

This is where string theory comes into play. String theory, first proposed around
the 1960s as a theory to explain the strong nuclear interaction but later discarded and
replaced by QCD, came back to life in the middle of 1970s when people realized it
contained in the spectrum a massless spin 2 particle, the graviton, the quantum of the
gravitational interaction. On top of this the renormalization issues and UV divergencies
of standard quantum gravity are gone in string theory. A strong hint for this can be
found in the in the different structure between the Feynman diagrams of a QFT and the
stringy diagrams of string theory. As the name suggests, string theory is a theory where
the building blocks of nature are not point-like particles but rather strings, which can be
both open and closed, hence the corresponding Feynman diagrams will look as “tube”
diagrams. To exemplify this, and to explain the absence of UV divergencies, let us take
a one loop Feynman diagram and the corresponding tube diagram from string theory
as the one in Fig. 1.2. This diagram diverges in the UV in QG because the interaction
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Figure 1.1: Okun’s cube. Picture taken from [3].

Figure 1.2: One-loop Feynman diagram with interaction points p, q, r, s on the left and
the corresponding stringy diagram for closed strings on the right. Picture taken from
[4].

vertices are well defined and when p = q = r = s the propagators, which connect the
vertices, explode. In the stringy one instead there is no notion of interaction vertex and
hence we never reach the critical situation of p = q = r = s.

Since its dawn string theory has developed a lot, undergoing two “revolutions”, lead-
ing to five consistent superstring theories interrelated by several dualities. Despite being
different these show some common features, most importantly unbroken N = 1 super-
symmetry and the existence of extra dimensions. To be honest theN = 1 supersymmetry
is required by us as it is phenomenologically viable in the sense that is chiral and it brings
with itself properties that result incredibly useful when applied to other physical con-
texts, such as the Standard Model (SM), which, despite its success, is plagued by several
issues. Some examples, all solved by supersymmetry, are:
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• Incompleteness problems:

1. The SM does not describe the gauge coupling unification, while supersymme-
try achieves this.

2. The SM does not describe dark matter while supersymmetry gives a candidate
for it.

• Technical problems:

1. The SM cannot explain the measured value of the Higgs massmH ≃ 125 GeV.
A way out that does not require fine tuning is invoking a new symmetry such
as supersymmetry.

2. The SM cannot explain the origin of the Higgs potential while supersymmetry
provides a way to do that via radiative electroweak symmetry breaking.

3. The SM predicts a cosmological constant ΛSM ∼ M4
Pl while current measure-

ments yield Λ ∼ 10−122M4
Pl. Supersymmetry can help in this case but does

not solve the problem as it predicts ΛSUSY ∼ 10−60M4
Pl.

As we mentioned, the other common aspect of string theories is the existence of extra
dimensions, an idea that already traces back to the 1920s with the proposal, by Kaluza
and Klein, of a fifth dimension in order to unify gravity and electromagnetism. The
internal consistency of the theory sets the total number of dimensions to 10 but since we
observe only 4, 6 of them must be too small and compact to be detected by our current
technology. The observable low-energy data, which in the light of this argument belong to
an effective field theory, can then be derived by performing a compactification of the full
ten-dimensional theory on the six extra dimensions. It is at this point that we impose our
request on unbroken supersymmetry, that is we want to have N = 1 supersymmetry on
the 4D space surviving after the compactification. This greatly constrains the compact
six-dimensional manifold.

Extra dimensions have several other effects on the effective field theory, most notably
they give rise to a number of massless scalar particles called moduli. They represent a
flat direction of the scalar potential in field space. In order not to spoil the observed phe-
nomenology these particles must have a mass, so algorithms for moduli stabilisation, the
procedure by which moduli acquire a mass, have been proposed. These algorithms consist
in introducing correction to the scalar potential which mostly descend from corrections
to the Kähler potential and the superpotential, since these two completely determine the
scalar potential in N = 1 theories, in order to lift the flat direction. We shall see that
actually corrections are needed to stabilise only one class of moduli, the Kähler ones,
whereas all the others, the complex structure moduli and the axiodilaton, are stabilised
at tree level by the fluxes, which is just another word to describe gauge fields and their

7



field strengths. The Kähler moduli stabilisation is performed under specific assump-
tions, the most famous ones being the KKLT scenario and the LVS scenario. They are
quite different but the fundamental idea is the same: reach the stabilisation by targeting
regions of field space where we have good control over the known corrections and can
neglect the unknown ones.

This work is structured as follows:

• In Chapter 2 we review all the relevant background material. We start with bosonic
string theory as well as its supersymmetric extension, with particular attention
on type IIB superstring theory. We then investigate string compactifications, a
bridge between the four-dimensional spacetime we observe and the ten-dimensional
one predicted by superstring theory. Moreover, we discuss moduli stabilisation,
especially in the context of type IIB, a key aspect of any superstring theory in
order to have phenomenologically acceptable models.

• In Chapter 3 we present the main work of this thesis, an anisotropic moduli stabili-
sation mechanism for the dark dimension scenario. We first describe the Calabi-Yau
geometry which features a K3 fibration over a P1 base. Subsequently, we show how
perturbative corrections can fix the volume of the K3 fibre at small values and
the volume of the P1 fibre at large values. Finally we argue that the P1 can be
deformed into an elongated cigar via an appropriate stabilisation of the complex
structure moduli.

8



Chapter 2

String Theory and its Low-Energy
Limit

1 Bosonic String Theory and Superstring Theory

As was already mentioned in the introduction, string theory is able to unify in a very
natural way general relativity and quantum field theory. To understand why that is the
case we will start by reviewing bosonic string theory and in doing so we will meet its
drawbacks, which will lead us to superstring theory. We refer to the books [4, 5, 6, 7, 8].

1.1 Bosonic String Theory

The main idea of string theory is that the building blocks of nature aren’t actually point-
like particles, but rather one-dimensional objects, strings indeed, that can be either open
or closed. This simple idea makes the graviton emerge in the spectrum upon quantisation.
In order to understand why we first need to perform a classical analysis.

Classical Theory

As a point-like particle sweeps a one-dimensional trajectory while moving in spacetime,
the worldline, a one-dimensional string sweeps a two-dimensional surface, called world-
sheet. For this reason, while a point particle in a D-dimensional spacetime can be
described through D functions of the worldline parameter, Xµ(τ), µ = 0, . . . , D − 1,
for a string we need two parameters: Xµ(τ, σ), µ = 0, . . . , D − 1. These maps from
the worldsheet Σ to the (Minkowski) spacetime Xµ : Σ → R1,D−1 are called embedding
functions and are usually denoted just as Xµ(σa), with σa = τ, σ and the index taking
the values a = 0, 1.
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Figure 2.1: Worldsheet of an open (left) and a closed (right) string. Picture taken from
[9].

The dynamics of a string are described by the Nambu-Goto action:

SNG = −T
∫
dA. (1.1)

Where dA is the world-sheet area element:

dA =
√

−det (∂aXµ∂bXνηµν) d
2σ. (1.2)

With d2σ = dσdτ .

The action (1.2) is just the stringy extension of the relativistic point particle action:

S = −m
∫
ds, ds =

√
−∂X

µ

∂τ

∂Xν

∂τ
ηµν . (1.3)

As in the case of the point particle, also for strings it is preferable to get rid of the square
root appearing in (1.2). For this reason we introduce an auxiliary field, the worldsheet
metric hab(σ

a), in order to get Polyakov action:

SP = −T
2

∫
Σ

d2σ
√
−hhab∂aXµ∂bXµ. (1.4)
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Where h = det(hab), and T is the tension of the string. The latter can also be expressed
as T = (2πα′)−1, with α′ the Regge slope parameter, which is related to the string length
via ℓ2s = (2π)2α′.

The action (1.4) enjoys several symmetries:

• Poincaré invariance, that is invariance under SO(1, D − 1):

X ′µ(τ, σ) = Λµ
νX

ν(τ, σ) + aµ,

h′ab(τ, σ) = hab(τ, σ).
(1.5)

Where Λ ∈ SO(1, D − 1) and aµ is constant.

• Reparametrization invariance, that is invariance under a diffeomorphism mapping
the old world-sheet coordinates σa into new ones σ′a(τ, σ):

X ′µ(τ ′, σ′) = Xµ(τ, σ),

∂σ′c

∂σa

∂σ′d

∂σb
h′cd(τ

′, σ′) = hab(τ, σ).
(1.6)

• Two-dimensional Weyl invariance, that is a rescaling of the world-sheet metric:

X ′µ(τ ′, σ′) = Xµ(τ, σ),

h′ab(τ, σ) = e2ω(τ,σ) hab(τ, σ).
(1.7)

Where ω(τ, σ) is an arbitrary function of the worldsheet coordinates.

The reparametrization symmetry, together with the Weyl symmetry, allows us to gauge
fix all three degrees of freedom of the world-sheet metric and set it equal to the (2D)
Minkowski metric ηab = diag(−,+). However this is only possible when the world-sheet
has vanishing Euler characteristic [10].
Furthermore, the Weyl symmetry also implies tracelessness of the energy momentum
tensor T a

a = 0. Not only, by the equation of motion for hab one finds the whole energy
momentum tensor vanishes Tab = Tba = 0.

Tab ≡
−2

T

1√
−h

δS

δhab
(1.8)

= ∂aX
µ∂bXµ −

1

2
habh

cd∂cX
µ∂dXµ0 = 0. (1.9)

All these properties of the energy momentum tensor descend from the worldsheet con-
formal symmetry enjoyed by the theory and will be crucial for the quantisation.
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Let us assume we can set hab = ηab in (1.4), then we can derive the equation of motion
for Xµ:

∂a∂
aXµ = (∂2σ − ∂2τ )X

µ = 0. (1.10)

To ensure stationarity of (1.4) under Xµ → X ′µ = Xµ + δXµ the equation of motion is
not enough, we must require the vanishing of the boundary term, given by:

−T
∫
dτ [X ′

µδX
µ|σ=π −X ′

µδX
µ|σ=0] . (1.11)

The choice that makes (1.11) vanish is not unique:

• In the case of closed strings we require the embedding functions to be periodic:

Xµ(τ, σ) = Xµ = (τ, σ + π). (1.12)

• In the case of open strings we can impose either Neumann or Dirichlet boundary
conditions.

1. Neumann boundary conditions (NC) represent the case where no momentum
is flowing through the ends of the strings:

X ′
µ(τ, σ) = 0, σ = 0, π. (1.13)

Poincaré invariance is satisfied if such a choice is made for all µ = 0, . . . D−1.

2. Dirichlet boundary conditions (DC) represent the case where the ends of the
string are fixed:

δXµ(τ, σ) = 0, σ = 0, π. (1.14)

These conditions break Lorentz invariance so they might seem not physically
sensible, but there are cases where they are unavoidable. More details can be
found in the Appendix B.
The current interpretation is that the ends of the string lie on a hyperplane
called D-brane, short for Dirichlet-membrane. These objects turn out to be
fundamental in string theory and even more in superstring theory, as they are
necessary for the theory to be consistent at non perturbative level.

It is not mandatory to have only one type of boundary condition for open strings,
there might be circumstances where we have DC for µ = 1, . . . , D− p− 1 and NC
for the remaining p+ 1 coordinates.

We can now focus on solving (1.10). To do that it is convenient to introduce the light-
cone coordinates σ± = τ ±σ. This implies that derivatives ∂τ and ∂σ are now mixed and
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the metric is not diagonal anymore:

∂± =
1

2
(∂τ ± ∂σ) ,

η =− 1

2

(
0 1
1 0

)
.

(1.15)

Consequently also (1.10) changes and now looks like:

∂+∂−X
µ = 0. (1.16)

The energy momentum tensor (1.9) changes too. The vanishing of its trace reads as
T+− = T−+ = 0 and its own vanishing reads as:

T++ = ∂+X
µ∂+Xµ = 0,

T−− = ∂−X
µ∂−Xµ = 0.

(1.17)

The general solution of (1.16) is:

Xµ(σ+, σ−) = Xµ
L(σ

+) +Xµ
R(σ

−). (1.18)

Where Xµ
L and Xµ

R are the left moving and right moving parts of Xµ respectively.

To enforce the constraints (1.17) it is useful to expand (1.18) in Fourier modes. This will
also allow us to perform the quantisation canonically, that is by quantising the oscillator
modes. Once again we need to distinguish between open and closed strings.

• Closed strings.
In the case of closed strings we have a periodicity constraint on Xµ (1.12). The
Fourier expansion reads as:

Xµ
R =

1

2
xµ + α′pµσ

− + i

√
α′

2

∑
n∈Z,n ̸=0

1

n
αµ
ne

−2inσ−
, (1.19)

Xµ
L =

1

2
xµ + α′pµσ

+ + i

√
α′

2

∑
n∈Z,n ̸=0

1

n
α̃µ
ne

−2inσ+

. (1.20)

Where xµ and pµ are the centre of mass and momentum of the string respectively.
The α and α̃ modes are unrelated. By requiring reality of Xµ

L and Xµ
R it follows

that both xµ and pµ must be real and that the positive and negative oscillators are
conjugate of each other:

αµ
−n = (αµ

n)
∗ , α̃µ

−n = (α̃µ
n)

∗ . (1.21)

Furthermore (1.12) is satisfied only if:

αµ
0 = α̃µ

0 ≡
√
α′

2
pµ (1.22)
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• For open string we can have Neumann, Dirichlet or Neumann-Dirichlet boundary
conditions:

1. For Neumann conditions we have:

Xµ(τ, σ) = xµ + 2α′pµτ + i
√
2α′

∑
n∈Z,n ̸=0

1

n
αµ
ne

−iπτ cos (nσ). (1.23)

With αµ
0 =

√
2α′pµ.

2. For Dirichlet conditions have:

Xµ(τ, σ) = xµ0 +
xµ1 − xµ0

π
σ + i

√
2α′

∑
n∈Z,n̸=0

1

n
αµ
ne

−iπτ sin (nσ). (1.24)

With xµ0 = Xµ(τ, σ = 0), xµ1 = Xµ(τ, σ = π) and αµ
0 = 1√

2α′π
(xµ1 − xµ0), .

3. For Neumann-Dirichlet conditions we have:

Xµ(τ, σ) = xµ + i
√
2α′

∑
n∈Z+ 1

2

1

n
αµ
ne

−iπτ cos (nσ). (1.25)

The reality conditions are as in the case of the closed string. The main difference between
the two possibilities is that for open strings we have just one type of oscillator mode.
Indeed, while for closed string the left and right moving waves are independent, for
open strings they combine into a stationary wave. This fact will have an important
consequence on the spectrum of the theory.

Plugging the expansions (1.19) and (1.20) into (1.17) we can expand also the energy
momentum tensor:

T−− = 4α′
∑
m∈Z

Lme
−2inσ−

, (1.26)

T++ = 4α′
∑
m∈Z

L̃me
−2inσ+

. (1.27)

Where we introduced the Virasoro generators:

Lm =
1

2

∑
n∈Z

αm−n · αn,

L̃m =
1

2

∑
n∈Z

α̃m−n · α̃n.
(1.28)

These generators classically obey a Witt algebra, but quantisation will change things.
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The vanishing of the energy momentum tensor (1.17) implies that the Virasoro modes

(1.28) should vanish, Lm = L̃m = 0 ∀m ∈ Z. In particular, the condition L0 = L̃0 = 0
allows us to express the (classical) mass of the string in terms of the oscillator modes as:

M2 =
1

α′

∞∑
n=1

α−nαn for open strings,

M2 =
2

α′

∞∑
n=1

α−nαn + α̃−nα̃n for closed strings.

(1.29)

Canonical Quantisation

We are now ready to quantise the bosonic theory. There are different ways to achieve
this goal, we will follow the old covariant quantisation (OCQ) method, that consists in
promoting the Fourier modes to quantum operators and impose the constraints on the
states. A more advanced approach is based on BRST symmetry, but since the final result
is the same, we will limit ourselves with OCQ since it does not require to introduce the
BRST machinery.

Since OCQ is a canonical approach, we need to compute Πµ ≡ δS/δẊµ = TẊµ and find
the Poisson brackets for all the combinations of Πµ and Xµ (at equal τ). They are all
vanishing except for:

[P µ(τ, σ), Xν(τ, σ′)]PB = ηµνδ(σ − σ′). (1.30)

Plugging the expansion (1.19) and (1.20) into (1.30) we can find the Poisson brackets
for the modes α and α̃. Of course in the case for the open strings we only have the
set of modes α. Then we perform the replacement [. . . ]PB → −i[. . . ] and read off the
commutation relations for α and α̃:

[αµ
m, α

ν
n] = [α̃µ

m, α̃
ν
n] = mηµνδm+n,0,

[αµ
m, α̃

ν
n] =0.

(1.31)

Since we promoted the α and α̃ modes to operators, their reality condition (1.21) now
reads as:

αµ
−n = (αµ

n)
† and α̃µ

−n = (α̃µ
n)

† . (1.32)

Up to a redefinition of the modes, (1.31) describes the algebra of creation/annihilation
operators of a harmonic oscillator. Therefore we can construct the spectrum just by
acting with raising operators on the ground state. However the presence of ηµν poses
an obstacle: for µ = ν = 0 (1.31) is negative, implying the existence of negative norm
states. Their presence indicates that the theory violates causality and unitarity. A
specific choice of the spacetime dimension and of a constant (yet to be introduced) will
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solve this issue.

Since the α (and α̃) modes have been promoted to operators, we need to consider again
the expression of the Virasoro generators (1.28). In particular we want the product
αm−n · αn to be normal ordered:

Lm =
1

2

∑
n∈Z

: αm−n · αn : . (1.33)

The same redefinition also holds for L̃m.

Using (1.31) and (1.33) one can check the Virasoro modes do not satisfy anymore a Witt
algebra, but rather its central extension, called Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (1.34)

Where c = D is the central charge.
Moreover, due to (1.32), also (1.33) satisfies a reality condition, namely:

L−m = (Lm)
† . (1.35)

Going back to (1.33) we can see that the only operator needing normal ordering is L0.
This introduces a normal ordering constant, the one mentioned above, that we denote
by a. It follows that the classical constraint L0 = L̃0 = 0, upon quantisation, is updated
to L0 − a = L̃0 − a = 0, whereas is still holds that Lm = 0 for m > 0. Of course these
equalities must now be understood as operator equations, that is, given a physical state
|ϕ⟩:

(L0 − a)|ϕ⟩ = (L̃0 − a)|ϕ⟩ = 0,

Lm|ϕ⟩ = L̃m|ϕ⟩ = 0 for m > 0.
(1.36)

The operator L̃0 carries the same constant a as L0. This is a consequence of the absence
of gravitational anomalies on the worldsheet, which sets a = ã. Otherwise the diffeo-
morphism symmetry would be broken at the quantum level.

Taking the difference of the two members of (1.36) yields a level matching condition:

L0 = L̃0. (1.37)

Furthermore, the constant a also changes the mass formulas (1.29):

M2 =
1

α′ (N − a) for open strings,

M2 =
4

α′ (N + Ñ − 2a) for closed strings.
(1.38)
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Where we introduced the number operator:

N =
∑
n>0

α−n · αn. (1.39)

Ñ is defined analogously by replacing α → α̃.

As we mentioned above, imposing the absence of negative norm state fixes a and D.
To actually compute them we first define spurious states. A state |ψ⟩ is spurious if it
satisfies (L0 − a)|ψ⟩ = 0 and is orthogonal to all physical states, as we defined them in
(1.36), so ⟨ϕ|ψ⟩ = 0. Such states can always be written in the form:

|ψ⟩ =
∞∑
n=1

L−n|χn⟩. (1.40)

With |χn⟩ such that
(L0 − a+ n)|χn⟩ = 0. (1.41)

Actually, due to the Virasoro algebra (1.34), we can truncate the series (1.40) at n = 2.

If a state defined as (1.40) is also physical, namely it satisfies the further condition
Lm|ψ⟩ = 0 for m > 0 on top of the other ones, then it is orthogonal not only to other
physical states but also to itself. We refer to such states as null states. Despite being
physical in the sense of (1.36), these states are unphysical because they decouple from
physical processes. This can also be phrased as the Hilbert space of our theory being
H = Hphysical/Hnull.
We can build null states starting from spurious ones of the form:

|ψ⟩ = L−1|χ⟩ (1.42)

With |χ⟩ a physical state obeying (1.41) with n = 1.

The state (1.42), on top of being spurious, satisfies the physical condition (1.32), except
for the mode L1. For this reason we require:

L1|ψ⟩ = L1L−1|χ⟩ = 2(a− 1)|χ⟩ !
= 0. (1.43)

This fixes a = 1.
We can now fix the number of spacetime dimensions D by choosing another class of
spurious states and following the same route as above. This yields D = 26. With such
choices for a and D, the physical spectrum has no negative norm states.

Having the values of a and D at hand we can finally determine the spectrum of the
theory from (1.38). We will limit ourselves to the first few levels only.
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• For open strings we can construct excited states by acting on the ground state,
which we denote as |0; k⟩, with the operator αµ

n with n < 0.

1. At N = 0 we have the ground state with mass α′M2 = −1. Such a state is
called a tachyon.

2. At N = 1 we have the vector αµ
−1|0; k⟩ with mass α′M2 = 0. It is a photon-like

state. Since it is massless it forms a vector representation of SO(24).

• For closed strings we can construct excited states by acting on the ground state,
which we denote again as |0; k⟩, with the operator product αµ

n α̃
ν
n with n < 0. Notice

that, for each level, we must haveN = Ñ due to the level matching condition (1.37).

1. At N = Ñ = 0 we have the tachyonic ground state with mass α′M2 = −4.

2. A N = Ñ = 1 we have the tensor αµ
−1α̃

ν
−1|0; k⟩ with mass α′M2 = 0. Since it is

massless it forms a tensor representation of SO(24) which can be decomposed
into three irreducible representations:

– A traceless symmetric rank 2 tensor, which we denote by gµν . It is the
graviton.

– An antisymmetric rank 2 tensor, which we denote by Bµν . It is the Kalb-
Ramond field.

– A scalar, which we denote by Φ. It is the dilaton.

The Dilaton and the String Coupling

We close the paragraph on bosonic string theory with some comments on the fundamental
role of the dilaton.

Let us start from the path integral associated to the Polyakov action (1.4):∫
DXDg e−S. (1.44)

The Minkowskian world-sheet metric hab entering (1.4) has been replaced here by a
Euclidean one, so with signature (+,+). In this way the path integral over the metrics
is better defined and the traditional factor of exp (iS) is replaced by exp (−S).

The path integral (1.44) tells us how to sum over all the possible metrics, but we should
also take into account the possible different worldsheet topologies. Indeed, if we think to
the standard Feynman path integral, we have a sum over all the possible “histories” of
a particle and the factor exp (iS/ℏ) acts as a weight for each history. In the string case
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also the worldsheet topology plays a role in this history. This means that the action S
entering (1.44) cannot just be the Polyakov action. Rather we have:

S = SP + λχ

=
1

4πα′

∫
Σ

d2σ
√
hhab∂aX

µ∂bXµ +
λ

4π

∫
Σ

d2σ
√
hR.

(1.45)

Where λ is a real number and χ is the Euler characteristic, in this case of the worldsheet,
which we expressed in the second line via the Gauss-Bonnet theorem, with R the Ricci
scalar. In principle there would also be a boundary term

∫
∂Σ

but it is convention to
neglect it by considering closed strings’ worldsheets, which indeed have no boundary. It
is a good guess as χ is a topological invariant, hence it will only distinguish worldsheets
with different topologies. Furthermore such a term is also allowed by the symmetries of
the theory.

In two dimensions, as on a worldsheet, the λχ term of (1.45) is purely topological hence
it does not add any dynamics. Instead the resulting factor of exp (−λχ) will only act as
a weight for the different topologies, which is exactly what we wanted. To understand
the physical effect of this consider adding a handle to the worldsheet of a closed string,
which physically corresponds to the emission and absorption of a closed string. Then, in
light of the relation χ = 2 − 2g, where the genus g can be thought of as the number of
handles roughly speaking, we have that χ is reduced by 2 and hence a factor of exp (2λ)
is added in the path integral. We can construct a similar example also for open strings
where we add a strip to the worldsheet, corresponding to the emission and absorption of
an open string. In this case a factor of exp (λ/2) is added to the path integral. Therefore
we can give the interpretation of this factor in terms of coupling constant:

g2o ∼ gc ∼ eλ. (1.46)

We can finally come back to the dilaton. In particular we are interested to the string
coupling to the dilaton as a background field. The action describing this coupling is:

SΦ =
1

4π

∫
Σ

d2σ
√
hRΦ(X). (1.47)

This action would actually be part of a larger one including the coupling to the other
massless fields of the spectrum, which also act as backgrounds, namely the graviton and
the Kalb-Ramond field.

The action (1.47) is not invariant under Weyl transformations unless Φ is constant ⟨Φ⟩.
Under this assumption it is easy to notice that (1.47) is nothing but the λχ term of
(1.45) where ⟨Φ⟩ plays the role of λ. This tells us that different values of λ correspond
to different values of the background field.
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Finally, in light of (1.46), we understand that the string coupling is not an independent
parameter, but rather the expectation value of a field:

gs ≡ gc = e⟨Φ⟩. (1.48)

This is one of the distinctive aspects of string theory with respect to the more traditional
field theory approaches where we can find “free” constants not determined by the theory
itself.

1.2 Superstring Theory

If, on one hand, bosonic string theory is a good candidate for quantum gravity as it
contains the graviton in its spectrum, on the other hand it is plagued by two main
issues:

• The spectrum contains tachyons. Any theory containing such particles are un-
physical because tachyons represent an instability of the vacuum. They sit on a
maximum of the potential rather than a minimum.

• It does not contain fermions. Indeed only bosons arose in our spectrum and it
cannot be otherwise since the operators α, α̃ are vectors which always act on bosonic
states.

Both these problems can be solved by the introduction of supersymmetry in the theory.
There are two approaches to achieve such goal:

• The Ramond-Neveu-Schwarz (RNS) formalism, which is supersymmetric on the
worldsheet.

• The Green-Schwarz (GS) formalism, which is supersymmetric in the spacetime.

These two approaches are equivalent, for this reason we choose to follow the first.
As in the bosonic case, before we can look at the spectrum we need a classical analysis.

Classical Theory

In order to realize a theory which is supersymmetric on the worldsheet we first introduce
fermions and then check that supersymmetry is satisfied. We start from the Polyakov
action (1.4), with hab = ηab, and just add to it a Dirac action term for D massless
free fermions ψµ(τ, σ). These are classically anticommuting two-component Majorana
spinors on the worldsheet and vectors in the D-dimensional spacetime. Setting T = 1/π:

S =
1

2π

∫
d2σ(∂aX

µ∂aXµ + ψ̄µρa∂aψµ). (1.49)
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Where ψ̄ = ψ†iρ0 is the Dirac conjugate of ψ and ρa, a = 0, 1, are two-dimensional Dirac
matrices obeying to the Clifford algebra:

{ρa, ρb} = 2ηab. (1.50)

The action (1.49) is invariant under the supersymmetry transformations:

δXµ = ε̄ψµ,

δψµ = ρa∂aX
µε.

(1.51)

Where ε, the supersymmetry parameter, is a two-component Majorana spinor.

To deal with the mode expansion, which we will discuss later, it is convenient to actually
work with the components of the spinors ψµ, which we denote by ψµ

A with A = +,− the
spinor index:

ψµ =

(
ψµ
−

ψµ
+

)
. (1.52)

Plugging (1.52) into (1.49) and not displaying the Lorentz indices for simplicity, we get
for the fermionic part only:

Sf =
i

π

∫
d2σ(ψ−∂+ψ− + ψ+∂−ψ+). (1.53)

Where ∂± = 1
2
(∂0 ± ∂1) and we chose to represent the Dirac matrices as:

ρ0 =

(
0 −1
1 0

)
, ρ1 =

(
0 1
1 0

)
. (1.54)

It follows from (1.53) that the equation of motion for the spinor now are:

∂+ψ− = 0, ∂−ψ+ = 0. (1.55)

These are two-dimensional Weyl equations, which means that the spinors ψ± are Majorana-
Weyl spinors.

We can now proceed in complete analogy with the bosonic case. We will derive, starting
from the action (1.53), the Fourier expansion of the fields and canonically quantise their
modes to find the spectrum and, like in the bosonic case, we will find negative norm
states that can be removed by imposing super-Virasoro constraints. This is due to the
superconformal symmetry enjoyed by the RNS string, the supersymmetric extension of
the conformal symmetry we have in the bosonic theory. For this reason we first need to
find the conserved currents of the action (1.53). These currents are the energy momen-
tum tensor Tab and the supercurrent JAa, coming from supersymmetry. We use light-cone
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coordinates so a, b = +,−. Their non-vanishing components are:

T++ = ∂+X
µ∂+Xµ +

i

2
ψµ
+∂+ψ+µ,

T−− = ∂−X
µ∂−Xµ +

i

2
ψµ
−∂−ψ−µ.

(1.56)

And:
J+ = ψµ

+∂+Xµ,

J− = ψµ
−∂−Xµ.

(1.57)

Where we renamed the non-vanishing spinor component of J+A and J−A just J+ and J−
respectively. Their conservation follows from the equations of motion (1.16) and (1.55)
and their modes are the super-Virasoro generators, as we shall see later.

In order to understand the super-Virasoro constraints associated to these currents we
need to impose equal τ anticommutation relations on the fermions ψµ

±:

{ψµ
A(τ, σ), ψ

ν
B(τ, σ

′)} = πηµνδABδ(σ − σ′). (1.58)

These relations hold together with the Xµ commutation relation (1.30) and, just like
those ones, they are negative for µ = ν = 0. This means there are negative-norm states
in the spectrum, which must be removed to have a physical theory. In the bosonic theory
this was done using the Virasoro constraints T++ = T−− = 0, therefore we are now led
to the super-Virasoro constraints:

T++ = T−− = J+ = J− = 0. (1.59)

It is important to notice that we are basically postulating (1.59). In fact these can be
obtained in the same way we derived the standard Virasoro constraints (1.17), however
the discussion is much more complicated.

We are now ready to consider the boundary conditions we need to impose on the super-
string and the consequent mode expansions. We will focus only on the fermionic part of
(1.49), as for the bosonic part things work out like in the Section 1.1.
The variation of (1.53) leaves the boundary terms:

δS =

∫
dτ (ψ+δψ+ − ψ−δψ−) |σ=π − (ψ+δψ+ − ψ−δψ−) |σ=0. (1.60)

We want the action to be stationary, so (1.60) must be zero. This is ensured by an
appropriate choice of boundary conditions and, as for bosonic strings, such choice is not
unique. As usual we distinguish between open and closed strings:
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• For open strings (1.60) is zero if at both ends of the string it holds that:

ψµ
± = ±ψµ

±. (1.61)

The sign choice is just a matter of convention for one of the ends. This means we
are free to choose for instance ψµ

+|σ=0 = ψµ
−|σ=0, but now the sign choice at the

other end is relevant and there are two possibilities:

1. Ramond boundary conditions, corresponding to ψµ
+|σ=π = ψµ

−|σ=π, which lead
to fermions in the spectrum. Such a choice implies the following mode expan-
sion:

ψµ
+(τ, σ) =

1√
2

∑
n∈Z

dµne
−in(τ+σ),

ψµ
−(τ, σ) =

1√
2

∑
n∈Z

dµne
−in(τ−σ).

(1.62)

2. Neveu-Schwarz boundary conditions, corresponding to ψµ
+|σ=π = −ψµ

−|σ=π,
which lead to bosons in the spectrum. Such a choice implies the following
mode expansion:

ψµ
+(τ, σ) =

1√
2

∑
r∈Z+1/2

bµr e
−ir(τ+σ),

ψµ
−(τ, σ) =

1√
2

∑
r∈Z+1/2

bµr e
−ir(τ−σ).

(1.63)

• For closed strings (1.60) is zero if an (anti)periodicity condition holds:

ψµ
±(τ, σ) = ±ψµ

±(τ, σ + π). (1.64)

As in the bosonic case, for closed strings we have a left and a right moving sector and
we can impose the periodicity (Ramond) or the antiperiodicity (Neveu-Schwarz)
separately on them. This means that, for the right moving waves, we can have
either:

ψµ
−(τ, σ) =

∑
n∈Z

dµne
−2in(τ−σ), or ψµ

−(τ, σ) =
∑

r∈Z+1/2

bµr e
−2ir(τ−σ). (1.65)

And similarly for the left moving waves, we can have either:

ψµ
+(τ, σ) =

∑
n∈Z

d̃µne
−2in(τ+σ), or ψµ

+(τ, σ) =
∑

r∈Z+1/2

b̃µr e
−2ir(τ+σ). (1.66)

Hence there are four possible combinations of left and right moving waves. To
these correspond four different sectors: (NS, NS), (R,R), (NS, R), (R, NS). The
first two lead to bosons in the spectrum, while the last two to fermions.
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Canonical Quantisation

We can now move on to the canonical quantisation of the superstring. Plugging the
expansions (1.62) and (1.63) into (1.58) (or (1.65) and (1.66) in the case of closed strings)
we find the anticommutation relations for the modes dµn and bµr :

{dµm, dνn} = ηµνδm+n,0 and {bµr , bνs} = ηµνδr+s,0. (1.67)

These relations exist on top of the bosonic ones (1.31) and, as we anticipated, are negative
in the time component. Once again, an appropriate choice of the number of the spacetime
dimensions and of a normal ordering constant will remove the negative norm states.

The algebra (1.67), together with (1.31) tells us that we can build excited states applying
the creation operators αm, dm and br (with m, r < 0) on the ground state. As usual the
ground state is defined as the state annihilated by all destruction operators, however we
need to pay attention to the sector we are considering. In fact we have:

αµ
m|0⟩R = dµm|0⟩R = 0, m > 0 in the R sector, (1.68)

αµ
m|0⟩NS = bµr |0⟩NS = 0, m, r > 0 in the NS sector. (1.69)

The ground state (1.69) is unique and corresponds to a spin 0 state, but the ground
state (1.68) is not. In fact the action of the operators dµ0 does not change the mass of a
state since they commute with the number operator (to be defined later). To understand
what kind of particle does (1.68) describe we need to start from the algebra (1.67), which
gives us that {dµ0 , dν0} = ηµν . This is, up to a factor of 2, the Clifford algebra (1.50).
For this reason the R sector ground state, or to be more precise, the set of degenerate
ground states, which we denote by |a⟩, must form an irreducible representation of (1.50).
Representation theory of Clifford algebras tells us that its irreducible representations
correspond to spinors of Spin(1, 9), the double cover of SO(1, 9). This implies that |a⟩
is a spacetime fermion and satisfies

dµ0 |a⟩ =
1√
2
Γµ
ba|b⟩. (1.70)

Where a, b are spinor indices.
Higher states in the R sector can be built by acting on (1.68) with the creation operators
αµ
m and dµm with m < 0, which are vectors. Hence the R sector contains fermions only.

As we anticipated, the modes of the conserved currents are the generators of the super-
Virasoro algebra and we are now ready to see their expression. The generators associated
to the energy momentum tensor are still the Virasoro generators and they now receive
two contributions, one from the bosonic modes and one from the fermionic modes. The
former still have the same structure as in bosonic string theory (1.33), the latter depends
on the sector we are working in, as well as the supercurrent modes. Suppressing the
Lorentz index for simplicity these are:
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• NS sector:

L(f)
m =

1

2

∑
r∈Z+1/2

(
r +

m

2

)
: b−r · bm+r : m ∈ Z. (1.71)

And for the supercurrent:

Gr =
∑
n∈Z

α−n · br+n r ∈ Z+
1

2
. (1.72)

No normal ordering since the α and b modes commute.

• R sector:

L(f)
m =

1

2

∑
n∈Z

(
n+

m

2

)
: d−n · dn+m : m ∈ Z. (1.73)

And for the supercurrent:

Fm =
∑
n∈Z

α−n · dm+n m ∈ Z. (1.74)

No normal ordering since the α and d modes commute.

The algebra satisfied by these generators is the super-Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n,0,

[Lm, Gr] =
(m
2
− r
)
Gm+r,

{Gr, Gs} = 2Lr+s +B(m)δr+s,0.

(1.75)

Where c = 3D/2 is the central charge and we define:

A(m)NS ≡ c

12
m(m2 − 1),

B(m)NS ≡ c

3

(
r2 − 1

4

)
.

(1.76)

Actually (1.75) is the algebra for the NS sector only, with m,n ∈ Z and r, s ∈ Z + 1/2.
The R sector algebra is identical to this one upon replacing Gr → Fm,m ∈ Z and (1.76)
with:

A(m)R ≡ c

12
m3,

B(m)R ≡ c

3
m2

(1.77)

This mismatch between (1.76) and (1.77) can be removed by a redefinition of L0 by a
constant.

The physical state condition (1.36) is extended to include the new modes now. Given a
physical state |ϕ⟩ we have
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• NS sector:

(L0 − aNS)|ϕ⟩ = 0,

Lm|ϕ⟩ = 0 m > 0,

Gr|ϕ⟩ = 0 r > 0.

(1.78)

• R sector:

(L0 − aR)|ϕ⟩ = 0,

Lm|ϕ⟩ = 0 m > 0,

Fn|ϕ⟩ = 0 n ≥ 0.

(1.79)

Where we tacitly assumed n,m ∈ Z and r ∈ Z + 1/2 and we will continue to do so for
the rest of this section. We also introduced normal ordering constants aNS, aR due to
the normal ordering of L0. However aR = 0 due to L0 = F 2

0 and aNS = 1/2 by requiring
that zero-norm spurious states, as we defined them in (1.40), are physical in the sense
of (1.78). Continuing along these lines we can also fix the spacetime dimension D = 10,
both in the NS and R sector.
As an example let us see the case of aNS. We start from an NS sector state defined as:

|ψ⟩ ≡ G−1/2|χ⟩. (1.80)

With |χ⟩ such that:

G1/2|χ⟩ = G3/2|χ⟩ =
(
L0 − aNS +

1

2

)
|χ⟩ ≡ 0. (1.81)

We want |ψ⟩ to be physical, i.e. it must satisfy (1.78). The condition (L0 − aNS)|ψ⟩ = 0
directly follows from the last equality of (1.81), so we just need G1/2|ψ⟩ = G3/2|ψ⟩ = 0,
but also the latter of these two directly follows from (1.81). Thus we are only left with:

G1/2|ψ⟩ = G1/2G−1/2|χ⟩ = (2aNS − 1)|χ⟩. (1.82)

Where we used the algebra (1.75) and (1.81). Therefore (1.82) is zero if aNS = 1/2.

Spectrum

With the normal ordering constant at our disposal in both sectors we can now express
the mass as we did in the bosonic case α′M2 = N −a, or a “double copy” of it for closed
strings in order to account for all four combinations of sectors. Of course the number
operator N is not anymore (1.39) as it needs to count fermionic modes too:

NNS =
∑
n>0

α−nµ · αµ
n +

∑
r>0

rb−rµ · bµr −
1

2
,

NR =
∑
n>0

(α−nµ · αµ
n + nd−nµ · dµn) .

(1.83)
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Having an expression for the mass, we can finally derive the spectrum of the theory:

• For the NS sector we can construct excited states by acting on the ground state,
which we denote as |0; k⟩NS, with the operator αµ

n with n < 0 or with bµr with
r < 0.

1. At N = 0 we have the ground state with mass α′M2 = −1/2. Once again we
meet a tachyon in the spectrum but, in a moment, we shall see that it is now
possible to get rid of it.

2. The first excited state is not αµ
−1|0; k⟩NS, as operators αµ

−n and bµ−r increase
α′M2 by n and r units respectively. For this reason the first excited state
is actually bµ−1/2|0; k⟩NS with a mass α′M2 = 0. This state forms a massless

spacetime vector representation of SO(8) since |0; k⟩NS is a spacetime scalar
and bµ−1/2 a spacetime vector.

• For the R sector we can construct excited states by acting on the ground state,
which we denote as |a; k⟩R, with the operator αµ

n and dµn with n < 0. As we antici-
pated, all these states are spacetime fermions since the ground state is a spacetime
fermion itself and the creation operators are spacetime vectors.
It is worthwhile to spend more words on the ground state |a; k⟩R. Due to supersym-
metry we would expect it to have eight physical degrees of freedom since it should
form a supersymmetry multiplet with bµ−1/2|0; k⟩NS, which is a massless vector in
ten dimensions and so has exactly eight propagating components. However a spinor

in a D-dimensional spacetime has 2⌊
D
2 ⌋ degrees of freedom. Hence for D = 10 a

spinor has 32 complex components, which are reduced to 16 real components once
we impose Majorana-Weyl conditions 1. To describe physical propagating degrees
of freedom these remaining 16 components must satisfy the massless Dirac equa-
tion, which relates half of the spinor’s components to the other half. Therefore
a Majorana-Weyl spinor in D = 10 dimensions has only 8 propagating physical
modes, as required by supersymmetry. This also means that the Spin(1, 9) ground
state is reduced to a Spin(8) spinor with two possible (ten-dimensional) chiralities
due to the Weyl condition we imposed.

The spectrum of the RNS superstring has two problems: it contains a tachyon and is
not supersymmetric, e.g. there is no supersymmetric counterpart of the tachyon. So
it looks like that we made no progress with respect to the bosonic string, even though
we said at the beginning of this section that with supersymmetry the issues of bosonic
string theory would be eliminated. Indeed we are missing a last piece to make the RNS

1To be precise the Majorana and Weyl conditions can be imposed simultaneously on a Spin(p, q)
spinor only if p + q = 0 mod 8. In Minkowski spacetime p = 1, so this conditions boils down to
d = 2 + 8n, n ∈ N.
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superstring a consistent theory: a truncation of the spectrum called GSO projection. To
understand what this is let us introduce the G-parity operators for the NS and R sector:

GNS = (−1)FNS+1 = (−1)
∑

r>0 b
µ
−rbrµ+1, (1.84)

GR = Γ11(−1)
∑

n>0 d
µ
−ndnµ . (1.85)

Where FNS counts the number of b-type excitations and Γ11 is the ten-dimensional version
of γ5:

Γ11 = Γ0Γ1 . . .Γ9. (1.86)

As such it enjoys the same properties of γ5, namely (Γ11)
2 = 1 and {Γ11,Γ

µ} = 0 ∀µ =
0, . . . , 9 and it can be used to define chirality projection operators. As in four dimensions,
spinors obeying Γ11ψ = ±ψ are said to have positive or negative chirality respectively.

The GSO projection consists in keeping only those NS-states that are invariant under
the action of (1.84), which in this sense are equivalent to states with an odd number of
b-type excitations. Other states must instead be removed. In the R sector we only keep
states with positive or negative G-parity depending on the ground state chirality, which
is just a matter of convention. Clearly the tachyon state |0; k⟩NS of the NS sector has a
negative G-parity while the first excited state bµ−1/2|0; k⟩NS has positive G-parity. Thus
the GSO prescription tells us to remove the former and keep the latter. The tachyon is
now gone from the spectrum and we have a hint of spacetime supersymmetry as the NS
ground state is now a boson whereas the R ground state is a fermion. However an actual
proof of supersymmetry can only be given in the GS setup of the superstring. Indeed
the GS superstring is automatically spacetime supersymmetric and has no analogue of
the GSO projection.
Despite it may look an ad hoc approach that we used just to make things work out nicely,
the GSO projection has a solid theoretical foundation. In fact it can be interpreted as
the requirement of one-loop modular invariance of the theory.

We have left behind the spectrum of the closed superstring on purpose. In fact, now that
we have a consistent theory for open superstrings thanks to the GSO projection, we can
build the closed superstring spectrum just by combining the open NS and R spectra, that
is by combining left and right movers, after the projection. The possible combinations
are R-R, R-NS, NS-R, NS-NS and we should also take into account the G-parity of the
R sector states, depending on its ground state chirality. For this reason we are led to two
different superstring theories called type IIA and type IIB. For the former, the left and
right moving R sector ground states are chosen to have opposite chirality, whereas for
the latter they are chosen to have the same chirality. We denote with |+⟩R the positive
chirality one and |−⟩R the negative chirality one. The massless spectrum is summarized
in Tab. 2.1.

28



Type IIA Type IIB

|−⟩R ⊗ |+⟩R |+⟩R ⊗ |+⟩R

b̃µ−1/2|0⟩NS ⊗ bν−1/2|0⟩NS b̃µ−1/2|0⟩NS ⊗ bν−1/2|0⟩NS

b̃µ−1/2|0⟩NS ⊗ |+⟩R b̃µ−1/2|0⟩NS ⊗ |+⟩R

|−⟩R ⊗ bν−1/2|0⟩NS |+⟩R ⊗ bν−1/2|0⟩NS

Table 2.1: Spectra of type IIA and type IIB at the massless level.

There are 64 states in all sectors, in particular:

• The R-R sector contains bosons for both theories since we tensored two spinors.
For type IIA this yields a one form C1, with 8 states, and a three-form C3, with 56
states. For type IIB this yields a zero-form C0, so a scalar with 1 state, a two-form
C2, with 28 states, and a four-form C4, with 35 states. This follows because we can
impose a self-duality condition on the field strength of C4 in D = 10 which halves
the number of states. Otherwise we would lose supersymmetry.

• The NS-NS sector is the same for the two theories. It contains a scalar called
dilaton Φ, with 1 state, a two-form called Kalb-Ramond field B2, with 28 states,
and a traceless symmetric tensor called graviton gµν , with 35 states.

• Both the NS-R and R-NS sector contain a spin 3/2 gravitino ΨM
α , with 56 states,

and a spin 1/2 dilatino λ, with 8 states. The gravitini have opposite chirality in
type IIA and same in type IIB.

The presence of two gravitini in the spectra implies that both type IIA and type IIB
enjoy a N = 2 supersymmetry in D = 10, corresponding to N = 8 in 4D. Any theory
with N ≥ 2 cannot describe the phenomenology we observe, we shall see in the later
sections how to get out of this impasse.

This is not the end of the story, there are in fact three more consistent superstring
theories in D = 10:

• Type I superstring theory, which can be understood as projection of type IIB.
Without delving too much into the details, consider the operator reversing the
orientation of the worldsheet Ω: σ → −σ. This action swaps left and right movers
of the world-sheet fields Xµ and ψµ, for this reason it is a symmetry only for type
IIB where left-moving and right-moving fermions have the same chirality. If we
gauge this symmetry we are left with type I superstring theory, whose spectrum is
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derived from the IIB one by keeping only those states that are symmetric under Ω.
Type I superstrings are unoriented and enjoy an N = 1 supersymmetry in D = 10.

• Heterotic string theory, which comes in two types based on the allowed gauge
groups: SO(32) and E8 × E8.
Heterotic string theories are realised by mixing the left-moving sector of bosonic
string theory with the right-moving sector of superstring theory. Clearly there is a
mismatch in the dimensionalities, which is fixed by compactifying the 16 extra di-
mensions of the bosonic string on a 16-torus. Imposing the absence of tachyons and
modular invariance leads to the two heterotic superstring theories we mentioned.
Also heterotic string theory has a N = 1 supersymmetry in D = 10.

The five different theories we presented are related by a “web” of (non-)perturbative
dualities shown in Fig 2.2.

Figure 2.2: Web of dualities between the various string theories and M-theory. Picture
taken from [11].

Type IIB String Theory

A few more comments on type IIB string theory are of order, as they will be needed
later on. Indeed in Section 3 we will deal with moduli stabilisation in the context of
type IIB. In particular we are interested in the action of type IIB supergravity, the low
energy limit of type IIB string theory. We follow the notation of [12].

While for type IIA supergravity the action can be derived from the dimensional reduction
of 11D supergravity, the low energy limit of M-Theory (see Fig. 2.2), for type IIB that
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is not possible. The issue is the self-dual field strength F̃5 associated to C4 as it leads to
a trivial kinetic term F̃5 ∧ ⋆F̃5 = 0. Therefore the action has been built so that it yields
the correct equation of motion once we impose the self-duality constraint and it reads
as:

SIIB
bosonic =SNS + SR + SCS

=
1

2κ210

∫
d10X

√
−Ge−2Φ

(
R(10) + 4(∂Φ)2 − 1

2
|H3|2

)
− 1

4κ210

∫
d10X

√
−G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
− 1

4κ210

∫
C4 ∧H3 ∧ F3.

(1.87)

Where R(10) is the ten-dimensional Ricci scalar and κ2D ≡ 8πGD, with GD the D-
dimensional Newton’s constant. For D = 10, the case of our interest, this can be related
to the string tension by comparing the worldsheet and supergravity action:

κ2 =
1

2
(2π)7(α′)4. (1.88)

Furthermore we have defined

H3 ≡ dB2, (1.89)

Fp ≡ Cp−1, (1.90)

F̃3 ≡ F3 − C0 ∧H3 (1.91)

F̃5 ≡ F5 −
1

2
(C2 ∧H3 −B2 ∧ F3), (1.92)

|Fp|2 ≡ Fp ∧ ⋆Fp. (1.93)

Where F̃5 is the self-dual five form.

The action (1.87) is expressed, at least for the NS-NS sector, in the so-called string
frame, where the Ricci scalar is accompanied by the prefactor exp (−2Φ). This frame is
convenient when we want to stress the perturbative aspect of the theory, but it is not for
gravity-related aspects. In these cases it is better to work in the Einstein frame where
the metric is related to the string frame one via rescaling:

GE,MN ≡ e−Φ/2GMN . (1.94)

Furthermore it is also convenient to define specific field combinations:

G3 ≡ F3 − τH3, (1.95)

τ ≡ C0 + ie−Φ. (1.96)
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Using the Einstein frame metric (1.94) and these two new fields (1.95) (1.96), the action
(1.87) takes the form:

SIIB =
1

2κ210

∫
d10X

√
−GE

[
R

(10)
E − |∂τ |2

2 (Im(τ))2
− |G3|2

2 (Im(τ))
− |F̃5|2

4

]

− i

8κ210

∫
C4 ∧G3 ∧ Ḡ3

Im (τ)
.

(1.97)

Clearly the action (1.87), as well as (1.97), is not supersymmetric as all the fermionic
content is absent and the self-duality constraint is not embedded in it. This is not
a problem as the field equations derived from it and the constraint are, however it
is conventional not to give the fermionic part of the action since it is mostly used to
construct classical solutions and classical solutions always have vanishing fermionic fields.

D-Branes

We already explained earlier that string theory isn’t just a theory of strings, it also
contains D-branes. Therefore we conclude this section with a few comments on these
objects, again with an eye towards type IIB. Here we mostly follow [12]

In the simplest sense a Dp-brane is a hypersurface with p spatial dimension and solid
argument for their existence, more than the one we gave previously, is via T-duality 2.
This already holds for bosonic string theory, but things are much more interesting in
superstring theory where branes are stable as they couple to RR fields and hence carry
a conserved charge. Indeed a Dp-brane is charged under Cp+1 via the coupling:

SCS = µp

∫
Σp+1

Cp+1. (1.98)

Where Σp+1 is the brane world-volume and µp its charge. It is just the generalization to
p dimensions of the action for a point particle charged under a gauge field.

As we illustrated earlier D-branes represent the surface on which the endpoints of open
strings lie, whereas closed strings can propagate between them. Quantising these open
strings generates a spectrum of bosonic and fermionic fields living on the brane. If we
limit ourselves to massless ones, we find scalars describing the brane position, a gauge
field and the corresponding superpartners. Hence (1.98) is not the complete brane action
since we would like to describe those fields too and with a background given by the
massless fields coming from string theory 3. The contribution we need to add is made
up of two parts:

2Details on T-duality can be found in Appendix B
3To be precise here we only think about type II or type I as the heterotic has no branes.
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• A Dirac action term.
A Dirac action is the higher-dimensional version of the Polyakov action (1.4) and
describes an uncharged brane moving in a curved background with metric GMN :

SD = −TDp

∫
Σp+1

dp+1σ
√

− det (Gab). (1.99)

Where TDp is the brane tension and Gab is the pullback of the metric:

Gab ≡
∂XM

∂σa

∂XN

∂σb
GMN . (1.100)

• A Born-Infeld action term.
A Born-Infeld action is a non-linear version of the Maxwell action:

SBI = −Qp

∫
dp+1σ

√
− det (ηab + 2πα′Fab). (1.101)

Where Fab is the field strength of the gauge field and Qp is a constant with the
same dimension of the brane tension Tp.

Putting (1.99) and (1.101) together we get the Dirac-Born-Infeld action:

SDBI = −gsTDp

∫
Σp+1

dp+1σ e−Φ
√

− det (Gab + Fab). (1.102)

Where Fab is the field strength which includes the B field:

Fab ≡ Bab + 2πα′Fab. (1.103)

The quadratic term of (1.102) is a Maxwell term in the sense that it is 1
g2

∫
dp+1σFabF

ab.
The prefactor must be the gauge coupling and we expect that g ∼ go ∼ √

gs since the
gauge field comes from open string excitations. Hence we can say TDp ∝ g−1

s and via
T-duality we can fix the missing factor:

TDp =
1

(2π)pgs(α′)(p+1)/2
. (1.104)

Finally we need to make a change in (1.98) due to the presence of the background. In
fact now we have:

SCS = iµp

∫
Σp+1

∑
n

Cn ∧ eF . (1.105)

Finally we have the D-brane action which is just the sum of (1.102) and (1.105):

Sbrane = SDBI + SCS (1.106)
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2 Compactification of the Extra Dimensions

As we have just seen in Section 1, string theory predicts a number of dimension greater
than the one we observe in nature. Clearly something must be done in this sense if we
want string theory to be a realistic theory of nature and a very simple idea is that the six
extra dimensions are compact and too small to be observed. For this reason we assume
our ten-dimensional spacetime to be the product of a maximally symmetric spacetime,
such as Minkowski, dS or AdS, and some compact six-dimensional spaceM10 =M4×X6.
The requirement of partially unbroken supersymmetry greatly constraints the kind of
manifold X6 can be: it turns out that it must be a Calabi-Yau manifold (CY for short),
a special kind of Kähler manifold with vanishing first Chern class, or, more generally, a
manifold with SU(3) structure. However manifold with SU(3) structure that are not CY
are much less studied, both in the mathematics and physics literature. For this reason
we will focus on CY compactifications. These break 3/4 of the existing supersymmetry,
meaning that they yield a 4D N = 1 theory for type I and heterotic string theories and
a 4D N = 2 theory for type II string theories, which can be further broken to N = 1
with orientifold projections.
In this section we deal with these aspects, the references are [5, 8, 13, 14] for the first
part, while for the part on moduli space we also follow [12, 15, 16, 17]. The mathematical
details can be found in the Appendix A.

2.1 Kaluza-Klein Compactifications

The feature of extra dimensions is not something new in physics, in fact in the 1920s
Kaluza and Klein (KK for short) proposed the existence of a fifth dimension to try and
unify gravity with electromagnetism. As a warm up we start from scalar fields in five
dimensions to then move to gravity.

Let us assume that we have a D = 5 spacetime given by R1,3 × S1 and a massless scalar
field ϕ(xM), M = 0, . . . , 4. Its dynamics are described by the action:

S5D =

∫
d5x ∂Mϕ∂

Mϕ. (2.1)

Since ϕ lives on S1 it must be periodic along x4 ≡ y, hence it can be Fourier expanded
along that direction:

ϕ(xµ, y) =
∞∑

n=−∞

ϕn(x
µ) einy/r. (2.2)

With r the radius of S1

Plugging (2.2) into the equations of motion derived from (2.1) we find:

∂µ∂
µϕn −

(n
r

)2
ϕn = 0. (2.3)
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This equation is effectively a massive Klein-Gordon equation if we identify m2
n = (n/r)2.

To be more precise, we have an infinite number of KG equations, one for every n, which
means that the compactification of a higher dimensional scalar field to 4D yields an
infinite tower of massive modes, the KK tower. This is even more clear if we go back to
(2.1) and integrate over S1:

S5D =

∫
d4x dy

[
∂µϕn∂

µϕn −
(n
r

)2
ϕ2
n

]
= 2πr

∫
d4x [∂µϕ0∂

µϕ0 + . . . ]

(2.4)

Upon integration the five-dimensional action has become, up to a prefactor, the sum of
4D scalar actions, one massless and all the other massive. In most cases we are only
interested in the massless modes only so we can regard (2.4) as an EFT, with cutoff at
MKK = 1/r and integrate out the heavy modes. In this case we talk about dimensional
reduction rather than compactification. The problem with this EFT is that the zero
mode ϕ0 has no potential, as such it would mediate unobserved fifth forces. These kinds
of fields are called moduli and the process of giving them a non-zero mass goes under the
name of “moduli stabilisation”. We will discuss this aspect in-depth later on, in Section
3.

Having developed an intuition for KK compactification in the case of scalars we can
move on to gravity, which shares many of the same features. We start from the Einstein
Hilbert action in 5D:

S5D
EH =

1

2κ25

∫
d5x

√
−GR(5) (2.5)

With G the determinant of the 5D metric GMN and R(5) the 5D Ricci scalar.

We decompose the metric GMN = gµν ⊕ gµ4 ⊕ g4ν ⊕ g44 and hence perform the identifi-
cations gµ4 = Aµ, g4ν = Aν and g44 = ϕ. Now we can parameterize the metric as:

GMN =

(
gµν + κ24AµAν κ4ϕ

2Aµ

κ4ϕ
2Aν ϕ2

)
(2.6)

As we did for the scalar we can Fourier expand the fields in (2.6) along the periodic
direction. Once again we get an infinite tower of states and we integrate out all the
massive ones. In this way we can derive the EFT describing the zero-modes only:

SEFT =

∫
d4x
√
|g|ϕ0

(
R(4)

κ24
+ ϕ2

0

F 0
µνF

µν
0

4
+

2∂µϕ0∂
µϕ0

3κ24ϕ
2

)
. (2.7)

Where we defined:

κ24 ≡
κ25
Vol

(2.8)
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With Vol the volume of the extra dimension(s).

As anticipated, we have a unified theory of gravity, electromagnetism and scalar fields
which is affected by the same problem of moduli as the purely scalar one (2.4). This role
is played by ϕ0.

String compactifications share many characteristics with the simple KK one we just
described, as we shall see in the next section. Indeed, as a simple example, consider
again the EH action, but in string theory this time:

S10D
EH =

1

2κ210

∫
M10

d10X
√
−Ge−2ΦR(10). (2.9)

Where we assume that the 10-dimensional spacetime is equipped with a metric GMN

such that:
GMNdX

MdXN = e−6u(x)gµνdx
µdxν + e2u(x)ĝmndy

mdyn (2.10)

With eu(x) a mode describing size fluctuations of the compact manifold X6. The factor
of e−6u(x) for the first term is just a matter of convention.

The action (2.9) can be expanded as:

S10D
EH =

1

2κ210

∫
M4

d4x
√
−g
∫
X6

d6y
√
ĝ e−2Φ

(
R(4) + e−8uR̂(6) + 12∂µu∂

µu
)
. (2.11)

The last term of this action is a kinetic term for the field u(x), but the potential term is
absent 4: u(x) is a modulus.
Furthermore, assuming that the dilaton is constant, from (2.11) we can read the four-
dimensional effective EH action:

S4D
EH =

M2
Pl

2

∫
M4

d4x
√
−gR(4). (2.12)

Where we defined:

M2
Pl ≡

Vol(X6)

g2sκ
2
10

(2.13)

2.2 Calabi-Yau Compactifications

As already mentioned, we assume our spacetime to be a direct product M10 =M4 ×X6,
where M4 is any maximally symmetric spacetime and X6 some compact space. We will
refer to them as external and internal space respectively and we shall use the index rule
M = (µ,m). This notation stands for: M is a 10D index of M10, µ is a 4D index of

4We shall see later that, in string theory, the compact manifold X6 must be Ricci-flat, hence the
would-be potential term e−8uR̂(6) vanishes.
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M4 and m is a 6D index of X6. Following it we denote coordinates on M10 with xM ,
coordinates on M4 with xµ and coordinates on X6 with ym.
The hypothesis of a maximal symmetry implies that the Yang-Mills field strength F and
the field strength H of the NS-NS two-form C2 must be zero on M4: Fµν = Fµn = 0
and Hµνρ = Hµνp = Hµnp = 0. On top of this we also assume Hmnp = 0 and a constant
dilation Φ for simplicity.

The statement of unbroken N = 1 supersymmetry means that there exists a conserved
supercharge Qα, generating the supersymmetry transformation with supersymmetry pa-
rameter εα, which annihilates the vacuum Qα|Ω⟩ = 0. This condition is equivalent to
saying that, for any operator U :

⟨Ω|[U,Qα]|Ω⟩ = 0. (2.14)

This equation is trivial only if U is a bosonic operator. If U is fermionic {U,Qα} ∝ δεU
hence the unbroken supersymmetry condition boils down to:

δεU = 0. (2.15)

In our case we are interested in U being the fermionic fields of string theory and we can
limit ourselves to the gravitino only. Despite our focus up to now has been on type IIB
string theory, and it will be the same in the following, this is most easily done in heterotic
string theory so we briefly switch to it, still, the results we will find hold for all types of
string theory. Indeed the gravitino variation in heterotic string theory at leading order
is:

δΨM = ∇Mε−
1

4
HMε. (2.16)

Where HM is given by the contraction of antisymmetrized gamma matrices and H3 =
dB2+ω3, with ω3 a particular combination of the spin connection and the Chern-Simons
three-form. Their explicit expressions are not relevant as this H3 field strength is the
one we have set to zero above. In principle there would also be the dilatino and gaugino
variations on top of the gravitino one, but these do not yield any interesting condition
as they are already zero once we set H3 = F2 = 0 and Φ constant 5.

Having set H3 = 0 and requiring δΨM = 0, (2.16) tells us that ε is a Killing spinor,
sometimes also called parallel spinor:

∇Mε = 0. (2.17)

5To be honest the gaugino variation yields a non-trivial condition since F has been set to zero only
on M4 but not on X6. This condition reads as ΓijFijε = 0, with Fij the X6 components of the field
strength of the Yang-Mills gauge connection A on some vector bundle. It can be proved that this
equation involving F classifies such bundle as a holomorphic vector bundle, that is, a vector bundle
with holomorphic transition functions. It is possible to find a holomorphic gauge connection living on
such bundle, thus the gauge field A can be considered holomorphic.
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Since we assumed M10 = M4 × X6 we can split it as ε = ζ(x) ⊗ η(y) and perform the
analysis separately on the external space M4 and the internal one X6:

• Equation (2.17) on the external space reduces to:

∇µζ = 0. (2.18)

It then follows that:

[∇µ,∇ν ] ζ =
1

4
RµνρσΓ

ρσζ = 0. (2.19)

Where Γρσ = [Γρ,Γσ] /2.

The equation (2.19) goes by the name of integrability condition and Rµνρσ is the
Riemann tensor on M4. Now recall that we assumed maximal symmetry of M4 in
order to simplify (2.16), but, on the other hand, maximal symmetry also implies
Rµνρσ = (R/12)(gµρgνλ − gµλgνρ), with R the Ricci scalar. This means that, out of
the three possible choices for M4, namely Minkowski, dS and AdS, supersymmetry
imposes Minkowski.

• Equation (2.17) on the internal space reduces once again to the integrability con-
dition:

[∇m,∇n] η =
1

4
RmnpqΓ

pqη = 0. (2.20)

Clearly on X6 we do not have anymore the assumption of maximal symmetry, but
still (2.20) can be treated so as to yield Rmn = 0. The internal space X6 must be
Ricci-flat.

Actually (2.20) tell us much more than just Rmn = 0. In fact it also means that, due
to N = 1 supersymmetry, such a spinor must exist. This might sound tautological
but the existence of a covariantly constant spinor poses stringent conditions on X6. To
understand why that is the case we have to question ourselves about the holonomy
properties of the spinor η, that is, its behaviour under parallel transport around a closed
loop.
The holonomy group of an orientable Riemannian N -dimensional manifold is Hol(M) ⊆
SO(N), so for us Hol(X6) = SO(6). The holonomy group is not all of SO(6) however,
because a covariantly constant spinor satisfies Uη = η for U ∈ Hol(X6), just like vectors.
Hence η is a singlet of Hol(X6). To understand which subgroup of SO(6) satisfies this
condition we note that at the level of Lie algebra SO(6) ∼= SU(4) and that η ∈ SO(6)
has eight real components that transform as the fundamental 4 and antifundamental 4̄
representations of SU(4), corresponding to the two possible chiralities. In other words
we have the decomposition 8 = 4⊕ 4̄.
Now let us assume that η has a definite chirality, say positive, and focus on 4. This 4
representation decomposes under SU(3) into a triplet and a singlet 4SU(4) = (3⊕1)SU(3),
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which is exactly what we are looking for. Thus Hol(X6) = SU(3) implies the existence of
one covariantly constant spinor of positive chirality and one of negative chirality, η+ and
η− = (η+)

∗ , which in turn imply unbroken N = 1 supersymmetry in 4D (or N = 2 for
type II theories). This result classifies X6 as a manifold with SU(3) structure, proving
it is actually a CY manifold requires a bit more work.

The relevance of the η spinor is even greater than what emerges from our discussion
above. Indeed starting from η we can define two key bilinears: the Kähler form J and
the holomorphic (3, 0)-form Ω.

• Kähler form.
To build the Kähler form we start from:

J n
m = iη†+γ

n
m η+ = −iη†−γnmη−. (2.21)

With a proper normalization of η, namely η†±η± = 1, one can prove that J n
m J p

n =
−δ p

m , which classifies J as an almost complex structure. Furthermore any tensor
constructed out of η will be covariantly constant because η itself is, thus∇mJ

p
n = 0.

It follows that the Nijenhuis tensor associated to J is zero Np
mn = 0 and therefore,

by Newlander–Nirenberg theorem, J is actually a complex structure. This result
promotes X6 to a complex manifold.
We can now define the actual Kähler form as:

J =
1

2
Jmndx

m ∧ dxn,

= igij̄dz
i ∧ dz̄ j̄.

(2.22)

With Jmn = J k
m gkn. In the second line we introduced complex coordinates and the

Hermitian metric gij̄.
The (1, 1)-form (2.22) is closed, i.e. dJ = 0, hence it really is the Kähler form and
X6 is a Kähler manifold.

• Holomorphic (3, 0)-form.
To build the holomorphic (3, 0)-form we start from:

Ωabc = ηT−γabcη−. (2.23)

From this one we can define the actual (3, 0)-form:

Ω =
1

6
Ωabcdz

a ∧ dzb ∧ dzc. (2.24)

This form is closed, i.e. dΩ = 0, but not exact as Ω∧ Ω̄ ∝ ω, where ω is the volume
form on X6 which is not exact. Furthermore Ω is also unique up to a multiplicative
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constant.

The holomorphicity of (2.24), following from its covariant conservation, implies
that we can locally write Ωabc = f(z)ϵabc. Therefore the Ricci (1, 1)-form is:

R = −i∂∂̄ log (det(gkl̄)) = −i∂∂̄ log
(
∥Ω∥2

)
. (2.25)

Where we defined

∥Ω∥2 = 1

6
ΩabcΩ̄

abc. (2.26)

The Ricci form (2.25) is always closed on Kähler manifolds and in this specific case
is also exact via the ∂∂̄-lemma since the argument of the logarithm is a globally
defined scalar. It follows that R belongs to the trivial cohomology class and hence
the first Chern class of X6 vanishes c1(X6) = 0. This final result classifies X6 as a
Calabi-Yau three-fold.

The volume of our CY three-fold can be expressed using either of these two forms we
constructed. This can be guessed from the fact that J is a (1, 1)-form and Ω a (3, 0)-form,
hence J ∧ J ∧ J and Ω ∧ Ω̄ will both be (3, 3)-forms as the volume form. The missing
prefactor can be guessed starting from the complex one-dimensional case, at least for J :

V =

∫
J. (2.27)

Indeed in 1D we have J = igzz̄dz ∧ dz̄ = 2gzz̄dx∧ dy =
√
gdx∧ dy. Now we can move to

the n-dimensional case, start from (2.22) and use
√
g = 2n det gij̄, which in the case of

n = 3 tells us that:

V =
1

6

∫
X6

J ∧ J ∧ J. (2.28)

Whereas for Ω ∧ Ω̄ we just have to expand:

Ω ∧ Ω̄ = − i

36
J ∧ J ∧ J

(
Ωi1i2i3Ω̄j̄1j̄2j̄3g

i1j̄1gi2j̄2gi3j̄3
)

= − i∥Ω∥2dV .
(2.29)

Where in the second line we used (2.26) and (2.28).

Calabi-Yau manifolds have several other characterizing properties and the one we are
the most interested in is its Betti numbers, which are summarized in the Hodge diamond
in Fig. 2.3.
As we can see the only independent Hodge numbers are h1,1 and h1,2 as all the others
are either fixed or related by different dualities, namely:

• By Serre duality hp,q = h(n−p),(n−q).
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1

Figure 2.3: Generic Hodge diamond for a complex three-dimensional manifold on the
left and Hodge diamond for a CY three-fold on the right.

• By Hodge duality hp,q = hq,p.

• The two dualities above also imply Poincaré duality hp,q = h(n−q),(n−p).

• The remaining unfixed Hodge numbers are h0,0, which is 1 for any compact con-
nected Kähler manifold and h0,1 = h1,0, which is 0, assuming X6 has a trivial
fundamental group, that is to say, X6 is simply-connected.

2.3 Moduli Space of Calabi-Yau Three-Folds

The Hodge numbers we showed above do not characterize a CY manifold completely as
some of them are related by deformations of the parameters describing their shape and
size, parameters which go by the name of moduli. In the light of Yau’s theorem that
parameter space, called moduli space, is the space of Ricci-flat Kähler metrics. This is
the goal of this section: to understand which kind of deformations preserve the Ricci
flatness condition. The physical interest in this branch stems from the fact the space
parameterized by vacuum expectation values of massless scalar fields is itself a moduli
space. Such fields are called moduli and we already met them when discussing KK com-
pactifications.
Since we only consider CY three-folds from now on, unless specified otherwise, we re-
name X6 → X .

As we mentioned above studying moduli spaces means studying which kind of deforma-
tions, metric deformations in particular, leave the Ricci-flatness condition untouched. Let
us consider therefore a Ricci-flat Riemannian manifold (M, g) and a metric deformation
g → g + δg. Our request is that:

Rµν(g) = 0 and Rµν(g + δg) = 0. (2.30)
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Obviously, given that g is Ricci-flat, any metric related to it via a diffeomorphism is also
Ricci-flat, for this reason we are not interested in the δg generated by diffeomorphism.
These can be eliminated by a suitable gauge condition such as ∇µδgµν = 0. Now we
can expand (2.30) at linear order in δg and use the Ricci-flatness of g to obtain the
Lichnerowicz equation:

∇ρ∇ρδgµν + 2R ρ
µ

σ

ν
δgρσ = 0. (2.31)

If we promote (M, g) to a Kähler manifold it turns out that we can split the solutions
to (2.31) in two types: δgij̄ and δgij, as it can be understood from the index structure
of the metric and of the Riemann tensor. The former represent a different choice of
Kähler class, or, simply put, a deformation of the Kähler form, while the latter represent
a deformation of the complex structure. These solutions can be expanded as:

δgij̄ = iva(x) (ωa)ij̄ , a = 1, . . . , h(1,1), (2.32)

δgij =
i

∥Ω∥2
z̄k(x) (χ̄k)īij̄ Ω

īj̄
j, k = 1, . . . , h(1,2). (2.33)

Where ωa are harmonic (1,1)-forms on X, forming a basis of H(1,1)(X,C) and the χ̄k are
a basis of H(2,1)(X,C).

The expansions (2.32), (2.33) also feature va and z̄k, which we call Kähler moduli and
complex structure moduli respectively. Indeed they are the four-dimensional moduli
fields we have been talking about and appear in the effective theory as massless scalar
fields. They act as coordinates on the moduli space, which for CY three-folds is rather
easy, at least locally, simply being the direct product of the two different spaces param-
eterized by the two different kinds of moduli:

M = Mh(1,2)

CS ×Mh(1,1)

K . (2.34)

Where Mh(1,2)

CS is the complex h(1,2)-dimensional moduli space spanned by the complex

structure deformations z̄k and Mh(1,1)

K is the real h(1,1)-dimensional moduli space spanned
by the Kähler form deformations va.

From purely geometric considerations we found the existence of h(1,1)+2h(2,1) real moduli,
but now physics comes into play. Indeed, upon compactification, we find additional
massless scalar degrees of freedom coming from the internal components of (NS, NS)
two-form field B2. To understand why consider the kinetic term of a generic p-form field:∫

d10x
√
−g Fp+1 ∧ ⋆Fp+1. (2.35)

Where Fp+1 is the field strength of the p-form field, so in our case it will be H3 = dB2.
From (2.35) we can derive the equation of motion:

∆10B2 = d ⋆ dB2 = 0. (2.36)
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Where ∆10 is the ten-dimensional Laplacian, which can be split as ∆10 = ∆4 +∆6 since
we compactify on M4 ×X. It follows that the massless four-dimensional fields are given
by zero modes of the internal Laplacian ∆6, so by harmonic forms. This is most easily
seen for a scalar field ϕ:

(∆4 +∆6)ϕ =
(
∆4 +m2

)
ϕ = 0. (2.37)

We assumed that ϕ is eigenfunction of ∆6 with eigenvalue m2.

By Hodge theorem the harmonic (p, q)-forms are in a one-to-one correspondence to the
elements of the Dolbeaut cohomology groups H(p,q)(X), thus the zero modes are counted
by Betti numbers. In particular the compactification of B2 yields 1 two-form, 0 one-forms
and h(1,1) zero-forms. If we use a hat “ˆ” to denote 10D fields the expansion reads as:

B̂2 = B2(x) + ba(x)ωa. (2.38)

Where B2(x) denotes the four-dimensional two-form and ba(x) are the scalar moduli.

The zero-forms in (2.38) combine with the h(1,1) Kähler deformations, for a total of h(1,1)

complex massless scalar fields in 4D. Thus string theory complexifies the Kähler form
which is instead real from a purely geometric perspective J → J = B + iJ . This is also
reflected in the expansion of the deformation (2.32) that becomes:(

δBij̄ + iδgij̄
)
= taωa, ωa ∈ H(1,1)(X,C). (2.39)

This expansion is effectively an expansion of the Kähler form itself J , whose variations
give the massless fields we just mentioned.

We could now derive the derive the Kähler potential on the moduli space (2.34), but we
defer it to the next paragraph.

Type IIB on Calabi-Yaus and Orientifolding

If we now specialize the above discussion to the case of type IIB we can expand in a
similar fashion to (2.38) also the remaining fields, namely C2 and C4, since C0 and Φ are
scalars:

Ĉ2 = C2(x) + ca(x)ωa, (2.40)

Ĉ4 = Da
2(x) ∧ ωa + V K(x) ∧ αK − UK(x) ∧ βK + θa(x)ω̃

a, K = 0, . . . , h(1,2). (2.41)

As we can see the expansion of C4 is more complicated than the other ones, as it presents,
on top of the two-form D2 and the scalar θa(x) also one-form contributions, namely V K

and UK . We also introduced (αK , β
K) which are real harmonic three-forms forming a
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symplectic basis of H3(X,Z) 6 and ω̃a which are harmonic (2, 2)-forms forming a basis
for H(2,2)(X,C) and are dual to the ωa (1, 1)-forms.

Furthermore the self-duality of the field strength F̃5 associated to C4 allows us to elimi-
nate half of the degrees of freedom of C4. It is convention to set to zero Da

2 and UK .

These fields can be organized into N = 2 multiplets as in Tab. (2.2).

Type of multiplet Number of multiplets States of multiplet

Gravity multiplet 1 (gµν , V
0)

Vector multiplets h(2,1) (V k, zk)

Hypermultiplets h(2,1) (ta, ba, ca, ρa)

Double tensor multiplet 1 (B2, C2, C0,Φ)

Table 2.2: Spectra of type IIB compactified on a Calabi-Yau three-fold at the massless
level. The double tensor multiplet can be treated as another hypermultiplet if we dualize
the B2 and C2 fields to scalar fields.

It is a general result in the context of N = 2 theories that, if we restrict ourselves
only to vector multiplets and hypermultiplets, the resulting scalar manifold M has a
strong characterization. It is in fact the direct product of a quaternionic Kähler mani-
fold 7, spanned by the scalars of the hypermultiplets, and of a special Kähler manifold
8, spanned by the scalars zk of the vector multiplet. Therefore the scalar manifold is:

M = M4(h(1,1)+1)
Q ×M2h(1,2)

SK . (2.42)

The relevance of this result is that for CY compactification this space has a submanifold,
product of two special Kähler manifolds, that coincide with the true moduli space (2.34).
We will recall this fact in a moment.

Clearly any N = 2 theory cannot describe a realistic model of nature due to the ab-
sence of fermions in chiral representations, therefore we would like to further break the
supersymmetry to N = 1. In this sense the models are more promising if we include,
on top of the fluxes, also D-branes, as the resulting theory are enriched, to the point of

6A symplectic basis is such that
∫
X
αK ∧ βL = δKL and

∫
X
αK ∧ αL =

∫
X
βK ∧ βL = 0.

7Despite the name, quaternionic Kähler manifold are not Kähler. They are instead Riemannian
4n-manifolds with holonomy group Sp(n)Sp(1) ⊂ SO(4n).

8Special Kähler manifold are Kähler manifolds where the Kähler potential can be written in terms
of a single holomorphic function, called prepotential F .

44



containing the Standard Model for example. However consistency of flux compactifica-
tions requires the cancellation of tadpoles and the presence of D-branes gives a positive
contribution to the gravitational one, due to their positive tension. A way out is via
orientifold planes which carry a negative tension. This aspect will be made more clear
in the following section. Coincidentally orientifolds are also what we need to break the
N = 2 supersymmetry of type II theories compactified on CY three-folds to N = 1.
An orientifold action can be understood as a transformation that includes the worldsheet
parity operator Ω. We already met in when talking about type I string theory and, in
order not to confuse it with the holomorphic (3, 0)-form Ω, we now rename it Ω → ΩWS.
The kind of orientifolds we are interested in are of the form:

O = (−1)FLΩWSσ
∗. (2.43)

Where (−1)FL is the left-moving sector worldsheet fermion number, σ is a holomorphic
isometric involution that reverses the sign of Ω, but leaves the metric and complex struc-
ture untouched and σ∗ is its pullback.
Orientifold planes are the (hyper-)planes consisting of fixed points of an orientifold ac-
tion and, in the specific case of (2.43), these planes can have 3 or 7 dimensions, hence
the name O3/O7-planes.

Under the action of (2.43) the Dolbeaut cohomology groups split into two eigenspaces

H(p,q) = H
(p,q)
+ ⊕H

(p,q)
− , denoting the even and odd eigenspaces respectively, with dimen-

sionality h
(p,q)
+ and h

(p,q)
− . The properties of the involution σ impose a set of relation on

the Hodge numbers:

• h
(1,1)
± = h

(2,2)
± due to the commutativity between σ∗ and the Hodge star ⋆.

• h
(2,1)
± = h

(1,2)
± due to the holomorphicity of σ.

• h
(3,0)
+ = h

(0,3)
+ = 0 and h

(3,0)
− = h

(0,3)
− = 1 due to the action of σ∗ on Ω: σ∗Ω = −Ω.

• h
(0,0)
+ = h

(3,3)
+ = 1 and h

(0,0)
− = h

(0,0)
− = 0 due to the fact that Ω ∧ Ω̄ is invariant

under σ∗.

This obviously affects all the expansions we have seen. Starting from (2.32) and (2.33)
we now have:

J = ta+(x)ωa+ , a+ = 1, . . . , h
(1,1)
+ , (2.44)

δgij =
i

∥Ω∥2
z̄k− (χ̄k−)īij̄ Ω

īj̄
j , k = 1, . . . h

(1,2)
− . (2.45)

With ωa+ a basis of H
(1,1)
+ and χ̄k− a basis of H

(1,2)
− . Therefore the Kähler form de-

formations surviving after orientifolding correspond to elements in the even eigenspace
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whereas the surviving complex structure deformations correspond to elements in the odd
eigenspace. The moduli ta of (2.44) geometrically represent the volume of two-cycles in-
side X.

The expansion (2.44) allows us to give a new expression for the volume (2.28):

V =
1

6

∫
J ∧ J ∧ J

=
1

6
titjtk

∫
ωi ∧ ωj ∧ ωk

≡ 1

6
κijkt

itjtk.

(2.46)

Where we defined the triple intersection numbers κijk ≡
∫
ωi∧ωj ∧ωk, which count how

many times a curve intersects with itself. We also dropped the ± index for readability.

Now we consider the expansions (2.38), (2.40) and (2.41) that become:

B̂2 =b
a−(x)ωa− , Ĉ2 = ca−(x)ωa− , a− = 1, . . . , h

(1,1)
− , (2.47)

Ĉ4 =D
a+
2 (x) ∧ ωa+ + V K+ ∧ αK+ + UK+ ∧ βK+ + θa+ω̃

a+ , K+ = 1, . . . , h
(1,2)
+ . (2.48)

With ωa− a basis of H
(1,1)
− , ω̃a+ a basis of H

(2,2)
+ , dual to ωa+ , and (αK+ , β

K+) a real

symplectic basis of H
(3)
+ . Once again the self-duality of F̃5 removes half of the degrees of

freedom of Ĉ4.

The fields can now be arranged into N = 1 multiplets as we anticipated. They can be
found in Tab. 2.3.

Type of multiplet Number of multiplets States of multiplet

Gravity multiplet 1 gµν

Vector multiplets h
(2,1)
+ V K+

h
(2,1)
− zk−

Chiral Multiplets 1 (Φ, C0)

h
(1,1)
− (ba− , ca−)

Chiral/linear multiplets h
(1,1)
+ (ta+ , θa+)

Table 2.3: Spectra of type IIB compactified on a Calabi-Yau three-fold at the massless
level after orientifolding.
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At this point some natural questions we can ask ourselves are if we can find coordinates
on the moduli space (2.34), if there is a metric and if they are Kähler and hence if we
can find a Kähler potential.
Let us start from the first of these questions. A previous result comes in handy now:
the fact that the scalar manifold (2.42) has a special Kähler component spanned by
the complex structure moduli z, means that those moduli are already “good” Kähler
coordinates. The other ones are not obvious and are given by:

S ≡ C0 + ie−Φ, (2.49)

Ga ≡ ca − τba, (2.50)

Ta ≡
1

2
κabct

btc + iθa +
1

4
eΦκabcG

b
(
G− Ḡ

)c
. (2.51)

Again we dropped the ± index for readability, but it can be easily restored by looking
at the index structure of the expansions above.
S (2.49) is usually referred to as axiodilaton, it is exactly the same one we have met
in Sec. 1 under the name of τ . To avoid confusion with the four-cycles volumes, to be
introduced in a moment, we now call it S.

We can get a better understanding of the T coordinate (2.51) if we drop the G con-
tribution, something that can always be done via an appropriate choice of orientifold
projection such that h

(1,1)
− = 0, and recall that the ti describe the volume of the two-

cycles in X. These are related to the four-cycles volumes by:

τi ≡
∂V
∂ti

=
1

2
κijkt

jtk.

(2.52)

Where in the second line we used (2.46).

It follows that now (2.51) can be written as:

Ti = τi + iθi. (2.53)

This expression tells us that Ti is the complexification of the four-cycle volume τi by the
θi, which can be expressed as:

θi =

∫
D̂i

C4. (2.54)

With the {Di}i=1,...,h
(1,1)
+

effective divisors, so four-cycles, forming a basis of H(1,1)(X,Z)

and {D̂i} are its Poincaré duals forming a basis of H4(X,Z).

Concerning the other questions, it turns out that now the moduli space is Kähler and
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given by a direct product:

M = Mh
(1,2)
−

CS ×Mh(1,1)+1
K . (2.55)

In particular Mh(1,1)+1
K is Kähler and Mh

(1,2)
−

CS is special Kähler.

Having a direct product in (2.55) signifies that the associated Kähler potential does not
mix the complex structure moduli z with the other moduli. Indeed we have that the
total Kähler potential is:

K = KCS(z, z̄) +KK(S, T,G). (2.56)

Where:

KCS =− ln

(
−i
∫
X

Ω(z) ∧ Ω̄(z̄)

)
, (2.57)

KK =− ln
(
−i(S − S̄)

)
− 2 ln (V) . (2.58)

Hence also a Kähler metric can be found for the moduli space (2.55). Actually the
standard way to proceed is finding first the metric and then express it in terms of the
Kähler potential gij̄ = ∂i∂j̄K, so that we can read K from there.

The splitting (2.56) is coherent with the moduli space direct product structure (2.55),
however, for practical reasons, it is useful to further split (2.58) as follows:

KK ≡ Kdil +KKähl

≡ − ln
(
−i(S − S̄)

)
− 2 ln (V) .

(2.59)

3 Moduli Stabilisation

In the previous section we have learnt that moduli, scalar particles with no potential,
arise whenever we compactify a string theory on a CY three-fold. This fact constitutes a
problem as massless moduli would mediate unobserved long-range “fifth forces”. Indeed
moduli couple gravitationally to ordinary matter and the associated particle exchange
can generate forces. The range of such forces is O(1/m), withm the mass of the modulus.
Experimental tests on gravity at the sub-millimeter scale [18] impose severe constraints
on the range and hence on the mass of the modulus as it must satisfy m > O(10−3) eV.
For this reason “stabilising” the moduli, that is, giving them a potential, is of utmost
importance. This can be done with the introduction of fluxes and corrections to the tree
level Kähler potential (2.56) and to the superpotential.
Furthermore, despite being scalar particles, part of the intuition we have for “standard”
scalars, such as the Higgs boson, does not carry over to moduli, as they present several
distinctive features. Some of the most notable ones are:
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• Moduli are not charged under the Standard Model gauge fields.

• The couplings of moduli carry factors of M−1
Pl . To be more precise moduli that

determine local properties, such as the volume of specific cycles, of the compacti-
fication carry couplings of M−1

S while moduli that determine global properties of
the compactification, such as the total volume, carry couplings of M−1

Pl . The two
scales can be related using (1.88) and (2.13):

MS =
gsMPl√
4πV

. (3.1)

So if the compactification volume is very large the two scales are widely separated.
In cosmological contexts we are most interested in moduli carrying a suppression
of MPl as they survive the longest, even more if we combine this with the fact that
they are uncharged under the SM fields.

• The notion of zero VeV for moduli is ill-defined. Indeed we think about the VeV of
moduli fields as parameters for the compactification, a good example is the dilaton
whose VeV sets the string coupling gs (1.48). There is no preferred value for such
VeV and hence also the notion of zero VeV is ill-defined.

In this section we discuss the procedure of moduli stabilisation just mentioned. As was
already commented in the introduction we will be working in type IIB, since it is the
best understood among the five string theories for what concerns moduli stabilisation.
We follow the references [12, 19, 20, 21].

We start by studying so-called flux compactifications on CY orientifolds where the F3

and H3 fluxes, defined at the end of Sec. 1, are turned on. Not only, they also satisfy a
Dirac quantisation condition:

1

4π2α′

∫
Σ3

F3 ∈ Z,
1

4π2α′

∫
Σ3

H3 ∈ Z. (3.2)

Where Σ3 is some three-cycle.
We also assume that local sources such as D-branes are present.

We shall see that the fluxes alone are enough to stabilise the axiodilaton and the complex
structure moduli. The Kähler moduli, however, will require more work.
To understand why that is the case we take a so-called warped metric which is the
most general metric compatible with maximal symmetry and Poincaré invariance of the
four-dimensional spacetime:

ds2 = gMNdx
MdxN = e2A(y)ηµνdx

µdxν + e−2A(y)gmndy
mdyn (3.3)
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Where gmn is a Riemannian metric, but not necessarily a CY one due to the presence
of fluxes that break the Ricci flatness. Only under specific assumptions, that we will
state later, gmn is related to the CY metric, the one of the vacuum configuration, via
a conformal transformation. We also have A(y): it is the warp factor, function of the
coordinates of the internal manifold only due to Poincaré invariance.
Not only, Poincaré invariance also fixes to zero the “external” components, so the ones
on R1,3, of G3 (1.95) (recall that we renamed the axiodilaton τ → S), while the self-dual

five form F̃5 must take the form:

F̃5 = (1 + ⋆10)dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3. (3.4)

Where α(y) is a scalar function on X and it will turn out to be related to A(y).

The 10D Einstein equation associated to (3.3) upon tracing reads as:

∆6e
4A =

e8A

2Im(S)
|G3|2 + e−4A

(
|∂α|2 + |∂e4A|2

)
+ 2κ210e

2AJloc. (3.5)

Where Jloc contains all the “local” contributions, that is to say contributions from local
sources and can be expressed in terms of the energy-momentum tensor. Hence if such
sources are absent Jloc = 0 and, in that case, the only possible solution is the trivial one
since the left hand side of (3.5) is a total derivative while the right hand side is strictly
positive. To achieve a non-trivial solution we must have sources of negative Jloc, such as
orientifold planes.

The presence of local sources also contributes to the Bianchi identity for the F̃5 flux:

dF̃5 = H3 ∧ F3 + 2κ210TD3ρ
loc
D3
. (3.6)

Where ρlocD3
is the D3-brane charge density and TD3 its tension.

Integrating (3.6) yields the tadpole-cancellation condition:

1

2κ210TD3

∫
X

H3 ∧ F3 +Qloc
3 ≡ Qflux

D3
+Qloc

D3
= 0. (3.7)

So once more we see the need for negative contributions of D3-brane charge, Qloc
D3
, as the

solutions of interest for moduli stabilisation require Qflux
D3

> 0.

Some comments on (3.7) are definitely needed. The expression we derived hides all the
intricacies inside of Qloc

D3
and we might naively think that only D3-branes contribute to

such charge, however it turns that is not true. If we allow for a rich brane setup with
D7-branes and O3/O7-planes on top of D3-branes, as usually happens, things become
much more complicated. Indeed not only D3-branes and O3-planes contribute to it
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but also D7-branes and O7-planes. The contribution coming from D3-branes can easily
understood from (1.98): it is due to the C4 field which couples to D3-branes. The other
contributions are not so obvious tough. As we already explained all orientifold planes
give a negative charge contribution, while D7-branes carry both a positive and a negative
one. The former is due to gauge fields living on the brane world-volume while the latter
is of geometrical origin. Thus, in full generality, the D3 tadpole cancellation condition
is usually expressed as [22]:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+
χ(O7)

12
+
∑
a

Na(χ(Da) + χ(D′
a))

48
. (3.8)

Where Nflux is the contribution of the fluxes F3, H3, Ngauge is the contribution of the
gauge fields living on the D7-branes, ND3 and NO3 are the number of D3-branes and O3-
planes respectively and Na is the number of D7-branes wrapping some suitable divisors,
denoted by Da, and their image under the orientifold involution D′

a.

The expression (3.7), and hence (3.8), only holds in the case of D3-branes, that is to
say, when we consider the local charge associated to D3-branes. If we consider the case
of D7-branes things are much simpler as we only have the contributions coming from
D7-branes and O7-planes, all the other ones, including the fluxes H3 and F3, are gone.
The D7 tadpole cancellation condition is simply [22]:∑

a

Na([Da] + [D′
a]) = 8[O7] (3.9)

The factor of 8 on the right hand side follows from the fact that one single D7-brane
carries a charge of +1, while one single O7-plane carries a charge of −8.

We can finally go back to our discussion on moduli stabilisation and combine (3.4), (3.5)
and (3.6) to find:

∆6

(
e4A − α

)
=

e8A

24Im(S)
|iG3 − ⋆6G3|2 + e−4A|∂

(
e4A − α

)
|2

+2κ210e
2A (Jloc −Qloc) .

(3.10)

Where we defined Qloc ≡ TD3ρ
loc
D3
.

Once again the left hand side of (3.10) integrates to zero. Instead, for what concerns the
right hand side, the kind of localized sources that have been studied the most satisfy a
BPS-type bound:

Jloc ≥ Qloc. (3.11)

This condition is saturated only by D3-branes, O3-planes and D7-branes wrapping four-
cycles, so if we assume the presence these three local sources only, then (3.10) yields two
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further conditions, namely:

e4A = α, (3.12)

G3 =i ⋆6 G3. (3.13)

Equation (3.13) tells us that G3 must be imaginary self-dual (ISD for short), hence
solutions of this type are called ISD solutions. Among all possible configuration, ISD
ones have been one of the most studied due to the wealth of properties they enjoy [23]:

• The internal metric e−2A(y)gmn of (3.3) is conformally CY.

• The size of X is a modulus.

• Fluxes alone give a mass to the complex structure moduli and to the axiodilaton.

To understand why the last of these three properties is true consider the F-term scalar
potential for a supersymmetric theory 9:

V = eK

 ∑
i,j̄=T,S,U

Kij̄DiWD̄j̄W̄ − 3|W |2
 . (3.14)

Where K is the tree level Kähler potential, Kij̄ is the associated inverse metric, DiW =
∂iW +W∂iK is the Kähler covariant derivative and W is the superpotential.

We already know the Kähler potential is (2.56) as it was given in Sec 3. What we are
missing is the superpotential, even though it doesn’t really matter for what we want to
prove here. It was proved in [24] that (3.13) can be derived from the Gukov-Vafa-Witten
superpotential:

W =

∫
X

G3 ∧ Ω. (3.15)

Now we can understand why the non-Kähler moduli are stabilised by the fluxes alone.
In fact the sum in (3.14) is taken over all moduli however the Kähler potential enjoys a
no-scale structure, meaning that:∑

i,j̄=T

Kij̄∂iK∂j̄K = 3. (3.16)

Thus, when we sum over the Kähler moduli in (3.14), the term −3|W |2 cancels off
exactly with the one coming from the covariant derivative due to (3.16). Therefore, for
the Kähler moduli only V ≥ 0, whose minimum is necessarily at 0. This means that,
while the axiodilaton and the complex structure moduli are stabilised ”classically”, i.e.

9To be consistent with the literature we rename the complex structure moduli z → U .
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without the introduction of any correction but just thanks to the background fluxes, for
the Kähler moduli we need to add corrections.

It also follows that the scalar potential reduces to:

V = eK

 ∑
i,j̄=S,U

Kij̄DiWD̄j̄W̄

 , (3.17)

and thus the complex structure moduli and the axiodilaton can be stabilised by solving:

DUW = 0, (3.18)

DSW = 0. (3.19)

Notice that the minimum is not necessarily supersymmetric as the condition for unbroken
supersymmetry is that all the F-terms vanish, DIW = 0 with I representing all the
moduli, and we might have DTi

W ̸= 0.

From now on we will always consider the complex structure moduli and the axiodilaton to
be stabilised, consequently the superpotential (3.15) will be a constant which we denote
by:

W0 =

〈∫
X

G3 ∧ Ω

〉
. (3.20)

3.1 Quantum Effects

As we just explained, we managed to stabilise the complex structure moduli and the
axiodilaton. We left behind the Kähler moduli so in this paragraph we will explain how
to add corrections in order to stabilise them.

The corrections, affecting the tree level Kähler potential (2.56) and the tree level super-
potential (3.15), can be formally expressed as:

K = Ktree +Kp +Knp, W = Wtree +Wnp. (3.21)

So Ktree receives both perturbative and non-perturbative of corrections while Wtree only
non-perturbative ones, but we will neglect Knp in our discussions as it is currently poorly
understood.
The reason for the absence of perturbative corrections, the α′ ones specifically, to Wtree

must be searched in the Peccei-Quinn (PQ for short) shift symmetry of the axion. Even
though we did not mention it, we already met an axion in Sec. 2 when we introduced the
“good” coordinates for the moduli spaces, it is the θ entering the definition of (2.53). In-
deed an axion 10 a is a pseudoscalar field that enjoys the PQ shift symmetry a→ a+const

10The QCD axion is the most well-known example of axion, but it is not the only one. Indeed we will
use the term axion to denote several particles that need not couple to QCD.
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and, in the context of string compactifications, they emerge from the compactification
of p-form fields over p-cycles. Indeed we expressed θi as such in (2.54), but there are
more such as the B2 and the C2 axions given by the integral of those two-forms on some
two-cycle.
Having a clear definition of what an axion is, we can now understand the origin of the
PQ shift symmetry: it follows from the gauge invariance of the 10D p-form field and,
since the string worldsheet carries no R-R charge, this symmetry is not broken at any
order in α′ but it is broken non-perturbatively by instanton effects. This result in turn
implies that the superpotential W can only depend non-perturbatively on the Kähler
moduli and Wp = 0. Indeed the superpotential must be holomorphic so it can only
depend on the Ti and any (non-trivial) polynomial in the Ti is invariant under the axion
shift symmetry.
Perturbative corrections do not come only in the form of α′ corrections however, we also
have the gs ones. Still the statementWp = 0 does not change due to non-renormalization
theorems, proved in the context of generic supersymmetric theories [25, 26]. Hence the
superpotential receives no perturbative corrections at all.

We can now go back to (3.21) and see the explicit form of the corrections.

• Perturbative corrections to the Kähler potential.
One of the first perturbative correction to (2.56) that has been derived is the
BBHL one [27]. It follows from an (α′)3 correction in the 10D theory and in the
4D effective theory takes the form:

Kα′3 = K0 − 2 ln

(
V +

ξ

2g
3/2
s

)
. (3.22)

Where K0 contains the other contributions to (2.56) not affected by the correction,
namely Kdil (2.59) and KCS (2.57). We also introduced the topological quantity ξ
defined as:

ξ = −χ (X) ζ(3)

2 (2π)3
. (3.23)

With χ(X) the Euler characteristic of X and ζ the Riemann zeta function.

There exist other perturbative corrections related to spacetime loop effects, such
as the gs corrections. We defer their description to the next section as they will
play a key role in our model of moduli stabilisation.

• Non-perturbative corrections to the superpotential.
Non-perturbative corrections to the superpotential to the superpotential can come
either from gaugino condensation or from Euclidean D3-branes or from Euclidean
D(−1)-branes, even though this last possibility is less considered in the literature.

Wnp = Wλλ +WED3 +WED(−1) (3.24)
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We start from the first of the three by considering a stack of N D7-branes wrapping
some four-cycle Σ4. A Yang-Mills field lives on the worldvolume of the branes and
the associated action is:

S =
1

2g27

∫
Σ4

d4σ
√
ginde

−4A(y)

∫
d4x

√
−g Tr [FµνF

µν ] . (3.25)

Where g7 is the coupling constant of the Yang-Mills theory living on the world-
volume, whereas the four-dimensional coupling for the same theory, g, can be
expressed as:

g2 =
8π2

TD3V4

. (3.26)

With V4 the warped volume of the four-cycle, that is to say taking into account
the factor e−4A(y) too:

V4 ≡
∫
Σ4

d4σ
√
ginde

−4A(y). (3.27)

Under some topological assumptions on Σ4, simply put it must have no deforma-
tions corresponding to charged matter field, the theory resulting from dimensional
reduction is a N = 1 pure super Yang-Mills. At low energies we have gaugino
condensation which produces a non-perturbative superpotential:

|Wλλ| ∝ exp

(
− 8π2

Ng2

)
= exp

(
−TD3V4

N

)
(3.28)

From (2.52) we know that V4 is proportional to the real part of a corresponding
Kähler modulus, thus we can write:

Wλλ = A e−aT . (3.29)

Where a = 2π/N and the prefactor A is a one-loop Pfaffian that only depends on
the complex structure moduli and the position of the branes.

We can now turn to the second contribution of (3.24), WED3, which has a very
similar structure to (3.29). This term is generated when a four-cycle Σ4 is wrapped
by Euclidean D3-branes, a special kind of instantonic contribution to the path
integral whose action has a real part proportional to the volume of the (p + 1)-
cycle wrapped by the brane, rather than by a D7-brane. The superpotential that
gets generated is:

WED3 = A e−aT . (3.30)

Here a = 2π and once again A is a one-loop Pfaffian does not depend on the Kähler
moduli but only on the complex structure one and on the D-branes positions.

Finally we can have Euclidean D(−1) branes contributing to the superpotential
and in this case:

WED(−1) = O
(
e−πτ

)
(3.31)
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We can now move on to the actual stabilisation of the Kähler moduli. There are
several proposals to achieve this goal, but we will limit ourselves to the best established
ones, the Kachru-Kallosh-Linde Trivedi scenario (KKLT for short) and the Large Volume
scenario (LVS for short). They will be described in detail in the following paragraphs,
but it is useful to summarize here their characterizing features:

• The KKLT scenario constructs a competition between the flux superpotential (3.15)
and the non perturbative superpotential (either (3.29) or (3.30)) by making the
former small via an appropriate choice of the fluxes.

• The LVS scenario constructs a competition between the perturbative (α′)3 cor-
rection (3.22) to the Kähler potential and the non-perturbative correction to the
superpotential (either (3.29) or (3.30)) by working in a region of (Kähler) moduli
space where some cycles are larger than others. At the minimum V ≫ 1, hence
the name of Large Volume Scenario, allowing us to neglect unknown corrections as
long as they are subleading in V .

3.2 KKLT Scenario

The KKLT scenario has first been proposed in [28] and, as we mentioned above, neglects
the perturbative corrections while focusing only on the non-perturbative ones. We first
integrate out the axiodilaton S and the complex structure moduli U so that the low
energy theory will only depend on Kähler moduli. Assuming there are h(1,1) = h

(1,1)
+

Kähler moduli Ti then the full superpotential is:

W = W0 +

h
(1,1)
+∑
i=1

Ai e
−aiTi . (3.32)

Where W0 denotes the constant flux superpotential (3.20). Clearly a competition be-
tween the two terms requiresW0 ≪ 1. Such configurations have indeed been constructed
reaching up to |W0| ∼ 10−95 [29] and a detailed description on how to realize them can
be found in [19].

Given a generic tree level Kähler potential K then the scalar potential coming from
(3.32) is:

δVnp = eKKij̄
[
ajAjaīĀīe

(−ajTj+aīT̄ī)

−
(
ajAje

−ajTjW̄∂īK + aīĀīe
−aīT̄īW∂jK

)] (3.33)

Now we assume that h
(1,1)
+ = 1 for simplicity so that K = −2 ln (V) with V =

(
T + T̄

)3/2
.

Recalling that Re(T ) = τ (2.51) and setting the axion θ to the minimum, we find:

δVnp =
aAe−aτ

2τ 2

[
Ae−aτ

(
1 +

1

3
aτ

)
+W0

]
. (3.34)
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The minimum is supersymmetric and can be found from DTW = 0, which yields:

W0 = −Ae−aτ

(
1 +

2

3
aτ

)
. (3.35)

The stabilised modulus ⟨τ⟩ is found by solving this equation:

⟨τ⟩ ∼ 1

a
ln
(
|W0|−1

)
+ . . . . (3.36)

Where “. . . ” represent omitted corrections to the solution of (3.35) that are subleading
for W0 ≪ 1.
Since the KKLT scenario requires W0 ≪ 1 we also have τ ≫ 1. This allows us to use
the tree level Kähler potential neglecting the perturbative corrections (such as (3.22)) as
they are strongly suppressed.

It can be proved that, at the minimum, the scalar potential is negative. Therefore we
have a supersymmetric, since DTW = 0, AdS minimum and, if we want to describe
phenomenologically consistent models, we should add uplifting terms to (3.34).

3.3 Large Volume Scenario

LVS has first been proposed in [30] and its starting point is the same as the KKLT one,
that is, we integrate out the complex structure moduli and the axio-dilaton to achieve
a low energy theory depending only on the Kähler moduli. However, differently from
KKLT, LVS requires at least two moduli, as we will clarify soon.

We already mentioned that LVS makes use both of the perturbative (3.22) and non-
perturbative, either (3.29) or (3.30), to achieve stabilisation. Hence the superpotential
has the same structure as in the KKLT scenario (3.32) and the same holds for the associ-
ated scalar potential (3.33). Therefore we are just missing the scalar potential associated
to the (α′)3-corrected Kähler potential (3.22) and to the constant flux superpotentialW0:

δVα′ = 3ξ̂eK
ξ̂2 + 7ξ̂V + V2

(V − ξ̂)(2V + ξ̂)2
W 2

0 ≈ 3

4
ξ̂W 2

0

1

V3
. (3.37)

Where we defined ξ̂ = ξ/g
3/2
s and in the second line we assumed V ≫ ξ̂, according to the

LVS philosophy.

Now we can put (3.33) and (3.37) together to have the full LVS scalar potential:

δVnp + δVα′ = eK

{
Kij̄
[
ajAjaīĀīe

(−ajTj+aīT̄ī)

−
(
ajAje

−ajTjW̄∂īK + aīĀīe
−aīT̄īW∂jK

)]
+

3

4
ξ̂W 2

0

1

V

}
.

(3.38)
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For V → ∞ the last term, (3.37), dominates over (3.33). The competition that we
want to create between these two terms can be achieved if some cycles are exponentially
smaller than others, something that clearly requires h

(1,1)
+ > 1. To implement it we

denote by τs the small cycles and work in a region of the Kähler moduli space where:

V → ∞, asτs = ln(V). (3.39)

In this way we are ensured that the exponentials e−asTs of (3.33) are not subleading with
respect to the 1/V of (3.37).

A prototypical example of LVS constructions is represented by the “Swiss-cheese” Calabi-
Yau manifolds where the volume takes the form:

V = αF3/2(τb)− βG3/2(τs). (3.40)

Where α, β > 0 are positive constants and F3/2, G3/2 are homogeneous function of degree

3/2 in their arguments, that are respectively the Nb big cycles τb and the Ns = h
(1,1)
+ −Nb

small ones τs. The small cycles represent holes in the CY, hence the name of these models.
The easiest non-trivial example is obtained for α = β = 1 and h

(1,1)
+ = 2 so that:

V = τ
3/2
b − τ 3/2s . (3.41)

To stabilise these two moduli we consider the BBHL correction (3.22) to the Kähler
potential and a non-perturbative one, either (3.29) or (3.30), carried by the small cycle
only:

K =K0 − 2 ln

((
τ
3/2
b − τ 3/2s

)
+

ξ

2g
3/2
s

)
,

W =W0 +Ase
−asTs .

(3.42)

If we omit numerical factors, take the limit τb ≫ τs and set the axion to the minimum,
then the scalar potential reads as:

VLVS ≃ 1

V
a2sA2

s

√
τse

−2asτs − 1

V2
asAs|W0|τse−asτs +

1

V3
ξ̂|W0|2. (3.43)

Now we can minimize the potential to find stabilised ⟨V⟩ and ⟨τs⟩:

∂VLVS

∂τs
=0, (3.44)

∂VLVS

∂V
=0. (3.45)
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From (3.44) we can find the volume:

⟨V⟩ =
2|W0|

√
τs

asAs

(
1− asτs
1− 2asτs

)
easτs

≃ easτs .

(3.46)

So the volume is exponentially large, as we wanted it be. To have an exact expression
we need also ⟨τs⟩ of course and we can obtain it from (3.45) using (3.46):

⟨τs⟩ =

{
3ξ̂

4

(
(1− 2asτs)

2

(1− asτs)(−asτs)

)}2/3

∼ξ
2/3

gs
.

(3.47)

In the second line we used the definition of ξ̂ = ξ/g
3/2
s . Clearly this result makes sense

as long as ξ > 0 ⇔ χ(X) < 0. For a generic CY three-fold it holds that:

χ =
6∑

p=0

(−1)pbp = 2(h(1,1) − h(2,1)). (3.48)

So, as long as h(1,1) < h(2,1), (3.47) is a sensible result and, since the string coupling is
small gs ≪ 1 in the perturbative regime, the volume (3.46) is indeed large ⟨V⟩ ≫ 1.

It can be checked that, at the minimum, the potential (3.43) is negative, hence what we
are describing is a non-supersymmetric, as the F-terms are non-vanishing, AdS minimum.
Therefore, if we want to describe phenomenologically consistent models, we should add
uplifting terms to (3.43).
Furthermore, as we can see from our simple model, the LVS scenario does not require
to fine-tune to extremely small values the flux superpotential W0, allowing instead for
more natural choices W0 ∼ O(1− 10).
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Chapter 3

Moduli Stabilisation for the Dark
Dimension Scenario

After reviewing the main features of the most promising moduli stabilisation mechanisms,
we focus now on the recently proposed Dark Dimension (DD for short) Scenario [31].
We first present a brief description of this scenario, and we then describe how to realise
moduli stabilisation for this model.

1 Brief Review of the Dark Dimension Scenario

The dark dimension scenario [31] is a proposal, descending from the Swampland program
[32] combined with experimental data, for the existence of a mesoscopic fifth dimension
which also furnishes a candidate for dark matter [33] hence unifying dark matter and
dark energy. Indeed starting from the Distance/Duality conjecture [34] and from the
smallness of the cosmological constant we are naturally led to the existence of a tower of
light states and of a fifth dimension with size l ∼ Λ−1/4 ∼ 10−6m. From here a series of
interesting phenomenological implications, such as the existence of a new energy scale and
the identification of gravitons of the dark dimension with dark matter, follow naturally
as we shall see below.

The Distance/Duality Conjecture

As we just mentioned the DD proposal originates, in the context of the Swampland
project, from the Distance/Duality conjecture, which we now state following [35]:

Conjecture 1. Suppose to have a field theory coupled to gravity and to denote its moduli
space by M. This space is parameterized by the VeVs of fields ϕi with no potential.
Starting from any point P ∈ M there exists another point Q ∈ M such that the geodesic
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distance between the two, d(P,Q), is infinite. It is then conjectured that there exists an
infinite tower of states, with mass scale m such that:

m(Q) ∼ m(P ) e−αd(P,Q), (1.1)

with α a positive constant of order one in Planck units.

Therefore at large distance in field space we find a tower of exponentially light states
with mass scale m. This tower is weakly coupled and leads to a dual description of
the theory. There exists also another characteristic scale of the tower, the species scale
Λsp, where the local QFT description breaks down and quantum gravity effects become
relevant. In the weak coupling limit Λsp can actually be interpreted as the string scale
MS (3.1) [36].
So far only two possibilities have been suggested for the microscopic origin of such tower:

• A tower of string excitation modes. In this case Λsp ∼ m. At this scale the theory
is still weakly coupled to gravity, but the QFT description breaks down due to
higher spin states.

• A KK tower. This is a signal of decompactification: n ≥ 1 extra dimensions open
at the scale m and the QFT description holds until Λsp is reached. In this case
the species scale is a new fundamental scale corresponding to a higher dimensional
Planck scale:

MS ≡ Λsp = m
n

n+2M
2

2+n

Pl . (1.2)

After its proposal, the Distance/Duality conjecture has been carefully studied and ex-
tended to other contexts, such as the AdS one, yielding the AdS distance conjecture
[37]:

Conjecture 2. Consider a quantum gravity theory in a d-dimensional AdS space with
cosmological constant Λ. Then there is an infinite tower of states with mass scale m
which, in the limit Λ → 0, goes like:

m ∼ |Λ|α, (1.3)

where α is a positive constant of order one in Planck units.
Furthermore, if the space is supersymmetric AdS, we also have α = 1/2.

In this sense we can regard log(1/|Λ|) as a natural distance in field space.

Even though the AdS distance conjecture has been proposed in the context of AdS space,
the Swampland argument holds both in the dS and AdS case, hence we can assume that
an analogue of such conjecture also holds in the dS case. In this way (1.3) can also be
viewed as a solution to the cosmological constant problem as Λ ∼ m1/α goes to zero
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when m→ 0. Since m is the mass scale of the tower of light states this result can also be
understood as the fact that heavy states do not contribute to the cosmological constant.
We can make this statement more quantitative by saying that from an EFT perspective
Λ = Λ0+A m1/α, with Λ0 the contribution of heavy states to the cosmological constant.
By the Distance/Duality conjecture we expect Λ0 = 0.

In [37] it was also argued that it must exist an upper bound for α, namely α ≤ 1
2
, for

consistency with the Higuchi bound 1 [38]. On the other hand we also have reason to
believe in the existence of a lower bound on α:

1

d
≤ α ≤ 1

2
. (1.4)

Indeed, since the tower of light states has a mass scale m, we expect a one-loop contri-
bution to the scalar potential coming from such tower that scales as V ∼ md. To have
a dS space we would also need other contributions on top of this one, but still the net
dependence will go as md due to the one-loop contribution. Hence any higher power of
m, corresponding to a weaker potential, would require a magical cancellation of the md

term.

Predicting the Dark Dimension

We now have all the tools to understand how the idea of the DD arises from the Dis-
tance/Duality conjecture together with experimental data.

A tower of light states, as the one arising from the Distance/Duality conjecture, would
cause deviations from Newton’s law at the energy scale of the tower m, but there are
stringent experimental bounds on it down to ∼ 50µm [39], implying that we must have:

m ≳ 25 meV. (1.5)

Now, since Λ ∼ 10−122M4
Pl, or Λ1/4 ≃ 2.3 meV , we must have m ≳ Λ1/4, otherwise

deviations from Newton’s law should have been observed already. Therefore, in the light
of (1.3) and (1.4), Swampland bounds and experimental bounds are consistent only if
d = 4:

m ∼ Λ1/4, (1.6)

roughly coinciding with the neutrino scale. This is an important result as it rules out
the stringy origin of the tower of light states, leaving us only with the possibility of a
KK origin. Indeed, as we explained above, the stringy origin has Λsp ∼ m, hence at
m the QFT description must break down, but we are able to describe physics above
the neutrino scale. Thus the only possibility is m < Λsp as happens in the KK tower

1The Higuchi bound is a bound on the mass of states in dS spacetime: M2 cannot be between 0 and
2Λ/3 for spin 2 states because otherwise negative norm states would appear.
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scenario.

Having established that the microscopic origin of the tower of light modes is a KK
tower, we must determine the number of extra dimensions that decompactify, that is to
say the number of large extra dimensions. This can be done by looking at the data of
astrophysical experiments, in fact, if extra dimensions exist, new decay modes via the
emission of KK modes become possible and such decays would leave marks in neutron
stars and supernovae explosions [40]. The most stringent bound, derived from the heating
of neutron stars due to a cloud of gravitationally trapped KK gravitons [40], give [40, 41]:

• For one single extra dimension m−1 ∼ l < 44 µm.

• For more than one extra dimension m−1 ∼ l < 1.6 · 10−4 µm.

Clearly the case of more than one decompactified extra dimension is not compatible with
(1.6), leaving us with the possibility of one single large extra dimension. This is what
we call the Dark Dimension. Having n we can also find a value for the new mass scale
MS from (1.2): MS ∼ 108 − 109 GeV .

We can further refine the result on the size of the extra dimension by taking (1.3) and
updating it to Λ1/4 ∼ λm, for some parameter λ to be determined. It can be argued
that:

m1/2 ≤ λ4 ≲ 1 ⇔ Λ−2/9 ≲ l ≤ Λ−1/4. (1.7)

The lower bound is justified by the fact that we want to preserve a scaling of the type
Λ ∼ m4: if we had λ ∼ m the scaling of the cosmological constant would be ∼ m5,
hence λ ∼ m1/2 is the lowest scaling we can have for λ while also having Λ ∼ m4. The
upper bound can be explained recurring to the argument that led us to (1.4), namely
the one-loop contribution to the vacuum energy. Indeed this loop will contribute to the
scalar potential as V ∼ λCasimirm

4, with λCasimir some constant that, for instance, can
be computed in the case of a circle compactification going from five to four dimensions
λCasimir ≃ 10−5. Taking into account that Λ ∼ λm we can expect that λ ≤ λ

1/4
Casimir ∼

10−1. Indeed starting from λCasimir we find a size estimate lCasimir ≃ 7.4 µm which we
can plug into (1.7) to find 10−3 ≲ λ ≲ 10−1 and finally:

0.1 µm ≲ l ≲ 10 µm. (1.8)

Phenomenological Implications of a Dark Dimension

As we just reviewed the DD scenario is the hypothesis, justified by Swampland conjec-
tures and experimental data, of the existence of an extra dimension with large size (1.8).
As such the DD scenario shares many features with theories involving extra dimensions,
however the scales are different. In this paragraph we quickly list some of the most
compelling phenomenological consequences of accepting a DD scenario.
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• We have already seen that there is a new scale at which new physics must be
present, MS ∼ 108 − 109 GeV .

• It was already mentioned that the DD scale m ∼ Λ1/4 coincides with the neutrino
scale. Hence the tower of light states may be identified with a tower of sterile
right-handed neutrinos.

• One of the possible ways to relax the Hubble tension problem is assuming the
presence of early dark energy, dark energy which is already active at the time of
the matter-radiation equality, and by introducing a new scalar field that couples
to the neutrino mass term [42]. These assumptions find a natural embedding in
the DD scenario where the new scalar is the radion, a field parametrizing the size
of the large extra dimension, and the coupling comes from the KK tower being
coupled to the metric.

• In [33] it was shown that the DD scenario naturally leads to spin 2 KK excitations
of the graviton in the dark dimension, called dark gravitons, as a dark matter
candidate. They are emitted at a temperature of T ∼ 4 GeV from SM fields and
decay to lower KK modes as time goes on, while also decreasing their mass which
today is estimated to be mDG ≲ 100 keV . Dark gravitons can also decay to SM
fields affecting the CMB, hence, requiring consistency with the observed data, [43]
put constraints on the allowed parameter space of the DD scenario. Their results
are in agreement with those of [31, 33] that we just reviewed.

2 Calabi-Yau Threefold

2.1 Generic Features of h(1,1) = 3 Models

In order to perform moduli stabilisation we first need the toric data to build a CY, from
that we can then derive the expression for the volume and proceed with the stabilisation.
For this reason we first illustrate generic features of h(1,1) = 3 models and then specify
those to the case of our interest.

Following [22], the kind of CY three-fold we are interested in for this work is a so-called
“weak Swiss-cheese”, where the volume takes the form:

V = f3/2(τj)−
Nsmall∑
i=1

λiτi, j = 1, . . . , Nbig. (2.1)

Where h(1,1) = Nbig +Nsmall, f3/2(τj) is a degree 3/2 function and λi are constants.

The volume form is generally derived from the intersection polynomial, that in the case
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of h(1,1) = 3 takes the form:
I3 = aDfD

2
b + bD3

s . (2.2)

Where a, b are integers and the labels s, b, f stand for small, base and fibre respectively.
Indeed by Oguiso theorem [44], stating that whenever the intersection polynomial is
linear in a particular divisor Di, then Di is either a K3 or a T4 fibration over a P1 base,
we understand that Df is either a K3 or T4 fibre 2, hence the label. It can also be proved
that Ds is a shrinkable del Pezzo divisor that admits non-perturbative effects.

Now recall that the general structure of the volume of a CY is given by 3 (2.28):

V =
1

6

∫
X

J ∧ J ∧ J. (2.3)

Where J is the Kähler (1,1)-form on X which can be expanded on a basis of divisors

{Di} ∈ H1,1(X,Z) as J =
∑h1,1

i=1 Dit
i, with ti the 2-cycles volumes. Hence it follows that:

V =
1

6
titjtk

∫
X

Di ∧Dj ∧Dk ≡
1

6
titjtkκijk. (2.4)

Where κijk are the triple intersection numbers. These can be read as the coefficients of
each term of (2.11).

From (2.4) we can express the four-cycle volumes τi as in (2.52):

τi ≡
∂V
∂ti

=
1

2

∫
X

J ∧ J ∧Di =
1

2
κijkt

jtk. (2.5)

Therefore we now expand the Kähler form on the basis {Df , Db, Ds} as:

J = tfDb + tbDf + tsDs. (2.6)

Thus:

V =
a

2
t2f tb +

b

6
t3s, (2.7)

and:

τb =
∂V
∂tf

= atbtf , τf =
∂V
∂tb

=
a

2
t2f , τs =

∂V
∂ts

=
b

2
t2s. (2.8)

So finally:

V =
1√
2a
τb
√
τf −

√
2

9b
τ 3/2s . (2.9)

2We will only focus on the K3 case here.
3We are now using J instead of J for consistency with the literature, but it sill is the complexified

Kähler form.
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2.2 Explicit Model

The specific model we will work with is taken from [22] and the CY three-fold is described
by the following data:

x1 x2 x3 x4 x5 x6 x7
6 0 0 1 1 1 0 3
8 0 1 1 1 0 1 4
8 1 0 1 0 1 1 4

dP8 NdP10 SD1 NdP15 NdP13 K3 SD2

The Hodge numbers are Hodge numbers (h(2,1), h(1,1)) = (99, 3) and hence the Euler
number is χ(X) = 2(h(1,1) − h(2,1)) = −192.

The Stanley-Reisner ideal reads as:

SR = {x1x5, x1x6x7, x2x3x4, x2x6x7, x3x4x5}. (2.10)

The intersection polynomial in the basis of divisors {D1, D6, D7} is:

I3 = D3
1 + 9D2

7D1 − 3D7D
2
1 + 18D2

7D6 + 81D3
7. (2.11)

While the second Chern class is:

c2(X) = −2D2
1 + 2D1D6 − 2D2

6 +
2

3
D6D7 +

4

3
D2

7. (2.12)

We can express the remaining divisors in term of our basis {D1, D6, D7} as:

D2 = D6 −D1, D3 =
1

3
(D7 −D6) ,

D4 =
1

3
((D7 −D6 − 3D1) , D5 =

1

3
(D7 − 4D6 + 3D1) .

(2.13)

Therefore moving to our specific model we expand the Kähler form on the basis of divisors
as:

J = t1D1 + t6D6 + t7D7. (2.14)

So finally making use of (2.11) we can express the volume of our CY as:

V =
27

2
t37 + 9t27t6 +

9

2
t27t1 −

3

2
t7t

2
1 +

1

6
t31. (2.15)

Now we can compute the four-cycles volumes:

τ1 =
1

2
(t1 − 3t7)

2 , τ6 = 9t27, τ7 =
3

2

(
27t27 − t21 + 12t7t6 + 6t7t1

)
. (2.16)
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Therefore the volume (2.20) can also be expressed as:

V =
1

6

(√
τ6(τ7 − 2τ6 + 3τ1)− 2

√
2τ

3/2
1

)
= t6τ6 +

2

3
τ
3/2
6 −

√
2

3
τ
3/2
1 . (2.17)

This expression for the volume can be further simplified if we notice that the element D7

of our basis of divisors can be replaced Dx = D7 − 2D6 + 3D1. Indeed the intersection
polynomial (2.11) reduces to a simpler structure that resembles the one of (2.2):

I3 = D3
1 + 18D6D

2
x. (2.18)

By Oguiso theorem D6 is the K3 fibre, as we can also read from the table of the toric
data, and D1 is a dP8 surface. For this reason we rename D1 → DdP8 and D6 → DK3.
Accordingly we expand the Kähler form on this new basis as:

J = tsDdP8 + t1DK3 + t2Dx. (2.19)

Making reference to (2.6) we can identify t1 ↔ tb and t2 ↔ tf .

Finally the volume reads as:

V = 9t1t
2
2 +

1

6
t3s = t1τ1 −

√
2

3
τ 3/2s

=
1

6

√
τ1τ2 −

√
2

3
τ 3/2s

≃ 1

6

√
τ1τ2.

(2.20)

Where in the last line we just used the LVS assumption of V ≫ 1 while for the first and
second equality we used:

ts = −
√
2
√
τs, t1 =

τ2
6
√
τ1
, t2 =

1

3

√
τ1. (2.21)

By Oguiso theorem we can also understand (2.20) as V ≃ τ1t1 = Vol(K3) · Vol(P1).
Therefore we can picture our CY manifold as in Fig. 3.1.

Now we briefly recall the ideas we met in Sec. 3. Assuming that the axiodilaton and the
h1,2 complex structure moduli are already stabilised thanks to the background fluxes,
we are left with 3 unstabilised Kähler moduli and the volume (2.20) due to the no-
scale structure of the tree level Kähler potential. Out of them, the small 4-cycle τs and
the volume itself can be stabilised by the introduction of α′3 corrections to the Kähler
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t1

t2

τ1τ2

Figure 3.1: Pictorial representation as a direct product (instead of a proper fibration) of
the CY manifold we consider for our model. We shall “forget” it later as we will deform
away from it.

potential (3.22) and non-perturbative ones to the superpotential:

Kα′3 = K0 − 2 ln

(
V +

ξ

2g
3/2
s

)
(2.22)

W = W0 +

Nsmall∑
i=1

Aie
−aiTi . (2.23)

From (3.22) and (2.23) we can compute the F-term scalar potential, which is not flat
anymore along V and τs, and stabilise these two moduli:

⟨τs⟩ ∼
ξ2/3

gs
, (2.24)

⟨V⟩ ∼ eas⟨τs⟩. (2.25)

Since we are working in the small coupling limit, namely gs ≪ 1, the volume is stabilised
at large values, as per required by LVS.

However there still is a flat direction of the potential in the (τ1, τ2)-plane, given by
the ratio of those two cycles. Indeed we began with three Kähler moduli and we only
stabilised one. This can be easily seen by performing a canonical normalisation of the
kinetic Lagrangian [45]. Neglecting the small cycle in (2.20), such Lagrangian reads as:

Lkin =
∂2K

∂Ti∂T̄j̄
∂µT

i∂µT̄ j̄ =
1

τ 21
∂µτ1∂

µτ1 +
2

τ 22
∂µτ2∂

µτ2. (2.26)

Where we have set to zero the corresponding axions θi.

We can put (2.26) into canonical form if we define τ1, τ2 in terms of two new fields ϕ, χ:

τ1 =e
√

1
3
χ+
√

2
3
ϕ, (2.27)

τ2 =e
√

1
3
χ− 1√

6
ϕ
. (2.28)
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So finally:

V ≃
√
τ1τ2 = e

√
3

2
χ, (2.29)

u ≡τ1
τ2

= e
√

3
2
ϕ. (2.30)

From (2.30) we can see that the flat direction that needs to be stabilised is ϕ, which is
equivalent to the ratio τ1/τ2. However it turns out that it is preferable to stabilise τ1
directly and then infer τ2 from (2.20) as we will see later.

3 Anisotropic Moduli Stabilisation

3.1 Kähler Moduli Stabilisation

All we are missing to perform the stabilisation are the correction to VLV S which lift the
flat direction. Following ideas presented in [46], where the made use of string loop and
poly-instanton corrections to achieve an anisotropic stabilisation of the moduli, the kind
of corrections we introduce are string loop corrections and higher derivative corrections.
The former were first computed in [47] for toroidal orientifolds (with N = 1, 2) and,
from there, inferred for smooth CY orientifolds in [48], while a derivation of the former
can be found in [49]. We follow the conventions of [50] where these corrections take the
following form:

• String loop corrections.
These corrections come in two different kinds: KK ones and winding ones. The
former, of order (α′)2g2s , is due to the exchange of closed strings carrying KK
momentum between D-branes, while the latter, of order (α′)4g2s , is due to the
exchange of winding strings between intersecting D-branes.

These two corrections affect the Kähler potential:

δKKK
gs = gs

∑
i

CKK
i ti⊥
V

, (3.1)

δKW
gs =

∑
ij

CW
ij

Vt∩ij
. (3.2)

Where CKK
i and CW

ij are functions of the complex structure moduli, which become
constant once such moduli have been stabilised, and are expected to be of order
∼ O(1). The ti⊥, t

∩
ij denote respectively the 2-cycles transverse to the D-branes and

the 2-cycles where the D-branes intersect.
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D7 D7

ti⊥

D7

D7

ti∩

D7 D7

Figure 3.2: Physical realization of the string loop corrections. On the left we have two
D7-branes exchanging an open string that makes a loop, which is effectively the same as
the exchange of a closed string. On the right we have two intersecting D7-branes and,
below, a zoom of a string extending between them that can wind around the “throat”
formed by the D-branes. Stacks of multiple D-branes are also possible in both cases.

Then (3.1), (3.2) in turn imply that:

δV KK
gs =

g3s
2

|W0|2

V2

∑
i,j

CKK
i CKK

j K0
ij, (3.3)

δV W
gs = − gs

|W0|2

V3

∑
ij

CW
ij

tij∩
(3.4)

Where K0
ij is the tree-level Kähler potential and tij∩ is computed as:

tij∩ =

∫
X

J ∧Di ∧Dj. (3.5)

It is important to notice that, despite (3.1) is a correction of order (α′)2g2s , it
becomes of order (α′)4g4s when we move to the potential (3.3) due to an extended no-
scale structure. As such in can be effectively considered as a 2-loop KK correction.
This fact will be crucial later on.
The extended no-scale structure we just mentioned can be easily understood in the
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case of a single modulus, τ . In this case V = τ 3/2 and:

Ktree =− 2 ln (V) = −3 ln (τ) , (3.6)

δKKK
gs ≃ Ct

V
=
C

τ
(3.7)

Therefore Ktot = −3 ln(τ) + C/τ , that, on the other hand, can also be expressed
as:

Ktot =− 3 ln (τ − λ) = −3 ln

(
τ

(
1− λ

τ

))
=− 3 ln (τ)− 3 ln

(
1− λ

τ

)
λ/τ≪1
≃ −3 ln (τ) +

3λ

τ
+ o

(
1

τ 2

) (3.8)

By an appropriate choice of λ we get back the other form of Ktot and we are left
with two-loop correction o (1/τ 2).
The extended no-scale structure property (3.8) is just a consequence of the fact
that the correction (3.7) can be put inside of the logarithm.
This line of reasoning cannot be applied to (3.2) due to its different τ -scaling:
δKW

gs ≃ 1/(Vt) ∼ 1/τ 2. Hence δKW
gs is indeed a one-loop correction.

• Higher derivative corrections.
These corrections, differently from the string loop ones, cannot be described start-
ing from the Kähler potential or the superpotential. They are direct corrections to
the scalar potential coming from higher derivative operators and can be thought
of as a subset of the (α′)3 order corrections. In particular we focus on the four
derivative terms so that:

δVF 4 = −
√
gs

4

|W0|4

V4
Πit

i , (3.9)

where λ is a combinatorial factor, whose numerical value has been computed to
be λ = −3.5 · 10−4 for the case of a single modulus in [51], where the authors
also argue that it is expected to remain small for more moduli too. Indeed this
coefficient, as well as the rest of the correction, can be understood as coming from
a tensor coupling to four derivatives, as it is an F 4 correction, which always carries
a factor of c · ζ(3)/(2π)4, with c some other combinatorial factor, which is 11/384
for a single modulus [52]:

δVF 4 = e−2KT ijk̄l̄DiWDjWD̄k̄W̄ D̄L̄W̄ . (3.10)

With:

Tijk̄l̄ =
c · ζ(3)

(2π)4V8/3g
3/2
s

∫
X

c2(X) ∧ J. (3.11)
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From now on, we will take λ = −|λ|.
The Πi’s are topological quantities which depend on the second Chern class as
follows:

Πi ≡
∫
X

c2(X) ∧Di. (3.12)

Where c2(X) is the second Chern class of X and Di are the divisors associated to
the 2-cycles ti. Neglecting the ts cycle, we only have two divisors, τ1 and τ2. The
τ1 divisor is a K3 surface with Π1 = 24 [53].
Recalling that t2 is associated to the divisor Dx = D7 + 2D6 − 3D1 (2.19) we can
also compute Π2 by making use of its definition (3.12) and (2.12): Π2 = 96.

We can finally apply these ideas to our model, the one with volume (2.20). The Kähler
metric, entering (3.3), is:

K0
ij =


1

τ 21
0

0
2

τ 22

 (3.13)

Thus the corrections (3.3),(3.4) and (3.9) take the form:

Vcorrection = δV KK
gs + δV W

gs + δVF 4

=
g3s
2

|W0|2

V2

[
(CKK

1 )2

τ 21
+
τ1
18

(CKK
2 )2

V2

]
− gs

6

|W0|2

V3

CW
12√
τ1

+

√
gs

4

|λ||W0|4

V4

[
Π1

V
τ1

+
Π2

3

√
τ1

]
.

(3.14)

We replaced any τ2 with τ1 using (2.20) so that we can now take ∂τ1Vcorrection and stabilise
τ1. However, before this, it is important to notice that the first term of (3.14) is not
subdominant with respect to VLV S ∝ V−3, when we would expect it to be since (3.14) is
made up of correction terms. A solution to the issue is setting CKK

1 = 0, a choice that
can be readily justified by an argument mentioned previously. Indeed we have seen that
(3.3) is effectively a 2-loop correction due to the extended no-scale structure of (3.1). For
this reason we should regard our total Kähler potential as carrying a 2-loop correction
too Ktot = −3 ln(τ)+C/τ+K2-loop, but we cannot be ensured that K2-loop does not enjoy
a no-scale property too, so we should move to K3-loop and so on. Following this idea it
is safe to assume not only CKK

1 = 0 but also CKK
2 = 0 as they both descend from KK

corrections. This solution can also be justified via a specific choice of brane wrappings,
for example if all D7-branes intersect each other and there are no D3-branes [54].
We can now stabilise τ1:

∂Vcorrection
∂τ1

=
A

V3

√
τ1 −

B

V3
+
C

V4
τ
3/2
1 = 0 , (3.15)
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where we defined:
A =

gs
12
CW

12 |W0|2,

B =

√
gs

4
|λ||W0|4Π1,

C =

√
gs

24
|λ||W0|4Π2.

(3.16)

Now we define x =
√
τ1, p = AV/C, q = BV/C so that we can put (3.15) into the form:

x3 + px− q = 0. (3.17)

Whose general solution is:

x =
21/3

[
9q +

√
12p3 + 81q2

]2/3
− 2 · 31/3p

62/3
[
9q +

√
12p3 + 81q2

]1/3 . (3.18)

The large volume limit, V ≫ 1, corresponds to p ≫ 1 and q ≫ 1. In this limit (3.18)
simplifies to:

x ≃ q

p
⇔ τ1 =

(
q

p

)2

=

(
B

A

)2

=

(
3
|λ||W0|2Π1

CW
12

√
gs

)2

. (3.19)

All we have to do now is choose specific values for the parameters. Actually we have
already done it for most of them previously, but we left outW0. Scans over many different
vacua in type IIB, such as [55], show that the typical values are W0 ∼ O(1−10). Calling
N the number of stacked D-branes and taking χ(X) = −192, we choose our parameters
as follows:
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Parameters Stabilised Moduli

W0 = 7 N = 1 ⟨V⟩ ≃ 2.3 · 1016

CW
12 = 1 ξ ≃ 0.46 ⟨τ1⟩ ≃ 15.2

|λ| = 3.5 · 10−4 Π1 = 24 ⟨τ2⟩ ≃ 3.6 · 1016

gs = 0.1 Π2 = 96

W0 = 7 N = 5 ⟨V⟩ ≃ 1.9 · 103

CW
12 = 1 ξ ≃ 0.46 ⟨τ1⟩ ≃ 15.2

|λ| = 3.5 · 10−4 Π1 = 24 ⟨τ2⟩ ≃ 2.9 · 103

gs = 0.1 Π2 = 96

Table 3.1: Different values for the parameters and corresponding values of the stabilised
moduli. Depending on the context in which we want to perform the stabilisation we
might consider one possibility or the other. For example applications to inflation require
V ∼ 103, but to match with the string scale predicted by the DD scenario we want
V ∼ 1015 − 1016.

We could have also neglected the last term of (3.15) because of the stronger suppression
caused by V−4. Indeed in this case τ1 = (B/A)2 ≃ 15.2. Either way the moduli are
stabilised at the minimum, in fact:

∂2Vcorrection
∂2τ1

=
1

V3τ 31

(
2B − 3

2
A
√
τ1

)
=

1

V3τ 31

(
1

2
B

)
> 0. (3.20)

This holds since B ∝ |λ| > 0, which is therefore a necessary condition. Reintroducing
the V−4 term does not spoil the result due to its stronger suppression.

We can see a first contact between the moduli stabilisation just described and the DD
scenario by computing the string scale starting from the data in Tab. 3.1. In fact we
have seen that the DD scenario predicts MS ∼ 108 − 109 GeV (1.2) and indeed, making
use of (3.1) with V ≃ 2.3 · 1016, we find exactly MS ∼ 108 GeV .

3.2 Complex Structure Stabilisation and Deformation of the P1

Base

With the moduli stabilisation just described we reached a situation where the P1 base
is much larger than the K3 fibre, hence our CY manifold presents two large dimensions.
The DD scenario however tells us that only one extra dimension must be large so, in
order to be consistent with this prediction, we must now deform the P1 base so that one
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dimension is much larger than the other (we can picture it as an S2 being deformed into
a long cigar).

The size of the P1 base is controlled by the holomorphic (3, 0)-form integrated on some
appropriate three-cycles which we must construct. In order to understand why, it is
useful first to re-write the weight system as follows:

x1 x6 x2 x3 x4 x5 x7
6 0 0 0 1 1 1 3
8 0 1 1 1 1 0 4
6 -1 0 1 1 2 0 3

dP8 K3 NdP10 SD1 NdP15 NdP13 SD2

The first two lines show a K3 fibration over a P1 base. Furthermore the K3 is a double
cover of a P2.
If we had only the first two lines, without the first column, we would have a K3 fibration
where the fibre has at most ADE singularities, i.e. it never splits into two divisor compo-
nents. The third line shows a blow up of a dP8: this is obtained first by generating dP8

singularities over the point x2 = 0 in the P1 base, and then blowing up such singularity.
After this we obtain a K3 fibration in which the generic fibre (the fibre of a generic point
in the P1 base) is a K3 surface, while over one point of the P1 it splits into two surfaces,
one of which is the dP8.

It is also convenient to blow down the dP8 so that we work with less projective coordi-
nates and the weight system simplifies to:

x6 x2 x3 x4 x5 x7
6 0 0 1 1 1 3
8 1 1 1 1 0 4

From here we read that the projective coordinates for the P1 base are x2 and x6.

From these data we can also derive the CY equation by writing all possible monomials
that keep X smooth:

x27 = x63Q1(x2, x6) + x43x
2
4Q2(x2, x6) + x64Q3(x2, x6)

+ x43x
2
5x

2
2Q4(x2, x6) + x65x

6
2Q5(x2, x6) + c0x

3
4x

3
5x

5
6

(3.21)

Where Qi(x2, x6) are homogeneous polynomial of degree 2 in the coordinates x2, x6.
From (3.21) are finally able to build the aforementioned three-cycles as follows:

• Choose Q1(x2, x6) = x26 − x22 and all the other Qi’s different from Q1.
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• Take the two points P1 : x6 = x2 and P2 : x6 = −x2. Up to the P1 C∗-rescaling,
one can set P1 : x6 = x2 = 1 and P2 : x6 = −x2 = 1. Over these points the K3
fibre develops an A1 singularity along x7 = x4 = x5 = 0. In fact, near these points
x3 ̸= 0 and we can gauge fix the P2 C∗-action by setting x3 = 1; neglecting the
terms that goes to zero quicker that the remaining ones, the K3 looks like:

x27 = Q2(±1, 1)x24 +Q4(±1, 1)x25. (3.22)

• If we move away the points P1 and P2, we add the term Q1(±1, 1) to the equation
(3.22), deforming the A1-singularity (the K3 fibre becomes smooth). The deforma-
tion occurs by blowing up an S2. This sphere shrinks to zero size on top of P1 and
P2 generating the A1 singularity.

• We now take a path γ in P1 that connects P1 and P2, such that over all its points
the K3 fibre is smooth, except over P1 and P2.

• The fibration of the S2 over the γ gives a three-cycle with the topology of S3. Its
size is controlled by

∫
S3 Ω3, with Ω3 the holomorphic (3,0)-form of the CY threefold.

Its symplectic dual 3-cycle can be constructed as follows:

• Over each point of γ the K3 is smooth and will have several two-cycles that intersect
S2 at one point. These two cycles will have non-trivial monodromies along closed
path in the P1 base, that make them trivial two-cycles in the CY threefold X.

• There will however be a closed loop ℓ in the P1 base such that it intersects γ in one
point and there is a two-cycle Σ2 that has trivial monodromy along ℓ and intersects
S2 once.

• One can construct the three-cycle Σ3 as the fibration of Σ2 along ℓ.

The intersection between the two three-cycles is

S3 · Σ3 = 1. (3.23)

These two three-cycles are shown in Fig. 3.3.
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Figure 3.3: The three-cycles controlling the size of the P1 base.

Now we can consider a region in the complex structure moduli space where Ω is such
that: ∫

S3 Ω∫
Σ3 Ω

≫ 1. (3.24)

On the other hand the K3 two-cycles are all of comparable size and smaller with respect
to the P1 base. In this region, while S2 and Σ2 are of comparable small size, the relation
(3.24) forces γ to be much longer than ℓ so the large P1 base takes the form with one
direction much bigger that the others, as shown in Fig. 3.4.

Figure 3.4: The deformed P1 base and the corresponding three-cycles.

We can give a physical interpretation of what (3.24) means starting from the quantisation
condition for the fluxes (3.2) and the tadpole cancellation condition (3.7). Indeed (3.2)
can also be understood as the fluxes being elements of a cohomology group: H3, F3 ∈
H3(X,Z). Hence, recalling that the symplectic basis (αK , β

K), introduced in Sec. 3, is
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exactly a basis of H3(X,Z), we have the following expansions:

F3 = mK
RRαK − eRRK , (3.25)

H3 = mKαK − eKβ
K . (3.26)

Where we set ℓs = 1 and mK
RR,m

K , eRRK , eK are a set of integers.

Thus the tadpole cancellation condition (3.7) takes the form:

eKm
K
RR −mKeRRK +Qloc = 0. (3.27)

Therefore, if we know Qloc, which means knowing the specifics of the brane setup, we
are able to find integers that saturate (3.27).

In the context of moduli stabilisation it is also common to define the A-period and the
B-period. These are just the integral of the (3, 0)-form Ω on three-cycles, respectively
called A-cycle and B-cycle, that are the Poincaré duals of the symplectic basis (αK , β

K):

XI =

∫
AI

Ω, (3.28)

FI =

∫
BI

Ω. (3.29)

Therefore it also follows that:
Ω = XIαI − FIβ

I . (3.30)

In our case these three-cycles are exactly S3 and Σ3.

Finally, recalling that the flux superpotential (3.15) involves Ω as well as H3 and F3

through the definition of G3 (1.95), we are able to express (3.24) as the ratio of functions
of the integers mK

RR,m
K , eRRK , eK :∫

S3 Ω∫
Σ3 Ω

=
U(mK ,mK

RR)

Z(eK , eRR K)
. (3.31)
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Chapter 4

Conclusions

In this thesis we presented a model for moduli stabilisation where the Kähler moduli are
stabilised at very different values, yielding a compactification where the extra dimensions
have different sizes, a picture that reproduces nicely the DD scenario. This result was
achieved via gs and F

4 corrections to the tree level Kähler potential.
We started in Chapter 2 with a review of string theory, both the bosonic one and its
supersymmetric extension which turns out to be necessary if we want to describe fermions
and get rid of tachyons, highlighting their spectra in order to show why string theory is
not only a QG candidate, but a promising one, as was already hinted at in Chapter 1 by
comparing Feynman and stringy diagrams. We focused especially on type IIB, describing
its low energy supergravity action as well as the contribution of D-branes.
All five superstring theories predict ten spacetime dimensions, six of which must be
unobserved if we want to make contact with the observations. We dealt with this aspect
in Chapter 2 where we proved that the requirement of N = 1 supersymmetry in four
dimensions severely constrains the geometrical and topological properties of the six extra
dimensions, forcing them to be a CY three-fold. At that point we had the tools to
discuss deformations of CY manifolds. These are parametrized by scalar fields called
moduli, hence giving rise to the concept of moduli space, and are generated whenever
we compactify a theory with extra dimensions. Once again we focused on type IIB
and its spectrum upon compactification, both in the un-orientifolded and orientifolded
case, the latter being necessary if we want type IIB compactifications to have N = 1
supersymmetry.
We then moved on to discuss the physical implications of moduli fields in the context of
ISD compactifications. Indeed moduli spoil the phenomenology of a theory generating
unobserved forces due to their masslessness, an issue that can be cured using fluxes for
the complex structure moduli while for the Kähler moduli we need quantum corrections
due to the no-scale structure. These are perturbative for the Kähler potential and non-
perturbative for the flux superpotential. We then showed in the context of the KKLT
scenario and LVS, the most successful paradigms for moduli stabilisation, how such
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corrections can lift the flat directions of the scalar potential, hence giving a mass to the
moduli.
Finally, in Chapter 3 we presented an explicit model for moduli stabilisation which
naturally leads to an anisotropic compactification. This was achieved introducing one-
loop gs corrections, of KK and W type, as well as higher derivative F 4 corrections. The
former descend from corrections to the Kähler potential, of order (α′)2g2s for the KK
ones and of order (α′)4g2s for the W ones. The latter, a subset of the (α′)3 corrections,
affect directly the scalar potential and descend from a tensorial coupling. We also proved
that the gs corrections of KK type enjoy an extended no-scale structure, making them
two-loop corrections effectively.
Knowing the general structure of the corrections, we could apply those ideas to a specific
model: starting from toric data that describe the CY manifold, we derived the volume,
the tree-level Kähler potential, the intersection two-cycles and the topological numbers
Πi. This led us to a correction to the leading order LVS scalar potential, which is not
subdominant due to the presence of a V−2 factor carried by the KK corrections. Here
the extended no-scale structure came in our rescue. Since the gs corrections of KK type
are effectively two-loop corrections, we should take into account all two-loop corrections
to the tree-level Kähler potential, let us denote them by K2−loop. However we cannot
be ensured that K2−loop does not enjoy a no-scale structure property too. Hence we
should move to K3−loop and so on. This allowed us to set to zero all the KK corrections 1

and have a correction to the leading order scalar potential which is indeed subdominant.
From there we performed moduli stabilisation and obtained naturally anisotropic results
for the four-cycle volumes where the P1 base of our fibered CY is much larger than the
K3 fibre itself.
Finally, we concluded by deforming the P1 base. Indeed the DD scenario predicts one
single large extra dimension, but from the stabilisation we found two. In order to achieve
that result we started from the equation describing the CY manifold and constructed
two three-cycles, S3 and Σ3, which control the shape of the P1 base once we integrate the
holomorphic (3, 0)-form Ω on them. The deformation was achieved by limiting ourselves
in a region of the complex structure moduli space where

∫
S3 Ω/

∫
Σ3 Ω ≫ 1. We gave

a physical interpretation of this result starting from the quantisation condition for the
fluxes and the tadpole cancellation condition.

1As we mentioned in the relative section, this can also be justified via a specific choice of brane
wrappings.
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Appendix A

Mathematical Preliminaries

In this appendix we want to present a few details on the mathematical background needed
throughout the thesis. The standard books [4, 5, 8, 12, 13] have chapters dedicated to
these aspects, while a more in-depth treatment can be found in [56, 57].

1 Complex Geometry

Definition 1. A complex manifold M is a real manifold of dimensionality n = 2m such
that the charts are φα : Uα → Ck, Uα ⊂M , and the transition functions are holomorphic.

Complex manifolds can also be defined starting from a (1, 1)-tensor field J called almost
complex structure. This tensor field can be thought of as map 1 J : TM → TM sat-
isfying a “manifold version” of the Cauchy–Riemann equations. Given a basis of TM
{(∂/∂xµ, ∂/∂yµ)}µ=1,...,m :

J

(
∂

∂xµ

)
=

∂

∂yµ
, J

(
∂

∂yµ

)
= − ∂

∂xµ
. (A.1)

From here one can check that J2 = −IdTM , hence the action of J corresponds to the
multiplication by ±i roughly speaking.
It can be proved that, thanks to the Cauchy–Riemann relations, the action of J is
independent of the chart and hence we can always express it as:

J =

(
Im 0
0 −Im

)
(A.2)

1Actually we should first define J pointwise as JP : TPM → TPM but since the components of JP
are constant at any point (A.2) we can then define J as we have done here.
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We can further extend the definition of J to the complexified tangent space TMC =
{X + iY | X, Y ∈ TM} as J(X + iY ) = JX + iJY and (A.2) is updated to:

J =

(
iIm 0
0 −iIm

)
(A.3)

The usual expression of the almost complex structure using (anti-)holomorphic indices
is:

J ν
µ = iδ ν

µ , J ν̄
µ̄ = −iδ ν̄

µ̄ (A.4)

There will be vectors that are eigenvectors of J . Take for example Z = Zµ∂/∂zµ, with
{∂/∂zµ} a holomorphic basis of TMC, then JZ = iZ. Similarly if Z ′ = Z ′µ∂/∂z̄µm with
{∂/∂z̄µ} an anti-holomorphic basis of TMC then JZ ′ = −iZ ′. Hence we can split TMC

into even and odd eigenspaces:

TMC = TM+ ⊕ TM−. (A.5)

With
TM± = {Z ∈ TMC | JZ = ±iZ}. (A.6)

TM+ is spanned by {∂/∂zµ} and TM− by {∂/∂z̄µ}.
Now we can uniquely decompose any Z ∈ TMC as Z = Z++Z−, Z± ∈ TM±. If Z = Z+

only then Z is a holomorphic vector and if Z = Z− only then Z is an anti-holomorphic
vector.

As we anticipated we can define a complex manifold in terms of this tensor field J .

Definition 2. Given a differentiable manifoldM of dimensionm the pair (M,J) is called
almost complex manifold of dimension n = 2m if J is an almost complex structure.

Almost complex manifolds can be promoted to complex manifolds if the Nijenhuis tensor
associated to J vanishes. This is also stated as J being integrable.

Definition 3. Given two vector fields X, Y ∈ X (M), the set of all vector fields on M ,
the Nijenhuis tensor is defined as:

N(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]. (A.7)

Given a coordinate basis {eµ = ∂/∂xµ} its component expression is:

N(X, Y ) = XκY ν
[
−J µ

λ (∂νJ
λ

κ ) + J µ
λ (∂κJ

λ
ν )− J λ

κ (∂λJ
µ

ν ) + J λ
ν (∂λJ

µ
κ )
]
eµ. (A.8)

Or simply:
Nλ

µν = J σ
µ ∂[σJ

λ
ν] − J σ

ν ∂[σJ
λ

µ] . (A.9)

We can now state the Newlander-Nirenberg theorem:

Theorem 1. Given an almost complex manifold (M,J), if J is integrable then the
manifold M is a complex manifold.
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1.1 Differential Forms on Complex Manifolds

We can now start discussing differential forms on complex manifolds and the cohomology
groups built from them.

Definition 4. Given two real r-forms αr and βr, we can define a complex r-form as the
sum:

γr ≡ αr + iβr. (A.10)

Its conjugate form is γ̄r = αr − iβr.

We denote the vector space of complex r-forms by Ωr
C(M). This vector space can be

decomposed into holomorphic and anti-holomorphic components, just like TMC (A.5).

Ωk
C =

⊕
k=r+s

Ωr,s. (A.11)

Where Ωr,s(M) is the vector space of (r, s)-forms.

Definition 5. An (r, s)-form is a complex differential form with r holomorphic indices
and s anti-holomorphic indices.

An element γr,s ∈ Ωr,s(M) can be expanded as:

γr,s =
1

r!s!
γMN̄dz

M ∧ dz̄N̄. (A.12)

With the convention γMN̄ = γµ1...µr ν̄1...ν̄s and dzM ∧ dz̄N̄ a basis for (r, s)-forms that
follows the same notation:

dzM ∧ dz̄N̄ ≡ dzµ1 ∧ · · · ∧ dzµr ∧ dz̄ν̄1 ∧ · · · ∧ dz̄ν̄s . (A.13)

Any complex k-form can be decomposed into a sum of (r, s)-forms coherently with the
decomposition (A.11):

γk =
∑

k=r+s

γr,s. (A.14)

A natural question is if we can extend the concept of exterior derivative d to complex
forms. The answer is yes and what we are looking for are the Dolbeaut operators. There
are two such operators:

• The operator ∂ : Ωr,s → Ωr+1,s whose action on γr,s ∈ Ωr,s is:

∂γr,s =

(
∂

∂zα
γMN̄

)
dzα ∧ dzM ∧ dz̄N̄. (A.15)
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• The operator ∂̄ : Ωr,s → Ωr, s+ 1 whose action on γr,s ∈ Ωr,s is:

∂̄γr,s =

(
∂

∂z̄ᾱ
γMN̄

)
dz̄ᾱ ∧ dzM ∧ dz̄N̄. (A.16)

It can be proved that these operators obey:

d =∂ + ∂̄, (A.17)

∂2 =∂̄2 = ∂∂̄ + ∂̄∂ = 0. (A.18)

Given γr,0 ∈ Ωr,0, this is called holomorphic (r, 0)-form if and only if ∂̄γr,0 = 0. Similarly
γ0,s ∈ Ω0,s is an anti-holomorphic (0, s)-form if and only if ∂γ0,s = 0. If these relations
hold for generic (r, s)-forms, namely ∂̄γr,s = 0 or ∂γr,s = 0, we say that γr,s is ∂̄-closed or
∂-closed respectively, as happens in the case of real forms. Not only, we can also define
exact forms: γr,s is ∂-exact if γr,s = ∂δr−1,s and is ∂̄-exact if γr,s = ∂̄δr,s−1

Having the Dolbeaut operators (A.15), (A.16) at our disposal we can define the Dolbeaut
cohomology groups

Definition 6. The (r, s)-th Dolbeaut cohomology group is defined as 2 :

Hr,s

∂̄
(M,C) ≡ Zr,s

∂̄
(M)/Br,s

∂̄
(M). (A.19)

Where Zr,s

∂̄
(M) is the set of ∂̄-closed (r, s)-forms on M and Br,s

∂̄
(M) is the set of ∂̄-exact

(r, s)-forms on M .

We can now extend Hodge theory, first developed for real manifolds, to complex manifolds
just by generalizing the Hodge operator ⋆ so that it can act on the complexified tangent
space. Thus we can define an inner product involving ⋆:

(α, β) =

∫
M

α ∧ ⋆β̄, (A.20)

and from here we define ∂† and ∂̄†, the adjoints of ∂ and ∂̄, by means of:

(α, ∂β) = (∂†α, β), (α, ∂̄β) = (∂̄†α, β). (A.21)

Hence one can prove that the operators (A.15), (A.16) and their adjoints are related by
(A.21):

∂† =− ⋆∂̄⋆, (A.22)

∂̄† =− ⋆∂ ⋆ . (A.23)

2It is convention to work with the ∂̄ operator but we could define Hr,s
∂ (M,C) in complete analogy

as we just need to take complex conjugation to move from ∂ to ∂̄.
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Finally we can define the Laplace operators, that come in two different kinds:

∆∂ = ∂∂† + ∂†∂, ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄. (A.24)

The forms annihilated by ∆∂̄
3 are called ∂̄-harmonic forms and we denote the set of all

such (r, s)-forms by Hr,s

∂̄
(M). The utility of this construction comes from Hodge theorem

which states that
Hr,s

∂̄
(M,C) ∼= Hr,s

∂̄
(M) (A.25)

It follows that Hodge numbers also represent the dimensionality of Dolbeaut cohomology
groups:

h(r,s) = dim
(
Hr,s

∂̄
(M,C)

)
. (A.26)

1.2 Kähler Manifolds

In string theory Calabi-Yau manifolds play a key role, as we have seen in Sec. 2. These
are just a special kind of Kähler manifolds so it is worth spending some time to describe
their main features. Not only, Kähler manifolds are also relevant whenever studying
general supersymmetric theories.

In order to define a Kähler manifold we first need to define what is an Hermitian metric:

Definition 7. A Hermitian metric on a complex manifold M is a Riemannian metric
g : TM × TM → R such that for any X, Y ∈ TM :

g(JX, JY ) = g(X, Y ). (A.27)

The pair (M, g) is called Hermitian manifold.

Any complex manifold admits a Hermitian metric by direct construction. Indeed given
a Riemannian metric g on a complex manifold M we can define an associated Hermitian
metric by means of:

ĝ(X, Y ) ≡ 1

2
[g(X, Y ) + g(JX, JY )] (A.28)

Furthermore, as a consequence of the definition (A.27), the purely holomorphic and
purely anti-holomorphic components of g vanish:

gµν = g

(
∂

∂zµ
,
∂

∂zν

)
= g

(
J
∂

∂zµ
, J

∂

∂zν

)
= −g

(
∂

∂zµ
,
∂

∂zν

)
= −gµν . (A.29)

The same line of reasoning can be used to prove gµ̄ν̄ = 0, hence g can be expressed as:

g = gµν̄dz
µ ⊗ dz̄ν̄ + gµ̄νdz̄

µ̄ ⊗ dzν . (A.30)

3Again we focus on the ∂̄ only for consistency with the construction of the Dolbeaut cohomology
groups.
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Starting from this metric we can define a (1, 1)-form called Kähler form of the Hermitian
manifold:

ω ≡− Jµν̄dz
µdz̄ν̄

= igµν̄dz
µdz̄ν̄ .

(A.31)

With Jµν̄ = gµλ̄J
λ̄

ν = −igµν̄ .

Definition 8. A Kähler manifold is a Hermitian manifold with closed Kähler form:

dω = 0 (A.32)

This statement is equivalent to saying that a complex manifoldM of complex dimension
m is Kähler if its holonomy group is Hol(M) = U(m).

Kähler metrics, that are metrics on Kähler manifolds, can always be express locally in
terms of a scalar function K called Kähler potential:

gµν̄ = ∂µ∂ν̄K. (A.33)

Having a metric we can also define all the quantities we are used to from Riemannian
geometry. For instance the only non-vanishing components of the Riemann tensor are:

Rµ
νρσ̄ = −∂σ̄Γµ

νρ. (A.34)

Where Γµ
νρ = gµσ̄∂νgρσ̄ is the only non-vanishing component of the Christoffel symbols,

together with the conjugate Γµ̄
ν̄ρ̄.

From the Riemann tensor (A.34) we can find the Ricci tensor:

Rνσ̄ ≡ Rµ
µνσ̄

=− ∂σ̄Γ
µ
νµ

=− ∂σ̄∂ν ln g.

(A.35)

Where we used the Jacobi’s formula gµσ̄∂νgρσ̄ = ∂ν ln det(gρσ̄) and defined g ≡ det(gρσ̄).

Finally, out of the Ricci tensor (A.35), we can build the Ricci (1, 1)-form. This is defined
locally as:

R ≡ iRµν̄dz
µ ∧ dz̄ν̄

= i∂∂̄ ln g.
(A.36)

It is easy to check that the Ricci form we just defined is real using (A.18)

R̄ = −i∂∂̄ ln g = −i∂̄∂ ln g = i∂∂̄ ln g = R. (A.37)
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Not only, it is also closed due to (A.17) and (A.18). It is useful to state the closure also
in the following terms:

R =
1

2
d
(
∂̄ − ∂

)
ln g. (A.38)

Where we used another relation between the exterior derivative d and the Dolbeaut
operators, namely d(∂̄ − ∂) = 2∂∂̄. Clearly R is closed since d2 = 0.
Indeed now with (A.38) we can easily see that R is not exact as g is not a scalar and
(∂̄ − ∂) ln g is not globally defined.

The existence of a closed and non-exact form naturally leads us to define a cohomology
class:

Definition 9. The first Chern class is the de Rham cohomology class of the Ricci form:

c1(M) ≡ 1

2π
[R] . (A.39)

We conclude this paragraph on Kähler manifolds with the definition of a Calabi-Yau
manifold:

Definition 10. A Calabi-Yau k-fold is a compact 4 manifold M of complex dimension
k that is simply connected 5 and satisfies the following equivalent conditions:

1. M has a Kähler metric and holonomy group Hol(M) = SU(k).

2. There exists a nowhere-vanishing (k, 0)-form on M .

3. M has a Kähler metric with vanishing Ricci tensor.

4. M has vanishing first Chern class c1(M) = 0.

Indeed it was first conjectured by Calabi and later proved by Yau that, given a compact
Kähler manifold X with c1(X) = 0, there exists a Ricci flat metric Kähler metric on X
[58].

2 Bundles and Characteristic Classes

A bundle, abbreviated form for fibre bundle, is an object that locally look like the product
of two manifolds, called base and fibre.

4There exist non-compact CY k-folds, such as the 1-fold C or the 2-folds C2 and C × T 2, however
we are only interested in the compact one for physical application, so we limit ourselves to those ones.

5As in the case of compactness, we can allow for non-simply connected CY k-folds, but we are not
physically interested in them. Furthermore, in this case, conditions 1 and 3 are not equivalent anymore.
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Definition 11. A differentiable fibre bundle (E,B, F,G, π) is a structure consisting of
6:

• A differentiable manifold E called total space.

• A differentiable manifold B called base space.

• A differentiable manifold F called fibre.

• A surjection π : E → B called projection. For any p ∈ B, the pre-image π−1(p) ≡
Fp is called fibre at p.

• A Lie group G, called structure group, which acts on F from that left, that is to
say:

Lg : G× F →F,

(g, f) →Lg(f) ≡ gf.
(A.40)

• A set of open coverings {Ui}, Ui ⊂M ∀i with a diffeomorphism:

ϕi : Ui × F → π−1(Ui), (A.41)

such that:
π ◦ ϕi(p, f) = p. (A.42)

The map ϕi is called local trivialization.
We can also define ϕi,p ≡ ϕi(p, ·) : F → Fp which is still a diffeomorphism.

• Finally on Ui ∩ Uj ̸= ∅ we ask that the map:

tij(p) ≡ ϕ−1
i,p ◦ ϕj,p : F → F (A.43)

is an element of G. In this way ϕi and ϕj are related by the smooth map
tij : Ui ∩ Uj → G as follows:

ϕj(p, f) = ϕi(p, tij(p)f). (A.44)

The map tij is called transition function (see Fig. A.1).

We denote bundles by E
π→ B.

6To be honest what define here is something known as coordinate bundle in the mathematical litera-
ture. Indeed the definition of fibre bundle must be independent of the specific covering {Ui} we choose.
Fibre bundles are than nothing but an equivalence class of coordinate bundles. Still, as physicists, we
can confuse the two concepts as we always make use of some specific covering.
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Figure A.1: On the overlap of two covers Ui ∩ Uj two elements, fi, fj ∈ F are mapped,
via ϕi,u and ϕj,u, to u ∈ π−1(p), with p ∈ Ui ∩ Uj. These elements of F are related by
the transition functions as fi = tij(p)fj. Picture taken from [56].

Some comments are definitely needed to have a deeper grasp of the definition. The main
idea is that for each point of the base B we have a fibre F and B can be covered by charts
U such that π−1(U) is diffeomorphic to U ×F . In this sense we say that the bundle can
be locally trivialized as it is reduced to a product. Then, at a point p in the non-empty
intersection of two different covers Ui and Uj we have the map (ϕ−1

i ϕj)p : F → F which
defines the action on F of an element of the structure group G. This tells us that two
different local trivializations are related by the action of G on the fibre, in particular
via the transition functions. If all the transition functions are the identity the bundle is
called trivial bundle as is just a direct product B × F .
A typical example of fibre bundles are real vector bundles (see Fig. (A.2)) of rank k of a
manifold B. These are fibre bundles for which the fibre F is Rk and the structure group
is a subgroup of GL(k,R). When k = 1 we talk about line bundles. A special case of
vector bundles are tangent bundles for which the fibre at p ∈ B is the tangent space at
p, TpB, hence the full tangent bundle can be regarded as the collection of all the tangent
spaces to B.
Vector bundles of rank k can also be complex, in which case the fibre is Ck and the
structure group is a subgroup of GL(k,C).
Another relevant example are principal bundles, also called G-bundles. These are just
fibre bundles where the fibre F is equal to the structure group G.

Definition 12. Given a fibre bundle E
π→ B we define the (global) section of E over B

the smooth map:
s : B → E (A.45)

89



Figure A.2: A vector bundle E and the projection π to the base manifold, here denoted
byM . Ex ≡ π−1(x) is the fibre over x ∈M , whereas the gray region represents π−1(Ux),
with x ∈ Ux. Finally the wavy line represents a section of E. Picture taken from [15]

such that
π ◦ s = IdM . (A.46)

We shall talk about local sections if the above definition only holds for U ⊂ B.

A good intuition for sections comes from the case of tangent bundles. Indeed a section
of a tangent bundle is nothing but a vector field on the base space B.

As happens for standard Riemannian manifolds, it is possible to develop a theory of
parallel transport also for fibre bundles but we will not delve in those aspects in order
not to get too technical as these appendices are just meant to be an overview. Still it is
worth to give one single piece of information as it is deeply connected with physics. If
we want to define parallel transport on fibre bundles, in particular we focus on principal
bundles, we must of course introduce the concept of covariant derivative and connection.
Connections on bundles are already known to physicists under the name of gauge fields
and the associated field strength is the curvature. This equivalence can be extended to
vector bundles too.

Chern Class

Given a fibre F , a structure group G and a base space B, there are several ways, related
to the choice of transition functions, to construct a fibre bundle with these elements.
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Therefore a natural question can be how many bundles we can build once we have those
data and how much they differ from the trivial bundle B × F . Characteristic classes,
a way of associating cohomology groups to the base space B, measure exactly the non-
triviality (or the twisting) of a bundle, so how much the global structure deviates from the
product structure holding locally. It is possible to construct many different characteristic
classes but here we only focus on the Chern class as it is the one relevant for this thesis.

Definition 13. Given a complex vector bundle E
π→ M with gauge connection A and

field strength F we define the total Chern class as:

c(F) ≡ det

(
I +

iF

2π

)
. (A.47)

The total Chern class can be expanded as sum of single Chern classes and these are what
we usually refer to when we talk about Chern classes:

c(F) = 1 + c1(F) + c2(F) + . . . . (A.48)

Where cj(F) ∈ Ω2j(M) is the j-th Chern class.

On a m-dimensional manifold M all the Chern classes cj(F) with 2j > m vanish iden-
tically. Furthermore it can be proved that cj is closed, hence it defines a cohomology
class [cj(F)] ∈ H2j(M). Indeed we tacitly implied this result in (A.39), which is another
possible definition of the first Chern class.

If we specialize to the case of a Kähler manifold with a Kähler metric g we can explicitly
construct the Chern class following [8]. First define a (1, 1)-form Θ:

Θj
i = gjp̄Rip̄kl̄dz

k ∧ dz̄z̄. (A.49)

Hence define the total Chern class as:

c(M) ≡ det

(
I +

it

2π
Θ

) ∣∣∣∣∣
t=1

= 1 +
∑
i

ci(M)

=
(
1 + tϕ1(g) + t2ϕ2(g) + . . .

)
|t=1.

(A.50)

We have that:

• dϕi(g) = 0 and [ϕi(g)] ∈ H
(i,i)
Dolbeaut(M,C) ∩H2i

DeRham(M,R).

• [ϕi(g)] is independent of g.

• ϕi(g) represents ci(M).
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Now we can express c(M) in terms of the Ricci form R, verifying (A.39). We just need
ϕ1(g):

ϕ1(g) =
i

2π
Θi

i =
i

2π
Rkl̄dz

k ∧ dz̄ l̄

=
1

2π
R.

(A.51)

In the first line we just used the definition of Θ (A.49) while in the second line we used
(A.36).
This is exactly (A.39).
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Appendix B

T-Duality

In this appendix we want to briefly describe T-duality, a way to relate different types
of string theory that also holds for the bosonic one and furnishes a solid basis for the
existence of D-branes. All the standard books [4, 5, 8, 12, 13] have chapters dedicated
to it.

Since T-duality can already be understood in bosonic string theory we start from it for
simplicity. Consider bosonic string theory, closed for the moment, compactified on a
circle of radius R, that is to say we assume our space-time to be of the form R1,24 × S1.
For definiteness we chooseX25 as the compactified direction, which therefore must satisfy
a periodicity condition:

x25(τ, σ + π) = x25(τ, σ) + 2πRW, W ∈ Z. (B.1)

Where W is the winding number, counting, with sign, how many times the string winds
around the circle S1.

The periodicity condition (B.1) changes the Fourier expansion of X25 with respect to
the other coordinates Xµ, µ = 0, . . . , 24 for which (1.18) still holds. Indeed we have to
add a linear term in σ so that (B.1) is respected:

X25(τ, σ) = x25 + 2α′p25τ + 2RWσ + . . . . (B.2)

With “. . . ” containing the oscillator term that is unaffected by the compactification.

Since we have one compact dimension, the momentum along that direction must be
quantised, in our case p25. Recalling that a wave function contains a factor exp(ixµp

µ) we
can find the quantisation condition. Indeed if x25 is increased by 2πR, which corresponds
to a trip around the circle, the wave function should go back to its original value, hence
we must have:

p25 =
K

R
, K ∈ Z. (B.3)
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With K the Kaluza-Klein excitation number.

With this information we can now go back to (B.2) and split it as (1.18):

X25(τ, σ) = X25
L (τ + σ) +X25

R (τ − σ), (B.4)

where

X25
R (τ − σ) =

1

2

(
x25 − x̃25

)
+

(
α′K

R
−WR

)
(τ − σ) + . . . , (B.5)

X25
L (τ + σ) =

1

2

(
x25 + x̃25

)
+

(
α′K

R
+WR

)
(τ + σ) + . . . . (B.6)

The constant x̃25 is irrelevant as it cancels in the sum.

In the light of (1.22) and (1.19) and (1.20) the above expansion can also be expressed
as:

X25
R (τ − σ) =

1

2

(
x25 − x̃25

)
+
√
2α′α25

0 (τ − σ) + . . . , (B.7)

X25
L (τ + σ) =

1

2

(
x25 + x̃25

)
+
√
2α′α̃25

0 (τ + σ) + . . . . (B.8)

Thus we have the following identifications:

√
2α′α25

0 = α′K

R
−WR, (B.9)

√
2α′α̃25

0 = α′K

R
+WR. (B.10)

The compactification affects only partially the physical on shell condition (1.36) in the
sense that those equation still hold, but they are updated due to the compactification
on S1 along the 25-th dimension. In particular L0 = 1 and L̃0 = 1, where 1 = a is the
normal ordering constant, now take the form:

1

2
α′M2 = (α̃25

0 )2 + 2NL − 2 = (α25
0 )2 + 2NR − 2. (B.11)

Taking the sum and difference of the left and right hand sides of this equation and using
(B.9) and (B.10) we find:

NR −NL = WK, (B.12)

α′M2 = α′

[(
K

R

)2

+

(
WR

α′

)2
]
+ 2NR + 2NL − 4. (B.13)
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These two equations are invariant under the exchange W ↔ K as long as we also send
R → R̃ = α′/R. This is the symmetry called T-duality. It signifies that a compactifica-

tion on a circle of radius R and on a circle of radius R̃ are physically equivalent and it
can be proved to be true for the full interacting theory, at least at the perturbative level.
These statements also hold for superstring and they hold non-perturbatively as well.
Furthermore, in the light of (B.9) and (B.10) we can also read the T-duality transforma-
tion as:

α0 → −α0 and α̃0 → α̃0. (B.14)

Where we dropped the index 25 for simplicity.

Thus, from (B.5) and (B.6) and using (B.14), we see that T-duality actually flips the
sign of the right moving part of X25 while leaving the left part untouched:

XR → −XR and XL → XL. (B.15)

Therefore (B.4) will become:

X(τ, σ) → X̃(τ, σ) = XL(τ + σ)−XR(τ − σ), (B.16)

whose expansion is

X̃(τ, σ) = x̃+ 2α′K

R
σ + 2RWτ + . . . . (B.17)

So, with respect to (B.2), τ and σ have been interchanged and x has been replaced

by x̃ that parametrizes the dual circle, of radius R̃, with periodicity 2πR̃. The dual
momentum is quantised according to p̃ = W/R̃ = RW/α′.

We can now see how D-branes arise from T-duality by applying it to open strings. To
do that recall the discussion about possible boundary conditions for open strings where
we learnt that the only boundary conditions compatible with Poincaré invariance in all
directions are Neumann boundary conditions for all the components ofXµ: ∂σX

µ(τ, σ) =
0 for σ = 0, π. A natural question can then be what happens if we apply a T-duality
transformation to open strings. Clearly we expect to find something different with respect
to the case of closed strings as open strings cannot wind and hence do not carry any
winding number.
We start from the Fourier expansion of the coordinates for open strings (1.23). We may
also set α′ = 1/2 in order to get rid of numerical factors. Since we want to apply a T-
duality transformation it is useful to split the expansion (1.23) into left and right movers
as we do for closed strings:

XR(τ − σ) =
x− x̃

2
+

1

2
p(τ − σ) +

i

2

∑
n̸=0

1

n
αne

−in(τ−σ), (B.18)

XRL(τ − σ) =
x+ x̃

2
+

1

2
p(τ + σ) +

i

2

∑
n ̸=0

1

n
αne

−in(τ+σ). (B.19)
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At this point we compactify on a circle of radius R and perform the T-duality transfor-
mation via (B.15). In this way the dual coordinate in the 25-th direction will have the
following expansion:

X̃(σ, τ) = XL −XR = x̃+ pσ +
∑
n̸=0

1

n
αne

−inτ sin(nσ). (B.20)

This is exactly the expansion (1.24) for an open string with Dirichlet boundary condi-
tions. T-duality maps Neumann boundary conditions into Dirichlet ones, and vice versa,
in the compactified directions. In particular the boundary conditions for X̃ read as:

X̃(τ, 0) = x̃ and X̃(τ, π) = x̃+
πK

R
= x̃+ 2πKR̃. (B.21)

To recap we have seen that T-duality transforms open bosonic strings with Neumann
boundary conditions compactified on a circle of radius R into bosonic open strings with
Dirichlet boundary conditions compactified on a circle of radius R̃. The ends of the dual
string are attached to the hyperplane X̃ = x̃ and this is what we call a D-brane. We
want to stress that this isn’t just a mathematical artifact, D-branes are physical objects.
When needed we can also specify the dimensionality of the brane as Dp-brane, with p
the number of spatial dimensions of the brane. Hence a Dp-brane has p+ 1 dimensions
in total.

The analysis we illustrated is interesting but affected by a major flaw, the existence of a
tachyon in the bosonic string spectrum. The issue lies in the fact that M2 < 0 suggests
that we are not studying the theory at the minimum of the potential. We need to look
for the true vacuum of the theory. Thus it has been proposed that D-branes decay into
radiation, implying that D-branes are not stable objects in bosonic string theory. This
problem is solved, once again, if we move to superstring theory where, as we already
explained in Sec. 1, D-branes carry conserved charges, by coupling to p+ 1 form fields,
ensuring their stability.
If we specialize to type II superstrings, it can be proved by a generalization of the Maxwell
theory, that not all values of p are allowed for Dp-branes:

• In type IIA we can only have Dp-branes with p even: p = 0, 2, 4, 6, 8. It is customary
to leave D8-branes out of this list as they would couple would couple to a nine-form
gauge field but such a field is non-dynamical and hence it does not appear in the
spectrum.

• In type IIB we can only have Dp-branes with p odd: p = 1, 3, 5, 7, 9. Actually
it turns out there are also D(−1)-branes, called D-instantons. These objects are
localized in time and space and only make sense in the Euclidean theory.
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