
Alma Mater Studiorum · University of Bologna

School of Science
Department of Computer Science and Engineering

Degree in Computer Science

QUANTUM CIRCUIT SIZE
ESTIMATION VIA HOARE LOGIC

Supervisor:

Prof. Ugo Dal Lago

Submitted by:

Leonardo Venturi

Academic Year 2023/2024

Contents

Introduction 2

1 Quantum Computing 5
1.1 Qubits . 5

1.1.1 The Bloch sphere . 6
1.1.2 Multiple qubits . 6
1.1.3 Entanglement . 7

1.2 Quantum Gates . 8
1.2.1 Multi-qubit gates . 10

1.3 Quantum Circuits . 11
1.4 Qiskit . 12

1.4.1 Circuit Design . 13
1.4.2 Circuit Compilation . 14
1.4.3 Execution and Results Analysis 16

2 Programming Language Theory 18
2.1 Description of a language . 18

2.1.1 Syntax . 19
2.1.2 Semantics . 19

2.2 Operational Semantics . 20
2.3 Floyd-Hoare Logic . 22

2.3.1 Assertions . 22
2.3.2 Hoare Triple . 23
2.3.3 Rules . 24

3 Proto-Qiskit 26
3.1 Syntax . 26

3.1.1 Expressions . 26
3.1.2 Commands . 27

3.2 Operational Semantics . 28
3.2.1 Expressions . 29

1

3.2.2 Commands . 29

4 Circuit Size Estimation using Proto-Qiskit’s Hoare Logic 33
4.1 Type System Definition . 33

4.1.1 Judgements . 34
4.1.2 Typing Rules . 34

4.2 A Logic for Assertions . 35
4.2.1 Many-sorted Logic . 35
4.2.2 The Logic Type System . 37
4.2.3 The Semantics of the Logic . 38

4.3 A Hoare Logic for Proto-Qiskit . 41
4.3.1 An Example . 42

2

Introduction

Quantum computing represents one of the most exciting and rapidly evolving frontiers
in modern computing. Quantum computing leverages unique quantum phenomena, such
as superposition, entanglement, and interference, to process information using quantum
bits, or qubits, which di!er fundamentally from classical bits in their ability to exist in
multiple states simultaneously. This emerging area has profound implications for fields
such as cryptography, optimization, materials science, machine learning, and more.

Within this field, programming languages play a critical role in the design, implemen-
tation, and testing of quantum algorithms. These programming languages are specifically
designed to interface with quantum circuits which are the core computational models of
quantum computers. Over time, a variety of quantum programming languages have
been developed to address the unique requirements of programming quantum hardware.
Among these, Qiskit stands out as one of the most prominent and widely adopted frame-
works.

However, as quantum computing technologies continue to mature, the field of imper-
ative quantum programming languages faces challenges. Despite their potential, these
languages, like Qiskit, lack a comprehensive formal framework that integrates semantics
and logical reasoning. The absence of such formalization poses significant obstacles for
verifying the correctness, reliability, and scalability of quantum algorithms and circuits.

Formal methods can provide systematic ways to reason about program correctness,
allowing developers and researchers to ensure that quantum algorithms are free from
errors or unintended behavior. One such formal approach is Hoare logic, a formal system
widely used in the verification of classical software programs.

This thesis will propose a formal method for verifying the size of circuits using Hoare
logic. In doing so we will also develop a formalized language derived from Qiskit, called
Proto-Qiskit and on that we will build a type system and a logic for reasoning on pro-
grams written in this language.

• In Chapter 1 we first introduce the major concepts in quantum computing. We
discuss what a qubit is and how it can be represented, we then give the notion of
quantum gates and what operations we are able to do in quantum computing. We
then continue by explaining the principal model for representing computation: the

3

quantum circuit. Additionally, we introduce Qiskit. We discuss its workflow and
we provide examples on how to build circuits.

• In the second chapter we introduce the theory of programming languages, we ex-
plore what is the syntax and the semantics of them, we then go deeper into the
explanation of two particular types of semantics: operational semantics and Hoare
logic. In the part about Operational semantics, we will explain its major concepts
like the state, the configuration and the transition, ending this part with a few
examples of rules that defines the semantics. We will then end the chapter by
explaining what a Hoare logic is and how it can be used to prove the correctness
of programs, we will give rules for a simple imperative language.

• In the third chapter, we introduce Proto-Qiskit, a formalized representation of
Qiskit. We will first outline its syntax and explain its key components, focusing on
its primary constructs: expressions and commands. Subsequently, we will explore
its semantics using a big-step semantics approach.

• The fourth chapter will examine the logic underpinning Proto-Qiskit. We will
begin by introducing the concept of a type system, defining core ideas such as
judgements and rules, and presenting the type system specific to Proto-Qiskit.
Next, we will shift our focus to the logical framework, establishing a logic to reason
about preconditions and postconditions of a program. The chapter will end with
the definition of a Hoare logic and its derivation rules tailred to the verification of
the size of circuits.

4

Chapter 1

Quantum Computing

Quantum computing is an interdisciplinary field which combines aspects of information
theory, computer science and quantum physics. It leverages the principles of quantum
mechanics to solve certain problems more e”ciently than classical methods. This has
the e!ect of making previously presumed infeasible problems, tractable. Notable quan-
tum algorithms, such as Grover’s algorithm for unstructured database search and Shor’s
factorization algorithm, exemplify the potential of quantum computing.

In this chapter we are going to discuss the main components of quantum computing:
qubits, quantum gates and quantum circuits along with their classical counterparts.
In the final section we will introduce Qiskit: a well known framework, tailored to the
development of quantum circuits.

1.1 Qubits

The qubit, which is a shorthand for quantum bit, is the fundamental unit of information in
quantum computing and plays a role analogous to that of the bit in classical computing.
However, unlike a bit, which can only exist in one of two states, either 0 or 1, a qubit
can exist not only in the states |0→ and |1→, but also in a superposition of both states
simultaneously. Mathematically, the state of a qubit can be represented as a linear com-
bination of two basis states, orthonormal vectors chosen within a two dimensional space
called the Hilbert space. The two standard basis vectors, often called the computational
basis, are:

|0→ =
(
1
0

)
|1→ =

(
0
1

)

A generic qubit |ω→ can therefore be expressed as

|ω→ = ε |0→+ ϑ |1→ .

Here, ε and ϑ are complex numbers known as amplitudes.

5

Example 1.1.1
An example of a physical system that can realize a qubit is:

• An electron, where the two levels are given by the spin states |↑→ and |↓→

• A photon. Here the two levels are given by independent polarization states, for
example horizontal and vertical: |H→ and |V →.

• An atom where the ground state and the first excited level are close to one another
and relatively far from the others.

A defining characteristic of a qubit is that its measure is both probabilistic and
destructive. When measured, the qubit will collapse into one of its basis state, either |0→
or |1→, and will remain in that state afterward. The result |0→ occurs with probability |ε|2
and the outcome |1→ occurs with probability |ϑ|2. Since we are dealing with probabilities,
and |ε|2, |ϑ|2 account for all possible outcomes, it must be that: |ε|2 + |ϑ|2 = 1. This is
called the normalization condition.

Taking into account the normalization condition, a single qubit state |ω→ can be
expressed as:

|ω→ = cos

(
ϖ

2

)
|0→+ e

iω sin

(
ϖ

2

)
|1→ where ϖ ↔ [0, ϱ[,ς ↔ [0, 2ϱ[

The parameters ϖ and ς define a point on the surface of a three-dimensional unit sphere.
Component ϖ determines the angle relative to the ẑ-axis. The parameter ς on the other
hand controls the angle of rotation, relative to the x̂-axis, in a counterclockwise manner.
This second rotation is also called the phase of a qubit, where the factor of which it
rotates is eiω.

The aforementioned sphere, called the Bloch sphere, provides a geometric visualiza-
tion for a qubit state. This representation however, does not scale, and we do not have
an intuitive way to visualize multi-qubit states without losing information.

1.1.1 The Bloch sphere

The Bloch sphere, Figure 1.1, has specific points of interest. The ẑ-axis intercept the
sphere in two points: the north pole (ϖ = 0), representing |0→ and the south pole (ϖ = ϱ),
corresponding to |1→. Similarly, the other two axes (x̂ and ŷ) define two points each.
Therefore each one of them define an orthonormal basis for the qubit’s Hilbert space.

1.1.2 Multiple qubits

So far we have covered only single qubit states. Extending the concept to two qubits,
we observe that in the classical version, a two bit system can be in four distinct states:

6

ς

ϖ

x̂

ŷ

ẑ = |0→

↗ẑ = |1→

|ω→

Figure 1.1: Bloch Sphere.

00, 01, 10, 11. Similarly to the one bit case, the two qubit system can be in a linear
combination of four basis states:

|ω→ = ε00 |00→+ ε01 |01→+ ε10 |10→+ ε11 |11→

where the probability of finding the system in any given state is given by |εij|2. The
probabilities must satisfy the normalization condition, thus:

|ε00|2 + |ε01|2 + |ε10|2 + |ε11|2 = 1

Similarly, for n qubit systems, the state can be written as:

|ω→ =
∑

x→{0,1}n
εx |x→

Where {0, 1}n denotes all the possible strings of zeros and ones of length n and |εx|2
represents the probability of measuring the state |x→.

1.1.3 Entanglement

When dealing with multi-qubit systems, a peculiar property called entanglement arises.
This feature provides a way to have an interconnection between multiple qubits, no
matter how far apart they are. In fact, the qubits involved exhibit a perfect correlation,
meaning that the measurement outcome of one qubit will instantaneously determine the
measurement of the other. Entanglement occurs when the state of one qubit cannot
be described independently from the state of another. Formally, a multi-qubit state is
entangled if it cannot be expressed as a product of single qubit states.

7

Example 1.1.2
The state

|ω0→ =
1↘
2
(|01→+ |11→)

is not entangled, since it can be written as:

|ω0→ =
(
|0→+ |1→↘

2

)
≃ |1→

Conversely, the state:

|ω1→ =
1↘
2
(|01→+ |10→)

is entangled, as it cannot be factored as a product of single qubit’s states.

A well known example of entangled states are the set of so-called Bell states. There
exist four of those:

|#+→ = 1↘
2
(|01→+ |10→) |#↑→ = 1↘

2
(|01→ ↗ |10→)

|$+→ = 1↘
2
(|00→+ |11→) |$↑→ = 1↘

2
(|00→ ↗ |11→)

These pairs are an example of maximally entangled states, where maximally means
that measuring just one qubit, determines the outcome of all the others. Bell pairs
are also the simplest system to show this property, hence they provide a method to
experiment with more ease on entanglement.

1.2 Quantum Gates

As logic gates in classical computers are the core components when building operations,
quantum gates enable manipulation of qubit states in quantum computers. However,
unlike their classical counterparts, all quantum gates are reversible, meaning that ev-
ery operation performed on qubits (except for measurement) can be reversed. This is
expressed by the mathematical representation of gates as unitary matrices. A unitary
matrix is a complex matrix U , that satisfy the property UU

† = I, where U
† is the

conjugate transpose of the matrix.
When a quantum gate is applied to a state, it alters the state according to the

corresponding unitary matrix U . This transformation can be mathematically expressed
as:

|ω↓→ = U |ω→
where U |ω→ stands for a matrix multiplication and |ω↓→ is the resulting state.

8

Some of the most notable single qubit gates include:

Pauli Matrices:

Since these gates operate on single qubits, they are represented as 2⇐ 2 matrices.

φx =

[
0 1
1 0

]
φy =

[
0 ↗i

i 0

]
φz =

[
1 0
0 ↗1

]

The operation performed by these gates can be interpreted as:

• ωx: A NOT operation applied on the computational basis.

• ωy: A NOT operation and a phase flip.

• ωz: A phase flip.

Example 1.2.1 (Application of a gate)
Consider the initial state:

|ω→ = ε |0→+ ϑ |1→ .

Now, we apply the φx gate:

|ω↓→ = ωx |ω→ =
[
0 1
1 0

] [
ε

ϑ

]
=

[
ϑ

ε

]
.

Therefore, the final state will be:

|ω↓→ = ϑ |0→+ ε |1→

It is evident that this operation is reversible, as applying it once more will return the
state to its starting form.

Hadamard gate:

Another important single operation gate is the Hadamard gate. This gate is quite pe-
culiar, as it allows for a change of base. The representation of the gate as a matrix
is:

H =
1↘
2

[
1 1
1 ↗1

]

The new base after the application of the gate will be

H |0→ = |0→+ |1→↘
2

= |+→ H |1→ = |0→ ↗ |1→↘
2

= |↗→

9

1.2.1 Multi-qubit gates

As we introduced single qubit operations, we can also have gates that operate on multiple
qubits, akin to how classical gates like AND and OR operate on bits. The most significant
multi-qubit gates are the controlled gates, which allow one (or more) qubit, known as
the control, to influence the state of another qubit, called target.

Controlled-NOT gate

The most notable gate of this class is the Controlled-NOT, or CNOT gate. It works by
flipping the target qubit only if the control qubit is in the state |1→. The mathematical
representation is given by the following 4⇐ 4 matrix:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Example 1.2.2 (CNOT operation)
Consider a two qubit state:

|ω→ = ε00 |00→+ ε01 |01→+ ε10 |10→+ ε11 |11→

We apply the CNOT gate:

CNOT|ω→ =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ε00

ε01

ε10

ε11

 =

ε00

ε01

ε11

ε10

 .

The final state will be:

CNOT |ω→ = ε00 |00→+ ε01 |01→+ ε11 |10→+ ε10 |11→

As we can see, the amplitudes of the last two states have been swapped.

SWAP gate

The SWAP gate, as the name suggests, swaps the state of the two qubits in input. The
corresponding 4⇐ 4 matrix is:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

It can be shown that the SWAP gate is decomposable into a sequence of three CNOTs.

10

1.3 Quantum Circuits

The quantum circuit is the natural analogue of the classical circuit. It models the
operations applied to qubits, with quantum gates being its building blocks.

A quantum circuit is canonically represented as a series of horizontal wires, where
time flows from left to right. Each wire correspond to a qubit (or a bit if a measurement
is carried out). The operations on the qubits are annotated in three distinct ways:

• As little boxes named with capital letters, if they involve a single qubit operation.

• As a vertical line connecting qubits, if they are a controlled operation. The control
bit is denoted by a dot while the target bit can be denoted by various symbols
depending on the operation.

• As a little square with a meter, if they are a measurement operation. This is usually
followed by a double line representing the bit on which the measurement is stored.

Since quantum gates are reversible, there are several limitations on how they can be
arranged in a circuit, the operations here described are not allowed:

• Fan-in: the convergence of multiple wires into one, because the process isn’t re-
versible.

• Fan-out: wire duplication, due to the no-cloning theorem, which states that the
exact copy of an unknown quantum state is unobtainable.

• Loop: the circuit must be acyclical.

The following example shows a representation of a quantum circuit as described
above.

Example 1.3.1

q0 : •
q1 : H H

The single qubit operations are Hadamard gates, and the two qubit operation is a CNOT
gate.

Two important measures are often used to evaluate the e”ciency and complexity of
a quantum circuit, these are its width and depth.
The width is regarded as the number of qubits of which the circuit is composed. The

11

depth instead is a measure of temporal complexity. It is defined as the count of time
steps needed to execute all the gates in the circuit. The gates that can be executed in
parallel do not contribute to the depth count.

Example 1.3.2
As an example let us examine the following circuit:

q0 : H • • H
q1 : H • • H
q2 : H • • H
q3 : H • • H
q4 : H • H
q5 :

q6 : X
q7 : X
q8 : X
q9 :

q10 :

q11 :

The width of this circuit is 12, as the number of qubits. The depth, however, is not 13,
as one would expect from the diagram, but only 4. This is due to the fact that most of
the CNOTs can be applied simultaneously; for instance the first five CNOT gates can be
executed in parallel , e!ectively counting as one.

1.4 Qiskit

Qiskit is an open-source software development kit (SDK) created by IBM and written in
Python. It allows users to write, simulate and execute quantum circuits. It has also the
option for running circuits on IBM’s quantum platform, by creating an account and se-
lecting the appropriate provider. Since its release in 2017, Qiskit has gained a widespread
popularity, becoming one of the most prominent projects in quantum computing.

The Qiskit’s workflow can be broken down into four main parts:

• Circuit Design: create and manipulate quantum circuits.

• Circuit Compilation: prepare the circuit for execution on quantum hardware.

12

• Execution

• Results Analysis

The library is imported in the usual way:

1 from qiskit import *

In the following examples we will omit the library import.

1.4.1 Circuit Design

In Qiskit, circuit design is delegated to the QuantumCircuit object.
In order to create a simple circuit we can do the following:

1 qc = QuantumCircuit(2)

This line create a quantum circuit called qc that consist of two qubits. It should be
noted that every qubit in Qiskit starts in the state |0→.

A circuit can also be created with a second parameter which specifies the number of
classical bits in the circuit. For instance:

1 qc = QuantumCircuit(3,3)

creates a circuit of three qubits and three bits.
Gates can be added in two ways: the simplest one is to use the standard library of

gates provided by Qiskit (qiskit.circuit.library), otherwise one can choose to use
the append method to have more freedom in terms of gates choice.

1 from qiskit.circuit.library import XGate

2 qc = QuantumCircuit(2)

3 qc.x(0)

4 qc.append(XGate(), [1])

Here we applied an X gate (φx) to the 0-th and 1st qubits. For controlled gates, we have
to specify which qubit acts as the control and which one as the target.

1 qc = QuantumCircuit(2)

2 qc.h(0)

3 qc.cx(0,1) #Qubit 0 is the control and qubit 1 is the target.

To obtain the state of a qubit after applying gates, we need to measure the qubit.
Measurement collapses the qubit state into one of the computational basis states, and
the result is stored in a classical bit.

An example involving a measurement operation is:

13

1 qc = QuantumCircuit(5, 5)

2 qc.x(0)

3 qc.x(2)

4 qc.x(3)

5 qc.measure(range(5), range(5))

6 # Measures all qubits into the corresponding clbit.

As now we have designed our circuit, we might want a way to represent it. Qiskit
o!ers plenty of ways to do so. The standard output can be obtained through the use of
draw:

1 qc = QuantumCircuit(3, 3)

2 qc.h(0)

3 qc.cx(0, 1)

4 qc.cx(1, 2)

5 qc.measure_all() #Another method for measuring all qubits
6 qc.draw()

The resulting output is in Figure 1.2.

Figure 1.2: Qiskit standard output

Other possible output formats are: an image, created with the matplotlib library and
latex code, which is produced using the qcircuit package.

1.4.2 Circuit Compilation

This part is comprised of various steps that aim at reducing the dimensions of the cir-
cuit. This is done because quantum hardware is noisy, due to multiple factors such
as the instability of a qubit state; therefore, minimizing the number of operations and
ensuring qubits are closer together when gate operations are applied, improves perfor-
mance. In Qiskit this tasks are handled by the so-called transpiler. Its functionality can
be understood in terms of three main stages:

14

• Initialization. In this first stage, the transpiler unrolls any custom instruction
and produce a circuit made up of one and two qubit gates.

• Quantum Hardware Mapping. The circuit is adapted to any target quantum
hardware. This process involves two steps: first, logical qubits are mapped to phys-
ical ones; second, any operation must be rewritten in terms of the ones supported
by the hardware. The mapping between logical and physical qubits must satisfy the
constraints dictated by the hardware, such as limited connections between qubits,
while also minimizing the use of additional gates introduced by this procedure.

• Optimization. The transpiler optimizes the circuit using di!erent routines that
combines or eliminate gates. These method usually produces circuits which have
lower widths and depths than the ones in input.

The stage we are interested in is the optimization stage. A very basic example of
what Qiskit’s optimization can do is the following:

1 qc = QuantumCircuit(3)

2 qc.cx(0, 1)

3 qc.h([0,0])

4 qc.rx(np.pi/2, 1) # rotation about the X axis
5 qc.rx(-np.pi/2, 1)

6 qc.cx(0, 1)

7 qc.cx(0, 2)

8 qc.draw("mpl")

The graphical representation is in Figure 1.3

Figure 1.3: Initial circuit before compilation

The transpiled circuit is obtained with the following code:

1 qc_compiled = transpile(qc)

2 qc_compiled.draw("mpl")

15

The output is displayed in Figure 1.4. We note that Qiskit has correctly identified as
removable the sequence of gates which composed yield the identity. The depth decreased
from five to one, and the number of qubits involved also decreased to two.

Figure 1.4: Transpiled circuit

1.4.3 Execution and Results Analysis

As for the execution of the circuit, we will use the simulator called AerSimulator, which
has to be imported from qiskit aer. The circuit is created as before, we will use a simple
circuit with an X operation on the first qubit and an Hadamard operation on both qubits.

1 qc = QuantumCircuit(2,2)

2 qc.x(0)

3 qc.h([0,1])

4 qc.measure_all()

We can then use the simulator and obtain the results.

1 from qiskit_aer import AerSimulator

2 backend = AerSimulator()

3 qc_compiled = transpile(qc, backend)

4 job_sim = backend.run(qc_compiled, shots=1000)

5 result_sim = job_sim.result()

6 counts = result_sim.get_counts(qc_compiled)

The circuit is first transpiled for the specific backend. The shots = 1000 refers to the
number of times the circuit is being simulated, the default would be 1024. The results
are finally retrieved using the result object with its get counts method. To visualize these
results we can import and use the plot histogram function:

1 from qiskit.visualization import plot_histogram

2 plot_histogram(counts)

The resulting histogram of the simulation is in Figure 1.5

16

Figure 1.5: Histogram with results

17

Chapter 2

Programming Language Theory

Programming languages are at the core of modern computing, enabling developers to
create and innovate in various ways. Many programming languages exist, each with
its unique features and design choices, and many more are continually being developed.
Given the vast diversity and the ever increasing number, mastering all of them is nei-
ther practical nor necessary. Instead, we can focus on understanding their underlying
theory. The theory focuses on understanding the structures and principles that govern
how languages are created, how they work and how they can be used to write software
e!ectively. The fundamental aspect we are interested in is the behavior of programs, this
can be useful both for defining what the program must do but also for verifying that the
program satisfies certain properties. This is done through the use of a semantics. A key
concept is a paradigm, which is a way to design and structure the implementation of a
program.

In this chapter we will first discuss what the syntax and semantics of a programming
language are, and how they are represented. Then we will focus on two types of semantics:
Operational semantics and Floyd-Hoare logic (also called Axiomatic semantics).

2.1 Description of a language

A programming language can be described using three components:

• The Syntax: Delineates the valid combinations of symbols that can appear in a
program. Namely the morphology of valid program sentences.

• The Semantics: Assigns meaning to the syntactic constructs, ensuring that they
act as intended.

• The Pragmatics: Relates to how the language is used and how its features are
employed to build programs. For example, the practice of using variables, defined

18

in a loop header, only within the loop’s scope in order to prevent undesirable side
e!ects.

2.1.1 Syntax

In order to understand the syntax, we first define what symbols and tokens (words) can
appear in a programming language. These aspects are respectively resolved by specifying
the alphabet and the vocabulary of the language. Additionally, syntax defines how valid
phrases can be constructed using tokens.

All of these aspects are formally represented using a grammar, often defined using
the Backus-Naur form (BNF). In this notation, the grammar rules are called production
rules and they state how a non-terminal symbol can be replaced by a sequence of terminal
and/or non-terminal symbols. A BNF production rule has the following format:

symbol ::= alternative1 | alternative2 . . .

Where:

• “::=” means that the symbol on the left must be replaced with one of the alterna-
tives on the right.

• “|” separates two alternatives.

Example 2.1.1
Consider a simple grammar for arithmetic sums in base two:

E ::= E +N | N
N ::= D | DN

D ::= 0 | 1

In this small example the alphabet is A = {0,1,+}. The non-terminals E, N and D
represents respectively expressions, numbers and digits. Furthermore, DN represents the
concatenation of a digit and a number, creating multiple digit numbers.

2.1.2 Semantics

Once the syntax is established, we can assign meaning to its constructs, ensuring that a
program’s behaviour aligns with its intended purpose.

There are three di!erent approaches when giving semantics to a programming lan-
guage:

• Operational Semantics: assigns meaning to programs by showing their execution
steps, often modeled using transition systems.

19

• Denotational Semantics: maps mathematical objects, such as functions or sets,
to language constructs, giving them meaning.

• Axiomatic Semantics: gives meaning to a program by describing its e!ect on
assertions about the program’s state.

Each of these approaches serves di!erent purposes and highlights di!erent aspects of a
programming language.

2.2 Operational Semantics

Operational semantics is a way to give meaning to a programming language by specifying
how its constructs execute. It specifies the behaviour of an abstract machine, which can
be loosely defined as an abstraction of a physical computer. The execution is dealt using
a transition system. In order to detail what a transition is, we first have to explain the
concepts of state and configuration.

Program State

A state, often represented as φ, models the program’s memory at a specific point, during
execution. It is defined as a partial function, mapping variable names to their values.
The mapping is deemed partial to account for variables that may be undefined in a
certain part of a program.

Example 2.2.1

φ = {(x, 5), (y, 8)}

Here, the state indicated that the variable x has a value of 5 and the variable y has a
value of 8.

Two basic operations can be performed on a state:

• Modification: The value of a variable is updated. This is denoted as:

φ[new value/variable name]

• Lookup: Retrieving the current value of a variable. This is represented as:

φ(x)

A configuration is a pair, consisting of a command (or an expression), and a state.
Therefore, it encapsulate the current state and the remaining computation. It is often
displayed as:

⇒c, φ→

20

Transition

Finally, a transition expresses a single computational step, and shows how the execution
of a command modifies the program’s state. It can be seen as a mapping between
configurations, and it’s written as:

⇒c, φ→ ⇑ ⇒c↓, φ↓→

This means that when executing the command c on the state φ, it transition the program
to a new configuration, where c

↓ is the updated command and φ
↓ is the updated state.

In many cases, commands are reduced until there is nothing left to compute. This is
signified by the skip command. A final configuration:

⇒skip, φ→

indicates that the computation is complete.

Example 2.2.2 (Variable assignment)
Consider the command x ⇓ x + 1 and an initial state φ = {(x, 5)}. A corresponding
computation can be:

⇒x ⇓ x+ 1, φ→ ⇑↔ ⇒skip, φ↓→

Where φ
↓ is the new state, {(x, 6)} and the command is reduced to skip, indicating that

the computation has ended. The ⇔ symbol denotes the Kleene star, so multiple transitions
can be involved in obtaining the result.

In many programming constructs, the transition can be conditional. These kinds
of transitions are captured using an inference rule. A typical example is the rule for
sequencing:

Example 2.2.3

⇒c1, φ→ ⇑ ⇒c↓1, φ↓→
⇒c1 ; c2, φ→ ⇑ ⇒c↓1 ; c2, φ↓→

This rule states that if the first command c1 transitions to c
↓
1 in state φ, then the sequence

c1; c2 transitions to c
↓
1; c2 in the same state.

Types of Operational Semantics

There exists two main approaches to operational semantics:

• Small-step: Execution is broken down into minimal steps. This allows for a
precise control over the semantics and is usually denoted as ⇑.

21

• Big-step: Contrarily, the big-step approach, characterizes execution in terms of
the final result. Each rule directly relates initial and final states, providing a simpler
syntax and a more high-level view. We will represent it as ↖.

Example 2.2.4
As an example, we can evaluate using these two styles, the expression 2 + (7 ⇔ 3) in a
state, using:

• Small-step semantics:

⇒2 + (7 ⇔ 3), φ→ ⇑ ⇒2 + 21, φ→ ⇑ ⇒x := 23, φ→

• Big-step semantics:

⇒x := 2 + (7 ⇔ 3), φ→ ↖ ⇒x := 23, φ→

Furthermore, small-step semantics can also be extended in many ways. A typical
extension is the one with errors, where we introduce special states, such as error, to
handle unexpected conditions. Other extensions can be also made to account for non-
deterministic or parallel execution.

2.3 Floyd-Hoare Logic

Hoare logic, also known as axiomatic semantics, is a formal system with a set of logical
rules for reasoning about the correctness of a program. It was proposed by C.A.R. Hoare
in 1969, however, the foundational ideas were introduced earlier by Robert W. Floyd in
a 1967 paper. It consists of two main parts: a language for stating assertions about
programs, and rules for establishing the truth of assertions. Many logics can be used to
encode assertions, for the sake of simplicity we will focus on first order logic.

2.3.1 Assertions

Assertions describe conditions about the state of a program at specific points during its
execution. These assertions are expressed using arithmetic relations and are combined
using first order logic.

Example 2.3.1
We can build various examples of assertions:

• x = 1: Asserts that the variable x equals to 1.

• y < 3 ↙ x = 2: States that x equals to 2 and y is less than 3.

• ∝z.z > 0 ⇑ x ′ z: Asserts that if z is a positive number, x is greater or equal than
z.

22

2.3.2 Hoare Triple

The fundamental concept of this formal system is a Hoare triple; it has the following
general form:

{P} c {Q}

The triple state that: ”if the formula P holds before the program execution, then, after
the execution of c, the formula Q will hold”. In this context, P is called precondition,
Q is called postcondition and c is the program of interest. In this logic, correctness is
typically discussed in terms of partial correctness. This guarantees that the program
meets its specification if it terminates. Therefore, termination isn’t ensured.

Partial correctness can also be given with respect to operational semantics, defining
what a valid triple is:

Definition 2.3.1. A Hoare triple {P} c {Q} is considered valid, if for any state φ, φ
↓,

such that φ satisfies P and ⇒c, φ→ ⇑↔ ⇒skip, φ↓→, then φ
↓ satisfies Q. We will write this as

↭ {P} c {Q}

Example 2.3.2
A simple example can be stated as:

{x = 1} y ⇓ x+ 1 {y = 2}

This statement asserts that if x = 1 holds before the execution of the assignment, then
y = 2 will hold afterwards.

Example 2.3.3
Partial correctness ensures that the program computes correctly if it terminates, thus we
can devise a correct triple as:

{x = x0 ↙ y = 3}
while x ∞= 0 :

x ⇓ x↗ 1;

y ⇓ y + 1

{x = 0 ↙ y = x0 + 3}

Where x0 is a fixed value. We can distinguish between x0 ′ 0, as the execution ends, and
x0 < 0 as the execution does not terminate. The triple is valid in both cases for partial
correctness.

23

2.3.3 Rules

The proof system defines how to derive triples, using inference rules. We will write
∈ {P} c {Q} to indicate that the triple is derivable using the rules. These rules are given
for the specific simple language considered in the previous sections, whose semantics is
also simple. They include:

Skip

{P} skip {P}

This rule asserts that the skip command does not change the state of the program, so
the precondition and postcondition are identical.

Assignment

{P [e/x]}x ⇓ e {P}

The assignment rules states that, after an assignment, any predicate that was true
for the right side of the assignment, now holds for the variable. The substitution P [e/x]
means that each free occurence of x has been replaced by e in P .

Example 2.3.4
An example of this kind of triple is: {x+ 1 ∋ N}x ⇓ x+ 1 {x ∋ N}

Composition

{P} c1 {R} {R} c2 {Q}
{P} c1 ; c2 {Q}

If executing the commands c1 and c2 sequentially results in the postcondition R being
verified, then R will be the postcondition for the entire program.

Conditional

{b ↙ P} c1 {Q} {¬b ↙ P} c2 {Q}
{P} if b then c1 else c2 {Q}

This rule states that if the postcondition Q is common to both branches, it will also be
a postcondition for the whole statement.

24

Loop

{P ↙ b} c {P}
{P} while b : c {¬b ↙ P}

When dealing with loops, P is called loop invariant. It is an assertion that holds both
before and after each iteration of the loop.

Consequence

P1 ⇑ P2 {P2} c {Q2} Q2 ⇑ Q1

{P1} c {Q1}

This rule is quite important, as it allows to strenghten the precondition P2 and/or weaken
the postcondition Q2, while preserving its validity.

Example 2.3.5
Consider the triple:

{y > 0}x ⇓ y {x > 0}

We can strenghten its precondition, making it more precise, using y = 5 ↖ y > 0,
producing:

{y = 5}x ⇓ y {x > 0}

It can be proven that a system that comprises these rules is sound and complete
with respect to validity. This is denoted as: ↭ {P} c {Q} △ ∈ {P} c {Q}. Meaning that
everything which is semantically valid is also syntactically provable and vice versa.

25

Chapter 3

Proto-Qiskit

In the preceding chapters, we examined two major concepts: quantum mechanics and the
theory of programming languages. Our objective is now to establish a theoretical foun-
dation for reasoning about quantum circuits, produced by circuit description languages,
and their size.

To achieve this, we will make use of the previously introduced language library Qiskit,
with the addition of the core features commonly found in programming languages, such as
loops, conditional and assignments, taken from Python. Therefore, we will formally de-
fine this language, called Proto-Qiskit, which will serve as the basis for the next chapter,
where we define a Hoare logic, tailored to reason about circuits’ structural properties.

This chapter introduces the syntax and operational semantics of Proto-Qiskit.

3.1 Syntax

As Proto-Qiskit is designed as an abstraction of Qiskit, and therefore of the Python

programming language, its syntax is similar to it. In this section we will outline it. We
define two types of major constructs: expressions and commands.

3.1.1 Expressions

Expressions, denoted as e, represent the entities which are evaluated to produce values.
These include:

• Constants (k): these are literal values, comprehensive of natural numbers
N = {0, 1, 2, . . . } and boolean values B = {True, False}.

• Variables (x): variables denote references to values. They are drawn from the
set V and conform with Python’s conventions. Specifically, variables consists of

26

non-empty strings containing alphanumeric characters and underscores. Notably,
they cannot begin with a number.

• Functions (f): functions include standard operators, such as Arithmetic, Boolean
and Comparison ones. Examples of these can be: the sum operator (+), the not
operator (not) and the equality operator (==). Each operator is characterized by
an arity n ↔ N, denoting the number of inputs it accepts.

• Quantum Circuits (QuantumCircuit(e1,e2)): this expression introduces a quan-
tum circuit, where e1 is the number of qubits it is composed of and e2 represents
the number of bits.

In Proto-Qiskit, a quantum circuit is depicted as a triple (Instr ,Qb,Clb), where Qb
and Clb are natural numbers, and Instr is a sequence of instructions. An instruction is
itself a triple from the set String ⇐N⇐N or the name of the instruction and the qubits
and bits on which it operates.

The evaluation of an expression occurs with respect to a state, which is defined as a
mapping:

φ : V ↗⇑ Value, where Value = N+ B+CIRC

The set CIRC is the set which contains all circuits, therefore CIRC = Instr ⇐ N⇐ N.

3.1.2 Commands

Commands are executable statements that, unlike expressions, can alter the program’s
state. The basic commands are the parallel of Python’s, thus they include operations such
as assignment, sequential execution, conditional statements and while loops. However,
sequential execution is indicated by a semicolon, instead of relying on a new line.

In addition, specialized commands that allow us to manipulate quantum circuits are
introduced. These are:

• Unitary operation x.U(e1 . . . en): this command applies a unitary transformation
to the qubits referenced by e1, . . . , en.

• Measure x.measure(e1, e2): measures the qubit referenced by e1 in circuit x and
stores the result in bit e2.

• Composition x.compose(e1): this operation concatenates the circuit in x with
the one in e1.

• Adding of Qubits and Bits x.addQubits(e1) x.addBits(e1): these two com-
mands allow us to add respectively e1 qubits or bits, to the circuit in x.

27

Expressions:

e ::= k | x | fn(e1 . . . en) | QuantumCircuit(e0,e1)

Commands:

c ::= x ⇓ e | c0 ; c1 | if e then c0 else c1 | while e : c

| x.U(e1, . . . , en) | x.compose(e1) | x.measure(e1, e2)
| x.addQubits(e1) | x.addBits(e1)

Figure 3.1: Formal syntax of Proto-Qiskit

The complete syntax for the language is given in Figure 3.1

Example 3.1.1. Consider the following Qiskit code:

1 qc = QuantumCircuit(3, 3)

2 qc.h(0)

3 qc.cx(0, 1)

4 qc.cx(1, 2)

5 qc.measure_all()

Using Proto-Qiskit’s syntax, it becomes:

qc ⇓ QuantumCircuit(3, 3);

qc.H(0);

qc.CX(0, 1);

qc.CX(1, 2);

qc.measure(0,0);

qc.measure(1,1);

qc.measure(2,2)

Which is nearly identical to the original syntax, except for the use of the semicolon
between commands and the arrow as assignment.

3.2 Operational Semantics

The operational semantics described here, is presented using the big-step style, as it
provides a clearer and more concise representation. To formally express a transition in
our big-step semantics, we use the notation: ↖.

28

3.2.1 Expressions

We start by describing the evaluation of expressions. Expressions do not modify the
state, therefore a relation between a configuration and a resulting value can be defined
as ⇒e, φ→ ↖ v, which means that the expression e evaluated in state φ, yields the value
v.

As an example, we show the inference rule for the evaluation of a function:

⇒e1, φ→ ⇑ v1 . . . ⇒en, φ→ ⇑ vn

⇒f(e1, . . . , en), φ→ ⇑ v

where v is the result of the operator f applied to the values v1 . . . vn. This rule simply
states that whenever the n terms above are evaluated, the function f is applied to their
values and yields a result.

Example 3.2.1
Let us consider the expression QuantumCircuit(5,6 + 2). Its evaluation proceed as
follows: first, the constants are evaluated using the const rule, as:

⇒5, φ→ ↖ 5

Then the function rule is applied, to determine the result of 6 + 2:

⇒6, φ→ ↖ 6 ⇒2, φ→ ↖ 2

⇒6 + 2, φ→ ↖ 8

Finally we can retrieve the value of QuantumCircuit using its corresponding rule. The
complete derivation tree is shown:

⇒5, φ→ ↖ 5

⇒6, φ→ ↖ 6 ⇒2, φ→ ↖ 2

⇒6 + 2, φ→ ↖ 8

⇒QuantumCircuit(5,6 + 2), φ→ ↖ (↼, 5, 8)

3.2.2 Commands

Commands modify the state, hence we have to define the relation between a configuration
and a state, in order to represent how the state evolves. In the big-step semantics, this
is formalized as: ⇒c, φ1→ ↖ φ2, meaning that the command c evaluated in the state φ1

will produce the state φ2.
We will now present some of the most notable big-step inference rules for commands:

29

Assignment

The assign rule specifies how a variable is updated in the program state:

⇒e, φ→ ⇑ v

⇒x ⇓ e, φ→ ⇑ φ[v/x]

It states that when an expression e gets evaluated to a value v, we update the variable
in the state φ with the computed value. This is done using the notation φ[v/x]

Example 3.2.2
Continuing from our earlier example, an assignment of the quantum circuit can be per-
formed as:

. . .

⇒QuantumCircuit(5,6 + 2), φ→ ↖ (↼, 5, 8)

⇒x ⇓ QuantumCircuit(5,6 + 2), φ→ ↖ φ[(↼, 5, 8)/x]

Unitary

⇒x,ω→ ⇑ (In ,Qb, Clb) ⇒e1,ω→ ⇑ m1 . . . ⇒en,ω→ ⇑ mn

⇒x.U(e1, . . . , en),ω→ ⇑ ω[(In ; (U(m1, . . . ,mn), ▽), qb, clb)/x]

This rules applies a unitary operation U to the specified qubits m1 . . .mn, appending
the operation to the circuit’s instruction sequence In. We note that every mi must be
less or equal to the number of qubits in the circuit, in order to reference a valid qubit.

Composition

The composition rule specifies how two circuits are combined:

⇒x, φ→ ⇑ (In1,Qb1, Clb1) ⇒e, φ→ ⇑ (In2,Qb2, Clb2)

⇒x.compose(e), φ→ ⇑ φ[(In1 :: In2,Qb1, Clb1)/x]

Here we require the first circuit being composed to have less or equal the number of
qubits of the one referenced by e. The result is a circuit where the instructions are
concatenated and that is referenced by x.

Measure

⇒x, φ→ ⇑ (In ,Qb, Clb) ⇒e1, φ→ ⇑ n1 ⇒e2, φ→ ⇑ n2

⇒x.measure(e1, e2), φ→ ⇑ φ[(In ; (measure(n1, n2)),Qb, Clb)/x]

The measurement operation is appended to the instructions and it specifies which qubit
and bit are involved. Here n1 and n2 must reference valid qubits.

30

Adding Qubits

⇒x, φ→ ⇑ (In ,Qb, Clb) ⇒e1, φ→ ⇑ n

⇒x.addBits(e1), φ→ ⇑ φ[(In ,Qb + n, Clb)/x]

Finally, this rule increases the number of qubits in the circuit in x.
The complete big-step semantics is given in Figure 3.2.

Example 3.2.3
Let us expand our previous example by adding a Hadamard gate and a measure operation
on the zeroth qubit. The Hadamard gate can be added using the unitary operation rule
as:

⇒x, φ→ ⇑ (↼, 5, 8) ⇒0, φ→ ⇑ 0

⇒x.H(0), φ→ ⇑ φ[(H(0), 5, 8)/x]

The measure operation can be added using the measure rule:

⇒x, φ→ ⇑ (H(0), 5, 8) ⇒0, φ→ ⇑ 0 ⇒1, φ→ ⇑ 1

⇒x.measure(0, 1), φ→ ⇑ φ[(H(0) :: measure(0, 1), 5, 8)/x]

31

var

⇒x,ω→ ⇑ ω(x)

const

⇒k,ω→ ⇑ k

circuit
⇒e1,ω→ ⇑ n1 ⇒e2,ω→ ⇑ n2

⇒QuantumCircuit(e1,e2),ω→ ⇑ (ε, n1, n2)

function
⇒e1,ω→ ⇑ v1 . . . ⇒en,ω→ ⇑ vn

⇒f(e1, . . . , en),ω→ ⇑ v

assign
⇒e,ω→ ⇑ v

⇒x ⇓ e,ω→ ⇑ ω[v/x]

sequence

⇒c1,ω1→ ⇑ ω2 ⇒c2,ω2→ ⇑ ω3

⇒c1 ; c2,ω1→ ⇑ ω3

if-true
⇒e,ω1→ ⇑ True ⇒c0,ω→ ⇑ ω2

⇒if e then c0 else c1,ω1→ ⇑ ω2

if-false
⇒e,ω1→ ⇑ False ⇒c1,ω→ ⇑ ω2

⇒if e then c0 else c1,ω1→ ⇑ ω2

while-false
⇒e,ω1→ ⇑ False

⇒while e : c,ω1→ ⇑ ω1

while-true
⇒e,ω1→ ⇑ True ⇒c,ω1→ ⇑ ω2 ⇒while e : c,ω2→ ⇑ ω3

⇒while e : c,ω1→ ⇑ ω3

unitary
⇒x,ω→ ⇑ (In ,Qb, Clb) ⇒e1,ω→ ⇑ m1 . . . ⇒en,ω→ ⇑ mn

⇒x.U(e1, . . . , en),ω→ ⇑ ω[(In :: U(m1, . . . ,mn), ▽,Qb, Clb)/x]

composition
⇒x,ω→ ⇑ (In1,Qb1, Clb1) ⇒e1,ω→ ⇑ (In2,Qb2, Clb2)

⇒x.compose(e1),ω→ ⇑ ω[(In1 :: In2,Qb1, Clb1)/x]

measure
⇒x,ω→ ⇑ (In ,Qb, Clb) ⇒e1,ω→ ⇑ n1 ⇒e2,ω→ ⇑ n2

⇒x.measure(e1, e2),ω→ ⇑ ω[(In :: measure(n1)(n2),Qb, Clb)/x]

add-qubits

⇒x,ω→ ⇑ (In ,Qb, Clb) ⇒e1,ω→ ⇑ n

⇒x.addQubits(e1),ω→ ⇑ ω[(In ,Qb + n, Clb)/x]

add-bits
⇒x,ω→ ⇑ (In ,Qb, Clb) ⇒e1,ω→ ⇑ n

⇒x.addBits(e1),ω→ ⇑ ω[(In ,Qb, Clb + n)/x]

Figure 3.2: Big-step semantics for Proto-Qiskit

32

Chapter 4

Circuit Size Estimation using
Proto-Qiskit’s Hoare Logic

Building upon the formalization of Proto-Qiskit given in the last chapter, we now focus
on the verification of circuits dimensions. To achieve this, we introduce an Hoare logic,
designed to capture how circuits depth and width evolve as operations are added.

This approach necessitates of a formal logic that is able to express preconditions and
postconditions. Consequently, this logic requires a type system for Proto-Qiskit, which
allows us to reason about di!erent types of values in a program.

There exist two approaches when giving a type system: static and dynamic typing.
The main di!erence being the moment in which type checks are performed. Static typ-
ing ensures that the correct types are bounded at compile-time, while dynamic typing
performs type checks at runtime. Proto-Qiskit will be statically typed, this is opposite
to what Python does. It is done because we want to be able to reason about the types
we are working with in the logic. Developing techniques to statically handle dynamic
typing also introduces significant complexity while still depending on static typing to
some extent.

In this chapter we provide a concise introduction to type systems and a description of
the one used in Proto-Qiskit. Subsequently we focus on defining the logic for expressing
assertions, we will then express the Hoare logic and finally we will end the chapter with
an example of how it can be used to reason on circuits’ metrics.

4.1 Type System Definition

A type system decribes the types that can be used to annotate programs and the relation-
ship between programs and types. It also establishes rules for checking the consistency
of programs and ensures that operations are applied to compatible data types. For

33

example, consider a function f with type

f : Nat ⇑ Bool

this type annotation means that it accepts a natural number as input and outputs a
boolean value. Such typing ensures that the operation, designed to work on numbers
doesn’t end up processing other types of input.

Types in Proto-Qiskit

In Proto-Qiskit we have three possible types, which also represent all possible values in
our language:

TYPES = {Nat,Bool,Circ}

where Nat is the type of natural numbers, Bool is the type for booleans and Circ is the
type for quantum circuits.

We assume that each constant k of the language is associated to a type ↽ ↔ TYPES.
Furthermore, functions comes with an associated type of the form ↽1 . . . ↽n ⇑ ↽ , which
reflects that the function has an arity of n and each of the input has a type ↽i.

4.1.1 Judgements

The behaviour of a type system is formally described by what is called a judgement. A
typical judgement has the form % ∈ t : ↽ . This means that the term t has type ↽ under
environment %. The typing environment % is a mapping between variables and their
associated types.

Judgements in Proto-Qiskit

In Proto-Qiskit, two types of judgements are defined:

• Typing Judgement (% ∈ e : ↽): this judgment states that the expression e has
type ↽ in the environment %. For example it could be that: % ∈ 0 : Nat, which
means that the number 0 has type natural numbers.

• Well Typed Judgement (% ∈ c): this expresses that the command c is well-
typed under the environment %.

4.1.2 Typing Rules

Typing rules define the validity of certain judgements on the basis of other judgements,
adhering to the structure of inference rules. These rules describe how to derive more

34

complex statements from simpler ones. Below we explain two rules, as the others are
quite similar and do not require an explanation. The complete list of typing rules for
Proto-Qiskit can be found in Figure 4.1.

Variable Typing Rule

% ∈ x : ↽
x : ↽ ↔ %

This rule asserts that if a variable x is associated with a type ↽ in the environment
%, then % is able to type x with the type ↽ . In other words, if the environment defines a
type for the variable, than that variable is typed accordingly.

Assignment Typing Rule

% ∈ e : ↽ % ∈ x : ↽

% ∈ x ⇓ e

This rule states that if an expression is typed as ↽ in our environment, and also a
variable x has the same type, then the variable can take the value of the expression. This
is intuitively correct as a variable which type is Circ can only be assigned a circuit.

4.2 A Logic for Assertions

As we discussed before, a logic is needed to reason about the preconditions and post-
conditions of Hoare triples. This logic must be able to reason on Proto-Qiskit’s typed
expressions and commands. Specifically, the appropriate logic for this purpose is what’s
called a many-sorted first order logic. This logic is a generalization of traditional first
order logic, which is designed to support reasoning about di!erent types of objects. In
fact, in many-sorted logic, the domain is partitioned into di!erent sorts, each being a set
that classifies objects into di!erent types.

4.2.1 Many-sorted Logic

The logic we employ has as sorts the base types of Proto-Qiskit presented before. From
now on, in order to distinguish them, we will identify program variables, which appear
in Proto-Qiskit’s programs, as x, y, z and logic variables as x, y, z. As this is a first order
logic, its syntax is standard and it is given in Figure 4.2.

While the syntax remains consistent with first order logic, the signature is what
changes.

The signature, written as S, describes the non-logical symbols, we will write S with
an apex to identify which element of it we are describing.

35

t-const

! ∈ k : ϑ

t-var
x : ϑ ↔ !

! ∈ x : ϑ

t-function
! ∈ e1 : ϑ1 . . . ! ∈ en : ϑn

! ∈ fn(e0, . . . , en) : ϑ

t-circuit
! ∈ e1 : Nat ! ∈ e2 : Nat

! ∈ QuantumCircuit(e1,e2) : Circ

t-assign
! ∈ e : ϑ ! ∈ x : ϑ

! ∈ x ⇓ e

t-seq

! ∈ c1 ! ∈ c2

! ∈ c1 ; c2

t-conditional
! ∈ e : Bool ! ∈ c1 ! ∈ c2

! ∈ if e then c1 else c2

t-while
! ∈ e : Bool ! ∈ c

! ∈ while e : c

t-unitary
! ∈ x : Circ ! ∈ e1 : Nat . . . ! ∈ en : Nat

! ∈ x.U(e1, . . . , en)

t-compose
! ∈ x : Circ ! ∈ e : Circ

! ∈ x.compose(e)

t-measure
! ∈ x : Circ ! ∈ e1 : Nat ! ∈ e2 : Nat

! ∈ x.measure(e1, e2)

t-add-qubits

! ∈ x : Circ ! ∈ e : Nat

! ∈ x.addQubits(e)

t-add-bits
! ∈ x : Circ ! ∈ e : Nat

! ∈ x.addBits(e)

Figure 4.1: Typing rules of Proto-Qiskit

⇀ ::= P
n(e1, . . . , en) | ⇀ ↙ ⇀ | ⇀ ̸ ⇀ | ¬⇀ | ∝y : ↽ .⇀ | ∃y : ↽ .⇀

e ::= y | x | k | fn(e1, . . . , en).

Figure 4.2: Many-sorted first order logic

• The set SC contains the Proto-Qiskit’s language constants k as natural numbers
and boolean values. In order to identify them, we assume each constant to come
with a defined type ↽ .

• The set SP include an equality symbol =ε for each type ↽ . A predicate comes with
a type of the form ↽1 ⇐ · · ·⇐ ↽n, where ↽1 . . . ↽n ↔ TYPES.

• The set SF include symbols for Proto-Qiskit’s functions, but also some functions
symbols for the circuits metric we are interested in. Each function f

n comes with
a type of the form ↽1 ⇐ · · ·⇐ ↽n ⇑ ↽ for ↽1 . . . ↽n, ↽ ↔ TYPES

36

The functions we are more interested in are the ones that operates on quantum circuits.
Some of them correspond to the results of the methods in Proto-Qiskit. These are:

• QuantumCircuit: Nat ⇐ Nat ⇑ Circ, which correspond to the circuit constructor
in Proto-Qiskit.

• append
U : Circ ⇐ Natn ⇑ Circ, there exist one per unitary operation U with n

arguments.

• measure: Circ⇐ Nat⇐ Nat ⇑ Circ.

• compose: Circ⇐ Circ ⇑ Circ.

• addQubits: Circ⇐ Nat ⇑ Circ.

• addBits: Circ⇐ Nat ⇑ Circ.

Other than these functions, we define two more, which correspond to the metrics we
are interested in, those are:

• width: Circ ⇑ Nat, which returns the width of a circuit.

• gatecount: Circ ⇑ Nat, which returns the number of gates in a circuit.

• depth: Circ⇐Nat⇐Nat ⇑ Nat, which returns the depth of the circuit. The three
inputs correspond respectively to the circuit being analyzed, and the input and
output qubit from which to compute the depth.

4.2.2 The Logic Type System

As we gave a notion of typing for Proto-Qiskit’s terms, we can also define a notion of
typing for the logic we gave. In order to do so, we employ the use of two typing contexts
to distinguish between the program variables and the logic variables.

Similarly to what we did before we also have two types of judgements:

• Typing judgement (%;& ∈ e : ↽): which states that e is given type ↽ under
program typing context % and logic typing context &.

• Well-typed judgment (%;& ∈ ⇀): which asserts that the formula ⇀ is well
typed under typing environment % and logic context &.

The complete set of typing rules for the logic is given in Figure 4.3. These rules for
typing expressions in the logic are designed to be more general than the rules for typing
expressions in Proto-Qiskit. This is intentional. Since the logic is meant to analyse and
reason about Proto-Qiskit’s programs, it should be possible to derive types for Qiskit
expressions.

37

l-const

!;” ∈ k : ϑk

l-program-var
x : ϑ ↔ !

!;” ∈ x : ϑ

l-var
y : ϑ ↔ ”

!;” ∈ y : ϑ

l-function
fn : ϑ1 ⇐ · · ·⇐ ϑn ⇑ ϑ !;” ∈ e1 : ϑ1 . . . !;” ∈ en : ϑn

!;” ∈ fn(e1, . . . , en) : ϑ

l-top
!;” ∈ ∀

l-bottom
!;” ∈ ∃

l-predicate
Pn : ϑ1 ⇐ · · ·⇐ ϑn !;” ∈ e1 : ϑ1 . . . !;” ∈ en : ϑn

!;” ∈ Pn(e1, . . . , en)

l-conjunction
!;” ∈ ϖ0 !;” ∈ ϖ1

!;” ∈ ϖ0 ↙ ϖ1

l-disjunction
!;” ∈ ϖ0 !;” ∈ ϖ1

!;” ∈ ϖ0 ̸ ϖ1

l-negation
!;” ∈ ϖ

!;” ∈ ¬ϖ

l-universal
!;”, y : ϑ ∈ ϖ

!;” ∈ ∝y : ϑ .ϖ

l-existential
!;”, y : ϑ ∈ ϖ

!;” ∈ ∃y : ϑ .ϖ

Figure 4.3: Typing rules for the many-sorted logic

4.2.3 The Semantics of the Logic

Given the syntax for the logic and its typing system, we have to now define a semantics
for the logic. This is done to establish the meaning of its components, especially the ones
which do not have a counterpart in Proto-Qiskit but are native to the logic. We will
give this semantics using the symbol !·". These brackets, so-called semantic evaluation
brackets, maps an expression to its denotation, or semantic value.

We start by giving an interpretation for types and for both the program typing
context and the logic typing context.

38

Types

Base types are interpreted as the sets of values they represent, while functions and
predicate types are interpreted as sets of relations and functions respectively.

!Nat" = N !Bool" = B !Circ" = Circ

!↽0 ⇐ · · ·⇐ ↽n" = !↽0" ⇐ · · ·⇐ !↽n" !↽0 ⇐ · · ·⇐ ↽n ⇑ ↽" = !↽"!ε0"↗···↗!εn"

Typing Contexts

A context environment % holds variables and their corresponding types. An interpreta-
tion can be given as:

!%" = {φ | ∝x : ↽ ↔ %. φ(x) ↔ !↽"}

Which means that the environment % interpretation correspond to the set of all states
in which every variable of a type ↽ is mapped to a value in the semantic interpretation
of that type.

Similarly, we define the interpretation of a logic typing context & as a set of logic
variable substitutions. This means that a value is substituted to a logical variable, which
turns an abstract logical statement into one that can be evaluated. The interpretation
become:

!&" = {⇁ | ∝y : ↽ ↔ &. ⇁(y) ↔ !↽"}

Which means that the interpretation of the logic typing context &, correspond to the
set of all substitutions ⇁ in which every logical variable of type ↽ in the envorinment &
when mapped to a value, this value has to be in the interpretation of type ↽ .

We now are able to define the semantics for both logic expressions and logic formulae.

Interpretation of Expressions and Formulae

A logic expression, is a Proto-Qiskit expression, which now may contain a logic vari-
ables. A formula ⇀ instead, talks about the current state of program and logic variables.
We only interpret well-typed expressions and formulae, which means that their inter-
pretation is defined on typing judgments. This interpretation relies on the assignment
of domain elements to both program variables (represented in the store φ) and logic
variables (represented in the store ⇁).

Definition 4.2.1 (Semantics of Logic Expressions). We define the interpretation of a
well typed expression %;& ∈ e : ↽ as a function !%;& ∈ e : ↽" : !%" ⇐ !&" ⇑ !↽".

39

Specifically:

!%;& ∈ k : ↽"ϑ,ϖ = !k"
!%;& ∈ x : ↽"ϑ,ϖ = φ(x)

!%;& ∈ y : ↽"ϑ,ϖ = ⇁(y)

!%;& ∈ f
n(e1, . . . , en) : ↽"ϑ,ϖ = !fn"(!%;& ∈ e1 : ↽1"ϑ,ϖ, . . . , !%;& ∈ en : ↽n"ϑ,ϖ)

This is intuitive, as the interpretation is the same that we gave in Proto-Qiskit’s
semantics.

A formula ⇀, can be satisfied or not by a store and a logic substitution, therefore we
define the interpretation of a formula as the set of pairs (φ, ⇁) that satisfy it.

Definition 4.2.2 (Semantics of Logic Formulae). We define the interpretation of a well-
formed formula %;& ∈ ⇀ as a relation !%;& ∈ ⇀" ¬ !%" ⇐ !&". It is defined as:

!%;& ∈ ∀" = !%" ⇐ !&"
!%;& ∈ ∃" = ▽

!%;& ∈ P
n(e1, . . . , en)" = {(φ, ⇁) | (!%;& ∈ e1 : ↽1"(ϑ,!) . . . !%;& ∈ en : ↽n"(ϑ,!)) ↔ !P n"}

!%;& ∈ ⇀ ↙ ω" = !%;& ∈ ⇀ : " ∅ !%;& ∈ ω : "
!%;& ∈ ⇀ ̸ ω" = !%;& ∈ ⇀ : " ℜ !%;& ∈ ω : "

!%;& ∈ ¬⇀" = !%" ⇐ !&"⊋!%;& ∈ ⇀ : "
!%;& ∈ ∝y : ↽ .⇀" = {(φ, ⇁) | ∝υ ↔ !↽".(φ, ⇁[y ℑ⇑ υ])}
!%;& ∈ ∃y : ↽ .⇀" = {(φ, ⇁) | ∃υ ↔ !↽".(φ, ⇁[y ℑ⇑ υ])}

Function Symbols

When describing the semantics of symbols at the logic level, we can omit the symbols
which are interpreted in the same way as in Proto-Qiskit semantics, and the ones that
are intuitive, such as the Arithmetic, Boolean and Comparison operators. Other function
symbols interpretation however, deserve to be discussed. We start with the symbols for
circuit building functions:

!QuantumCircuit"(qb, cb) = (↼, qb, cb)

!appendU"((Instr , qb, cb), q1, . . . , qn) = (Instr :: (U(q1, . . . , qn)), qb, cb)

!measure"((Instr , qb, cb), q, c) = (Instr :: (measure(q, c)), qb, cb)

!compose"((Instr , q1, c1), (Instr , q2, c2)) = (Instr 1 :: Instr 2, q1, c1)

!addQubits"((Instr , q, c), n) = (Instr , q + n, c)

!addBits"((Instr , q, c), n) = (Instr , q, c+ n)

40

Where with q and c we identify single qubits on which operations are performed, and
with qb, cb the number of qubits and classical bits in the circuit.

We can now give a definition for the size operations introduced before, as:

!width"((Instr , qb, cb)) = qb+ cb

!gatecount"((Instr , qb, cb)) = |Instr |

!depth"((↼, qb, cb), qin, qout) = 0

!depth"((Instr :: (op(q1 . . . qn)(. . .)), qb, cb), qin, qout) =

{
1 + D̂ if qout ↔ {q1, . . . , qn}
D otherwise

where |Instr | represent the lenght of a sequence of instructions, and we define

D̂ = max{!depth"((Instr , qs, cs), qin, qmid) | qmid ↔ {q1, . . . , qn}}
D = !depth"((Instr , qs, cs), qin, qout)

As the width is similar to what we have defined, depth seems completely di!erent. Depth
is defined recursively based on the qubits involved in the computation. If the circuit is
composed of only itself, the depth is zero. If the sequence of instruction however is not
empty, the depth is defined in terms of what qubits are interested by the computation. A
qubit which is, will have depth of one greater than the maximum depth of the operation’s
inputs and a qubit which is not will have instead the same depth as before.

4.3 A Hoare Logic for Proto-Qiskit

Finally, we can devise a Hoare Logic for analyzing Proto-Qiskit’s programs.
We start by defining what are the triples of this logic. A triple has the form

{⇀} p {ω}

where ⇀ and ω are formulae in the first order logic we defined, and p is a Proto-Qiskit
program. By using the many-sorted logic, ⇀ and ω reason about circuits and their
measures, therefore deriving this kind of triples allow us to reason on the dimension of
the circuit built in p.

The derivability of a triple is given as:

∈” {⇀} p {ω}

Note that we keep the typing context as some rules require it in order to know the
type of variables that appear in p. One of these rules is the consequence rule, where
we need to check the validity of the implication in order to apply it.

The complete set of derivation rules for Hoare triples can be found in Figure 4.4

41

hoare-assign

∈” {ϖ[e/x]} x ⇓ e {ϖ}

hoare-seq
∈” {ϖ} c1 {ϱ} ∈” {ϱ} c2 {ς}

∈” {ϖ} c1 ; c2 {ς}

hoare-conditional
∈” {ϖ ↙ e} c1 {ς} ∈” {ϖ ↙ ¬e} c2 {ς}

∈” {ϖ} if e then c1 else c2 {ς}

hoare-while
∈” {ϖ ↙ e} c {ϖ}

∈” {ϖ} while e : c {ϖ ↙ ¬e}

hoare-unitary

∈” {ϖ[appendU (x, e1, . . . , en)/x]} x.U(e1, . . . , en) {ϖ}

hoare-compose

∈” {ϖ[compose(x, e)/x]} x.compose(e) {ϖ}

hoare-measure

∈” {ϖ[measure(x, e1, e2)/x]} x.measure(e1, e2) {ϖ}

hoare-add-qubits

∈” {ϖ[addQubits(x, e)/x]} x.addQubits(e) {ϖ}

hoare-add-bits

∈” {ϖ[addBits(x, e)/x]} x.addBits(e) {ϖ}

hoare-consequence
↭”;↘ ϖ ↖ ϖ↓ ∈” {ϖ↓} c {ς↓} ↭”;↘ ς

↓ ↖ ς

∈” {ϖ} c {ς}

Figure 4.4: Derivation rules for Proto-Qiskit’s Hoare triples

4.3.1 An Example

We now demonstrate how to perform the structural analysis of properties on a circuit,
using the defined Hoare logic. For this purpouse we will use a simple circuit, written in
Proto-Qiskit’s syntax.

Consider the program:

qc ⇓ QuantumCircuit(3, 3);

qc.H(0);

qc.CX(0, 1);

qc.H(0);

42

qc.X(2);

qc.CX(1,2);

qc.measure(0,0);

qc.measure(1,1);

Let us refer to it as p. We aim to derive the following triple:

{∀} p {gatecount(qc) = 7}

Where qc is the quantum circuit constructed by p.
We start by using the hoare-seq rule to split the last statement of the program

from the rest.This yields:

∈qc:Circ {∀} p↓ {gatecount(measure(qc, 1, 1)) = 7}
∈qc:Circ {gatecount(measure(qc, 1, 1))} c.measure(1, 1) {gatecount(qc) = 7}

∈qc:Circ {∀} p↓ ; c.measure(1, 1) {gatecount(qc) = 7}

This indicates that in order to prove that qc has a gatecount of 7, we must prove that
the gatecount of qc in p

↓ plus the e!ect of the last statement, is still 7.
In order to prove the second of these triple, we can make use of the hoare-measure

rule.
The same reasoning can be applied iteratively, separating each statement in p and

justifying the second triple at each step. This process stops when we reach the cir-
cuit’initialization. There we will need to prove that

{∀} qc ⇓ QuantumCircuit(3, 3) {gatecount(e) = 7}

where e is :

e = measure(measure(appendCX(appendX(appendH(

append
CX(appendH(qc, 0), 0, 1), 0), 2), 1, 2)0, 0), 1, 1)

The critical step is to now show that ∀ ↖ gatecount(e[QuantumCircuit(3, 3)/qc]) = 7,
that is, showing that the formula gatecount(e[QuantumCircuit(3, 3)/qc]) = 7 is valid.
By evaluating the expression e[QuantumCircuit(3, 3)/qc], we obtain the Proto-Qiskit
circuit where:

Instr = hadamard(0); cnot(0,1); hadamard(0); x(2);

cnot(1,2); measure(0,0); measure(0,0)

The number of qubits and bits in the circuit are both 3. Since the gatecount is expressed
as |Instr |, and the number of instruction is 7, we can conclude that we were able to derive
the initial triple. Similarly we could produce proofs for triples regarding the width and
depth of the circuit.

43

Conclusion

In this thesis we ventured in the realm of quantum computing, with a particular emphasis
on verifying structural properties of quantum circuits. The exploration revolved around
the integration of formal methods, specifically Hoare logic for the analysis of quantum
circuits.

We began by successfully defining a formalization for Qiskit, one of the most promi-
nent quantum imperative programming environment. This formalization was not limited
to the semantics of the language but was extended with types. This provide Proto-Qiskit
with a rigorous system to prove properties like type safety and soundess.

The succsessful definition of a Hoare logic instead marks a milestone in this the-
sis. Our framework enables the derivation of meaningful triples that verifies the size of
quantum circuits. This contribution lays the groundwork for a deeper and more struc-
tured understanding of quantum algorithms developed within the Qiskit ecosystem. It
represents a concrete step towards bridging the gap between theoretical formalisms and
practical quantum programming tools.

Looking ahead this work opens several promising ways for further exploration. One
of these include formally analyzing the Qiskit’s optimizations using a Hoare logic. This
would allow us to understand how the size of circuits varies in relation to their initial
dimensions.

In summary, this thesis represents a small step towards addressing the complexities
of quantum circuit verification. By contributing to this field, we aim to support the
development of more robust and formally defined quantum computing technologies.

44

Bibliography

[Bec] Olga Becci. Integrating Dynamic Lifting into Qiskit. PhD thesis.

[Car96] Luca Cardelli. Type systems. ACM Comput. Surv., 28(1):263–264,
March 1996.

[Dev] Qiskit Developers. Qiskit documentation. https://docs.quantum-
computing.ibm.com/. Online, Accessed: 10/12/2024.

[GM10] Maurizio Gabbrielli and Simone Martini. Programming Languages:
Principles and Paradigms. Springer Publishing Company, Incorpo-
rated, 1st edition, 2010.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation
and Quantum Information: 10th Anniversary Edition. Cambridge
University Press, 2010.

[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics with applica-
tions: a formal introduction. John Wiley & Sons, Inc., USA, 1992.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 1st edition, 2002.

[Plo04] Gordon Plotkin. A structural approach to operational semantics. J.
Log. Algebr. Program., 60-61:17–139, 07 2004.

[Win93] Glynn Winskel. The formal semantics of programming languages:
an introduction. MIT Press, Cambridge, MA, USA, 1993.

1

	Introduction
	Quantum Computing
	Qubits
	The Bloch sphere
	Multiple qubits
	Entanglement

	Quantum Gates
	Multi-qubit gates

	Quantum Circuits
	Qiskit
	Circuit Design
	Circuit Compilation
	Execution and Results Analysis

	Programming Language Theory
	Description of a language
	Syntax
	Semantics

	Operational Semantics
	Floyd-Hoare Logic
	Assertions
	Hoare Triple
	Rules

	Proto-Qiskit
	Syntax
	Expressions
	Commands

	Operational Semantics
	Expressions
	Commands

	Circuit Size Estimation using Proto-Qiskit's Hoare Logic
	Type System Definition
	Judgements
	Typing Rules

	A Logic for Assertions
	Many-sorted Logic
	The Logic Type System
	The Semantics of the Logic

	A Hoare Logic for Proto-Qiskit
	An Example

