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Abstract

Parity is the transformation that inverts the spatial coordinates of a physical system.
Among the known fundamental interactions of nature, only the weak force does not
obey parity symmetry. For examples, neutrinos, which interact solely via the weak
force, are uniquely left-handed, as empirically demonstrated by Chien-Shiung Wu in
1956 [171]. The gravitational interaction, as described by Einstein’s general theory of
relativity in 1915, is understood as the intrinsic curvature of spacetime. This is the
dominant interaction at cosmological scales and it is invariant under reflection of space
through the origin of coordinates. For this reason, examining manifestations of parity
asymmetries in the large-scale structure (LSS) of the Universe at late times allows us to
probe for the existence of early-Universe parity violation signatures. Possible indirect
evidences arises in baryogenesis [148] which generates asymmetry between baryons and
anti-baryons, as first described by the Sakharov conditions [136]. Other candidates
for parity-violating processes that could imprint late-time observables are related to
modifications to general relativity, such as Chern-Simons gravity [12, 26, 40], generation
of magnetic fields in the primordial Universe [62], reheating [37, 8], perturbations from
cosmic strings [126] and inflationary scenarios such as particle exchange [77].

In general, determining whether the Universe is parity-symmetric is a non-trivial
task. Data from large spectroscopic surveys have been used to investigate the mirror-
symmetric properties of the Universe. In particular, [28, 120] claimed a detection of
slight asymmetries in the distribution of chiral tetrahedra of galaxies. As pointed out in
[38], these results may be due to systematic effects, though the possibility that they are
instead physical cannot yet be ruled out.

In this work, a novel approach involving the use of angular redshift fluctuations
(ARFs) as a probe for parity violation is adopted. ARFs are a powerful tool to retrieve
cosmological information from the LSS of the Universe. These statistics of sky maps are
built by projecting galaxy redshifts, weighted by the galaxy density field, onto a Gaussian
window with a certain width and a fixed central redshift. One of the advantages of ARFs
is their low expected sensitivity to systematic effects. Thus, measuring a parity-violating
signal with ARFs could be a valuable step toward unveiling the symmetric properties of
the Universe and understanding the nature of the mechanism that leads to its evolution.

To this end, this study conducts a test for parity violation using binned numerical
estimators of the trispectra for ARFs. This choice is motivated by the limitations of
lower-order statistics which are inherently insensitive to parity violations. Specifically,
for power spectra and bispectra, the inversion of coordinates is indistinguishable from
a 3-dimensional rotation, making the unsuitable for parity tests. Trispectra, therefore,
represent the lowest-order correlation function useful to search for parity asymmetries.



For this work, we used the BOSS DR12 galaxy catalogue together with the Multi-
Dark-PATCHY mocks, which are specifically designed to accurately replicate the observed
clustering evolution and its dependency with stellar mass, thus providing robust error
estimates and allowing us to a deep understanding of systematic uncertainties. The test
for parity violation was conducted on the CMASS and LOWZ samples, covering both
the North Galactic Cap and the South Galactic Cap. A new class, MapCalculator, was
implemented in the CosmoBolognaLib, a suite of C++ libraries for cosmological cal-
culations, and employed to generate ARF maps. This class includes methods to build
sky maps by taking a catalogue and a mask as inputs. The code converts the angular
coordinates of the objects in the catalogue into pixel indices of the map and assigns a
value to each pixel based on the central redshift and the width of a Gaussian shell. The
input mask is then applied to the map to exclude noise sources and focus on the regions
of interest.

Parity violation was tested by comparing the difference between the parity-odd and
parity-even components for each trispectrum estimation. This comparison determines
whether the results are compatible or not with a null value, thus assessing the possible
presence of parity violation. In this study, we modeled the distribution of the scale-
averaged signal-to-noise ratio across different catalogues. The results of our analysis
on the window-deconvolved trispectrum estimator yielded a value of 0.035± 0.89 for the
CMASS sample and −0.013±0.92 for the LOWZ sample. No evidence of parity violation
was detected.

Additional tests were performed using parity-violating Quijote-ODD simulations,
which are standard N-body simulations that evolve parity-violating initial conditions.
The level of parity violation is quantified by the parameter pNL, which defines two sub-
types of these simulations: ODD m (with pNL = −106) and ODD p (with pNL = +106).
We compared their odd-trispectrum estimations with those derived from fiducial LCDM
Quijote simulations. The distribution of the scale-averaged signal-to-noise ratio for the
difference between the odd-trispectra of the two simulations was fitted with Gaussian
functions. At the reference redshift zcen = 0.8, the best-fit mean and standard deviation
for ODD m are (0.0030+0.00010

−0.00010, 0.0236
0.0010
0.0009) and for ODD p they are (−0.0031+0.0011

−0.0010,
0.0240+0.0010

−0.0010. Similarly, at the reference redshift zcen = 1.25 we obtained best-fit mean
and standard deviation of (0.0011+0.00008

−0.00008, 0.0227
0.0008
0.0007) for ODD m and (0.0004+0.0008

−0.0008,
0.0229+0.0008

−0.0007) for ODD p, showing no significant parity-violating features.
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Introduction

Cosmology is the study of the Universe as a whole, exploring its origins, structure, and
evolution over time. It seeks to understand the large-scale distribution of matter and the
physical laws governing its dynamics. From the nearly homogeneous state of the early
Universe, cosmologists have been modelling the intricate web of galaxies and cosmic
structures we observe today. Modern cosmology is the culmination of a continuously
evolving network of interconnected findings summarized in the Λ-Cold Dark Matter
model (ΛCDM), the standard model of cosmology.

However, several critical questions remain unresolved, some of which may point to
fundamental gaps in our current understanding. Although the ΛCDM model has been
rigorously validated through numerous observational data sets, subtle and hidden flaws
still exist. These uncertainties could stem from the unknown nature of the energy com-
ponents that make up the majority of the Universe’s content, the physical processes
driving the very early Universe, and incomplete descriptions of gravity.

An intriguing approach to exploring the early Universe and testing gravity theories
involves the study of parity symmetry, a transformation that inverts the spatial coordi-
nates of a system. In the standard ΛCDM scenario, parity is conserved, meaning that
the laws of physics remain unchanged under this transformation. While parity violation
is well-established in the weak interaction, determining whether similar violations occur
in cosmology remains an open question.

The goal of this work is to test whether the Universe’s appearance is invariant under
coordinate inversion. While this may seem counterintuitive, since coordinates are a hu-
man invention and the laws of physics should not depend on the chosen chart (principle
of relativity), coordinate transformations play a fundamental role in physics. In particu-
lar, Noether’s theorem establishes a profound connection between continuous coordinate
transformations and conservation laws: whenever a physical system is invariant under
a continuous coordinate transformation, a corresponding physical quantity is conserved.
For instance, if we repeat an experiment multiple times, rotating the experimental ap-
paratus before each measurement, and find that the results are consistent within ex-
perimental uncertainties, this demonstrates invariance under spatial rotation (isotropy),
which is directly linked to the conservation of total angular momentum.

Parity, however, is not a continuous transformation and therefore does not corre-
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spond to a conserved quantity. Nevertheless, in a cosmological context, studying parity
invariance could provide insights into the nature of dark matter, dark energy, and the
primordial Universe. Determining whether the Universe violates parity symmetry is a
challenging but significant question.

Efforts to detect parity-violating signals have primarily focused on studying the cos-
mic microwave background (CMB). In particular, parity tests have been performed on
the CMB temperature fluctuations [121] and polarization modes [142, 124]. While these
studies have not found definitive evidence for parity violation, they often lacked sufficient
data to place strong constraints [172].

Other investigations of parity symmetries in the CMB focus on cosmic birefringence,
which explores the interaction between the primordial electromagnetic field and the
medium it traverses. This phenomenon can rotate the linear polarization plane of pho-
tons, potentially due to interactions with dark matter or dark energy. Under a parity
transformation, the rotation angle flips direction (clockwise to counterclockwise). If the
CMB exhibits a preferential direction of rotation, this would indicate parity violation [53,
51]. Such findings could provide evidence for new physics, possibly challenging the cos-
mological constant model [88] and favoring parity-violating particles in the dark matter
sector, such as sterile neutrinos. Furthermore, evidence of B-mode polarization patterns
could reveal physics at the grand unified theory (GUT) scale [126].

Observations of LSS provide an additional avenue to investigate parity violation.
These structures retain information about the early Universe through indirect signa-
tures from processes such as baryogenesis, reheating, and inflation [148, 136, 8, 37, 26,
77]. LSS studies also offer a platform to test modifications of standard gravitational theo-
ries, such as Chern-Simons gravity [12]. In these theories, parity violation could manifest
in phenomena like the birefringence of gravitational waves [112], detectable with gravi-
tational wave interferometers [2, 4], or in the primordial scalar trispectrum induced by
graviton exchange, where the interaction is mediated by hypothetical graviton particles
[40].

Studies like [28, 120] have proven that LSS is a valuable laboratory for parity tests,
and they reported slight asymmetries in four-point correlations. However, these results
may be affected by systematic uncertainties [38].

This thesis investigates parity symmetry in cosmology using ARFs, a novel observable
that traces the underlying density and velocity fields of galaxies [69, 71, 70]. Unlike
traditional statistics, ARFs are minimally affected by systematic uncertainties and do
not depend on a fiducial cosmology to relate distances and redshifts. This makes them
a robust and reliable tool for testing parity violations, especially in cases where other
observables are hindered by biases or limited data.

To provide context, Chapter 1 reviews the theoretical framework of cosmology, dis-
cussing the spacetime description of the Universe, the Cosmological Principle, and Gen-
eral Relativity, while offering a comprehensive overview of the ΛCDM model. The mech-
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anisms of clustering and structure formation are explored in Chapter 2, with an emphasis
on their connection to primordial fluctuations and their role in shaping the observed Uni-
verse. Particular attention is given to how small initial perturbations evolved into the
LSS we observe today, driven by gravitational interactions among the components of
the Universe. Chapter 3 delves into parity violation, examining its role in fundamental
physics, with a specific focus on gravity. We also discuss its significance in cosmology and
present methods for detecting it, introducing higher-order correlations, with particular
attention to the trispectrum. Chapter 4 details ARFs, focusing on their definition and
implementation. By applying this tool to analyze data presented in Chapter 5, this work
aims to detect subtle signals of parity violation in the large-scale distribution of matter.
Finally, the results are presented in Chapter 6, where we discuss the insights this thesis
provides on parity symmetry.
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Chapter 1

Introduction to cosmology

In this chapter, a general overview of the fundamental building blocks of cosmology will
be provided to understand the key aspects of this unique physical science.

Cosmology is an ancient subject that concerns the formation and evolution of the
Universe as a whole. It seeks to make sense of the large-scale distribution of matter by
leveraging the tools of physics and inheriting its tradition of understanding where the
Universe comes from, why it appears as it does, and how it will evolve over time.

1.1 The axioms of cosmology

The field of cosmology originated as a branch of philosophy and began to evolve into
a physical science in 1917, with Albert Einstein’s development of General Relativity.
Scientific inquiry in cosmology follows the general method of constructing models sup-
ported by observations. In this framework, General Relativity is elevated to the status
of an axiom and serves as the foundation for building models with the fewest possible
free parameters. Since the theory does not include any parity-violating features, un-
derstanding how it describes the real world and whether this description agrees with a
parity-symmetric Universe are key aspects of this work. However, General Relativity is
not the only assumption in cosmology as it must be complemented by the assumptions of
isotropy and homogeneity of the Universe. These two assumptions are embodied in the
Cosmological Principle, a symmetry principle that helps reduce the degrees of freedom
in cosmological models.

The concept of isotropy states that the Universe looks the same in all directions of
observation. It is closely related to the Copernican Principle, which asserts that there is
no preferred or special location from which to observe the Universe. When isotropy is
combined with the Copernican Principle, the result is the concept of homogeneity, which
holds that the structural properties of the Universe remain invariant across different lo-
cations. Clearly, the requirements imposed by the Cosmological Principle are not always
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fulfilled. In any direction one points their gaze, the Universe reveals inhomogeneities
in the form of e.g. planets, stars, galaxies, or clusters of galaxies. This points out a
key aspect of the Cosmological Principle: it only holds on the largest scales (around
185 Mpc) [109] and it concerns average quantities. This characterization of the Universe
is supported by studies of the LSS and of the CMB, and it is assumed to apply to the
entire Universe, even beyond the observable one.

The Cosmological Principle, however, should not be interpreted in the same way
as other principles in physics, such as Heisenberg’s uncertainty principle in quantum
mechanics. While the latter is a fundamental requirement of the physical theory, the
Universe’s homogeneity and isotropy in the large-scale average are not demanded by the
theory of General Relativity [115].

1.1.1 General Relativity

The theory of General Relativity describes gravity as the intrinsic curvature of space-
time, generalizing the understanding of gravity compared to Newtonian physics. This
theory, proposed by Albert Einstein in 1915, provides a framework for understanding
gravitational interactions as geometric properties of a four-dimensional manifold.

A manifold is a mathematical structure that is locally topologically isomorphic to R4,
meaning that the neighborhood of each point of the manifold can be assigned coordinates
as in R4. This structure allows us to define a coordinate system locally, while the
topological properties of the manifold ensure both the convergence of series and the
continuity of functions across the manifold. The shape of a manifold can be arbitrary; it
may be curved, and its intrinsic geometry may differ from the familiar (flat) Euclidean
geometry. The metric is a crucial tool for describing the geometry of the manifold.
Formally, it is defined as a symmetric and non-degenerate (0,2)-tensor that acts as a
bilinear map from the tangent bundle of the manifold to the algebraic field R, encoding
the intrinsic geometry and determining the length of curves. A manifold equipped with
a metric is called a metric manifold.

The length of an infinitesimal curve element relates to the metric through the follow-
ing expression (in Cartesian coordinates):

ds2 = gµνdx
µdxν , (1.1)

where ds2 is the squared length of an infinitesimal line element, gµν are the components
of the metric tensor and dxµ and dxν are the coordinates of the two endpoints of the
curve segment. Here and throughout the text, Greek indices will range from 0 to 3, where
0 corresponds to the time component, and the remaining indices, 1, 2 and 3, represent
the spatial components.

The geometry of a manifold is encoded in the metric field g, but how may we un-
derstand the manifold is flat or curved? To this aim, let us introduce an important
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mathematical object used in differential geometry to classify the warping of manifolds.
This is the Riemann’s tensor

Rα
µνρ := ∂νΓ

α
µρ − ∂ρΓα

µν + Γα
νβΓ

β
µρ + Γα

ρβΓ
β
µν , (1.2)

and it provides a way to define flatness: if Rσ
µνρ = 0, then the manifold is flat, indepen-

dently of the chart. Here, we used ∂µ := ∂/∂xµ, while Γα
µν are the components of the

Levi-Civita connection, defined as

Γα
µν :=

1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν). (1.3)

The Levi-Civita connection is closely related to the metric and can be interpreted either
as a spacetime geometrical effect or as a gravitational force affecting the motion of
objects.

The contraction over one pair of indices in Eq.(1.2) results in the Ricci’s tensor

Rµν := ∂αΓ
α
µν − ∂νΓα

µα + Γβ
µνΓ

α
βα − Γβ

µαΓ
α
βν . (1.4)

At the core of General Relativity lie Einstein’s field equations, which can be derived
from the least action principle applied to the Einstein-Hilbert action. These equations,
in natural units, take the form:

Rµν −
1

2
gµνR = 8πG Tµν , (1.5)

where Rµν is the Ricci curvature tensor, R is the Ricci scalar, G is the gravitational con-
stant and Tµν is the stress-energy tensor representing the energy content of the Universe.
This set of equations encapsulates the fundamental relationship between the intrinsic
geometry of spacetime, encoded in the metric tensor, and the energy (matter) content
that influences this geometry.

1.1.2 Friedmann-Lemâıtre-Robertson-Walker metric

In cosmology, the selection of an appropriate metric gµν is crucial for defining distances
between events in spacetime. From Eq.(1.1), we can explicit Einstein’s summation con-
vention, which implies summing over repeated indices, to obtain three distinct contribu-
tions:

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
idxj, (1.6)

where the Latin indices i and j refer to spatial components and range from 1 to 3.
Throughout this work, we adopt the metric signature convention (-,+,+,+), where the
negative sign corresponds to the time component and the positive signs correspond to
the spatial components. Depending on the sign of ds2, we can distinguish three different
types of spacetime intervals:
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• ds2 < 0: time-like

• ds2 = 0: light-like (corresponding to the geodesics of photons)

• ds2 > 0: space-like

The Cosmological Principle can be formalized by assuming the existence of six killing
vectors, three for spatial rotations (isotropy) and three for spatial translation (homogene-
ity), describing the spatial symmetry between spacetime intervals and guaranteeing that
the mixed term 2g0idtdx

i in Eq.(1.1) vanishes. For a flat manifold, the metric simplifies
to

ds2 = −dt2 + dℓ2, (1.7)

where dℓ2 = gijdx
idxj is the spatial distance between two points.

Moving beyond flat space, consider a homogeneous and isotropic unit 3-sphere which
is a geometric object that can be embedded in four-dimensional spacetime, constructed
by gluing the boundaries of two 2-spheres. In Cartesian coordinates, the squared distance
element is:

dℓ2 = dx2 + dy2 + dz2 + du2. (1.8)

After adopting a suitable change of coordinates, we can express dℓ2 in polar coordinates
and it takes the form

dℓ2 =
dr2

1− r2 + r2dΩ2 =
dr2

1− r2 + r2(dθ2 + sin2θdϕ2). (1.9)

This result can be trivially generalized to a 3-sphere with radius a by including the
radius length as scaling in the formula. Such space has a positive curvature, but we
could similarly describe spaces with negative curvature, like a 3-hyperboloid.

The most general metric satisfying the Cosmological Principle is the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a(t)2
[

dr2

1− kr2 + r2(dθ2 + sin2θdϕ2)

]
. (1.10)

Here:

• (r, θ, ϕ) are the comoving polar coordinates.

• t is the proper time (or cosmic time) measured by observers at rest with respect
to the comoving coordinates.

• a(t) is the scale factor, which accounts for the expansion of the Universe over time.

• k is the curvature parameter, which can take three possible values (-1, 0, +1),
corresponding to a Universe with negative, zero, or positive curvature, respectively.
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1.1.3 Expansion of the Universe

In cosmology, multiple definitions of distance are used to describe separations between
objects or events. A fundamental definition is the proper distance, which refers to the
distance between two events at the same cosmic time (i.e., when dt = 0). This type of
distance gives the instantaneous separation between two points in space at a fixed time.

To derive the proper distance, we start with the general metric expressed along a
specific line of sight, where the angular components vanish (dθ = 0 and dϕ = 0):

dpr(t) :=

∫ r

0

dr
′2a(t)√

1− kr′2
= a(t)F (r). (1.11)

In this definition, F (r) is a function that accounts for the spatial part of the FLRW
metric

F (r) :=

∫ r

0

dr
′2

√
1− kr′2

,

and it assumes different forms depending on the geometry of the Universe. In particular,
if:

• k = 0→ F (r) = r,

• k = +1→ F (r) = arcsin(r),

• k = −1→ F (r) = arcsinh(r).

The proper distance has a time dependence. If we set the time to the present time t0,
then the proper distance is called comoving distance

dC := dpr(t0) = a(t0)F (r) =
a(t0)

a(t)
dpr(t). (1.12)

Since the proper distance depends on time, it can be derived with respect to t in order
to find an expression for the radial velocity:

Vr(t) =
d[dpr(t)]

dt
=

d[a(t)F ]

dt
=
ȧ

a
aF =

ȧ

a
dpr (1.13)

This is the Hubble-Lemâıtre law and describes the radial velocity of an object due to
the expansion of the Universe. H := ȧ/a is called Hubble parameter and it encodes
all the information about the expansion of the Universe. As different values for the
Hubble constant were obtained from direct measurements, like Cepheids and Type Ia
supernovae, and indirect measurements from anisotropies in the CMB, the evaluation
of the Hubble parameter at the present time t0 is still an open problem [131]. The
most recent estimations of the Hubble constant are H0 ≈ 67.4 km s−1 Mpc−1 from

10



CMB observations [9] and H0 ≈ 74 km s−1 Mpc−1 from local standard candles [132],
highlighting a Hubble tension of approximately 10% in the estimated value.

Eq.(1.13) does not indicate the existence of a special point as the center of the ex-

pansion. To understand why it is not so, consider an observer measuring the position l⃗
and the velocity v⃗ of a galaxy, assuming a non-relativistic regime (|v⃗| ≪ c). The relation

between these two quantities is expressed by the recession law v⃗ = H0l⃗, obtained from
the Hubble-Lemâıtre law at the present time t0. let us consider now another observer,
being at the position l⃗′. This observer will have velocity v⃗′ = H0l⃗

′ relative to the first
one. From the non-relativistic composition law, the velocity of the galaxy measured by
the second observer is

V⃗ = v⃗ − v⃗′ = H0(⃗l − l⃗′) = H0L⃗, (1.14)

where L⃗ denotes the position of the galaxy relative to the second observed. This highlight
the fact that the linearity condition makes the Hubble’s law to hold for all comoving
observers, in agreement with the Cosmological Principle.

The gravitational constant G is not the only physical constant that appears in
Eq.(1.5). In the standard cosmological framework, the cosmological constant Λ also
contributes to the energy content of the Universe. This term was originally introduced
in Einstein’s field equations to prevent the dynamical behaviour of continuous expansion
or contraction of the Universe. In this sense, the cosmological constant assumes the
role of stabilizer, yet this equilibrium is inherently unstable. However, if it were found
that this constant alone is inadequate to explain the observed acceleration, it would be
necessary to explore new approaches, such as introducing a new source of energy known
as dark energy, or modifying the laws of gravity.

As explained by the Hubble-Lemâıtre law Eq.(1.13), the Universe actually presents
dynamical features, in particular it is continuously expanding. However this expansion
does not happen with constant velocity, but rather it is accelerated. A very first evidence
of an accelerated expansion of the Universe was obtained from Type Ia supernovae [130],
[118] and it was later supported by baryonic acoustic oscillations [49]. More recent
studies [78, 24, 66] provide strong evidence of an accelerating Universe. Other studies,
such as those conducted with the Planck satellite [9], have measured fluctuations in the
CMB radiation, revealing crucial insights about the nature of dark energy.

In summary, while Hubble-Lemâıtre law offers a clear view of the relationship be-
tween distance and recessional velocity of galaxies, the presence of the cosmological
constant invites us to reflect on a continuously evolving Universe, where the acceleration
of expansion presents a mystery yet to be solved.

1.1.4 Cosmological redshift

Consider a photon emitted at a distance r from an astrophysical source at time tem. This
photon is detected by an observer at the time tobs. From the metric Eq.(1.10), setting
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the line of sight such that dθ = dϕ = 0 and remembering that photons always follow
null geodesics, we can obtain an expression for the time element:

dt2 = a2(t)
dr2

1− kr2 .

Integrating this equation between tem and tobs leads to∫ tobs

tem

dt

a(t)
=

∫ r

0

dr′√
1− kr′2

= F (r).

Now suppose the astrophysical source emits another photon at time tem + δtem. This
second photon will be detected by the observer at time t0 + δt0, and if the two photons
travel across the same distance r, then∫ tobs

tem

dt

a(t)
= F (r) =

∫ tobs+δtobs

tem+δtem

dt

a(t)
.

This gives us the relation:
δtobs
a(tobs)

=
δtem
tem

. (1.15)

Eq.(1.15) can be expressed both in terms of frequency

a(tobs)νobs = a(tem)νem (1.16)

and in terms of wavelenghts
λobs
λem

=
a(tobs)

a(tem)
. (1.17)

These equations illustrate that the observed wavelength (or frequency) of a photon
reflects the change in the scale factor a. We can build a function which is a proxy of the
expansion of the Universe and that grows linearly with a(t) back in time. This is the
cosmological redshift

z :=
λobs − λem

λem
=

∆λ

λ
. (1.18)

By setting the observed time to t0 as reference, we find a linear relation between the
redshift and the scale factor

1 + z =
a(t0)

a(t)
. (1.19)

At then present time, t = t0 and so z = 0. Since a(t0) > a(t) for t > t0, observations
indicate that the scale factor is monotonic and has been growing up to the present day,
it follows that z(t0) < z(t).
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1.2 Friedmann models

Although Einstein’s idea of a static Universe was incorrect, a positive cosmological con-
stant has been recently reintroduced into the Einstein equations to explain the late-time
accelerated expansion of the Universe. As a result, the stress-energy tensor in Eq.(1.5)
can be replaced by the effective stress-energy tensor, accounting for an additional term

T̃µν := Tµν +
Λ

8πG
gµν . (1.20)

Friedmann models treat the Universe as an ideal fluid, neglecting viscosity and ther-
mal conduction, so that the stress-energy tensor can be expressed solely in terms of the
fluid’s energy density ρ and pressure p:

T µν = −pgµν + (p+ ρ)uµuν (1.21)

where uµ and uν are the components of the 4-velocity vector of the fluid. In the absence
of anisotropic stress, the stress-energy tensor reduces to a diagonal matrix:

T µ
ν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.22)

The tensorial equation Eq.(1.5) contains 16 equations due to the various combina-
tions of indices µ and ν. However, due to the symmetry of the metric tensor g, this
number reduces to 10 independent components. Furthermore, the freedom in choosing
coordinates (see Sec.2.1.1) allows for an additional reduction, leaving 6 independent com-
ponents. Finally, the assumptions of homogeneity and isotropy inherent in the FLRW
metric reduce this to only 2 independent components. The metric for a flat Universe can
be written in Cartesian coordinates as diagonal matrix thanks to the constraints of the
Cosmological Principle:

gµν = diag(−1, a2(t), a2(t), a2(t)). (1.23)

One may prove that, for the metric Eq.(1.23), the Levi-Civita connection Eq.(1.3) reduces
to

Γ0
00 = Γ0

0i = Γ0
i0 = Γi

00 = Γi
αβ = 0 (1.24)

Γ0
ij = δikȧa = δija

2H (1.25)

Γi
0j = Γi

j0 = δik
ȧ

a
= δikH, (1.26)

where δij = diag(1, 1, 1) is the Kroneker delta. This is not surprising: all the terms off
diagonal must vanish due to the symmetry of the metric as well as the time− time g00
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component since it is a constant and all the partial derivatives ∂µ are zero. Besides, all
the space − space components gij depend only on time, thus only the time derivation
∂0 survives during the computation. To solve the Einstein’s field equations Eq.(1.5),
we need to compute the Ricci tensor and the Ricci scalar by plugging Eq.(1.3) in the
definition of Rµν . From the time-time components

R00 = −3
ä

a
, (1.27)

while from the space-space components we obtain

Rij = δij(2ȧ
2 + äa). (1.28)

The Ricci’s scalar is defined as the contraction of the Ricci’s tensor with the metric:

R = Rµνg
µν = R00g

00 +Rijg
ij = 6

[
ä

a
+

(
ȧ

a

)2
]
. (1.29)

Finally, we can plug these results together with the expression of the stress-energy tensor
for an ideal fluid in the Einstein’s field equations. From the time-time component we
obtain the first Friedmann equation for a flat Universe(

ȧ

a

)2

=
8πG

3
ρ, (1.30)

while from the space-space components we obtain the second Friedmann equation

ä

a
= −4πG

3
(3p+ ρ). (1.31)

Even if the Friedmann equations are the two independent equations of the tensorial
equation Eq.(1.5), they are not entirely independent since they are linked by the adia-
baticity condition as the Universe is an isolated system (δQ = 0) and the energy must
be conserved. So, from the first principle of thermodynamics

dU = −pdV → d(ρa3) = pda3, (1.32)

as the volume scales like the cube of the scale factor. This equation puts constraints on
how the energy density of each fluid component evolves with the Universe’s expansion.

At this point, we can introduce some useful parameters that embody the informa-
tion of physical relevance in a compact way. We have already encountered the Hubble
parameter

H(t) =
ȧ(t)

a(t)
, (1.33)
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which quantifies the expansion rate of the Universe. Another useful quantity is the
density parameter of the fluid s

Ωs(t) =
ρs(t)

ρcrit
= 8πG

ρs(t)

3H2
0

, (1.34)

describing the evolution of the fluid density. We can now express the first Friedmann
equation in a more convenient form, taking into account the mixture of species present
in the cosmological fluid

H2(t)

H2
0

=
∑
s

Ωs(t). (1.35)

1.2.1 Equation of state

The equation of state is a function ps = ps(ρs) that relates the pressure of a fluid species
s to its energy density. In cosmology, the generic form for the equation of state is

ps = wsρs, (1.36)

with ws dimensionless constant, whose value is set by the species. In particular:

• non-relativistic matter : p = NkBT ≈ 0→ ws = 0,

• radiation and relativistic matter : p =
1

3
ρ→ ws =

1

3
,

• cosmological constant : p = −ρ→ ws = −1.

From the adiabaticity condition in Eq.(1.32), we can directly express the energy
density of the fluid species s as a function of the scale factor a

ρ(t) ∝ a−3(1+ws) ∝ (1 + z)3(1+ws). (1.37)

It is now possible to reconstruct the evolution of each fluid species through cosmic time
Eq.(1.1). The present day value of each fluid species can be determined from Eq.(1.34):

ρ0,s =
3Ω0,sH

2
0

8πG
= 1.88× 10−29Ω0,sh

2 g cm−1, (1.38)

where we used the dimensionless Hubble constant

h := H0/(100 km s−1 Mpc−1). (1.39)

The dominance of one fluid component over others defines the three distinct epochs
in the Universe’s history, each marked by changes in the evolution of energy density with
redshift, as shown in Fig.1.1:
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• radiation dominated : the first cosmological epoch sees a prevalence of radiation in
the cosmic mixture. This epoch ended at the matter-radiation equivalence around
103 years after the Big Bang. In terms of redshift it corresponds to

ρ0,m(1 + zrmeq )3 = ρ0,r(1 + zrmeq )4 → zrmeq ≈ 104. (1.40)

• matter dominated : after the matter-radiation equivalence time, the new epoch of
matter domination began. This epoch lasted up to 5 million years ago at the
Λ-matter equivalence, when the last cosmic epoch dominated by the cosmological
constant began.

ρ0,Λ = ρ0,m(1 + zDMΛ

eq )3 → zDMΛ

eq ≈ 0.7. (1.41)

Figure 1.1: Evolution of the radiation, matter and cosmological constant energy densities.
On the x-axis, the redshift corresponding to the radiation-matter equivalence and Λ-
matter equivalence are reported. The solid red line describes the evolution of the total
energy density of the Universe. Credits for the figure to [113].
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Finally we can express the first Friedmann equation Eq.(1.35) using the content of the
equation of state as follows:

H2(z) = H2
0

∑
s

Ω0,s(1 + z)3(1+ws). (1.42)

1.2.2 Curved Universe

To generalize Eq.(1.35) for a non-flat Universe, we need to include an additional term
that accounts for the contribution of the curvature parameter k

H2(z) = H2
0

(∑
s

Ω0,s(1 + z)3(1+ws) + Ω0,k(1 + z)2

)
, (1.43)

where Ωk(z) = 1−∑s Ωs(z) quantifies the deviation from flatness. Notice how, at high
redshift, the dominant term is the energy density of the fluid because it appears with the
highest power of (1 + z). Consequently, under such condition, the expansion rate H(t)
of Eq.(1.35) approaches the Einstein-de Sitter limit (single-component cosmological fluid
and flat Universe) with solution

t =
2

3

1

H0Ω
1/2
0 (1 + z)3/2

, (1.44)

which is independent of the cosmological constant and the curvature Ωk(z). This means
that every curved Universe tends toward the flat one at very early times.

Depending on the value of Ω0 =
∑

sΩ0,s, we have different curved models:

• closed models (Ω0 > 1): in closed models, the Universe will eventually reach a
maximum scale factor. By setting ȧ = 0, we can find the maximum scale factor
corresponding to

amax = a0

(
Ω0

1− Ω0

)1/(1+3w)

. (1.45)

Since Eq.(1.35) is quadratic, the symmetry implies that the expansion will even-
tually reverse. Therefore, a closed Universe will reach a vanish scale factor at
2t(amax), corresponding to the Big Crunch.

• open models (Ω0 < 1): for open models, the scale factor a(t) is monotonically
growing and so it never reaches a maximum. Solving the Eq.(1.35), we can verify
that during the radiation and matter era the growth of the scale factor goes linearly
with time

H(t) ∝ 1

t
, (1.46)

and so the Universe expands forever.
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The evolution of the scale factor a(t) is reported in Fig.1.2 and underlines how the three
possible geometries converge to the same one in the early Universe.

Figure 1.2: Evolution of the scale factor in Universes with different geometries. The
dot-dashed line represents the evolution for a closed Universe (Ω > 1) while the dashed
black line for an open Universe (Ω < 1). The solid line stands for a geometrically flat
Universe (Ω = 1). The red dot corresponds to the present time.

1.3 ΛCDM model

The concepts described so far lay the foundation for the concordance model of cosmology:
the Λ-cold dark matter model. This model, which forms the cornerstone of modern cos-
mology, will be instrumental in conducting the parity violation test in the next chapter.
Let’s first break down the meaning of the acronym ΛCDM.

1.3.1 Λ - the cosmological constant

This symbol represents the cosmological constant, introduced in Einstein’s field equations
and responsible for the accelerated expansion of the Universe. It acts as a source of
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gravitational repulsive force, counteracting the smaller scales gravitational pull of matter.
The value of Λ is derived from observational data and geometric constraints. Its current
estimate is approximately: Λ ≈ 1.1× 10−48 cm−2, which is extremely small.

A widely accepted physical interpretation links the cosmological constant to vacuum
energy. According to quantum physics, even “empty” space contains energy, arising from
quantum fluctuations confined by the limits of detectability imposed by the Heisenberg
uncertainty principle. However, there is a serious discrepancy between theoretical pre-
dictions and observations: quantum field theory suggests a vacuum energy density about
120 orders of magnitude larger than what cosmology infers from Λ. Resolving this enor-
mous mismatch remains one of the biggest challenges in modern physics, known as the
cosmological constant problem.

1.3.2 CDM - cold dark matter

Cold dark matter refers to a form of matter that does not emit, absorb, or interact with
electromagnetic radiation, making it invisible to telescopes. The concept of dark matter
was firstly suggested by Zwicky in 1933 [177], who discovered a new type of matter
referred to as Dunkle Materie (missing matter) which is much more abundant than the
ordinary matter. This hypothesis was then supported by several observational facts:

• Galactic rotation curves: Observations of the rotational velocity of stars within
galaxies show that they rotate faster than can be explained by visible matter alone,
implying the presence of an unseen mass component [169].

• Gravitational lensing: Light from distant objects is bent more strongly by galaxy
clusters than would be expected from their visible mass, indicating additional mass
in the form of dark matter [167].

• Cosmic Microwave Background: The temperature fluctuations in the CMB, along
with their statistical properties, suggest the need for dark matter to explain the
growth of structures from the early Universe to the present [46].

• LSS formation: Models of the growth of cosmic structures require dark matter to
produce the observed distribution of galaxies and galaxy clusters [57].

It is “cold” at the decoupling in the sense that its particles move slowly compared to
the speed of light, meaning their kinetic energy is low. This property ensures that dark
matter clumps efficiently in the early Universe over large scales, driving the formation of
large structures like galaxies and galaxy clusters through gravitational attraction. With
only “hot” dark matter, virialized structures with masses less than 1016 M⊙ could not
have formed. This rules out “hot” candidates like neutrinos as the dominant dark matter
component.
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The exact nature of cold dark matter remains one of the great unsolved mysteries of
cosmology. While it is widely accepted that dark matter exists, its particle composition
is still unknown. Several candidates have been proposed, such as weakly interacting
massive particles (WIMPs), axions, sterile neutrinos, primordial black holes and white
holes but none of them possess sufficient empirical support to be considered as a solution
to the CDM problem. Indeed, direct detection experiments, as well as particle collider
experiments like those conducted at the Large Hadron Collider, aim to detect or produce
dark matter particles, but so far, no definitive detection has been made.

1.3.3 Inflation and the six ΛCDM model parameters

The ΛCDM model requires one additional ingredient for its complete description: infla-
tion. This mechanism is responsible for generating the initial perturbations in the very
early Universe that eventually grew into the structures we observe today. During the
inflationary epoch, which lasted from 10−36 s to 10−32 s according to the standard infla-
tionary scenarios, the scale factor a increased exponentially over time [65]. Specifically,
the number of e-foldings is expected to be

N = ln

(
af
ai

)
≫ 60,

where af and ai represent the scale factor at the end and beginning of inflation, respec-
tively.

In a parity-violating scenario, inflation may also be responsible for breaking sym-
metry, leaving a statistical imprint on the primordial perturbations. In particular,
particle exchanges during inflation can generate non-Gaussianities in these primordial
fluctuations, as new particles are produced through inflaton decay [77, 17]. Additionally,
other parity-violating inflationary models propose a phase of magnetogenesis as the
driver of the symmetry breaking [62].

Finally, we can summarize the concordance model of cosmology as a geometrically
flat Universe, dominated by CDM and Λ, with initial perturbations produced by the
mechanism of inflation. This model is remarkably successful in predicting the evolution
of the Universe while relying on only a few key parameters. Here is an overview of the
primary parameters used in constructing the ΛCDM model:

• Hubble constant H0: As already introduced, this parameter describes the current
expansion rate of the Universe. Its value from indirect measurements from CMB
[9] is

H0 ≈ 67.4 km s−1 Mpc−1,

while the value derived from local distance ladders [132] is

H0 ≈ 73 km s−1 Mpc−1.
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• Matter density parameter Ω0,m: This parameter is defined as the current to-
tal matter density of the Universe, comprehensive of CDM and baryonic matter,
normalized to the critical density. It rules the hierarchical formation of structures.
Its typical value is:

Ω0,m ≈ 0.31.

• Baryonic density parameter Ω0,b: It refers to the fraction of Universe’s energy
density attributed to the ordinary matter (baryons).

Ω0,b ≈ 0.049.

• Dark energy density parameter ΩΛ: It represents the energy density associ-
ated to the cosmological constant, responsible for the accelerated expansion of the
Universe.

ΩΛ ≈ 0.69.

• Curvature parameter Ω0,k: Associated to the current geometry of the Universe,
Ωk ≈ 0 in ΛCDM model, meaning that measures of angles fulfill the rules of
Euclidean geometry.

• Spectral index ns: Describes the shape of the primordial power spectrum P (k) ∝
kns .

ns ≈ 0.96.

• Amplitude of fluctuations σ8: Measures the strength of matter clustering on
scales of 8 h−1 Mpc,

σ8 ≈ 0.8.

• Optical depth τ : This parameter quantifies the Universe’s transparency to pho-
tons during reionization, which occurred when the first luminous objects (likely
Pop. III stars) ionized the surrounding gas. The free electrons produced during
reionization scattered CMB photons via Compton scattering, leaving a distinct
imprint on the CMB polarization. This helps us determine when the reionization
epoch took place.

τ ≈ 0.054.

These results are obtained from Planck 2018 data [9].
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Chapter 2

Clustering

Clustering is a fundamental concept in cosmology, describing the tendency of matter to
group together into cosmic structures, rather than being uniformly distributed through-
out space.

As discussed in the previous chapter, the early Universe exhibits an almost homo-
geneous matter distribution, as evidenced by observations of the CMB. However, small
density fluctuations present in the early stages of cosmic evolution grew over time, lead-
ing to the formation of galaxies, galaxy clusters, and the vast filamentary structures
observed today. These perturbations are expected to form in the primordial Universe
where small matter fluctuations are allowed from the energy-time uncertainty condition
∆E∆t ≥ ℏ/2. Their existence is proven by the small fluctuations of temperature and
density in the CMB at z around 1100

δT

T
∼ δρ

ρ
∼ 10−5. (2.1)

The process of structure formation is driven primarily by gravitational forces, which draw
matter toward over-dense regions, thereby amplifying these initial inhomogeneities.

In this chapter, we will introduce tools and methods to study the spatial distribution
of cosmic structures, a critical aspect for testing theories of parity violation.

2.1 Metric perturbations

The homogeneous Universe evolved trough a thermal history, started at the Big Bang and
lasted up to the formation of the first atoms, Big Bang nucleosynthesis and production
of dark matter. The structure formation is complicated and requires approximations,
relying on the fact that perturbations are small in magnitude, to solve the equations that
govern the evolution of cosmological species.
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Let us start by adding small perturbations |hµν | ≪ 1 to the FLRW metric Eq.(1.10):
g00(t, x⃗) = −1 + h00(t, x⃗)

g0i(t, x⃗) = gi0(t, x⃗) = a(t)h0i(t, x⃗)

gij(t, x⃗) = a2(t)[δij + hij(t, x⃗)].

(2.2)

While for the flat homogeneous Universe we had only one degree of freedom, that is the
scale factor a, for the perturbed metric Eq.(2.2) we have 10 additional degrees of freedom
given by the independent components of the symmetric four-dimensional perturbation
tensor hµν . To keep the discussion general, let us characterize each component of the
perturbation.

• h00: the time-time component is a 3-scalar, therefore it is invariant under any
spatial rotation. Given an arbitrary scalar field A, this component can be written
as:

h00 = −2A (2.3)

where the prefactor −2 is a convention.

• h0i: the time-space perturbation is a 3-vector and can be decomposed using the
Helmholtz decomposition theorem, which states that any sufficiently smooth vector
field that decays rapidly at infinity can be uniquely decomposed into the sum of an
irrotational component, represented by a scalar potential, and a solenoidal com-
ponent, represented by a vector potential. Introducing an arbitrary 3-scalar field
B(t, x⃗) and a solenoidal 3-vector field Bi(t, x⃗), the perturbation can be expressed
as the sum of a longitudinal and a transverse part:

h0i = −
∂B

∂xi
−Bi. (2.4)

• hij: the space-space component is a 3-dimensional symmetric tensor. Generalizing
the Helmholtz decomposition theorem, we introduce two arbitrary 3-scalar fields
D(t, x⃗) and E(t, x⃗), as well as a solenoidal vector field Vi(t, x⃗). However, this de-
composition provides only 8 constraints (4 scalar functions + 2 transverse vectors)
despite the fact that the perturbation tensor has 10 independent components. This
means that we are missing two degrees of freedom, which cannot be expressed as
combinations of scalars or vectors: these are the transverse-traceless components
hTT
ij . Thus, the full decomposition of the spatial perturbation is given by:

hij = 2Dδij − 2
∂2E

∂xi∂xj
+
∂Vi
∂xj

+
∂Vj
∂xi

+ hTT
ij . (2.5)
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This decomposition is general and can be applied to any tensor. It leads to an important
result, known as the decomposition theorem, which states that 3-scalar, 3-vector, and
3-tensor perturbations evolve independently at linear order, thanks to the symmetry of
the FLRW metric. This result is crucial in cosmology, as it allows the independent study
of scalar perturbations, which are responsible for the growth of structures.

2.1.1 Conformal Newtonian gauge

In General Relativity, a choice of coordinates is often referred to as gauge and it is a key
aspect to look for gauge invariance under transformation of coordinates in order to reduce
the number of free parameter in the equations and so allowing for the resolution. Consider
a generic scalar field ϕ(x⃗, t) given by the application of a small scalar perturbation δϕ(x⃗, t)
to a background term ϕ̄(t)

ϕ(x⃗, t) = ϕ̄(t) + δϕ(x⃗, t). (2.6)

We aim to understand how this field changes under a generic small coordinates transfor-
mation xµ → x̂µ(xµ). This requirement is necessary to keep the magnitude of perturba-
tions small as well and to allow a Taylor expansion of the transformed coordinates:t̂ = t+ ζ(t, x⃗)

x̂i = xi +
∂ξ(t, x⃗)

∂xi
,

(2.7)

where ζ and ξ represent, respectively, the time and space shifts and are treated as first
order perturbations. By leveraging the scalar transformation law, we obtain the rule for
scalar perturbations transformations:

δ̂ϕ(t̂, ⃗̂x) = δϕ(t̂, ⃗̂x)− dϕ̄(t̂)

dt̂
ζ(t, ⃗̂x). (2.8)

Taking the decomposition for scalar perturbations only, we focus on the scalar fields
A, B, D, and E as defined in Eq.(2.3), Eq.(2.4), Eq.(2.5). By applying the tensor
transformation rule to the metric components gµν , we can derive the expressions for the
transformed scalar fields: 

Â = A− ζ̇
B̂ = B − a−1ζ + aξ̇

D̂ = D − ȧ

a
ζ

Ê = E + ξ.

(2.9)

This transformation is useful for reducing the degrees of freedom: the scalar pertur-
bation transformation rule is determined by four scalar functions (A,B,D,E), which
themselves depend on two spacetime shift functions (ζ, ξ). Consequently, we are left
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with two degrees of freedom. By appropriately choosing the shift functions, we can set
two equations from Eq.(2.9) to zero. This approach underlies the conformal Newtonian
gauge, where we select (ζ, ξ) such that B and E vanish.

So, we have seen how choosing specific coordinates reduces the number of degrees of
freedom in the metric. This coordinate choice, known as gauge freedom, is responsible
for the reduction from 10 to 6 degrees of freedom mentioned in Sec.1.2.

A common expression for the FLRW metric with scalar perturbations involves the
standard Bardeen potentials ΦA and ΦH [18]:

ΦA := A+
∂

∂t
(a2Ė − aB) (2.10)

ΦH := −D + ȧ(B − aE). (2.11)

Thus, the perturbed metric can be expressed as:

ds2 = −(1 + 2ΦH)dt
2 + a(t)2[(1− 2ΦA)δij]dx

idxj , (2.12)

Finally, we can apply the conformal Newtonian gauge conditions E = B = 0 to the
Bardeen potentials, yielding ΦH = −ϕ and ΦA = ψ. In this gauge, the perturbed FLRW
metric takes the form: 

g00(t, x⃗) = −1− 2ψ(t, x⃗)

gi0(t, x⃗) = g0i(t, x⃗) = 0

gij(t, x⃗) = a2(t)δij[1 + 2ϕ(t, x⃗)],

(2.13)

where ψ is the well-known Newtonian potential and ϕ is the local perturbation of the
scale factor. Both the scalar fields have magnitudes < 10−4, making them suitable for
linear theory.

2.1.2 Boltzmann equation

Now that we have made a gauge choice for the metric perturbations, we can proceed to
derive the equations governing the evolution of perturbations in each fluid species of the
ΛCDM model, excluding the perturbations of the cosmological constant.

In cosmology, we do not track the evolution of individual particles but rather study
their statistical distributions. Let’s consider a collection of particles in the phase space
(x⃗, p⃗), where the position and momentum of each particle are sufficient to describe the
system’s dynamics. Due to the uncertainty principle, it is impossible to determine the
exact position of a particle in phase space, limiting our knowledge of a particle’s location
to within an uncertainty of ℏ. Therefore, the phase space for each particle is not a
collection of discrete points but is instead divided into six-dimensional cells with volumes
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given by quantum units, ∆V = ∆x⃗∆p⃗/(2πℏ)3, as illustrated in Fig.2.1. The number of
particles within a single phase-space cell can be computed as,

Npart = f1(x⃗, p⃗, t)dV = f1(x⃗, p⃗, t)
∆x⃗∆p⃗

(2πℏ)3
, (2.14)

where f1(x⃗, p⃗, t) is the 1-particle distribution function and describes the probability den-
sity to find a particle in a specific state. For a collisionless system, there are two well-
known equilibrium distribution functions that describe particle evolution in phase space:
the Fermi-Dirac distribution for fermions and the Bose-Einstein distribution for bosons.

x⃗

p⃗

←→
∆x⃗

←
→∆p⃗

Figure 2.1: Discretization of the phase space.

In the context of cosmology, especially when studying the growth of structures, par-
ticles are often out of equilibrium, necessitating the calculation of distribution functions
to understand the evolution of cosmological species.

For a generic system with a large number of interacting particles, the dynamics are
described by the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy. This
hierarchy consists of a series of coupled equations that relate the n-particle distribution
function to the (n+ 1)-particle distribution function:

fn(x⃗
(n), p⃗ (n), t) ∼

∫
dV fn+1(x⃗

(n+1), p⃗ (n+1), t). (2.15)

This chain of equations involves internal dependencies extending up to the total number
of particles in the system. This means that the calculation of whatever distribution
function reduces to the computation of the distribution function of all the particles of
the system, which is infeasible. Thus, the problem becomes the closure of the hierarchy
to some level. Approximations are necessary to truncate the sequence in Eq.(2.15) at
a suitable order. Specifically, truncating at the first equation is permitted under the
assumption of molecular chaos (Stosszahlansatz ), leading to the Boltzmann equation.

For a collisionless system, the Boltzmann equation conserves the total number of
particles and takes the form:

dfn(x⃗, p⃗, t)

dt
= 0→ ∇x

dx⃗

dt
+∇p

dp⃗

dt
+
∂f

∂t
= 0. (2.16)
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In this case, the equation describes the flux of particles in and out of a phase-space
volume element. The collisionless nature of the system ensures conservation of the occu-
pied phase-space volume, as described by Liouville’s theorem. When interactions between
particles are included, however, this conservation no longer holds, so the Boltzmann equa-
tion becomes non-zero. Specifically, it gains a collision term, C[f ], that accounts for all
particle interactions (conserving four-momenta) and quantum effects such as differences
between bosons and fermions, Pauli blocking, and Bose enhancement :

dfn(x⃗, p⃗, t)

dt
= 0→ ∇x

dx⃗

dt
+∇p

dp⃗

dt
+
∂f

∂t
= C[f ]. (2.17)

Perturbed Boltzmann equation

To complete the picture, the Boltzmann equation requires the inclusion of the pertur-
bation of the metric described in the conformal Newtonian gauge in Eq.(2.13). Starting
from the general form given in Eq.(2.17), we rewrite the equation by explicitly using the
physical momentum p⃗ = p · p̂:

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
dp̂i

dt
. (2.18)

The four-momentum expression can be derived from the mass-shell condition and is
written as

P µ = (P 0, P i) =

(
E(1− ψ), p

i

a
(1− ϕ)

)
, (2.19)

where E is the total energy of the system. Using this expression, the Boltzmann equation
can be reformulated to depend on energy, scalar potentials, and physical momenta. The
perturbed Boltzmann equation then takes the form:

df

dt
=
∂f

∂t
+
∂f

∂xi

[
p

E

p̂i

a
(1 + ψ − ϕ)

]
− ∂f

∂p

[
(H + ϕ̇)p+

E

a
p̂iψ,i

]
+
∂f

∂pi
E

ap

[
δik − p̂ip̂k

]( p2
E2

ϕ− ψ
)

,k

= C[f ]

(2.20)

where the notation ,i denotes a partial derivative with respect to xi. We are now prepared
to analyze how the Boltzmann equation applies specifically to each cosmological species.
Working in Fourier space, so substituting the wave vector k⃗ for the spatial coordinate
x⃗, the Boltzmann equations take a simplified form where spatial derivatives are replaced
by ik factors. The set of perturbed Boltzmann equations in ΛCDM cosmology is given
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by:

θ′ + ikµθ + ϕ′ + ikµψ + τ ′
[
θ0 − θ + µub −

1

2
P2(µ)Π

]
= 0, (2.21)

δ′c + ikuc + 3ϕ′ = 0, (2.22)

u′c +
a′

a
uc + ikψ = 0, (2.23)

δ′b + ikub + 3ϕ′ = 0, (2.24)

u′b +
a′

a
ub + ikψ − 4

3
τ ′
ργ
ρb

[ub + 3iθ1] = 0, (2.25)

N ′ + ikµ
p

Eν(p)
N −Hp∂N

∂p
+ ϕ′ + ikµ

Eν(p)

p
ψ = 0. (2.26)

Here and afterward, the prime apex denotes the derivative with respect to conformal
time η which is related to the physical time through the relation dη = a−1dt. For the
full derivation, we refer to [43], which serves as the primary reference for most of the
results and derivations in this chapter. This set of equations is essential, as it encapsu-
lates the laws governing the dynamics of perturbations in the linear regime. Capturing
the evolution of density, velocity, and other perturbations for different components of
the Universe, such as CDM, baryons, and photons, each equation corresponds to a dis-
tinct fluid or species in the presence of metric perturbations ϕ and ψ in the conformal
Newtonian gauge.

Generally, solutions to Eqs.(2.21)-(2.26) are computed numerically using specialized
codes known as Boltzmann solvers. Widely used codes like CLASS [95] and CAMB [96]
calculate matter power spectra, providing theoretical predictions crucial for various cos-
mological analyses. In particular, we will use CAMB in the next chapter to calculate
theoretical power spectra, supporting trispectrum estimation and the outcome of the
parity test.

Here’s an overview of each equation:

• Eq.(2.21) describes the evolution of temperature perturbations, θ := dT/T , with
respect to the Bose-Einstein photon distribution. The terms θ′ and ikµθ account for
the effects of photon motion, specifically the free-streaming behaviour of photons.
Here, µ := p̂ik̂i captures the directional dependence between the perturbations and
the momenta of the photons.

The terms ϕ′ and ikµψ introduce metric perturbations, representing how gravi-
tational potentials affect photon energy. The scattering term, τ ′[θ0 − θ + µub −
1/2 P2(µ)Π], models interactions between photons and baryons through Compton
scattering. Here, θ0 :=

1
2π

∫
dΩ′θ(p̂′, x⃗, t) represents the monopole term, while u⃗b de-

notes the bulk velocity of the baryonic fluid. The last term, where Π := θ2+θp,2+θ0
and P2 is the Legendre polynomial, accounts for the angular dependence of the
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Compton scattering, involving the quadrupole θ2 and its photon polarization field
θp,2.

Notice that in the absence of bulk velocity, the collision terms drive θ toward the
monopole term θ0. In scenarios of very efficient scattering, only the monopole term
survives, as the temperature anisotropies are effectively washed out. Intuitively,
this implies that when the mean free path of a photon is very short, all photons
tend to reach the same local temperature. Conversely, bulk velocity is necessary to
generate multipole terms and consequently create anisotropies in the temperature
distribution.

Finally, this equation is linear, indicating that perturbations grow linearly over
time. This linear growth implies that perturbations do not increase significantly
throughout cosmic time, allowing the equation to remain valid for CMB photons.

• In Eq.(2.22), δc denotes the number density contrast of CDM. The evolution of
CDM plays a fundamental role in structures formation as it clumps efficiently and
creates potential wells that gather baryonic matter (baryonic drag). Since CDM is
non-relativistic and interacts only gravitationally, it is treated as an effective fluid
so the collision term is set to zero and the Boltzmann equation assumes a simple
form.

However, since in the equation appears also the bulk velocity uc, we need another
equation to fix the hierarchy for CDM. This is the Euler equation Eq.(2.23) for the
conservation of the velocity. Note that, since CDM is cold, the second moment of
the Boltzmann distribution vanishes and the hierarchy is closed.

• In cosmology, baryons include electrons, protons, neutrons, helium, and trace
amounts of heavier nuclei. Typically, the proton mass serves as a representative
mass for baryons. Protons are coupled to electrons through Coulomb scattering,
and the rate of these collisions is much higher than the Universe’s expansion rate
before recombination. This coupling allows us to use a common overdensity value
for both protons and electrons. After recombination, baryonic matter behaves
non-relativistically, and the continuity equation for baryons, Eq.(2.24), becomes
identical to that of CDM as the collision term vanishes due to the conservation of
the total electron and proton numbers.

In contrast, the Euler equation for baryons, before recombination, includes the
effects of Compton scattering between photons and electrons. Here, the dipole
term, defined as θ1(k, η) = i

∫ 1

0
dµµ/2 θ(µ, k, η), appears in the scattering term.

This dipole term encapsulates the anisotropic motion of electrons in response to
temperature gradients: electrons moving toward hotter regions encounter a “head-
wind” effect, causing them to shift in the opposite direction. This phenomenon is
referred to as Compton drag.
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• Eq.(2.26) governs the evolution of temperature perturbations, N := dT/T , with
respect to the Fermi-Dirac neutrino distribution. Since neutrinos are decoupled and
poorly interacting at the times of interest, the collision term is set to zero. The
term ikµNp/Eν(p) captures the neutrino free-streaming features, while Hp ∂N /∂p
accounts for redshifting effects on neutrino momenta.

In this discussion, neutrinos are considered as massless; however, it is important
to underline that neutrinos have a small mass (with current constraints indicating∑
mν < 0.072 [35]), and several non-standard cosmological models account for

neutrino mass. In fact, cosmological models themselves serve as powerful tools to
constrain neutrino masses through accurate power spectra measurements.

2.1.3 Perturbed Einstein’s field equations

In the previous section, we discussed how to address non-gravitational interactions in
the presence of scalar perturbations in the metric Eq.(2.13). Now we turn to gravity,
whose behaviour is governed by Eq.(1.5).

The first step is to incorporate scalar perturbations of the metric into the expressions
for the Levi-Civita connections, enabling us to compute the left-hand side of Einstein’s
field equations to linear order. This procedure is similar to the one described in Sec.1.2,
and the results yield the perturbed form of Γ:

Γ0
00 = ψ̇, (2.27)

Γ0
i0 = ∂iψ, (2.28)

Γi
00 = a−2∂iψ, (2.29)

Γ0
ij = δija

2[H + 2H(ϕ+ ψ) + ϕ̇], (2.30)

Γi
0j = δij(H + ϕ̇), (2.31)

Γi
jk = ϕ(∂kδij + ∂jδik − ∂iδjk). (2.32)

Recovering the expression for the Ricci tensor Eq.(1.4) restricted to the time components
only

R00 = ∂αΓ
α
00 − ∂0Γα

0α + Γβ
00Γ

α
βα − Γβ

0αΓ
α
β0, (2.33)

we note that, for α = 0, it follows that R00 = 0, while for β = 0 there are second-order
terms. Since we are working at the linear order, we discard terms at higher orders,
implying that both α and β must be spatial indices. The resulting expression for the
perturbed time-time component of the Ricci tensor in Fourier space is:

R00 = −3
ä

a
− k2

a2
ψ − 3ϕ̈+ 3H(ψ̇ − 2ϕ̇). (2.34)
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For the spatial components, the computation is more complex as it involves all indices.
Starting with the space-space components of the Ricci tensor,

Rij = ∂αΓ
α
ij − ∂jΓα

iα + Γβ
ijΓ

α
βα − Γβ

iαΓ
α
βj, (2.35)

we substitute the results for the Levi-Civita connections to obtain the perturbed expres-
sion for the spatial Ricci tensor:

Rij = δij[(2a
2H2 + aä)(1 + 2ϕ− 2ψ)

+ a2H(6ϕ,0 − ψ,0) + a2ϕ,00 + k2ϕ] + kikj(ϕ+ ψ).
(2.36)

By contracting the components Rµν with the metric components gµν yields the Ricci
scalar:

R =(−1 + 2ψ)

[
−3 ä

a
− k2

a2
ψ − 3ϕ,,00+3H(ψ,0 − 2ϕ,0)

]
+

1− 2ψ

a2
{3[(2a2H2 + aä)(1 + 2ϕ− 2ψ) + a2H(6ϕ,0 − ψ,0)

+ a2ϕ,00 + k2ϕ] + k2(ϕ+ ψ)}.

(2.37)

By discarding all nonlinear terms in ψ and ϕ, we obtain the first-order part of the Ricci
scalar:

δR = −12ψ
(
H2 +

ä

a

)
+ 2

k2

a2
ψ + 6ϕ,00 − 6H(ψ,0 − 4ψ,0) + 4

k2

a2
ϕ. (2.38)

Now that we have completed the geometric side of Einstein’s field equations by ob-
taining all necessary terms, let us turn to the energy side, which involves the stress-energy
tensor. Based on the discretization of phase space illustrated in Fig.2.1, we can express
the energy density of all particles in the Universe by summing the energy of each par-
ticle species s, weighted by the particle number and divided by the phase-space volume
element:

T 0
0 (x⃗, t) = −ρ(x⃗, t) = −

∑
s

gs

∫
d3p

(2π)3
Es(p)fs(x⃗, p⃗, t). (2.39)

Here, gs is known as the degeneracy parameter, representing the number of quantum
states with the same energy that are accessible to a given particle. According to kinetic
theory, macroscopic pressure relates to energy density by the expression p = 1/3nm|v|2,
where n is the particle number density in a given volume. By generalizing this relation
to relativistic particles and applying it to Eq.(2.39), we derive the spatial components of
the stress-energy tensor:

T i
j (x⃗, t) = p(x⃗, t) =

∑
s

gs

∫
d3p

(2π)3
pipj

Es(p)
fs(x⃗, p⃗, t). (2.40)
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Finally, we have all the components needed to write the perturbed Einstein’s field equa-
tions. For a complete and detailed derivation, refer to [43]. The scalar-perturbed Ein-
stein’s field equations take the form

k2ϕ+ 3
a′

a

(
ϕ′ − ψa

′

a

)
= 4πGa2(ρcδc + ρbδb + 4ργΘ0 + 4ρνN0) (2.41)

for the time-time component. This equation is particularly important for describing the
evolution of modes larger than the Hubble radius H−1. Notice that this equation reduces
to the classical Poisson equation in the absence of expansion (a = constant). For the
spatial component, we obtain

k2(ψ + ϕ) = −32πGa2(ργΘ2 + ρνN2). (2.42)

This equation is significant because, in the case of a vanishing quadrupole, such as under
tight-coupling conditions, the perturbation potentials ϕ and ψ are equal in magnitude
but opposite in sign.

2.2 Structure formation

We now explore the solutions to our equations Eqs.(2.21)-(2.26) and Eqs.(2.41)-(2.42),
with initial conditions set by inflation. At late times, when the Universe is matter-
dominated, gravity is mediated by the potentials ϕ and ψ. In contrast, during early
radiation-dominated epochs, anisotropies are primarily related to monopole and dipole
terms of radiation perturbations. This implies that while CDM is weakly coupled to
radiation, radiation anisotropies still depend on CDM perturbations. We will focus on
CDM perturbations, as CDM couples to other components solely through gravitational
interactions and plays a dominant role in structure formation.

Overdensities on the order of δρ/ρ ∼ 10−4 can accumulate enough matter over the
age of the Universe to form observed cosmic structures. However, this growth process is
counteracted by two opposing effects:

• Expansion of the Universe: The cosmic expansion tends to pull particles apart. In
a static Universe, perturbations would grow exponentially, but with expansion, the
growth of perturbations follows a power-law.

• Pressure from baryons and photons: While baryons and photons exert pressure
that grows with density, CDM does not exhibit such behaviour.

2.2.1 Particle horizon

Before delving into structure formation, we must introduce the concept of the particle
horizon, also known as the cosmological horizon. In Ch.1, we discussed the recession
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law and the tools necessary for calculating distances in spacetime. However, when using
comoving coordinates, the speed of light is not constant in the usual sense. While the
peculiar velocity of light remains c, the recession velocity, induced by the Universe’s
expansion, alters the total velocity of photons. Specifically, if a photon is emitted at
time tem and detected by an observer at time tobs, then

Vtot(tem) ̸= Vtot(tobs). (2.43)

Since the trajectory of a photon (its geodesic) in spacetime represents the shortest pos-
sible path, everything contained within a light cone represents events that can have a
causal connection with the observer. The distance traveled by a photon emitted at time
tem and observed at the present time t0 (past light cone) can be calculated as:

rLC(tem) =

∫ t0

tem

dt′

a(t′)
=

∫ z

0

dz′

H(z′)
. (2.44)

Extending the extremes of integration from the beginning of the Universe up to now
leads to the definition of particle horizon

rH(t) :=

∫ t

0

dt′

a(t′)
, (2.45)

which is equivalent to the definition of conformal time itself, η(t). The particle horizon
serves as a boundary for observable information, effectively defining the limits of the
observable Universe. In this sense, it marks the boundary within which scientific inquiry
can apply.

2.2.2 The evolution of perturbations

The evolution of cosmological perturbations is largely governed by the gravitational
potential, ϕ. The behaviour of perturbation modes varies across cosmic epochs, primarily
based on whether the modes are inside or outside the horizon. We can categorize the
evolution of perturbations into three distinct stages:

• Early evolution (kη ≪ 1): At this stage, the potential remains constant, and all
perturbation modes are outside the horizon.

• Intermediate evolution (kη ≳ 1): As perturbations enter the horizon, they begin
to evolve with the changing gravitational potential. Modes that enter the hori-
zon before matter-radiation equality behave differently than those entering after,
reflecting the impact of the evolving matter and radiation content.

• Late evolution (kη ≫ 1): In this stage, the potential stabilizes, leading all modes
to evolve similarly. However, as the Universe approaches Λ-matter equivalence, the
gravitational potential declines due to the dominance of the cosmological constant.
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To analyze CDM perturbations, we utilize the perturbed Einstein field equations
Eq.(2.41) and Eq.(2.42) alongside the Boltzmann equations Eqs.(2.21)-(2.26). Given
that photons are tightly coupled to electrons via Compton scattering during the radia-
tion era, we can ignore terms above the dipole in the photon temperature perturbations.
In the matter-dominated era, photons can be largely ignored as CDM dynamics prevail.
A further simplification arises from the tight coupling condition, Eq.(2.42) leads to the
relation ϕ = −ψ. This allows us to express the gravitational potential in a straight-
forward manner, thereby closing the set of equations. These simplifications reduce the
Boltzmann equations to the following core set:

θ′r,0 + kθr,1 = −ϕ′, (2.46)

θ′r,1 −
k

3
θr,0 = −

k

3
ϕ, (2.47)

δ′c + ikuc = −3ϕ′, (2.48)

u′c +
a′

a
uc = ikϕ. (2.49)

Since there are no analytical solutions that are valid across all scales and times, we
often resort to interpolating solutions when analytical derivation is not feasible. However,
we can study specific limit cases where analytical solutions can be obtained:

• Super-horizon regime: In this regime, exact solutions can be derived that hold true
throughout the entire evolution of the perturbations.

• Horizon entry: We can distinguish between early times, where in the small-scale
approximation we can neglect the CDM density perturbation δc, and late times,
where the large-scale approximation yields a constant gravitational potential ϕ.

• Sub-horizon regime: In this regime, solutions remain exact as we can neglect θr
for small scales. Conversely, for large scales, the potential stabilizes to a constant
value.

This framework helps us understand the dynamics of perturbations in different epochs
of the Universe’s evolution, offering insight into structure formation processes.

Super-horizon evolution

In the regime kη ≪ 1, the wavelength dependence in Eq.(2.46), Eq.(2.47), and Eq.(2.41)
can be ignored. This implies that δc−3θ′r,0 must remain constant, and by the adiabaticity
condition, this constant is zero. To describe the evolution of perturbations, we introduce
a parameter y := ρm/ρr. With this substitution, Eq.(2.41) can be rewritten as:

y +
dϕ

dy
+ ϕ =

3y + 4

6(y + 1)
δc. (2.50)
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By differentiating both sides with respect to y, we obtain the following second-order
differential equation

d2ϕ

dy2
+

21y2 + 54y + 32

2y(y + 1)(3y + 4)

dϕ

dy
+

ϕ

y(y + 1)(3y + 4)
(2.51)

which can be solved by introducing a new variable u := ϕ y3/
√
1 + y. The analytical

solution then becomes [82]:

ϕ(k⃗, y) =
1

10y3

[
16
√

1 + y + 9y3 + 2y2 − 8y − 16
]
ϕ(k⃗, 0). (2.52)

This solution reveals that, for small scales (y ≪ 1), the potential remains constant at
ϕ(0), while for large scales (y ≫ 1), the potential asymptotes to 9/10ϕ(0).

Horizon entry

When perturbations enter the horizon, their behaviour differs significantly depending
on whether this occurs during the radiation-dominated era (small scales) or the matter-
dominated era (large scales). We’ll start by examining the latter scenario. Deep in the
matter-dominated era, radiation contributions can be neglected. Under these conditions,
Eq.(2.46) implies ϕ′ = 0, a constraint set by the initial conditions from super-horizon
evolution. Next, we examine whether Eq.(2.48), Eq.(2.49), and Eq.(2.41) permit constant
solutions for the potential.

In the matter-dominated era, the Hubble parameter H scales as a−3/2. Using this
fact, we can rewrite Eq.(2.48) as follows:

2k2ϕ′

3a2H2
+

[
iuc
k

+
2ϕ

3aH

](
9a2H2

2
+ k2

)
= 0. (2.53)

By differentiating this equation and neglecting all terms proportional to ϕ, we obtain a
second-order equation for ϕ in the form

αϕ′′ + βϕ′ = 0, (2.54)

where α and β are two real constants. The fact that equations like Eq.(2.54) allow
for constant solutions has significant implications for the evolution of the gravitational
potential. Since the initial conditions set by super-horizon scales remain preserved as
perturbations enter the horizon during the matter-dominated era, the gravitational po-
tential ϕ remains constant.

This outcome is particularly important because it indicates that, in the matter era,
the forces driving structure formation reach an equilibrium. The small-scale gravita-
tional pull from overdense regions, which would typically cause matter to collapse and
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enhance the density contrast, is exactly counterbalanced by the large-scale gravitational
expansion of the Universe, which tends to stretch and dilute structures. As a result, the
gravitational potential stays constant over time, maintaining its initial value.

For small scales, perturbations enter the horizon during the radiation-dominated era,
where the evolution of the potential is governed by radiation perturbations. In this
regime, CDM perturbations do not significantly impact the potential but are instead
affected by it. To proceed, we first compute the gravitational potential ϕ using Eq.(2.46),
Eq.(2.47), and Eq.(2.41), discarding all matter source terms and utilizing the relation
aH = η−1, which holds in the radiation era. This yields a relationship between the
gravitational potential and the dipole component of the radiation perturbation:

ϕ′ +
1

η
ϕ = − 6

η2k
θr,1. (2.55)

To obtain a second-order equation, we differentiate this first-order equation, leading to

ϕ′′ +
4

η
ϕ′ +

k2

3
ϕ = 0, (2.56)

which is the Fourier space form of a damped wave equation. Solving this requires trans-
forming it into a spherical Bessel equation of the first order, with the solution:

ϕ(k⃗, η) = 2

(
sinx− xcosx

x3

)
kη/

√
3

R(k⃗). (2.57)

Here, R(k⃗) is the curvature perturbation predicted by inflation. This result indicates
that, as Fourier modes enter the horizon, the potential oscillates and decays as η−2.These
oscillations reflect sound waves driven by the potential, where the decay is due to radia-
tion pressure counteracting gravitational collapse, which prevents perturbation growth.
This oscillatory process underlies the generation of BAOs.

Using the behaviour of ϕ, we can then solve Eq.(2.48) and Eq.(2.49) for CDM pertur-
bations. By combining these equations and encapsulating terms containing the potential
into a source term S(k, η), we obtain the differential equation:

δ′′c +
1

η
δ′c = 0, (2.58)

which, for the associated homogeneous equation (S(kη) = 0), has two solutions: δc =
const, δc = ln(η). The general solution is thus a linear combination of these homogeneous
solutions, plus an additional term accounting for the source contribution via the Green’s
function. For kη ∼ 1, the result is a function that grows logarithmically with the
perturbation scale:

δc(k, η) ∝ const + ln(kη). (2.59)

This key result highlights that, although radiation modes are decaying, CDM pertur-
bations can still grow during the radiation era, a direct consequence of CDM’s lack of
pressure.
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Sub-horizon evolution

In the sub-horizon regime, large-scale modes have a constant potential if they enter
the horizon after matter-radiation equality. For small scales, however, as ρcδc becomes
dominant over ρrθr,0, radiation can be neglected. In this context, the Eq.(2.48), Eq.(2.49)
and Eq.(2.41) combine into the Meszaros equation:

dδ2c
dy2

+
2 + 3y

2y(y + 1)

dδc
dy
− 3

2y(y + 1)
δc = 0. (2.60)

This hypergeometric equation admits two solutions: a growing mode

D+(a) = a+
2

3
aeq, (2.61)

known as the growth factor, which drives structure formation, and a decaying mode

D−(y) =

(
y +

2

3

)
+ ln

[√
1 + y + 1√
1 + y − 1

]
− 2
√

1 + y. (2.62)

The general solution is a linear combination of these two modes, but at late times, the
decaying mode becomes negligible.
Finally, we can express the general form of the observed gravitational potential, consol-
idating the results from the Boltzmann equation solutions. The late-time evolution of
the gravitational potential is given by

ϕ(k⃗, a) =
3

5
R(k⃗)T (k)D+(a)

a
, (2.63)

where T (k) is the transfer function, which captures the potential’s decay as modes enter
the horizon and pass the matter-radiation equality. The transfer function is normalized
to 1 on large scales, such that

T (k) :=
ϕ(k⃗, alate)

ϕlarge
scale

(k⃗, alate)
, (2.64)

where the large-scale potential equals the primordial value reduced by a factor of 9/10,
as previously derived for large-scale modes. This transfer function is typically calculated
using numerical codes, such as CAMB or CLASS, to propagate the primordial power spec-
trum through cosmic time. In the next section, we will introduce the concept of the
power spectrum and explore its use in studying the distribution of galaxies.
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2.3 Statistical properties of fields

Up to this point, we have established the formalism needed to describe the evolution
of the cosmic fluid’s energy and pressure, incorporating both the perturbed Boltzmann
equation and Einstein’s field equations within the framework of a scalar-perturbed FLRW
metric in conformal Newtonian gauge. However, while we understand the laws governing
structure formation in the linear regime, we lack a description of the spatial distribution
of particles across the Universe. To address this, we must introduce statistical tools,
such as N-point correlation functions, to understand how cosmic structures are arranged
spatially and to compare the prediction of models to the numerical measurements. Cor-
relation functions are designed to provide measurements of the mass distribution and
its dynamical evolution. This aspect is critical for the objective of this work: if we aim
to detect parity violation, we need to verify whether there is a statistically significant
difference in the galaxy distribution under the inversion of spatial coordinates.

2.3.1 Two-point correlation function

We start by modelling the spatial distribution of galaxies as a realization of a statistically
random stationary point process. This means that we consider the positions of galaxies
in the Universe as distributed according to statistical rules, rather than following a
completely deterministic model. In other words, we assume that, while galaxies tend
to cluster in groups and clusters, their arrangement has a random component. Each
possible configuration of galaxies in space that results from this probabilistic model is
called a realization of the point process. If we could observe multiple “replicas” of the
Universe, we would obtain different configurations of galaxies, each a unique realization
of the same process. Clearly, the fact that the Universe is unique is a problem: we cannot
average different samplings over different Universes. A common approach to overcome
this issue is to assume the ergodic hypothesis that allows us to work with independent
subdivisions of our Universe to obtain statistical relevance.

Consider two infinitesimal comoving volumes, dV1 and dV2. For a stationary point
process, the probability of finding a galaxy in the center of an infinitesimal volume dV
is given by the mean number density of galaxies, denoted by n̄:

dP = n̄dV. (2.65)

By Bayes’ theorem, the probability of two outcomes occurring can be expressed as the
probability of the first outcome times the conditional probability of the second outcome,
given the first:

dP12 = dP1 · dP(2|1) = dP2 · dP(1|2). (2.66)

Thus, for two volume elements separated by a comoving distance r, we have the joint
probability

dP12 = n̄2dV1dV2[1 + ξ(r)] (2.67)
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where ξ is the two-point correlation function (2PCF). The value of ξ indicates the level
of correlation between the two points:

• ξ(r) = 0: The objects are uncorrelated, meaning they are randomly distributed.

• ξ(r) > 0: The objects are positively correlated, so the probability of finding a pair
of galaxies at a distance r is higher than in a random distribution.

• −1 ≤ ξ(r) < 0: The objects are anti-correlated, meaning that the probability is
lower at separation r than in a random distribution.

A practical method for estimating the 2PCF is to count galaxy pairs in observational
data (denoted DD) and in a random distribution (denoted RR) at comoving separation
r as follows [116]:

1 + ξ(r) =
DD(r)

RR(r)
. (2.68)

Now, if we consider a sphere of radius r centered on a galaxy, we can calculate the
mean number of galaxies within that sphere:

⟨N(< r)⟩ =
∫
V

dV2n̄[1 + ξ(r)] = n̄V + n̄

∫
V

dV ξ(r) =
4

3
πr3n̄+4π

∫ r

0

dr′r′2ξ(r′). (2.69)

The second term represents the excess probability relative to a random distribution and
tends to zero as r →∞, while the first term represents the mean galaxy number density
in the Universe.

In a discrete model, if we partition the Universe into cells with at most one galaxy
each, we can retrieve information about the distribution moments. Let ⟨ni⟩ = n̄dVi
represents the mean density of the i− th cell. Since there is at most one galaxy per cell,
all moments of the galaxy count distribution in a single cell are equal:

⟨ni⟩ =
〈
n2
i

〉
= ... =

〈
nN
i

〉
. (2.70)

The first moment of the ensemble of cells is simply the sum of first moments across all
cells:

⟨N⟩ =
〈∑

i

ni

〉
=

∫
V

n̄dVi = n̄V. (2.71)

Similarly, the second moment is

〈
N2
〉
=

〈∑
i

ni

∑
j

nj

〉
= n̄2V 2 + n̄2

∫ ∫
dVidVj[1 + ξ(r)]. (2.72)
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We can express these results in terms of the normalized fluctuation around the expected
number of objects:

⟨∆⟩ = N − ⟨N⟩
⟨N⟩ , (2.73)

where the mean of this fluctuation distribution vanishes, and the variance is〈
∆2
〉
=

1

n̄V
+

1

V 2

∫ ∫
dVidVj[1 + ξ(r)]. (2.74)

In this equation, 1/(n̄V ) is termed shot noise, which represents statistical noise arising
from discretization. This concept is common in counting experiments and will reappear
during the construction of sky maps, where pixelization introduces noise that affects
parity tests.

While the discussion above follows a discrete model, a continuous definition of the
2PCF can also be provided. If galaxies are viewed as probes of a continuous density
field, correlation functions provide the average correlation level of density fluctuations.
Considering the mass density at position x⃗ as ρ(x⃗) := n(x⃗)m with background density
ρb := n̄m, the probability of finding an object at x⃗ is

dP (x⃗) = n(x⃗)dV =
ρ(x⃗)

ρb
n̄dV. (2.75)

Thus, the probability of finding two objects separated by r⃗ is:

d2P12 = dV1dV2 ⟨n(x⃗+ r⃗)n(x⃗)⟩ = dV1dV2n̄
2 ⟨ρ(x⃗+ r⃗)ρ(x⃗)⟩

ρb
. (2.76)

By defining the density contrast

δ(x⃗) := δρ(x⃗)/ρ =
ρ(x⃗)− ρ

ρ
, (2.77)

and combining Eq.(2.67) and Eq.(2.76), we find that the 2PCF can be expressed as

ξ(|r⃗|) = ⟨δ(x⃗+ r⃗)δ(x⃗)⟩ (2.78)

where x⃗ represents the position of a galaxy in space. An example of how the 2PCF
appears at different redshifts is illustrated in Fig.2.2.
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Figure 2.2: Nonlinear 2PCF monopole in real space, obtained with CAMB and halofit
model [159], for a ΛCDM cosmology using parameters from Planck 2018 (see definition
in Sec.1.3.3). This plot highlights the BAO feature around 100 h−1 Mpc.

2.3.2 Power spectrum

Let’s now delve into the concepts underlying the power spectrum. The latter is not new
to us, as we encountered the primordial power spectrum in Sec.1.3.3 when discussing
the six parameters of the ΛCDM model. According to standard inflationary models, the
primordial power spectrum took shape in the early Universe under the assumption that
no specific scale was favored. This leads to a scale-invariant distribution, meaning that
fluctuations are statistically similar on all scales.

A power-law functional form satisfies this scale invariance, and thus the power spec-
trum at the end of inflation is typically parameterized by the gauge-invariant curvature
perturbation, R:

PR(k) := 2π2Ask
−3

(
k

kp

)ns−1

, (2.79)

where

• As is the scalar amplitude of perturbations, representing the variance of R around
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a reference scale kp, known as the pivot scale.

• ns is the spectral index, which modulates the distribution of power across different
scales.

Scale invariance, which assumes a flat distribution of fluctuations, implies ns = 1, giving
a constant P (k). This specific case is known as the Harrison-Zel’dovich power spectrum,
introduced in [67, 175, 117]. The Harrison-Zel’dovich model reflects a Universe with a
constant primordial gravitational potential, leading to a balanced distribution of power
over all scales.

Considering a continuous density field in Fourier space, the matter power spectrum
P (k) is defined by the expectation value of the matter density contrast in Fourier space,

denoted by δ̃(k⃗): 〈
δ̃(k⃗)δ̃∗(k⃗′)

〉
:= (2π)3P (k)δ

(3)
D (k⃗ − k⃗′). (2.80)

Here, δ(3) is the 3-dimensional Dirac delta defined as

δ
(3)
D (k⃗) :=

1

(2π)3

∫
R3

eik⃗·r⃗d3r⃗, (2.81)

and it enforces the independence of different modes in the expression above. From
Eq.(2.78), it is clear that if we perform the Fourier transform of the 2PCF, we obtain
the power spectrum. This important result is known as the Wiener-Khinchin theorem,
explaining why the power spectrum can be used to study correlations in the distribution
of objects.

The Fourier density contrast evolves as described by the growing solution of the linear
perturbations:

δ̃(k⃗, t) ∝ D+(t). (2.82)

Suppose we have a set of particles with mass mj and position r⃗j. The Fourier amplitude
is a sum over the positions [115]:

δ̃(k⃗) ∝
∑
j

mje
−ik⃗·r⃗j . (2.83)

Let r0 be the clustering length at which nonlinearity starts to be significant. Nonlinear
interactions cause displacements ∆r⃗j in the positions of the particles; we can estimate
the effects on the Fourier amplitude by Taylor expanding the equation above:

∆δ̃(k⃗) ∝
∑
j

mj

[
i⃗k ·∆r⃗j − (k⃗ ·∆r⃗j)2/2 + . . .

]
eik⃗·r⃗j . (2.84)

Since the interactions preserve momentum, we expect that each mass shift on the j− th
particle is balanced by an opposite shift of another particle. This means that the leading
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term k⃗ · ∆r⃗ vanishes, so the perturbations to the power spectrum at scales k−1 ≫ r0
are of the order (kr0)

4. Therefore, if the power spectrum approaches a zero value slower
than k4, then the nonlinear contribution is negligible [115].

At late times the evolution of baryons follow closely the one of CDM, so we can
relate the total matter density contrast δm to the potential Eq.(2.63) through Poisson’s
equation in order to express the matter overdensity as:

δm(k⃗, a) =
2ka2

3ΩmH2
0

ϕ(k⃗, a). (2.85)

Finally, we have an expression for the linear matter power spectrum at late times:

PL(k, a) =
8π2

25

As

Ω2
m

D2
+(a)T

2(k)
kns

H4
0k

ns−1
p

, (2.86)

whose evolution at different redshifts is shown in Fig.2.3.

Figure 2.3: Real-space linear (solid lines) and nonlinear (dashed lines) matter power
spectra for an ΛCDM cosmology with parameters from Planck 2018 (see definition in
Sec.1.3.3). The power spectra were computed using CLASS, with the nonlinear spectrum
obtained via the halofit model [159]. The dot-dashed vertical line marks the scale at
which perturbations enter the horizon at matter-radiation equivalence.
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Whilst the power spectrum can be used to study the LSS of the Universe, it is not
directly useful for investigating parity-violating features. This limitation is related to
the concept of parity symmetry, which will be discussed in detail in the next chapter.
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Chapter 3

Parity

Parity is the transformation that inverts the coordinates of a physical system. In 1956
two theoretical physicists, Tsung-Dao Lee and Chen-Ning Yang, noted that, while parity
symmetry had been tested for strong and electromagnetic interactions, it had not been
verified for weak interactions [92]. Chien-Shiung Wu provided empirical evidence of
parity violation while studying the β-decay of cobalt-60 [171]:

60
27Co→ 60

28Ni + e− + ν̄e + γ.

The experiment involved measuring the helicity, which was obtained from spin orien-
tation and the momentum of the emitted electron. To understand this phenomenon, it is
helpful to introduce the concepts of pseudo-vectora and differential forms. A 1-form is a
function that maps an element of the tangent bundle of a smooth manifold M (denoted
TM) to a real number (i.e., an element of the algebraic field R):

ω : TM → R, (3.1)

with the property that ω is linear on each tangent space TpM at each point p ∈ M . A
2-form is a tensor field that can be seen as the section of the fiber of anti-symmetric
(0,2) tensors. We can obtain a 2-form as the external product of two 1-forms. That is,
if we have two vectors v⃗ and w⃗, we can build a 2-form ω(v⃗, w⃗) = v⃗ ∧ w⃗, which satisfies
the following properties:

ω(av⃗, bw⃗) = aω(w⃗) + bω(v⃗) for each a, b ∈ R (bilinear) (3.2)

ω(v⃗, w⃗) = −ω(w⃗, v⃗) (anti-symmetric). (3.3)

In the context of parity violation, 2-forms in 3-dimensional space can be associated with
vectors through the Hodge dual operator. Specifically, when a 2-form is mapped via the
Hodge dual, the resulting object behaves as a pseudo-vector ; it is similar to a vector
but transforms differently under coordinate reflections, not changing sign under parity
inversion.
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Spin is a pseudo-vector, meaning it does not change orientation under parity transfor-
mations, whereas momentum is a true vector and thus appears flipped when transformed.
When measuring the alignment between spins and momenta, we categorize the events
into two types: type A, where the spin and momentum are aligned, and type A′, where
they are anti-aligned. A statistically significant difference in the counts of type A and
A′ events indicates parity violation. This has been observed, as there is a directional
preference in the emission of electrons, resulting in a greater number of type A events
compared to type A′ events. This important result is also connected to the fact that neu-
trinos, which interacts only through weak force, are uniquely left-handed. Right-handed
neutrinos do not have weak charge and so they must interact only though gravitational
interaction, and are called sterile neutrinos: these might be promising dark matter candi-
dates, though being generally predicted to be of low mass, they constitute a component
of the warm dark matter (WDM) [45].

Thus, the only known fundamental interaction in nature that does not preserve par-
ity symmetry is the weak force. Therefore, examining signatures of parity violation is
crucial for understanding processes that govern the early Universe and, eventually, for
revealing unknown physical mechanisms that may cause breaks in parity symmetries in
the distribution of galaxies.

3.1 Parity transformation in physics

Parity (P) is a discrete transformation which satisfies the following conditions:

• P2 = 1: parity is a unitary operator, meaning it preserves the norm of the vector
it is applied to. For a position vector r⃗, this implies that the resulting vector has
the same magnitude as the original.

• (P∗)T = P: parity is a self-adjoint operator, which means that the parity operator
is equal to its Hermitian adjoint (the conjugate transpose). This implies that P
has real eigenvalues and can be diagonalized, as follows from the spectral theorem.

These properties imply that P can be represented by the following diagonal matrix:

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (3.4)

To illustrate the parity symmetry in gravitational theory, let us start with Newton’s
law for the gravitational force along r⃗ between two objects of masses m1 and m2:

F⃗g =
Gm1m2

r2
r̂, (3.5)
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where r̂ = (xî+ yĵ + zk̂)/|r⃗|. Applying the parity transformation gives

P
[
F⃗g(x, y, z)

]
= F⃗g(−x,−y,−z) = F⃗g, (3.6)

Therefore, both the magnitude and the direction of the force remain the same. This
shows that Newton’s gravitational law is invariant under parity reflection.

Now, let us examine why parity symmetry also holds in General Relativity by ana-
lyzing how the metric transforms under a parity transformation. The operation

PgP−1 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

×

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

×

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (3.7)

returns a transformed matrix g′ in which the time-time and space-space components
remain the same as in the original matrix, while the mixed time-space terms change
sign:

g′ =


g00 −g01 −g02 −g03
−g10 g11 g12 g13
−g20 g21 g22 g23
−g30 g31 g32 g33

 . (3.8)

The determinant of g′ equals that of g, so applying the parity transformation to the
Einstein-Hilbert action yields the same form of the field equations, showing that Eq.(1.5)
remains invariant under parity. Moreover, for the FLRW metric, which is diagonal,
the parity transformation leaves the metric unchanged, leading to identical Friedmann
equations, Eq.(1.30) and Eq.(1.31), as solutions to the Einstein’s field equations.

Thus in General Relativity, and in particular in the ΛCDM framework, parity is
conserved. To rigorously search for parity violations in non-standard models, we should
explore possible detection methods, building on the statistical tools introduced in Ch.2.
We have already discussed the 2PCF and the power spectrum, which relate to the prob-
ability of finding two galaxies at a comoving separation r. Higher-order statistics gen-
eralize this concept to larger numbers of configurations. For instance, considering three
spatial volumes, dV1, dV2, and dV3, the probability of finding three galaxies centered
within each of them is:

dP = n̄3[1 + ξ12 + ξ23 + ξ31 + ζ]dV1dV2dV3, (3.9)

where ζ represents the three-point correlation function (3PCF) and ξ12 := ξ(r12). Simi-
larly, extending this approach to four volumes leads to the four-point correlation function
η (4PCF) defined by [58]:

dP = n̄4[1 + ξ12 + ξ13 + ξ14 + ξ23 + ξ24 + ξ34

+ ξ12ξ34 + ξ13ξ24 + ξ14ξ23

+ ζ123 + ζ124 + ζ134 + ζ234 + η]dV1dV2dV3dV4,

(3.10)
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where ζ123 := ζ(r12, r23, r31).
While the 2PCF considers pairs of galaxies, the 3PCF, considers triplets of galaxies,

thus located at the vertices of triangles. Applying the parity transformation to such
a configuration is effectively equivalent to a spatial rotation, as illustrated in Fig. 3.1.
Therefore, detecting parity violation using the 2PCF or 3PCF is impossible, as these

Figure 3.1: Applying a parity transformation to a two-dimensional triangle is equivalent
to a spatial rotation by π/2 in three dimensions. This implies that the 3PCF can only
violate parity in two-dimensional space.

are equivalent to spatial rotations and remain symmetric due to the constraints of the
Cosmological Principle. The lowest-order correlation function potentially sensitive to
parity violation is the 4PCF, as illustrated in Fig.3.2. Similarly, this conclusion is valid
in Fourier space. In this case studying parity-violating features in the galaxy distribution
thus requires at least the trispectrum.

A generic scalar field can be expressed under a parity transformation as

P : δ(x⃗)→ δ(−x⃗), (3.11)

and its Fourier modes will transform similarly:

P : δ(k⃗)→ δ(−k⃗). (3.12)

If δ(P[⃗k]) = δ(k⃗), we say that the function is parity-even, while if δ(P[⃗k]) = −δ(k⃗),
the function is parity-odd. Moreover, if the scalar field is real-valued, as in the case of
redshift, the Fourier modes will satisfy the condition

δ(−k⃗) = δ(k⃗)∗, (3.13)
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Figure 3.2: Tetrahedra are the lowest-order polygons capable of exhibiting parity-
violating features in three dimensions. Studying parity violation requires the 4PCF
or higher-order correlation functions.

meaning that the parity transformation replaces the modes of a field with the com-
plex conjugate of the modes. This immediately leads to the conclusion that the power
spectrum (as well as the 2PCF) cannot detect parity violation. From the definition in
Eq.(2.80): 〈

δ(k⃗)δ(k⃗′)
〉
=
〈
δ(k⃗)δ(k⃗)∗

〉
=
〈
|δ(k⃗)|2

〉
= (2π)3δ

(3)
D (k⃗ + k⃗′)P (k). (3.14)

Since the 3-dimensional Dirac delta enforces translational invariance, it leads to a purely
real power spectrum with only parity-even components. Therefore, the possibility of
detecting parity violation hinges on whether we can have non-vanishing parity-odd com-
ponents. For the bispectrum, which is the Fourier transform of the 3PCF, the situation
is less immediate. In general terms, the sufficient condition for parity violation is the
presence of pseudo-scalars quantities.

By definition, the bispectrum B is:〈
δ(k⃗1)δ(k⃗2)δ(k⃗3)

〉
:= (2π)3δ

(3)
D (k⃗1 + k⃗2 + k⃗3)B(k1, k2, k3), (3.15)

and we can construct a pseudo-vector by taking the cross product of two Fourier modes.
This is similar to the case of the angular momentum of a rotating object, which is a
pseudo-vector obtained from the cross product of the position and momentum vectors of
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the object. For instance, k⃗1× k⃗2 is a pseudo-vector, and k⃗3 ·(k⃗1× k⃗2) is a pseudo-scalar (it
changes sign under parity transformation). Due to the Dirac delta function, we have the

constraint k⃗3 = −(k⃗1+k⃗2), so our pseudo-vector must vanish. As a result, it is impossible
to have parity-odd components in the bispectrum. This outcome is consistent with the
fact that both the power spectrum and the bispectrum are parity-insensitive and real,
which aligns with the geometrical construction shown in Fig.3.1.

Let us consider the trispectrum T, defined as〈
δ(k⃗1)δ(k⃗2)δ(k⃗3)δ(k⃗4)

〉
:= (2π)3δ

(3)
D (k⃗1 + k⃗2 + k⃗3 + k⃗4)T (k1, k2, k3, k4,

|k⃗1 + k⃗2|, |k⃗1 + k⃗3|, k⃗1 · k⃗2 × k⃗3).
(3.16)

Differently from revious cases, here we have the possibility to construct irreducible
non-vanishing pseudo-scalars through the triple product. For the trispectrum, we can
have three possible linearly independent vectors to be used to construct pseudo-scalars
in the form k⃗1 · (k⃗2 × k⃗3). Therefore, the parity-odd components of the trispectrum is
proportional to the triple product, and the trispectrum can be decomposed into a purely
real part (parity-even), which does not carry information about parity, and a purely
imaginary part (parity-odd) containing the parity-violating features:

T = T+ + iT−. (3.17)

Parity-odd components can be parametrized by introducing a six-dimensional function
τ− (reduced parity-odd trispectrum) that contains the shape of the parity-odd trispec-
trum:

T (k1, k2, k3, k4, |k⃗1 + k⃗2|, |k⃗1 + k⃗4|) =i⃗k1 · |⃗k2 × k⃗3|
τ−(k1, k2, k3, k4, |k⃗1 + k⃗2|, |k⃗1 + k⃗4|).

(3.18)

In Fourier space, we may visualize the trispectrum as a tetrahedron with four sides
whose length is determined by the magnitude of the vectors k⃗1, k⃗2, k⃗3, and k⃗4. The other
remaining sides are diagonals, so their length is given by the vector sum of the other
sides, as in Fig.3.3. Thus, it is evident that |⃗k1+ k⃗4| = |⃗k2+ k⃗3| and |⃗k1+ k⃗3| = |⃗k2+ k⃗4|.

3.2 Angular correlators

The trispectrum described above, which is the Fourier transform of the 4PCF, is a
powerful tool for studying parity violation in the 3-dimensional LSS of the Universe. By
analyzing the abundance of right- and left-handed configurations of galaxy quadruplets,
it provides insights into potential parity-breaking symmetries [120, 38]. However, in this
work we do not apply the statistical tools described above directly to the 3-dimensional
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k⃗1 k⃗2

k⃗1 + k⃗2

k⃗4
k⃗1 + k⃗4

k⃗3

Figure 3.3: Fourier space tetrahedron representing a possible configuration for the
trispectrum.

comoving space. Instead, our focus is on searching for parity violations within a 2-
sphere framework, using the ARFs developed by C. H. Monteagudo in [69], which will
be discussed in detail in the Ch.4.

To achieve this, we require a 2-dimensional version of angular correlations, represented
by the projection of scalar fields onto the surface of a sphere.

3.2.1 Angular power spectrum and bispectrum

An arbitrary function defined on a 2-sphere, S2, can be expanded in a spherical harmonic
series. Let us consider a generic zero-mean signal, labeled as a, that depends on the line
of sight direction n̂, which is specified by the azimuthal and polar angles (θ, ϕ), it can
be expanded as follows:

a(n̂) =
+∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(n̂), (3.19)

where Yℓm(n̂) = Yℓm(θ, ϕ) are the spherical harmonics, which are related to the Legendre
polynomials by:

Yℓm(θ, ϕ) =

√
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!
Pℓm(cosθ)

eimϕ

√
2π
, (3.20)

a relationship that arises as a consequence of the Sturm-Liouville theorem.
The integer ℓ is known as the angular quantum number (or multipole) and describes

the angular scale of the function on the 2-sphere. In particular:

• ℓ = 0 is the monopole term and corresponds to an angular scale of θ = 2π.

• ℓ = 1 is the dipole term and corresponds to an angular scale of θ = π.
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• ℓ = 2 is the quadrupole term and corresponds to an angular scale of θ = π/2.

• ℓ > 3 corresponds to progressively smaller angular scales, approximately θ ≈
π/(6ℓ).

The term m is called the magnetic quantum number (or azimuthal number), repre-
senting the longitudinal variation of the function along a specific axis. It is an integer
within the range −ℓ ≤ m ≤ ℓ. The coefficients in the expansion, aℓm, are calculated by
integrating the product of the signal a(n̂) and the complex conjugate of the spherical
harmonics over the 2-sphere:

aℓm =

∫
S2
dn̂ a(n̂)Y ∗

ℓm. (3.21)

The angular power spectrum is typically expressed as the average over statistical
realizations of the signal as:

Cℓ1ℓ2
m1m2

:=
〈
aℓ1m1a

∗
ℓ2m2

〉
= δℓ1ℓ2δm1m2Cℓ, (3.22)

where the Kronecker deltas impose statistical isotropy and homogeneity, ensuring no
correlations between different angular scales of the field. As a result, the angular power
spectrum depends only on the multipole ℓ, quantifying the signal’s magnitude at a spe-
cific angular scale. In cosmology, this harmonic expansion is commonly applied to CMB
temperature fluctuations to construct power spectra. The statistical isotropy and homo-
geneity of the angular power spectrum of the temperature field align with the Cosmo-
logical Principle. Since cosmic radiation is located at a specific redshift, it allows us to
ignore the radial dependence of the temperature field.

Similarly, the angular bispectrum B is defined as:

Bℓ1ℓ2ℓ3
m1m2m3

:= ⟨aℓ1m1aℓ2m2aℓ3m3⟩ , (3.23)

and, under isotropy and homogeneity conditions, it takes the form:

Bℓ1ℓ2ℓ3
m1m2m3

= Gℓ1ℓ2ℓ3m1m2m3
bℓ1ℓ2ℓ3 . (3.24)

Here, bℓ1ℓ2ℓ3 is the reduced bispectrum, while G is the Gaunt function, defined as the
average over three spherical harmonics:

Gℓ1ℓ2ℓ3m1m2m3
:=

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)(
ℓ1 ℓ2 ℓ3
0 0 0

)
=

∫
S2
dn̂ Yℓ1m1(n̂)Yℓ2m2(n̂)Yℓ3m3(n̂)

, (3.25)

where the 3 × 2 matrices are the Wigner-3j symbols, describing the combination of
angular momenta. We distinguish between parity-even and parity-odd bispectrum com-
ponents based on the parity of the sum of the three multipoles. The Gaunt function is
non-zero only if ℓ1 + ℓ2 + ℓ3 is even, enforcing the fact that parity-odd bispectra do not
exist in the absence of anisotropies [39].
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3.2.2 Angular trispectrum

Finally, we introduce the tool used in this work for testing parity violation: the an-
gular trispectrum. This statistics correlates four harmonic modes, thus containing re-
dundant contributions (disconnected terms), given by lower-order correlations (such as
between pairs of modes) combined inside the four-mode correlation. Therefore, the an-
gular trispectrum is defined by taking the only connected part of the correlation of four
harmonic modes:

T ℓ1ℓ2ℓ3ℓ4
m1m2m3m4

:= ⟨aℓ1m1aℓ2m2aℓ3m3aℓ4m4⟩c . (3.26)

Unlike the bispectrum, which depends on three multipoles (one for each spherical
harmonic), the trispectrum cannot be fully described by four multipoles. This is be-
cause, to achieve rotational invariance, we require an additional element called effective
angular momentum (L), which represents the total angular momentum and is obtained
by combining the other four harmonic modes. Specifically, L can be seen as the diagonal
of the tetrahedron describing the angular trispectrum configuration in harmonic space.
Thus, it must satisfy the following triangular relations:

|ℓ1 − ℓ2| ≤ L ≤ ℓ1 + ℓ2 (3.27)

|ℓ3 − ℓ4| ≤ L ≤ ℓ3 + ℓ4, (3.28)

which are induced by the Wigner-3j symbols. The isotropic and homogeneous angular
trispectrum is

⟨aℓ1m1aℓ2m2aℓ3m3aℓ4m4⟩c =
+∞∑
L=0

L∑
M=−L

(−1)MwL(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

tℓ1ℓ2ℓ3ℓ4
(L)+23 perms, (3.29)

where the sum covers 4! = 24 permutations of the four multipoles. Here, the azimuthal
angular momentum M = m1 +m2 = −m3 −m4, and t

ℓ1ℓ2
ℓ3ℓ4

is the reduced trispectrum.
The weighting function w generalizes the Gaunt function for the trispectrum and can be
expressed as the average over three spin-weighted spherical harmonics sYℓm(n̂):

wLM
ℓ1ℓ2m1m2

:=

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 L
m1 m2 M

)(
ℓ1 ℓ2 L
−1 −1 2

)
=

∫
S2
dn̂ +1Yℓ1m1(n̂)+1Yℓ2m2(n̂)−2YLM(n̂).

(3.30)

The reduced angular trispectrum, which embodies the full trispectrum’s shape, behaves
equivalently under parity transformation or complex conjugation:[

tℓ1ℓ2ℓ3ℓ4
(L)
]∗

= P
[
tℓ1ℓ2ℓ3ℓ4

(L)
]
= (−1)ℓ1+ℓ2+ℓ3+ℓ4tℓ1ℓ2ℓ3ℓ4

(L) (3.31)

so the sum ℓ1 + ℓ2 + ℓ3 + ℓ4 distinguishes between a purely real part (parity-odd) and a
purely imaginary part (parity-even).
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Thus, unlike the angular power spectrum and the angular bispectrum, the angular
trispectrum is sensitive to parity transformation. This can be leveraged to test the ΛCDM
model: since General Relativity and standard inflation introduce no parity-violating fea-
tures, observing a non-zero signal from the parity-odd components would indicate parity
symmetry violation. This will be tested by studying compatibility with a vanishing signal
in the difference between parity-odd and parity-even components. If systematic uncer-
tainties are properly modeled and accounted for, this signal would suggest a preference
for left- or right-handed configurations, similar to the weak interaction.
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Chapter 4

Angular redshift fluctuations

Modern cosmology is deeply focused on gathering diverse data to strengthen our un-
derstanding of the Universe and refine each individual data set’s insights. Observations
of CMB conducted by instruments such as WMAP [152, 86], Planck [9, 125], SPT-3G
[23], BICEP3 [7], ACT and ACTPol [10, 111] provide a detailed picture of the early
Universe. Additionally, as CMB photons travel through the Universe, they interact with
intervening matter, leading to secondary effects that offer insights into cosmic structures
at lower redshifts (such as Sunyaev-Zel’dovich effect [25]). Meanwhile, to explore the
later stages of the Universe, cosmology relies on the observation of luminous objects in
the LSS. By studying features like the angular distribution of galaxies [49] and the abun-
dance and properties of galaxy clusters and cosmic voids [14, 89], it has been possible
to gather precise insights into the underlying density field. However, LSS surveys are
significantly impacted by complexities such as how galaxies trace matter (bias), baryonic
effects, and gravitational nonlinearities [176, 16, 154, 150, 140, 19, 139, 41, 36, 49], which
add additional layers of observational systematics compared to CMB studies [32, 134].
Extensive efforts are underway to mitigate or model these uncertainties.

Ideally, findings from CMB and LSS data should be mutually consistent and comple-
mentary. However, discrepancies in key cosmological parameters, such as the one on the
Hubble constant (see Sec.1.1.3) or the amplitude of linear matter fluctuations [3], are well
known. This has increased the emphasis on refining error estimates, addressing system-
atic effects, and validating results through alternative cosmological probes [107]. This
chapter focuses on density-weighted ARFs, an emerging observable developed to capture
underlying density fluctuations across redshifts. This approach shows promise in refining
cosmological constraints and serves as the foundation for the parity test conducted in
this study.
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4.1 Measuring angular redshift fluctuations

ARFs have emerged as a powerful probe for retrieving cosmological information from the
LSS of the Universe. In particular, previous works have shown that ARFs are sensitive
to the underlying galaxy velocity and density fields, while being relatively unaffected
by systematic uncertainties and avoiding the need for assuming a fiducial cosmology in
the distance-to-redshift relation [70]. Findings in [71] indicate that ARFs can constrain
the quantity f(z)σ8(z)H(z)/H0, where f := dlogD+(a)/dloga is the linear growth factor,
with a level of agreement within 1.4σ with the fiducial ΛCDM cosmology from the Planck
satellite.

Let us consider a spectroscopic galaxy survey, containing the redshifts z and the
angular positions (RA,DEC) of galaxies in the sky. The celestial sphere is divided into
Npix regions, each of them pointed by a line of sight n̂(θ, ϕ). A certain number of galaxies
will fall in each region, that from now on we identify as a pixel as commonly done when
dealing to sky maps (see Sec.5.4). This number of galaxies will contribute to the value
of the observable, depending on the generic window function Wj which weights each j-th
galaxy.

The standard 2-dimensional clustering is computed from angular density fluctuations
(ADFs), which describe the angular distribution of galaxies [71]:

1 + δg(n̂) =

∑
j∈n̂Wj〈∑
j∈n̂Wj

〉
n̂

, (4.1)

where δg is the fluctuation of the angular number density of objects, and the angular
average ⟨. . . ⟩n̂ of the weights is computed over all the Npix pixels included in the survey’s
footprint (it is an area average). The angular average of the number of galaxies under
the window W , with the double sum running over the sky pixels and the galaxies falling
in each pixel, is therefore: 〈∑

j∈n̂
Wj

〉
n̂

:=

∑Npix

i=1

∑
j∈n̂i

Wj

Npix

, (4.2)

where j runs over the galaxies in the i-th pixel.
The window function W can be any, as long as it is ends at the extremes. Howeven,

for simplicity, we only refer to Gaussian window functions properly cut at a certain
distance from their mean. In this work, we consider Gaussian shells

Wj = Wj(zj;σz) := exp

{
−(zj − zcen)2

2σ2
z

}
, (4.3)

centered at an arbitrary reference redshift zcen with width σz, which weights the galaxies
at zj. We note that, for tomographic aims, σz is typically smaller than 0.03 thus allowing
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us to assume constant bias within the Gaussian shell. For practical reasons, in the
production of sky maps, we typically work in the interval [−3σz, 3σz] (containing around
99.7% of the total area subtended by the Gaussian), thus using the W as a selection
function.

While ADFs also convey cosmological information without relying on a distance-to-
redshift relation, they are more prone to systematic uncertainties and nonlinear effects
compared to ARFs. In ARFs, redshift is treated as a scalar field, allowing us to quantify
the anisotropy around the average redshift (monopole) of all galaxies under the same
Gaussian shell (4.3), regardless their angular location:

z̄ =

∑
j Wjzj∑
j Wj

, (4.4)

which is typically close to the central redshift zcen, and equal to it in case of flat distri-
bution of galaxies. For tomographic analyses, zcen will be very near to z̄.

We consider two ARF estimators built upon Eq.(4.1):

z̄ + δz(n̂) =

∑
j∈n̂Wjzj∑
j∈n̂Wj

, (4.5)

as proposed in [70], and

δz(n̂) =

∑
j∈n̂Wj(zj − z̄)〈∑

j∈n̂Wj

〉
n̂

, (4.6)

from [71]. Since, in Eq.(4.5), the denominator can be noisy or even vanish; thus, this
work focuses on the latter implementation, as the ensamble average in the denominator
helps addressing issues with sparse samples.

This clarifies what was mentioned at the beginning of Sec.3.2: despite working with
LSS data, we do not conduct a 3-dimensional study, as ARF implementation depends
only on the line of sight n̂, with radial information embedded in the redshift itself.
Consequently, we work on a 2-sphere, applying the “CMB technology” presented in the
previous chapter.

As highlighted in [97], both ARF implementations yield the same results in linear cos-
mological perturbation theory. However, their sensitivity to systematics differs: Eq.(4.5)
is robust against both multiplicative and additive systematics, while Eq.(4.6) is only
resilient to additive systematics, as these do not vary significantly under the redshift
shell. Additionally, it is important to note that the Gaussian window function used in
the ARF implementation is chosen for simplicity; ARFs may be defined with any window
function, provided it is restricted to a redshift interval.
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4.1.1 Newtonian derivation

In the limit of weak gravitational fields and non-relativistic velocities, the observed red-
shift of a galaxy does not include the gravitational redshift zϕ(r, n̂), and all other rela-
tivistic contributions, and can thus be approximated as follows (c=1):

zobs = z + (1 + z)v⃗ · n̂ = z + zv, (4.7)

where v⃗ is the peculiar velocity of the galaxy, inducing a redshift or blueshift zv.
Given the number density of galaxies n(z, n̂) at redshift z from an observer pointing

toward the n̂ direction, the average number density of galaxies is defined as n̄g(z) =
⟨ng(z, n̂)⟩n̂. Assuming a linear galaxy bias, δ3Dg = bgδ

3D
m , where δ3Dm is the total matter

density contrast defined in (2.77), we can write the ADF field as an integral along the
line of sight [93]1:

δg(n̂) =
1

Ng

∫
dVΩn̄g(z)bg(z)δ

3D
m (z, n̂)W (zobs), (4.8)

where

dVΩ =
dV

dΩ
=
r2(z)

H(z)
dz (4.9)

describes the comoving volume of a thin spherical shell (with thickness dz) subtended
by a solid angle dΩ. Here,

Ng =

∫
dVΩn̄g(z)W (z) (4.10)

is the total number of tracers (galaxies) within the survey’s footprint, selected by a
Gaussian shell centered at zcen.

The ARF field, which characterizes the spatial variation of the average redshift of
galaxies, can be modeled in a similar way. It is expressed as an integral along the line of
sight, restricted to the galaxies selected by the Gaussian shell:

δz(n̂) =
1

Ng

∫
dVΩ[zobs(z, n̂)− z̄]n̄g(z)[1 + bg(z)δ

3D
m (z, n̂)]W [zobs(z, n̂)]. (4.11)

By expanding the Gaussian window and keeping only linear terms in density and velocity,
[93] derived the ARF field as:

δz(n̂) =
1

Ng

∫
dVΩn̄g(z)W (z)

{
(z − z̄)bgδ3Dm (z, n̂)

+ zv

[
1 + (z − z̄)dlnW

dz

]}
,

(4.12)

1Hereafter, we drop the j subscript in indicating the window function
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where the first term inside the curly brackets represents the dipole contribution, and the
second term (quadrupole) accounts for peculiar velocity contributions.

Looking at the dipole term in Eq.(4.12), we see that the ARF field is sensitive to
variations in the density field within the Gaussian shell, representing a redshift gradient.
Similarly, the quadrupole term indicates that ARFs are sensitive to the radial variation
of line-of-sight velocities.

4.2 Modelling angular redshift fluctuations with

ARFCAMB

As mentioned in Ch.2, CAMB is a Fortran/Python code that solves the set of Einstein-
Boltzmann equations Eqs.(2.21)-(2.26) and Eqs.(2.41)-(2.42), deriving the transfer func-
tion which is used to compute the time evolution of the linear matter power spectrum. C.
H. Monteagudo provided me with a modified version of this code (dubbed as ARFCAMB),
adapted to include ARFs as a new observable, as described in [97]. This includes also
relativistic corrections for ARFs, which closely follow the ones of ADFs in [31].

Recovering the metric in the conformal-Newtonian gauge (Eq.2.13), given solely scalar
perturbations, we can express it in terms of conformal time η:

ds2 = gµνdx
µdxν = a2(η)[(1 + 2ψ)dη − δij(1− 2ϕ)dxidxj]. (4.13)

We aim to evaluate the quantity n(n̂, z)(z − z̄)dzdΩ, which is the observed number of
sources in the direction n̂ over the solid angle dΩ with redshift (z − z̄) in a range dz.
In this chapter, we will use the · symbol to indicate the derivatives with respect to the
conformal time.

Consider an observer measuring the redshift of an emitting light source. Hereafter,
quantities with the subscript obs are evaluated at the observer’s position while quantities
with the subscript s refer to the source’s position. A photon moving along a geodesic
xµ(λ), where λ is a parametrization for the geodesic, has 4-wavevector defined as:

kµ :=
dxµ

dλ
=

(
dη

dλ
,
dx⃗

dλ

)
, (4.14)

which can be decomposed into a space component using the direction of propagation
e⃗ := n̂ and into a time component using the comoving frequency νa−1 := kµuµ (with
uµ = a(1+ψ)δµ0 the zero-shear 4-velocity field of a comoving observer) in the observer’s
rest frame. We can leverage the null condition of photons ds2 = 0 to write

dη

dλ
= a−2ν(1− ψ). (4.15)
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for the time component, and we can obtain the space component as:

dx⃗

dη
=

dx⃗

dλ

dλ

dη
= (1 + ϕ+ ψ)e⃗, (4.16)

keeping only linear terms in ϕ, ψ. Eq.(4.15) can be rewritten using the geodesic equation
to obtain the equation for the evolution of the comoving frequency in [31]:

dν

dη
= −νdψ

dη
+ ν

(
∂ϕ

∂η
+
∂ψ

∂η

)
. (4.17)

Integrating this equation can be done to compute the following ratio of frequencies:

ν

νobs
= 1 + ψobs − ψ +

∫ η

ηobs

dη′
(
∂ϕ

∂η
+
∂ψ

∂η

)
, (4.18)

that contains the Sachs-Wolfe and the integrated Sachs-Wolfe (ISW) contributions, ac-
counting for the variation of the potentials along the photon’s trajectory [135].

The observed redshift of the source, zs, is determined by the ratio of the observed
frequency and the emitted frequency from Eq.(1.18):

1 + zs =
(kµuµ)s
(kµuµ)obs

. (4.19)

Writing the observer’s 4-velocity as uµobs = uµ + vµobs, where we have explicited the con-
tribution of the peculiar velocity v, the observed redshift of a source reads:

1 + zs =
aobs
as

νs
νobs

(1 + n̂ · [v⃗ − v⃗obs]). (4.20)

Using Eq.(4.18), we can express the redshift along the line of sight n̂ at conformal
time η as:

1 + z(η) =
aobs
a(η)

{
1 + ψobs − ψ + n̂ · [v⃗ − v⃗obs] +

∫ η

ηobs

dη′
(
∂ϕ

∂η
+
∂ψ

∂η

)}
. (4.21)

Thus, the observed redshifts are mapped into perturbed radial coordinates of the sources
so that, by setting η = ηs + δη and 1 + zs = a(ηs)

−1, the perturbation of the conformal
time assigned to the source is:

H(ηs)δη := ∆z(η∗) = ψobs − ψ + n̂ · [v⃗ − v⃗obs] +
∫ ηs

ηobs

dη′
(
∂ϕ

∂η
+
∂ψ

∂η

)
+H0δη0, (4.22)

where H(η) is the conformal Hubble parameter. Following [31], one may express also
the perturbed radial position of a photons at zs as:

r(n̂, zs) = rs + δr = ηobs − ηs − δη −
∫ ηs

ηobs

dη′
(
∂ϕ

∂η
+
∂ψ

∂η

)
. (4.23)
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Starting from these results, [31] computed the angular power spectrum for ADFs by
performing the Fourier transform of the curvature power spectrum P (k) multiplied by
the squared transfer function for ADFs, TADFs,W

ℓ (k):

CADFs
ℓ =

2

π

∫
dk k2P (k)|TADFs,W

ℓ (k)|. (4.24)

For a survey with limit magnitude m < m∗, let us define the total number of sources
observed over a redshift interval dz under a solid angle Ω as N(n̂, z,m < m∗).

Referring to [31] for a complete derivation, the transfer function for ADFs reads
(r′ := ηobs − η′):

TADFs,W
N,ℓ (k) =

∫ ηobs

0

dη

[
W (η)

(
δNjℓ(kr) +

kv

H j′′ℓ (kr)

)
+Wδη(η)[ψjℓ(kr) + vj′ℓ(kr)

+

(
∂ϕ

∂η
+
∂ψ

∂η

)
jℓ(kr)

∫ η

0

dη′Wδη(η
′) + (ψ + ϕ)jℓ(kr)

(∫ η

0

dη′(2− 5bs)
W (η′)

r′

+
ℓ(ℓ+ 1)

2

∫ η

0

dη′
r′ − r
rr′

(2− 5bs)W (η′)

)

+W (η)jℓ(kr)

(
1

H
∂ϕ

∂η
+ ψ + (5bs − 2)ϕ

)]
.

(4.25)

Let us explain the meaning of each term. Integrals are computed along the line of
sight over the window function W (η) = W (z)(1 + z)H. j′′ℓ (kr) and j′ℓ(kr) indicate,
respectively, the second and the first derivative of the spherical Bessel function jℓ(kr).
The magnification bias - a bias in the magnitude of an object given by gravitational
lensing effects - is:

bs(z,m∗) :=
∂log10N̄(z,m < m∗)

∂m∗
, (4.26)

where N̄(z,m < m∗) is the background physical number density of sources with magni-
tude outside the survey’s limit, and δN is its fractional perturbation associated.

In Eq.(4.25), the term

Wδη(η) :=

[
2− 5bs
Hr + 5bs −

∂ln[a3N̄(m < m∗)]

H∂η +
H′

H2

]
η

W (η) (4.27)

accounts for the source evolution in redshift. The redshift z is the observed redshift and
it contains all the information about the scalar potential and the magnification bias,
encoding the effect of lensing on the luminous objects. The resolution for the transfer
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function has been implemented by [31, 30] in a code called CAMB sources (based on
CAMB), that computes source count angular power spectra.

Eq.(4.25) is the starting point to compute the transfer function for ARFs. In this
case, the anisotropies are sourced by both mass tracers and redshift fluctuations with
respect to z̄. For the sake of simplicity, the window function is assumed to be Gaussian
in order to rewrite Eq.(4.25) using

W(z, z̄) := W (z)(z − z̄), (4.28)

with z̄ =
∫
dzW (z)z. This means that the integrals of Eq.(4.25) must be recomputed.

The integration over the derivatives of the spherical Bessel function can be eliminated by
integrating by parts. Since CAMB sources is written in the CDM gauge (zero acceleration
frame), the transfer function must be translated to this frame. The detailed pipeline for
the computation of the transfer function for ARFs can be found in Appendix B of the
reference paper [97], and it involves the usage of the sympy-based symbolic module of
the code CAMB sources.

An example of the evolution of the angular power spectrum at different redshifts
computed with ARFCAMB can be found in Fig.4.1.
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Figure 4.1: Linear angular auto-power spectrum for ARFs, computed using ARFCAMB at
σz = 0.01 and for different reference redshifts zcen. For comparison, all biases are set to
unity. Notably, Cℓ vanishes for multipoles ℓ < 2.
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Chapter 5

Codes and data sets

With the objectives of this work clearly defined and a focus on observing parity violation,
we now present the data sets and computational tools used in the analysis. Each data set
provided unique insights or testing grounds for parity violation, and each code facilitated
different stages of data reprocessing and statistical analysis.

For real observational data, we used the Data Release 12 (DR12) of the Sloan Digital
Sky Survey (SDSS) from the Baryon Oscillation Spectroscopic Survey (BOSS) catalogue,
which offers an extensive galaxy redshift survey well-suited for parity analysis across the
LSS. Alongside BOSS, we employed the MultiDark-PATCHY mocks [133, 80], which
provide realistic simulated data designed to match the statistical properties of the BOSS
catalogue, thereby enhancing the robustness of our analyses by offering a comparison data
set with similar cosmic features.

We also incorporated two types of Quijote simulations [38, 170]: the Quijote-
ODD simulations, which were specifically constructed with parity violation in their ini-
tial conditions, and standard Quijote simulations with ΛCDM cosmology that follow
the conventional cosmological model without parity-breaking features. The Quijote-
ODD simulations served as essential benchmarks, allowing us to test the sensitivity and
accuracy of our detection methods on data with known parity-violating characteristics.
In contrast, the standard ΛCDM Quijote simulations provided a baseline for compar-
ison, enabling us to assess and interpret any asymmetries detected in the context of a
standard cosmological model.

To process the data into a format suitable for analysis, we used a suite of compu-
tational tools. CosmoBolognaLib (hereafter CBL) [102] was particularly useful for the
Quijote simulations, where it enabled the conversion of comoving halo coordinates
into physical sky coordinates, necessary for constructing sky maps. This transformation
bridged the gap between simulated catalogues and the formats required for our analysis,
specifically when handling the spatial information in simulations.

For constructing pixelized maps of the sky, we used HEALPix [60, 61]. This software, a
standard in cosmological data analysis, allows for high-resolution mapping of the celestial
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sphere by dividing it into equal-area pixels, thus providing an efficient structure for
analyzing cosmic data. We built HEALPixmaps tailored to ARFs through a Python/C++
implementation, allowing us to visualize and quantify the spatial distribution of LSS
observables with high precision.

For calculating the angular power spectra and angular trispectra, we relied on
PolyBin [122]. This tool is designed for unbiased estimation of higher-order statistics,
which are fundamental in investigating parity properties across various scales. The spec-
tra obtained with PolyBin yielded critical information on asymmetries within the spatial
distribution of cosmic structures, contributing to a refined test for parity violation.

Together, these data sets and computational tools established a robust framework
for building maps, generating mock data, and conducting detailed statistical analyses on
parity-violating signals in the LSS.

5.1 Sloan Digital Sky Survey

SDSS is a large-scale photometric and spectroscopic redshift survey [173] conducted
using the 2.5-meter wide-angle optical telescope at Apache Point Observatory (APO)
[64], focusing on mapping the northern celestial hemisphere. This project has been
foundational for numerous breakthroughs in observational astronomy and theoretical
advancements, driven by its innovative instruments: a high-efficiency multi-array Charge-
Coupled Device (CCD) camera for extensive sky imaging and a multi-fiber spectrograph
capable of capturing spectra for several hundred objects simultaneously. Over the years,
SDSS has evolved through various stages, with each iteration introducing new surveys
and instruments. The stages, starting from SDSS-I (2000–2005) and continuing to SDSS-
V (2020–present), reflect this development.

The third stage, SDSS-III [50, 11], ran from 2008 to 2014 and included four specialized
spectroscopic surveys:

• MARVELS (Multi-object APO Radial Velocity Exoplanet Large-area Survey):
This survey monitored the radial velocities of 11 000 bright stars with precision
sufficient to detect gas giant planets.

• APOGEE (APO Galactic Evolution Experiment): This survey used high-
resolution, high signal-to-noise infrared spectroscopy to study over 100 000 red
giant stars throughout the Galactic bulge, bar, disk, and halo, penetrating the
dust that obscures much of the Milky Way.

• SEGUE-2 (Sloan Extension for Galactic Understanding and Exploration): A con-
tinuation of SEGUE-1, this survey measured spectra for 240 000 stars, mapping
the outer Milky Way to improve our understanding of the formation and growth
of the stellar halo over time.
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• BOSS: Designed to map the spatial distribution of luminous red galaxies (LRGs)
and quasars, BOSS aimed to detect the characteristic scale imprinted by BAOs
from the early Universe. Using a 1000-fiber spectrograph, it surveyed 1.5 million
galaxies up to redshift 0.7 and 160 000 quasars at redshifts 2.2-3 and 1.5 million
galaxies a redshift 0.7.

The BOSS DR12 survey [99], in particular, is used for examining parity violation in
the cosmic distribution of galaxies of the CMASS and LOWZ catalogues.

5.1.1 BOSS Data Release 12

The survey includes observations on five colour bands (u, g, r, i, z ) [59] of 1.5 million
galaxies’ spectra in 10 000 deg2, using the doubled-armed spectrographs with wavelength
coverage 3600 − 10000 Å and resolving power of 1500 to 2600 [146]. Surveyed galaxies
are divided into CMASS samples and LOWZ samples, each of them mapped in two
separate sky regions: the Northern Galactic Cap (NGC) and Southern Galactic Cap
(SGC).

The BOSS collaboration provides the galaxy catalogues, produced with an updated
version of the code mksample [128], with specific colour-magnitude and colour-colour
cuts to the photometric catalogue. The LOWZ sample comes from the original SDSS
LRG catalogue specialized for low redshifts, while the CMASS catalogue contains higher
redshift galaxies with almost constant stellar mass. In this work, following the pipeline
of [99], we restricted the redshift domain of the two samples by applying the following
cuts in order to simplify the tomographic analysis:

LOWZ: 0.15 ≤ z < 0.45

CMASS: 0.45 ≤ z < 0.80.
(5.1)

All the catalogues and masks of BOSS DR12 are pubblicly available at [1]. In
Fig.5.1, the redshift distribution of galaxies is represented. The cut at z = 0.45 delimits
the two catalogues.

LOWZ sample

The LOWZ sample contains LRGs with redshifts up to 0.45, and it is an extension of
the SDSS-II LRG Cut I sample from [48]. The photometric selection criteria for this
sample are as follows:

|c⊥| < 0.2 (5.2)

rcmod < 13.5 + c∥/0.3 (5.3)

rpsf − rcmod > 0.3 (5.4)

16 < rcmod < 19.6, (5.5)
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Figure 5.1: Redshift distribution of BOSS galaxies after applying the redshift cuts in
Eq.(5.1), which prevent overlap between the CMASS and LOWZ catalogues. The cut
survey contains a total of 1 158 301 objects.

where cmod stands for cmodel magnitude, representing the estimated total magnitude of
a galaxy based on a composite model fit. The psf magnitude refers to the point spread
function magnitude, which is optimized for the unresolved (point-like) component of an
object. The parameters c∥ and c⊥ quantify a galaxy’s position along the main colour
locus and its deviation perpendicular to it, respectively, which are used to distinguish
galaxies based on colour.

These criteria enable effective target selection by isolating objects near the expected
colour locus, Eq.(5.2), while Eq.(5.3) selects bright, red objects. Eq.(5.4) introduces
an r-band magnitude cut to help distinguish stars from LRGs, and Eq.(5.5) enforces a
brightness limit in the r-band to ensure a high success rate in the galaxy detection.

It is important to note that theBOSS collaboration applied different selection criteria
during the initial months of observation compared to those used later, which affected the
redshift distribution in the LOWZE2 and LOWZE3 sky regions. Consequently, these
two regions were excluded by the survey mask, as shown in the right panels of Fig.6.1,
to maintain consistent redshift distributions across the entire sky footprint.
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CMASS sample

The CMASS sample is targeted using the CMASS algorithm, which applies the follow-
ing selection criteria, extending the Cut-II LRGs from SDSS-II [48]:

d⊥ > 0.55 (5.6)

imod < min [19.86 + 1.6(d⊥ − 0.8), 19.9] (5.7)

17.5 < icmod < 19.9 (5.8)

ifib2 < 21.5 (5.9)

rmod − imod > 0.2(21− imod) (5.10)

zpsf − zmod > 0.46(19.8− zmod) (5.11)

ipsf − imod > 0.2(21− imod). (5.12)

In these criteria, Eq.(5.6) excludes low-redshift objects, while Eq.(5.7) selects the bright-
est objects at each redshift to ensure approximately constant stellar mass limits, based
on the evolving model from [101]. Eqs.(5.8)-(5.9) apply magnitude cuts to avoid misiden-
tifying low-redshift objects and to ensure a high success rate. Problematic objects
and outliers are further excluded by cuts in the i- and r-bands by Eq.(5.9). Finally,
Eqs.(5.11)-(5.12) serve to separate stars from galaxies.

Galaxy weights

In galaxy surveys, galaxy weights are applied to correct for various biases that can affect
clustering statistics derived from raw data. These weights help adjust for observational
effects introduced by the survey’s design and instrumental limitations, and they are pro-
vided by the BOSS collaboration as part of a composite weight parameter wtot assigned
to each galaxy [128, 134, 15]:

wtot = wsystot(wcp + wnoz − 1). (5.13)

Each weight parameter accounts for a different observational effect:

• wsystot: This parameter adjusts for angular systematic effects based on the local
conditions at each galaxy’s position, including stellar density and seeing conditions
(such as airmass and reddening).

• wcp: Due to the finite size of fibers, which cannot overlap, objects separated by less
than 62 arcseconds cannot both be observed on the same plate. The fiber collision
weight wcp compensates for this effect by assigning additional weight to galaxies
that have collided with others within this threshold distance.
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• wnoz: Redshift failures affect approximately 1.8% of CMASS galaxies and 0.4%
of LOWZ galaxies. To mitigate this, wnoz up-weights the nearest neighbors of
galaxies that experienced redshift measurement failures, ensuring they remain sta-
tistically representative.

The terms within the round brackets in Eq.(5.13) are constructed to conserve the
total count of galactic targets. Although these observational systematics are designed
for accuracy within the data processing pipeline, they have limited impact on sky map
production with ARFs, as noted in Ch.4. In fact, observational systematics have a
minimal effect on the ARFs power spectra, as highlighted in [71] and supported by
findings in [70, 33].

5.1.2 MultiDark-PATCHY mocks

Mock catalogues, used alongside the real BOSS DR12 data, are essential for estimating
uncertainties on the spectra and providing a benchmark for validating the data analysis
pipeline. These mocks are generated using the BigMDPL simulation [81], one of the
MultiDark N-body simulations created with the GADGET-2 code. GADGET-2 is
a publicly available, massively parallel code that employs Tree-PM methods for efficient
N-body simulations [153].

The BigMDPL simulation was produced assuming a flat Planck ΛCDM cosmology,
with parameters summarized in Tab.5.1. It follows the evolution of 38403 dark matter
particles, each with a mass of 2.356× 1010 h−1M⊙, within a cosmological box with side
length 2.5 h−1 Gpc, from an initial redshift of z = 100 to the present day.

Parameter Symbol Value

Hubble parameter h 0.6777
Dark energy density parameter ΩΛ 0.692885

Matter density parameter Ωm 0.307115
Baryonic density parameter Ωb 0.048206

Normalization of the power spectrum ns 0.96
Amplitude of mass density fluctuation σ8 0.8228

Table 5.1: Cosmological parameters used for BigMDPL simulations, assuming a flat
Planck ΛCDM cosmology.

The production of the mocks involves the use of theRockStar halo finder [20], which
identifies spherical dark matter halos and subhalos using a friends-of-friends approach
in 6-dimensional phase space. Additionally, RockStar constructs particle-merger trees
[21] to calculate the peak circular velocity over a halo’s history, which is useful for
abundance matching.
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Constructing light-cones that replicate the redshift-space monopole of the 2PCF of
BOSS CMASS DR12 requires the SUGAR code. This code uses the halo abundance
matching technique described in [133] to create galaxy catalogues from dark matter halo
distributions.

The periodic mock boxes were created using the PATCHY code [80], which is based
on the augmented Lagrangian perturbation theory and separates long- and short-range
components of the dark matter particle displacement field. While the long-range com-
ponents are computed with second-order Lagrangian perturbation theory [27, 29], the
short-range components use spherical collapse approximation models [110]. This com-
bined displacement field efficiently moves particles from their initial Lagrangian positions
to final Eulerian positions. PATCHY also incorporates a local, nonlinear, scale-dependent,
and stochastic biasing scheme to relate the discrete dark matter halo distribution with
the underlying continuous dark matter particle field. In particular, this biasing scheme
suppresses halo generation in low-density regions to model LRGs accurately [80].

Consequently, the resulting MultiDark-PATCHY mocks are designed to match ob-
served clustering evolution across 1-point, 2-point, and 3-point clustering statistics and
to account for dependencies on stellar mass. A publicly available set of 4096 CMASS
mocks (NGC+SGC) and 4096 LOWZ mocks (NGC+SGC) can be accessed at [145],
including detailed mock descriptions and weighting guidelines. Specifically, galaxies in
the mocks are weighted as follows:

wtot = wvetowcollwFKP , (5.14)

where wveto is a binary flag that accepts or rejects a galaxy, and wcoll is the weight
for fiber collisions. The term wFKP = (1 + n(z)P0)

−1 is the Feldman-Kaiser-Peacock
weight [52], where n(z) is the galaxy number density and P0 = 104h−3Mpc3 represents
the power spectrum at a reference scale around 100 h−1Mpc. This weight is responsible
for down-weighting overdense regions and up-weighting underdense regions to improve
clustering statistics.

5.2 Quijote

The Quijote simulations consist of more than 82 000 full N-body simulations, created
with two primary objectives in mind [170]. The first goal is to evaluate the information
content on cosmological observables. For instance, one approach to quantifying the in-
formation contained in a set of cosmological parameters, given a particular statistic, is
through the Fisher matrix formalism. This requires two key components: the covariance
matrix of the statistic and the derivatives of the statistic with respect to the cosmo-
logical parameters. To enable this analysis, Quijote includes over 40.000 simulations
specifically designed to numerically compute these components.
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The second objective is to provide an extensive data set for training machine learning
models. Quijote serves as an invaluable resource for machine learning applications.
These simulations are generated using Latin hypercubes (which guarantee a uniform
coverage of the parameter space) and Sobol sequences (which sample a multi-dimensional
space evenly), and they cover a vast range of structures, including billions of halos,
galaxies, and voids, as well as summary statistics such as power spectra, bispectra,
correlation functions, marked power spectra and estimated probability density function.
The sheer volume of data is crucial for training machine learning algorithms, where
having a large and diverse data set significantly enhances the accuracy and robustness
of the models.

The Quijote simulations are organized into different categories based on the cosmo-
logical models they implement. These can be broadly classified into three main classes :

• Fiducial Simulations: These simulations follow a fiducial cosmology that is con-
sistent with the Planck data, with only the initial random seed varying.

• Individual Parameter Variations: These simulations alter the value of a single
cosmological parameter with respect to the fiducial model, while keeping the initial
random seed constant. They are designed for Fisher matrix analysis.

• Multiple Parameter Variations: These simulations simultaneously vary mul-
tiple cosmological parameters along with the initial random seed, intended for
machine learning applications.

Furthermore, the Quijote simulations include a variety of types, each addressing
different features of the Universe. These types include:

• LCDM: Standard simulations that vary cosmological parameters such as the Hub-
ble constant, matter density, and cosmological constant.

• Dark energy: Simulations that investigate the impact of varying the expansion
rate of the Universe through changes in the dark energy equation of state.

• Massive neutrinos: Simulations incorporating massive neutrinos among parti-
cles.

• Separate Universe: Simulations that involve an overall over- or under-density
and modifications to the amplitude of the large-scale density fluctuations.

• Primordial non-Gaussianities: Simulations that explore different types of pri-
mordial non-Gaussianities.

• Parity-violating: Simulations that explore cosmological models with parity vio-
lation features.
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• Modified gravity: Simulations that implement modified gravity models.

In this work, parity-violating simulations (Quijote-ODD [38]) are used alongside
fiducial Quijote LCDM simulations (parameters in Tab.5.2) to test ARFs capability of
detecting parity violation.

5.2.1 Quijote-ODD

Quijote-ODD is a type of parity-violating N-body simulation that propagates a parity
violation from the initial conditions, generated at z = 127, forward in redshift. The
pipeline for creating the initial conditions is detailed in [38] and involves generating a
non-Gaussian primordial potential, ϕNG, by modulating a Gaussian one, ϕ(1), according
to the following transformation:

ϕNG(x⃗) = ϕ(1)(x⃗) + pNL

[
ϵijk(∂i|∂|αϕ(1))(∂j|∂|βϕ(1))(∂k|∂|γϕ(1))

]
(x⃗), (5.15)

where ϵijk is the 3-dimensional Levi-Civita symbol, an antisymmetric object often used
to represent cross products. Here, |∂|α corresponds to a multiplication by kα in Fourier
space, with α ̸= β ̸= γ. The parameter pNL modulates the amplitude of the parity
violation. Notably, in the right-hand side of Eq.(5.15), the parity violation is introduced
by ϵ, as it changes sign under parity transformation (see Eq.(3.4)). In Fourier space,
Eq.(5.15) can be rewritten as:

ϕNG(k⃗) = ϕ(1)(k⃗)

+ ipNL

∫
p⃗1+p⃗2+p⃗3=k⃗

(2π)3δD(k⃗ − p⃗1 − p⃗2 − p⃗3)[p⃗1 · p⃗2 × p⃗3]pα1pβ2pγ3ϕ(1)(p⃗1)ϕ
(1)(p⃗2)ϕ

(1)(p⃗3),

(5.16)

which confirms that the power spectra and bispectra cannot detect parity violations, as
they lack terms involving the triple product and, consequently, pseudo-vectors.

Additionally, [38] rescaled the non-Gaussian, parity-violating initial conditions using

ϕNG(k⃗)→

√√√√√
〈
ϕ(1)(k⃗)ϕ(1)(k⃗)

〉
〈
ϕNG(k⃗)ϕNG(k⃗)

〉ϕNG(k⃗), (5.17)

to enforce a scale-invariant power spectrum and to avoid O(p2NL) corrections, which
emerge at small scales in the power spectrum.

The initial conditions are generated by using a modified version of the 2LPTIC code
[141]. A total of 1000 initial conditions were generated: half with pNL = 106 and the
other half with pNL = −106, ensuring averaged statistics as verified by [38]. The parity-
violating initial conditions are propagated up to z = 0 using the transfer function from
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CAMB, then rescaled back to z = 127 with a scale-independent growth factor. Finally,
the density fields at z = 127 are corrected with second-order Lagrangian perturbation
theory to compute the peculiar velocities and particle displacements.

Then, the particles evolve using the same pipeline as other Quijote simulations,
following the GADGET-3 code [153]. These simulations span a volume of 1000
(h−1Mpc)3, hosting the evolution of 5123 particles under the cosmological parameters
detailed in Tab.5.2.

Simulation Ωm ΩΛ Ωb σ8 h ns pNL

ODD p 0.3175 0.6825 0.049 0.834 0.6711 0.9624 +106

ODD m 0.3175 0.6825 0.049 0.834 0.6711 0.9624 −106
LCDM 0.3175 0.6825 0.049 0.834 0.6711 0.9624 0

Table 5.2: Cosmological parameters used for Quijote-ODD and fiducial Quijote
LCDM simulations. The simulations are dubbed ODD p or ODD m depending on
the sign of the parity violation parameter pNL.

Finally, RockStar was used to generate halo catalogues with a comprehensive set of
properties, including comoving coordinates, virial masses, and peculiar velocities. These
catalogues are stored on the Rusty cluster in New York and can be accessed via Globus,
a platform designed for efficient transfer of large data volumes, following the instruc-
tions provided in [144]. For both the Quijote-ODD and the fiducial Quijote LCDM
simulations, halo catalogues at redshift z = 1 were used to conduct parity tests.

5.3 CosmoBolognaLib

CBL is a comprehensive suite of C++ libraries for cosmological calculations [102], offering
various functionalities including classes to handle catalogues, customize cosmologies,
perform statistical analyses, and compute 2PCFs, 3PCFs, and power spectra using built-
in wrappers for CAMB and CLASS, or accurate fitting formulae [47]. The backbone structure
of the libraries relies on the object-oriented flexibility features of C++ that allow to
organize efficiently functions and classes.

In particular, CBL provides a cbl::cosmology::Cosmology class designed to set various
cosmological parameters, including the Hubble parameter h, the density parameters of
cosmological species at z = 0 (Ωm, Ωb, Ων , Ωr and ΩΛ), the primordial spectral index ns,
the initial scalar amplitude of the power spectrum As, the dark energy equation of state
parameters wo, wa [34, 98], and the non-Gaussian amplitude fNL. While each cosmo-
logical parameter can be set manually, CBL offers pre-built cosmologies from WMAP5,
WMAP7, WMAP9, Planck13, Planck15 and Planck18 [85, 87, 73, 5, 6, 9]. This Cos-
mology class includes methods to estimate the number density and mass function of dark
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matter halos, as well as methods to estimate their effective linear bias by resolving the
integral:

beff(z) =

∫Mmax

Mmin
n(M, z)b(M, z)dM∫Mmax

Mmin
n(M, z)dM

, (5.18)

where n is the halo number density and b is the linear bias. This methodology has
been widely employed to estimate the linear bias of dark matter halo catalogues from
Quijote.

The cbl::catalogue::Catalogue class is dedicated to handling samples of various as-
trophysical objects such as halos, galaxies, galaxy clusters, and voids. Each object has
fields to record properties like positions (in both comoving and observed coordinates),
masses, velocities, magnitudes, and other properties. The class also supports the cre-
ation of new customized catalogues, random catalogues, and subcatalogues, applying
user-defined filters to mask objects selectively.

The cbl::measure::Measure class contains several subclasses for retrieving observables
from data sets. In particular, these classes include methods to measure angular power
spectra, 2PCF [91], and 3PCF [158] in both real and redshift spaces. The full inheritance
diagram of the base class is shown in Fig.5.2.

In this work, a new class called cbl::measure::MapCalculator that inherits from the
class Measure has been added to the project. This class computes full-sky maps using
HEALPix according to the implementation of ARFs in Eq.(4.6). A detailed description
of the class, along with the source code, is available in Appendix A.

5.3.1 Employed functionalities

In addition to the base classes and essential methods that every C++ program analyzing
catalogues with CBL should implement, this work utilizes specific functions for different
tasks. Firstly, CBL was employed to construct mock catalogues in physical coordinates
(RA,DEC, z) from the halo catalogues in comoving coordinates produced by [38]. This
process involves the function cbl::create mocks(), which takes as input the positions and
velocities, the box side length, the redshift of the halo catalogue snapshot, and other
parameters to create a mock catalogue. The algorithm re-centers the simulation box
by placing its center at a comoving distance that corresponds to the snapshot’s redshift
[104]. This approach allows for the creation of a light cone from a single snapshot at a
specific redshift.

Additional functions were used to estimate the monopole of the 2PCF of the generated
mocks in both real and redshift space, as well as to calculate the effective bias and model
the 2PCF by Fourier transforming the power spectrum. These functions are part of the
validation pipeline for the mocks, which will be detailed in the next chapter.

Finally, functions and classes within the cbl::statistics group were used to perform a
Markov Chain Monte Carlo (MCMC) analysis, a widely adopted method in cosmology
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Figure 5.2: Inheritance diagram of cbl::measure::Measure. Among several subclasses,
there is MapCalculator, a new addition to the project. Graph generated by doxygen.

[75, 151]. MCMC is a sampling method for exploring parameter spaces to reconstruct
posterior distributions. The algorithm produces statistically independent samples of
the posterior arranged in a chain, where each sample depends only on the previous
one, following the properties of Markov processes. After generating each sample λ, a
conditional probability determines whether the next sample λ′ is accepted or rejected.
This probability satisfies the detailed balance condition:

Pλ′Kλ|λ′ = PλKλ′|λ, (5.19)

which ensures that the chain is reversible, meaning the probability of moving forward or
backward along the chain is equal. The conditional probability is chosen based on the
Metropolis-Hastings algorithm [106, 68] and typically follows a Gaussian distribution.
MCMC was employed to fit data from the parity violation test with a Gaussian function
to detect potential signatures of parity violation. The complete validation pipeline will
be illustrated in the next chapter.
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5.4 HEALPix

HEALPix (Hierarchical Equal Area isoLatitude Pixelization) is a sophisticated framework
used to map data on the sphere, originally designed to handle CMB data, and widely ap-
plied in astrophysics and cosmology. It implements an algorithm that divides a 2-sphere
into pixels of equal area, using a pixelization scheme arranging pixels in a nested grid
structure. In particular, the pixelation process consists by dividing the sphere’s surface
into curvilinear quadrilaterals in a hierarchical tessellation. At the lowest resolution,
the sphere is partitioned into 12 base pixels. As the resolution increases, each pixel
is recursively subdivided into four smaller ones making it possible to adjust pixel size
and density as depicted in Fig.5.3, where the octahedral symmetry and the hierarchical
subdivision of the grid are pointed out.

HEALPix is especially valuable for handling massive data sets since its structure allows
data storage and retrieval to be computationally efficient. Indeed, pixels are distributed
along iso-latitude lines allowing fast analyses in harmonic space. The complexity of
HEALPix scales as O(N1/2

pix ) while for other software that do not use iso-latitude pixeliza-
tion, such as the Quadrilateralized Spherical Cube [161] (used for COBE data [149, 22,
56]) the complexity is O(Npix).

The software package is available in C, C++, Fortran90, IDL, Java, and Python, and
offers a comprehensive set of tools for spherical data manipulation:

• HEALPix allows for filtering maps with arbitrary circular windows to mask specific
regions and pixels of the sky.

• Includes an highly optimized library (libsharp) which is a collection of algorithms
for efficient conversion between maps on the sphere and their spherical harmonic
coefficients [129].

• HEALPix efficiently stores and organizes harmonic coefficients, while being also
able to modify and rotate them which is useful when analyzing data from different
reference frames. A typical example is the transformation of a map from one
coordinate system to another (such as from equatorial to galactic coordinates).

• Enables pixelation down to sizes up to 0.4 milli-arcseconds, allowing for the cre-
ation of maps with up to 3.5 × 1018 pixels. Besides, it supports pixel queries in
various geometric shapes, such as discs, triangles, polygons, and strips, and includes
programs for identifying pixel neighbors.

• Support for multi order coverage maps used to represent different parts of the sky
at varying levels of detail in a scalable way, particularly useful to describe localized
crowded fields [55].
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Figure 5.3: 2-sphere partition at progressively increase in resolution across four stages:
starting with 12 pixels at the base level, followed by 48, 192, and 768 pixels. The
black dots represent the center of the pixels occouring on 3, 7, 15 and 31 iso-latitude
rings respectively. The resolution is refined in a clockwise manner from the top-left to
bottom-left. Credits for the figure to [61].
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• Visualization tools are available in multiple languages, and the software supports
exporting maps to various formats, such as HDF5 files [13] and FITS files [174],
which are commonly used to store scientific data. HEALPix provides also multiple
routines to facilitate data handling in these formats.

5.4.1 Pixelization overview

The resolution of the HEALPix grid is controlled by the parameter Nside, which specifies
the number of subdivisions along each side of the original base-resolution pixels to reach
the desired finer resolution. Pixel centers are placed along 4Nside − 1 rings of constant
latitude, with the pixels on each ring spaced evenly in azimuth ϕ. Iso-latitude rings
in the equatiorial region are divided into 4Nside pixels, while in the polar regions rings
contain a varying number of pixels that increase by one between successive ring as the
distance from the poles grows.

HEALPix offers two primary pixel indexing schemes:

• RING: Pixels are indexed sequentially from the north to the south pole, moving
along each iso-latitude ring so that pixel indices follow a straightforward order
across latitudes.

• NESTED: Pixels are indexed in a hierarchical tree structure rooted in the 12 base-
resolution pixels. Each base pixel’s hierarchy can be mapped to a ([0, 1]× [0, 1])
square, making nearest-neighbour searches more efficient and supporting fast Haar
wavelet transforms [164] on HEALPix grids. In contrast, pixelization schemes like
Gauss-Legendre Sky Pixelization [44] and icosahedron-based methods [160] lack
hierarchical ordering, which is essential for handling large data sets efficiently by
ensuring quick nearest-neighbor searches.

Pixel boundaries in HEALPix are not geodesics. Given (θ, ϕ) the coordinates on the
sphere, in the equatorial zone pixel boundaries are given by cos θ = a ± bϕ, while in the
polar caps the forms are cos θ = a + b/ϕ2 or cos θ = a + b/(π/2 − ϕ)2. This geometric
structure guarantees that all pixels have equal areas, enabling efficient computation
of complex quantities, such as the Fourier transforms of individual pixels, which are
commonly used to calculate power spectra. In contrast, other pixelization schemes, such
as the Equidistant Cylindrical Projection [108], result in increasingly smaller pixel sizes
as they approach the poles, leading to inefficient oversampling in those regions.

5.4.2 Main routines

One of the main HEALPix functions used for constructing sky maps is ang2pix. This
function performs a conversion from the polar coordinates of a unit sphere to pixel
indices, associating an integer between 0 and 12N2

side − 1 to each point on the 2-sphere.
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This feature has proven particularly useful for indexing the positions of galaxies in the
sky, as it tracks the full pixelization structure for the application of pixels weights and
masks to exclude specific portions of the sky.

The other essential routine is anafast, a computationally efficient algorithm used to
calculate both auto- and cross-angular power spectra Cℓ of HEALPix maps, up to a user-
defined maximum multipole ℓmax (with an upper bound of 3Nside − 1). This calculation
is performed over the whole S2 sphere (or a subset if the map is cropped). The algorithm

scales as O(N1/2
pixelℓ

2
max), making it highly efficient for large data sets.

anafast offers several options to improve precision. It includes an iterative scheme
that computes both forward and backward spherical harmonic transformations, ensuring
high accuracy. Additionally, it incorporates pixel weights, which allow for the exclusion
of specific pixels or adjust their importance based on the data’s characteristics. In the
context of this work, the pixel weights were designed to prioritize counts of galaxies near
the mean of the Gaussian shells, as specified by the ARFs implementation in Ch.4.

Moreover, anafast includes a pixel window function option that adjusts the power
distribution across pixels. This helps mitigate spectral leakage (the transfer of power
between different frequency bands) and border effects (distortions in the power spectrum
caused by pixel boundaries). These issues primarily arise at small angular scales (ℓmax >
2Nside), and therefore, this scale is used as the upper limit for the multipoles in the power
spectrum analysis conducted in this work.

5.5 PolyBin

In Ch.3, we introduced the concepts of bispectrum, and trispectrum, fundamental tools
for understanding the statistical properties of cosmological fields. These quantities are
able to probe physical effects with unknown forms a priori, such as strong temperature
bispectra from synchrotron emission and polarized bispectra from galactic dust emission
[39], but they require significant computational resources. In this work we focus on the
usage of the angular spectra described in Ch.3 alongside the implementation of ARFs
described in Ch.4. However, there’s an additional complication arising from observational
effects: usually, it is not possible to measure a field in all points of the 2-sphere due
to galactic pollution, too bright stars saturating the instruments, noisy regions and
instrumental limitations. For this reason, data are provided with a maskW (aka window
function) that works as a filter modulating the observed field. The mask is in general
not isotropic, thereby complicating the interpretation of the angular correlators and
leading to potentially dangerous effects when ignoring window effects. Therefore to
compare measurements and models we need either to convolve the theory [162, 74] or to
deconvolve the measurements in order to obtain something that can be readily compared
to the theory.

PolyBin is a specialized code designed to provide estimators for various poly-spectra,
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including binned power spectra, bispectra, and trispectra [122]. The binned estimators
implemented in PolyBin offer an advantage over modal decomposition as they separate
dependence on individual models, enhancing the interpretability of the results. Efficient
estimators for windowed polyspectra have been explored in various studies, such as [163,
100, 63] for the power spectrum; [137, 84, 137, 83] for the bispectrum; and [168, 127, 54,
105] for the trispectrum. However, PolyBin provides a robust treatment of observational
masks by maximizing the likelihood of the observed field. Similar approaches have been
used in the analysis of 3-dimensional field statistics [143, 39], though this technique was
first introduced by [122] specifically for 2-sphere projections.

In this section, we present an overview of the polyspectra estimators implemented in
PolyBin, following the methodology of the reference work [122]. These estimators play
a significant role in this thesis, where they are used extensively for performing the parity
tests.

5.5.1 Binning

PolyBin uses binned estimators for polyspectra by discretizing the correlators into ℓ-bins
that, in the limit of narrow bins, are directly comparable to theory. To achieve this, [122]
introduces a binary binning function Θℓ(b) that is defined to be unity if the multipole
ℓ is contained in b and it vanish otherwise. The binning process provides a practical
way to compute estimates of the power spectrum and bispectrum by grouping modes
into discrete bins and summing their contributions. For the angular power spectrum
Eq.(3.22), the binned estimator can be obtained by averaging over bins, yielding:

⟨aℓ1m1aℓ2m2⟩ ≈ (−1)m1δKℓ1ℓ2δ
K
m1(−m2)

∑
b

Θℓ1(b)C(b), (5.20)

where C(b) is the binned power spectrum that we aim to estimate. The sum over bins
accounts for the modes within each bin, and Θℓ1(b) is an indicator function selecting
which modes belong to each bin b.

Similarly, for the bispectrum Eq.(3.24), the binned version b(⃗b) can be expressed as:

⟨aℓ1m1aℓ2m2aℓ3m3⟩ ≈ Gℓ1ℓ2ℓ3m1m2m3

∑
b1b2b3

b(⃗b)

∆3(⃗b)
[Θℓ1(b1)Θℓ2(b2)Θℓ3(b3) + 5 perms.], (5.21)

where b⃗ = {b1, b2, b3} represents the triplet of bins for the bispectrum components, with
the ordering condition b1 ≤ b2 ≤ b3. Here, ∆3 is a symmetry factor that adjusts for
permutations within the set {ℓ1, ℓ2, ℓ3}, defined as:

∆3(b) :=


6 b1 = b2 = b3

2 b1 = b2 ̸= b3 or b1 ̸= b2 = b3

1 else,

(5.22)

80



to ensure that each unique configuration is only counted once. This binning approach
allows us to manage the complexity of bispectra estimation and avoid double-counting
in the sums over permutations.

Finally, the binned trispectrum t(⃗b, B) is defined analogously to Eq.(3.29):

⟨aℓ1m1aℓ2m2aℓ3m3aℓ4m4⟩c ≈
∑
LM

(−1)MwL(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

∑
b⃗,B

t(⃗b, B)

∆4(⃗b)
ΘL(B)

× [Θℓ1(b1)Θℓ2(b2)Θℓ3(b3)Θℓ4(b4) + 7 perms.]

+ (2←→ 3) + (2←→ 4)

(5.23)

Here, the sum runs over all permutations of {b1, b2, b3, b4}. b⃗ = {b1, b2, b3, b4} and B
represents the bin corresponding to the effective angular momentum L. The sum includes
only independent bins, so we require b1 ≤ b2, b3 ≤ b4, b1 ≤ b3, and b2 ≥ b4 if b1 =
b3, to avoid double counting. Additionally, the bins {b1, b2, B} and {b3, b4, B} must
satisfy the triangle condition. To prevent double counting terms when summing over
the permutations, we define a degeneracy factor ∆4(b) to account for the occurrences of
each unique configuration in Eq.(5.23):

∆4(b) :=



8 b1 = b2 = b3 = b4

6 b1 = b2 and b3 = b4

2 b1 = b2 or b3 ̸= b4

2 b1 = b3 and b2 ̸= b4

1 else.

(5.24)

5.5.2 Including the mask

As previously mentioned, observational limitations require applying a mask to exclude
unwanted regions of the sky footprint. Moreover, the measured signal is affected by
noise, n(n̂), which adds to the observed signals, resulting in an observed field ã defined
as:

ã(n̂) := W (n̂)a(n̂) + n(n̂). (5.25)

We assume the simplest scenario, where the mask and the signal are uncorrelated, so that
⟨Wa⟩ = ⟨W ⟩ ⟨a⟩ = 0. If this assumption is violated, the complexity of the estimators
will inevitably increase [94].

However, the presence of the mask and inhomogeneous noise may make the field
statistics non-ideal, meaning we cannot assume the rotational symmetry of Eq.(3.22),
Eq.(3.24), and Eq.(3.29) that led to the binned quantities previously described. Thus,
we work in map space and define polyspectra in terms of observed fields. The non-ideal
two-point harmonic correlator of the observed field can be written as:

C̃ij :=
〈
ã(n̂i)ã(n̂j)

〉
, (5.26)
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where the indices i and j indicate generic points on the sky. In this work, they specifically
refer to HEALPix pixels. From Eq.(5.25), the 2-point correlator can be rewritten in terms
of the unmasked quantities Cij := ⟨a(n̂i)a(n̂j)⟩ and Nij := ⟨a(n̂i)a(n̂j)⟩ as:

C̃ij = W (n̂i)CijW (n̂j) + Nij =
∑
ℓm

B2
ℓCℓ[W (n̂i)Yℓm(n̂

i)][W (n̂j)Y ∗
ℓm(n̂

j)] + Nij. (5.27)

This expression includes the isotropic beam Bℓ and, if necessary, the pixel window func-
tion ωℓ through the substitution Bℓ → ωℓBℓ, which ensures rotational invariance. The
main advantage of the estimator given by Eq.(5.27) is that all terms in the expression
can be estimated, and the estimation is simplified by assuming the same mask for both
the signal and the noise (as is done in this work).

Analogous considerations lead to the definition of the non-ideal 3- and 4-point corre-
lators:

B̃ijk :=
〈
ã(n̂i)ã(n̂j)ã(n̂k)

〉
, T̃ijkl :=

〈
ã(n̂i)ã(n̂j)ã(n̂k)ã(n̂l)

〉
, (5.28)

which can be expressed in terms of the ideal correlators Bijk, Tijkl.

5.5.3 Optimal estimators

To obtain optimal estimators from our binned polyspectra, we maximize the likelihood
of the observed field, ã(n̂). Assuming weak non-Gaussianity, this likelihood can be
expanded in terms of the non-ideal correlators using an Edgeworth expansion:

L[ã] ∝ exp

[
−1

2
hiC̃

ijhj

]{
1 +

1

3!
B̃ijkHijk +

1

4!
T̃ijklHijkl + . . .

}
, (5.29)

where we assume an implicit summation over repeated indices. In this equation, the
Wiener-filtered map is defined as

h(n̂) :=
[
C̃−1ã

]
(n̂), (5.30)

assuming C̃ to be invertible. The Hermite polynomials are defined as:

Hijk := hihjhk − (hiC̃
−1
jk + 2 perms.) (5.31)

Hijkl := hihjhkhl − (hihjC̃
−1
kl + 5 perms.) + (C̃−1

ij C̃
−1
kl + 2 perms.). (5.32)

In the Edgeworth expansion above, all cosmological information is contained in the
map-space correlators, which are connected to the binned coefficient C(b), b(⃗b), t(⃗b, B)
that we aim to estimate using Eqs.(3.22)-(3.29).

To see how this works, we introduce a generic binned quantity x̂(⃗b) that arises within
the N-point correlator X̃i1...iN , with N> 2. Maximizing the log-likelihood logL[ã](x) in

82



the limit of small x leads to the optimal estimator for x(⃗b):

x̂(⃗b) ∝ 1

N !

∂X̃i1...iN

∂x(⃗b)
Hi1...iN . (5.33)

A normalization factor is necessary to remove biases from the estimator. It can be

derived by requiring
〈
x̂(⃗b)

〉
= x(⃗b). The inverse of the normalization factor is referred

to as the Fisher matrix, defined as:

FN (⃗b, b⃗
′) =

1

N !

∂X̃i1...iN

∂x(⃗b)
C̃−1
i1j1

. . . C̃−1
iN jN

∂X̃i1...iN

∂x(⃗b′)
, (5.34)

where all disconnected terms cancel when taking the expectation value of the Hermite
tensor Hi1...iN .

This estimator is unbiased by construction, as ensured by the Fisher matrix, and it
accounts for the response of the map to the underlying signal, as the partial derivatives
are computed with respect to the unwindowed binned correlator x(⃗b). This estimation
is optimal since we have maximized the likelihood, resulting in a covariance given by the
inverse of the Fisher matrix. Additionally, this estimator is efficient, as both Eq.(5.33)
and the Fisher matrix scale almost linearly with the total number of bins. A more general
approach replaces the matrix C̃−1 with a weighting matrix S−1 in Eqs.(5.30)-(5.33) to
ensure unbiased estimates at all times.

5.5.4 Power spectrum estimation

As in [122], the goal is to estimate the binned angular power spectrum using the formalism
and concepts introduced thus far. We begin by taking the derivative of the log-likelihood
with respect to C(b):

∂ logL[ã]

∂C(b)
=

1

2

∂C̃ij

∂C(b)
hihj −

1

2
Tr

[
C̃−1 ∂C̃

∂C(b)

]
,

∂2 logL[ã]

∂C(b)∂C(b′)
= −

[
∂C̃

∂C(b)
C̃−1 ∂C̃

∂C(b′)

]ij
hihj +

1

2
Tr

[
C̃−1 ∂C̃

∂C(b)
C̃−1 ∂C̃

∂C(b′)

]
.

(5.35)

The optimal estimator is then derived by expanding the likelihood up to second order
around a fiducial power spectrum C̄(b) and maximizing it to solve for the true power
spectrum C(b):

Ĉ(b) = C̄(b) +
1

2

∑
b′

F−1
2,opt(b, b

′)
∂C̃ij

∂C(b′)

[
hihj − C̃−1

ij

]
, (5.36)
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where we define the matrix F2,opt as:

F2,opt :=
1

2
Tr

[
C̃−1 ∂C̃

∂C(b)
C̃−1 ∂C̃

∂C(b′)

]
. (5.37)

The final estimator is obtained by substituting a generic weighting matrix S−1 for C̃−1

in both the Wiener-filtered map and in Eq.(5.36):
Ĉ(b) =

1

2

∑
b′ F−1

2 (b, b′)

[
∂C̃ij

∂C(b′)
hihj − Tr

(
∂C̃

∂C(b′)
S−1NS−T

)]
,

F2(b, b
′) =

1

2
Tr

[
S−T ∂C̃

∂C(b)
S−1 ∂C̃

∂C(b′)

]
.

(5.38)

The trace term serves as a correction that accounts for the bias induced by the noise
N in the estimator. This correction is valid under the assumption that the noise is
independent of the true signal.

Ideal form

We now consider the power spectrum estimation in the idealized limit, where there is no
masking, and the noise is assumed to be isotropic. By moving to harmonic space and
applying Eq.(3.22), the derivative of the 2-point correlator becomes:

∂Cij

∂C(b)
=
∑
ℓm

Θℓ(b)Yℓm(n̂
i)Y ∗

ℓm(n̂
j). (5.39)

Substituting this into Eq.(5.38) and rewriting the Wiener-filtered map as hℓm = S−1
ℓ aℓm

where S is assumed diagonal, we obtain the ideal estimator:
Ĉideal(b) =

1

2
F−1

2,ideal(b)
∑

ℓm Θℓ(b)
|aℓm|2
S2
ℓ

,

F2,ideal(b) =
1

2

∑
ℓ Θℓ(b)

2ℓ+ 1

S2
ℓ

.
(5.40)

Generic form

Similarly to the ideal case, but now incorporating the mask W , we can use Eq.(3.22) to
express the derivative of the 2-point correlator as:

∂Cij

∂C(b)
=
∑
ℓm

B2
ℓΘℓ(b)[W (n̂i)Yℓm(n̂

i)][W (n̂j)Y ∗
ℓm(n̂

j)]. (5.41)
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Using Eq.(5.38), we can write the numerator of the optimal power spectrum estimator
as:

Ĉ(b) ∝ 1

2

∑
ℓm

B2
ℓΘℓ(b)[Wh]ℓm[Wh]∗ℓm, (5.42)

where [Wh]ℓm denotes the spherical harmonic expansion of the product W (n̂)h(n̂) :=
W (n̂)[S−1ã](n̂).

The Fisher matrix in Eq.(5.38) is less straightforward to compute, as it involves
O(N2

bins) operations. An efficient approach to estimate the Fisher matrix is to use the
expectation value of a Gaussian random field (GRF) u , following methods in [147, 119].
This approach gives the Fisher matrix as:

F2(b, b
′) =

1

2

〈(
∂C̃

∂C(b)
S−1u

)T

S−1

(
∂C̃

∂C(b′)
U−1u

)〉
u

(5.43)

or, equivalently:

F2(b, b
′) =

1

2

〈
QT

2 [S
−1u](b)×WS−1W ×Q2[U

−1u](b′)
〉
u
. (5.44)

Here, U is the invertible covariance matrix of u, and Q2,ℓm[x](b) = B2
ℓΘℓ(b)[Wx]ℓm is a

filtered map whose harmonic space definition is derived from Eq.(5.38).
The optimal binned estimator for the angular power spectrum then reads:

Ĉ(b) =
1

2
F2

∑
ℓmB

2
ℓΘℓ(b)[Wh]ℓm[Wh]∗ℓm,

F2(b, b
′) =

1

2

〈
QT

2 [S
−1u](b)×WS−1W ×Q2[U

−1u](b′)
〉
u
.

(5.45)

To perform power spectrum estimation, it is essential to provide the window function
W , the weighting matrix S−1 (which reduces the weight of noisy regions), and the Fisher
GRF covariance U. While the mask W is typically included with survey data, the choice
of S−1 is crucial. Ideally, S−1 should be the inverse of the data covariance C̃−1; however,
since C̃ is generally not invertible, approximations are often necessary. A practical solu-
tion is to use a diagonal approximation in harmonic space, which preserves unbiasedness
with only minor optimality losses. For the Fisher GRF matrix, a choice that ensures fast
convergence is setting U−1 = S−1, assuming both are in diagonal form.

5.5.5 Trispectrum estimation

We now turn to the estimation of the trispectrum, as the bispectrum was not used
in the parity test for the reasons discussed in Ch.3. For those interested in bispectrum
estimation, we refer to the detailed explanation in [122], which complements the overview
of polyspectra estimators presented in this thesis.
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In statistical and cosmological analyses, the nomenclature of zero-field, one-field,
two-field, etc., terms denotes the number of fields or data realizations contributing to
a particular statistical quantity. This classification helps distinguish between various
contributions to correlators. For instance, the zero-field term represents the theoretical
expectation value independent of any specific data realization, relying solely on the as-
sumed statistical properties of the underlying distribution. The one-field term, instead,
includes the contribution from a single realization of the data field adjusting the expected
value based on the observed data. Higher-order terms, describe contributions from cor-
relations across multiple fields and are crucial for capturing complex correlations. In the
trispectrum estimation, we will make widely use of this nomenclature as the trispectrum
will be subdivided into four-, two-, zero-field terms.

As discussed for the power spectrum, the trispectrum estimation is performed by
maximizing the likelihood for a 4-point correlator accordingly to Eq.(5.33) and Eq.(5.34):

t̂(⃗b, B) =
1

4!

∑
b⃗′

F−1
4 (⃗b, B; b⃗′, B′)

∂T̃ijkl

∂t(⃗b, B′)
[hihjhkhl − (hihj⟨hkhl⟩+ 5 perms.)

+ (⟨hihj⟩⟨hkhl⟩+ 2 perms.)],

(5.46)

F4(⃗b, B; b⃗′, B′) =
1

4!

∂T̃ijkl

∂t(⃗b, B)
S−1
imS

−1
jn S

−1
ko S

−1
lp

∂T̃mnop

∂t(⃗b′, B′)
,

which is fully optimal in the limit of S−1 → C−1, as in prior cases. Unlike the power
spectrum (and similarly the bispectrum), the trispectrum contains distinct zero-, two-,
and four-field terms, which introduce additional complexity to the estimation process.
For clarity, we denote parity-even trispectra as t+(⃗b, L) and to parity-odd trispectra as

t−(⃗b, L).

Ideal form

Let us begin with the four-field term. From Eq.(5.46), we can write the numerator of
the ideal trispectrum in harmonic space. This term involves a sum over multiple con-
figurations, incorporating both permutations and expectation values between different
Wiener-filtered maps:

t̂±(⃗b, B) ∝ 1

4!

∑
b⃗′

∂T̃ℓ1ℓ2ℓ3ℓ4
(−m1)(−m2)(−m3)(−m4)

∂t±(⃗b, B′)
[hℓ1m1hℓ2m2hℓ2m3hℓ4m4

− (hℓ1m1hℓ2m2⟨hℓ3m3hℓ4m4⟩+ 5 perms.) + (⟨hihj⟩⟨hkhl⟩+ 2 perms.)].

(5.47)
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This can be reformulated using the binned equation, Eq.(3.29). In this case, the four-field
trispectrum takes a more compact form:

t̂
(4)
±,ideal(⃗b, B) ∝ 1

∆4(⃗b)

∑
ℓimi

(−1)ℓ1234
∑
LM

(−1)MwL(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

ΘL(B)

×
[
1± (−1)ℓ1234

2

]
Θℓ1(b1) . . .Θℓ4(b4) hℓ1m1 . . . hℓ4m4 ,

(5.48)

where, since all 24 permutations are identical, and due to the symmetry of the four h
fields, we restrict the permutations to be either even or odd, for ℓ1234 := ℓ1+ ℓ2+ ℓ3+ ℓ4.
Expanding the sum over the four multipoles and introducing the definitions

Aideal
b1b2

(L,M) =
∑

ℓ1ℓ2m1m2

wLM
ℓ1ℓ2m1m2

Θℓ1(b1)Θℓ2(b2)hℓ1m1hℓ2m2 ,

Āideal
b1b2

(L,M) =
∑

ℓ1ℓ2m1m2

(−1)ℓ1+ℓ1+LwLM
ℓ1ℓ2m1m2

Θℓ1(b1)Θℓ2(b2)hℓ1m1hℓ2m2 ,
(5.49)

which are symmetric under exchange of bins b1 ↔ b2, we can express the ideal four-field
numerator in Eq.(5.48) as:

t̂
(4)
±,ideal(⃗b, B) ∝± 1

2∆4(⃗b)

∑
LM

(−1)MΘL(B)[Aideal
b1b2

(L,−M)Aideal
b3b4

(L,M)

± Āideal
b1b2

(L,−M)Āideal
b3b4

(L,M)].

(5.50)

As highlighted by [122], this reformulation of the estimator is significantly more com-
putationally efficient, as the calculation, given a certain maximum scale ℓmax, scales as
O(ℓ6max) rather than the O(ℓ10max) scaling of Eq.(5.48).

We now turn to the two-field term, which can readily be obtained by noting that,
assuming uniform weights Sℓ, the expectation value between two Wiener-filtered maps
can be written in terms of Kronecker deltas:

⟨hℓmhℓ′m′⟩ = (−1)mδKℓℓ′δKm(−m)

Cℓ

S2
ℓ

. (5.51)

Thus, the two-field estimator is given by:

t̂
(2)
±,ideal(⃗b, B) ∝ − 1

∆4(⃗b)

∑
ℓimi

(−1)ℓ1234
∑
LM

(−1)MwL(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

ΘL(B)

×
[
1± (−1)ℓ1234

2

]
Θℓ1(b1) . . .Θℓ4(b4)

×
[
hℓ1m1hℓ2m2(−1)m3δKℓ3ℓ4δ

K
m3(−m4)

Cℓ3

S2
ℓ3

+ 5 perms.

]
.

(5.52)

87



Leveraging the properties of the Wigner-3j symbols, this equation can be further sim-
plified by constraining ℓ1234. Specifically, ℓ1234 must be even, which implies that any
parity-odd two-field term vanishes. In this case, the parity-even two-field numerator
takes the form:

t̂
(2)
+,ideal(⃗b, B) ∝ − 1

∆4(⃗b)
(δKb1b4δ

K
b2b3

+ δKb1b3δ
K
b2b4

)
∑
ℓ1ℓ2L

(2ℓ1 + 1)(2L+ 1)

4π(
ℓ1 ℓ2 L
−1 −1 2

)2

× (−1)ℓ1+ℓ2+LΘL(B)(Θℓ1(b1)Θℓ2(b2)

+ Θℓ2(b1)Θℓ1(b2))
Cℓ1

S2
ℓ1

∑
m2

|hℓ2m2|2.

(5.53)

Finally, the zero-field term can be obtained similarly, noting that due to the 1 ±
(−1)ℓ1234 term, the odd spectrum must vanish. For the same reason, the parity-even
trispectrum has only two non-vanishing permutations, leading to:

t̂
(2)
+,ideal(⃗b, B) ∝ − 1

∆4(⃗b)
(δKb1b4δ

K
b2b3

+ δKb1b3δ
K
b2b4

)
∑
ℓ1ℓ2L

(2ℓ1 + 1)(2L+ 1)

4π(
ℓ1 ℓ2 L
−1 −1 2

)2

× (−1)ℓ1+ℓ2+LΘℓ1(b1)Θℓ2(b2)
Cℓ1

S2
ℓ1

Cℓ2

S2
ℓ2

.

(5.54)

To conclude, by combining the results from Eq.(5.48), Eq.(5.53), and Eq.(5.54), we
can express the ideal trispectrum estimator as follows:

t̂+,ideal(⃗b, B) =
∑
b⃗′B′

F ideal,−1
4+ (⃗b, B; b⃗′, B′)

[
t̂
(4)
+,ideal(⃗b

′, B′) + t̂
(2)
+,ideal(⃗b

′, B′) + t̂
(0)
+,ideal(⃗b

′, B′)
]
,

t̂−,ideal(⃗b, L) =
∑
b⃗′B′

F ideal,−1
4− (⃗b, B; b⃗′, B′)t̂(4)−,ideal(⃗b

′, B′),

(5.55)

where we refer to [122] for the detailed derivation of the Fisher matrices used for the
parity-odd and parity-even components of the trispectrum.

Generic form

Let us study the case of binned trispectrum estimation in the presence of a masked field.
In this case, the parity-odd components in the zero-, two-, and four-field terms generally
do not vanish, as they do in the ideal form, due to the effect of the window function.
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We begin with the four-field term. As with the ideal estimator, we can insert the
binned definition, Eq.(3.29), into the optimal estimator, Eq.(5.46), to obtain:

t̂
(4)
± (⃗b, B) ∝± 1

∆4(⃗b)

∑
ℓimi

[
1± (−1)ℓ1234

2

]∑
LM

(−1)MwL(−M)
ℓ1ℓ2m1m2

wLM
ℓ3ℓ4m3m4

Bℓ1Bℓ2Bℓ3Bℓ4

×ΘL(B)Θℓ1(b1) . . .Θℓ4(b4)[Wh]ℓ1m1 . . . [Wh]ℓ4m4 ,

(5.56)

noting that this differs from the ideal case, Eq.(5.48), by the replacementWh := WS−1ã.
By introducing some mask-dependent definitions:

Āb1b2 [x, y](L,M) = (−1)L
∫

dn̂−2YLM(n̂)H̄+
b1
[x](n̂)H̄+

b2
[y](n̂),

Ab1b2 [x, y](L,M) =

∫
dn̂−2YLM(n̂)H+

b1
[x](n̂)H+

b2
[y](n̂),

H+
b [x](n̂) =

∑
ℓm

[Wx]ℓmBℓΘℓ(b)±1Yℓm(n̂),

H̄+
b [x](n̂) =

∑
ℓm

(−1)ℓ[Wx]ℓmBℓΘℓ(b)±1Yℓm(n̂),

(5.57)

we can express the four-field terms in the same form as the idealized one:

t̂
(4)
± (⃗b, B) ∝± 1

2∆4(⃗b)

∑
LM

(−1)MΘL(B)[Ab1b2(L,−M)Ab3b4(L,M)

± Āb1b2(L,−M)Āb3b4(L,M)].

(5.58)

As previously noted, the parity-odd two-field term does not, in general, vanish due
to the effect of the mask. In particular, it may occur that even ℓ1234 in the true map
does not necessarily correspond to even ℓ1234 in the windowed map. Generally, the two-
field term can be obtained from the four-field term by taking the expectation value of
two distinct Wiener-filtered maps, hihj → ⟨hihj⟩, which can be estimated from a set of
simulations {α} with covariance C̃α. Therefore, the two-field term becomes:

t̂
(2)
± (⃗b, B) ∝∓ 1

2∆4(⃗b)

∑
LM

(−1)MΘL(B){Ab1b2 [h, h](L,−M)⟨Ab1b2 [S
−1
α , S−1

α ](L,M)⟩α

± Āb1b2 [h, h](L,−M)⟨Āb3b4 [S
−1
α , S−1

α ](L,M)⟩α}+ 5 perms.,

(5.59)

where the permutations refer to the α realizations of the mocks.
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The zero-field term is computed similarly, by using two sets of independent Monte
Carlo simulations {α1}, {α2} with the same covariance:

t̂
(0)
± (⃗b, B) ∝ ± 1

4∆4(⃗b)

∑
LM

(−1)M ΘL(B){⟨Ab1b2

[
S−1α1, S

−1α2

]
(L,−M)Ab3b4

×
[
S−1α1, S

−1α2

]
(L,M)⟩α1,α2 − ⟨Āb1b2

[
S−1α1, S

−1α2

]
(L,−M) Āb3b4

×
[
S−1α1, S

−1α2

]
(L,M)⟩α1,α2 + 5perms.}.

(5.60)

For further details on the Fisher matrix estimation for masked-field trispectra using
Gaussian random field (GRF) simulations, we refer the reader to [122].

Denoting the two possible parity states with λ, λ′ ∈ {±1}, we can summarize the
estimation of the masked binned angular trispectrum:

t̂λ(⃗b, B) =
∑
b⃗′B′λ′

F−1
4λλ′ (⃗b, B; b⃗′, B′){τλ′ [h, h, h, h](⃗b′, B′)− 6⟨τλ′ [h, h, S−1α, S−1α](⃗b′, B′)⟩α

+ 3⟨τλ′ [S−1α1, S
−1α1, S

−1α2, S
−1α2](⃗b

′, B′)⟩α1,α2},
(5.61)

where the unnormalized trispectrum estimator (without Fisher matrix) can be written
explicitly as:

τ±[α, β, γ, δ](⃗b, B) =± 1

48∆4(⃗b)

∑
LM

(−1)M ΘL(B){Ab1b2 [α, β](L,−M)Ab3b4 [γ, δ](L,M)

± Āb1b2 [α, β](L,−M)Āb3b4 [γ, δ](L,M)}+ 23 permutations.

(5.62)

The permutations run over the positions α, β, γ, δ, where α represents random fields that
satisfy the condition ⟨αTα⟩ = C̃−1. This expression allows the removal of the odd-even
coupling by setting λ = λ′.
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Chapter 6

Testing for parity violation

In this chapter, we present results from our parity violation tests conducted on LSS
data using ARFs. As described in Ch.4, ARFs offer a robust method that minimizes
systematic biases ensuring a reasonable signal-to-noise ratio (SNR). While the SNR is
typically lower for LSS compared to CMB analyses, the reduced bias provided by ARFs
enhances the reliability of our findings.

6.1 Test on BOSS DR12

The first step in this analysis involved constructing HEALPix masks for the BOSS DR12
catalogue. The BOSS collaboration provides masks that define the survey’s geometry,
for both the LOWZ and CMASS samples, in mangle format [155]. These masks were
converted into a HEALPix-readable format (FITS files) using a Python script provided
by C. H. Monteagudo, which we modified to produce masks with resolutions up to
Npix = 256. Additionally, BOSS provides veto masks to account for effects such as
seeing and extinction, the invisibility of objects behind the plate centerpost, and the
exclusion of bright objects and high-priority quasars (within 62 arcseconds). The results
of the application of the the survey’s geometry masks, both before and after applying
the veto masks, are shown in Fig.6.1. These are consistent with previous studies such as
[99].

Subsequently, we produced sky maps for ARFs. This was achieved using another
Python code originally written by C. H. Monteagudo, that was suitably modified for
handling BOSS catalogues (the C++ rewriting of the code can be found in App.A).
The code processes galaxy catalogues, masks, and weights (as described in Sec.5.1.1) to
produce masked sky maps for ADFs, ARFs, and shot noise.

For this analysis, we adopted Nside = 64, corresponding to a map resolution of Npix =
49152. This resolution was selected to match the average density of the BOSS DR12
catalogue while ensuring that nonlinear effects on ARFs (dominant at multipoles ℓ larger
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than 100) do not compromise the linear modelling described in Ch.4.

CMASS

0.0 1.0

LOWZ

0.0 1.0

CMASS pixel completeness

0.0 1.0

LOWZ pixel completeness

0.0 1.0

Figure 6.1: Survey geometry masks for BOSS DR12 generated at Nside = 256, shown
in Mollweide projection. Top panels: masks for the CMASS (left) and LOWZ (right)
samples before applying vetoes. Bottom panels: the same masks after applying vetoes.
Note the gaps in the LOWZE2 and LOWZE3 regions.

We focused on two reference redshifts: zcen = 0.26 and zcen = 0.5, with a Gaussian
window of standard deviation σz = 0.01. While zcen = 0.5 corresponds approximately
to the maximum in the BOSS galaxy redshift distribution and belongs to the CMASS
sample, zcen = 0.26 is part of the LOWZ sample, as shown in Fig.5.1. These two redshifts
require different masks, as they belong to distinct galaxy samples.

From the MultiDark-PATCHY mocks, we generated 370 maps for zcen = 0.5 and
100 maps for zcen = 0.26. Examples of these maps for real galaxy catalogues from BOSS
DR12 are displayed in Fig.6.2, highlighting the differing survey geometries.

Another essential step for modelling the trispectrum measures is the computation of
the theoretical Cℓ using ARFCAMB. This requires constructing a smooth redshift distribu-
tion of galaxies, dN/dz, for the BOSS catalogues. This distribution was generated by
interpolating the histogram of galaxy counts from all 370 MultiDark-PATCHY mocks
using quadratic interpolation. To ensure additional smoothness, a Savitzky-Golay filter
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CMASS+LOWZ HEALPix map at z =0.5 and σz = 0.01

−0.024 0.032

CMASS+LOWZ HEALPix map at z =0.26 and σz = 0.01

−0.043 0.049

Figure 6.2: Mollwide projection of ARF maps computed at Nside = 64 for real galaxy
catalogues of joint CMASS+LOWZ samples from BOSS DR12, combining the NGC and
SGC. The colorbar represents the value of the redshift fluctuation δz with respect to the
average redshift z̄ of the objects in the sky map. Top: Gaussian shell with zcen = 0.5
and σz = 0.01. Bottom: Gaussian shell with zcen = 0.26.

was applied [138]. The resulting smooth distribution of BOSS DR12 galaxies in the
redshift range z = 0.15 to z = 0.75, based on the mocks, is displayed in Fig.6.3.
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Once this distribution is obtained, it is used to construct the Gaussian window func-
tion, as ARFCAMB requires the effective redshift distribution of the sources. This step
accounts for the BOSS survey’s selection function, which detects a specific number of
LRGs per unit redshift. By imposing a Gaussian window on the BOSS redshift distribu-
tion, the effective distribution is given by (dN/dz) ×W (zcen, σz). Although the slope of
dN/dz is typically irrelevant within the narrow Gaussian window used in tomographic
analyses, it still introduces a slight dependency in the theoretical Cℓ. The linear bias
was set to b = 2 across all redshifts, consistent with findings in the literature for this
catalogue [71]. The output of ARFCAMB provides the theoretical Cℓ for auto-correlation
(ARFxARF).

0.2 0.4 0.6
z

0

20000

40000

60000

80000

d
N
/d
z

dN/dz

Redshift distribution

Figure 6.3: Smoothed redshift distribution of galaxies from 370 MultiDark-PATCHY
mock catalogues. The redshift range extends from z = 0.15 to z = 0.75, covering
both the LOWZ and CMASS samples of BOSS DR12, as shown in Fig.5.1. The green
histogram represents the underlying redshift distribution of one mock. The vertical blue
lines indicate the two reference redshifts, zcen = 0.26 and zcen = 0.5, employed in this
work.

The final preliminary phase for the parity test is to measure the power spectra from
the maps. The code employed for ARFs maps provides also shot noise estimation by fil-
tering purely random mocks with the survey masks. Power spectra were computed using
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the anafast routine from HEALPix (see Sec.5.4) for both the ARFs maps and the shot
noise maps. These power spectra were normalized with the sky fraction (approximately
21% for the CMASS mask and 23% for the LOWZ mask) to avoid underestimations. Fi-
nally, the theoretical Cℓ curve was corrected for shot noise to obtain the fiducial observed
power spectrum.

With this groundwork laid, the PolyBin base class was initialized to estimate the
power spectra. Knowing Nside and having a fiducial shape for the power spectrum, the
class was configured as excluding the pixel window and cross-correlations, focusing solely
on the estimator for the auto-correlated angular power spectrum. The auto-correlation
(ARFxARF) was renamed as (TxT) to align with PolyBin’s dictionary, originally de-
signed for CMB temperature and polarization analyses 1.

The next step was initializing the PolyBin class for the power spectrum estimation.
For this, a weighting choice S−1 was required, as discussed in the previous chapter.
A quasi-optimal weight was obtained a method from the base class, which employs
a diagonal weighting scheme based on the diagonal approximation of the true inverse
covariance C̃−1 2. In this analysis, bins were restricted to the range [0, 2Nside] with a
step size of 4ℓ.

The ideal estimator was computed by invoking the corresponding routine and passing
to it the data array, which contained the ARFs maps 3. For the optimal estimator, the
Fisher matrix was required. This matrix was produced averaging over N it = 50 realiza-
tions4 and passing the result as input to the method for the unwindowed estimation 5.
The results of the power spectrum analysis are shown in Fig.6.4. The average estimation
from PolyBin is consistent with the theoretical predictions from ARFCAMB across all bins.
This confirms that the pipeline is functioning correctly, and all the necessary codes have
been accurately implemented.

1base = pb.PolyBin(ns, Sl_fiducial, include_pixel_window=False, pol=False, backend="healpix")
2pspec = pb.PSpec(base, mask, base.applyAinv, l_bins, fields=['TT'])
3Cl_opt = pspec.Cl_unwindowed(data, fish=fish)
4for i in range(N_it): fish += pspec.compute_fisher_contribution(i, verb=(i==0))/N_it
5Cl_ideal = pspec.Cl_ideal(data)
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Figure 6.4: Angular power spectrum obtained from 370MultiDark-PATCHY mock maps
under a Gaussian shell with zcen = 0.5 and σz = 0.01 (top panel). The gray curves
represent the power spectrum Cℓ estimated from the maps using HEALPix, while the blue
and green dots show the mean values of the optimal and ideal estimations from PolyBin

(with associated error bars). The red curve represents the average of the ARFCAMB output
for each mock, including the shot noise contribution. Same for the bottom panel, but
on 100 MultiDark-PATCHY mock maps, with Gaussian shells having zcen = 0.26 and
σz = 0.01.
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6.1.1 Trispectrum analysis

With our pipeline validated, we now address the central aspect of the parity test by
analyzing the trispectra. The goal is to measure, on average, a statistically significant
difference between the odd and even components of trispectrum as indicator of par-
ity violation in the BOSS DR12 galaxy catalogue. From this point onward, we focus
exclusively on the optimal estimator.

We start with the estimation of the reduced trispectrum using PolyBin. To begin, a
binning scheme for the estimators is defined. Since the trispectrum is a high-dimensional
object with O(N6

bins) elements, we adopt the following linear binning choice: ℓmin = 10,
bin width ∆ℓ = 6, Nbins = 6, and we drop the largest bin to avoid edge effects.

This binning choice is justified because at too large ℓ the angular trispectrum becomes
almost flat [122]. This would reduce it to behave like a two-dimensional object, where
a parity transformation becomes equivalent to a spatial rotation, making the parity test
unreliable. Moreover, computations at large multipoles are prohibitive, as the complexity
of the Fisher matrix computation scales as O(ℓ6max).

This binning scheme keeps memory usage low (few gigabytes) and computational
times manageable (around 3000 seconds wall-time)6. However, this also restricted our
analysis to few hundreds of mocks rather than the full set of 2048 CMASS+LOWZ galaxy
mocks due to the long execution times.

In this work, we present all the allowed trispectra within the bins {b1, b2, b3, b4,
B}, which satisfy the triangle conditions at the bin centers and follow the ordering
scheme described in Sec.5.5.1, condensed into a single dimension for visualization. The
characteristic ℓ values in the bin gradually increase in size from the left to the right,
following the bin index.

The initialization of the trispectrum class relies on PolyBin’s base class, on the pre-
viously defined mask, on the same weighting function as the power spectrum, on the
specified binning scheme, on the (TxTxTxT) field referring to (ARFxARFxARFxARF)
auto-correlation, and on a keyword to compute both parity-even and parity-odd compo-
nents of the (reduced) angular trispectrum 7.

Finally, the trispectrum is estimated using 32 CPUs for fast computation. The nor-
malization factor of Eq.(5.61) is estimated by averaging over N it = 50 Fisher matrix
realizations. Parity-conserving terms (disconnected terms) are subtracted during the
computation, focusing the estimation solely on parity-violating contributions8.

We are now ready to investigate for parity violations. To this end, we model the SNR
from the difference between the odd and even components of the optimal trispectrum
estimators, using the set of mocks to estimate the noise associated to each bin, shown in

6Executions were performed on the supercomputer Hyperion [157] and the cluster Atlas [156]. Note
that execution time is significantly influenced by the level of busyness of the nodes.

7tspec = pb.TSpec(base, mask_used, base.applyAinv, l_bins, fields=['TTTT'], parity='both')
8t_unwindowed = tspec.Tl_unwindowed(data, verb=True, fish=fish, include_disconnected_term=True)
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Fig.6.5. The SNR, averaged over 370 mocks for zcen = 0.5 and zcen = 0.26, is shown as
a function of the bin index in Fig.6.6.

As expected in absence of parity violation, the mean SNR values are distributed
around a zero signal for each bin index. To reduce the impact of the scattering of the
SNR across the ℓ multipoles, we average the SNR values over the bins for each mock.
In this way, each mock produces a single value with an associated uncertainty. For a
parity-symmetric process, these values are expected to be distributed around zero. To
test this hypothesis, we construct a histogram of the mean SNR values from all mocks,
along with their associated uncertainties on the frequency, which were estimated using
a Monte Carlo method. Specifically, the uncertainties were estimated by generating
random numbers that are Gaussian-distributed, with means and standard deviations
corresponding to the scale-average SNR and its associated uncertainty of each mock.

To assess whether deviations from parity symmetry are statistically significant and
to quantify them, we fit the histogram using a Gaussian model through an MCMC-based
fitting process. We indicate as ⟨SNR⟩ the best-fit mean value and with σSNR its standard
deviation.

For zcen = 0.5, the fitting process produced convergent chains and a successful
fit, as depicted by the black curve in Fig.6.9. The contour plot in Fig.6.10 reveals
⟨SNR⟩ = 0.003+0.004

−0.004 and a standard deviation σSNR = 0.043+0.004
−0.003. The mean value be-

ing compatible with zero aligns with expectations, as the mocks are parity-symmetric
by construction. Using real data, the resulting SNR plot in Fig.6.7 has a scale-averaged
value of 0.035±0.89, which falls within 1−σ from the best-fit mean value. This outcome
supports the conclusion that no parity violations are evident in the real data.

For zcen = 0.26 we have larger noise than in the previous case as seen in Fig.6.5. This
is mainly related to the less number density of objects entering in the ARFs statistics
at this redshift, and partially due to lower number of mocks employed. This fact re-
flects negatively in the uncertainties on the frequencies of the SNR histogram in Fig.6.9,
making them considerably large. As a consequence, the MCMC fit did not produce
very constraining results due to the large dispersion, as shown by the large uncertainties
in Fig.6.11. The fit illustrated in 6.9 returned ⟨SNR⟩ = 0.01+0.10

−0.11 and σSNR = 0.3+0.6
−0.2.

From the plot of the SNR of real data in Fig.6.8, we obtained a scale-averaged SNR of
−0.013± 0.92 which is compatible with the best-fit mean value.
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Figure 6.5: Noise associated to each bin of the optimal (reduced) angular trispectrum
estimation. The top panel shows the noise estimation for zcen = 0.5, while the bottom
panel corresponds to zcen = 0.26. Following the choice of [120], the optimal estimators
are scaled by a factor ℓ1ℓ2ℓ3ℓ4. Additionally, we applied a further rescaling by a factor of
1024σ−4

z to enhance readability. The bin index is a combination of bins corresponding to
a valid configuration under the triangular condition, and it indicates gradually increasing
scales starting from ℓ = 13 up to ℓ = 37 (for the adopted binning scheme).
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Figure 6.6: Mean SNR (black dots) varying through bins of MultiDark-PATCHY mocks.
The top panel shows the results obtained from 370 mocks (each one represented by a
grey curve) imposing Gaussian shells with zcen = 0.5 and σz = 0.01. The bottom panel
illustrates the same study on 100 mocks at zcen = 0.26 and σz = 0.01.
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Figure 6.7: Variability of the SNR of the real galaxy catalogue of BOSS DR12, imposing
Gaussian shells with zcen = 0.5 and σz = 0.01.
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Figure 6.8: As in Fig.6.7 but with zcen = 0.26 and σz = 0.01.
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Figure 6.9: Gaussian fit (black curve) of the scale-averaged SNR distribution for the
difference between the odd and even components of the MultiDark-PATCHY mocks
trispectra. The top panel shows the distribution at zcen = 0.50, while the bottom panel
corresponds to zcen = 0.26. Red error bars represent the uncertainties on the frequencies.
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Figure 6.10: Contour plot showing the mean and standard deviation of the Gaussian
MCMC fit for the parity test at zcen = 0.5 and σz = 0.01. The contours represent the
68% and 95% confidence levels. Additionally, the marginalized posterior distributions
are plotted for each parameter, including vertical dashed lines for the median and the
quartiles.
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Figure 6.11: As in Fig6.10 but with zcen = 0.26 and σz = 0.01.
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6.2 Tests on Quijote

So far, in this work no parity-violating features have been detected in the analyzed data
sets. To further validate our methods, it is worthwhile to investigate whether parity
violation can be detected in simulations where it is inherently present by construction.
In this section, we perform a parity test by searching for signatures of non-zero signals
in the difference between the odd components of the trispectrum obtained from the
Quijote-ODD simulations, which include parity violation, and those obtained from
the fiducial LCDM Quijote simulations, which are parity-symmetric.

6.2.1 Construction of mock catalogues

As mentioned in the previous chapter, the Quijote simulations provide halo catalogues
in comoving coordinates. To work with ARFs, we constructed light-cones to transform
the simulation coordinates into observed coordinates (RA,Dec, z). These mocks were
generated by constructing a light cone from a single snapshot’s redshift (see Sec.5.3).
A validation pipeline was subsequently applied to ensure the accuracy of the generated
mocks, focusing in particular on comparing the halo 2PCF with theoretical predictions.

The first observation was that the halo catalogues were incomplete due to the reso-
lution limitations of the simulation, having fewer low-mass halos than expected. Specif-
ically, the effective halo bias, calculated by averaging the linear bias of halos across a
given mass range, is given by:

beff-mass(z) =
1

Nhalo

Nhalo∑
i=1

b(Mi, zi), (6.1)

where Nhalo is the number of halos in the catalogue and b is the linear bias. This effective
bias was found to be inconsistent with the bias derived averaging on the theoretical mass
function over the full halo mass range, defined in Eq.(5.18). In this analysis, we adopted
the linear bias model of [166] and the mass function of [165].

To overcome this issue, as a standard practice we applied a mass cut, removing low-
mass halos below the resolution limit. After this selection, the two bias estimates are
consistent at beff ∼ 4.8 for all the mocks of Quijote ODD and fiducial LCDMQuijote.
Figures 6.13a and 6.13b illustrate the effects of this mass cut and its impact on the total
number of objects in a halo catalogue of ODD m.

Finally, we measured the 2PCF from the mocks and compared it to the Fourier
transform of the CAMB power spectrum. The 2PCF estimation was performed using the
Landy-Szalay estimator [91], an improved version of Eq.(2.68):

ξ(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
, (6.2)
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Figure 6.12: The 2PCF measured from a fiducial LCDM Quijote simulation. The solid
black curve and the blue dashed curve represent the 2PCF in real-space and redshift-
space, respectively, as predicted by CAMB. The squares, shown with their associated Pois-
sonian errors, correspond to 2PCF measurements using the Landy-Szalay estimator.
Specifically, the black-filled squares indicate the 2PCF measured from the original box,
while the red squares represent the 2PCF from the constructed mock, with filled squares
for real-space and empty squares for redshift-space measurements.
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Figure 6.13: Effects of the completeness cut performed on the ODD m mocks. The red
dashed vertical line sets the mass threshold for the cut at M ≤ 4.8× 1013 M⊙.

where theDR(r) term refers to the normalized number of data-random pairs as a function
of the comoving separation r, which helps to reduce the estimation bias at large scales.
Similarly, DD(r) represents the normalized number of data-data pairs, and RR(r) the
number of random-random pairs. The redshift-space 2PCF model, ξ(s), was estimated
with the so-called Kaiser model [103]:

ξ(s) = 1 +

[
2

3

f

b
+

1

5

(
f

b

)2
]
ξ(r). (6.3)

Here, ξ(r) is the real-space 2PCF introduced in Sec.2.3.1 while ξ(s) is the redshift-space
2PCF, which depend on the observed separation s and accounts for the distortion effects
given by the peculiar velocities of the underlying density field. b is the linear bias term
and f is the linear growth factor of cosmic structures, already defined at the beginning
of Sec.4.1.

The measurements are statistically consistent with the theoretical expectations, both
in real and redshift space, confirming the correctness of the mock generation process. An
example of the 2PCF is presented in Fig.6.12, where we used a halo catalogue from the
fiducial LCDM Quijote simulation, after applying a small redshift cut (∆z = 0.01) at
the borders of the mock to preserve its cubic shape. Specifically, we used CAMB to compute
the 2PCF in both real- and redshift-space, and applied the Landy-Szalay estimator in
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Eq.(6.2) to measure the 2PCF for the mock in both comoving and observed coordinates.

6.2.2 Power spectrum and trispectrum

We now retrace the entire BOSS pipeline described in Sec.6.1, this time without applying
any weighting to the pixels. To avoid underestimation of the power spectrum signal and
overestimation of the shot noise, we introduced a mask to filter out empty sky regions.
We worked with two choices of reference redshift for the ARFs’ Gaussian shell, zcen = 0.8
and zcen = 1.25, while keeping σz = 0.01 for tomographic purposes. As shown in Fig.6.14,
the halo catalogues occupy only a small fraction of the full survey footprint, resulting in a
sky fraction of approximately 2%. This limited coverage negatively impacted the power
spectrum estimation, as the shot noise was comparable to the ARFCAMB-predicted Cℓ.
Consequently, the observed signal exhibited a quasi-flat shape, as illustrated in Fig.6.15
referring to ODD m catalogues. Notice how the ideal estimator provides a biased power
spectrum, due to the drastic mask employed which introduces significant effects not
accounted for by this estimator.

ODD M at z =1.25 and σz = 0.01

−0.059 0.048

Figure 6.14: Mollwide projection of ARF maps computed at Nside = 64 for a Quijote-
ODD m mock. We imposed a Gaussian shell with zcen = 1.25 and σz = 0.01, and a
mask to obtain a occupied sky fraction of around 2%.

In this work, we analyzed a total of 1050 mocks (350 for each family of Quijote
simulation halo catalogues) at zcen = 0.80 and 1500 mocks (500 for each family of Qui-
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jote simulation halo catalogues, thus utilizing all the available mocks) at zcen = 1.25,
always keeping σz = 0.01 for tomographic purposes. The binning scheme adopted for
the trispectrum comprised Nbins = 3 bins, with ℓmin = 12 and a bin width of ∆ℓ = 2.
The last bin was excluded to mitigate edge effects. To estimate the Fisher matrix, we
generated Nit = 50 GRF realizations, executed using 32 CPUs. This configuration en-
abled fast execution times (around 500 wall-clock seconds per mock), making it feasible
to analyze a large number of mocks. To reduce the impact of systematic uncertainties,
the fit was performed by subtracting the odd-trispectra of the fiducial ΛCDM catalogues
from those of the parity-violating ODD m and ODD p catalogues. The average SNR
as a function of the bin index is shown in Fig.6.16 for both parity-violating simulations
at zcen = 0.8 and zcen = 1.25.

From the scale-averaged SNR of each mock, we constructed histograms, estimating
uncertainties on the frequencies using Monte Carlo sampling, as described in Sec.6.1.
The resulting distributions were then fitted using an MCMC procedure.

For zcen = 1.25, the histograms and their corresponding fitting curves are shown in
the top panel of Fig.6.21 for all Quijote mock sets. The contour plots of the fitted
parameters, presented in Figs.6.17-6.18, reveal that for ODD m, the mean signal is
⟨SNR⟩ = 0.0011+0.0008

−0.0008, consistent with zero within one σSNR = 0.0227+0.0008
−0.0007. Similarly,

for ODD p, the mean value ⟨SNR⟩ = 0.0004+0.0008
−0.0008 is compatible with zero, and σSNR =

0.0229+0.0008
−0.0007.

At zcen = 0.80, the same analysis yielded best-fit Gaussian parameters of
⟨SNR⟩ = −0.0030+0.0010

−0.0010, σSNR = 0.0236+0.0010
−0.0009 for the ODD m mocks, and ⟨SNR⟩ =

−0.0031+0.0011
−0.0010, σSNR = 0.0240+0.0010

−0.0010 for the ODD p mocks, as depicted in the contour
plots of Figs.6.19-6.20 and in the fits at the bottom of Fig.6.21.

These findings lead to the conclusion that the analyzed distributions exhibit no signif-
icant evidence of parity-violating features in the analyzed mock catalogues, as all results
remain consistent with a parity-symmetric scenario within the statistical uncertainties.
This indicates that the sensitivity of the ARF-based pipeline employed is not sufficient to
detect parity-violating features, even when such features are introduced by construction
in the catalogues. This result is given by the fact that the employed mocks do not have
enough statistics, meaning that the halo density and the sky fraction with the employed
mask are not sufficient to generate an appreciable signal.

Future works could focus on conducting a more detailed analysis using a larger num-
ber of mock catalogues for both BOSS DR12 and Quijote simulations. For the BOSS
DR12 catalogues, this would help reduce uncertainties in the frequency estimates, leading
to more stringent and robust results. In the case of Quijote simulations, an increased
number of realizations could highlight potential parity-violating effects, and could pro-
vide more awareness of systematics. Moreover, improving the choice of masks and pixel
weightings in Quijote simulations could mitigate noise contributions and yield more
reliable results. Exploring alternative binning schemes and different window function
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configurations for ARFs might also enhance the precision and accuracy of the measure-
ments, providing further insight into possible parity asymmetries.
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Figure 6.15: Auto-angular power spectrum obtained from the maps of 500 mock cata-
logues of ODD m simulations under a Gaussian shell with σz = 0.01, at zcen = 0.8 (top
panel) and zcen = 1.25 (bottom panel). The gray curves show the measured Cℓ from the
maps, while the blue and green dots represent the mean values of the optimal and ideal
estimations from PolyBin, with associated error bars. The red curve corresponds to the
average ARFCAMB output for each mock, including the shot noise contribution.
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Figure 6.16: Mean SNR (red dots) varying through bins of Quijote-ODD mocks. The
top panel shows the results obtained from ODD m (left) and ODD p (right) mocks,
each one represented by a grey curve, imposing Gaussian shells with zcen = 1.25 and
σz = 0.01. The bottom panel illustrates the same study at zcen = 0.80 and σz = 0.01,
with the ODD m SNR on the left and the ODD p SNR on the right.
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Figure 6.17: Contour plot showing the mean and standard deviation of the Gaussian
MCMC fit for the parity test on ODD m mocks at zcen = 1.25. The contours represent
the 68% and 95% confidence levels. Additionally, the marginalized posterior distribu-
tions are plotted for each parameter, including vertical dashed lines for the median and
quartiles.
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Figure 6.18: As in Fig.6.17 but for ODD p mocks at zcen = 1.25.
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Figure 6.19: As in Fig.6.17 but for ODD m mocks at zcen = 0.8.
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Figure 6.20: As in Fig.6.17 but for ODD p mocks at zcen = 0.8.
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Figure 6.21: Gaussian fit (black curve) of the scale-averaged SNR distribution for the
difference between the odd components of the fiducial LCDM Quijote mocks’ trispectra
and the Quijote-ODD mocks’ trispectra. The top panel displays the fits at zcen = 1.25
forODD m (left) andODD p (right), while the bottom panel shows the fits at zcen = 0.8
for ODD m (left) and ODD p (right). Red error bars indicate the uncertainties on the
frequencies.
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Conclusions

In this work, we first provided an introduction to cosmology, starting from spacetime
modelling and arriving at a description of the emergence of the LSS, offering an overview
of the main statistical tools used to study matter clustering. We discussed the concept
of parity violation, how it can be investigated, and detailed the ARFs statistics used as a
probe for testing parity symmetry. Then, we provided a detailed description of the BOSS
DR12 catalogues, the Quijote simulations, and all the codes employed in our analysis,
with particular attention to PolyBin and the role of trispectra. Finally, we presented
the main result of our analysis and discussed about possible future improvements of the
method.

One notable contribution of this thesis is the development of the MapCalculator class,
which was added to the CBL project, expanding this extensive library for cosmological
calculations and data manipulation. While the code is functional and well-structured,
there is room for improvement. Future work could focus on enhancing its computational
efficiency, adding new methods to improve the user experience, and allowing for greater
customization in the production of maps. Additionally, this class lays the groundwork
for integrating HEALPix into CBL, opening up possibilities for creating generic sky maps
useful in cosmology, beyond the specific implementation of ARFs and ADFs.

Regarding the parity violation tests, no evidence of parity asymmetry was found
in the BOSS DR12 catalogues analyzed. While at first glance, this result may seem
inconsistent with previous findings using the 4PCF on the same data set [120, 28, 76]
(though [120] updated their results to a lower detection significance [123]) it aligns with
other null results reported in [90, 72].

In particular, [90] introduced a new statistic correcting biases arising from the mis-
match between the parity-even 8PCF of observational data and mocks, concluding that
there is no evidence of parity violation in BOSS. Additionally, [114] highlighted how
relativistic corrections to Newtonian redshift-space distortions [79] could lead to parity-
violating effects, emphasizing the importance of addressing such systematics. This sug-
gests also that parity asymmetries could arise even without primordial violations.

From the perspective of the CMB, recent techniques investigating cosmic birefrin-
gence [51, 42] have identified evidence of parity-violating features, while the analysis in
[121] reported null results.
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We also tested the ARF statistics’ sensitivity on Quijote-ODD simulations [38],
designed to include parity violations from the initial conditions. Even in this case, no
evidence of parity violation was detected. This suggests that, with the employed pipeline,
the signal from ARFs is not sufficiently strong to detect parity-violating features.

Determining whether the Universe exhibits parity violation is a non-trivial challenge.
While current evidence is insufficient to claim a definitive parity violation, significant
work remains to validate existing results, address biases due to systematic uncertainties,
and refine statistical tools capable of detecting parity asymmetries.

The take-home message is clear: while the Universe’s parity symmetry remains an
open question, progresses in addressing systematic effects and refining observational tech-
niques will be key to advancing our understanding in this domain.
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“Density weighted angular redshift fluctuations: a new cosmological observable”.
In: Monthly Notices of the Royal Astronomical Society: Letters 503.1 (Mar. 2020),
pp. L56–L61. issn: 1745-3933. doi: 10 . 1093 / mnrasl / slaa172. url: http :
//dx.doi.org/10.1093/mnrasl/slaa172.

[71] Carlos Hernández–Monteagudo et al. “Tomographic constraints on gravity from
angular redshift fluctuations in the late Universe”. In: Monthly Notices of the
Royal Astronomical Society: Letters 503.1 (Mar. 2020), pp. L62–L66. issn: 1745-
3933. doi: 10.1093/mnrasl/slab021. url: http://dx.doi.org/10.1093/
mnrasl/slab021.

[72] Samuel Hewson, Will J. Handley, and Christopher G. Lester. On the spatial distri-
bution of the Large-Scale structure: An Unsupervised search for Parity Violation.
2024. arXiv: 2410.16030 [astro-ph.CO]. url: https://arxiv.org/abs/2410.
16030.

[73] G. Hinshaw et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Parameter Results”. In: Astrophysical Journal Sup-
plement 208.2, 19 (Oct. 2013), p. 19. doi: 10.1088/0067-0049/208/2/19. arXiv:
1212.5226 [astro-ph.CO].

[74] Eric Hivon et al. “MASTER of the Cosmic Microwave Background Anisotropy
Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex
Cosmic Microwave Background Data Sets”. In: The Astrophysical Journal 567.1
(Mar. 2002), p. 2. doi: 10.1086/338126. url: https://dx.doi.org/10.1086/
338126.

[75] David W. Hogg and Daniel Foreman-Mackey. “Data Analysis Recipes: Using
Markov Chain Monte Carlo*”. In: The Astrophysical Journal Supplement Se-
ries 236.1 (May 2018), p. 11. doi: 10.3847/1538-4365/aab76e. url: https:
//dx.doi.org/10.3847/1538-4365/aab76e.

128

https://doi.org/10.1093/biomet/57.1.97
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/mnrasl/slaa172
http://dx.doi.org/10.1093/mnrasl/slaa172
http://dx.doi.org/10.1093/mnrasl/slaa172
https://doi.org/10.1093/mnrasl/slab021
http://dx.doi.org/10.1093/mnrasl/slab021
http://dx.doi.org/10.1093/mnrasl/slab021
https://arxiv.org/abs/2410.16030
https://arxiv.org/abs/2410.16030
https://arxiv.org/abs/2410.16030
https://doi.org/10.1088/0067-0049/208/2/19
https://arxiv.org/abs/1212.5226
https://doi.org/10.1086/338126
https://dx.doi.org/10.1086/338126
https://dx.doi.org/10.1086/338126
https://doi.org/10.3847/1538-4365/aab76e
https://dx.doi.org/10.3847/1538-4365/aab76e
https://dx.doi.org/10.3847/1538-4365/aab76e


[76] Jiamin Hou, Zachary Slepian, and Robert N Cahn. “Measurement of parity-odd
modes in the large-scale 4-point correlation function of Sloan Digital Sky Sur-
vey Baryon Oscillation Spectroscopic Survey twelfth data release CMASS and
LOWZ galaxies”. In: Monthly Notices of the Royal Astronomical Society 522.4
(May 2023), pp. 5701–5739. issn: 0035-8711. doi: 10.1093/mnras/stad1062.
eprint: https : / / academic . oup . com / mnras / article - pdf / 522 / 4 / 5701 /
50582849/stad1062.pdf. url: https://doi.org/10.1093/mnras/stad1062.

[77] Donghui Jeong and Marc Kamionkowski. “Clustering Fossils from the Early Uni-
verse”. In: Physical Review Letters 108.25 (June 2012). issn: 1079-7114. doi:
10.1103/physrevlett.108.251301. url: http://dx.doi.org/10.1103/
PhysRevLett.108.251301.

[78] Raul Jimenez and Abraham Loeb. “Constraining Cosmological Parameters Based
on Relative Galaxy Ages”. In: Astrophysical Journal 573.1 (July 2002), pp. 37–42.
doi: 10.1086/340549. arXiv: astro-ph/0106145 [astro-ph].

[79] Nick Kaiser. “Clustering in real space and in redshift space”. In: Monthly Notices
of the Royal Astronomical Society 227.1 (July 1987), pp. 1–21. issn: 0035-8711.
doi: 10.1093/mnras/227.1.1. eprint: https://academic.oup.com/mnras/
article-pdf/227/1/1/18522208/mnras227-0001.pdf. url: https://doi.
org/10.1093/mnras/227.1.1.

[80] F. -S. Kitaura, G. Yepes, and F. Prada. “Modelling baryon acoustic oscillations
with perturbation theory and stochastic halo biasing.” In: Monthly Notices of
the Royal Astronomical Society 439 (Mar. 2014), pp. L21–L25. doi: 10.1093/
mnrasl/slt172. arXiv: 1307.3285 [astro-ph.CO].

[81] Anatoly Klypin et al. “MultiDark simulations: the story of dark matter halo con-
centrations and density profiles”. In: Monthly Notices of the Royal Astronomical
Society 457.4 (Apr. 2016), pp. 4340–4359. doi: 10.1093/mnras/stw248. arXiv:
1411.4001 [astro-ph.CO].

[82] Hideo Kodama and Misao Sasaki. “Cosmological Perturbation Theory”. In:
Progress of Theoretical Physics Supplement 78 (Jan. 1984), pp. 1–166. issn: 0375-
9687. doi: 10.1143/PTPS.78.1. eprint: https://academic.oup.com/ptps/
article-pdf/doi/10.1143/PTPS.78.1/5321391/78-1.pdf. url: https:
//doi.org/10.1143/PTPS.78.1.

[83] E. Komatsu, D. N. Spergel, and B. D. Wandelt. “Measuring Primordial Non-
Gaussianity in the Cosmic Microwave Background”. In: The Astrophysical Journal
634.1 (Nov. 2005), pp. 14–19. issn: 1538-4357. doi: 10.1086/491724. url: http:
//dx.doi.org/10.1086/491724.

129

https://doi.org/10.1093/mnras/stad1062
https://academic.oup.com/mnras/article-pdf/522/4/5701/50582849/stad1062.pdf
https://academic.oup.com/mnras/article-pdf/522/4/5701/50582849/stad1062.pdf
https://doi.org/10.1093/mnras/stad1062
https://doi.org/10.1103/physrevlett.108.251301
http://dx.doi.org/10.1103/PhysRevLett.108.251301
http://dx.doi.org/10.1103/PhysRevLett.108.251301
https://doi.org/10.1086/340549
https://arxiv.org/abs/astro-ph/0106145
https://doi.org/10.1093/mnras/227.1.1
https://academic.oup.com/mnras/article-pdf/227/1/1/18522208/mnras227-0001.pdf
https://academic.oup.com/mnras/article-pdf/227/1/1/18522208/mnras227-0001.pdf
https://doi.org/10.1093/mnras/227.1.1
https://doi.org/10.1093/mnras/227.1.1
https://doi.org/10.1093/mnrasl/slt172
https://doi.org/10.1093/mnrasl/slt172
https://arxiv.org/abs/1307.3285
https://doi.org/10.1093/mnras/stw248
https://arxiv.org/abs/1411.4001
https://doi.org/10.1143/PTPS.78.1
https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.78.1/5321391/78-1.pdf
https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.78.1/5321391/78-1.pdf
https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1086/491724
http://dx.doi.org/10.1086/491724
http://dx.doi.org/10.1086/491724


[84] E. Komatsu et al. “Measurement of the Cosmic Microwave Background Bispec-
trum on theCOBEDMR Sky Maps”. In: The Astrophysical Journal 566.1 (Feb.
2002), pp. 19–29. issn: 1538-4357. doi: 10.1086/337963. url: http://dx.doi.
org/10.1086/337963.

[85] E. Komatsu et al. “Five-Year Wilkinson Microwave Anisotropy Probe Observa-
tions: Cosmological Interpretation”. In: Astrophysical Journal Supplement 180.2
(Feb. 2009), pp. 330–376. doi: 10.1088/0067-0049/180/2/330. arXiv: 0803.
0547 [astro-ph].

[86] E. Komatsu et al. “Five-year Wilkinson Microwave Anisotropy Probe observa-
tions: cosmological interpretation”. In: The Astrophysical Journal Supplement
Series 180.2 (Feb. 2009), pp. 330–376. issn: 1538-4365. doi: 10.1088/0067-
0049/180/2/330. url: http://dx.doi.org/10.1088/0067-0049/180/2/330.

[87] E. Komatsu et al. “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Interpretation”. In: Astrophysical Journal Supplement
192.2, 18 (Feb. 2011), p. 18. doi: 10.1088/0067-0049/192/2/18. arXiv: 1001.
4538 [astro-ph.CO].

[88] Eiichiro Komatsu. “New physics from the polarized light of the cosmic microwave
background”. In: Nature Reviews Physics 4.7 (July 2022), pp. 452–469. doi: 10.
1038/s42254-022-00452-4. arXiv: 2202.13919 [astro-ph.CO].

[89] Elisabeth Krause et al. “The weight of emptiness: the gravitational lensing signal
of stacked voids”. In: The Astrophysical Journal Letters 762.2 (Dec. 2012), p. L20.
doi: 10.1088/2041-8205/762/2/L20. url: https://dx.doi.org/10.1088/
2041-8205/762/2/L20.

[90] Alex Krolewski et al. No evidence for parity violation in BOSS. 2024. arXiv:
2407.03397 [astro-ph.CO]. url: https://arxiv.org/abs/2407.03397.

[91] Stephen D. Landy and Alexander S. Szalay. “Bias and Variance of Angular Cor-
relation Functions”. In: Astrophysical Journal 412 (July 1993), p. 64. doi: 10.
1086/172900.

[92] T. D. Lee and C. N. Yang. “Question of Parity Conservation in Weak Interac-
tions”. In: Phys. Rev. 104 (1 Oct. 1956), pp. 254–258. doi: 10.1103/PhysRev.
104.254. url: https://link.aps.org/doi/10.1103/PhysRev.104.254.

[93] L. Legrand et al. “High-resolution tomography for galaxy spectroscopic surveys
with angular redshift fluctuations”. In: Astronomy & Astrophysics 646 (Feb.
2021), A109. issn: 1432-0746. doi: 10.1051/0004-6361/202039049. url: http:
//dx.doi.org/10.1051/0004-6361/202039049.

130

https://doi.org/10.1086/337963
http://dx.doi.org/10.1086/337963
http://dx.doi.org/10.1086/337963
https://doi.org/10.1088/0067-0049/180/2/330
https://arxiv.org/abs/0803.0547
https://arxiv.org/abs/0803.0547
https://doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/330
https://doi.org/10.1088/0067-0049/192/2/18
https://arxiv.org/abs/1001.4538
https://arxiv.org/abs/1001.4538
https://doi.org/10.1038/s42254-022-00452-4
https://doi.org/10.1038/s42254-022-00452-4
https://arxiv.org/abs/2202.13919
https://doi.org/10.1088/2041-8205/762/2/L20
https://dx.doi.org/10.1088/2041-8205/762/2/L20
https://dx.doi.org/10.1088/2041-8205/762/2/L20
https://arxiv.org/abs/2407.03397
https://arxiv.org/abs/2407.03397
https://doi.org/10.1086/172900
https://doi.org/10.1086/172900
https://doi.org/10.1103/PhysRev.104.254
https://doi.org/10.1103/PhysRev.104.254
https://link.aps.org/doi/10.1103/PhysRev.104.254
https://doi.org/10.1051/0004-6361/202039049
http://dx.doi.org/10.1051/0004-6361/202039049
http://dx.doi.org/10.1051/0004-6361/202039049


[94] Margherita Lembo et al. “CMB lensing reconstruction biases from masking ex-
tragalactic sources”. In: Physical Review D 106.2 (July 2022). issn: 2470-0029.
doi: 10.1103/physrevd.106.023525. url: http://dx.doi.org/10.1103/
PhysRevD.106.023525.

[95] Julien Lesgourgues. The Cosmic Linear Anisotropy Solving System (CLASS) I:
Overview. 2011. arXiv: 1104.2932 [astro-ph.IM]. url: https://arxiv.org/
abs/1104.2932.

[96] Antony Lewis, Anthony Challinor, and Anthony Lasenby. “Efficient Computation
of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-
Walker Models”. In: The Astrophysical Journal 538.2 (Aug. 2000), pp. 473–476.
issn: 1538-4357. doi: 10.1086/309179. url: http://dx.doi.org/10.1086/
309179.

[97] Adal Lima-Hernández, Carlos Hernández-Monteagudo, and Jonás Chaves-
Montero. “Relativistic angular redshift fluctuations embedded in large scale vary-
ing gravitational potentials”. In: Journal of Cosmology and Astroparticle Physics
2022.09 (Sept. 2022), p. 038. issn: 1475-7516. doi: 10.1088/1475-7516/2022/
09/038. url: http://dx.doi.org/10.1088/1475-7516/2022/09/038.

[98] Eric V. Linder. “Exploring the Expansion History of the Universe”. In: Physical
Review Letters 90.9 (Mar. 2003). issn: 1079-7114. doi: 10.1103/physrevlett.
90.091301. url: http://dx.doi.org/10.1103/PhysRevLett.90.091301.

[99] Arthur Loureiro et al. “Cosmological measurements from angular power spectra
analysis of BOSS DR12 tomography”. In: Monthly Notices of the Royal Astro-
nomical Society 485.1 (Jan. 2019), pp. 326–355. issn: 1365-2966. doi: 10.1093/
mnras/stz191. url: http://dx.doi.org/10.1093/mnras/stz191.

[100] Mathew S. Madhavacheril et al. “CMB lensing power spectrum estimation with-
out instrument noise bias”. In: Journal of Cosmology and Astroparticle Physics
2021.05 (May 2021), p. 028. doi: 10.1088/1475- 7516/2021/05/028. url:
https://dx.doi.org/10.1088/1475-7516/2021/05/028.

[101] Claudia Maraston et al. “Modelling the colour evolution of luminous red galaxies
– improvements with empirical stellar spectra”. In: Monthly Notices of the Royal
Astronomical Society: Letters 394.1 (Mar. 2009), pp. L107–L111. issn: 1745-3925.
doi: 10.1111/j.1745-3933.2009.00621.x. eprint: https://academic.oup.
com/mnrasl/article-pdf/394/1/L107/54679761/mnrasl\_394\_1\_l107.

pdf. url: https://doi.org/10.1111/j.1745-3933.2009.00621.x.

[102] F. Marulli, A. Veropalumbo, and M. Moresco. “CosmoBolognaLib: C++ libraries
for cosmological calculations”. In: Astronomy and Computing 14 (Jan. 2016),
pp. 35–42. issn: 2213-1337. doi: 10.1016/j.ascom.2016.01.005. url: http:
//dx.doi.org/10.1016/j.ascom.2016.01.005.

131

https://doi.org/10.1103/physrevd.106.023525
http://dx.doi.org/10.1103/PhysRevD.106.023525
http://dx.doi.org/10.1103/PhysRevD.106.023525
https://arxiv.org/abs/1104.2932
https://arxiv.org/abs/1104.2932
https://arxiv.org/abs/1104.2932
https://doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179
https://doi.org/10.1088/1475-7516/2022/09/038
https://doi.org/10.1088/1475-7516/2022/09/038
http://dx.doi.org/10.1088/1475-7516/2022/09/038
https://doi.org/10.1103/physrevlett.90.091301
https://doi.org/10.1103/physrevlett.90.091301
http://dx.doi.org/10.1103/PhysRevLett.90.091301
https://doi.org/10.1093/mnras/stz191
https://doi.org/10.1093/mnras/stz191
http://dx.doi.org/10.1093/mnras/stz191
https://doi.org/10.1088/1475-7516/2021/05/028
https://dx.doi.org/10.1088/1475-7516/2021/05/028
https://doi.org/10.1111/j.1745-3933.2009.00621.x
https://academic.oup.com/mnrasl/article-pdf/394/1/L107/54679761/mnrasl\_394\_1\_l107.pdf
https://academic.oup.com/mnrasl/article-pdf/394/1/L107/54679761/mnrasl\_394\_1\_l107.pdf
https://academic.oup.com/mnrasl/article-pdf/394/1/L107/54679761/mnrasl\_394\_1\_l107.pdf
https://doi.org/10.1111/j.1745-3933.2009.00621.x
https://doi.org/10.1016/j.ascom.2016.01.005
http://dx.doi.org/10.1016/j.ascom.2016.01.005
http://dx.doi.org/10.1016/j.ascom.2016.01.005


[103] F. Marulli et al. “The XXL Survey: XVI. The clustering of X-ray selected galaxy
clusters atz 0.3”. In: Astronomy & Astrophysics 620 (Nov. 2018), A1. issn: 1432-
0746. doi: 10.1051/0004-6361/201833238. url: http://dx.doi.org/10.
1051/0004-6361/201833238.

[104] Federico Marulli et al. “Cosmology with clustering anisotropies: disentangling dy-
namic and geometric distortions in galaxy redshift surveys: Disentangling dynam-
ics and geometry”. In: Monthly Notices of the Royal Astronomical Society 426.3
(Oct. 2012), pp. 2566–2580. issn: 0035-8711. doi: 10.1111/j.1365-2966.2012.
21875.x. url: http://dx.doi.org/10.1111/j.1365-2966.2012.21875.x.

[105] Kareem Marzouk, Antony Lewis, and Julien Carron. “Constraints on τNL from
Planck temperature and polarization”. In: Journal of Cosmology and Astroparticle
Physics 2022.08 (Aug. 2022), p. 015. issn: 1475-7516. doi: 10.1088/1475-7516/
2022/08/015. url: http://dx.doi.org/10.1088/1475-7516/2022/08/015.

[106] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing
Machines”. In: The Journal of Chemical Physics 21.6 (June 1953), pp. 1087–
1092. issn: 0021-9606. doi: 10.1063/1.1699114. eprint: https://pubs.aip.
org/aip/jcp/article-pdf/21/6/1087/18802390/1087\_1\_online.pdf. url:
https://doi.org/10.1063/1.1699114.

[107] Michele Moresco et al. “Unveiling the Universe with emerging cosmological
probes”. In: Living Reviews in Relativity 25.1 (2022), p. 6. issn: 1433-8351. doi:
10.1007/s41114-022-00040-z. url: https://doi.org/10.1007/s41114-022-
00040-z.

[108] P. F. Muciaccia, P. Natoli, and N. Vittorio. “Fast Spherical Harmonic Analy-
sis: A Quick Algorithm for Generating and/or InvertingFull-Sky, High-Resolution
Cosmic Microwave Background Anisotropy Maps”. In: The Astrophysical Journal
488.2 (Oct. 1997), pp. L63–L66. issn: 0004-637X. doi: 10.1086/310921. url:
http://dx.doi.org/10.1086/310921.

[109] Seshadri Nadathur. “Seeing patterns in noise: gigaparsec-scale ‘structures’ that do
not violate homogeneity”. In: Monthly Notices of the Royal Astronomical Society
434.1 (July 2013), pp. 398–406. issn: 1365-2966. doi: 10.1093/mnras/stt1028.
url: http://dx.doi.org/10.1093/mnras/stt1028.

[110] Mark C. Neyrinck. “Quantifying distortions of the Lagrangian dark-matter mesh
in cosmology”. In: Monthly Notices of the Royal Astronomical Society 428.1 (Oct.
2012), pp. 141–153. issn: 0035-8711. doi: 10.1093/mnras/sts027. eprint: https:
//academic.oup.com/mnras/article-pdf/428/1/141/3551359/141.pdf. url:
https://doi.org/10.1093/mnras/sts027.

132

https://doi.org/10.1051/0004-6361/201833238
http://dx.doi.org/10.1051/0004-6361/201833238
http://dx.doi.org/10.1051/0004-6361/201833238
https://doi.org/10.1111/j.1365-2966.2012.21875.x
https://doi.org/10.1111/j.1365-2966.2012.21875.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21875.x
https://doi.org/10.1088/1475-7516/2022/08/015
https://doi.org/10.1088/1475-7516/2022/08/015
http://dx.doi.org/10.1088/1475-7516/2022/08/015
https://doi.org/10.1063/1.1699114
https://pubs.aip.org/aip/jcp/article-pdf/21/6/1087/18802390/1087\_1\_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/21/6/1087/18802390/1087\_1\_online.pdf
https://doi.org/10.1063/1.1699114
https://doi.org/10.1007/s41114-022-00040-z
https://doi.org/10.1007/s41114-022-00040-z
https://doi.org/10.1007/s41114-022-00040-z
https://doi.org/10.1086/310921
http://dx.doi.org/10.1086/310921
https://doi.org/10.1093/mnras/stt1028
http://dx.doi.org/10.1093/mnras/stt1028
https://doi.org/10.1093/mnras/sts027
https://academic.oup.com/mnras/article-pdf/428/1/141/3551359/141.pdf
https://academic.oup.com/mnras/article-pdf/428/1/141/3551359/141.pdf
https://doi.org/10.1093/mnras/sts027


[111] M. D. Niemack et al. “ACTPol: a polarization-sensitive receiver for the Ata-
cama Cosmology Telescope”. In: Millimeter, Submillimeter, and Far-Infrared De-
tectors and Instrumentation for Astronomy V. Ed. by Wayne S. Holland and
Jonas Zmuidzinas. Vol. 7741. Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series. July 2010, 77411S, 77411S. doi: 10.1117/12.857464.
arXiv: 1006.5049 [astro-ph.IM].

[112] Maria Okounkova et al. “Constraining gravitational wave amplitude birefringence
and Chern-Simons gravity with GWTC-2”. In: Physical Review D 106.4 (Aug.
2022). issn: 2470-0029. doi: 10.1103/physrevd.106.044067. url: http://dx.
doi.org/10.1103/PhysRevD.106.044067.

[113] Bob Osano. Evolution of Cosmological Total Energy Density and Transient Peri-
ods in Cosmology. 2024. arXiv: 2002.08875 [gr-qc]. url: https://arxiv.org/
abs/2002.08875.

[114] Pritha Paul, Chris Clarkson, and Roy Maartens. The Odd-Parity Part of the
Observed Galaxy Trispectrum. 2024. arXiv: 2411.10897 [astro-ph.CO]. url:
https://arxiv.org/abs/2411.10897.

[115] P. J. E. Peebles. Principles of Physical Cosmology. Princeton University Press,
Sept. 2020. isbn: 978-0-691-20981-4.

[116] P. J. E. Peebles and M. G. Hauser. “Statistical Analysis of Catalogs of Extragalac-
tic Objects. III. The Shane-Wirtanen and Zwicky Catalogs”. In: Astrophysical
Journal Supplement 28 (Nov. 1974), p. 19. doi: 10.1086/190308.

[117] P. J. E. Peebles and J. T. Yu. “Primeval Adiabatic Perturbation in an Expanding
Universe”. In: Astrophysical Journal 162 (Dec. 1970), p. 815. doi: 10.1086/
150713.

[118] S. Perlmutter et al. “Measurements of Ω and Λ from 42 High-Redshift Super-
novae”. In: Astrophysical Journal 517.2 (June 1999), pp. 565–586. doi: 10.1086/
307221. arXiv: astro-ph/9812133 [astro-ph].

[119] Oliver H. E. Philcox. “Cosmology without window functions. II. Cubic estimators
for the galaxy bispectrum”. In: Phys. Rev. D 104 (12 Dec. 2021), p. 123529. doi:
10.1103/PhysRevD.104.123529. url: https://link.aps.org/doi/10.1103/
PhysRevD.104.123529.

[120] Oliver H. E. Philcox. “Probing parity violation with the four-point correlation
function of BOSS galaxies”. In: Physical Review D 106.6 (Sept. 2022). issn: 2470-
0029. doi: 10.1103/physrevd.106.063501. url: http://dx.doi.org/10.1103/
PhysRevD.106.063501.

[121] Oliver H. E. Philcox. Do the CMB Temperature Fluctuations Conserve Parity?
2023. arXiv: 2303.12106 [astro-ph.CO]. url: https://arxiv.org/abs/2303.
12106.

133

https://doi.org/10.1117/12.857464
https://arxiv.org/abs/1006.5049
https://doi.org/10.1103/physrevd.106.044067
http://dx.doi.org/10.1103/PhysRevD.106.044067
http://dx.doi.org/10.1103/PhysRevD.106.044067
https://arxiv.org/abs/2002.08875
https://arxiv.org/abs/2002.08875
https://arxiv.org/abs/2002.08875
https://arxiv.org/abs/2411.10897
https://arxiv.org/abs/2411.10897
https://doi.org/10.1086/190308
https://doi.org/10.1086/150713
https://doi.org/10.1086/150713
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://arxiv.org/abs/astro-ph/9812133
https://doi.org/10.1103/PhysRevD.104.123529
https://link.aps.org/doi/10.1103/PhysRevD.104.123529
https://link.aps.org/doi/10.1103/PhysRevD.104.123529
https://doi.org/10.1103/physrevd.106.063501
http://dx.doi.org/10.1103/PhysRevD.106.063501
http://dx.doi.org/10.1103/PhysRevD.106.063501
https://arxiv.org/abs/2303.12106
https://arxiv.org/abs/2303.12106
https://arxiv.org/abs/2303.12106


[122] Oliver H. E. Philcox. “Optimal estimation of the binned mask-free power spec-
trum, bispectrum, and trispectrum on the full sky: Scalar edition”. In: Physical
Review D 107.12 (June 2023). issn: 2470-0029. doi: 10.1103/physrevd.107.
123516. url: http://dx.doi.org/10.1103/PhysRevD.107.123516.

[123] Oliver H. E. Philcox and Julia Ereza. Could Sample Variance be Responsible for
the Parity-Violating Signal Seen in the BOSS Galaxy Survey? 2024. arXiv: 2401.
09523 [astro-ph.CO]. url: https://arxiv.org/abs/2401.09523.

[124] Oliver H. E. Philcox and Maresuke Shiraishi. Testing Parity Symmetry with
the Polarized Cosmic Microwave Background. 2024. arXiv: 2308 . 03831

[astro-ph.CO]. url: https://arxiv.org/abs/2308.03831.

[125] Planck Collaboration et al. “Planck 2013 results. I. Overview of products and
scientific results”. In: Astronomy & Astrophysics 571, A1 (Nov. 2014), A1. doi:
10.1051/0004-6361/201321529. arXiv: 1303.5062 [astro-ph.CO].

[126] Levon Pogosian and Mark Wyman. “B-modes from cosmic strings”. In: Physical
Review D 77.8 (Apr. 2008). issn: 1550-2368. doi: 10.1103/physrevd.77.083509.
url: http://dx.doi.org/10.1103/PhysRevD.77.083509.

[127] D. M. Regan, E. P. S. Shellard, and J. R. Fergusson. “General CMB and primor-
dial trispectrum estimation”. In: Phys. Rev. D 82 (2 July 2010), p. 023520. doi:
10.1103/PhysRevD.82.023520. url: https://link.aps.org/doi/10.1103/
PhysRevD.82.023520.

[128] Beth Reid et al. “SDSS-III Baryon Oscillation Spectroscopic Survey Data Release
12: galaxy target selection and large-scale structure catalogues”. In: Monthly No-
tices of the Royal Astronomical Society 455.2 (Nov. 2015), pp. 1553–1573. issn:
0035-8711. doi: 10.1093/mnras/stv2382. eprint: https://academic.oup.
com/mnras/article-pdf/455/2/1553/18511627/stv2382.pdf. url: https:
//doi.org/10.1093/mnras/stv2382.

[129] M. Reinecke and D. S. Seljebotn. “Libsharp – spherical harmonic transforms revis-
ited”. In: Astronomy & Astrophysics 554 (June 2013), A112. issn: 1432-0746. doi:
10.1051/0004-6361/201321494. url: http://dx.doi.org/10.1051/0004-
6361/201321494.

[130] Adam G. Riess et al. “Observational Evidence from Supernovae for an Accel-
erating Universe and a Cosmological Constant”. In: The Astronomical Journal
116.3 (Sept. 1998), pp. 1009–1038. issn: 0004-6256. doi: 10.1086/300499. url:
http://dx.doi.org/10.1086/300499.

134

https://doi.org/10.1103/physrevd.107.123516
https://doi.org/10.1103/physrevd.107.123516
http://dx.doi.org/10.1103/PhysRevD.107.123516
https://arxiv.org/abs/2401.09523
https://arxiv.org/abs/2401.09523
https://arxiv.org/abs/2401.09523
https://arxiv.org/abs/2308.03831
https://arxiv.org/abs/2308.03831
https://arxiv.org/abs/2308.03831
https://doi.org/10.1051/0004-6361/201321529
https://arxiv.org/abs/1303.5062
https://doi.org/10.1103/physrevd.77.083509
http://dx.doi.org/10.1103/PhysRevD.77.083509
https://doi.org/10.1103/PhysRevD.82.023520
https://link.aps.org/doi/10.1103/PhysRevD.82.023520
https://link.aps.org/doi/10.1103/PhysRevD.82.023520
https://doi.org/10.1093/mnras/stv2382
https://academic.oup.com/mnras/article-pdf/455/2/1553/18511627/stv2382.pdf
https://academic.oup.com/mnras/article-pdf/455/2/1553/18511627/stv2382.pdf
https://doi.org/10.1093/mnras/stv2382
https://doi.org/10.1093/mnras/stv2382
https://doi.org/10.1051/0004-6361/201321494
http://dx.doi.org/10.1051/0004-6361/201321494
http://dx.doi.org/10.1051/0004-6361/201321494
https://doi.org/10.1086/300499
http://dx.doi.org/10.1086/300499


[131] Adam G. Riess et al. “Large Magellanic Cloud Cepheid Standards Provide a 1%
Foundation for the Determination of the Hubble Constant and Stronger Evidence
for Physics beyond ΛCDM”. In: The Astrophysical Journal 876.1 (May 2019),
p. 85. issn: 1538-4357. doi: 10.3847/1538-4357/ab1422. url: http://dx.doi.
org/10.3847/1538-4357/ab1422.

[132] Adam G. Riess et al. A Comprehensive Measurement of the Local Value of the
Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope
and the SH0ES Team. 2022. doi: https://doi.org/10.3847/2041- 8213/
ac5c5b. arXiv: 2112.04510 [astro-ph.CO]. url: https://arxiv.org/abs/
2112.04510.

[133] Sergio A. Rodrıguez-Torres et al. “The clustering of galaxies in the SDSS-III
Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo oc-
cupation distribution of BOSS CMASS galaxies in the Final Data Release”. In:
Monthly Notices of the Royal Astronomical Society 460.2 (Aug. 2016), pp. 1173–
1187. doi: 10.1093/mnras/stw1014. arXiv: 1509.06404 [astro-ph.CO].

[134] Ashley J. Ross et al. “The clustering of galaxies in the completed SDSS-III Baryon
Oscillation Spectroscopic Survey: observational systematics and baryon acous-
tic oscillations in the correlation function”. In: Monthly Notices of the Royal
Astronomical Society 464.1 (Sept. 2016), pp. 1168–1191. issn: 0035-8711. doi:
10.1093/mnras/stw2372. eprint: https://academic.oup.com/mnras/article-
pdf/464/1/1168/18517623/stw2372.pdf. url: https://doi.org/10.1093/
mnras/stw2372.

[135] R. K. Sachs and A. M. Wolfe. “Perturbations of a Cosmological Model and An-
gular Variations of the Microwave Background”. In: Astrophysical Journal 147
(Jan. 1967), p. 73. doi: 10.1086/148982.

[136] A. D. Sakharov. “Violation of CP Invariance, C asymmetry, and baryon asym-
metry of the universe”. In: Pisma Zh. Eksp. Teor. Fiz. 5 (1967), pp. 32–35. doi:
10.1070/PU1991v034n05ABEH002497.

[137] M. G. Santos et al. “Multiple methods for estimating the bispectrum of the cos-
mic microwave background with application to the MAXIMA data”. In: Monthly
Notices of the Royal Astronomical Society 341.2 (May 2003), pp. 623–643. issn:
0035-8711. doi: 10.1046/j.1365- 8711.2003.06438.x. eprint: https://
academic.oup.com/mnras/article-pdf/341/2/623/3866993/341-2-623.pdf.
url: https://doi.org/10.1046/j.1365-8711.2003.06438.x.

[138] A. Savitzky and M. J. E. Golay. “Smoothing and differentiation of data by simpli-
fied least squares procedures”. In: Analytical Chemistry 36 (Jan. 1964), pp. 1627–
1639. doi: 10.1021/ac60214a047.

135

https://doi.org/10.3847/1538-4357/ab1422
http://dx.doi.org/10.3847/1538-4357/ab1422
http://dx.doi.org/10.3847/1538-4357/ab1422
https://doi.org/https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/https://doi.org/10.3847/2041-8213/ac5c5b
https://arxiv.org/abs/2112.04510
https://arxiv.org/abs/2112.04510
https://arxiv.org/abs/2112.04510
https://doi.org/10.1093/mnras/stw1014
https://arxiv.org/abs/1509.06404
https://doi.org/10.1093/mnras/stw2372
https://academic.oup.com/mnras/article-pdf/464/1/1168/18517623/stw2372.pdf
https://academic.oup.com/mnras/article-pdf/464/1/1168/18517623/stw2372.pdf
https://doi.org/10.1093/mnras/stw2372
https://doi.org/10.1093/mnras/stw2372
https://doi.org/10.1086/148982
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1046/j.1365-8711.2003.06438.x
https://academic.oup.com/mnras/article-pdf/341/2/623/3866993/341-2-623.pdf
https://academic.oup.com/mnras/article-pdf/341/2/623/3866993/341-2-623.pdf
https://doi.org/10.1046/j.1365-8711.2003.06438.x
https://doi.org/10.1021/ac60214a047


[139] Joop Schaye et al. “The EAGLE project: simulating the evolution and assembly of
galaxies and their environments”. In: Monthly Notices of the Royal Astronomical
Society 446.1 (Nov. 2014), pp. 521–554. issn: 0035-8711. doi: 10.1093/mnras/
stu2058. eprint: https://academic.oup.com/mnras/article-pdf/446/1/
521/4139718/stu2058.pdf. url: https://doi.org/10.1093/mnras/stu2058.

[140] Aurel Schneider and Romain Teyssier. “A new method to quantify the effects of
baryons on the matter power spectrum”. In: Journal of Cosmology and Astroparti-
cle Physics 2015.12 (Dec. 2015), p. 049. doi: 10.1088/1475-7516/2015/12/049.
url: https://dx.doi.org/10.1088/1475-7516/2015/12/049.

[141] Román Scoccimarro et al. “Large-scale bias and efficient generation of initial
conditions for nonlocal primordial non-Gaussianity”. In: Physical Review D 85.8
(Apr. 2012). issn: 1550-2368. doi: 10.1103/physrevd.85.083002. url: http:
//dx.doi.org/10.1103/PhysRevD.85.083002.

[142] M. Shiraishi and S. Yokoyama. “Violation of the Rotational Invariance in the CMB
Bispectrum”. In: Progress of Theoretical Physics 126.5 (Nov. 2011), pp. 923–935.
issn: 1347-4081. doi: 10.1143/ptp.126.923. url: http://dx.doi.org/10.
1143/PTP.126.923.

[143] Maresuke Shiraishi, Michele Liguori, and James R. Fergusson. “General parity-
odd CMB bispectrum estimation”. In: Journal of Cosmology and Astroparticle
Physics 2014.05 (May 2014), pp. 008–008. issn: 1475-7516. doi: 10.1088/1475-
7516/2014/05/008. url: http://dx.doi.org/10.1088/1475-7516/2014/05/
008.

[144] Quijote Simulations. Data Access. 2024. url: https://quijote-simulations.
readthedocs.io/en/latest/access.html.

[145] Skies and Universes. BOSS-LRG DR12 MultiDark-Patchy mocks. url: https://
skiesanduniverses.org/Products/MockCatalogues/SDSS/BOSSLRGDR12MDP/.

[146] Stephen A. Smee et al. “The Multi-object, Fiber-fed Spectrographs for the Sloan
Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey”. In: Astro-
nomical Journal 146.2, 32 (Aug. 2013), p. 32. doi: 10.1088/0004-6256/146/2/
32. arXiv: 1208.2233 [astro-ph.IM].

[147] Kendrick M. Smith and Matias Zaldarriaga. “Algorithms for bispectra: forecast-
ing, optimal analysis and simulation”. In:Monthly Notices of the Royal Astronom-
ical Society 417.1 (Oct. 2011), pp. 2–19. issn: 0035-8711. doi: 10.1111/j.1365-
2966.2010.18175.x. eprint: https://academic.oup.com/mnras/article-
pdf/417/1/2/3015641/mnras0417-0002.pdf. url: https://doi.org/10.
1111/j.1365-2966.2010.18175.x.

[148] Lee Smolin. Lessons from Einstein’s 1915 discovery of general relativity. 2015.
arXiv: 1512.07551 [physics.hist-ph].

136

https://doi.org/10.1093/mnras/stu2058
https://doi.org/10.1093/mnras/stu2058
https://academic.oup.com/mnras/article-pdf/446/1/521/4139718/stu2058.pdf
https://academic.oup.com/mnras/article-pdf/446/1/521/4139718/stu2058.pdf
https://doi.org/10.1093/mnras/stu2058
https://doi.org/10.1088/1475-7516/2015/12/049
https://dx.doi.org/10.1088/1475-7516/2015/12/049
https://doi.org/10.1103/physrevd.85.083002
http://dx.doi.org/10.1103/PhysRevD.85.083002
http://dx.doi.org/10.1103/PhysRevD.85.083002
https://doi.org/10.1143/ptp.126.923
http://dx.doi.org/10.1143/PTP.126.923
http://dx.doi.org/10.1143/PTP.126.923
https://doi.org/10.1088/1475-7516/2014/05/008
https://doi.org/10.1088/1475-7516/2014/05/008
http://dx.doi.org/10.1088/1475-7516/2014/05/008
http://dx.doi.org/10.1088/1475-7516/2014/05/008
https://quijote-simulations.readthedocs.io/en/latest/access.html
https://quijote-simulations.readthedocs.io/en/latest/access.html
https://skiesanduniverses.org/Products/MockCatalogues/SDSS/BOSSLRGDR12MDP/
https://skiesanduniverses.org/Products/MockCatalogues/SDSS/BOSSLRGDR12MDP/
https://doi.org/10.1088/0004-6256/146/2/32
https://doi.org/10.1088/0004-6256/146/2/32
https://arxiv.org/abs/1208.2233
https://doi.org/10.1111/j.1365-2966.2010.18175.x
https://doi.org/10.1111/j.1365-2966.2010.18175.x
https://academic.oup.com/mnras/article-pdf/417/1/2/3015641/mnras0417-0002.pdf
https://academic.oup.com/mnras/article-pdf/417/1/2/3015641/mnras0417-0002.pdf
https://doi.org/10.1111/j.1365-2966.2010.18175.x
https://doi.org/10.1111/j.1365-2966.2010.18175.x
https://arxiv.org/abs/1512.07551


[149] George F. Smoot. “COBE observations and results”. In: Conference on 3K cos-
mology. ASCE, 1999, pp. 1–10. doi: 10.1063/1.59326. url: http://dx.doi.
org/10.1063/1.59326.

[150] Rachel S. Somerville et al. “A semi-analytic model for the co-evolution of galax-
ies, black holes and active galactic nuclei”. In: Monthly Notices of the Royal As-
tronomical Society 391.2 (Nov. 2008), pp. 481–506. issn: 0035-8711. doi: 10.
1111/j.1365- 2966.2008.13805.x. eprint: https://academic.oup.com/
mnras/article-pdf/391/2/481/5764146/mnras0391-0481.pdf. url: https:
//doi.org/10.1111/j.1365-2966.2008.13805.x.

[151] Joshua S. Speagle. “A Conceptual Introduction to Markov Chain Monte
Carlo Methods”. In: arXiv: Other Statistics (2019). url: https : / / api .

semanticscholar.org/CorpusID:203591670.

[152] D. N. Spergel et al. “First-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Determination of Cosmological Parameters”. In: Astrophysical
Journal Supplement 148.1 (Sept. 2003), pp. 175–194. doi: 10 . 1086 / 377226.
arXiv: astro-ph/0302209 [astro-ph].

[153] Volker Springel. “The cosmological simulation code gadget-2”. In:Monthly Notices
of the Royal Astronomical Society 364.4 (Dec. 2005), pp. 1105–1134. issn: 0035-
8711. doi: 10.1111/j.1365-2966.2005.09655.x. eprint: https://academic.
oup.com/mnras/article-pdf/364/4/1105/18657201/364-4-1105.pdf. url:
https://doi.org/10.1111/j.1365-2966.2005.09655.x.

[154] Volker Springel et al. “First results from the IllustrisTNG simulations: matter and
galaxy clustering”. In: Monthly Notices of the Royal Astronomical Society 475.1
(Dec. 2017), pp. 676–698. issn: 0035-8711. doi: 10.1093/mnras/stx3304. eprint:
https://academic.oup.com/mnras/article-pdf/475/1/676/23534347/

stx3304.pdf. url: https://doi.org/10.1093/mnras/stx3304.

[155] M. E. C. Swanson et al. “Methods for rapidly processing angular masks of next-
generation galaxy surveys”. In:Monthly Notices of the Royal Astronomical Society
387.4 (July 2008), pp. 1391–1402. issn: 1365-2966. doi: 10.1111/j.1365-2966.
2008.13296.x. url: http://dx.doi.org/10.1111/j.1365-2966.2008.13296.
x.

[156] Atlas EDR system. DIPC Technical Documentation. url: https://scc.dipc.
org/docs/systems/atlas-edr/.

[157] Hyperion system. DIPC Technical Documentation. url: https://scc.dipc.
org/docs/systems/hyperion/overview/.

[158] István Szapudi and Alexander S. Szalay. “A New Class of Estimators for the N-
Point Correlations”. In: Astrophysical Journal 494.1 (Feb. 1998), pp. L41–L44.
doi: 10.1086/311146.

137

https://doi.org/10.1063/1.59326
http://dx.doi.org/10.1063/1.59326
http://dx.doi.org/10.1063/1.59326
https://doi.org/10.1111/j.1365-2966.2008.13805.x
https://doi.org/10.1111/j.1365-2966.2008.13805.x
https://academic.oup.com/mnras/article-pdf/391/2/481/5764146/mnras0391-0481.pdf
https://academic.oup.com/mnras/article-pdf/391/2/481/5764146/mnras0391-0481.pdf
https://doi.org/10.1111/j.1365-2966.2008.13805.x
https://doi.org/10.1111/j.1365-2966.2008.13805.x
https://api.semanticscholar.org/CorpusID:203591670
https://api.semanticscholar.org/CorpusID:203591670
https://doi.org/10.1086/377226
https://arxiv.org/abs/astro-ph/0302209
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://academic.oup.com/mnras/article-pdf/364/4/1105/18657201/364-4-1105.pdf
https://academic.oup.com/mnras/article-pdf/364/4/1105/18657201/364-4-1105.pdf
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1093/mnras/stx3304
https://academic.oup.com/mnras/article-pdf/475/1/676/23534347/stx3304.pdf
https://academic.oup.com/mnras/article-pdf/475/1/676/23534347/stx3304.pdf
https://doi.org/10.1093/mnras/stx3304
https://doi.org/10.1111/j.1365-2966.2008.13296.x
https://doi.org/10.1111/j.1365-2966.2008.13296.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13296.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13296.x
https://scc.dipc.org/docs/systems/atlas-edr/
https://scc.dipc.org/docs/systems/atlas-edr/
https://scc.dipc.org/docs/systems/hyperion/overview/
https://scc.dipc.org/docs/systems/hyperion/overview/
https://doi.org/10.1086/311146


[159] Ryuichi Takahashi et al. “Revising the halofiti model for the nonlinear matter
power spectrum”. In: The Astrophysical Journal 761.2 (Dec. 2012), p. 152. issn:
1538-4357. doi: 10.1088/0004-637x/761/2/152. url: http://dx.doi.org/
10.1088/0004-637X/761/2/152.

[160] Max Tegmark. “An Icosahedron-Based Method for Pixelizing the Celestial
Sphere”. In: Astrophysical Journal 470 (Oct. 1996), p. L81. doi: 10.1086/310310.
arXiv: astro-ph/9610094 [astro-ph].

[161] Max Tegmark. “An Icosahedron-based Method for Pixelizing the Celestial
Sphere”. In: The Astrophysical Journal 470.2 (Oct. 1996), pp. L81–L84. issn:
0004-637X. doi: 10.1086/310310. url: http://dx.doi.org/10.1086/310310.

[162] Max Tegmark. “How to measure CMB power spectra without losing information”.
In: Physical Review D 55.10 (May 1997), pp. 5895–5907. issn: 1089-4918. doi:
10.1103/physrevd.55.5895. url: http://dx.doi.org/10.1103/PhysRevD.
55.5895.

[163] Max Tegmark, Andy N. Taylor, and Alan F. Heavens. “Karhunen-Loeve Eigen-
value Problems in Cosmology: How Should We Tackle Large Data Sets?” In:
The Astrophysical Journal 480.1 (May 1997), pp. 22–35. issn: 1538-4357. doi:
10.1086/303939. url: http://dx.doi.org/10.1086/303939.

[164] Sergios Theodoridis and Konstantinos Koutroumbas. “Chapter 6 - Feature Gener-
ation I: Data Transformation and Dimensionality Reduction”. In: Pattern Recog-
nition (Fourth Edition). Ed. by Sergios Theodoridis and Konstantinos Koutroum-
bas. Fourth Edition. Boston: Academic Press, 2009, pp. 323–409. isbn: 978-1-
59749-272-0. doi: https : / / doi . org / 10 . 1016 / B978 - 1 - 59749 - 272 - 0 .

50008- 6. url: https://www.sciencedirect.com/science/article/pii/
B9781597492720500086.

[165] Jeremy Tinker et al. “Toward a Halo Mass Function for Precision Cosmology:
The Limits of Universality”. In: The Astrophysical Journal 688.2 (Dec. 2008),
pp. 709–728. issn: 1538-4357. doi: 10.1086/591439. url: http://dx.doi.org/
10.1086/591439.

[166] Jeremy L. Tinker et al. “The Large Scale Bias of Dark Matter Halos: Numerical
Calibration and Model Tests”. In: The Astrophysical Journal 724.2 (Nov. 2010),
pp. 878–886. issn: 1538-4357. doi: 10 . 1088 / 0004 - 637x / 724 / 2 / 878. url:
http://dx.doi.org/10.1088/0004-637X/724/2/878.

[167] Tommaso Treu. “Strong Lensing by Galaxies”. In: Annual Review of Astronomy
and Astrophysics 48 (Sept. 2010), pp. 87–125. doi: 10.1146/annurev-astro-
081309-130924. arXiv: 1003.5567 [astro-ph.CO].

[168] Antonino Troja et al. The Needlet CMB Trispesctrum. 2014. arXiv: 1407.0624
[astro-ph.CO]. url: https://arxiv.org/abs/1407.0624.

138

https://doi.org/10.1088/0004-637x/761/2/152
http://dx.doi.org/10.1088/0004-637X/761/2/152
http://dx.doi.org/10.1088/0004-637X/761/2/152
https://doi.org/10.1086/310310
https://arxiv.org/abs/astro-ph/9610094
https://doi.org/10.1086/310310
http://dx.doi.org/10.1086/310310
https://doi.org/10.1103/physrevd.55.5895
http://dx.doi.org/10.1103/PhysRevD.55.5895
http://dx.doi.org/10.1103/PhysRevD.55.5895
https://doi.org/10.1086/303939
http://dx.doi.org/10.1086/303939
https://doi.org/https://doi.org/10.1016/B978-1-59749-272-0.50008-6
https://doi.org/https://doi.org/10.1016/B978-1-59749-272-0.50008-6
https://www.sciencedirect.com/science/article/pii/B9781597492720500086
https://www.sciencedirect.com/science/article/pii/B9781597492720500086
https://doi.org/10.1086/591439
http://dx.doi.org/10.1086/591439
http://dx.doi.org/10.1086/591439
https://doi.org/10.1088/0004-637x/724/2/878
http://dx.doi.org/10.1088/0004-637X/724/2/878
https://doi.org/10.1146/annurev-astro-081309-130924
https://doi.org/10.1146/annurev-astro-081309-130924
https://arxiv.org/abs/1003.5567
https://arxiv.org/abs/1407.0624
https://arxiv.org/abs/1407.0624
https://arxiv.org/abs/1407.0624


[169] T.S. van Albada et al. “Distribution of dark matter in the spiral galaxy NGC
3198.” In: Astrophysical Journal 295 (Aug. 1985), pp. 305–313. doi: 10.1086/
163375.

[170] Francisco Villaescusa-Navarro et al. “The Quijote Simulations”. In: The Astro-
physical Journal Supplement Series 250.1 (Aug. 2020), p. 2. issn: 1538-4365. doi:
10.3847/1538- 4365/ab9d82. url: http://dx.doi.org/10.3847/1538-
4365/ab9d82.

[171] C. S. Wu et al. “Experimental Test of Parity Conservation in Beta Decay”. In:
Phys. Rev. 105 (4 Feb. 1957), pp. 1413–1415. doi: 10.1103/PhysRev.105.1413.
url: https://link.aps.org/doi/10.1103/PhysRev.105.1413.

[172] Jun-Qing Xia. “Cosmological CPT violation and CMB polarization measure-
ments”. In: Journal of Cosmology and Astroparticle Physics 2012.01 (Jan. 2012),
pp. 046–046. issn: 1475-7516. doi: 10.1088/1475-7516/2012/01/046. url:
http://dx.doi.org/10.1088/1475-7516/2012/01/046.

[173] Donald G. York et al. “The Sloan Digital Sky Survey: Technical Summary”. In:
Astronomical Journal 120.3 (Sept. 2000), pp. 1579–1587. doi: 10.1086/301513.
arXiv: astro-ph/0006396 [astro-ph].
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Appendix A

MapCalculator

Here is the class that was implemented in the CBL, used to produce sky maps for ADFs,
shot noise and ARFs following the definition in Eq.(4.6). The MapCalculator class,
whose hierarchy is depicted in Fig.5.2, comprehends also some methods to wrap as
CBL functions some commonly used HEALPix routines that returns information on the
pixelization process. Finally, multiple constructors have been written to increase the
elasticity and facilitate the CBL’s user programming pipelines.

MapCalculator.h

1 /********************************************************************

2 * Copyright (C) 2010 by Federico Marulli *

3 * federico.marulli3@unibo.it *

4 * *

5 * This program is free software; you can redistribute it and/or *

6 * modify it under the terms of the GNU General Public License as *

7 * published by the Free Software Foundation; either version 2 of *

8 * the License, or (at your option) any later version. *

9 * *

10 * This program is distributed in the hope that it will be useful, *

11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *

12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *

13 * GNU General Public License for more details. *

14 * *
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15 * You should have received a copy of the GNU General Public *

16 * License along with this program; if not, write to the Free *

17 * Software Foundation, Inc., *

18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *

19 ********************************************************************/

20

21 /**

22 * @file Headers/MapCalculator.h

23 *

24 * @brief The class MapCalculator

25 *

26 * This file defines the interface of the class MapCalculator, used to

27 * build the sky map for angular density fluctuations (ADF), angular

28 * redshift fluctuations (ARF) and shot noise random realisations (SN)

29 *

30 * @author Matteo Santini

31 *

32 * @author matteo.santini7@studio.unibo.it

33 */

34

35 #ifndef __MAP__

36 #define __MAP__

37

38

39 #include "Measure.h"

40 #include "Catalogue.h"

41 #include "Func.h"

42 #include <healpix_base.h>

43

44

45 // ========================================================================

46

47

48 namespace cbl {

49

50 namespace measure {

51

52 /**

53 * @brief Class for <B> HEALPix map generation </B>

54 *

55 * The \e measure::MapCalculator namespace contains all the functions

56 * and classes for building HEALPix maps for ADF and ARF

57 */
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58 class MapCalculator : public Measure {

59

60 private:

61

62 /**

63 * @param m_ns: the resolution nside of Healpix (must be a power of 2)

64 */

65 int m_ns;

66

67 /**

68 * @param m_scheme: scheme for the HEALPix map. RING (default) or

NESTED↪→

69 */

70 Healpix_Ordering_Scheme m_scheme = RING; //RING is default

71

72 /**

73 * @param m_nsg: number of sigmas for source selection (speeds up the

computation)↪→

74 */

75 int m_nsg;

76

77 /**

78 * @param m_zobs: central redshifts of the redshift shells

79 */

80 std::vector<double> m_zobs;

81

82 /**

83 * @param m_sgzar: width of the gaussian shells

84 */

85 std::vector<double> m_sgzar;

86

87 /**

88 * @param m_seed: seed for random number generation

89 */

90 int m_seed = 123;

91

92 protected:

93 /**

94 * @param m_data: points to the catalogue of data

95 */

96 std::shared_ptr<catalogue::Catalogue> m_data;

97

98 public:
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99

100 /**

101 * @name Constructors/destructors

102 */

103 ///@{

104

105 /**

106 * @brief default constructor

107 */

108 MapCalculator () = default;

109

110 /**

111 * @brief constructor with specified parameters.

112 *

113 * @param ns_value resolution nside of Healpix (must be a power of

2).↪→

114 *

115 * @param nsg_value number of sigmas for source selection.

116 *

117 * @param zobs central redshifts of the redshift shells.

118 *

119 * @param sgzar width of the Gaussian shells.

120 *

121 * @param data catalogue of data.

122 */

123 MapCalculator (int ns_value, int nsg_value, std::vector<double>& zobs,

std::vector<double>& sgzar, const catalogue::Catalogue data)↪→

124 : m_ns(ns_value), m_nsg(nsg_value), m_zobs(zobs), m_sgzar(sgzar) ,

m_data(std::make_shared<catalogue::Catalogue>

(catalogue::Catalogue(std::move(data)))) {};

↪→

↪→

125

126 /**

127 * @brief constructor with specified parameters.

128 *

129 * @param ns_value resolution nside of Healpix (must be a power of

2).↪→

130 *

131 * @param scheme scheme for the HEALPix map (RING or NESTED).

132 *

133 * @param nsg_value number of sigmas for source selection.

134 *

135 * @param zobs central redshifts of the redshift shells.

136 *
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137 * @param sgzar width of the Gaussian shells.

138 *

139 * @param data catalogue of data.

140 */

141 MapCalculator (int ns_value, Healpix_Ordering_Scheme scheme, int

nsg_value, std::vector<double>& zobs, std::vector<double>& sgzar, const

catalogue::Catalogue data)

↪→

↪→

142 : m_ns(ns_value), m_scheme(scheme), m_nsg(nsg_value), m_zobs(zobs),

m_sgzar(sgzar) , m_data(std::make_shared<catalogue::Catalogue>

(catalogue::Catalogue(std::move(data)))) {};

↪→

↪→

143

144 /**

145 * @brief constructor with specified parameters.

146 *

147 * @param ns_value resolution nside of Healpix (must be a power of

2).↪→

148 *

149 * @param scheme scheme for the HEALPix map (RING or NESTED).

150 *

151 * @param nsg_value number of sigmas for source selection.

152 *

153 * @param zobs central redshifts of the redshift shells.

154 *

155 * @param sgzar width of the Gaussian shells.

156 *

157 * @param seed seed for random number generation.

158 *

159 * @param data catalogue of data.

160 */

161 MapCalculator (int ns_value, Healpix_Ordering_Scheme scheme, int

nsg_value, std::vector<double>& zobs, std::vector<double>& sgzar, const

int seed, const catalogue::Catalogue data)

↪→

↪→

162 : m_ns(ns_value), m_scheme(scheme), m_nsg(nsg_value), m_zobs(zobs),

m_sgzar(sgzar) , m_seed(seed),

m_data(std::make_shared<catalogue::Catalogue>

(catalogue::Catalogue(std::move(data)))) {};

↪→

↪→

↪→

163

164 //@}

165

166 /**

167 * @name Functions to get the private members of the class

168 */

169 ///@{
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170

171 /**

172 * @brief get the value of the private variable m_ns

173 * @return the value of m_ns

174 */

175 int getNside () const {return m_ns;};

176

177 /**

178 * @brief get the value of the private variable m_scheme

179 * @return the value of m_scheme

180 */

181 Healpix_Ordering_Scheme getScheme () {return m_scheme;};

182

183 /**

184 * @brief get the value of the private variable m_nsg

185 * @return the value of m_nsg

186 */

187 int getNsigma () const {return m_nsg;};

188

189 /**

190 * @brief get the values of the private variable m_zobs

191 * @return the value of m_zobs

192 */

193 std::vector<double> getZobs () const {return m_zobs;};

194

195 /**

196 * @brief get the values of the private variable m_sgzar

197 * @return the value of m_sgzar

198 */

199 std::vector<double> getWidths () const {return m_sgzar;};

200

201 /**

202 * @brief get the value of the private variable m_seed

203 * @return the value of m_seed

204 */

205 int getSeed () const {return m_seed;};

206

207 /**

208 * @brief get the values of the private variable m_data

209 * @return pointer to the member m_data of the class Catalogue

210 */

211 std::shared_ptr<catalogue::Catalogue> getCatalogue () const {return

m_data;};↪→
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212

213 ///@}

214

215 /**

216 * @name Functions to set the private members of the class

217 */

218 ///@{

219

220 /**

221 * @brief set the value of the private variable m_ns

222 * @param ns resolution nside of Healpix (must be a power of 2).

223 */

224 void setNside (const int ns) {m_ns = ns;};

225

226 /**

227 * @brief set the value of the private variable m_scheme

228 * @param scheme scheme for the HEALPix map (RING or NESTED).

229 */

230 void setScheme (Healpix_Ordering_Scheme scheme) {m_scheme = scheme;};

231

232 /**

233 * @brief set the value of the private variable m_nsg

234 * @param nsg number of sigmas for source selection.

235 */

236 void setNsigma (const int nsg) {m_nsg=nsg;};

237

238 /**

239 * @brief set the values of the private variable m_zobs

240 * @param zobs central redshifts of the redshift shells.

241 */

242 void setZobs (const std::vector<double> zobs) {m_zobs=zobs;};

243

244 /**

245 * @brief set the values of the private variable m_sgzar

246 * @param sgzar width of the Gaussian shells.

247 */

248 void setWidths (const std::vector<double> sgzar) {m_sgzar=sgzar;};

249

250 /**

251 * @brief set the value of the private variable m_seed

252 * @param seed seed for random number generation.

253 */

254 void setSeed (const int seed) {m_seed=seed;};
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255

256 /**

257 * @brief set the values of the private variable m_data

258 * @param data catalogue of data.

259 */

260 void setCatalogue (const catalogue::Catalogue data)

261 {m_data = std::make_shared<catalogue::Catalogue>

(catalogue::Catalogue(std::move(data)));};↪→

262

263 //@}

264

265 /**

266 * @name Functions to retrieve HEALPix functions

267 */

268 ///@{

269

270 /**

271 * @brief performs the conversion from angles to pixels

272 * to build the HEALPix map. The angles are treated in radians units

273 * and they refer to spherical polar coordinates theta phi with domain

274 * [0, pi[ and [0, 2pi[

275 * @return integer array of pixels

276 */

277 std::vector<int> HealpixMapping () const;

278

279 //@}

280

281 /**

282 * @name Functions to generate HEALPix maps

283 */

284 ///@{

285

286 /**

287 * @brief builds the map for the angular density fluctuations, given

the input mask↪→

288 * @param mskin: Healpix sky mask

289 * @return 3D tensor containing the values associated to the map's

pixels↪→

290 */

291 std::vector<std::vector<std::vector<double>>> ADF (std::vector<double>

const& mskin) const;↪→

292

293 /**
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294 * @brief builds the map for the angular density fluctuations and the

angular redshift fluctuations,↪→

295 * given the input mask

296 * @param mskin: Healpix sky mask

297 * @return standard tuple containing the two maps

298 */

299 std::tuple<

300 std::vector<std::vector<std::vector<double>>> ,

301 std::vector<std::vector<std::vector<double>>>

302 > ADF_ARF (std::vector<double> const& mskin) const;

303

304 /**

305 * @brief builds the map for the redshifted angular density

fluctuations, given the input mask↪→

306 * @param mskin: Healpix sky mask

307 * @param zH: Hubble drift redshifts

308 * @return 3D tensor containing the values associated to the map's

pixels↪→

309 */

310 std::vector<std::vector<std::vector<double>>> ADFr (std::vector<double>

const& mskin, std::vector<double> const& zH) const;↪→

311

312 /**

313 * @brief builds the map for the redshifted angular density

fluctuations and the redshifted↪→

314 * angular redshift fluctuations, given the input mask

315 * @param mskin: Healpix sky mask

316 * @param zH: Hubble drift redshifts

317 * @return standard tuple containing the two maps

318 */

319 std::tuple<

320 std::vector<std::vector<std::vector<double>>> ,

321 std::vector<std::vector<std::vector<double>>>

322 > ADFr_ARFr (std::vector<double> const& mskin, std::vector<double>

const& zH) const;↪→

323

324 /**

325 * @brief builds the map for the shot noise, given the input mask

326 * @param mskin: Healpix sky mask

327 * @param nran: number of mocks computing purely random ADF/ARF mocks

328 * @return 5D tensor containing 2 * nran maps

329 */
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330 std::vector<std::vector<std::vector<std::vector<std::vector<double>>>>>

SN (std::vector<double> const& mskin, const int nran) const;↪→

331

332 /**

333 * @brief prints a map on an output file

334 * @param map: your map as a 3D tensor

335 * @param filename: the name of the output file

336 */

337 void print_map (const std::vector<std::vector<std::vector<double>>>&

map, const std::string& filename) const;↪→

338

339 ///@}

340

341 };

342

343 }

344

345 }

346

347 #endif

MapCalculator.cpp

1 /********************************************************************

2 * Copyright (C) 2015 by Federico Marulli *

3 * federico.marulli3@unibo.it *

4 * *

5 * This program is free software; you can redistribute it and/or *

6 * modify it under the terms of the GNU General Public License as *

7 * published by the Free Software Foundation; either version 2 of *

8 * the License, or (at your option) any later version. *

9 * *

10 * This program is distributed in the hope that it will be useful, *

11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *

12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *

13 * GNU General Public License for more details. *

14 * *
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15 * You should have received a copy of the GNU General Public *

16 * License along with this program; if not, write to the Free *

17 * Software Foundation, Inc., *

18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *

19 ********************************************************************/

20

21 /**

22 * @file MapCalculator.cpp

23 *

24 * @brief Methods of the class MapCalculator

25 *

26 * This file contains the implementation of the methods of the class

27 * MapCalculator, used to produce sky maps with HEALPix

28 *

29 * @author Matteo Santini

30 *

31 * @author matteo.santini7@studio.unibo.it

32 */

33

34 #include "MapCalculator.h"

35 #include "RandomNumbers.h"

36

37 std::vector<int> cbl::measure::MapCalculator::HealpixMapping () const

38 {

39 Healpix_Base healpixBase(m_ns, m_scheme, SET_NSIDE); // RING ordering

scheme as default↪→

40 std::vector<int> ipx1;

41 auto size = m_data->nObjects();

42 //need to convert from RA,DEC into polar spherical coordinates

43 for (size_t i=0; i<size; ++i) {

44 //the angles must be between[0, pi[ and [0, 2pi[

45 pointing ang((cbl::par::pi/2)-m_data->dec(i), m_data->ra(i));

46 ipx1.push_back(healpixBase.ang2pix(ang));

47 }

48 return ipx1;

49 }

50

51 std::vector<std::vector<std::vector<double>>>

cbl::measure::MapCalculator::ADF (std::vector<double> const& mskin) const↪→

52 {

53

54 std::vector<bool> cnzero(mskin.size()); // For the mask application

55
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56 std::transform(mskin.begin(), mskin.end(), cnzero.begin(), [](double x)

57 {

58 return x>0.0;

59 });

60 // Now cnzero is a boolean array (0 and 1), values depending on the

matching of the condition in the lambda function↪→

61

62 const unsigned int nzobs = m_zobs.size();

63 const unsigned int nsgz = m_sgzar.size();

64 const unsigned int size = m_data->nObjects();

65

66 auto ipx1 = HealpixMapping();

67

68 std::vector<std::vector<std::vector<double>>> map_ADF (nzobs,

std::vector<std::vector<double>>(nsgz, std::vector<double>(12 * m_ns *

m_ns, 0.0)));

↪→

↪→

69 std::vector<std::vector<std::vector<double>>> nocounts (nzobs,

std::vector<std::vector<double>>(nsgz, std::vector<double>(12 * m_ns *

m_ns, 0.0)));

↪→

↪→

70 std::vector<std::vector<double>> nang (nzobs, std::vector<double>(nsgz,

0.0));↪→

71

72 for (size_t iz=0; iz<nzobs; ++iz) {

73 for (size_t isgz=0; isgz<nsgz; ++isgz) {

74 std::vector<int> ipxA;

75 std::vector<double> W1a;

76 std::vector<int> true_inda;

77 std::vector<bool> csel1a(size, 0);

78 for (size_t i=0; i<ipx1.size(); ++i) {

79 csel1a[i] = ((std::abs(m_data->redshift(i) - m_zobs[iz]) < (m_nsg *

m_sgzar[isgz])) && (mskin[ipx1[i]] != 0));↪→

80 if (csel1a[i]==true) {

81 true_inda.push_back(i);

82 }

83 }

84

85 std::vector<double> red;

86 for (size_t ind=0; ind<size; ++ind)

87 red.push_back(m_data->redshift(ind));

88 auto zin_sel = cbl::select<double>(red, true_inda);

89 for (size_t i=0; i<true_inda.size(); ++i)

90 W1a.push_back(std::exp(-0.5*(std::pow((zin_sel[i]-m_zobs[iz]),

2)/std::pow(m_sgzar[isgz], 2))));↪→
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91 auto ipx_sel = select<int>(ipx1, true_inda);

92 for (size_t i=0; i<true_inda.size(); ++i)

93 ipxA.push_back(ipx_sel[i]);

94 for (size_t ig=0; ig<true_inda.size(); ++ig)

95 map_ADF[iz][isgz][ipxA[ig]] += W1a[ig];

96 for (size_t i=0; i<mskin.size(); ++i) {

97 if (cnzero[i]==true) {

98 map_ADF[iz][isgz][i] = map_ADF[iz][isgz][i]/mskin[i];

99 nocounts[iz][isgz][i] = map_ADF[iz][isgz][i];

100 nang[iz][isgz] += map_ADF[iz][isgz][i];

101 }

102 }

103

104 auto iter_n = std::next(cnzero.begin(), 12*m_ns*m_ns);

105 nang[iz][isgz] = nang[iz][isgz]/std::accumulate(cnzero.begin(), iter_n,

0.0);↪→

106 double meanADF = 0;

107 for (size_t i=0; i<mskin.size(); ++i) {

108 if (cnzero[i]==true) {

109 map_ADF[iz][isgz][i] = map_ADF[iz][isgz][i]/nang[iz][isgz];

110 meanADF += map_ADF[iz][isgz][i];

111 }

112 }

113 meanADF = meanADF/std::accumulate(cnzero.begin(), iter_n, 0.0);

114 for (size_t i=0; i<mskin.size(); ++i) {

115 if (cnzero[i]==true)

116 map_ADF[iz][isgz][i] = map_ADF[iz][isgz][i] - meanADF;

117 }

118 }

119 }

120 return map_ADF;

121 }

122

123 std::tuple<std::vector<std::vector<std::vector<double>>>

,std::vector<std::vector<std::vector<double>>>>

cbl::measure::MapCalculator::ADF_ARF (std::vector<double> const& mskin)

const

↪→

↪→

↪→

124 {

125

126 std::vector<bool> cnzero(mskin.size()); // For the mask application

127

128 std::transform(mskin.begin(), mskin.end(), cnzero.begin(), [](double x)

129 {
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130 return x>0.0;

131 });

132 // Now cnzero is a boolean array (0 and 1), values depending on the

matching of the condition in the lambda function↪→

133

134 const unsigned int nzobs = m_zobs.size();

135 const unsigned int nsgz = m_sgzar.size();

136 const unsigned int size = m_data->nObjects();

137

138 auto ipx1 = HealpixMapping();

139

140 std::vector<std::vector<std::vector<double>>> map_ADF (nzobs,

std::vector<std::vector<double>>(nsgz, std::vector<double>(12 * m_ns *

m_ns, 0.0)));

↪→

↪→

141 std::vector<std::vector<std::vector<double>>> nocounts (nzobs,

std::vector<std::vector<double>>(nsgz, std::vector<double>(12 * m_ns *

m_ns, 0.0)));

↪→

↪→

142 std::vector<std::vector<std::vector<double>>> map_ARF (nzobs,

std::vector<std::vector<double>>(nsgz, std::vector<double>(12 * m_ns *

m_ns, 0.0)));

↪→

↪→

143 std::vector<std::vector<double>> nang (nzobs, std::vector<double>(nsgz,

0.0));↪→

144

145 for (size_t iz=0; iz<nzobs; ++iz) {

146 for (size_t isgz=0; isgz<nsgz; ++isgz) {

147 std::vector<int> ipxA;

148 std::vector<double> W1a;

149 std::vector<int> true_inda;

150 std::vector<bool> csel1a(size, 0);

151 std::vector<double> zeff;

152 std::vector<double> zav1a_vec;

153 std::vector<bool> cnzero2(12*m_ns*m_ns, false);

154 for (size_t i=0; i<ipx1.size(); ++i) {

155 csel1a[i] =

((std::abs(m_data->redshift(i)-m_zobs[iz])<(m_nsg*m_sgzar[isgz])) &&

(mskin[ipx1[i]]!=0));

↪→

↪→

156 if (csel1a[i]==true)

157 true_inda.push_back(i);

158 }

159

160 std::vector<double> red;

161 for (size_t ind=0; ind<size; ++ind)

162 red.push_back(m_data->redshift(ind));

153



163 auto zin_sel = cbl::select<double>(red, true_inda);

164 for (size_t i=0; i<true_inda.size(); ++i)

165 W1a.push_back(std::exp(-0.5*(std::pow((zin_sel[i]-m_zobs[iz]),

2)/std::pow(m_sgzar[isgz], 2))));↪→

166 auto ipx_sel = select<int>(ipx1, true_inda);

167 for (size_t i=0; i<true_inda.size(); ++i) {

168 ipxA.push_back(ipx_sel[i]);

169 zav1a_vec.push_back((W1a[i]*zin_sel[i]));

170 zeff.push_back(zin_sel[i]);

171 }

172

173 double zav1a = std::accumulate(zav1a_vec.begin(), zav1a_vec.end(),

0.0)/std::accumulate(W1a.begin(), W1a.end(), 0.0);↪→

174 for (size_t ig=0; ig<true_inda.size(); ++ig) {

175 map_ADF[iz][isgz][ipxA[ig]] += W1a[ig];

176 map_ARF[iz][isgz][ipxA[ig]] += W1a[ig]*(zeff[ig]-zav1a);

177 }

178 for (size_t i=0; i<mskin.size(); ++i)

179 cnzero2[i] = (map_ADF[iz][isgz][i]!=0); // assigning bools

180 for (size_t i=0; i<mskin.size(); ++i) {

181 if (cnzero[i]==true) {

182 map_ADF[iz][isgz][i] = map_ADF[iz][isgz][i]/mskin[i];

183 nocounts[iz][isgz][i] = map_ADF[iz][isgz][i];

184 nang[iz][isgz] += map_ADF[iz][isgz][i];

185 }

186 if (cnzero2[i]==true)

187 map_ARF[iz][isgz][i] = map_ARF[iz][isgz][i]/mskin[i];

188 }

189

190 auto iter_n = std::next(cnzero.begin(), 12*m_ns*m_ns);

191 nang[iz][isgz] = nang[iz][isgz]/std::accumulate(cnzero.begin(), iter_n,

0.0);↪→

192 double meanADF = 0;

193 double meanARF = 0;

194 for (size_t i=0; i<mskin.size(); ++i) {

195 if (cnzero[i]==true) {

196 map_ADF[iz][isgz][i] = map_ADF[iz][isgz][i]/nang[iz][isgz];

197 meanADF += map_ADF[iz][isgz][i];

198 }

199 if (cnzero2[i]==true) {

200 map_ARF[iz][isgz][i] = map_ARF[iz][isgz][i]/nang[iz][isgz];

201 meanARF += map_ARF[iz][isgz][i];

202 }
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203 }

204 meanADF = meanADF/std::accumulate(cnzero.begin(), iter_n, 0.0);

205 auto iter_n2 = std::next(cnzero2.begin(), 12*m_ns*m_ns);

206 meanARF = meanARF/std::accumulate(cnzero2.begin(), iter_n2, 0.0);

207 for (size_t i=0; i<mskin.size(); ++i) {

208 if (cnzero[i]==true)

209 map_ADF[iz][isgz][i] = map_ADF[iz][isgz][i]-meanADF;

210 if (cnzero2[i]==true)

211 map_ARF[iz][isgz][i]=map_ARF[iz][isgz][i]-meanARF;

212 }

213 }

214 }

215 return std::make_tuple(map_ADF, map_ARF);

216 }

217

218 std::vector<std::vector<std::vector<double>>>

cbl::measure::MapCalculator::ADFr (std::vector<double> const& mskin,

std::vector<double> const& zH) const

↪→

↪→

219 {

220 std::vector<bool> cnzero(mskin.size()); // For the mask application

221

222 std::transform(mskin.begin(), mskin.end(), cnzero.begin(), [](double x)

223 {

224 return x>0.0;

225 });

226 // Now cnzero is a boolean array (0 and 1), values depending on the

matching of the condition in the lambda function↪→

227

228 const unsigned int nzobs = m_zobs.size();

229 const unsigned int nsgz = m_sgzar.size();

230 const unsigned int size = m_data->nObjects();

231

232 auto ipx1 = HealpixMapping();

233

234 std::vector<std::vector<std::vector<double>>> map_ADFr (nzobs,

std::vector<std::vector<double>>(nsgz, std::vector<double>(12 * m_ns *

m_ns, 0.0)));

↪→

↪→

235 std::vector<std::vector<double>> nangr (nzobs, std::vector<double>(nsgz,

0.0));↪→

236

237 for (size_t iz=0; iz<nzobs; ++iz) {

238 for (size_t isgz=0; isgz<nsgz; ++isgz) {

239 std::vector<int> ipxA;
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240 std::vector<double> W1b;

241 std::vector<int> true_indb;

242 std::vector<bool> csel1b(size, 0);

243 std::vector<double> zeff;

244 std::vector<bool> cnzero2(12*m_ns*m_ns, false);

245 for (size_t i=0; i<ipx1.size(); ++i) {

246 csel1b[i] = (std::abs(zH[i]-m_zobs[iz])<m_nsg*m_sgzar[isgz]) &&

(mskin[ipx1[i]]!=0);↪→

247 if (csel1b[i]==true)

248 true_indb.push_back(i);

249 }

250

251 std::vector<double> red;

252 for (size_t ind=0; ind<size; ++ind)

253 red.push_back(m_data->redshift(ind));

254 auto zH_sel = cbl::select<double>(red, true_indb);

255 for (size_t i=0; i<true_indb.size(); ++i)

256 W1b.push_back(std::exp(-0.5*(std::pow((zH_sel[i]-m_zobs[iz]),

2)/std::pow(m_sgzar[isgz], 2))));↪→

257 auto ipx_sel = select<int>(ipx1, true_indb);

258 for (size_t i=0; i<true_indb.size(); ++i)

259 ipxA.push_back(ipx_sel[i]);

260 for (size_t ig=0; ig<true_indb.size(); ++ig)

261 map_ADFr[iz][isgz][ipxA[ig]] += W1b[ig];

262 for (size_t i=0; i<mskin.size(); ++i)

263 cnzero2[i] = (map_ADFr[iz][isgz][i]!=0); // assigning bools

264 for (size_t i=0; i<mskin.size(); ++i) {

265 if (cnzero[i]==true) {

266 map_ADFr[iz][isgz][i] = map_ADFr[iz][isgz][i]/mskin[i];

267 nangr[iz][isgz] += map_ADFr[iz][isgz][i];

268 }

269 }

270

271 auto iter_n = std::next(cnzero.begin(), 12*m_ns*m_ns);

272 nangr[iz][isgz] = nangr[iz][isgz]/std::accumulate(cnzero.begin(),

iter_n, 0.0);↪→

273 double meanADFr = 0;

274 for (size_t i=0; i<mskin.size(); ++i) {

275 if (cnzero[i]==true) {

276 map_ADFr[iz][isgz][i] = map_ADFr[iz][isgz][i]/nangr[iz][isgz];

277 meanADFr += map_ADFr[iz][isgz][i];

278 }

279 }
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280 meanADFr=meanADFr/std::accumulate(cnzero.begin(), iter_n, 0.0);

281 for (size_t i=0; i<mskin.size(); ++i) {

282 if (cnzero[i]==true)

283 map_ADFr[iz][isgz][i] = map_ADFr[iz][isgz][i] - meanADFr;

284 }

285 }

286 }

287 return map_ADFr;

288 }

289

290 std::tuple<std::vector<std::vector<std::vector<double>>>

,std::vector<std::vector<std::vector<double>>>>

cbl::measure::MapCalculator::ADFr_ARFr (std::vector<double> const& mskin,

std::vector<double> const& zH) const

↪→

↪→

↪→

291 {

292 std::vector<bool> cnzero(mskin.size()); // For the mask application

293

294 std::transform(mskin.begin(), mskin.end(), cnzero.begin(), [](double x)

295 {

296 return x>0.0;

297 });

298 // Now cnzero is a boolean array (0 and 1), values depending on the

matching of the condition in the lambda function↪→

299

300 const unsigned int nzobs = m_zobs.size();

301 const unsigned int nsgz = m_sgzar.size();

302 const unsigned int size = m_data->nObjects();

303

304 auto ipx1 = HealpixMapping();

305

306 std::vector<std::vector<std::vector<double>>> map_ADFr (nzobs,

std::vector<std::vector<double>>(nsgz, std::vector<double>(12 * m_ns *

m_ns, 0.0)));

↪→

↪→

307 std::vector<std::vector<std::vector<double>>> map_ARFr (nzobs,

std::vector<std::vector<double>>(nsgz, std::vector<double>(12 * m_ns *

m_ns, 0.0)));

↪→

↪→

308 std::vector<std::vector<double>> nangr (nzobs, std::vector<double>(nsgz,

0.0));↪→

309

310 for (size_t iz=0; iz<nzobs; ++iz) {

311 for (size_t isgz=0; isgz<nsgz; ++isgz) {

312 std::vector<int> ipxA;

313 std::vector<double> W1b;
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314 std::vector<int> true_indb;

315 std::vector<bool> csel1b(size, 0);

316 std::vector<double> zeff;

317 std::vector<double> zav1b_vec;

318 std::vector<bool> cnzero2(12*m_ns*m_ns, false);

319 for (size_t i=0; i<ipx1.size(); ++i) {

320 csel1b[i] = (std::abs(zH[i]-m_zobs[iz])<m_nsg*m_sgzar[isgz]) &&

(mskin[ipx1[i]]!=0);↪→

321 if (csel1b[i]==true)

322 true_indb.push_back(i);

323 }

324

325 std::vector<double> red;

326 for (size_t ind=0; ind<size; ++ind)

327 red.push_back(m_data->redshift(ind));

328 auto zH_sel = cbl::select<double>(red, true_indb);

329 for (size_t i=0; i<true_indb.size(); ++i)

330 W1b.push_back(std::exp(-0.5*(std::pow((zH_sel[i]-m_zobs[iz]),

2)/std::pow(m_sgzar[isgz], 2))));↪→

331 auto ipx_sel = select<int>(ipx1, true_indb);

332 for (size_t i=0; i<true_indb.size(); ++i) {

333 zav1b_vec.push_back(W1b[i]*zH_sel[i]);

334 ipxA.push_back(ipx_sel[i]);

335 zeff.push_back(zH_sel[i]);

336 }

337

338 double zav1b = std::accumulate(zav1b_vec.begin(), zav1b_vec.end(),

0.0)/std::accumulate(W1b.begin(), W1b.end(), 0.0);↪→

339 for (size_t ig=0; ig<true_indb.size(); ++ig) {

340 map_ADFr[iz][isgz][ipxA[ig]] += W1b[ig];

341 map_ARFr[iz][isgz][ipxA[ig]] += W1b[ig]*(zeff[ig]-zav1b);

342 }

343 for (size_t i=0; i<mskin.size(); ++i)

344 cnzero2[i] = (map_ADFr[iz][isgz][i]!=0); // assigning bools

345 for (size_t i=0; i<mskin.size(); ++i) {

346 if (cnzero[i]==true) {

347 map_ADFr[iz][isgz][i] = map_ADFr[iz][isgz][i]/mskin[i];

348 nangr[iz][isgz] += map_ADFr[iz][isgz][i];

349 }

350 if (cnzero2[i]==true)

351 map_ARFr[iz][isgz][i] = map_ARFr[iz][isgz][i]/mskin[i];

352 }

353
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354 auto iter_n = std::next(cnzero.begin(), 12*m_ns*m_ns);

355 nangr[iz][isgz] = nangr[iz][isgz]/std::accumulate(cnzero.begin(),

iter_n, 0.0);↪→

356 double meanADFr = 0;

357 double meanARFr = 0;

358 for (size_t i=0; i<mskin.size(); ++i) {

359 if (cnzero[i]==true) {

360 map_ADFr[iz][isgz][i] = map_ADFr[iz][isgz][i]/nangr[iz][isgz];

361 meanADFr += map_ADFr[iz][isgz][i];

362 }

363 if (cnzero2[i]==true) {

364 map_ARFr[iz][isgz][i] = map_ARFr[iz][isgz][i]/nangr[iz][isgz];

365 meanARFr += map_ARFr[iz][isgz][i];

366 }

367 }

368 meanADFr = meanADFr/std::accumulate(cnzero.begin(), iter_n, 0.0);

369 auto iter_n2 = std::next(cnzero2.begin(), 12*m_ns*m_ns);

370 meanARFr = meanARFr/std::accumulate(cnzero2.begin(), iter_n2, 0.0);

371 for (size_t i=0; i<mskin.size(); ++i) {

372 if (cnzero[i]==true)

373 map_ADFr[iz][isgz][i] = map_ADFr[iz][isgz][i]-meanADFr;

374 if (cnzero2[i]==true)

375 map_ARFr[iz][isgz][i] = map_ARFr[iz][isgz][i]-meanARFr;

376 }

377 }

378 }

379 return std::make_tuple(map_ADFr, map_ARFr);

380 }

381

382 std::vector<std::vector<std::vector<std::vector<std::vector<double>>>>>

cbl::measure::MapCalculator::SN (std::vector<double> const& mskin, const

int nran) const

↪→

↪→

383 {

384 std::vector<bool> cnzero(mskin.size()); // For the mask application

385

386 std::transform(mskin.begin(), mskin.end(), cnzero.begin(), [](double x)

387 {

388 return x>0.0;

389 });

390 // Now cnzero is a boolean array (0 and 1), values depending on the

matching of the condition in the lambda function↪→

391

392 const unsigned int nzobs = m_zobs.size();
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393 const unsigned int nsgz = m_sgzar.size();

394 const unsigned int size = m_data->nObjects();

395 cbl::random::UniformRandomNumbers rnd(0., 1., m_seed);

396

397 auto ipx1 = HealpixMapping();

398

399 auto map_SN =

std::vector<std::vector<std::vector<std::vector<std::vector<double>>>>>

(nzobs, std::vector<std::vector<std::vector<std::vector<double>>>>(nsgz,

std::vector<std::vector<std::vector<double>>>(nran,

std::vector<std::vector<double>>(2, std::vector<double>(12 * m_ns * m_ns,

0.0)))));

↪→

↪→

↪→

↪→

↪→

400

401 for (size_t iz=0; iz<nzobs; ++iz) {

402 for (size_t isgz=0; isgz<nsgz; ++isgz) {

403 std::vector<int> ipxA;

404 std::vector<double> W1a;

405 std::vector<int> true_inda;

406 std::vector<bool> csel1a(size, 0);

407 std::vector<double> zeff;

408 std::vector<double> zav1a_vec;

409 std::vector<bool> cnzero2(12*m_ns*m_ns, false);

410 for (size_t i=0; i<ipx1.size(); ++i) {

411 csel1a[i] =

((std::abs(m_data->redshift(i)-m_zobs[iz])<(m_nsg*m_sgzar[isgz])) &&

(mskin[ipx1[i]]!=0));

↪→

↪→

412 if (csel1a[i]==true)

413 true_inda.push_back(i);

414 }

415

416 std::vector<double> red;

417 for (size_t ind=0; ind<size; ++ind)

418 red.push_back(m_data->redshift(ind));

419 auto zin_sel = cbl::select<double>(red, true_inda);

420 for (size_t i=0; i<true_inda.size(); ++i)

421 W1a.push_back(std::exp(-0.5*(std::pow((zin_sel[i]-m_zobs[iz]),

2)/std::pow(m_sgzar[isgz], 2))));↪→

422 auto ipx_sel = select<int>(ipx1, true_inda);

423 for (size_t i=0; i<true_inda.size(); ++i) {

424 ipxA.push_back(ipx_sel[i]);

425 zav1a_vec.push_back((W1a[i]*zin_sel[i]));

426 zeff.push_back(zin_sel[i]);

427 }
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428

429 double zav1a = std::accumulate(zav1a_vec.begin(), zav1a_vec.end(),

0.0)/std::accumulate(W1a.begin(), W1a.end(), 0.0);↪→

430 double cumsum = 0;

431 std::vector<int> true_cnzero;

432 for (size_t i=0; i<cnzero.size(); ++i) {

433 if (cnzero[i]==true)

434 true_cnzero.push_back(i);

435 }

436 std::vector<double> cum = cbl::select<double>(mskin, true_cnzero);

437 for (size_t i=0; i<cum.size(); ++i) {

438 if (i>0)

439 cumsum = cum[i-1];

440 cum[i]= cum[i]+cumsum;

441 }

442 std::vector<double> Cprobar;

443 for (size_t i=0; i<cum.size(); ++i)

444 Cprobar.push_back(cum[i]/std::accumulate(mskin.begin(), mskin.end(),

0.0));↪→

445 std::vector<double> jeff = cbl::arange(0, static_cast<unsigned

int>(std::accumulate(cnzero.begin(), cnzero.end(), 0)), 1);↪→

446 assert(Cprobar.size()==jeff.size());

447 std::vector<int> jindex;

448 auto all_jindex = cbl::arange(12*m_ns*m_ns);

449 for (size_t i=0; i<cnzero.size(); ++i) {

450 if (cnzero[i]==true)

451 jindex.push_back(all_jindex[i]);

452 }

453 std::vector<std::vector<double>> probg (nran,

std::vector<double>(true_inda.size(), 0.0));↪→

454

455 // Filling with randoms

456 for (int r=0; r<nran; ++r) {

457 for (size_t c=0; c<true_inda.size(); ++c)

458 probg[r][c] = rnd();

459 }

460 std::vector<std::vector<int>> jgar0 (nran,

std::vector<int>(true_inda.size(), 0.0));↪→

461 for (int r=0; r<nran; ++r) {

462 for (size_t c=0; c<true_inda.size(); ++c) {

463 //sets vanishing outrange values

464 if (probg[r][c]>*std::max_element(Cprobar.begin(), Cprobar.end())

|| probg[r][c]<*std::min_element(Cprobar.begin(), Cprobar.end()))↪→
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465 jgar0[r][c] = 0;

466 else jgar0[r][c] = static_cast<int>(cbl::interpolated(probg[r][c],

Cprobar, jeff, "Linear"));↪→

467 }

468 }

469 std::vector<std::vector<double>> jgar (nran,

std::vector<double>(true_inda.size(), 0.0));↪→

470 for (int r=0; r<nran; ++r) {

471 for (size_t c=0; c<true_inda.size(); ++c)

472 jgar[r][c] = jindex[jgar0[r][c]];

473 }

474 for (int jran=0; jran<nran; ++jran) {

475 for (size_t ig=0; ig<true_inda.size(); ++ig) {

476 int jg = jgar[jran][ig];

477 map_SN[iz][isgz][jran][0][jg] += W1a[ig];

478 map_SN[iz][isgz][jran][1][jg] += W1a[ig]*(zeff[ig]-zav1a);

479 }

480 for (size_t i=0; i<mskin.size(); ++i)

481 cnzero2[i] = map_SN[iz][isgz][jran][0][i]!=0; // assigning bools

482 std::vector<double> nangT_vec;

483 std::vector<double> nangT2_vec;

484 for (size_t i=0; i<mskin.size(); ++i) {

485 if (cnzero[i]==true) {

486 map_SN[iz][isgz][jran][0][i] =

map_SN[iz][isgz][jran][0][i]/mskin[i];↪→

487 nangT_vec.push_back(map_SN[iz][isgz][jran][0][i]);

488 }

489 }

490 for (size_t i=0; i<mskin.size(); ++i) {

491 if (cnzero2[i]==true)

492 map_SN[iz][isgz][jran][1][i] =

map_SN[iz][isgz][jran][1][i]/mskin[i];↪→

493 }

494 double nangT = std::accumulate(nangT_vec.begin(), nangT_vec.end(),

0.0)/nangT_vec.size();↪→

495 double meanSN0 = 0;

496 double meanSN1 = 0;

497 for (size_t i=0; i<mskin.size(); ++i) {

498 if (cnzero[i]==true) {

499 map_SN[iz][isgz][jran][0][i] =

map_SN[iz][isgz][jran][0][i]/nangT;↪→

500 meanSN0 += map_SN[iz][isgz][jran][0][i];

501 }
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502 if (cnzero2[i]==true) {

503 map_SN[iz][isgz][jran][1][i] =

map_SN[iz][isgz][jran][1][i]/nangT;↪→

504 meanSN1 += map_SN[iz][isgz][jran][1][i];

505 }

506 }

507 meanSN0 = meanSN0/std::accumulate(cnzero.begin(), cnzero.end(), 0.0);

508 meanSN1 = meanSN1/std::accumulate(cnzero2.begin(), cnzero2.end(),

0.0);↪→

509 for (size_t i=0; i<mskin.size(); ++i) {

510 if (cnzero2[i]==true)

511 map_SN[iz][isgz][jran][1][i] =

map_SN[iz][isgz][jran][1][i]-meanSN1;↪→

512 if (cnzero[i]==true)

513 map_SN[iz][isgz][jran][0][i] =

map_SN[iz][isgz][jran][0][i]-meanSN0;↪→

514 }

515 }

516 }

517 }

518 return map_SN;

519 }

520

521 void cbl::measure::MapCalculator::print_map (const

std::vector<std::vector<std::vector<double>>>& map, const std::string&

filename) const {

↪→

↪→

522

523 std::ofstream outputFile(filename);

524

525 if (!outputFile.is_open()) {

526 ErrorCBL("An error occured in opening the file "+filename, "print_map",

"MapCalculator.cpp");↪→

527 return;

528 }

529 // Printing map_ADF as 3D array

530 for (size_t ra=0; ra<map.size(); ++ra) {

531 for (size_t dec=0; dec<map[ra].size(); ++dec) {

532 for (size_t z=0; z<map[ra][dec].size(); ++z) {

533 outputFile << map[ra][dec][z] << " ";

534 }

535 outputFile << std::endl;

536 }

537 outputFile << std::endl;
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538 }

539 // Closing file

540 outputFile.close();

541 coutCBL << "Data printed on " << filename << std::endl;

542 }

543
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