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SCUOLA DI SCIENZE

Corso di Laurea in Informatica per il Management

ONTOLOGY-BASED DATA
INTEGRATION: MEMUK,

THE MELODIC MUSIC
KNOWLEDGE GRAPH

Relatore:
Chiar.ma Prof.essa
VALENTINA PRESUTTI

Correlatore:
Dott.
ANDREA POLTRONIERI

Presentata da:
ESTHER GIULIANO

III Sessione
Anno Accademico 2023 - 2024



“Ce qui pour les uns est la

même note, pour les autres est

l’infini de la musique.”
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Abstract

La crescente digitalizzazione nel consumo e nella produzione musicale ha

aumentato le richieste nell’industria musicale di sistemi automatizzati per

l’analisi e le proposte musicali. Ne consegue l’aumento di datasets musicali

disponibili, la maggior parte dei quali ha dimensioni ridotte, restrizioni di

copyrigth e/o scarsa interoperabilità dovuta a formati di annotazione diversi;

trattasi, quindi, di datasets inadeguati nel settore del Music Information

Retrieval.

L’integrazione di dati musicali da diverse fonti richiede tempo, denaro, e la

collaborazione tra esperti musicali e informatici per evitare perdite o errori

durante la conversione. Choco - Chord Corpus and Data Transformation

Workflow for Musical Harmony Knowledge Graphs (un corpus contente dati

armonici e un workflow per la creazione di un grafo di conoscenza basato

su tali dati) - fornisce un’integrazione semantica su larga scala di datasets

contenenti dati armonici, ossia l’aspetto verticale della musica.

Al contrario, appare ancora limitata la ricerca sull’integrazione semantica

di dati melodici, riferiti all’aspetto orizzontale della musica. Questo lavoro

propone un workflow per semplificare l’integrazione di dati melodici, e una

procedura automatizzata di validazione dei risultati, con l’uso della libreria

Music21 di Python, che supporta vari formati musicali digitali.

Viene presentato anche un esempio di integrazione semantica di tre datasets

distinti, con la costruzione del Melodic Music Knowledge Graph (MEMUK,

un grafo di conoscenza con dati musicali melodici), utilizzando Polifonia On-

tology Network, per garantire l’interoperabilità con altri knowledge graph

i
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basati sulla stessa ontologia, come il Choco Chord Corpus.



Abstract

Since music consumption and production became more digitised, the de-

mand from music industries for automated systems to organise analyse and

recommend music continues to grow, as well as the number of available mu-

sical datasets. However, most of them are not suitable for Music Information

Retrieval because of their limited size, non-openness, and poor interoperabil-

ity caused by the use of many different annotations formats.

Therefore the integration process of data from different sources is both

time-consuming and financially expensive, as it requires collaboration be-

tween musical experts and computer scientist to reduce the loss of important

musical information, and check for errors during the conversion. Choco -

a Chord Corpus and Data Transformation Workflow for Musical Harmony

Knowledge Graphs - already provides a large-scale semantic integration for

harmonic data, i.e focusing on the vertical aspect of music.

Meanwhile, there appears to be limited explorations into the semantic

integration of melodic data, which refers to the horizontal aspect of music,

and is described by the music notation elements traditionally found in a

musical score. This work proposes a modular integration workflow to simplify

the standardisation process of melodic data, incorporating also a draft of an

automated technical validation procedure, enabled by the Music21 Python

library, which can parse many different digital music formats.

Furthermore, an example of semantic integration of three distinct datasets

is presented, building the Melodic Music Knowledge Graph (MEMUK) by

using the Polifonia Ontology Network, to ensure interoperability with other

iii
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Polifonia-based knowledge Graphs like the Choco Chord Corpus.
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Introduction

Whether your goal is to find the title of a musical motif that has been

haunting you during moments of boredom or to write a song for your loved

ones without needing any musical knowledge, Music Information Retrieval

(MIR) researchers have been developing solutions to address these common

needs for the past fifty years. MIR is an interdisciplinary science that actively

pursues a variety of different tasks, aiming to retrieve information from music.

For example MIR researchers have been trying to craft reliable query-by-

humming systems (allowing song identification via hummed or sung input).

Another example is the development of automatic music composition tools.

Other MIR tasks include music structure analysis, music recommendation

algorithms, and audio content analysis [1].

These tasks are not only topics of experimental research, but also highly

valued products in the music industry, as “The music industry is also quickly

and constantly growing, supported by the new digital technologies and the

rise of streaming platforms and digital services [...].” [2]. In 2021 the music

industry generated around $65 billion through its core and complementary

businesses combined, and employed almost 4 million people worldwide, a

value second to visual arts only [3]. In addition, the music industry has been

recently enjoying a constant growth, which is mainly due to the widespread

adoption of streaming services (worth $13.4 billion in revenue, with a 19.9%

growth in 2020 compared to the previous year). As a result, the core business

of the industry was generating, in 2020, more than $21 billion worldwide —

its biggest value ever — largely offsetting the losses reported by the decline of

1



2 Introduction

the revenues in the sales of physical formats and revenues from performance

rights, as a result of the COVID-19 pandemic [4]. Moreover, the number of

users using music streaming services has increased from 76.8 million premium

subscribers in 2015 to around 400 million in 2021 [5].

As music consumption and production became more digitised, the de-

mand for automated systems to organise, analyse, and recommend music

continues to grow. At the heart of each of these MIR tasks lies one essen-

tial ingredient: data. Music data includes a wide range of elements: such

as metadata (bibliographic and library records), or data relating to concert

events and venue. Other kinds of data are audio and/or video recordings

and digital encodings of performances. Furthermore, data may include an-

alytical and structural insights into music pieces, or capture the emotional

and effective impact of music. Finally, digital sheet music encoding provides

information on the structure and on the elements that compose a music piece.

Nevertheless, datasets generally consist of raw data, without an accurate

description of relationships between their elements, failing to provide seman-

tic understanding, facilitate reasoning and advanced querying. For this rea-

son Choco also introduces a novel ontology for modelling music annotations,

which facilitates the identification of semantic relationships [6]. These rela-

tionships, for example, help the identification of different songs and musical

pieces that contain the same sequence of notes in the same or a similar order.

For this reason, a semantic integration helps ensure that information across

different music-related data sources is aligned and interpreted correctly.

However, finding large datasets in public domain to train and test an

innovative MIR system is far from simple. Often, those MIR datasets are

very small, containing around 100 entries, such as the labROSA:APT dataset

[7] or the Chopin22 dataset [8]. In addition, each of these datasets uses a

different annotation format (for instance music encoded with different file

formats), with limited or no standardisation at the metadata level, making

it hard to seamlessly integrate data from various sources. This requires highly

skilled researchers with strong musical and programming knowledge. As a



Introduction 3

result, integrating datasets is a time-consuming and financially demanding

process.

Access to interoperable datasets can support the music industry in analysing

product innovation [2], and promotes the reproducibility and replicability of

experiments. Choco - a Chord Corpus Data Transformation Workflow for

Musical Harmony Knowledge Graphs - already [6] provides a large scale se-

mantic integration of datasets containing harmonic data, i.e. focusing on

the “vertical” aspect of music. On the contrary, there appears to be lim-

ited explorations into the semantic integration of melodic data, which refers

to the “horizontal” aspect of music, and is described by the music notation

elements traditionally found in sheet music 1.2. Therefore, this thesis pro-

poses a workflow to simplify the standardisation process of melodic data.

Furthermore, an example of semantic integration of three distinct datasets

is presented.

Therefore, the proposed workflow includes the transformation of the inte-

grated dataset into a Knowledge Graph (KG), the Melodic Music Knowledge

Graph (MEMUK) using the POLIFONIA ontology, which is designed “to

represent a wide range of music-related concepts and relations” [9], ensuring

interoperability with other Polifonia-based KG like the Choco Chord Corpus.

Finally, the proposed methodology may be leveraged to favour the establish-

ment of collaboration among artists to exchange knowledge to innovate music

products, in an open innovation fashion [5].





Chapter 1

The Music Representation

challenge

In Western culture, the search for a music representation system arose

from the need of handing down melodies of Christian devotional chants. The

first musical notation systems involved the use of neumes1, placed above the

words of the chant to indicate, in a rough manner, ascending and descending

tones, and rhythmic figures. To address the imprecision of this system, Guido

d’Arezzo (991/992 - after 1033) developed the four-line staff [11], four lines

on which square-shaped notes were written at different pitches [10]. With

Ugolino di Francesco da Orvieto (1380 - 1457), notation evolved into the

five-line staff that we use today [12].

The traditional written or printed sheet music (also called as musical

score) is not the only possible way to represent music. Any kind of digital

music format may be regarded as “symbolic” since it is based on a finite

alphabet of letters and symbols [13]. Actually, according to Müller M. [13],

when talking about symbolic representations of music, we refer to formats

that explicitly describe musical entities (also called musical events, as each

of them has a start and an end, see Section 1.1). However, symbolic repre-

1A neume transcribes a melodic and rhythmic formula applied to a single syllable of a
chant. [10]

5
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sentations and musical sheets, do not offer all the necessary information to

reproduce an acoustic realisation of a piece of music. Only audio representa-

tions (sound recordings) offer this feature, as they are composed of acoustic

waves. This classification of three different types of music representations

is based on the Müller proposal [13]. Nevertheless, each of these types of

representation expresses only certain aspects of music, but none of them in-

dividually is music, because, as the philosophers Wiggins et al. argue [14]:

“Music is actually something abstract and intangible which does not have a

real existence in itself.”

This chapter begins by introducing the concept of musical notation. Then

the most common digital symbolic representations used to encode musical

notation are presented. Finally, a comparison of these digital formats is con-

ducted, to identify the one that best represents all musical notation elements,

while ensuring compatibility across the diverse repertoire of Western Music.

1.1 Musical Notation

Musical notation refers to the system used to visually represent music

elements. Mastering musical notation is not an easy task, and may require

even several years. However, the goal of this section is not to make the reader

a fluent music reader, but to provide him with a basic understanding of the

elements that compose sheet music, enabling a better understanding of how

different symbolic digital music representation formats work.

Sheet music is represented on five-line staff paper. Like when writing

text on lined paper, staves are the five lines on which music symbols are

written. In fact, additional indications can be found on top or below the

staff, such as the lyrics of a song. A note is the first element that comes

to mind when we think about music. In fact, this term is often used in a

loose way, both to refer to the graphical symbol ( ˇ “ ) and to the pitched

sound (when talking about audio representations) [13]. The main attributes

of notes are duration and pitch.
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The pitch is the sound produced, for instance, when playing a specific key

on a piano, while the duration expresses how long to hold that key. Actually,

the pitch is a periodic sound of a certain fundamental frequency, and the

majority of human beings, thanks to a perceptual property, can order the

sounds that they hear on a frequency-related scale [13].

In order to describe music notes using a finite number of symbols, the

space of all possible pitches is discretised. Western music uses a discretisation

called as equal-temperament, which means that the space between two

notes with fundamentals frequencies in a ratio equal to any power of two is

subdivided into twelve parts, each called semitone[13].

However, in Western music only seven literal symbols are used to repre-

sent notes: A, B, C, D, E, F, G (or seven syllables: la, si, do, re, mi, fa, sol).

These are the white keys on a piano. To represent the five additional pitches,

accidentals (♯, sharp or ♭, flat) are added to the notes. These correspond

to the black keys on a piano and can be notated either as C♯, D♯, E♯, F♯, G♯,

A♯, B♯, or as D♭, E♭, F♭, G♭, A♭, B♭, C♭.

Notes on a staff are organised into measures (also called as bars). The

end of a measure is delimited by a vertical line: |. The length of a mea-

sure, i.e. how many notes can be inside of a bar, is defined by a meter

indication, usually a fraction such as 3/4 or 6/8, called time signature,

where the numerator indicates the number of beats per measure, while the

denominator specifies the note duration that represents one beat.

Actually note symbols ( ˇ “ ) have no meaning if there’s no clef at the

beginning of each staff. Three kind of clefs are used in classical, commercial

and contemporary Western music: G clef ( G ), F clef ( I ) and C clef ( K
). Clefs assign specific pitches to lines on the staff, using a semicolon (:) to

mark a reference line: the G clef marks G, the F clef marks F, and the C

clef marks C. Clef changes might also occur to represent notes in a way that

makes them easier to be read by a musician.

Next to a clef, flats or sharps may be found: these indicate the key

signature, i.e. which sharps or flats are taken for granted in the whole
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piece without the need to repeat them before each note. Other important

indications on a score are:

• tempo indications: expressed as beats per minute (BPM), and refer

to the speed of a music piece;

• dynamics: tell the player how loud they should play, by using terms

such as forte for loud or piano for quiet;

• expression markings: another way of telling the speed of a piece,

by using italian words such as Grave, Presto, Affettuoso, Appassionato,

Cantabile, Dolce;

• articulations: tell the musician how to play the note like slurs ( ⌢ ),

for smooth notes, or staccato ( . ), for short separated notes.

• rests: indicate to the musician when not to play and how long to

remain silent, such as the symbol >.

In digital formats, to refer to the occurrences of all of the musical notation

elements presented in this Section, the term musical events is often used.

1.2 Sheet Music

This type of representation is the most easy for humans to read, while

it’s the most complex to analyse for a computer; for example, through op-

tical music recognition (OMR2). Sheet music provides information related

to systems of staves, clefs, time signatures, expression markings, pitch of

notes, rests, accidentals, and dynamics. However, during a performance,

the musician adjusts the suggested tempo and emphasises certain dynamics

over others. As a consequence, sheet music is far away from an exhaustive

2This algorithm is the equivalent of optical character recognition (OCR), used for
images of written text.
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representation of music: it describe the notes to be played, leaving the per-

former with artistic freedom to create a new interpretation different from the

previous ones [13].

1.3 Symbolic Representations

Symbolic representations describe music in a way that is easily readable

by a machine. An example of an analog symbolic representation is the piano

roll (see Section 1.3.1). Today, when referring to symbolic representations,

we generally mean various digital formats. Among the most common are the

MusicXML format (see Section 1.3.2), the MEI format (see Section 1.3.3),

the MIDI format (see Section 1.3.4) and the **kern format (see Section

1.3.5).

1.3.1 The Piano Roll

This analogue musical representation developed between the late 19th

and early 20th centuries, peaking in popularity in 1924, before being replaced

by phonographic recordings. Known as Piano-Roll, it is a type of symbolic

representation on punched rolls of paper, where each perforation encodes a

note. These rolls were developed for self-playing keyboards that would play

music when activated by a crank. This way, music recorded by great pianists

such as Gustav Mahler, Edvard Grieg, Scott Joplin, and George Gershwin

could be reproduced in private homes. The rolls were created using a special

piano that allowed the paper to be perforated to mark which note was played,

as well as its duration, dynamics, and use of pedals. Today, this type of

representation is used in digital form, as a graphical representation derived

from other formats like MIDI, MusicXML, or **kern, to quickly visualise

semantic relationships. For example, compared to the original score fragment

of the Fugue BWV 846 in C Major by J. S. Bach (Figure 1.1), in Figure 1.2 it

is possible to immediately observe the entries of the different voices (soprano

in green, alto in orange, tenor in yellow, and bass in azure).
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Figure 1.1: Fugue BWV 846 in C major by J. S. Bach, measures 1-6. Source:
[15].

Figure 1.2: Piano-roll of the Fugue BWV 846 in C major by J. S. Bach.

1.3.2 MusicXML

While in the past musical scores were first handwritten by amanuensis

and then printed by engraving metal plates, today various software applica-

tions are used to write, modify, and print music, such as MuseScore, Finale,

or Sibelius. The universal format used to store and share musical files among

these different software applications is called MusicXML. This format de-

fines a set of rules for encoding musical scores, in order to make them both

machine and human readable. As shown in Figure 1.3, the elements that

make up the score can be easily identified in the file structure: the mea-

sure, indicated by the tag <measure>, and the individual notes, indicated by

the tag <note>. For each of these notes, the pitch, <pitch>, and the note

duration, <duration>, must be specified.
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Figure 1.3: Example of the

structure of a MusicXML file

and its graphical output.

As suggested by David Huron, the in-

ventor of the **kern format (see Section

1.3.5), MusicXML takes into account both

the vertical and horizontal organisation of

the music. Therefore, the file can have a

<score-partwise> structure (as shown in

Figure 1.3) or a <score-timewise> struc-

ture. In the first case, the horizontal or-

ganisation of the music is emphasised, with

a clear separation between different parts,

each assigned to its corresponding measures.

In the second case, the vertical dimension of

the music is highlighted, with the file struc-

tured by measures, and for each measure,

the different parts are defined. If needed,

it is possible to switch from one structure

to another automatically using XSLT style

sheets, parttime.xsl and timepart.xsl. In

Figure 1.3 is shown how the quarter notes

E and F are expressed in a MusicXML file. Each <note> element is defined

by the following components:

• a <pitch> element: this specifies the exact note, including both the

note itself (E or F) and the octave in which it occurs;

• a <duration> element, which defines the length of the note;

• a <type> element: in this case both notes are quarter notes
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1.3.3 MEI

Music Encoding Initiative (MEI) is a markup language3 similar to Mu-

sicXML, used to write music in digital format. It is an open-source, platform-

independent standard, compatible with various operating systems.

Compared to MusicXML, MEI allows for the creation of critical editions4

and supports all types of Western musical notation, including mensural and

neumatic notation. Furthermore, MEI can be used to mark musical anal-

ysis elements on the score, such as melodic and harmonic intervals, scale

degrees, and harmonic notations. Due to the numerous features it offers,

the MEI format is not currently supported by any popular music nota-

tion software (like Finale or Sibelius). Therefore, a reduced version, MEI

Basic, with limited functionalities, has been created, which is supported

by Musescore, but is not compatible with the MEI files generated in this

project. However. online digital tools like https://mei-friend.mdw.ac.at/

or https://www.verovio.org/musicxml.html provide viewing and editing fea-

tures for MEI files.

A MEI file consists of two types of elements: Events and ControlEvents.

The Events define what should be played, i.e., the notes, chords, and rests

in a piece. The ControlEvents, on the other hand, are those elements that

describe how the music is to be performed, such as ties, dynamics, and tempo.

In Figure 1.4, a segment of a MEI file is shown, where XML elements define

the same notes as represented in the staff above. The <beam> element groups

the eighth notes into a sextuplet. Each note includes the following attributes:

• dur: specifies the note’s duration;

• pname: indicates the note’s pitch name;

• octave: defines the note’s octave;

3Amarkup language is a programming language with markers, called tags, that indicate
to the program interpreting the document its logical and ”hierarchical” structure [12]

4An edition of a musical work that contains notes about the notation, explanations of
difficult parts, information about the writer, etc. [16]
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Figure 1.4: Fragment of an MEI file and its graphical output.

• stem.dir: determines the stem direction (up or down);

• accid: denotes any accidental (flat or sharp).

1.3.4 MIDI

Musical Instrument Digital Interface (MIDI) is the most widely used sym-

bolic format for music representation. It was developed in the 1980s to facil-

itate communication between electronic musical instruments and computers.

MIDI encodes information about the pitch, velocity, and duration of each

note in a piece, as well as other performance details such as articulation,

tempo, and instrument timbre. Unlike a digital audio file, MIDI does not

store the actual sound of the music, but rather stores a series of control com-

mands that can be used to synthesise the music when played back through a

compatible instrument or software synthesiser. A MIDI file contains a series

of messages note-on and note-off as shown in Figure 1.5. These messages tell

to a computer when a note starts and ends.

Each of these messages also contains the following.
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Figure 1.5: Comparison between a sheet music representation and a
MIDI representation (in simplified table form) of the first twelve notes of
Beethoven’s Fifth Symphony. Source: [15].

• note number : an integer between 0 and 127 that encodes the pitch

of the note, according to the equal-tempered system5. This format is

therefore suitable only for representing Western classical, commercial

and contemporary music.

• key velocity : an integer between 0 and 127, controlling the intensity

of the sound. In the case of a note-on message, it controls the volume

of the note, while in the note-off message, it controls the reduction in

sound intensity, i.e. how the note fades away.

5This is the tuning system of Western classical music, in which all semitone intervals
between consecutive notes are equal [10]
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• channel specification: an integer between 0 and 15, indicating the

channel assigned to a particular instrument. Each channel supports

polyphony, meaning multiple simultaneous notes.

• timestamp: an integer that represents how many clock pulses or ticks6

must be waited before executing a message. As shown in Figure 1.5,

60 ticks must be waited to execute the first message, corresponding to

the crotchet rest. To express the simultaneity of the first three notes,

the following two messages have a wait time of 0, meaning they will

be executed simultaneously with the first message, once 60 ticks have

passed to trigger the first message.

In contrast to a digital musical score, MIDI files enable the encoding and

preservation of absolute-time information at a much finer and more flexible

level. Although PPQN is a fixed number, absolute time information can be

modified within the file by inserting a tempo message between two note-on

messages. This facilitates the recording of pauses or changes in expression

markings, such as accelerandi, ritardandi. Through these types of messages,

it is also possible to calculate the number of quarter notes played in one

minute, i.e., the measurement of time in BPM (Beats Per Minute). For

example, if one quarter note corresponds to 6, 000µs, then the tempo is 100

BPM.

1.3.5 **kern

This symbolic format was originally created by David Huron in the 1980s

as part of the Humdrum Toolkit. Its aim was to create a set of resources that

are useful for computational music analysis. **kern is a musical notation

6A unit of temporal measurement determining the subdivision of time within a piece.
In a MIDI file, each quarter note is subdivided into a predefined number of clock pulses
or ticks. This number specifies the resolution of a MIDI file, called PPQN (Pulses Per
Quarter Note), which is specified in the file’s header. For example, if a MIDI file has a
resolution of 480 PPQN, that means that there are 480 pulses per quarter note (1/4 of a
beat).



16 1. The Music Representation challenge

format where the focus is on encoding the functional information underly-

ing a musical score, rather than the orthographic and visual details found

in printed versions. Among the numerous questions that can be addressed

using this toolkit for analysing kern files, one might, for example, search for

instances of a motif, calculate harmonic intervals between two parts, iden-

tify Italian, French, or German sixth chords, or determine how frequently

augmented intervals are used within a piece.

In a **kern file, the staff is represented vertically. It is possible to have

multiple columns, with each column representing a different voice and/or

instrument (as seen in Figure 1.7, where the second row indicates which

staff the voice is in). Within each column, as shown in Figure 1.7, the

measures are separated by an ”=” sign followed by the measure number. To

aid in the analysis of the piece, each note is encoded with the appropriate

accidental, even if this has already been specified in the key signature or has

appeared earlier in the same measure. For example, in Figure 1.7, the C

Figure 1.6: Sheet music: ”Nun danket alle Gott”, J.S. Bach, measures 1-2.
Source: [17].

played by the tenor voice in the lower staff is always sharp due to the key

signature (F♯, C♯ and G♯, indicating A major). However, in the kern file, each

occurrence of this C is written explicitly as 4c♯, where 4 denotes the note

duration, c specifies the pitch, and ♯ indicates the sharp. Like MIDI files,

only the notes of the equal-tempered system can be encoded, meaning this

format is suitable only for representing Western music. Finally, this format

provides a standardised way to encode bibliographic information through the



1.4 Comparison of the formats 17

Figure 1.7: Lines from a **kern file containing “Nun danket alle Gott” by
J.S. Bach, measures 1-2. Source: [17].

so-called reference record. This is a type of global comment that facilitates

computer access to bibliographic information. Figures 1.6 and 1.7 show the

same excerpt from the chorale “Nun danket alle Gott” by J.S. Bach, both in

sheet music notation and as a **kern file.

1.4 Comparison of the formats

To determine the optimal format for data standardisation and the cre-

ation of MEMUK, the table 1.1 outlines the advantages and disadvantages of

these various formats. It evaluates key factors, such as the ability to encode

performance data, machine and human readability, and compatibility with

the Music217 Python library.

Since performance data is influenced by the interpretation of a particular

musician, it is highly variable. For instance, MIDI is a digital format that

7Documentation is available at: https://www.music21.org/music21docs/#

https://www.music21.org/music21docs/#
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can encode a musician’s performance. However, converting a performance

encoded in MIDI is a difficult and error-prone task because, during a per-

formance, the duration of the notes is not very precise and is expressed in

milliseconds. As a result, transcriptions of note durations may be incorrect.

This problem can be avoided when the MIDI file is generated from a score

rather than from a performance.

The Music21 library was, then, chosen for converting files to a common

and standard format (see Chapter 4). For this reason, the target format

needed to be compatible with the library.

Furthermore, selecting a format that is readable by both human beings

and machines simplifies error checking during the conversion process, also

allowing for quick manual verification. For example, sheet music can be

visually compared to the lines of code in the MEI format to spot errors.

To summarise, based on the previous considerations, the goal was to find

a formats that excludes performance data, is compatible with Music21, and

is human-readable.

MEI and MusicXML stood out among the options because they both rely

on XML structure. This structure is particularly useful for storing musical

data as it is readable and editable by both humans and machines [13]. In

addition it is highly compatible with the SPARQL Anything tool, that allows

the creation of Knowledge Graphs (see Chapter 6).

Ultimately, MEI was selected over MusicXML because it provides a stan-

dardised structure and superior support for complex musical notations, in-

cluding those used in Ancient music. This flexibility ensures that both the

knowledge graph and the dataset can be easily extended and enriched in the

future, even with Ancient Music or critical editions.
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Format MusicXML MEI **kern MIDI

Representation
type

music score music score symbolic symbolic

Pros Universal for-
mat to share
files across
different mu-
sic notation
software

Supports all
western music
notation types
(even from
the Middle
Ages and the
Renaissance),
by encoding
not only the
visual aspects
but also the
semantic struc-
ture of these
notation

Compatible
with the Hum-
drum Toolkit
for musical
pieces’ com-
parison (for
Unix-based
operating
systems only)

Compatible
with the differ-
ent operative
systems

Performance No No No Yes

Machine read-
able

Yes Yes Yes Yes

Human read-
able

Yes Yes Yes No

Compatible
with music21
python library

Yes Yes Yes Yes

Table 1.1: Comparison of the music formats MusicXML, MEI, kern and MIDI





Chapter 2

State of the art

Beyond the need for data diversification to reduce cultural bias, tradi-

tional datasets pose many other challenges. First of all, they are often fo-

cused on a particular aspect of music, such as metadata, audio files or the

emotional content of music. Therefore, it becomes harder to gain a deeper

understanding of music’s structure and its cultural context. Furthermore,

datasets often fail to capture the complex relationships between a musical

piece and its audio or video representation, as well as its connections to other

fields like ethnomusicology or philosophy.

A KG is one of the most suitable data structure to represent all these

relationships with knowledge coming from different disciplines. The core

component of KGs are RDF1 triples. Each of them consists of three compo-

nents:

1. Subject: the entity being described, for instance Violin Concerto No.

1;

2. Predicate: the relationship with the object or a property, like com-

posed by ;

3. Object: the value of a property or the related entity, such as Johann

1RDF stands for Resource Description Framework, a data model for the unique de-
scription of resources through URIs (Uniform Resource Identifiers) [12].

21



22 2. State of the art

Sebastian Bach;

Thanks to this structure many different types of information can be linked

together, such as metadata, melodic and harmonic annotations, lyrics and

the cultural context of a musical piece, allowing for an interconnected repre-

sentation of musical data. The structure of a knowledge graph is defined by

an ontology which specifies all the possible types of entities, their attributes

and how entities relate to each other. Ontologies are formalised models used

to represent a certain domain of knowledge, such as music. They enable

automatic reasoning, thanks to the use of languages based on logic.

In the last two decades, significant contributions have been made to the

creation of musical ontologies. Most of them have a specific focus, much

like traditional datasets do. Many of them have been developed as stand-

alone projects “with little or no alignment to other relevant ontologies within

the same domain”[9]. A comprehensive list of these different ontologies is

reported in Figure 2.1 on a timeline. These ontologies can be grouped into

six main categories:

1. Metadata: the Music Ontology [18], the Listening Habits and Mu-

sic Tastes ontology [19]and the DOREMUS Ontology [20]. These on-

tologies have been developed not only to represent high-level music

metadata information, such as composer, title and other editorial in-

formation, but also contextual and historical information;

2. Theoretical concepts: the Tonality Ontology [21] and the Temper-

ament Ontology [22]. These ontologies represent musical concepts re-

lated to music theory, like tonalities and temperamets;

3. Music notation: the Music Theory Ontology [23], the Music Notation

Ontology [24], the Music Score Ontology [25]and the MIDI Linked Data

Cloud [26]. These ontologies describe musical notation, including both

score-based formats and symbolic representations.

4. Recording studio environment: the Studio Ontology [27], the Au-

dio Effects Ontology [28]. These ontologies define elements from music
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Figure 2.1: Timeline of the ontologies.
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production and recording studios.

5. Music recommendation: the Music-Induced Emotions ontology [29],

the Music Similarities ontology [30] and MMKG [31]. These ontologies

were created with the goal of enhancing the accuracy and efficiency of

music recommendation systems.

6. Others:

• the TROMPA ontology [32] aims to represent the interconnection

between musical information already in the public domain, rather

than offerring integration and ingestion of these data.

• the Segment Ontology [33], the Audio Features ontology [34] and

the Chord ontology [35], which all have a very specific focus;

• the CHARM Ontology [36], which describes musical structure

through the CHARM specification.

None of these ontologies proposes a complete framework that can cover at the

same time data about musical features, instruments, emotions and perfor-

mance. Recently the Polifonia Ontology Network (PON) has been released.

PON aligns most of the existing ontologies in the music domain and extends

significantly their coverage.

2.1 The polifonia ontology network

The Polifonia Ontology Network (PON) is a modular ontological ecosys-

tem designed to support cultural, contextual, and music-related queries. Un-

like other ontologies, PON is designed as a network of interconnected modules

that work cohesively to represent both the cultural context and the technical

details of music. This ontology is made up of 15 modules that are organised

both thematically (colours, horizontal view) and hierarchically to highlight

their dependencies (vertical view), as shown in Figure 2.2. Thanks to this

modular structure, the PON ontology is easier to maintain and extend. In
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Figure 2.2: Polifonia Ontology Network architecture [9].

addition, modularity ensures flexibility, as users can select only the necessary

modules for specific applications. At the base of this ontology lies the core

module. The interoperability across PON is provided by four foundational

models: Source, Instrument, Music Meta, andMusic Representation.

By harmonising all the different information associated with a musical piece,

users can explore the derived knowledge graphs with interdisciplinary and

cross-domain queries.

Part of the PON ontology is also the ontology module developed to model

chord music annotations. This module was implemented as part of the Choco

project [6], which serves as a primary source of guidance for the implemen-

tation of the dataset integration process used in this thesis. Choco proposes

the creation of a large-scale dataset that semantically integrates harmonic

data from 18 different sources using heterogeneous representations and for-

mats, such as Harte, Lead-sheet, Roman Numerals, and ABC. These chord
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Figure 2.3: Integration workflow used in Choco [6].

annotations are then converted and aligned into a common format: JAMS.

From this large-scale dataset a KG was generated, with the aim of answer-

ing questions regarding who the composer/performer of a musical object is,

what the key of a composition/performance is, and what the value of an

annotation is. Figure 2.3 shows the integration workflow used in Choco:

first, the JAMifier ingests chord collections (where metadata and music an-

notations follow collection-specific conventions and formats) to generate a

JAMS dataset [6]. This approach has multiple levels of integration. First, all

metadata are systematically reorganised. Meanwhile, for each track or score,

music annotations (such as chord progressions) are encoded and stored into

individual JAMS files. The Chonverter achieves notational interoperability

among collections by converting the original annotations to the same no-

tational families [6]. Finally, jams2rdf uses notation-specific ontologies to

produce RDF triples, thus creating a Music Knowledge Graph.

This thesis adopts a similar approach for data integration, but with a

focus on musical scores and symbolic music representations, like MIDI, *kern

and MusicXML. Instead of the JAMS format, which was used in Choco, this

work uses the MEI format (see Section 1.3.3). A similar approach to the

JAMifier has been implemented: for each new dataset a method to align
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title and composer’s metadata needs to be implemented. Each original file is

then transformed into a MEI file using a converter as described in Chapter

4. This converter adopts a modular approach to facilitate future suppor of a

wider variety of music formats.

A KG is then generated relying on the music projection module for de-

scribing music score elements, instead of the JAMS module used in Choco to

represent chord annotations. This music projection module helps generate

a KG that provides a robust framework for describing music score elements

and to answer not only questions concerning who the composer of a musical

piece is or for which instrument the score was written, but also questions

related to finding similar pitches and notes in a score.





Chapter 3

Data collection

The effectiveness of any MIR application is heavily dependent on the

quality and diversity of the used datasets. This chapter outlines the process

of selecting and analysing datasets necessary for constructing a knowledge

graph focused on melodic annotations. The process begins by exploring pub-

licly available datasets. Furthermore, a systematic approach is for filtering

and classifying datasets containing relevant melodic data. Python scripts

were employed as an automated way to identify datasets containing specific

keywords, while manual evaluation ensured the relevance of the data. Ad-

ditional factors, including licensing, musical genres, and annotation formats,

were also considered to ensure the datasets contained a diverse range of mu-

sical genres and annotation types.

3.1 Selection of datasets containing melodic

annotations

ISMIR, a non-profit organisation and leading authority in the field of

Music Information Retrieval, provides a comprehensive YAML-formatted list

of datasets to be used for MIR tasks, available at https://github.com/

ismir/mir-datasets/blob/master/mir-datasets.yaml and manteined by

29

https://github.com/ismir/mir-datasets/blob/master/mir-datasets.yaml
https://github.com/ismir/mir-datasets/blob/master/mir-datasets.yaml
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Alexander Lerch1.

Due to the limited time available for the development of this thesis and

the extensive list of over 200 datasets, an initial automated selection was

carried out using a Python script to remove all entries that did not contain

the keywords of melodic annotations format. The most suitable formats for

melodic information are the digital symbolic formats explained in Chapter 1,

as they encode all music events, including notes. The keywords used were the

most common digital symbolic file extesions: ”MusicXML,” ”xml,” ”MIDI,”

”MEI,” ”Kern,”. To include more results also the keyword ”melod” was used,

in order to look for words like melody or melodic.

Thanks to his process 38 datasets have been identified. Figures 3.1 and

3.2 show the list of datasets; for each of them it is specified whether they

contain also audio files, what contents and metadata are and the URL from

which the dataset could be downloaded.

To isolate entries featuring melodic annotations, data were manually col-

lected regarding the exclusive presence of melodic annotations for a partic-

ular instrument. At the same time, data related to licences, musical genres,

and number of annotations were collected in each dataset. As a result of

this search, four datasets had to be excluded outright because they were no

longer available online. Therefore, the produced table in Figures 3.3 and 3.4

contains ten additional columns:

• available: whether the dataset is actually available online to be down-

loaded or not;

• genre: a list of one or more musical genres that are represented in

the dataset. To unify the notation the list of music genres avail-

able at https://en.wikipedia.org/wiki/List_of_music_genres_

and_styles was used as a reference;

• licence: this field is particularly important in order to know under

1Alexander Lerch is the leader of the Music Informatics Group at the Georgia Insti-
tute of Technology, where he works on machine learning and intelligent signal processing
solutions for music.

https://en.wikipedia.org/wiki/List_of_music_genres_and_styles
https://en.wikipedia.org/wiki/List_of_music_genres_and_styles
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Figure 3.1: First segment of the dataset filtered using keywords such as
”MusicXML,” ”xml,” ”MIDI,” ”MEI,” ”Kern,” or ”melod” with a Python
script.
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Figure 3.2: Second segment of the dataset filtered using keywords such as
”MusicXML,” ”xml,” ”MIDI,” ”MEI,” ”Kern,” or ”melod” with a Python
script.
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which conditions the dataset can be used. Refer to Appendix A for an

in-depth-analysis of the meaning of the different kinds of licence that

have been found in this list of 34 datasets;

• annotation format: specifies what’s the format of the the files con-

tained in the dataset, like MIDI or MusicXML;

• number of annotations;

• texture: whether the files contain only a single instrument, melody,

or multiple instruments and voices, polyphony;

• Instruments: the types of instruments represented in the dataset. If

the list of instruments is too long, it is summarised with the keyword

several.

• piece: whether the file was generated from the performance of a mu-

sician or not.

3.2 Dataset classification

An examination was conducted in a Python notebook2 on the previously

mentioned 34 datasets (see Figures 3.3, 3.4), focusing on the following crite-

ria:

• licensing type

• music genres

• annotation formats, such as MIDI, musicXML, kern, or others

• whether the annotations originate from performances or not

• whether the annotations are melodic or harmonic
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Figure 3.3: First part of the selected datasets’ list, including information on
related papers, musical genres, licenses, annotation types, instruments, and
texture for each dataset.
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Figure 3.4: Second part of selected datasets’ list, including information on
related papers, musical genres, licenses, annotation types, instruments, and
texture for each dataset.
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Figure 3.5: Charts illustrating the selected datasets: from left to right, the
distribution of licenses, audio track inclusion, variety in music genres, cate-
gories of melodic annotations, performance status, and texture type.

The results of this analysis are shown in Figure 3.5, showing that Creative

2https://github.com/esthy13/tesi-mir/blob/main/Dataset_Selection/

datasets_analisis.ipynb

https://github.com/esthy13/tesi-mir/blob/main/Dataset_Selection/datasets_analisis.ipynb
https://github.com/esthy13/tesi-mir/blob/main/Dataset_Selection/datasets_analisis.ipynb
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Commons licences, particularly CC BY, are the most commonly used ones,

allowing for the modification and reuse of datasets for both non-commercial

and commercial purposes, provided that the original creators are acknowl-

edged. In addition, the Real World Computing Music Database, composed

of 315 performance recordings along with related MIDI files from various

genres, requires specific authorisation for use. As a result, this dataset was

also excluded from the analysis. From the charts in Figure 3.5 we can besides

notice that the majority of datasets contain melodic annotations, with MIDI

emerging as the most prevalent annotation format, and Classical music as

the most represented genre. In terms of texture, the datasets are primarily

polyphonic, which simplifies the process of selecting the ones which feature

exclusively melodic annotations. Additionally, most of these datasets are de-

rived from performance-based annotations and often include corresponding

audio files.

3.3 Selected datasets

It was crucial to select datasets containing melodic annotations for the

construction of the MEMUK knowledge graph. The selection process priori-

tised datasets that provided a diverse range of musical genres and various

annotation types. Diversity is an important elements, as, for instance, “using

the “most famous” or “most popular” songs to represent a wider tradition

risks eliminating an exploration of that tradition’s underlying diversity of

practice” [37]. Including multiple annotation formats was particularly im-

portant as it would support the development of a file converter capable of

handling different file formats. In addition, it helps showcase the functional-

ities and the effectiveness of the developed conversion software.

With these criteria in mind, the following datasets were initially identified

as potential candidates for inclusion:

• ASAPP [38]

• ATEPP [39]
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• MTC-LC-1.0 [40]

• Melosol [41]

• TFD3

Upon further analysis of these datasets, it became evident that the TFD

dataset was not a suitable candidate. This dataset consisted of few

performance-derived data, where each MIDI file represented an extract of

a larger musical piece, and therefore did not accurately reflect the entire

composition. In addition, performance data are not taken into account as

explained in Section 1.4. Furthermore, the MTC-LC-1.0 dataset, which con-

tains fragments of Dutch folk songs, offered limited variety in terms of musical

genres, thus failing to meet the diversity requirement.

In order to create a dataset that contains a broader range of genres,

beyond just classical music, it was established to include the LMD MIDI [42]

dataset. Despite including files with multiple instruments, this dataset was

considered suitable for the project as individual tracks for each instrument

can be easily separated from the original multi-track files. Actually, the full

LMD MIDI dataset was not used, as it contains a few thousands of invalid

MIDI files (i.e. files not respecting the MIDI standard file specification).

Instead, the Clean MIDI subset4 was used. The filenames used in this dataset

indicate the artist and title of each file.

3Available at: https://www.kaggle.com/jbraga/traditional-flute-dataset
4Available for download at: https://colinraffel.com/projects/lmd/

https://www.kaggle.com/jbraga/traditional-flute-dataset
https://colinraffel.com/projects/lmd/
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Data’s conversion process

A dataset might contain from a few to thousands of files. Generally, the

larger the number of files is, the better the dataset may be, as a larger dataset

often provides more diversity and variability, which can improve the accuracy

and robustness of the model. The chosen datasets, Melosol, ATEPP-1.1 and

Clean LMD contain, respectively, 783, 11,674 and 17,256 files. As manual

conversion was not a viable option, the development of a conversion software

in Python was needed.

Melosol contains songs for teaching and learning how to sing, composed

only by R. Berkowitz1. Even if ATEPP-1.1 contains MIDI files from vir-

tuoso pianists performances, it was chosen as it also contains MusicXML

files. Furthermore, the Clean LMD dataset was chosen to assure diversity to

the integrated melodic dataset available at: https://github.com/esthy13/

memuk/tree/main/melody/partitions, because it includes many different

music genres such as Rock, Pop, Alternative, Jazz, Hip Hop, Soundtrack,

R&B & Soul, Electronic, and Country.

This work proposes an innovative approach not only by diversifying the

music genres and composers represented in the datasets, but also by standar-

dising all files into a single, common format: MEI. The integration of these

datasets is facilitated by the development of the conversion tool presented in

1Ralph Berkowitz was an American composer, classical musician, and painter. [43]
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this chapter. The aim is to enhance the reproducibility of experiments us-

ing these three datasets and to encourage future expansion of the integrated

dataset by simplifying the conversion of additional files into the standardised

MEI format.

This chapter outlines the system requirements needed to run the software

and provides an overview of its usage describing the conversion process in

Figure 4.1. Finally, the several challenges faced while producing this software

are discussed.

The main library used in this project is Music212, a series of powerful

tools for computing-aided musicology. Music21 does not natively support ex-

porting to the MEI format. This limitation is addressed by the Converter21

module enhances the functionality of the Music21 library, enabling conver-

sions not only to MEI but also to kern files.

4.1 System requirements

In order to run the software, ensure that Python is installed on your sys-

tem. Moreover, pip is essential for installing the necessary project modules:

Music21, PrettyMidi3, and Converter214. The program’s code is available in

the GitHub repository at https://github.com/esthy13/tesi-mir/tree/

main/melody. After setup is complete, the program can be started from the

command line using this command:

python main.py /your/path/to/dataset <execute function>

All arguments are necessary to execute the code correctly. To avoid

producing errors, the main dataset directory should comply with this for-

mat: datasetName/raw, where raw is the folder containing all subdirec-

tories as well as files for conversion, and datasetName is linked with the

appropriate function to assign titles and composers to each file. As an

<execute function>, several functions are currently available and can be

2Documentation is available at: https://www.music21.org/music21docs/#
3Documentation available at: https://pypi.org/project/pretty_midi/
4Documentation available at: https://pypi.org/project/converter21/

https://github.com/esthy13/tesi-mir/tree/main/melody
https://github.com/esthy13/tesi-mir/tree/main/melody
https://www.music21.org/music21docs/#
https://pypi.org/project/pretty_midi/
https://pypi.org/project/converter21/
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run by specifying their names in the command:

• convert files : transforms single-track MIDI, MusicXML, or kern files

into MEI files;

• split midis : separates multi-track MIDI files into single-track MIDI

files;

• correct file: resolves metronome notation errors in Melosol files.

Additional functions may be developed according to user needs and incorpo-

rated into the list of executable functions in the main file.

4.2 The conversion process

The software currently supports conversion exclusively from MIDI, Kern,

and MusicXML formats to the MEI format only for single-instrument files.

Single-instrument files reduce conversion errors related to metadata, such

as the instrument name. For this reason, datasets with single-instrument

files were preferred. Therefore, datasets with MIDI files containing multiple

instruments can be transformed into single-instrument files datasets preserv-

ing the original folder structure. The transformed dataset will be created at

your/path/datasetName/splitted with the following command:

python main.py /your/path/to/datasetName/raw split midis.

Once this is complete, all files in the dataset can be converted to MEI

format by executing the following command:

python main.py /your/path/datasetName/splitted convert files

In order to convert a dataset other than those already defined (Melosol,

ATEPP-1.1 and clean LMD), a title composer function must be imple-

mented. For both ATEPP-1.1 and clean LMD, this function assigns

composer and title information based on the folder structure. If conversion

is required from formats other than Kern, MusicXML, or MIDI, the parser

and converter functions may need to be modified to support the new file

type more effectively.
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Figure 4.1: Conversion process diagram.
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4.3 Problems and solutions

While creating a workflow to transform musical files into the MEI for-

mat, a number of technical obstacles were identified and addressed. Initially,

Music21 lacks native support for MEI conversion. To overcome this issue,

a library called Converter21 was identified on the PyPI5 repository. This

library was incorporated to allow for consistent MEI output.

Other issues arose when using Music21’s default parser,

music21.converter.parseFile(file path), to convert files to MIDI.

As the default parser occasionally introduced errors in the conversion

process, such as overlapping notes that should have been played consecu-

tively. The error was mitigated by incorporating specific arguments into the

converter function:

music21.converter.parseFile(file_path, format='midi',

forceSource=True, quantizePost=True,

quarterLengthDivisors=(12, 16))

The argument format=’midi’ is used to explicitly tell to the Music21 con-

verter that the current file is a MIDI file. fourceSource=True is used to

force Music21’s parser to take the source file as-is, ignoring any possible

inconsistencies that would normally raise errors or warnings. This ensures

that the parsing process continues even if there are some minor issues in the

file, improving the reliability of MIDI conversions when working with imper-

fect files. quantizePost=True instructs music21 to apply quantisation after

parsing the file, by adjusting note durations to fit a standardised rhythmic

grid (e.g., eighth notes or quarter notes). This is particularly beneficial when

working with MIDI files, as they often exhibit irregular or non-standard tim-

ing. In the MIDI format, note timing is specified in absolute microseconds,

which may require adjustments for proper analysis or conversion into other

formats such as MEI or MusicXML.

5The Python Package Index (PyPI) is a repository for Python language software, aiding
in the discovery and installation of tools developed and shared by the Python community.
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Finally, quarterLengthDivisors=(12, 16) defines the allowable divi-

sions of a quarter note during quantisation. A divisor of 12 corresponds to

ternary rhythm, enabling note durations to be divided into triplets, while a

divisor of 16 corresponds to binary rhythm, accommodating standard divi-

sions such as half notes (1/2), quarter notes (1/4), eighth notes (1/8), and

sixteenth notes (1/16), which follow powers of two. Also when separating

multiple tracks within MIDI files, Music21 proved to be inadequate; it oc-

casionally altered note values or lost critical information. Consequently, the

pretty midi library was selected as a more effective alternative.

The default method to convert a MIDI file to MEI using both Music21

and Converter21 libraries is:

import converter21

import os

import music21

fp = os.path.join('..', 'provaFile',

'allemande_fifth_fragment.midi')→֒

score = music21.converter.parseFile(file_path, format='midi',

forceSource=True, quantizePost=True,

quarterLengthDivisors=(12, 16))

converter21.register()

out = os.path.join('..', 'provaFile',

'allemande_fifth_fragment.mei')→֒

score.write('mei', out)

However, this method does not preserve at all additional metadata

such as tempo and instrument details. To solve this problem,

xml.etree.ElementTree was used for parsing the MEI file once created by

the Converter21, in order to add those informations. Another metadata-

related challenge involved title and composer information. While MIDI files

inherently lack these details, even other file types in the datasets did not
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consistently contain this information. Instead, valuable bibliographical data

was often embedded in the folder structure of each dataset. To systemati-

cally extract and assign titles and composers, a title composer() function

was implemented for each dataset, tailored to the unique folder structure

and naming conventions, as no standardised format was observed across the

different datasets. Additionally, within the Melosol dataset, certain files

contained incorrect instrument labels, where each instance of *I"Piano ap-

peared instead of *IPiano resulting in missing instrument markings after

conversion. To solve this problem, a custom Python function was developed

to automatically correct these errors within all Kern files, by removing the

extra " character from each instrument indication.

Finally, due to the large number of files requiring conversion, processing

efficiency became a significant concern. To accelerate the workflow, multi-

programming was implemented in Python, allowing for concurrent file pro-

cessing, which reduced overall conversion time and optimised resource usage.





Chapter 5

Technical Validation of Data

Conversion

This chapter explains the scoring method created to assess the accuracy

of the conversion process. The accuracy score is obtained by comparing

the original music file with its MEI-converted version. The Music21 Python

library was used for this task, as it can parse all the music file formats used

in the project: MIDI, MusicXML, Kern, and MEI. To improve the reliability

of the evaluation, at least three original scores from each format, along with

their MEI-converted versions, were selected for analysis.

5.1 Criteria for assessing the conversion ac-

curacy

A music file represents many different elements like a traditional music

score: bars, notes, key signature, metronome indications, articulations, dy-

namics, etc. For further explanation on how the different digital formats

encode these informations, refer to Chapter 1. To ensure a reliable evalua-

tion of the conversion process for each of the following elements, an accuracy

score was calculated:
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• number of measures

• notes

• time signature

• metronome indications

• key signatures

• dynamics

• clefs

The number of measures is definitely the easiest way to check out whether

the conversion was successful and accurate or not: if the number of measures

is different, then some notes are surely missing, but also some others elements

listed above might not be well converted. On the other hand, if the number

of measures is correct, we cannot take for granted that the conversion was

successful: the other information can still be incomplete or contain some

errors.

To verify the accuracy of note conversion, the notes in a score are grouped

into trigrams, i.e. sets of three notes. For each note, its pitch, rhythm and

articulations are assessed using the following attributes of the Music21 note

object: note.name, note.octave, note.pitch, note.pitch.accidental,

note.quarterLength, and note.articulations. Trigrams are considered

mismatched if there are differences in any of these parameters between the

original and the converted version. However, in MIDI files the length of a

note is expressed with extreme precision in milliseconds, which can lead to

slight discrepancies when converting these values to the fractional notations

used in written music. To take into account these differences, the note accu-

racy score for MIDI files is calculated as the average of two accuracy scores:

one assessing all the attributes previously mentioned and another exclud-

ing note.quarterLength. This adjustment minimises the impact of slight

timing differences on the overall accuracy assessment.
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Provided that both the number of measures and the notes are converted

without any mistake, it can be stated that the identity of a musical piece is

preserved. For example, if the pitch is correct, it does not really matter in

which clef it is represented, as the listener would hear the correct pitch. How-

ever, an accurate representation of other information, such as time signatures,

metronome markings, key signatures, dynamics, and clefs, is important for

musicologists, musicians, and computers to properly analyse and catalogue

works of a composer. For instance, the MEMUK knowledge graph could be

used to observe which time signatures are preferred by a particular composer.

Unfortunately, if the MEI files do not contain this information, the results

obtained may not be accurate.

Then, the overall accuracy score for each original file format was deter-

mined using a weighted mean of these partial accuracy scores:

(S1 ∗W1) + ... + (Sn ∗Wn)

(W1 + ... +Wn)

where Si represents the accuracy score for each element, and Wi is the as-

signed weight. The weights in table 5.1 were assigned to each partial accuracy

score according to the considerations mentioned above.

Element Weight

Number of measures 5
Notes 5
Time signature 3
Metronome 3
Key signatures 2
Dynamics 1
Clefs 1

Table 5.1: Weights assigned to the partial accuracy scores on a scale from
one to five
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5.2 Accuracy Scores

The overall accuracy scores for the conversion process were as follows:

• 83.54% for MusicXML files, with errors resulting from missing con-

version of time signatures, metronome markings, key signatures, and

clefs;

• 100% for KERN files;

• 90.67% for MIDI files, where the sole errors occurred due to trigram

mismatches, related to discrepancies in note duration.



Chapter 6

The MEMUK Knowledge

Graph

A Knowledge Graph (KG) generated by the integration of several MIR

datasets can be explored through symbolic reasoning to derive novel musical

knowledge and test musicological hypotheses [9]. As explained in Chap. 2 a

KG uses RDF triples (subject - predicate - object) to describe the structure of

entities and their connections with other entities. When it comes to complex

domains, like music, this structure allows more meaningful interpretations,

by querying data with the SPARQL1 language.

In opposition to the Choco KG mentioned in Chap. 2, which semantically

integrates harmonic data2, the MEMUK KG focuses on the horizontal aspect

of music: the melody. Therefore, all the notes and the various music notation

elements that appear in a musical score are described. In addition, also

metadata regarding the title of the score, the name of the composer and

the instrumentation are represented. MEMUK can be queried at: https:

1SPARQL is a semantic query language for retrieving and manipulating data stored
following the Resource Description Framework (RDF), for more detailed information on
the syntax and semantics of the SPARQL language please refer to the W3C documentation
available at https://www.w3.org/TR/sparql11-query/

2Harmonic data represents the vertical aspect of music, i.e. the chords and their role in
“combining notes in music to produce a pleasing effect greater than the sum of its parts”
[44]
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https://polifonia.disi.unibo.it/memuk/sparql
https://polifonia.disi.unibo.it/memuk/sparql
https://polifonia.disi.unibo.it/memuk/sparql
https://polifonia.disi.unibo.it/memuk/sparql
https://polifonia.disi.unibo.it/memuk/sparql
https://www.w3.org/TR/sparql11-query/
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https://polifonia.disi.unibo.it/memuk/sparql
https://polifonia.disi.unibo.it/memuk/sparql
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//polifonia.disi.unibo.it/memuk/sparql.

The MEMUK KG was generated using the sparql-anything tool, a “sys-

tem for Semantic Web re-engineering that allows users to query anything with

SPARQL”, as the developers state on GitHub in their repository [45]. Ac-

tually, the supported formats are: XML, JSON, CSV, HTML, Excel, Text,

Binary, EXIF, File System, Zip/Tar, Markdown, YAML, Bibtex, DOCx,

PPTX. Therefore, with sparql-anything it’s possible to generate RDF data

from MEI files, which are XML-based, and save these data into .ttl files3.

6.1 Knowledge Graph construction

6.1.1 System Requirements

To create MEMUK on your local machine and test the software that

genaretes it, SPARQL Anything requires a version equal or greater than

JAVA 17. The SPARQL Anything executable jar can be found in the official

release page on GitHub: https://github.com/SPARQL-Anything/sparql.

anything/releases. In fact, two different version of SPARQL Anything

could be downloaded: one is the sparq-anything-<version>.jar, and the

other one is the sparql-anything-server-<version>.jar. The first ver-

sion is the one used in this projects. Meanwhile, the second one is a server

and its UI can be accessed at the address http://localhost:3000/sparql

after running the jar file from the Command Line Interface (CLI) as follows:

$ java -jar sparql-anything-server-<version>.jar

This UI can be very handy to get familiar with the SPARQL syntax and to

try out queries. However, the first version is the one used in this project,

and should be downloaded into the bin folder.
3TTL (pronounced ‘turtle’) stands for “Terse RDF Triple Language” and is a file format

used to express RDF data. This format is a W3C standard that is described as a “general-
purpose language for representing information in the web”. Representing RDF, .ttl files
store facts as triples. [46].

https://polifonia.disi.unibo.it/memuk/sparql
https://polifonia.disi.unibo.it/memuk/sparql
https://polifonia.disi.unibo.it/memuk/sparql
https://github.com/SPARQL-Anything/sparql.anything/releases
https://github.com/SPARQL-Anything/sparql.anything/releases
http://localhost:3000/sparql
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While a Docker installation is optional, it is highly recommended, both

to provide a secure and consistent environment for running the code and for

minimising the risk of compatibility issues caused by different programming

setups. The Dockerfile takes care of installing the correct Python version

and all the required libraries for a smooth code execution.

6.1.2 Transformation workflow

Along side with the creation of a SPARQL query to transform XML

data from MEI files to RDF, using the structure of the PON ontology, other

tools were created to generate the MEMUK KG. All files used to create

and test this transformation process are available at https://github.com/

esthy13/memuk/tree/main/kg-generation. Each MEI file is converted to

RDF using the mei2rdf.py script. This Python script accepts parameters

from the CLI, such as the input and output path of the file and the path

of SPARQL Anything jar’s location. kg-generation.py, instead, automatises

the transformation process for all the files contained in a specific folder.

6.2 Modeling melodic data with PON

Four modules of the PON ontology were used to model melodic data, i.e.

the musical notation elements:

• The Core Ontology (core): defines general concepts, relationships,

and ontology design patterns. It’s specialised by the other of the PON

ontology [47].

• The Music Meta Ontology (mm): “is a rich flexible model to de-

scribe Western music metadata and its provenance at different lev-

els of granularity [...], with automatic alignments to the Music On-

tology [18], the DOREMUS Ontology [20], and Wikidata (https:

//www.wikidata.org/)” [48].

https://github.com/esthy13/memuk/tree/main/kg-generation
https://github.com/esthy13/memuk/tree/main/kg-generation
https://github.com/esthy13/memuk/blob/main/kg-generation/mei2rdf.py
https://github.com/esthy13/memuk/blob/main/kg-generation/kg_generation.py
https://www.wikidata.org/
https://www.wikidata.org/


54 6. The MEMUK Knowledge Graph

Figure 6.1: Diagram of the relationship between PON modules in MEMUK.
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• The Music Representation Ontology (mr): Schema for musical

object analysis, connecting scores, audio, and annotations.

• The Music Projection Ontology (mp): establishes a formal rep-

resentation of musical entities, including both traditional musical ele-

ments, such as notes and chords, as well as more subjective annotations,

like mood and danceability [47].

Figure 6.1 illustrates the relationship between these modules. In order to

create the diagram the Graffoo notation was used (https://essepuntato.

it/graffoo/): yellow boxes are classes, blue/green, arrows are object/-

datatype properties, pink circles are individuals and green polygons are

datatypes. The central entity is mm:MusicEntity, and information object

defined as the “sum of all the elements” that make up a piece of music [6][49].

A mm:MusicEntity is created by a mm:CreativeProcess, which involves a

mm:CreativeAction, to indicate the execution of a mm:CreativeTask of type

mm:MusicWriting and mm:Instrumentation,as each music piece was com-

posed for a particular instrument or a designated ensemble of instruments.

The metadata retained from each piece of music were the title

(core:Title) and the composer(mm:MusicArtist). mm:Musician represents

the composer of each piece, as a subclass of mm:MusicArtist, involved in the

mm:CreativeProcess, and a subclass of the more general class core:Person.

Each mm:MusicEtity has a part, represent by the mm:AbstractScore.

This class assures reusability of the the MusicMeta module even when the

music piece has not been transcribed as real score, as a part of an oral tra-

dition, or as music created during an improvisation. Within this framework,

each mm:AbstractScore is realised by a mm:Score. Each mm:MusicEntity

is a mm:DigitalScore a subclass of mm:Score.

A mm:DigitalScore is then split split into several mr:Fragments. Each

mr:Fragment is described by a mr:Annotation. A mr:Annotation may have

different kind of mr:Observations:

• mp:Notes have three properties: mp:Pitch, mp:Accidental, and a du-

https://essepuntato.it/graffoo/
https://essepuntato.it/graffoo/
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ration, expressed as an rdfs:Literal, i.e. a string or a number, which

corresponds to the value of the xyz:dur property of a <Note> tag in

a MEI file.

• mm:Key refers to the Key signature of a musical piece, which is also

represented as a rdfs:Literal, composed by the concatenation of the

xyz:keyPname, keyMode and keySig attributes of a <KeySig> tag in

MEI files.

• mm:Clef has two attributes, one indicating the type of key, mp:GClef,

mp:CClef and mp:CClef, and the other one indicates on which staff

line the key is positioned.

As the PON has no class to represent meter and tempo information, these

elements are represented as attributes of the mr:Observation, by giving a

name a name to a such mr:Observation, either "meter" or "tempo". Fur-

thermore, the value of this observation is associated as an rdf:Literal, and

meter is the rythmic meter represented in the beginning of a section or of an

entire music piece, while tempo is a number expressing a BPM measurement.

Each mr:Fragment is also associated with a temporal location, repre-

sented by core:MusicTimeInterval, which enables the expression of musi-

cal time intervals in different ways, depending on the type of musical object.

For instance, if the fragment is a part of a recording, its temporal intervals

are likely measured in seconds. Although MEMUK currently contains ex-

clusively musical scores, this feature provides flexibility for potential future

extensions to include recordings.

To express music time intervals, which are defined by

core:MusicTimeIndex, a combination of measures and beats is used. A mu-

sical time interval has a start time index and an end time index. Each index

is defined by one or more core:MusicTimeIndexComponents, each defined

by a value (core:hasValue) and a value type (core:MusicTimeValueType).

Additionally, a musical time interval also includes a duration

(core:MusicTimeDuration) represented as a value and a value type,
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which for musical scores, is measured in beats.

6.3 Example

This section shows an example of how data is transformed from a MEI

file into RDF. The file used for this example comes from the Melosol

dataset. Its original format is a kern file, available in the repository of

this project at: https://github.com/esthy13/memuk/blob/main/melody/

partitions/Melosol/raw/Berkowitz107.krn. The visual representation of

the original file (Figure 6.2) was created thanks to the online digital music

editor https://verovio.humdrum.org/.

Figure 6.2: Visual representation of the file Berkowitz107.krn .

The file was then transformed into a MEI file following the conversion

process described in Chapter 4 (Figure 6.3). Title and composer’s metadata

are encoded in the MEI file in the tag <meiHead> (Figure 6.4).

Figure 6.3: Visual representation of the file Melosol 000009.mei .

https://github.com/esthy13/memuk/blob/main/melody/partitions/Melosol/raw/Berkowitz107.krn
https://github.com/esthy13/memuk/blob/main/melody/partitions/Melosol/raw/Berkowitz107.krn
https://verovio.humdrum.org/
https://github.com/esthy13/memuk/blob/main/melody/partitions/Melosol/raw/Berkowitz107.krn
https://github.com/esthy13/memuk/blob/main/melody/partitions/Melosol/melody/mei/Melosol_000009.mei
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Figure 6.4: First fragment of the file Melosol 000009.mei: tag <title> con-
tains the title of the music piece and the tag <persName> contains the name
of the composer.

https://github.com/esthy13/memuk/blob/main/melody/partitions/Melosol/melody/mei/Melosol_000009.mei
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Figure 6.5: The second fragment of the file Melosol 000009.mei shows how
the notes in the first bar are econded in the MEI notation.

The first two notes in measure one are D and F♯. They are modeled with

the Polifonia Ontology Network as two mr:NoteAnnotations, each contain-

ing an mr:Observation referencing a mp:Note. As shown in Figure 6.6, their

pitches, duration, and octave are correctly retained. The first note in the MEI

file has the following attributes: dur="4", pname="d", and oct="4" (Figure

6.5). The same values are also reported in Figure 6.6 as mp:hasDuration

"4"∧∧xsd:integer, mp:D, and mp:hasOctave "4"∧∧xsd:integer.

6.3.1 Queries Examples

Two queries were formulated in order to show the capabilities of this

knowledge graph:

• Which music pieces were composed by Berkowitz?

• What are the note in measure 1 of the music piece called 104 from

Berkowitz?

The written SPARQL code for these queries can be found at: https://

github.com/esthy13/memuk/tree/main/kg-generation/queries4kg.

A limitation in the creation of more queries was caused by the man-

agement of notes indexes in MEI files. In a MEI file beam4 and notes are

4A beam is the graphical lines that connects a group of two or more notes, like in
measure 3 and 7 from Figure 6.3

https://github.com/esthy13/memuk/blob/main/melody/partitions/Melosol/melody/mei/Melosol_000009.mei
https://github.com/esthy13/memuk/tree/main/kg-generation/queries4kg
https://github.com/esthy13/memuk/tree/main/kg-generation/queries4kg
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Figure 6.6: Example of data modelled using Polifonia Network Ontology,
extracted from track 107 from the Melosol dataset.The orange rectangle en-
codes the metadata: title, composer and instrument. The purple rectangles
shows how the first two notes of the first measure are modelled.
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considered at the same level causing duplicated index values when the two

elements are mixed together in the same bar.

6.4 Challenges

Although sparql-anything is a really powerful tool, offering many exam-

ples of uses and quickstart guides that can be found in https://github.com/

SPARQL-Anything, converting MEI files to.ttl files presented several chal-

lenges. First, given a limited time of less than three weeks to convert these

files, the learning curve to create SPARQL queries and automate the conver-

sion process for an entire dataset is quite steep, especially for those who are

not familiar with SPARQL or RDF.

Another problem encountered while designing the SPARQL conversion

query was handling missing data. For example, files coming from the Melosol

database [41] did not contain tempo information (neither expressed as a BPM

measurement nor as an agogic indication). The solution in these situations

consists of using the OPTIONAL { } clause in SPARQL. This clause handles

missing information, without returning empty query results, by inserting into

the brackets the triples that should be retrieved.

6.5 Future improvements

In MEMUK, triples are generated according to PON, “a set of new on-

tologies formalising the semantics of music representation, metadata, an-

notation, analysis, mediums of performance (instruments), and historical

sources (provenance), enabling the creation of interoperable KGs from music

datasets” [47]. However MEMUK could still be further improved.

First of all, a larger number of datasets could be integrated, follow-

ing Choco’s workflow. This way, considerations and analysis between the

two KGs on overlapping repertoire could be conducted. Furthermore, each

mm:MusicEntity could be connected to external resources, such as cata-

https://github.com/SPARQL-Anything
https://github.com/SPARQL-Anything
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loguing information from online music databases like MusicBrainz (https:

//musicbrainz.org), as already showcased in Choco.

Lastly but not least, practical applications could be showcased to enhance

the usability of MEMUK. For instance, after solving the problem related

to note indexes, queries to check for the presence of pitch sequences could

be written. Both musicians and musicologists could benefit of insights into

melodic patterns, for example, gaining a deeper understanding of their diffu-

sion and development across historical periods or among certain composers.

Therefore, new perspectives could be offered, or existing beliefs about music

history and theory could be validated.

https://musicbrainz.org
https://musicbrainz.org


Conclusion

The aim of this project was to develop a robust data integration workflow

to improve the reproducibility of MIR experiments, such as testing music

recommendation or genre classification systems. MEI turned out to be the

best annotation format for a melodic music dataset that is directed to future

expansion, as this formats allows to represent both classical, commercial,

contemporary and Ancient music. A Python conversion software was created

to convert files from MusicXML, MIDI and kern to the MEI format. The

conversion has been possible thanks to Music21, Converter21 and PrettyMidi

libraries. This thesis contributes to the creation of a heterogeneous melodic

dataset that encompass various genres of Western music, containing 126,352

single-instrument MEI files.

A semantic integration of melodic music data is provided by MEMUK.

This knowledge graph aims to model the relationships between the music

notation elements that compose a music piece, using the Polifonia Ontology

Network. It’s a semantic approach that enables the integration of diverse

datasets and provides tools for comparing melodic aspects, such as identifying

recurring pitch sequences across multiple music pieces. In addition, it ensures

interoperability with other Polifonia-based KG like the Choco Chord Corpus.

Finally, the music industry could benefit from this example of melodic

knowledge graph to develop more efficient music data management systems,

or improve music recommendation systems by using queries that check pitch

similarities.
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6.6 Future work

To improve the creation of MEMUK, further work is required. First of all,

all possible musical notation elements needs to be handled, paying particular

attention on how to model rests and chords.

The limitations caused by the management of notes indexes in MEI files

should be solved, in order to avoid duplicated note index values when beam

and notes elements are mixed together in the same bar. Once this problem

will be solved, MEMUK could be queried for detecting occurrences of pitch

sequences.

A further development could, also, consist in modelling semantic relation-

ships from ancient western notation systems.

Lastly but not least, both the integrated dataset and MEMUK could be

enlarged by exploiting the data integration workflow and software created in

this thesis, even by adding supports for other digital file formats.



Appendix A

Licenses

A.1 General Public License

A.2 MIT License

A.3 Creative Commons

A.1 GNU General Public License

This license guarantees four fundamental freedoms to users:

1. The freedom to utilize the software for any intended purpose.

2. The freedom to access and analyse the source code.

3. The freedom to create and distribute copies of the software.

4. The freedom to modify the source code, develop derivative versions of

the software, and redistribute them.

However, this license imposes a crucial restriction: neither the original

software nor any of its modifications may be converted into proprietary soft-

ware. In other words, both the initial application and its derivatives must

remain free software, preserving their openness and accessibility under the

same licensing terms. [50]
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A.2 MIT License

This is a licence created by the Massachusetts Institute of Technology to

distribute free software. It grants permission to use, copy, modify, merge,

publish, distribute, sublicense and sell copies of the software, as long as the

copyright notice and the text of the MIT licence remain intact. No warranty

or liability for damages resulting from the use of the software is provided by

the copyright holder, authors or other contributors, thus protecting the par-

ties involved from legal consequences. Therefore, the software is provided ‘as

is’ without any guarantees or assurances regarding its performance, quality or

suitability for specific purposes, reinforcing the lack of warranty and liability

protection for the creators and distributors of the software. It is compatible

with other licences, i.e. software, components and libraries licensed under

the MIT licence can be integrated with projects using different licences. For

example, the MIT licence is also compatible with popular copyleft licences

such as the GNU General Public License (GPL). However, while the MIT

licence allows integration and sublicensing without the obligation to share

modifications or derivative works, the GPL requires that the derivative work

must also be distributed under the same licence, preserving the ethics of free

and open source software. [51]

A.3 Creative Commons licences

• CC0: allows creators to distribute their material as being in the public

domain so that it can be used and redistributed in any way and format,

without restrictions.

• CC BY: allows re-users to distribute, remix, adapt and build upon

the material in any manner or format, provided attribution is given to

the creator. The licence permits commercial use.

• CC BY-SA: permission to distribute, remix, adapt and build upon

the material in any manner or format, provided credit is given to the
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creator. The licence permits commercial use. Derivative material must

be provided with the same licence.

• CC BY-NC: permits reusers to distribute, remix, adapt and build

upon the material in any manner or format for non-commercial pur-

poses, provided credit is given to the creator.

• CC BY-NC-SA: permission to reuse, remix, adapt and build upon the

material in any manner or format, for non-commercial purposes only,

provided the creator is indicated. Modified material must be provided

with the same type of licence.

• CC BY-ND: permits copying and redistribution of the material in

any medium and format. The licence allows commercial use but does

not permit the creation of derivative works. Credit must be given to

the creator.

• CC BY-NC-ND: allows material to be copied and redistributed for

non-commercial purposes only, provided the creator is credited. This

is the most restrictive type of Creative Commons licence.

[52]
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