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Sommario

Il seguente elaborato si propone l’obiettivo di esplicitare ed analizzare le strutture ge-
ometriche che sottostanno ai processi fisici, in particolare quelli quantistici. Saranno
definiti i concetti di geometria differenziale e topologia necessari, e l’analisi verrà con-
dotta partendo dall’introduzione del concetto di fase di Berry, una fase acquisita dallo
stato del sistema dopo aver compiuto un ciclo adiabatico. La sua scoperta, a opera
del fisico M. V. Berry nei primi anni ’80, è infatti storicamente riconosciuta come una
svolta nel mondo della fisica, poiché ha sancito l’importanza della geometria nello stu-
dio di fenomeni fisici. Questo concetto verrà approfondito esplorando la sua natura nel
contesto dei fibrati U(1), per poi ampliarlo formulando l’esistenza di una fase di Berry
“non-Abeliana”. Altrettanta attenzione sarà data a quelli che sono gli aspetti geometrici
e, soprattutto in questo caso, topologici, quando verrà presentato il concetto di com-
putazione quantistica topologica. Questa metodologia di computazione potenzialmente
rivoluzionaria mira a sfruttare le proprietà topologiche di particolari particelle, dette
anyoni non-Abeliani, per ottenere tecnologie quantistiche immuni — o, quantomeno,
particolarmente resistenti — alla decoerenza quantistica, una delle fonti di errore mag-
giormente complesse da gestire nel caso di computazione quantistica “convenzionale”. Nel
complesso, verrà dunque condotto uno studio di sistemi quantistici dal punto di vista
matematico-geometrico, partendo da definizioni formali, passando per la descrizione di
alcuni casi applicativi, fino all’impiego di questo approccio in vere e proprie applicazioni
pratiche.



Abstract

This work intends to articulate and analyze the geometric structures underlying physical
processes, particularly quantum ones. The necessary concepts of differential geometry
and topology will be defined, and the analysis will begin with the introduction of the
Berry’s phase, a phase acquired by the state of the system when undergoing an adiabatic
cycle. Its discovery, accomplished by physicist M. V. Berry in the early 1980s, is indeed
recognized as a milestone in physics, since it affirmed the importance of geometry in
the study of physical phenomena. This concept is further explored by examining its
nature within the framework of U(1) bundles, and later generalized to formulate the
existence of "non-Abelian" Berry’s phase. The same emphasis is given to the geometric
and, in this case, also topological aspects, when addressing the concept of topological
quantum computation. This potentially revolutionary approach to quantum computing
seeks to exploit topological properties of a peculiar type of particles, known as non-
Abelian anyons, in order to develop quantum technologies that are immune — or, at
least, highly resistant — to quantum decoherence, one of the most challenging source of
errors to manage in conventional quantum computation. Overall, a study of quantum
systems from a mathematical-geometric point of view will be conducted, starting from
formal definitions, passing through descriptions and applications to some applicative
cases3., up to the use of this approach in real practical applications.
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Introduction
This thesis aims to provide a geometric perspective on quantum systems by examining
the mathematical structures underlying their behavior. Adopting such a point of view,
not only enhances the visualization of physical problems, but also reveals unique and
significant aspects intrinsic to these systems.

Moreover, this perspective can lead to a renewal of practical applications; specifically,
the geometric and topological aspects of certain quantum systems underpin the emer-
gence — particularly in the context of quantum computing — of topological quantum
computation.

The foundational mathematical tools used throughout this work include manifolds,
differential forms, holonomies, fiber bundles and group theory, together with key notions
of topology. These concepts are introduced in Chapter 1 and in a subsection of Chapter 3,
equipping the reader with the necessary background to approach the physical applications
discussed in the remaining portions.

Chapter 2 focuses on the well-known concept of Berry’s phase, i. e., the geometric
phase acquired by the state of a quantum system which undergoes an adiabatic cycle. Its
discovery in 1984 by the physicist M. V. Berry [1], marked the turning point, after which
interest in geometric aspects of quantum mechanics was profoundly renewed. What is
remarkable about Berry’s phase is that, despite being a global phase, it has observable
consequences in certain physical contexts. Furthermore, this phase depends exclusively
on the geometry of the abstract parameter space, rather than the system’s specific dy-
namics. More precisely, it will be demonstrated that Berry’s phase, being deeply rooted
in the geometric structure of the system’s state space, is naturally described within the
framework of U(1) fiber bundles. In this context, related quantities such as Berry’s con-
nection and Berry’s curvature are also defined, eventually leading to the interpretation
of Berry’s phase as a manifestation of holonomy [2].

In the same chapter, examples of Berry’s phase emerging from physical systems are
briefly analyzed. Our discussion will include a re-interpretation of the Aharonov-Bohm
effect and a study of the degeneracy case. The latter is first examined through an analysis
of a two-level system evolving near the degeneracy point in parameter space and is later
generalized to introduce the concept of the non-Abelian Berry’s phase [3].

Chapter 3, instead, intend to offer a general overview of the fundamental aspects
of topological quantum computation, a way of performing quantum computation that
exploits the topological properties of non-Abelian anyons to develop decoherence-free
technologies — idea originally conceived in [4]. Anyons are quasiparticles, which may
arise in physical systems constrained in two dimensions. They obey an exotic type of
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statistics, distinct form those of bosons and fermions, referred to as fractional statistics.
This statistical behavior is described by the so-called braid group, a non-Abelian group
(in general), which characterize exchange of strands. Essentially, when two particles
are exchanged in an anyonic system, the state evolves by acquiring either an arbitrary
phase factor (in the case of Abelian anyons) or through a unitary matrix (for non-
Abelian anyons). The presence of non-Abelian anyons in topological state of matter
creates a degenerate subspace protected from local transformations. Adiabatic evolutions
(obtained by braiding) of these anyons on such a space are described by the non-Abelian
Berry’s phase addressed in Chapter 2.

However, an introductory section about quantum computation — where concept
such as qubits, quantum gates and decoherence are addressed — is clearly necessary be-
fore actually providing a characterization of topological computing. Parallelism between
physics and their geometric interpretations are constantly highlighted, as they facilitate
the comprehension of these concepts.

Finally, the last section is entirely dedicated to quantum topological computation
[5]. A specific anyonic model, namely, that of Ising anyons, will be introduced. After
mathematically describing how fusion and braiding of anyons occur, an actual example
is presented where six anyons are used to create two qubits. It is demonstrated that
two-qubit gates using anyons and braiding do coincide with "ordinary" quantum gates.
Ultimately, it is noted that, in a real-world context, even topological computers would
not be entirely decoherence-free.

In summary, this work aspires to analyze how geometric and topological methods
provide powerful tools to describe and understand quantum systems. From the very cen-
tral concept of Berry’s phase, with its deep geometric roots, to the advanced framework
of topological quantum computation, the intrinsic connection between mathematics and
physical phenomena becomes evident. By examining both fundamental principles and
practical applications, this thesis highlights the key insights that emerge when physics
and geometry are brought together. In doing so, geometry and topology will be re-
vealed not as mere abstract constructs but as indispensable frameworks for uncovering
the hidden structures and mechanisms that govern quantum systems.
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1 Differential geometry and fiber bundles
In this chapter, we introduce the essential mathematical and differential geometry con-
cepts needed to understand the topics discussed in the following chapters.

1.1 Basic definitions

We shall start with basic concepts that will form the foundation of this chapter: we will
explore definitions related to manifolds and vectors, and eventually address concepts
such as tensors and differential forms.

1.1.1 Manifolds

A manifold M is a n-dimensional topological space that is locally homeomorphic1 to the
n-dimensional Euclidean space Rn.
Thus, for every point P ∈ M there exists a map from an open neighbourhood D:

φ : D → Rn (1.1)

that is continuous and 1-1 and which provides the coordinates xµ to the point, so that
P = (x1(P ), x2(P ), . . . , xn(P )).
The pair (D, φ) is called chart.
A set of charts which covers the whole manifold M, that is A = {{(Ai, fi)} :
M ⊆ ∪iAi}, is called atlas.

The most common examples of manifolds are Rn and the S2 sphere in R3; on the other
hand, the surface of a cone is not a manifold. A more sophisticated example is represented
by the phase space of a system consisting of N particles, which is a 6N-dimensional
manifold [6].

A manifold M is said homeomorphic to M′ if there exist an homeomorphism F : M →
M′; in other words, M can be continuously transformed into M′ and vice versa. For
instance, a S2 sphere is homeomorphic to an ellipsoid and the surface of a teacup is
homeomorphic to the surface of a torus [7].
Furthermore, a manifold is differentiable if it admits a differentiable structure, meaning

1A map f : A → B from a space A onto the space B is said homeomorphism if it is continuous, 1-1
and such that its inverse φ−1 is also continuous.
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Fig. 1.1: Diagram showing the parameterized curve, with λP representing the parameter along
the curve.

that smooth functions can be defined on it. More precisely, given any two different charts
on M, (D1, φ1) and (D2, φ2), such that D1 ∩ D2 ̸= ∅, the map:

ψ = φ1 ◦ φ−1
2 : φ2(D1 ∩ D2) → φ1(D1 ∩ D2) (1.2)

i.e., a change of coordinates, is k-times differentiable ψ ∈ Ck. If ψ ∈ C∞, the manifold
is said smooth.
This differentiable structure allows the use of calculus on the manifold — which will
be clearly independent from the coordinates chosen [7] for what we have just argued
—, enabling formal definitions of notions such as derivatives, tangent spaces, and vector
fields. Indeed, one of the most significant examples of a differentiable manifold is the
vector space, that will be introduced in the next subsection.

According to their global2 characteristics, manifolds are divided into classes: two man-
ifolds M, M′′ belong to the same class iff there exists a one-to-one and C∞ map
G : M → M′′ and whose inverse G−1 is also C∞ which is called diffeomorphism of
M onto M′′. M and M′′ are said diffeomophic and the usual notation M ≃ M′′. A
diffeomorphism is always a homeomorphism, too.

Curves on a manifold.
Consider an open interval on the real line I ⊂ R, I = (a, b) and a manifold M. A curve
is a differentiable mapping3 defined by [6]:

γ : I ⊂ R → M. (1.3)

2It follows from the definition itself that two manifolds of the same dimension are locally identical.
3By differentiable mapping we simply mean that the coordinates of the image point are functions

belonging to Ck.
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Now, a better definition can be formulated by taking into account the map φ : M → Rn

in order to consider φ ◦ γ:
φ ◦ γ : I ⊂ R → Rn (1.4)

equivalent to:
xi = xi(λ), λ ∈ (a, b), i = 1, ..., n (1.5)

which represents the parametrization of the curve in terms of the parameter λ.
The point P on the manifold is described by the image of the curve at parameter λP ,
with local coordinates P = {xi(λP ), i = 1, ..., n} (see Fig.1.1).

1.1.2 Vector spaces

First of all, we shall define a vector, which, on a manifold, is usually defined as a vector
tangent to a curve in M. Let us see how.

Consider a curve in a n-dimensional manifold M passing through the point P , that is
xi(λ) where λ is a parameter and i = 1, ..., n. A differentiable mapping f : M → R
can be written as4 f(xi) = f(x1, ..., xn). It will be defined for each point P of the curve
f(xi(λ)) = g(λ) and thus, by differentiating with respect to the parameter, we get:

dg

dλ
=

∑
i

dxi

dλ

∂f

∂xi

∣∣∣∣
λ=λP

(1.6)

which has to held true for any function g (namely, for any set of coordinates expressed
employing λ). Therefore we are allowed to write [6]:

d

dλ
=

∑
i

dxi

dλ

∂

∂xi
. (1.7)

The latter is nothing but our definition of vector, which is, essentially, the definition of a
tangent vector to the curve xi(λ): the terms dxi are just infinitesimal displacements and
dividing them by dλ changes nothing apart from their "length". They are considered to
be the components of the vector. Then, it is quite simple to understand that the other
set of terms, ∂/∂xi, makes up the basis of a vector space.
Hence, we shall now consider a different curve xi(µ) passing through the same point P
in order to better analyze the definition 1.7. Once again, we are able to get to:

d

dµ
=

∑
i

dxi

dµ

∂

∂xi
. (1.8)

4There actually actually is an abuse of notation, as f really is f ◦ φ−1.
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Given a, b two scalars, we can linearly combine the two vectors [6]:

a
d

dλ
+ b

d

dµ
=

∑
i

(
a
dxi

dλ
+ b

dxi

dµ

)
∂

∂xi
=

d

dν
(1.9)

which is exactly the expression of another tangent vector d/dν whose components are
a(dxi/dλ) + b(dxi/dµ).
It is now straightforward to associate all the vectors tangent at the same point P with
a vector space whose basis ei consists of vectors of the form ∂/∂xi. In particular, the
vector space is the tangent vector space: for each point P ∈ M it is possible to attach
a copy of Rn, called the tangent vector space [8] it is denoted by TPM and its dimension
equals the manifold’s dimension.

We can conclude by pointing out that, in this way, the one-to-one correspondence be-
tween tangent vectors and derivatives along the curve becomes clear.

Remark. This point of view is convenient as it does not rely on the concept of coordi-
nates and, moreover, it is naturally connected to the concept of motion along the curve
(derivative) [6].

We shall now fix the notation5. V denotes a vector, while the numbers V i represent the
components:

V =
∑
i

V i ∂

∂xi
(1.10)

Consider a point P on the manifold such that P ∈ D1 ∩ D2 and let φ1(P ) = {x1(P ),
..., xn(P )} and φ2(P ) = {y1(P ), ..., yn(P )} be the maps that provides two different sets of
coordinates for P . Then, a vector V can be expressed through two equivalent expressions
[7]:

V =
∑
i

V i ∂

∂xi
=

∑
j

V ′j ∂

∂yj
(1.11)

where V i, V ′j stand for two different sets of components of the vector. From (1.11), two
elements from the two different sets have the following relation:

V ′j = V i∂y
j

∂xi
. (1.12)

It is possible to find a basis for each TPM, resulting in a basis for the tangent space at
each point on the manifold, which we refer to as the basis of a vector field [6]. This
allows us to fix a tangent vector for each point on the manifold.

5In many cases, the sum will be implicit, using Einstein’s notation.
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Indeed, a vector field on a n-dimensional manifold M is a C∞ map V̄ : M → Rn which
assigns a vector VP to each point P ∈ M [7].
Note that, from now on, we shall consider the concepts of vector and vector field prac-
tically interchangeable, expressing also an arbitrary vector field with the notation used
in (1.8) or (1.10).

Let us introduce an useful function, called pushforward of smooth functions.
Consider Φ : M → N a smooth map between two smooth manifolds; the pushforward
(or differential) of Φ at P ∈ M is a linear map defined as:

Φ∗P : TpM → Tf(P )N ,

that acts on a tangent vector V ∈ TPM by:

(Φ∗PVP )(g) = V(g ◦ Φ),

for any smooth function g near Φ(P ).

Before moving on, let’s define one last concept.
Given two vector fields V̄ = d/dλ = V i∂/∂xi and W̄ = d/dµ = W j∂/∂xj, it is useful to
introduce an operator, the commutator, also known as Lie brackets, which is defined
as [6]: [

V̄ , W̄
]
=

[
d

dλ
,
d

dµ

]
=

(
V i∂W

j

∂xi
−W i∂V

j

∂xi

)
∂

∂xj
. (1.13)

The significant result is that we obtain a new vector field whose components are defined
by the terms in the parentheses.

1.1.3 Tensors and differential forms

One-forms
Because of the vectorial nature of TPM, there exists also the correspondent, so-called,
dual tangent space T ∗

PM, made up of the linear functions ω̃ such that:

ω̃ : TPM → R . (1.14)

These are called dual vectors, cotangent vectors or one-forms.
Now, given V ∈ TPM, an important relation holds between V and ω̃ [6]:

ω̃(V) ≡ V(ω̃) ≡ ⟨ω̃,V⟩ ∈ R (1.15)

which shows the fact that we can see one-forms and vectors as linear functions of each
other that provide the same real number.
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The last term of 1.15 points out this "symmetry" connecting the two mathematical
objects; the operator:

⟨·, ·⟩ : T ∗
PM× TPM → R (1.16)

is called inner product.
It can be explicitly written as [7]:

⟨ω̃,V⟩ = ωµV
ν

〈
dxµ,

∂

∂xν

〉
= ωµV

νδµν = ωµV
µ (1.17)

A one-form can be expressed in component form as:

ω̃ = ωµdx
µ. (1.18)

where dxµ is the dual form of the basis vector ∂/∂ν , such that: ⟨xµ, ∂/∂ν⟩ = δµν , with
δµν Kronecker delta function.

An example of one-form is the differential df of a scalar function f : M → R [7].

Tensors
A (q, r) tensor is a multilinear object such that, given q one-forms ω̃ ∈ T ∗

PM and r
vectors V ∈ TPM:

T : ⊗q T ∗
PM⊗r TPM → R (1.19)

where ⊗ is the tensor product6.
Trivially, a (0, 0) tensor is a scalar. A (1, 0) tensor is a vector, as it takes as argument
a one-form, while a (0, 1) tensor is a one-form because it takes as argument a vector.

Differential forms
A r-form is a totally antisymmetric7 tensor of type (0, r).

We shall now focus on one operation that transfer a one form from a manifold to another:
the pullback of forms.
Consider M and N two differentiable manifolds and Φ : M → N a smooth map between
them. If ω̃ is a k-form on N , then the pullback of ω̃ by Φ, denoted by Φ∗ω̃, is a k-form
on M. Clearly, k must be less- or equal, at the utmost,- than the dimensions of the
manifolds, which are not necessarily the same.
Let us see how a pullback (Φ∗ω̃) acts:

(Φ∗ω̃)(V1, ...,Vk) = ω̃(dΦ(v1), ..., dΦ(Vk) . (1.20)

6The tensor product of two vector spaces is defined as the vector space spanned by all possible
products of the basis elements from each of the two original spaces.

7A totally antisymmetric tensor is defined as a tensor which acquires a negative sign every time an
index is interchanged: T i1,...,ik,...,ij ,...,in = −T i1,...,ij ,...,ik,...,in .
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Here, V1, ...,Vk are k vectors on M (or, more precisely, on TPM, P is the point on
which the pullback acts) and dΦ(V1), ..., dΦ(Vk) are the pushforwards of the vectors by
Φ, i. e., the linear mapping dΦ : TPM → TΦ(P )N .

1.2 Exterior calculus for differential forms

This section will address the basics of calculus with differential forms, a powerful tool
that generalizes the multivariable calculus of vectors.
We define the wedge product, introduce the exterior derivative, discuss integration with
forms, and briefly touch on the generalized Stokes’s theorem.

1.2.1 Wedge product

It is possible to define an associative and bilinear operation ∧, called wedge product,
that combines two differential forms into a higher-degree form. Specifically, given p̃ a
p-form and q̃ a q-form, their wedge product p̃ ∧ q̃ will be a (p+ q)-form and it holds [6]:

p̃ ∧ q̃ = (−1)pq q̃ ∧ p̃ . (1.21)

For example, we can obtain a two-form from two one-forms:

p̃ ∧ q̃ = p̃⊗ q̃ − q̃ ⊗ p̃ (1.22)

and a three-form from three one-forms:

p̃ ∧ (q̃ ∧ r̃) = (p̃ ∧ q̃) ∧ r̃ = p̃ ∧ q̃ ∧ r̃
= p̃⊗ q̃ ⊗ r̃ + r̃ ⊗ p̃⊗ q̃ + q̃ ⊗ r̃ ⊗ p̃

− p̃⊗ r̃ ⊗ q̃ − r̃ ⊗ q̃ ⊗ p̃− q̃ ⊗ p̃⊗ r̃

(1.23)

and so on.
This operator is very useful as it helps to simplify calculus on manifolds.

In addition, it allows us to write a r-form in the following form:

ω̃ =
∑

1≤i1<i2<...<ir≤n

ωi1i2...irdx
i1 ∧ dxi2 ∧ ... ∧ dxir (1.24)

where n is the dimension of the manifold on which the differential form is defined and
dx1, ..., dxn is a local basis for T ∗

PM made up of one-forms, while ωi1i2...ir are smooth
scalar functions which embody the r-form coordinates.
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1.2.2 Exterior derivative

The exterior derivative of a r-form is a linear operator d which maps a r-form in a
(r + 1) form:

d : Ωr(M) → Ωr+1(M) (1.25)

where Ωk is the k-forms space on the manifold M.
An exterior derivative dω̃ of an arbitrary r-form ω̃ on M must satisfy [6]:

d(dω̃) = 0; (1.26)
d(ω̃ + η̃) = dω̃ + dη̃ ∀ω̃, η̃ ∈ Ωr(M); (1.27)
d(ω̃ ∧ η̃) = dω̃ ∧ η̃ + (−1)rω̃ ∧ dη̃ ∀ω̃ ∈ Ωr(M), η̃ ∈ Ωl(M) . (1.28)

Just as a rule which defines a vector can be associated to each point on the manifold,
the same result can be achieved with differential forms; a field of one-forms ¯̃ω is a rule
which associates a differential form ω̃ ∈ T ∗

PM to each point of the manifold P ∈ M. We
can thus naturally define the following function ¯̃ω(V̄ ) relating vectors fields and fields of
one-forms. Note the similarity with (1.15).

The standard differential operator d, which we cited in 1.1.3, is itself an example of
exterior derivative [6]: a scalar function f can be seen as a zero-form and df is indeed
a one-form. This means that, for f scalar function, the field of one-forms df is the
analogous of the gradient:

df

(
d

dλ

)
=
df

dλ
. (1.29)

In a similar way, we can say that dω̃ is the analogous of the curl when ω̃ is a one-form,
while it represents the analogous of the divergence when ω̃ is a two-form.

1.2.3 Integration with differential forms

It is fundamental to firstly understand the concept of orientation8 for a manifold.

A manifold M is said to be orientable if, given two arbitrary coordinates charts, such
as (D, φ) with coordinates xµ and (D′, φ′) with coordinates yα, the determinant of the
Jacobian matrix for the change of coordinates satisfies: J = det(∂xµ/∂yα) > 0.

The fact that the determinant is greater than zero implies that the two charts have the
same orientation. If it were less than zero for even a single pair of charts, it would
be impossible to find a consistent orientation for the entire manifold, as the two charts

8Orientation allows us to define a "positive" direction for an n-form, where n is the dimension of the
manifold.
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would have opposite orientations [7].
The Euclidean space Rn and the S2 sphere are examples of orientable manifolds; a clas-
sical example of non-orientable manifold is instead the Möbius strip.

The existence of a globally non-vanishing n-form ω̃ on an orientable n-dimensional man-
ifold is guaranteed by the manifold’s orientability [9]. The global defined n-form ω̃ is
called volume form and it essentially plays the role of "measure" when integrating a
scalar function f over the manifold [7]:∫

M
fω̃ ≡

∫
φ(Di)

f(φ−1(x))ω(φ−1(x))dx1 ∧ ... ∧ dxn . (1.30)

Here, (Di, φi) represent different charts in which the n-form can be expressed through
the ω(φ−1(x)) coefficients as in (1.24). An important feature of (1.30) is that the choice
of the atlas, i.e., the choice of coordinates, does not affect the final form of the expression
[7].

A crucial result for the theory of exterior calculus is the generalized Stokes’s theorem.

Theorem. Let M be an oriented n-dimensional manifold with boundary ∂M, and let ω̃
be a differential (n− 1)-form and dω̃ its exterior derivative, both defined on M. Then:∫

M
dω̃ =

∫
∂M

ω̃. (1.31)

1.3 Holonomies

In differential geometry, holonomy refers to the transformation a vector undergoes when
it is parallel transported around a closed loop on a manifold. Due to the curvature of
the manifold, the vector typically does not return to its original orientation, instead
exhibiting a "torsion" that reflects the manifold’s geometric properties.

Holonomy captures the curvature and geometric structure of a space, pointing out how
local properties affect the behavior of objects transported along closed paths.

1.3.1 Parallel transport

It can easily be observed that, given how we defined vectors in subsection 1.1.2, in order
to work with two or more vectors at once, we need to define them at the same point in
the manifold, which means that we shall make clear how to carry a vector from a point
to another "without changing its direction" [6]. This latter concept is known as parallel
transport.
This is not trivial at all- try to think of doing this on a S2 sphere, as shown in Fig.1.2-
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Fig. 1.2: Parallel transport around a closed loop on a sphere; at the same point N, after the
transport, the vector appears different (not "parallel", at least with its usual meaning). Note
how the colors vary. Image sourced from [10].

and embodies the main reason why a concept such as affine connection (see 1.3.2) is
required.

Let C : (a, b) → M be a curve on the manifold M parameterized by λ and whose tangent
vector field is Ū = d/dλ. Consider then a point P on the curve and choose an arbitrary
vector VP ∈ TP . Our aim is to define a rule that allows us to parallel-transporting
the vector VP along C. Hence, we will be able to define a derivative with respect to
with the V̄ field has zero rate change [6]. This mathematical object is called covariant
derivative and is denoted by ∇Ū .
Thus, a vector field V̄ is said to be parallel transported along a curve C iff [7]:

∇Ū V̄ = 0 ∀λ ∈ (a, b) . (1.32)

Now, the covariant derivative is nothing but a derivative that can now be completely
evaluated at the same point P , or, to be more precise, in the the tangent space TP .
Assuming P = C(λ0), it takes the form [6]:

∇Ū V̄
∣∣∣
P
= lim

ϵ→0

V̄λ0+ϵ(λ0)− V̄ (λ0)

ϵ
(1.33)

where V̄λ0+ϵ refers to the vector field parallel transported to P .
It is clear that ∇Ū is not different from a differential operator from which it inherits
the properties such as linearity and the Leibniz rule. In particular, provided that f is a
scalar function:

∇Ū(fV̄ ) = f∇Ū V̄ + V̄
df

dλ
. (1.34)
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Fig. 1.3: The vector VP is here parallel transported along C: to each point of C it is possible
to associate a vector of V̄ (here, also denoted as V̄ ) parallel to the starting vector VP . Image
sourced from [6].

In addition, given g another scalar function defined on the manifold, the covariant deriva-
tive obeys [6]:

∇fŪ+gW̄ V̄ = f∇Ū V̄ + g∇W̄ V̄ . (1.35)

1.3.2 Affine connection

The covariant derivative derives from another significant concept: the affine connection.
This essentially provides us with a rule for parallel transport, which otherwise wouldn’t
be uniquely defined.
The affine connection is mathematically represented by a map [7]:

∇ : (Ū , V̄ ) 7→ ∇Ū V̄ (1.36)

which transforms two vector fields in the correspondent covariant derivative- which is
still a vector field.

Provided the manifolds we are working on is n-dimensional, we could still completely
define the affine connection using the n3 functions Γλ

νµ called connection coefficients
[7] and also referred to as Christoffel symbols :

∇νeµ ≡ ∇eνeµ = eλΓ
λ
νµ . (1.37)

Here, eν ≡ ∂/∂xν , eµ ≡ ∂/∂xµ denote the vector basis for Ū and V̄ respectively, which
means that Ū = U νeν and V̄ = V µeµ. Knowing how they change, we can determine the
behavior of the affine connection as a whole:

∇Ū V̄ = Uν∇eν(V µeµ) = Uν

(
∂V λ

∂xµ
+ V νΓλ

µν

)
eλ (1.38)

where we used the property shown in (1.34). Let us analyze the terms in the parentheses:
the first one is the ordinal partial derivative of the component of the vector field, while
the second one can be interpreted as a "geometric correction", allowing the preservation
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of the parallelism.
As a matter of fact, the Christoffel symbols are responsible for the maintenance of the
correctness of the covariant derivative, also under coordinates change. Given another set
of coordinates ∂/∂yα, they would change as [7]:

Γ̃γ
αβ =

∂xλ

∂yα
∂xµ

∂yβ
∂yγ

∂xν
Γν
λµ +

∂2xν

∂yα∂yβ
∂yγ

∂xν
. (1.39)

1.3.3 Curvature

It is possible to associate to the connection the notion of curvature, which is the math-
ematical object which quantifies how the manifold M is curved, or, similarly, quantifies
how the manifold deviates from being flat, namely how it differs from the Euclidean
space.
In such case, the curvature can mathematically be expressed by the Riemann curva-
ture tensor [7]:

R(Ū , V̄ , W̄ ) = ∇Ū∇V̄ W̄ −∇V̄∇ŪW̄ −∇[Ū ,V̄ ]W̄ (1.40)

with Ū , V̄ , W̄ three arbitrary vector fields on M.
It satisfies:

R(Ū , V̄ ,W ) = −R(V̄ , Ū , W̄ ) , (1.41)
R(Ū , V̄ , W̄ ) = UλV µW νR(eλ, eµ, eν) . (1.42)

The curvature tensor can also be expressed in terms of Christoffel symbols [7]:

Rκ
λµν = ∂µΓ

κ
νλ − ∂νΓ

κ
µλ + Γη

νλΓ
κ
µη − Γη

µλΓ
κ
νη. (1.43)

It is not difficult to see that the curvature tensor provides a measure of "how much"
the vector W̄ does differ when parallel transported along two different paths on the
manifold [7]. In other words, we can say that the curvature determines the holonomy of
the system.

1.4 Fiber bundles

Fiber bundles are mathematical structures that allow us to describe spaces with local
product-like characteristics, but complex global properties.
These constructs are crucial for understanding the geometric and topological properties
of physical systems, highlighting deep connections between local and global aspects.

We shall now introduce the concept.
A (differentiable) fiber bundle [7] is defined by a set of mathematical objects (E,B, π, F )
such that:

14



• E, B, F are three differentiable manifolds, respectively called: total space, base
space and fiber;

• π is a continuous surjection from the total to the base space π : E → B and is
referred to as bundle projection. Its inverse π−1(P ) is the fiber at P .
The bundle projection π should always meet the following condition [11]: any b ∈ B
has a neighborhood U such that: φ : π−1(U) → U × F is a homeomorphism and
projU ◦ φ = π

∣∣
π−1(U)

, where projU : U × E → U is the natural projection onto the
U factor. Such φ are called local trivializations of the bundle.

Essentially, a fiber bundle is locally akin to the product space9 B × F — even if it can
be globally much more complex.
Usually, fibers bundle are denoted by the shorthand [7]: E π−−→ B.

One of the most common examples of fiber bundles is the so-called tangent bundle, where
the total space is obtained by combining a manifold M with the TM space, where:

TM ≡
⊔

P∈M

TPM . (1.44)

This type of fiber bundle is a vector bundle, i.e. a fiber bundle whose fiber is a vector
space [7].

One useful tool when dealing with fiber bundles is the notion of a cross section (or
just section), a smooth mapping from the base space into the total space of the bundle
s : B → E. This must clearly satisfy the condition that π ◦ s = idB [7], that is,
π(s(b)) = b ∀b ∈ B. When s : Ui → E, with Ui ∈ B, we may talk of local section, as
it is defined only within Ui and not all the base space.

1.4.1 Some examples: trivial and non trivial bundles

Fiber bundles that not only locally but also globally resemble the product of the base
space and fiber B×F are called trivial fiber bundles, due to their intuitive and straight-
forward nature. More precisely, it means that there exists a local trivialization of E over
the entire base space B and E itself is homeomorphic to the product space. When π is
a smooth map that admits a smooth global trivialization, the fiber bundle is said to be
smoothly trivial and E is diffeomorphic to B × F : E ≃ B × F [12].

For instance, a cylinder and a torus can both be seen as trivial fiber bundles.
A cylinder C is the total space obtained as the product of a S1 circle- acting as base space-

9Given two spaces X,Y their product space X × Y is the space made up of all the "ordered pairs"
(x, y) such that x ∈ X and y ∈ Y . If X,Y are manifolds, also X × Y is a manifold.
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Fig. 1.4: Examples of fiber bundles: a cylinder (on the right, figure (a)) and a Möbius strip
(on the right, figure (b)). In the latter, the fibres have been twisted. Note that in such cases the
fibres R are actually intervals I ⊂ R. Sourced from [6].

and R- acting as fiber, meaning that fibers are infinitely-many vertical lines: C = S1×R.
The bundle projection is defined as: π : (θ, x) 7→ θ.
A 2-torus T 2 is the total space which can be instead obtained as: T 2 : S1 × S1 with the
bundle projection defined as: π : (θ1, θ2) 7→ θ1.

We shall now return to the first example, the cylinder; we actually could have chosen to
construct the total space differently [6], twisting the fibers. This would have given rise
to a Möbius strip instead of a cylinder (see Fig.1.4).

1.4.2 Lie groups and algebra

Groups
Before digging into Lie groups we shall recall a more general definition for groups.
Let G be an algebraic structure with a defined binary operation · such that, given two
elements g1, g2 ∈ G:

· : (g1, g2) 7→ g1 · g2 (1.45)

where g1 · g2 ∈ G (algebraic closure). This operation must have the following properties:

• it is associative: (g1 · g2) · g3 = g1 · (g2 · g3), ∀g1, g2, g3 ∈ G;

• there exists a identity or unit element e ∈ G such that: g · e = e · g = g, ∀g ∈ G;

• there exists an inverse element g−1 ∈ G associated to any element g ∈ G such
that: g · g−1 = g−1 · g = e.

A group is said to be Abelian if the binary operation also satisfies the commutation law:
g1 · g2 = g2 · g1, ∀g1, g2 ∈ G.

A homomorphism between two groups is a map h : G → G′ that preserves the binary
operation, i.e.:

h(g1 · g2) = h(g1) · h(g2), ∀g1, g2 ∈ G . (1.46)
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It is also possible to define the generators of the group G: given a subset S ⊂ G, this is
said to be a generating set of G if each element of G can be written as a finite combination
of element of S and their inverse.
A group is then called cyclic if it can be generated by a single element.

The dimension of a group depends on the dimension of its elements.

We are now ready to address Lie groups.
A Lie group is a differentiable manifold equipped with a group structure and such that
the binary operation and the inverse operation10 are differentiable [7].

Examples of Lie groups which are widely used in physical applications are the general
linear groups GL(n,K), representing all the possible invertible linear transformations
on a n-dimensional vector space- defined on K. Their elements are n× n matrices and,
usually, K = R or K = C. The binary operation acts as the matrix multiplication, the
inverse is just the matrix inverse [7].

It is also useful to mention and define some subgroups of GL(n,K) -which are Lie groups
themselves [7]: the orthogonal group O(n), the special linear group SL(n,K) and
the special orthogonal group SO(n):

O(n) = {A ∈ GL(n,R) | ATA = I} (1.47)
SL(n,K) = {A ∈ GL(n,K) | det(A) = 1} (1.48)
SO(n) = {A ∈ O(n) | det(A) = 1}

= O(n) ∩ SL(n,K).
(1.49)

When K = C, we can define the unitary group U(n) and the special unitary group
SU(n):

U(n) = {U ∈ GL(n,C) | U †U = I} (1.50)
SU(n) = {U ∈ U(n) | det(U) = 1}

= U(n) ∩ SL(n,C).
(1.51)

Note that T denotes the transposed matrix, while † denotes the Hermitian conjugate
matrix.

Given two elements a, g ∈ G, with G a Lie group, we can define the right and left
transitions, respectively denoted by Ra and La, as follows:

Rag = g · a (1.52)
Lag = a · g (1.53)

10The inverse operation is defined as: −1 : g 7→ g−1.
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mapping from G to G.

Observation. Sometimes, for the sake of cleaner notation, we may omit the symbol ·
when denoting the binary operation of a group.

We will now discuss the properties of the left-translation only (for the right-translation
the reasoning would be equivalent) [7].
The translation induces the map Lg∗:

Lg∗ : ThG→ TghG (1.54)

which is a pushforward that maps a tangent vector at h ∈ G to a tangent vector at
gh ∈ G. A left-invariant vector field V̄ on G is a vector field that satisfies:

Lg∗V̄ |h = V̄ |gh. (1.55)

The set of all left-invariant vector fields forms a Lie algebra, denoted by g. There is a
natural isomorphism11 between this Lie algebra g and the tangent space at the identity
element of G:

g ∼= TeG. (1.56)

The Lie bracket of two elements12 Tα, Tβ ∈ g is a bilinear operation [ , ] : g× g → g
defined as:

[Tα, Tβ] = fγ
αβTγ (1.57)

where fγ
αβ are the structure constants of the Lie algebra, and {Tα} is a basis for g.

The adjoint action of G, denoted by Adg, is defined as:

Adg(h) = ghg−1, ∀g, h ∈ G (1.58)

The differential (tangent map) of the adjoint action at the identity element gives the
adjoint map:

adg : g → g, adg(A) = gAg−1, for A ∈ g. (1.59)

This map is called the adjoint representation of the Lie algebra, and it describes how
elements of the Lie algebra transform under the conjugation action of the Lie group.

11A map between two sets f : X → Y is said to be an isomorphism if it is both one-one and surjective,
that is it is possible to identify a one-to-one correspondence between X and Y .

12So far, we have used a specific notation—such as bold characters or bars—for vectors and vector
fields. From now on, we will denote elements of the Lie algebra using symbols like Tα, as this is the
conventional choice.
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1.4.3 Principal fiber bundles

A principal fiber bundle is a fiber bundle whose fiber space coincides with its structure
group.

The structure group G of a fiber bundle is a Lie group acting on F , which encodes
some important structural information; more precisely, elements tij ∈ G are such that,
given two neighborhood Ui, Uj ∈ F with Ui ∪Uj ̸= ∅, tij : Ui ∩Uj → G. These functions
are called transition functions [7].

As an example, let us consider again the example of the cylinder and the Möbius strip
(see Subsec.1.4.1). In this case, the difference lies in the structure group: in fact, for
the cylinder, the transition functions are identity maps, whereas, in order to obtain the
Möbius strip, they must be defined as: t12(θ) : t 7→ −t, θ ∈ S1. Hence, the structure
group of the cylinder is trivial, consisting of the only identity element G(cyl) = {e},
while the Möbius strip’s one is made up of e together with another element g acting as:
g : t 7→ −t, G(Möb) = {e, g}.

Now, let us give a deeper look at the definition of principal fiber bundle: any fiber over
a point P of the base space is a space isomorphic to G [13]. In mathematical terms this
is expressed by:

π−1(P ) ∼= U(1) (1.60)

namely, an isomorphism between the fiber over each point of the base space and the U(1)
group.
This implies that the structure group G acts freely and transitively [7] on the fiber space
F through group actions. A right (left) action of the group G on a point u of the
principal bundle is defined as:

Rg(u) = u · g (Lg(u) = g · u) (1.61)

with g ∈ G. While this operation seems to be very similar to the already introduced
right (left) transition, it is actually more general: it maps P in G, describing how the
group act on the principal bundle- rather than on itself.

Principal fiber bundles are usually referred to with this notations: P π−−→ B or P (B,G).

In the next subsection we will take care of providing a definition for connection, holonomy
and curvature on principal fiber bundles.

1.4.4 Connection, holonomy and curvature on principal bundles

The concepts such as connection and curvature that we defined for manifolds, can be as
well extended in a peculiar way to principal fiber bundles.
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Consider a principal bundle and denote it with P (B,G), where B is the base space and
G the structure group and thus, by definition of principal bundle, its fiber space. Given
b ∈ B and u ∈ P , Gb is the fiber over b = π(u). Eventually, TuP is the tangent space of
P , which is tangent to Gb at u.

Connection provides a way to separate TuP into a vertical subspace VuP and a hori-
zontal subspace HuP . These spaces are such that:

TuP = VuP ⊕HuP (1.62)

where ⊕ is the symbol for direct sum13 between vector spaces.
More precisely, a connection on a principle bundle with such a purpose, is referred to
as connection one-form (or, also, Ehresmann connection), which is a Lie-algebra-
valued one-form ω̃ ∈ g⊗ T ∗P 14 projecting TuP onto VuP [7]. The connection one-form
must satisfy:

ω̃(A#) = A, for A ∈ g (1.63)
R∗

gω̃ = Adg−1ω̃ for g ∈ G (1.64)

where:
A#f(u) =

d

dt
f(u exp tA)|t = 0 ∈ VuP (1.65)

with f a smooth scalar function, is a vector tangent to P at u called fundamental vector
field generated by A [7]. The mapping # : g → VuP is an isomorphism, g ∼= VuP , and
defines the infinitesimal action of the Lie algebra g on P .

In (1.64), R∗
g is the pullback of the one-form ω̃ induced by the right action Rg.

Thus, for V ∈ TuP [7]:

(R∗
gω̃ug)(V) = ω̃ug(dV) = g−1ω̃u(V)g (1.66)

where the subscripts ug, u specify where in the principal bundle the connection one-form
is valued.

Eventually, we can also define the horizontal subspace as the kernel of ω̃, that is [7]:

HuP ≡ {U ∈ TuP | ω̃(U) = 0} (1.67)

which follows directly the definition of the connection one-form.

13Given three vector spaces V , U , W , V = U ⊕W means that V = {v = u+ v|u ∈ U,w ∈ W}, where
the sum v = u+ v must be unique, that is, U ∩W = ∅.

14T ∗P is the dual bundle to the tangent bundle, the cotangent bundle.
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Let us now define the local connection form Ai on Ui [7]:

Ai ≡ σ∗
i ω̃ ∈ g⊗ Ω1(Ui) (1.68)

where σ∗
i is the pullback induced by the local section on Ui and Ω1(Ui) ⊂ T ∗P .

On the other hand, given a family of local connection forms Ai, we will be able to
reconstruct the global connection ω̃ by requiring that it satisfies [7]:

σ∗
i ω̃ = Ai on Ui. (1.69)

Introducing the connection one-form, we mentioned the fact that it separates TuP in
VuP and HuP in such a way that the first one is the direct sum of the latter two spaces
(1.62), i. e. the tangent space is uniquely decomposed. This implies that also ω̃ should
be unique. In order to satisfy such a request, any local form Ai should transform in a
peculiar way- similar to that of the Christoffel symbols [7]:

Aj = t−1
ij Aitij + t−1

ij dtij (1.70)

where tij is the transition function dtij is its exterior derivative. Here, the first term
represents the transformation of the local connection under action of the group, whereas
the second term arises from the variation of the transition function itself.

Through the local connection form Ai, we can provide a definition for parallel transport
along a curve γ on a principal fiber bundle. Let us first introduce the notion of horizontal
lifting, which will be necessary to define parallel transport.

Let γ : [0, 1] → B be a curve on the base space. Another curve γ̃ : [0, 1] → P is the
horizontal lifting of γ if π ◦ γ̃ = γ and the tangent vector to γ̃(t) belongs to Hγ̃(t)P .
That is, any tangent vector Ṽ to γ̃(t) is such that ω̃(Ṽ) = 0 ∀t ∈ [0, 1], which is an
ordinary differential equation. Given that the lift can be written as:

γ̃(t) = σi(γ(t))gi(γ(t)) (1.71)

with gi(γ(t)) ∈ G, easy algebraic manipulations lead us to:

dgi(t)

dt
= −ω̃(σi∗V)gi(t)

= −Ai(V)gi(t)
(1.72)

where g(t) is the short notation for g(γ(t)), while V is a tangent vector to γ(t) at γ(0)
and it is such that Ṽ = γ̃∗V. Note how the local form of the connection A is effectively
involved in the definition of the parallel transport.
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The fundamental theorem of ordinary differential equation ensures the local existence
and uniqueness of a solution [7]. Thus, setting gi(0) = e:

gi(γ(t)) = P exp

{
−
∫ 1

0

Aiµ
dxµ

dt
dt

}
. (1.73)

Here, P is the path-ordering operator along γ(t) (for more details, refer to section 10.1.4
in [7]).

Consider now a point u0 ∈ π−1(γ(0)) on the initial curve. From what has been discussed
so far, there will be a unique point on the second curve, u1 = γ̃(1) ∈ π−1(γ(1)), obtained
through the horizontal lift of γ(t) called parallel transport of u0 along the curve. In
this way we can define a map: Γ(γ̃) : π−1(γ(0)) → π−1(γ(1)) which maps u0 onto u1.
This latter takes the following form [7]:

u1 = σi(1)Pexp
{

−
∫ 1

0

Aiµ
dxµ(γ(t))

dt
dt

}
. (1.74)

It is convenient to define the so-called holonomy group, which is the subgroup of the
structure group G in a principal fiber bundle P (B,G), on which a connection ω̃ is
defined. To understand its role, consider the set of all the loops at p = π(u), with u ∈ P :
Cp(B) = {γ : [0, 1] → B | γ(0) = γ(1) = p}. As mentioned, a loop γ essentially induces
a transformation on the fiber of the following kind [7]:

τγ : π−1(p) → π−1(p) (1.75)

such that:
τγ(u · g) = τγ(u) · g. (1.76)

The holonomy group associated to the connection ω̃ at u is then defined as [7]:

Holu(ω̃) = {gγ ∈ G | τγ(u) = u · gγ, γ ∈ Cp(B)}. (1.77)

That is, the holonomy group consists of the all transformations gγ obtained by parallel
transporting a point in the fiber π−1(p) = u along all possible closed loops γ based at
that point.

We shall now generalize the concept of the covariant derivative to principal fiber bun-
dles in order to define curvature. At the beginning of the subsection we saw how the
connection ω̃ decomposed the tangent space at the point u, TuP , onto the two sub-
spaces VuP and HuP . That is, each vector V ∈ TuP will be also decomposed as:
V = VV + VH , with VV ∈ VuP and VH ∈ HuP . The covariant derivative of a V -
valued r-form on P , i. e. ϕ =

∑k
α=1 ϕ

α ⊗ eα ∈ Ωr(P )⊗ V , with V k-dimensional vector
space, takes the following form [7]:

Dϕ(W1, ...,Wr+1) ≡ dPϕ(W
H
1 , ...,W

H
r+1) (1.78)
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where the vectors W1, ...,Wr+1 ∈ TuP and dPϕ is the exterior derivative of ϕ on P .

Finally, curvature, that on a principal fiber bundle is called curvature two-form is
expressed as [7]:

Ω ≡ Dω̃ ∈ Ω2(P )⊗ g. (1.79)

The ω̃ term clearly denotes the connection on the same bundle P .
The curvature satisfies:

R∗
gΩ = g−1Ωg for g ∈ G. (1.80)

Connection one-form and curvature two-form on a principle bundle are related by the
Cartan’s structure equation which, given V, U ∈ TuP , reads as:

Ω(V,U) = dP ω̃(V,U) + [ω̃(V), ω̃(U)] (1.81)

which can also be expressed as:

Ω = dP ω̃ + ω̃ ∧ ω̃. (1.82)

There also exists a theorem which establish the relationship between curvature two-form
to the concept of holonomy: the Ambrose-Singer theorem [7].

Theorem. Let P (B,G) be a principal fiber bundle, then the Lie algebra hu associated to
the holonomy group Holu of a point u ∈ P is a subalgebra of g spanned by:

Ωu(V,U) for V,U ∈ HuP. (1.83)

To conclude the subsection, let us define the local form F of the curvature two-form
Ω [7]:

Fi ≡ σ∗
iΩ ∈ g⊗ Ω2(P ). (1.84)

Note the analogy between the latter and equation (1.68).
From the Cartan’s structure equation (see (1.81), (1.82)) it is possible to derive the
following form:

Fi = dAi +Ai ∧ Ai (1.85)

where d is the exterior derivative on the base space B.
Moreover, just as the local form of the connection, also the local form of the curvature
should satisfy a certain condition in an overlap Ui ∩ Uj ∈ B [7]:

Fj = t−1
ij Fitij. (1.86)
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1.4.5 U(1) bundles

A very significative principal fiber bundle in physical applications is the U(1) bundle
(think of Gauge theory [6], for instance).
The fibers of such a bundle are isomorphic to the group U(1)- that is, the structure group
of the bundle is U(1).

Let us recall the definition of the group right below:

U(1) = {U ∈ GL(1,C) | U †U = I} . (1.87)

Elements of this group are unit complex numbers, that can be written as g(θ) = eiθ ∈
U(1), with θ ∈ [0, 2π). The binary operation is then multiplication of complex numbers,
thus U(1) group is Abelian.

By definition of Lie algebra (1.56), elements of u(1) belongs to the TeU(1) space, meaning
that u(1) ∈ iR.

To clarify the relationship between this mathematical structure and the physical context
of the next chapters, consider the following.

In quantum mechanics, any quantum state is only defined up to a global phase factor
eiθ; this implies that, if eiθ |ψ⟩ and |ψ⟩ are two distinct mathematical states, the actual
observed physics is the same, because measurable quantities are indeed unaffected by
global phases.

A U(1) bundle fits perfectly, as any fiber can be viewed as a complex line bundle (a
one-dimensional complex vector space) where the points in the fiber correspond to states
that differ only by a phase factor eiθ. These points all represent the same physical state.

We shall now discuss how connection and curvature are defined on a U(1) bundle. Note
that we shall omit the group’s indices as the group is Abelian and one-dimensional, and
we will set the structure constants at zero, fγ

α,β = 0 [7], which implies [T, T ] = 0.
Based on what we have said so far, a U(1) bundle can always locally be seen as the
product space of the base space and the fiber space, i. e., P |U = U ×U(1), with U ⊂ B.
In such a framework, the local form of connection one-form can be written as [7]:

A = Aµdx
µ (1.88)

where Aµ is a purely imaginary quantity since A is an element of the Lie algebra, xµ are
local coordinates on U and d the exterior derivative.
The local form of the curvature two-form is instead expressed as [7]:

F = dA. (1.89)
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The latter comes directly from the Cartan’s structure equation (1.85), where A∧A = 0
as the group is Abelian. In components it appears as:

Fµν = ∂µAν − ∂νAµ (1.90)

which can also be interpreted as a two-rank tensor.

Let us now focus on how these quantities do transform.
The transition functions are given by15:

tij : Ui ∪ Uj → U(1), tij(p) = eiΛ(p), Λ(p) ∈ R (1.91)

leading to the following reformulation of (1.70):

Aj(p) = Ai(p) + idΛ. (1.92)

In components [7]:
Ajµ = Aiµ + i∂µΛ. (1.93)

On the other hand, the local form of curvature, which originally transforms as (1.86),
reduces in this context to:

Fj = Fi. (1.94)

That is, curvature is invariant and thus can be considered globally defined.

The Hopf Bundle
The most common example of a non trivial U(1) bundle is the Hopf bundle, named after
the Swiss mathematician Heinz Hopf.
It is an algebraic structure widely used in physics, useful to describe different systems.

The base space of the bundle is a 2-sphere S2 while the fibers are circles S1. The total
space is S3, thus it is denoted as:

S3 π−−→ S2. (1.95)

Locally, we can consider S3 as the product S3 = S2 × S1.
Visualizing such a structure—which exists in four dimensions—is not an easy task for us,
as three-dimensional beings. A well-executed and intuitive attempt at this is illustrated
in Fig.1.5.

The structure group is, as we have already mentioned, U(1), indeed S1 ∼= U(1). Hence,
we shall consider U(1) as fiber.

15Note that they are equivalent to gauge transformations.
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Fig. 1.5: A visual representation of the Hopf fibration, created by Professor Niles Johnson [14].
Note how the colors of the circles on the three-sphere (left) correspond to the colors of the arcs
on the two-sphere (right).

Let us analyze the bundle.
The unit three-sphere is expressed through the following equation:

(x1)2 + (x2)2 + (x3)2 + (x4)2 = |z0|2 + |z1|2 = 1 (1.96)

where z0, z1 are complex numbers: z0 = x1 + ix2 and z1 = x3 + ix4.
Analogously, the equation describing the unit two-sphere can be parametrized as:

(ξ1)2 + (ξ2)2 + (ξ3)2 = 1. (1.97)

The bundle projection, also referred to as Hopf map, is thus defined as:

π : S3 → S2

π(x1, x2, x3, x4) = (2(x1x3 + x2x4), 2(x2x3 + x1x4), (x1)2 + (x2)2 − (x3)2 − (x4)2)

= (2ℜ(z0z̄1), 2ℑ(z0z̄1), |z0|2 − |z1|2)
(1.98)

Consider now the stereographic projection coordinates16 (X, Y ) of a point in the southern
hemisphere US of the two-sphere from the north pole. Let us consider the complex plane

16A stereographic projection is a map that projects points on the sphere (minus one point, typically
the north or south pole) onto a plane. The plane can be, for instance, tangent to the sphere at the south
pole or, as in this case, the plane containing the equator.
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containing the hemisphere, on which we define Z = X + iY . It is possible to show that
[7]:

Z =
ξ1 + ixi2

1− ξ3
=
z0

z1
with ξi ∈ US, i = 1, 2, 3 (1.99)

The same reasoning can be done for the points in the northern hemisphere. Given
(U, V ) the stereographic projection coordinates of the points of the northern hemisphere
UN from the south pole on a complex plane with the same characteristics as before, we
can define (W = U + iV ):

W =
ξ1 − ixi2

1 + ξ3
=
z1

z0
with ξi ∈ UN , i = 1, 2, 3 (1.100)

Note that both Z and W are invariant if we transform z0, z1 with an element g ∈ U(1):

(z0, z1) 7→ (gz0, gz1) (1.101)

and, also, that Z = 1/W on US ∩ UN , namely, the equator.

Hence, local trivialization are differently defined for the southern and northern hemi-
sphere. Respectively:

φS : π−1(US) → US × U(1)

(z0, z1) 7→
(
z0

z1
,
z1

|z1|

) (1.102)

φN : π−1(UN) → UN × U(1)

(z0, z1) 7→
(
z1

z0
,
z0

|z0|

) (1.103)

On the equator, |z0| = |z1| = 1/
√
2 and the local trivializations become:

φS : (z0, z1) 7→
(
z0

z1
,
√
2z1

)
(1.104)

φN : (z0, z1) 7→
(
z1

z0
,
√
2z0

)
(1.105)

while the transition function appears as:

tNS(ξ) =

√
2z0√
2z1

= ξ1 + iξ2 ∈ U(1). (1.106)

For our purposes, we shall in addition mention the existence of an analogous structure,
with a four-sphere S4 as base space and a three-sphere S3 as fiber space. The total space
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will thus be a seven-sphere S7 which locally resembles the product: S7 = S4 × S3. It is
also referred to as Hopf bundle and denoted with:

S7 π−−→ S4. (1.107)

The structure group here is SU(2), of which we recall the definition:

SU(2) = {U ∈ U(2) | det(U) = 1} . (1.108)

It is then of course possible to recognize S3 ∼= SU(2), which is the reason why we can
consider it a principle fiber bundle.
Eventually, the bundle projection involves quaternionic multiplication. An in-depth
mathematical analysis will not follow here, but it can be found in [7], [15].
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2 Geometric phases in quantum systems
In quantum systems, one can distinguish between two different types of phases:

• the dynamical phase e−iEt/ℏ, which arises from the evolution of any stationary state
of the system and depends on both energy and time;

• the geometric phase eiγ, which instead depends only on the geometry of the path
taken by the system in the parameter space.

The physical relevance of the first was already well-established when scientists started
recognizing the significance of the latter as well.

In this chapter, we will focus on the most significant example of geometric phase: Berry’s
phase. We will then introduce key concepts such as Berry’s connection and curvature,
providing their mathematical interpretations. Eventually, some significative applications
will be analyzed.

2.1 Berry’s phase

Berry’s phase and related concepts have proven to be highly significant in the geometric
interpretation and understanding of various physical phenomena.

Historically speaking, S. Pancharatnam introduced and addressed the concept itself in his
1956 work on the theory of interference [16], but the first major breakthrough happened
in 1984 with a paper by M. V. Berry [1].

2.1.1 Adiabatic theorem

The adiabatic theorem is fundamental in order to truly understand what is the physical
reason behind the geometric phase.

The theorem, as it was firstly introduced by M. Born and V. Fock [17] in 1928, sates
that:

Theorem. A physical system remains in its instantaneous eigenstate if a given pertur-
bation is acting on it slowly enough and if there is a gap between the eigenvalue and the
rest of the Hamiltonian’s spectrum.
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Proof. (Note that, from now on, we shall use the Dirac notation.)

Let the |n(t)⟩ be the eigenstates of a time-dependent Hamiltonian Ĥ(t), so that:

Ĥ(t) |n(t)⟩ = En(t) |n(t)⟩ (2.1)

for any time t, where En(t) are the instantaneous eigenvalues, say the energies that
characterize the n-th instantaneous eigenstate |n(t)⟩.
The time evolution of a state associated to the Hamiltonian Ĥ(t), denoted by |ψ(t)⟩, is
governed by the time-dependent Schrödinger equation:

Ĥ(t) |ψ(t)⟩ = iℏ |ψ̇(t)⟩ (2.2)

which can be re-written as:

iℏ
∑
n

ċn(t) |n(t)⟩+ iℏ
∑
n

cn(t) |ṅ(t)⟩ =
∑
n

cn(t)Ĥ(t) |n(t)⟩ (2.3)

taking into account that any state, at any time, can be expanded in the basis made up
of the eigenstates:

|ψ(t)⟩ =
∑
n

cn(t) |n(t)⟩ (2.4)

where cn(t) are the time dependent coefficients.
Using (2.1) in (2.3) and muliplying both sides for ⟨m(t)|1,it is possible to derive the time
evolution of the coefficients appearing in (2.4):

˙cm(t) =
i

ℏ
cm(t)Em(t)−

∑
n

cn(t) ⟨m(t)|ṅ(t)⟩ (2.5)

Let us now focus on the meaning of ⟨m(t)|ṅ(t)⟩ when m ̸= n. By differentiating with
respect to time (2.1) and multiplying by ⟨m(t)|, the equation takes the following form:

⟨m(t)|ṅ(t)⟩ = −⟨m(t)| ˙̂
H |n(t)⟩

Em(t)− En(t)
(2.6)

If the hypothesis of slow transformation and (finite) gap between eigenvalues- which
means Em(t)−En(t) ̸= 0,∀t- helds, this term is negligible, so that (2.5) takes the form:

˙cm = i

(
Em(t)

ℏ
+ i ⟨m(t)|ṁ(t)⟩

)
cm(t) (2.7)

1|m(t)⟩ is an arbitrary eigenstate and both m = n and m ̸= n (with ⟨m(t)|n(t)⟩ = δmn) are possible.
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Finally, we can integrate and find [18]:

cn(t) = cn(0)e
iθn(t)eiγn(t) (2.8)

where:

θn(t) = −1

ℏ

∫ t

0

En(t
′)dt′ (2.9)

is the dynamical phase, while:

γn(t) = i

∫ t

0

⟨n(t′)|ṅ(t′)⟩ dt′ (2.10)

is the geometric phase.
It is possible to show that θ and γ are both purely real.
For the dynamical phase, it is trivial and quite intuitive as θn(t) is the integral of an
energy, which is real by definition.
With regard to the geometric phase, we shall prove that the bra-ket produt is purely
imaginary;

d

dt
⟨m(t)|m(t)⟩ = 0 (2.11)

as we know that the inner product of an eigenstate with itself equals always to one. At
the same time, we can compute:

⟨ṁ(t)|m(t)⟩+ ⟨m(t)|ṁ(t)⟩ = ⟨m(t)|ṁ(t)⟩∗ + ⟨m(t)|ṁ(t)⟩ = 2ℜ ⟨m(t)|ṁ(t)⟩ (2.12)

This eventually leads to:
ℜ ⟨m(t)|ṁ(t)⟩ = 0 (2.13)

which validates our hypothesis.
This guarantees that |cn(t)|2 = |cn(0)|2.

The latter observation completes our discussion since it means that if the system is in an
eigenstate |n(0)⟩ of Ĥ(0) at t=0, the time when the transformation begins, it remains in
an instantaneous eigenstate of Ĥ(t), for any t, up to a phase factor [19]:

|ψn(t)⟩ =
∑
n

cn(t) |n(t)⟩ = eiθn(t)eiγn(t) |n(t)⟩ (2.14)

during the whole evolution.

Observation. If the instantaneous eigenstates |n(t)⟩ are real, the geometric phase γn(t)
vanishes, as the only way for γn(t) to be real is ⟨n(t)|ṅ(t)⟩ to be purely imaginary.

Remark. Equation (2.14) could actually be written in a more rigorous way, i.e.:

|ψn(t)⟩ ≃ eiθn(t)eiγn(t) |n(t)⟩ (2.15)
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Fig. 2.1: Intuitive visualizing of the U(1) bundle as described in the text. The n index is not
used as we are effectively considering only the nth eigenstate. Sourced from [7].

Indeed, the theorem could also be stated2 as [20]:

||ψn,real(t)− ψn,adiabatic(t)|| ≤
constant

T
∀t ∈]0, T [ (2.16)

where ψn,real(t) is the exact solution of the final state of the system, ψn,adiabatic(t) is the
right-hand member of (2.15), T is the duration of the transformation, constant is a scalar
depending on ∆E.
It is immediate to note that the approximate solution is closer to the real one when T is
large — at least, as long as the constant, i. e. ∆E, does not vanish.

2.1.2 Berry’s phase

In this subsection, we will provide a complete definition of Berry’s phase and then pro-
ceed with some observations that will lead us to the concepts of Berry’s connection and
curvature, both discussed in the next two subsections.

Consider now the set of parameters on which the system under examination depends, de-
noted as N parameters. These make up the coordinates of a vector R = (R1, R2, ..., RN)
in a N -dimensional manifold [7] referred to as parameter space.

The Hamiltonian associated to the system for any time t is a function of the parameters:
Ĥ(R(t)).

Remark. For our purposes, the most suitable structure we can consider is a U(1) bundle
[21] (see Subsec.1.4.5). Parameter space represents the base space, while the fibers over
each R are copies of the unitary group U(1). Namely:

π−1(R) ∼= U(1). (2.17)

2By definition, the norm of an arbitrary |ϕ⟩ in a Hilbert space is: ||ϕ|| =
√
⟨ϕ|ϕ⟩
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R2

R3

R1

C

Fig. 2.2: An example of a cycle visualized in a three-dimensional parameter space.

This implies that any state of the system belongs to an equivalence class :

[|n(R)⟩] ≡ {eiθ |n(R)⟩ | eiθ ∈ U(1)} (2.18)

and it can be denoted with it. The bundle projector will thus be defined as:

π(eiθ |n(R)⟩) = R. (2.19)

These concepts are summarized in the illustration in Fig.2.1.

Suppose the system is initially in a stationary state at t = 0 and the parameters R slowly
changing over time. The evolution ends at time t = T such that R(0) = R(T ), with T
being sufficiently large to justify the use of the adiabatic approximation (see 2.1.1). In
the parameter space, this evolution traces out a closed path C(t). An example is shown
in Fig. 2.2.

Assuming any choice of the phases for the eigenstates |n(R(t))⟩ differentiable and such
that the function remains single-valued for a whole domain in the parameters space that
includes C, and given that the adiabatic approximation is applicable, it is straightforward
to find an expression for an arbitrary system’s instantaneous state |ψ(t)⟩ [1]. From the
Adiabatic Theorem we are able to write:

|ψ(t)⟩ = eiθn(t)eiγn(t) |n(R(t))⟩ (2.20)

where:

θn(t) =
−1

ℏ

∫ T

0

En(R(t′)) dt′ (2.21)
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is the dynamical phase, while:

γn(t) = i

∫ T

0

⟨n(R(t′))|ṅ(R(t′)⟩ (2.22)

is the geometric phase. Whenever R(0) = R(T ), — and the expression fails to vanish
— as in the case here, the latter takes the name of Berry’s phase.

We shall now find a better form to express equation (2.22) in order to highlight its
properties.
Inserting (2.20) in the Schrödinger equation — analogous to (2.2) — leads us to:

γ̇n(t) = i ⟨n(R(t))|∇R n(R(t))⟩ · Ṙ(t) (2.23)

The next step is crucial since it embodies the core of the discussion.
Indeed, we are now able to write the geometrical phase change along the closed path C
as [1]:

γn(C) = i

∮
C
⟨n(R)|∇R n(R)⟩ · dR (2.24)

This means that Berry’s phase is entirely defined by the parameter space and does not
depend on time. It is a function of the path that the system traverses in such space,
while it is independent of how long it takes.

Observation. If the parameter space is 1D, Berry’s phase will automatically vanish.

2.1.3 Berry’s connection

The integrand of (2.24) represents an interesting physical quantity, called Berry’s con-
nection and denoted by An(R):

An(R) = ⟨n(R)|∇R n(R)⟩ (2.25)

It is a vector-valued function (N components, one for each parameter: the vector struc-
ture come from the gradient in parameter space), that is a one-form, in the parameter
space. Namely, it is an example of a local form of the connection one-form on a U(1)
bundle.

Berry’s phase can be re-written with respect to it as:

γn(C) = i

∮
C
An(R) · dR (2.26)

The interesting aspect of An(R) lies in its behavior when considering:

|n′(R)⟩ = e−iβ(R) |n(R)⟩ β ∈ R (2.27)
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which is still an eigenstate of the Hamiltonian of the system since it is known that they
can be chosen up to a phase. Note that we essentially just used the action of the group
U(1), and that |n′(R)⟩ , |n(R)⟩ ∈ [|n(R)⟩], that is, they belong to the same fiber.
We can compute A′

n(R):

A′
n(R) = ⟨n′(R)|∇R n

′(R)⟩ = ⟨n(R)|eiβ(R) ∇R e
−iβ(R)|n(R)⟩ (2.28)

which, for the fact that the gradient ∇R acts on everything to the right, becomes:

A′
n(R) = An(R) + i∇R β(R) (2.29)

Fundamentally, it has just been shown that the Berry’s connection behaves in parameter
space much like the vector potential does in phase space: it transforms with the gradient
of a function [22].
As a matter of fact, equation (2.29) is entirely equivalent to a gauge transformation of
the vector potential in an electromagnetic field:

A′ = A + i∇Φ (2.30)

where A is the vector potential, while Φ(t,x) is an arbitrary gauge function. Indeed,
gauge formalism lends itself to being analyzed in the context of U(1) formalism3.
Hence, this quantity is sometimes referred to as "Berry’s potential".

We are thus not surprise to see the similarity with the compatibility requested to the
local form of the connection one-form on a principle fiber bundle (1.92).

Let us now reflect on the concept of connection. Referring back to our discussion on the
affine connection in 1.3.2, we can recall that the latter is characterized by the Christof-
fel symbols, which ensure the correct form of the covariant derivative by transforming
appropriately under a change of coordinates and preserving parallel transport in the
tangent space.

On the other hand, Berry’s connection also transforms in a way that depends on the
coordinate change, but its purpose is to "preserve the gradient under a gauge transfor-
mation" [6] in the parameter space.

Thus, both connections adjust in order to preserve a specific property: the affine con-
nection maintains parallelism, while Berry’s connection ensures the consistency of the
quantum phase. In this way, Berry’s connection guarantees a well-defined Berry’s phase
(see (2.31), (2.32)).

Remark. Further reasoning [2] by B. M. Simon in 1983, already addressed the fact that

3In this case, the U(1) bundle is trivial, namely P = R4 × U(1) [7].
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adiabatic theory would provide a rule for transporting the eigenstate |n(R)⟩ along C.
This rule indeed corresponds to the connection (2.26) on the bundle4. This interpreta-
tion suggests that Berry’s phase can be viewed as an associated holonomy [7].
See Subsec.2.1.5 for a more in-depth analysis.

We shall now compute the effects of (2.27) on Berry’s phase itself:

γ′n(C) =
∮
C
A′

n(R) · dR =

∮
C
[An(R) +∇R β(R)] · dR

= γn(C) + β(Rf )− β(Ri)

(2.31)

where Ri is the point in the parameter space where the evolution starts while Rf where
it ends.
Recalling that, for Berry’s phase Ri = Rf , we conclude that:

γ′n(C) = γn(C) (2.32)

which means that Berry’s phase is gauge-invariant, therefore observable [22].

Global form of the connection one-form
The fact that An is not a global connection arises already from the parallelism with the
local form we studied in Sec.1.4. It can actually be shown that there exists a unique
global connection one-form Ã over the U(1) bundle in question. Given u ∈ P , i. e., the
total bundle, [23]:

Ã ≡ A − i
dPu

u
(2.33)

where dP is the exterior derivative on the total bundle P . Equation (2.33) is, indeed,
gauge invariant.

As pointed out in the already mentioned Sec.1.4, the global connection Ã can be reduced
to the local form Ai on an arbitrary chart Ui through the pullback of Ã induced by the
local section (see (1.69)).

2.1.4 Berry’s curvature

Another important concept is Berry’s curvature. It arises from the fact that evaluating
equation (2.24) can be quite demanding.
The procedure could become simpler by transforming the contour integral into a surface
integral, i.e., an integral over any surface whose boundary corresponds to C.

4Actually, B. M. Simon considered a slightly different fiber bundle, where the fibers were the
eigenspaces, but the very first intuition that Berry’s phase is the expression of a holonomy was his.
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In a three-dimensional parameter space, this can be accomplished applying Stokes’s
theorem:

i

∮
C
⟨n(R)|∇R n(R)⟩ · dR = −ℑ

x

Σ(C)

∇R × ⟨n(R)|∇R n(R)⟩ · dS (2.34)

where dS represents the infinitesimal surface element in the parameter space, Σ(C) the
surface itself. The fact that we are only interested in the imaginary part of this term
can be explained by recalling that the bra-ket product appearing in the geometric phase
(2.24) is purely imaginary.
The integrand quantity on the right-hand side is what we call Berry’s curvature, denoted
by Vn(R):

Vn(R) = ℑ [∇R × ⟨n(R)|∇R n(R)⟩] (2.35)

which can also be expressed, in a more common way, with respect to Berry’s connection
as:

Vn(R) = ∇R ×An(R) (2.36)

From (2.36) and (2.29), it is natural to identify an analogy with the magnetic field;
Berry’s curvature Vn(R) is consistent with a magnetic field in the parameter space whose
vector potential is An.

Berry’s phase can of course be written also with respect to Vn(R) in the form:

γn(C) = −
x

Σ(C)

Vn(R) · dS (2.37)

from which we can better understand the physical meaning of Vn(R): its flux is Berry’s
phase [24].

Now, equation (2.35) can be manipulated by first applying the identity ∇ × (A · B) =
(∇A) · B − A · (∇B) and then using the completeness relation5:

Vn(R) = ℑ
∑
m ̸=n

⟨∇Rn(R)|m(R)⟩ × ⟨m(R)|∇Rn(R)⟩ (2.38)

where the case m = n is excluded because of the purely imaginary nature of ⟨n|∇n⟩
-which would lead to a cross product ⟨n|∇n⟩ × ⟨∇n|n⟩ purely real.
In the same way we previously computed (2.6), we can obtain a new form for the off-
diagonal terms:

⟨m(R)|∇Rn(R)⟩ = ⟨m(R)| ∇RĤ(R) |n(R)⟩
En(R)− Em(R)

(2.39)

5∑
n |n⟩ ⟨n| dn = I which holds for any |n⟩ eigenstate
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which allows us to re-express (2.38) in the following form:

Vn(R) = ℑ
∑
m̸=n

⟨n(R)| ∇RĤ(R) |m(R)⟩ × ⟨m(R)| ∇RĤ(R) |n(R)⟩
(En(R)− Em(R))2

. (2.40)

What is really significant here is to note how we managed to eliminate the |∇Rn(R)⟩
terms. These were indeed the terms that constrained the choice of phase for the eigen-
states. Now we discover that Berry’s phase is not even dependant on phase relations
between eigenstates with different parameters and the eigenstates no longer need to be
single-valued in the parameter space [1].
In a sense, we arrived at the same conclusion as in (2.32).

For completeness, we now address how the latter discussion extends to cases where the
parameter space has a dimension greater than two (for an in-depth discussion, refer
to [25]). There exists indeed a generalization of the Stokes’s theorem— stated in the
previous chapter (1.31)—which takes (2.24) and transforms it into an integral of a two-
form over any surface spanning C in parameter space [1], just like it happens in three
dimensions (see (2.37)). The two-form can be written as:

Vn(R) = ℑ
∑
m̸=n

⟨n(R)| dĤ(R)
dR |m(R)⟩ ∧ ⟨m(R)| dĤ(R)

dR |n(R)⟩
(En(R)− Em(R))2

= ℑ
∑
m̸=n

⟨n(R)|∂µĤ(R)|m(R)⟩ ⟨m(R)|∂νĤ(R)|n(R)⟩
(En(R)− Em(R))2

dRµ ∧ dRν

(2.41)

whose component form is actually equivalent to an anti-symmetric second rank tensor
(as we already stated with (1.90)):

Vn,µν(R) =
∂

∂Rµ
An,ν(R)− ∂

∂Rν
An,µ(R). (2.42)

By the definition of the local form of the curvature on a U(1) bundle (1.89), we are able
to derive this equivalence between Berry’s curvature and connection:

Vn(R) = −dAn(R) . (2.43)

Here, dAn(R) is the exterior derivative of An(R) on the U(1) bundle. The minus is
purely conventional. As a confirmation, latter equation also aligns with what we expect
from the generalized Stokes’ theorem (1.31).

An alternative expression for Berry’s curvature that highlights its anti-symmetric nature
is [23]:

Vn(R) =
1

2

{〈
∂ |n(R)⟩
∂Ri

∣∣∣∂ |n(R)⟩
∂Rj

〉
−
〈
∂ |n(R)⟩
∂Rj

∣∣∣∂ |n(R)⟩
∂Ri

〉}
dRi ∧ dRj. (2.44)
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Berry’s curvature, like Berry’s phase, it’s gauge-invariant, as we have already seen for
an arbitrary curvature two-forms on U(1) bundles (see (1.94)). Hence, it is a globally
defined quantity in the parameter space. Nonetheless, it offers a local characterization
of the geometric properties of the parameter space [26].

Remark. B. M. Simon [2] suggested a different form to express the curvature, stressing
that the one chosen by M. V. Berry (2.41) might mislead the reader into thinking that
it depends on specific details of the Hamiltonian rather than on its eigenspaces. The
two-form should therefore be written as:

Vn = ℑ
∑
i<j

〈
∂ |n(R)⟩
∂Ri

,
∂ |n(R)⟩
∂Rj

〉
dRi ∧ dRj . (2.45)

2.1.5 Holonomy interpretation of Berry’s phase

This will be the subsection concluding — as we will be showing it — the discussion about
the interpretation of Berry’s phase as a holonomy associated with the connection A on
the U(1) bundle over the parameter space.

This time, we shall consider a modified Hamiltonian Ĥ(R) in order to remove the dy-
namical phase from our discussion [2]:

Ĥ(R) ≡ Ĥ(R)− En(R). (2.46)

In this way, the n-th eigenstate |n(R)⟩ will coincide with the zero-energy state.
The solution of the Schrödinger equation will thus be [7]:

|ψ(R(t))⟩ = eiγn(t) |n(R(t))⟩ (2.47)

where the only phase factor is the geometric one, whose γn(t) is given by (2.22).

A loop in a subspace U ⊂ R-space6 is defined as: C : [0, T ] → B, where the base space
is the parameter space, indeed. A section σ on the chart U is [7]:

σ : R(t) 7→ |n(R(t))⟩ . (2.48)

From (1.71), we shall define an horizontal lifting also in this very framework such as:

R̃(t) = σ(R(t))g(R(t)) (2.49)

with g(R(t)) ∈ U(1) and g(R(0)) = 1 corresponds to the unit element.
Using (1.72), we can understand how an arbitrary g(R(t)) evolves through t:

dg(t)

dt
g(t)−1 = −An

(
d

dt

)
= −⟨n(R(t))

∣∣ d
dt

∣∣n(R(t))⟩ (2.50)

6R-space is just another name for the parameter space.
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Fig. 2.3: A visual representation of the procedure we described in the text. Here, the base space,
namely the parameter space, is denoted by M , and, again, The n index is not used as we are
effectively considering only the n-th eigenstate Sourced from [7].

where the latter expression was obtained by applying Berry’s connection’s (2.25) to the
vector d/dt. Clearly, g(t) is the shorthand for g(R(t)), in order to have a clearer notation.

Let the elements g ∈ U(1) be parametrized as eiηn(t) [7], ηn(t) ∈ R. Hence:

dηn(t)

dt
= −⟨n(R(t))

∣∣ d
dt

∣∣n(R(t))⟩ (2.51)

from which it can be easily obtained [7]:

ηn(T ) = i

∫ T

0

⟨n(R(t′))
∣∣ d
dt′

∣∣n(R(t′))⟩ dt′

= i

∫ T

0

⟨n(R)
∣∣∇R

∣∣n(R)⟩ dR(t′)

dt′
dt′

= i

∮
C
An(R) · dR

= γn(C)

(2.52)

where, in the final step, we used the definition of Berry’s connection after recalling that
R(0) = R(T ) = R̄; C denotes the closed path followed by R in parameter space, thus
C ∈ CR̄. From (2.49) follows directly that the horizontal lifting can be written as [7]:

R̃(T ) = |n(R(0))⟩ · exp
{
−
∮
C
An(R) · dR

}
. (2.53)
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The latter can be compared to the definition of holonomy group (1.77), from which it is
easy to understand that the exponential term belongs to it:

exp

{
−
∮
C
An(R) · dR

}
= eiγn(C) ∈ Hol|n(R̄)⟩(An). (2.54)

In Fig.2.3, an explanatory image summarizes the most significative steps of our discus-
sion.

2.2 Berry’s phase in the Aharonov-Bohm effect

This section explores one of the most common examples of Berry’s phase in physics: the
Aharonov-Bohm effect [27].

The above-mentioned effect showed the deep physical significance of potentials, in par-
ticular electromagnetic potentials. The magnetic Aharonov-Bohm effect, for instance,
proved how a particle can be affected by the vector potential A.
Let us clarify: consider an infinitely long solenoid carrying an electric current, which gen-
erates a magnetic field confined entirely within its interior; Aharonov and Bohm found
out that the wavefunction Ψ(x, t) of a particle with charge e moving around outside the
solenoid would gain an additional phase ∆S [27]:

∆S

ℏ
= − e

cℏ

∮
A · dx (2.55)

where the closed line integral of the vector potential is the magnetic field’s flux:∮
A · dx = Φ , (2.56)

c is the light-speed and ℏ the reduced Planck’s constant.

We shall now reformulate this concept — following what M. V. Berry himself wrote in his
1984 paper [1] — in order to express the result while explicitly highlighting the relation
with Berry’s phase.

Take into account the system shown in Fig.2.4: there is a single line of magnetic flux
and a box containing particles with electric charge e which is not penetrated by the flux.
This implies that at every point in space, including inside the box, the magnetic field
B = ∇×A is zero. Therefore, it is correct to say that if the box is transported along the
closed curve C depicted in the figure, it does not intersect any points where a magnetic
field is present. The Hamiltonian describing such system will be a function of the kind:
Ĥ(p̂− qA(r̂), r̂−R) and the eigenvalue equation:

Ĥ(p̂− qA(r̂), r̂−R) |n(R)⟩ = En |n(R)⟩ . (2.57)
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Fig. 2.4: The system assembled for the re-interpretation of the Aharonov-Bohm effect as de-
scribed in the text. Sourced from [1].

Its solutions are represented by wavefunctions of the following form:

⟨r|n(R⟩ = exp

{
ie

ℏ

∫ r

R

A(r′) · dr′
}
Ψn(r− R) (2.58)

where Ψn(r− R) is the wavefunction of the particle at r− R position of the box in the
absence of the magnetic field [18] and the exponential factor is the Dirac phase factor7.
It is possible to prove that, transporting8 the box along C, the wavefunction will acquire
a geometrical phase, that is Berry’s phase. Let indeed calculate:

⟨n(R)|∇Rn(R)⟩ =

=
y

d3rΨ∗
n(r−R)

{
−ie
ℏ
A(R)Ψn(r−R) +∇RΨ

∗
n(r−R)

}
=

−ie
ℏ

A(R)

(2.59)

7This factor manages to keep the wavefunction ⟨r|n(R⟩ single-valued.
8It is not actually necessary for the transport to be adiabatic.
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in order to eventually use (2.26):

γn(C) = i

∮
C

−ie
ℏ

A(R) · dR

=
e

ℏ

∮
C

A(R)

=
eΦ

ℏ
.

(2.60)

In this way, we have been led back to the same form of equation (2.60). We note that
the sign is opposite and that a 1/c factor is missing; these differences are not essential
and they are determined by the choice of problem setup.
It is evident that this phase factor does not depend on the state n nor on C — provided
that the box went around the flux line once.

As we mentioned in subsection 2.26, Berry’s phase is an observable, and it can indeed
be observed in the interference between particles transported around C and others kept
still [1].

2.3 Berry’s quantities in two-level systems: magnetic
monopole and geometric interpretation

We shall now deal with a crucial example, which will be useful in order to understand
the physical significance of Berry’s quantities.

Consider a three-dimensional parameter space, where R = (R1, R2, R3), where the loop
C is located close to a degeneracy point R∗9. This means that the sum in (2.40) will be
dominated by the states involved in the degeneracy.

Suppose only two states, |+⟩ and |−⟩, involved in the degeneracy at R∗: E+(R
∗) =

E−(R
∗) and E+(R) > E−(R) when R ̸= R∗. Also, in a neighborhood of R∗, the

Hamiltonian Ĥ(R) can be expanded to first order in (R−R∗).
To streamline the calculation and without loss of generality we can set the degeneracy
at the origin R = (0, 0, 0) and E±(R) = 0.

The most convenient and general way to express the Hamiltonian Ĥ(R) of such two-level
system in a three-dimensional space is as a 2x2 hermitian matrix, i. e. [1]:

Ĥ(R) =
1

2
R · σ̂ =

1

2

[
R3 R1 − iR2

R1 + iR2 −R3

]
(2.61)

9At this point, different states have the same eigenvalues, that is, the same energy.
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where σ̂ = (σ1, σ2, σ3) is the vector operator incorporating the three Pauli spin matrices:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (2.62)

The eigenvalues of the Hamiltonian matrix (2.61) are:

E±(R) = ±|R|
2
. (2.63)

Due to the form in which we expressed Ĥ(R) (2.61), ∇Ĥ acquires a peculiarly simply
form [1]:

∇Ĥ =
1

2
σ̂ . (2.64)

At this point, we can apply transformations in parameters space, rotating the axes until
R lies in the same direction of R3.
Knowing how Pauli matrices acts on the states |+⟩ and |−⟩10:

σ̂1 |±⟩ = |∓⟩ , σ̂2 |±⟩ = ±i |∓⟩ , σ̂3 |±⟩ = ± |∓⟩ (2.65)

makes quite easy to compute V+(R):

V1+ =
ℑ(⟨+|σ2|−⟩ ⟨−|σ3|+⟩)

2R2
= 0,

V2+ =
ℑ(⟨+|σ3|−⟩ ⟨−|σ1|+⟩)

2R2
= 0,

V3+ =
ℑ(⟨+|σ1|−⟩ ⟨−|σ2|+⟩)

2R2
=

1

2R2

(2.66)

which is exactly what we expected after rotating the axes.
The result is complete as V+(R) = −V−(R).

Reinstating the initial orientation [1]:

V+(R) =
R

2R3
. (2.67)

The form we arrived at for the curvature V+(R) corresponds to the form of the field
generated by a monopole located at the origin [26] with a "magnetic charge" eM = 1/2
[18].

10These states are represented in the two-dimensional state space as: |+⟩ =
[
1
0

]
and |−⟩ =

[
0
1

]
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Finally, we are now equipped to compute11 Berry’s phase through (2.37):

γ±(C) = −
x

Σ(C)

V±(R) · dS

= ∓
x

Σ(C)

R

2R3
· dS

= ∓1

2
Ω(C)

(2.68)

where Ω(C) is the solid angle subtended by C. Once again, with this latter, the entirely
geometric nature of Berry’s phase is pointed out; in such a case as the one of the two-level
system, its value depends only on the solid angle Ω(C), which means that as long as it
remains the same, C may assume any form.

A similar interpretation is also applicable in the case of Berry’s phase for a spin-1/2
system, leading to the same result (see chapter 5.6.4, [18]).

To conclude, we shall find another remarkable result regarding the magnetic monopole,
known as Dirac quantization. Let us consider two different surfaces Σ1,Σ2, both enclosed
by the same loop C in the parameter space. Hence, since Berry’s phase is an observable,
the following condition should be satisfied:

x

Σ1(C)

V(R) · dS =
x

Σ2(C)

V(R) · dS+ 2Nπ, with N = 0,±1,±2, .... (2.69)

Now, defined the closed surface Σ(C) as the "union" of Σ1 and Σ2, and given the right-
hand rule as a method to consistently associate the orientation of dS, we can get to:

{

Σ(C)

V(R) · dS = 2Nπ. (2.70)

Since we are currently discussing a three-dimensional problem, we can easily apply
Stokes’ theorem in order to obtain:

{

Σ(C)

V(R) · dS =

∮
C
An(R) · dR. (2.71)

Studying the magnetic monopole in the context of electromagnetism and gauge fields
[18], we find out that (2.71) results in:

e

ℏc
2eM2π = 2Nπ (2.72)

11We can make use of spherical coordinates. Given θ ∈ [0, π] and ϕ ∈ [0, 2π]: dS = R2 sin θdθdϕR̂,
R = |R|(sin θ cosϕ, sin θ sin θ sinϕ, cos θ), we will get: R · dS = |R|2dΩ.
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which can be re-written as:
eM =

ℏC
2e
N. (2.73)

The latter corresponds to the condition of the already mentioned Dirac quantization: if
a magnetic monopole will ever found in nature, its magnitude should be quantized as in
(2.73).

2.4 Generalization: non-Abelian Berry’s phase

Some months after the release of Berry’s work [1], a paper by F. Wilczek and A. Zee [3]
addressing a non -Abelian type of geometric phase was also published. The form of the
geometric phase they found was a generalization of the one introduced by M. Berry.
This type of phase arises when the system exhibits degeneracies. In other words, in this
subsection we will see what really happens when considering the degenerate case without
any approximation, i. e., we will generalize and analyze more accurately the situation
addressed in Subsec.2.3.

We shall now proceed following the usual path — the same we used while proving adi-
abatic theorem in Subsec.2.1.1 — studying the evolution of the Hamiltonian Ĥ(R) in
parameter space; however, the n-th energy level is supposed to be N -times degenerate. It
is possible to set the degeneracy level at zero: En = 0 through a simple renormalization
(analogous to (2.46)). Moreover, the n-th level will be assumed to be separated from the
other energy levels.

Suppose now that the parameters vary slowly enough to allow the use of the adiabatic
limit from R(0) to R(T ), with R(0) = R(T ). Hence, the time-dependent Schrödinger
equation (2.2) will map the solutions of:

Ĥ(R(0)) |na(R(0))⟩ = 0 (2.74)

onto solutions of:
Ĥ(R(T )) |na(R(T ))⟩ = 0. (2.75)

We used |na(R(t))⟩ to denote the N eigenstates making up a basis for the degenerate
eigenspace; the subscript a = 1, ..., N labels the degenerate states. Nonetheless, when
N ̸= 1, this map is not trivial. Thus, a general solution with initial condition |ψa(R(0)⟩ =
|na(R(0)⟩ is written as [3]:

|ψa(R(t))⟩ = Uab(R(t)) |nb(R(t))⟩ . (2.76)

where U(R(t)) is some unitary operator.
To find the right form of the operator, we can require the normalization of the |ψa(R(t)⟩
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state to be preserved, namely:

⟨ψb|ψ̇a⟩ = ⟨ψb|U̇acnc⟩+ ⟨ψb|Uacṅc⟩ = 0 (2.77)

where |ψ(R(t)⟩ = |ψ⟩ , U = U(R(t)), |n(R(t))⟩ = |n⟩ for clearness’s sake.
Since this has to always hold true, we get to [3]:

[U−1(R(t))U̇(R(t))]ba = ⟨nb(R(t))|ṅa(R(t))⟩ ≡ An,ab(R(t)) (2.78)

We thus defined the components of an anti-Hermitian matrix An, referred to as Wilczek-
Zee matrix. This is the generalization of the connection one-form we dealt with when
studying the Abelian case (2.25).
Its specific form clearly depends on the choice of the basis. If we had chosen a different
one, we would have obtained a different state, related to the first one by:

|ψ′(R(t))⟩ = T (R(t)) |ψ(R(t))⟩ . (2.79)

Hence, the connection matrix transforms as:

An(R(t)) = Ṫ T−1 + TAnT
−1. (2.80)

Note the similarity in form of the latter equation with the general transformation equa-
tion for connection one-forms (1.70).

From (2.78), the expression for U(R(t)), that we shall denote with Γ(R(t)) from now
on, is:

Γ(R(t)) = P exp

{∫ T

0

An(R(t)) · dt
}

= P exp

{∫ R(T )

R(0)

An(R) · dR

} (2.81)

where P is the path-ordering operator.
If we then denote the loop completed by the Hamiltonian Ĥ(R(t)) in the parameter
space (recall that we previously mentioned R(0) = R(T )) as C, we can express Γ in a
form that makes its purely geometric dependence on the loop explicit:

Γ(C) = P exp

{∮
C
An(R) · dR

}
= Γ(C).

(2.82)

This quantity is the generalization of the Berry’s phase, i. e., the non-Abelian version of
it acting in the degenerate subspace. It is also referred to as Wilson loop [3].
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It is possible to associate non-Abelian Berry’s curvature, a second-rank tensor, which
reads as [7]:

Vn,µν(R) =
∂

∂Rµ
An,ν(R)− ∂

∂Rν
An,µ(R) + [An,µ,An,ν ]. (2.83)

As was done in the Abelian case, we can now point out the geometric interpretation of
the problem on a principal fiber bundle [28].
Again, we can think of the parameter space as the base space B, while the fibers will
each be a copy of the structure group, which in this case is represented by U(N):

π−1(R) ∼= U(N). (2.84)

Indeed, this time the evolution of the quantum states is not embodied by a "simple"
phase factor, but it involves unitary matrices. Note that, how we expected, U(N) is not
Abelian, since the binary operation, i.e., matrices multiplication, is not commutative.
We can see that, in (2.83), the commutator term does not vanish — as it happens in the
Abelian case instead, see (2.42).

Eventually, assigning R̄ = R(0) = R(T), the Wilczek-Zee matrix defines the element of
the holonomy group Hol|n(R̄)⟩(An) ⊂ U(N).
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3 Applications to quantum technologies
Quantum technology is a form of computation through which we are- at least, potentially-
able to exploit purely quantum properties (such as superposition, entanglement) of phys-
ical systems. This led to a revolutionary approach to information theory and computa-
tion.

Nevertheless, the main problem is the vulnerability of quantum systems and, thus, of
the quantum information we would like to handle. This very real problem played a sig-
nificant role in the initiation of a general effort in finding alternatives and solution that
could make up for it.

One of the possible options is the one of topological quantum computation, whose primary
strength lies in its potential of providing highly decoherence-tolerant devices, whose ro-
bustness is intrinsically rooted in the hardware.

Through this chapter, we will introduce quantum computation and its fundamental con-
cepts, then we will analyze its limits (decoherence, above all). Finally, an introductory
address of topological quantum computation will be delivered.

3.1 A brief introduction to quantum computation

In this section we are introducing the principal concepts of quantum computation, such
as qubits, quantum gates, errors and cecoherence. Establishing these ideas is necessary
to effectively approach the next two sections.

3.1.1 Qubits and the Bloch sphere

The core concept of quantum computation is the qubit, which is shorthand for "quantum
bit"; indeed, a qubit is the quantum version of a classical bit, capable of storing quantum
information.

A qubit can be thought of as a mathematical object [29] with quantum properties. As
a classical bit has two possible states, 0 or 1, also a qubit can be in a |0⟩ or |1⟩ state.
However, the quantum nature of qubits allows them to be in a superposition, namely a
linear combination, of the two "computational basis states". That is, an arbitrary state
of a qubit can be written as:

|ψ⟩ = α |0⟩+ β |1⟩ with α, β ∈ C. (3.1)
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Now, physically measuring a qubit actually means destroying its state, collapsing it to
either |0⟩ or |1⟩, the first one with a |α|2 probability, the second one with a |β|2 proba-
bility. This implies: |α|2 + |β|2 = 1.
It is logical to describe the qubit as a two-dimensional unit vector lying in a two-
dimensional complex vector space, say a Hilbert space1, where |0⟩ and |1⟩ act as an
orthonormal basis. It is conventional the correspondence:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
(3.2)

which makes the arbitrary state appear as:

|ψ⟩ =
(
α
β

)
. (3.3)

It is possible to exploit the fact that |α|2+ |β|2 = 1 always holds true in such a way that,
given γ, θ, φ ∈ R, we can write an arbitrary state as [29]:

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩

)
= cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩

(3.4)

with γ ∈ [0, 2π), θ ∈ [0, π] and φ ∈ [0, 2π). In (3.4), we were able to dispose of the eiγ
thanks to the fact that the global phase does not affect the observable quantity — as we
have already stressed several times. Equations (3.4) naturally suggest an isomorphism
between the unit S2 sphere and the states of a single qubit. The sphere is referred to as
Bloch sphere. Its surface’s points — and thus, the qubit’s (pure) states — are defined
by the two angles θ and φ (see Fig.3.1).

Remark. Recall the construction of the Hopf bundle we studied in 1.4.5. Given the
north pole as the stereographic projection pole, we can recognize in the base space S2

the Bloch sphere. Then, the single qubit Hilbert space is the unit three-sphere S3 in
C2, that is, the Hopf bundle. Thus, each circle S1 allows to identify quantum states
including the global phase shifts.

We shall now study the case of a multiple-qubits system.
Suppose we have two qubits; these will be represented by complex vectors in a four-
dimensional complex vector space. As before, each qubit could be in a |0⟩ or |1⟩ state,

1A Hilbert space H is a vector space equipped with an inner product, where quantum states are
rapresented as vectors
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Fig. 3.1: Representation of the Bloch sphere. To each point on its surface, a quantum state is
associated. Sourced from [29].

or in a superposition of those. This means that a general expression of the whole system
will be2:

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ . (3.5)

This also implies that the computational basis here is made up of: |00⟩+ |01⟩+ |10⟩+ |11⟩
and the physical meaning of the coefficients stays the same: a |ij⟩ measure occurs with
probability |αij|2. Clearly, the normalization condition for the coefficients

∑
i,j=0 |αij|2 =

1 still holds [29].
We could of course decide to measure a subset of the qubits in the system. Since we are
considering a two-qubits system, let us see what happens when measuring the first qubit:
we would end up with measuring it in the |0⟩ state with (|α00|2+ |α01|2) probability or in
the |1⟩ state with (|α10|2 + |α11|2) probability. If, for instance, the result of the measure
is |0⟩, the system will then find itself in the following modified state:

|ψ′⟩ = α00 |00⟩+ α01 |01⟩√
|α00|2 + |α01|2

(3.6)

where the factor in the denominator is necessary in order to re-normalize the finale state.

In multiple-qubits system, a very peculiar event can occur: entanglement.
Let us consider the following state:

|Φ+⟩ = 1√
2

(
|00⟩+ |11⟩

)
. (3.7)

2The |ij⟩ notation |ij⟩ stands for: "the first qubit is in the state |i⟩, the second one in the state |j⟩ ”.
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Measuring the first qubit would give as a result: |0⟩, with 1/2 probability and |1⟩, with
1/2 probability. The state of the system after the measurement will be, respectively, the
following: |00⟩ or |11⟩. This is what entanglement consists of: by measuring one of the
two qubits, we can determine the state of both. In this case, we know a priori that the
two qubits will share the same state.
For completeness, here is the most commonly used computational basis for a two entan-
gled qubits system, called Bell’s states :

|Φ+⟩ = 1√
2

(
|00⟩+ |11⟩

)
, |Φ−⟩ = 1√

2

(
|00⟩ − |11⟩

)
,

|Ψ+⟩ = 1√
2

(
|01⟩+ |10⟩

)
, |Ψ−⟩ = 1√

2

(
|01⟩ − |10⟩

)
.

(3.8)

An entangled state cannot be separated, that is: |ψ12,entangled⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩.

Remark. It is indeed possible to provide a geometric representation of a two-qubits
system, similar to the one-qubit case, using the S7 Hopf bundle in C4. We limit ourselves
to stating that the conceptually and mathematically complex geometry underlying this
framework also allows for a geometric interpretation of entangled states.

Experimentally, qubits can be obtained with physical quantum systems able to represent
the |0⟩ and |1⟩ states. For instances, one can use spins (up |↑⟩ and down |↓⟩), polarized
photons (horizontal |↔⟩ and vertical |↕⟩ polarization) or any state that can provide a
two-level configuration.

3.1.2 Quantum gates

In order to actually do quantum computation, we need quantum gates, which are the
"quantum counterpart" of classical logic gates. Essentially, at a mathematical level,
quantum gates are linear, unitary3 operators acting on vectors representing the state of
a qubit. We can thus think of them as elements of U(n), where n is the dimension of
the vector space where the operator acts.

It is worth emphasizing that, unlike classical gates, quantum gates are always reversible-
which is a consequence of the unitarity request; in addition, another fundamental dif-
ference is the fact that qubits cannot be cloned, as there does not exist any unitary
transformation capable of performing such an operation (this is known as the No-cloning
theorem, see chapter 12.1.1, [29]).

For a single qubit, quantum gates are 2x2 unitary matrices ∈ U(2). We list below the
most important and commonly used ones.

3An operator U is said unitary if U†U = I. Unitarity is necessary to preserve probability.
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• NOT gate:

X ≡
(
0 1
1 0

)
(3.9)

swaps the states |0⟩ and |1⟩:

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ . (3.10)

• Z gate:

Z ≡
(
1 0
0 −1

)
(3.11)

applies a phase shift of π to the state |1⟩, leaving |0⟩ unchanged:

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ . (3.12)

• Hadamard gate:

H ≡ 1√
2

(
1 1
1 −1

)
(3.13)

transforms the basis states into superpositions:

H |0⟩ = |0⟩+ |1⟩√
2

≡ |+⟩ , H |1⟩ = |0⟩ − |1⟩√
2

≡ |−⟩ (3.14)

where |+⟩ , |−⟩ represent another possible choice for a computational basis.

There exists an infinite number of quantum gates (acting on single or multiple qubits),
since any unitary transformation corresponds to one.

Remark. Reversibility implies that the number of qubits entering a quantum gate is
equal to the number of qubits exiting it.

The prototype for a two-qubits gate is the CNOT gate, which stands for "controlled-not"
gate. Given two qubits, initially at |A⟩ and |B⟩, a NOT transformation (3.9) is applied
to the second qubit iff the the first is in the 1 state when measured. The action of a
CNOT gate is shown through a diagram in Fig.3.2, where |B ⊕ A⟩4 effectively embodies
it. For instance, given an initial state |10⟩, after the action of a CNOT gate it will
become a |11⟩ state.

CNOT gate is also representable through a 4x4 matrix UCN ∈ U(4):

4The ⊕ symbol stays this time for "modulo two operation".
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Fig. 3.2: Diagrammatic representation of the quantum CNOT gate. Sourced from [29].

UCN ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
I 0
0 X

)
(3.15)

where we highlighted the identity matrix I and the NOT matrix X.
A similar type of quantum gate can be analogously implemented as a controlled-Z gate,
CZ, replacing the "X" block in (3.15) with a "Z" block:

UCZ =

(
I 0
0 Z

)
. (3.16)

It has actually been showed that single-qubit gates together with CNOT gate constitute
a universal set for quantum computing, that is, finite combinations of CNOT gates and
rotations of single-qubit can approximate with arbitrary precision any other two-qubit
transformation [29].

3.1.3 Quantum noise and quantum states decoherence

In order to build quantum computers, once a physical system capable of acting as qubits
is chosen, the next step is to assemble quantum gates into a functional quantum circuit.
Quantum circuits differ significantly from classical ones; for instance, they are inherently
non-cyclic, and their "wires" often represent the flow of time or particles.

Another important aspect to consider when dealing with quantum computers is their
vulnerability to external factors, making them challenging to operate.
What we have said so far runs smoothly as far as we manage to keep the system closed.
However, perfectly closed real systems do not exists and thus, most of the time, our
physical system — within which quantum information is encoded — inevitably interacts
with the surrounding environment.

This interaction introduces what is commonly referred to as noise, which threatens the
quantumness of the entire process [30]. Noise jeopardizes the system, potentially reduc-
ing the quantum computer to a classical one by invalidating the quantum principles we
rely on to manipulate quantum information.
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Indeed, interactions destroy the quantum state, causing decoherence, that is, the rel-
ative phase between components of a quantum superposition is disrupted. The pure
quantum state (such as the one shown in (3.1)) transitions into a mixed state, entangled
to the environment, neither fully quantum anymore, nor entirely classical yet5.

Moreover, measurement itself introduces decoherence and acts as a form of noise, making
it seem impossible to address these problems.

Theory of quantum error correction aims to mitigate the effects of decoherence. It
provides methods to detect and correct errors, without directly measuring the quantum
system.
This is often achieved by introducing additional qubits, known as ancilla qubits, and
encoding logical qubits |0⟩L = |000⟩ and |1⟩L = |111⟩ into a group of physical qubits
(as introduced in Subsec.3.1.1). Indirect measurements, called syndromes, allow error
detection without collapsing the quantum state.

Furthermore, systematic errors –— hardware-level imperfections — and the finite preci-
sion of quantum gates introduce additional challenges. Even small inaccuracies in gate
implementation can lead to failures, further complicating the process.

In summary, quantum computers are subject to a wide range of factors that could com-
promise their efficiency and accuracy, making them both challenging to construct and
operate.

3.2 Topological quantum computation

Global properties of manifolds that are generally unaffected by local deformations can
be studied through topology.
In this section, after introducing some useful definitions in order to deal with funda-
mental topology concepts, we will provide an idea of how these global properties of
manifolds could, at least theoretically, be exploited at material level and used to con-
struct decoherence-free quantum computers.

We shall point out that idea of topological quantum computation was firstly addressed
by the physicist A. Yu. Kitaev [4], [28].

5These concepts could be explored using the elegant mathematical formalism of density matrices.
However, this discussion lies beyond our scope. For further reading, see, for instance, [29].
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3.2.1 Topological framework: some definitions

Here, a series of additional mathematical definitions will be proposed, aimed at support-
ing the understanding of the next section.

Given a space X and a family T of subsets of X, Ti ⊂ X, these are said to be open
sets and the pair (X, T ) is called topological space if:

• the empty set ∅ and the entire set X are included:

∅, X ∈ T ;

• an arbitrary union of sets Ti ∈ T is open:⋃
i

Tj ∈ T ;

• a finite intersection of sets Ti ∈ T is open:⋂
j=1,...,N

Tj ∈ T .

X is called underlying space while T is called topology.

The quotient space X/ ∼ is defined as the set of equivalence classes of X with respect
to the equivalent relation ∼, that is:

X/ ∼= {[x] | x ∈ X}, (3.17)

where [x] is the equivalence class of x, i.e., the set of all points y ∈ X such that x ∼ y.

In a topological space, it is possible to define a path. It can heuristically be understood
as a specific parametrization of a curve (which we already characterized in Sec.1.1) with
a direction and endpoints. Formally, it is a continuous map λ : [0, 1] ⊂ R → X, where
X is the topological space6. The endpoints of the path are λ(0), called starting point,
and λ(1), called ending point. These define a direction for the path.
Whenever the two endpoints coincide λ(0) = λ(1) = x the path is referred to as a loop
at x.

Now, two paths on the same space can be compared, In particular, there can exists a
peculiar relation between the two, namely a homotopy relation.
Consider two paths λ1, λ2 : [0, 1] → X on the same topological space X, with fixed

6It would have been more precise to say "a space on which we can define a topology".
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sharing endpoints, that is: λ1(0) = λ2(0) = x0 and λ1(1) = λ2(1) = x1. An homotopy
between λ1 and λ2 is a continuous map F : [0, 1]× [0, 1] → X such that:

F (s, 0) = λ1(s), F (s, 1) = λ2(s) ∀s ∈ [0, 1], (3.18)
F (0, t) = x0, F (1, t) = x1 ∀t ∈ [0, 1]. (3.19)

If such a map does exists, then λ1 and λ2 are said to be equivalent or homotopic
paths, in symbols: λ1 ∼ λ2. This latter indeed expresses an equivalence relation.

This definition can of course be naturally extended to loops as well [7].

As an example, consider a loop λ : [0, 1] → R2 based at a point x0 ∈ R2. The loop can
be continuously shrunk to the point x0 using the homotopy:

F (t, s) = (1− s)λ(t) + sx0,

where t parametrizes the loop, and s represents the deformation parameter. For s = 0,
F (t, 0) = λ(t), and for s = 1, F (t, 1) = x0.
This demonstrates that any loop in R2 is homotopic to the constant loop at x0, and thus
any two loop in R2 are homotopic.

From the concept of homotopy derives the concept of fundamental group π1(X, xo).
It is the set of all homotopy classes [λ] of loops λ at x0 equipped with a group structure
(see Subsec.1.4.2) under the binary operation [λ] · [γ] ≡ [λ∗γ], [λ], [γ], [λ∗γ] ∈ π1(X, x0)
[31], called concatenation map and described as:

(λ ∗ γ)(t) =

{
λ(2t), se t ∈ [0, 1/2],

γ(2t− 1), se t ∈ [1/2, 1].
(3.20)

Essentially, the fundamental group consists of all loops that can be continuously deformed
into one another, corresponding to the concept of homotopy.

Recalling the example above, the fundamental group of R2 at a fixed point x0 ∈ R2 is:
π1(R2, x0) = {[x0]} = {e}, namely, the unit element. Clearly, the presence of a "hole" or
any other type of obstacle would change this situation, and we would no longer be able
to say that any loop is equivalent to every other loop.

3.2.2 Abelian and non-Abelian Anyons

Given an N point-like indistinguishable particles quantum system, we can study the
case when two particles are exchanged. Essentially, the wavefunction of the system
ψ(1, 2, ..., N) acquires a phase factor eiΦ, with Φ = 0, π, when two particles are exchanged,
i. e.:

ψ(1, 2, ..., i, ..., j, ..., N) = eiΦψ(1, 2, ..., j, ..., i, ..., N) (3.21)
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In three dimensions, the wavefunction can stay the same ei0 = 1 or change sign eiπ = −1.
In two dimensions, instead, Φ can take an arbitrary value ∈ [0, π], or, in some cases, the
exponential eiΦ can be replaced by a unitary matrix.

This can be better understood by looking at topological properties of the paths in space-
time that describe the exchange of two particles (see Fig.3.3). In particular, we shall
consider their configuration space. As argued in [23], the configuration space of N
identical particles, each moving in Rd, with d ≥ 2, is defined by the following topological
space:

Q = (RNd −∆)/PN (3.22)

where RNd = Rd ×Rd × ....×Rd, N times, is a product space, ∆ is the diagonal of RNd

defined by:

∆ = {x1....xN ;xi ∈ Rd | xi = xj for at least a pair (i, j), i ̸= j} (3.23)

representing the forbidden configurations where the two particles coincide. Finally, the
term /PN implies we are considering the quotient by the action of PN , which is the
so-called permutation group.

Let us say something about the latter.
The permutation group PN is a discrete group consisting of all possible permutations
(which are mappings from a set to itself) of the N elements of a set. The group counts
thus N ! elements, generated by N − 1 transpositions. Transpositions σi ∈ PN satisfy:

σiσj = σjσi, |i− j| ≥ 2 (3.24)
σiσi+1σi = σi+1σiσi+1 (3.25)
(σi)

2 = e (3.26)

i. e., the permutation group is Abelian, the order in which permutation are applied does
not count and permutations are idempotent.

Another important group, which is useful when dealing with indistinguishable particles
in two dimensions (d = 2), is the braid group BN . This infinite and discrete group is a
generalization of the permutation group. Its action involves the braiding of N strands7:
the braiding τi crosses strand i over strand i+1. Moreover, this group is, in general, non-
Abelian, i. e., τiτj ̸= τjτi and — most importantly — its elements are not idempotent,
that is, (τi)2 ̸= e (see 3.6).

We shall now state a theorem which will useful in our upcoming discussion [23].

7Strands have to be intended as trajectories of particles in space-time.
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Fig. 3.3: A visual representation of the exchange of two particles is shown, in the three-
dimensional case (left) and the two-dimensional one (right). Sourced from [5].

Theorem. Given a topological space Q defined as in (3.22), we can distinguish two cases:

π1(Q) = PN for d ≥ 3,

π1(Q) = BN for d = 2.
(3.27)

In three dimensions (d = 3), two loops λ1, λ2 swapping two particles are topologically
equivalent λ1 ∼ λ2, that is, they belong to the same homotopy class. Indeed, we can
see this process as the action of the permutation group P2, in particular we can think of
a loop as the consecutive application of σi and σ−1

i . The fact that (σi)
2 = e coincides

with the fact that any loop λ in R3 can homotopically be deformed into another one,
essentially λ ∼ e.
In terms of evolution of the system, it must be such that:

|ψ(λ2)⟩ = S2 |ψ(0)⟩ , with S2 = 1 (3.28)

where the ket in the left-hand side represents the final state of the system, |ψ(0)⟩ is the
initial state, and S2 is the exchange operator 8 applied two times [5]. The condition on
it leads to: S = ±1, as a confirmation of what we have stated above.
Should this be the case, the order and the orientation of the exchanges does not count
and thus the statistics can be described by the permutation group.

When Ŝ = 1 and the wavefunction (3.21) stays the same, the particles that made up the
system are referred to as bosons, otherwise, when Ŝ = −1 and the wavefunction switches
sign, they are called fermions9.

On the other hand, in two dimensions (d = 2), the situation is far different; what we have
said for three dimensions is only possible due to rotations in third dimension. Indeed,
for elements of the braid group B2, (τi)2 ̸= e. The structure of the configuration space
does not allow the two loops λ1 and λ2 to be topologically equivalent in this case. Hence,

8The exchange operator is an operator that, applied to the initial state of the quantum system, gives
the state of the system after the exchange of two particles.

9The names were chosen after the scientists who studied the associate statistics, that is S. Bose and
E. Fermi.
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Fig. 3.4: These can be seen as example of permutations as well as braidings. If we consider
the permutation group, these two elements are exactly the same (property (3.25)), whereas, as
elements of the braid group, these are different. Taken from [32].

the constraint S2 = 1 does not held anymore, and Ŝ can be represented by a generic
complex phase or a unitary matrix.

At this point, peculiar particles might arise, named anyons10. In particular, when the
final state of the system is obtained through a unitary matrix, we talk about non-
Abelian anyons. The exotic behaviour of such particles leads to a type of statistics
called fractional statistics.

Physically, they manifest as quasiparticles, representing collective states of the elemen-
tary excitations [5], characterized by properties that arise from the system as a whole
and whose quantum evolutions are strictly related to topology in the configuration space.

3.2.3 Topological quantum computation

The idea behind topological quantum computation is to exploit topological properties
of non-Abelian anyons to develop a revolutionary type of quantum computer that is
significantly more resistant to decoherence compared to "ordinary" quantum computers.

This subsection is based on the analysis provided in [5].

The first obstacle is the fact that no genuine two-dimensional system exists, meaning
we have to constrain systems in two-dimensions in order to probably observe anyonic
behaviors in the materials. Indeed, two-dimensions do not guarantee the existence of
anyons.

Isolated sheets of graphene, two-dimensional optical lattices of cold atoms and electrons

10The name anyons resembles "fermions, bosons", but the "any-" prefix stand for "any direction",
in the sense that Φ in eiΦ can be "any" (∈ [0, π]).
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confined by strong magnetic fields, such as Quantum Hall Effect, are examples of real
physical system constrained in two-dimensions.

Let us now give an useful definition; a topological state of matter is a phase of matter
which is characterized by global topological properties — rather than local symmetries,
which are instead typically used to classify conventional phases.

Now, all topological states that support the potential existence of anyons are insulators,
which implies a strong separation ∆ between the ground state and the rest of the energy
states of the system.

The introduction of non-Abelian quasiparticles causes low-energy states to acquire a
certain level of degeneracy, which depends on the type of anyons. This originates a
decoherence-free degenerate subspace — which can be described as a manifold — that
we can exploit to encode quantum information. Indeed, this protection, which is the
very reason for topological quantum computation, derives from both the energy gap and
the fact that the degenerate subspace is a collective non-local property of non-Abelian
anyons; the first one makes unlikely any spontaneous excitations which could interact
with already present anyons. At the same time, it is reasonable to think that any
perturbation in the system would act as a local displacement of the anyons, which thus
do not affect global properties.

The evolutions of quantum states in the protected degenerate subspace are adiabatic11

transports of anyons on the manifold, evolving through a non-Abelian Berry’s phase
(see Subsec.2.4), which shows indeed a topological nature, i.e., independent from local
geometry. If the dimension of the subspace is N , then, the evolution of the system’s
state |Ψa(z1, z2, ..., zn)⟩ depending on anyon coordinates zj is given by:

|Ψa(z1, z2, ..., zn)⟩ 7→
N∑
b=1

Γab(λ) |Ψa(z1, z2, ..., zn)⟩ with a = 1, 2, ..., N (3.29)

where λ denotes a cyclic path in zj. The expression of Γ(λ) is analogous to (2.82):

Γ(λ) = P exp

{∮
λ

A(z) · dz
}

(3.30)

where the components (Aj)ba of the connection A appear as:

(Aj)ba = ⟨Ψb(z1, z2, ..., zn)|
∂

∂zj
|Ψa(z1, z2, ..., zn)⟩ . (3.31)

Hence, as mentioned, we understand that the non-Abelian Berry’s phase in the context
of non-Abelian anyons is strictly related to the topological properties of the system [5].

11In this case, "adiabatically" means "slowly compared to the energy gap ∆.
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Fusion channels and braidings
We will now introduce the anyonic processes that will enable us to do quantum compu-
tation with anyons. We will refer to this theoretical model as anyon model.
Our discussion is based on some assumptions: anyons can be created/annihilated in
pairwise fashion, they can be fused in order to originate other types of anyons and can
be exchanged adiabatically.

The anyon model can be thought as spanned by a certain number of particles:

M = {1, a, b...} (3.32)

where 1, a, b... are sort of a "topological charge" carried by each anyon; 1 stands for "vac-
uum’s topological charge". Since these are charge, they should be conserved. Topological
conservation rules are known as fusion rules :

a× b =
∑
c∈M

N c
abc. (3.33)

The fusion coefficients N c
ab are non-negative integers (most of the time, N c

ab = 0, 1)
which weight the possible outcomes of the fusion between a and b. If only one coefficient
N c

ab is different from zero, then the model is Abelian. On the contrary, when different
coefficients are different form zero, the model is non-Abelian.
These non-Abelian anyons’ fusion channel degrees of freedom create a space spanned by
the possible fusion outcomes. Given, for instance, a × b = c + d, the orthonormal basis
for such a space:

⟨ab; c|ab; d⟩ = δcd (3.34)

where δcd is the Kronecker delta function. Whenever there are N outcomes from the
fusion of two anyons, the system will acquire an N -fold degeneracy spanned by the
already mentioned basis, called the fusion space. The latter coincides exactly with the
protected degenerate subspace we introduced above.

However, two states obtained with a different fusion outcome are defined in different
topological charge sectors, thus we cannot perform superposition with them.
A possible way to overcome this problem is using more than two anyons in order to
fuse them in different ways but ending up with the same type. By doing so, a change
in the order of the consecutive fusions corresponds to change of basis. We can define
the F-matrices, which are essentially matrices of change of basis. For instance, given a
system of three anyons a, b, c, we can write:

|(ab)c; ec; d⟩ =
∑
f

(F d
abc)ef |a(bc); af ; d⟩ . (3.35)

The state appearing on the left-hand side of the equation is obtained fusing a with b
to obtain e, and then e with c to obtain d; on the right-hand side, the state is instead
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Fig. 3.5: Fusion diagrams and "change of basis", namely, change in order of the fusions. Note
how the two diagrams are topologically equivalent, implying that such two diagrams corresponds
to the same state of the system. Sourced from [5].

Fig. 3.6: Visual image describing the effect of applying the R-matrix. Note how, this time, the
diagram on the left-hand side exhibits two ovelapping branches, which makes the two diagrams
not topologically equivalent.

obtained by initially fusing b and c to obtain f , which fused with a led to d, again. Indeed,
this was the process we were looking for; in a sense, it is a sort of associativity rule. In
Fig.3.5, this is shown through fusion diagrams, which are very intuitive. Moreover, this
notation highlights the topological nature of the problem, since the two diagrams are
continuously deformed into each other, that is, they are topologically equivalent.

For everything we analyzed so far, we can understand how anyons evolve adiabatically via
(3.29), i. e., through unitary operations on the fusion space that correspond to braidings
which embody evolution at a topological level. Mathematically, these are expressed by
the exchange operator we already mentioned in the previous subsection 3.2.2. From now
on, we shall refer to them as R-matrices and denote their components with Rc

ab. Let us
now recall the previous example, with three anyons a, b, c. Then, a clockwise exchange
of a and b in the |(ab)c; ec; d⟩ basis is written as:

|(ba)c; ec; d⟩ =
∑
f

Rf
abδef |(ab)c; ec; d⟩ . (3.36)

The fusion diagrams version of the equation is displayed in Fig.3.6. For the presence
of the Kronecker delta function δef , a clockwise exchange is represented by a diagonal
unitary matrix. The correspondent counter-clockwise exchange is represented by R†.

Finally, we achieve the effect of exchanging b and c clockwise in the same basis by
multiplying R and F matrices:

|(ac)b; ec; d⟩ = (F d
abc)

−1R(F d
abc) |(ab)c; ec; d⟩ (3.37)
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where the inverse F-matrix (F d
abc)

−1 allows us to return to the original basis.

Ising anyons
Although this model is not able to provide a universal set for quantum computation by
just braiding (we need non-topological operations to achieve it), Ising anyons are the
best candidates to experiments. After addressing them, we will make use of this model
in the next paragraph, "Quntum computation with anyons".

This model includes both anyons σ and fermions ψ. In this case the fusion rules are:

1× 1 = 1, 1× ψ =ψ, 1× σ = σ,

ψ × ψ = 1, ψ × σ = σ,

σ × σ = 1 + ψ.

(3.38)

The fusion space is spanned by:

{|(σσ)σ; 1σ;σ⟩ , |(σσ)σ;ψσ;σ⟩}. (3.39)

To change basis to the one in which the first fusion involves the two left-most anyons
from the right, the F-matrix takes the form:

F = F σ
σσσ =

1√
2

(
1 1
1 −1

)
. (3.40)

Note the correspondence with the ordinary Hadamard gate (3.13), which maps: |0⟩ 7→
|+⟩, |1⟩ 7→ |−⟩; thus, different fusion orders imply a different basis just as the basis for
a qubit can be choosen between |0⟩ , |1⟩ and |+⟩ , |−⟩.

We can also compute the R-matrix for the clockwise exchange of the two left-most anyons
as:

R =

(
R1

σσ 0
0 R1

σσ

)
= e−iπ/8

(
1 0
0 i

)
. (3.41)

It is easy to see that R2 is a Z gate (up to an overall phase factor).

Eventually, Assume that the two rightmost items are swapped twice. The evolution of
the system would have been described by:

F−1R2F = e−i4π

(
0 1
1 0

)
. (3.42)

This latter expresses thus a NOT gate (apart from an overall phase factor).

As we have already mentioned at the begin of the paragraph, Ising anyons do not manage
to form a universal set for quantum computing. The reason lies in the fact that they can
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only implement a two-qubits gate and Clifford gates12 by braiding, and together they do
not form an universal set. We shall thus appeal to non-topological operations, and this
of course represents a possible source of errors.

Let us instead consider a different model of non-Abelian anyons, the so-called Fibonacci
anyons. This may be the simplest model, where the only fusion rule is: τF × τF = 1+ τF ,
with τF denoting a Fibonacci anyon. It is possible to shown that this anyons do form a
universal set of quantum gates [33]. However, let us stress that the Ising model remains
the best choice for experimental purposes, which is the main reason why we will be study
this model instead of the Fibonacci one.

Quantum computation with anyons
We are now equipped to address a brief discussion about the real implementation of
quantum computation with anyons.

To practically initialize a quantum computer, we need to create some anyons from the
vacuum and fixing their position. The computational space will then be given by the
fusion space of these anyons. In the case of Ising anyons (which we will consider from
now on), given 2n13 anyons, the dimension of the fusion space will be N = 2n−1.

Suppose we initialized the system with a certain number of anyons σ: four of them would
enable one qubit, six of them can instead encode two qubits. Let us focus on the latter
situation. The computational basis is:

|00⟩ = |σσ; 1⟩ |σσ; 1⟩ |σσ; 1⟩ ,
|10⟩ = |σσ;ψ⟩ |σσ;ψ⟩ |σσ; 1⟩ ,
|01⟩ = |σσ; 1⟩ |σσ;ψ⟩ |σσ;ψ⟩ ,
|11⟩ = |σσ;ψ⟩ |σσ; 1⟩ |σσ;ψ⟩ .

(3.43)

As we mentioned, to actually perform a computation in the fusion space, we need to
braid anyons, i. e., we apply different sequences of R-matrices and compositions of the
kind F−1RF .

We saw above (3.40), (3.41), (3.42) how the basic single-qubit gates (correspondent to the
ordinary Hadamard, Z and NOT gates) shoul appear. In the two-qubits computational

12Clifford gates are elements of the Clifford group, generated by the Hadamard gate, the CNOT gate

and the phase gate. The latter is a generalization of the Z gate, namely: S ≡
(
1 0
0 eiθ

)
, with θ ∈ R.

13Remember that anyons need to be created in a pairwise fashion.
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Fig. 3.7: In the figure, visual images of the braidings implementing the quantum gates discussed
in the text are shown . Sourced form [5].

basis (3.43), they are expressed as:

UH,1 = R12R23R12 = RF−1RFR⊗ I, UH,2 = R56R45R56 = I⊗RF−1RFR,

X1 = R2
23 = F−1R2F ⊗ I, Z1 = R2

12 = R2 ⊗ I,
X2 = R2

45 = I⊗ F−1R2F, Z2 = R2
56 = I⊗R2

(3.44)

where UH coincides with the Hadamard gate up to an overall phase, the clockwise ex-
change operator Rij acts on anyons i and j, while the subscripts on the gate symbols
indicate whether they refer to the first or the second qubit.
With two qubits, we are also able to perform braiding in order to obtain a controlled-Z
gate, UCZ :

UCZ = R−1
12 R34R

−1
56 . (3.45)

In particular, as each R-matrix involves a different pair of anyons, it is easy to prove
that UCZ |11⟩ = − |11⟩, which is exactly what a "conventional" CZ gate does.

Measurement process
Let us now elaborate briefly on the process of masurement.
For Ising anyons, fusion results in either the vacuum state or a ψ particle, distinguished
by two different measurable changes in energy.
In a system of six anyons σ encoding two qubits, Z-basis measurements detect the fusion
outcome of specific pairs (e.g., anyons 1 and 2), applying projectors like |0⟩⟨0| or |1⟩⟨1|
based on the result. X-basis measurements similarly involve other pairs (e.g., anyons 2
and 3).

These operations project the system onto specific computational subspaces and depend
on the system’s microscopic details.

Possible error sources
To conclude, we shall point out that not even (real) quantum topological computers are
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totally error-free. We addressed our discussion implicitly making assumptions for ideal
conditions, that is zero temperature — in order to avoid any thermal excitations that
could interfere with the useful anyons — and infinite separation between anyons in the
degenerate subspace — so that interactions can be neglected.
Clearly, when dealing with real and practical situations, these conditions can never be
fully met, inevitably resulting in some degree of decoherence.

Concerning the first assumption, studies on Abelian anyons showed that, despite the
temperature being much lower that the energy gap ∆, even very small weights of ther-
mally excited states could interfeare with anyons and the topological structure of the
system. This is expected to be a problem for non-Abelian anyons, too.

Also the problem regarding infinite separation is potentially difficult to solve, as the
required length scale for distance is ξ ∼ ∆−1. Considering that, when dealing with real
systems, the number of (Ising) anyons used is approximately 1019, and the energy gap
must be large, achieving the ideal condition becomes extremely challenging.

Moreover, in the case of Ising anyons, another source of error arises from the unavoidable
need for an additional non-topological quantum gate, which will, of course, be particu-
larly susceptible to decoherence.

To conclude, we can overall claim that, despite the challenges associated with the im-
plementation of such technologies at the real-world level, there is considerable optimism.
To grasp the potential revolutionary impact, consider that a major corporation like Mi-
crosoft [34] is currently dedicating substantial resources to research in this very field.
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Conclusions
Through this thesis, we managed to outline a clear connection between mathematical
knowledge describing geometry and processes characterizing physical systems. This ap-
proach allowed us to define many significative quantities that describe physical systems
in terms of their geometric properties.

In of Chapter 2, we focused on Berry’s phase (2.24), showing that its value only depends
on the geometry of the closed path C traced by the system’s Hamiltonian Ĥ(R) in pa-
rameter space. We then naturally introduced Berry’s connection (2.26) and curvature
(2.37), and found out their relations with Berry’s phase. This enabled us to interpret
the latter as a manifestation of holonomy associated to the local form of the connection
one-form on the U(1) bundle over the parameter space. Essentially, exploring this point
of view through the mathematical tools addressed in Chapter 1, we ultimately proven
how the concept of geometric phase is intrinsically rooted in the structure of quantum
state space, emphasizing its fundamental role in quantum theory.
Furthermore, we established parallels between Berry’s quantities and electromagnetic
concepts. In particular, we noted how Berry’s curvature is the counterpart of a mag-
netic field in parameters space, just as Berry’s phase is the counterpart of its flux, and
Berry’s connection corresponds to the vector potential. These insights were applied
to phenomena like the Aharonov-Bohm effect (2.60) and the behavior of systems near
degeneracy points, where the curvature resembles the field of a hypothetical magnetic
monopole (2.67). Extending this framework, we introduced the non-Abelian Berry’s
phase (2.82). The name "non-Abelian" can be traced back to the fact that the proper
geometric framework to really study this concept is the one of the U(N) bundle, with
N ≥ 2, a non-Abelian group. On the other hand, "ordinary" Berry’s phase finds its
natural framework in the U(1) bundle, which is Abelian.

In Chapter 3, we explored the application of geometric and topological properties to
topological quantum computation. This innovative approach stores quantum information
at a topological level, making it resilient to local noise — i.e., unaffected by local geo-
metrical details —, and thus potentially decoherence-free. This can be achieved by using
an exotic type of quasiparticle, arising in two dimensions and called non-Abelian anyons.
These indeed evolve through non-trivial quantum transformations governed by topol-
ogy — rather than local geometry. In particular, we demonstrated that quantum states
describing non-Abelian anyons would evolve via a non-Abelian Berry’s phase (3.30),
which is mathematically expressed by a non-trivial unitary matrix. Moving forward, our
discussion delved finally into "practical" topological computation; both fusion and braid-
ing of anyons were introduced and investigated, from either a mathematical/topological
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point of view, and a conceptual one (3.33), (3.35), (3.36). Using the Ising model, we
demonstrated how to construct two-qubit systems with quantum gates analogous to con-
ventional ones. However, topological quantum computation faces significant challenges
in practical implementation, including thermal excitations and the difficulty of creating
and manipulating anyons.

In summary, this thesis has hopefully been able to highlight the critical role of geome-
try and topology in quantum processes, showing how these frameworks not only deepen
our understanding, but also reveal subtle connections between different areas of physics.
Such an approach often proves essential in uncovering the underlying structures govern-
ing quantum systems and their potential technological applications.
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