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Abstract

Transformers have recently exploded in popularity thanks

to their adoption through tools like ChatGPT. This leads to

an ever-growing pressure on computational centers, that are

economically and ecologically expensive. Furthermore, send-

ing private data from the end-user to these centers raises major

security and privacy issues.

Among the possible solutions to this is continual learning

(CL) on embedded devices, which enables lighter and faster

retraining procedures, and eases the deployment requirements

on low-power platforms.

This work explores this alternative by applying CL methods

such as Latent Replay, Copy Weight with Reinit* (CWR*),

and Architectural and Regularization 1* (AR1*) on trans-

former architectures designed for image processing, like the

Vision Transformer (ViT).

The thesis opens the way for efficient deployment of trans-

former architectures on PULP microcontrollers, by implement-

ing a highly flexible ViT golden model test in TrainLib. On

the CORe50 dataset, accuracies improve for the evaluated con-

figurations by up to 18% and, by using a ViT setup with less

transformer blocks, models become up to 40% lighter, at the

expense of less than 6% in accuracy.
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1 Introduction

Transformers recently skyrocketed in popularity, thanks to their sig-

nificantly superior results on text data ([1], [2], [3]) when compared to

previous solutions ([4], [5]), their potential of improving results for other

problems as well (computer vision [6], [7], [8], [9], audio solutions [10],

[11], and even multimodal tasks [12], [13], [14]), and their commercial

success with the non-technical public, through Generative Pre-trained

Transformer (GPT) [15] based tools, such as virtual personal assistants

(OpenAI’s ChatGPT, Google’s LaMBDA-powered [16] assistant, Meta’s

AI, based on their Llama configuration [3], and many others), and syn-

thetic image (OpenAI’s DALL-E family [17], Google’s IMAGEN [18]) or

video generation (OpenAI’s Sora [19], Google’s Lumiere [20], or Meta’s

Make-A-Video [21]).

Transformers are larger and more complex than previously existent

solutions, such as convolutional [22] or recurrent networks [23]. Because

of this, they are usually run server-side and the end-device only receives

the inference result. The expensive training process and the final for-

ward step happens in large data centers, far from the user. This issue

led to a steep increase in loads and costs for computing clusters.

Despite efforts to decrease their memory and computation require-

ments, transformers are still difficult to deploy on lighter devices. How-

ever, this didn’t stop the industry and the research community to seek

ways to scale-down and push this costly process towards the edge of the

computing ecosystem, reaching as far as ultra-low-power platforms, like

IoT-dedicated microcontrollers [24].

One such way is continual learning (CL), which enables the adapta-

tion or extension of a model to new scenarios or contexts by learning

on newly obtained data, without losing the previous knowledge. This

usually aims to specialize a deployed model to a particular environment,
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such as understanding the dialect of a certain language, or personalizing

a text generator to the style required by a user, or to extend its func-

tionality, by adding more classes of objects to the knowledge base.

The upside of such a method is that the lengthy retraining of an en-

tire model on the full dataset and the specific data, plus their storage

requirement, is significantly reduced, especially in the case of heavy-

weight transformers. Although this looks like a promising solution, it

still comes with drawbacks, in particular ”catastrophic forgetting” [25],

where the model ends up performing very poorly on the initial samples,

overfitting on the new examples. Another limitation, especially in the

context of costly models, is the computationally-heavy training process,

more complex than a simple inference.

This thesis aims to set the foundation for deploying a continual learn-

ing pipeline to a microcontroller-level computer, with a focus on self-

attention for computer vision.

The purpose was reducing the gap between transformer models and

their deployment on edge devices, taking inspiration from previous sim-

ilar endeavors, such as [24] or [26]. This has been accomplished by

the implementation of a highly flexible deployment pipeline of a Vision

Transformer (ViT) [6] on the PULP platform [27], through its dedi-

cated TrainLib [28]. This provides a tool to translate one-to-one from

a PyTorch [29] implementation of a ViT model, with variable inter-

nal configuration, such as input size, hidden dimensions, or number of

transformer blocks. A new software utility has been deployed, capa-

ble of translating ViT internal variables into TrainLib components, and

extended this library with the necessary primitives, such as MHSA, Lay-

erNorm, GELU, and Tanh, to match their PyTorch counterparts.

ViT, a self-attention solution for computer vision, was then com-

bined with 5 continual learning methods: native rehearsal, latent re-
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play, CWR*, AR1*, and AR1* free [30]. These were ported from their

previous evaluation on the MobileNet [31] convolutional model to the

transformer-based one. The accuracies obtained on native rehearsal,

combined with any of CWR*, AR1*, and AR1* free, are up to 18%

higher than for the MobileNet [31], after pretraining on ImageNet 1k

[32] and fine-tuning on CORe50 [33], a visual classification dataset, spe-

cially designed for CL problems.

A solution for reducing the memory occupation is also presented,

pruning down to 7 transformer blocks, from the default 12 in ViT-Base.

This compresses the model down to 60% of its initial size, and the entire

CL pipeline to 87.8% of its initial memory requirement, with a loss in

accuracy of less than 6%. An analysis of latent replay, the rehearsal

method proposed in [30], used on transformers, is also performed, with

initial accuracy values between 13.58% and 50.29% showing that it re-

quires more fine tuning and experimentation before it can be successfully

applied to this newer architecture.

The next step would be to finalize a deployable training pipeline for

the ViT model on the PULP platform, including the CL politics that

come with the previously introduced methods.
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2 Background

2.1 On-Device Machine Learning

On-Device Machine Learning represents any Machine Learning (ML)

task that is undertaken on the end-device, rather than server-side, in a

large computational center, especially useful since inference takes about

5 times as many resources as training, according to [34].

The data is processed locally, on the device’s hardware, reducing or

removing altogether the need of a larger, remote processing unit, and of

an Internet connection, implying an increase in the privacy and security

for the end-user, and a reduction of the response-time down to real-time

processing.

2.1.1 General Overview

Existent solutions optimize on-device machine learning in different ways,

ranging from more software-related, to being closer to the hardware.

The critical resources at on-device deployment time are always the

processing speed and the memory [35]. Oftentimes though, these 2

problems are improved at the same time, since reducing the model size

through methods as simple as using less layers at the expense of perfor-

mance, or more complex ones, like quantization, helps with both issues.

On the hardware side, there are acceleration techniques used for de-

signing units capable of speeding-up the required parallel computation.

The most popular such solutions are graphics processing units (GPUs).

As outlined by [36], hardware accelerators for lighter, edge devices

are less common, with just a recently intensified effort to bring them

into the main-stream. This is accomplished through developments such

as tensor processing units (TPUs) or neural processing units (NPUs),
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that can be found in current-day smartphones.

The hardware accelerators for ultra-low-power devices, such as micro-

controllers, are even less common and powerful, with solutions covering

either assisting hardware, like Digital Signal Processors (DSPs) [37], or

computers and architectures designed from the ground-up for improving

this type of applications, such as STM32N6, Alif’s E1C, GreenWaves

Technologies’ GAP9 [38], or PULP.

2.1.2 The PULP Computational Platform

The Parallel Ultra Low Power Platform (PULP) [27] is a computational

architecture for scalable edge computing, based on the RISC-V com-

puter architecture, focusing on ultra-low-power devices. It includes a

microcontroller system and a multi-core cluster. Each core is optimized

for low-power operations, which allows the architecture to maintain high

energy efficiency even when running complex tasks or handling multiple

workloads simultaneously.

Near-threshold computing is a fundamental element of the PULP ar-

chitecture. By running the processor at voltages just above the switch-

ing threshold of transistors, it reduces power consumption while offering

enough computational performance for various applications.

The PULP design is used in Greenwave Technologies’ GAP9 SoC [39],

with the configuration presented in Figure 1. It’s divided in a system-on-

chip (SoC) region, representing the microcontroller unit (MCU) domain,

and a cluster region, with 8+1 RISC-V cores for computation accelera-

tion.

The MCU domain has a single RISC-V core, used for control tasks.

It has access to an FPU unit and to up to 2 MB of L2 SRAM, accessible

in a single clock cycle.
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Figure 1: PULP SoC Architecture with 9 RISC-V Cores and 4 shared Mixed Precision
FPUs. Source: [39].

The cluster domain benefits from an 8+1 RISC-V core setup, with

an RV32IMFC instruction set architecture (ISA). According to [40], the

name of the ISA refers to its characteristics: RV32, since it’s based on

32-bit RISC-V, I is the base set of instructions, and MFC are 3 sets of

included extensions: M - multiply and divide, F - single-precision float-

ing point, and C - compressed instructions.

It also contains a dedicated DMA unit with improvements such as

post-incremental load and store instructions, and 2-level hardware loops.

The 8+1 CPUs (8 for parallel computation and the 9th one for program-

ming the DMA and dispatching tasks to the others) have access to 4

mixed-precision floating point units (FPUs). Memory-wise, an L1 data-

scracthpad of up to 256 kB is shared among the cores and accessible in

a single core cycle.

FPUs’ can work both on fp32, doing 1 MAC/clock cycle, and on fp16

SIMD instructions, with 2 MACs/cycle. There is also a non-volatile

MRAM, with a capacity of up to 4 MB.

PULP benefits from a rich set of peripherals, like I2C, SPI, and GPIO,
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as it is designed to be implemented on IoT intelligent sensors. It is

included in single-core microcontrollers, such as PULPissimo [41], but

also in multi-core IoT processors, like OpenPULP [27]. Ultimately, the

goal of PULP is to enable more powerful, yet energy-efficient devices

that can function for long periods on small battery power while still

supporting demanding tasks.

2.1.3 PULP TrainLib

PULP TrainLib [28] is a software framework for DNN On-Device Learn-

ing deployment. It consists of a library of primitives, optimized for par-

allel execution, capable of executing forward and backward steps on this

class of microcontrollers.

It manages to harvest the PULP high-performance and low-power

capacities, given by the architectural parallelism and near-threshold ex-

ecution. The authors remark that the primitives in the library show an

almost linear parallel speed-up on a multi-core RISC-V platform. Other

features of the library are the support for both fp32 and fp16 operations,

and an extensive use of matrix multiplications.

PULP-TrainLib also provides a set of tests for each layer primitive

and for more complex components, like the softmax activation, or the

recursive neural network layer. They work by comparing the output

and gradient values obtained by a reference model, i.e. ”golden model

(GM)”, implemented using PyTorch [29], with the ones obtained by the

primitive or by the set of primitives.

The tests work by comparing either an average of the value sets to be

compared, or by performing a value-by-value check. This comparison

is performed using absolute values, and the test is considered to be

passed if the error between any 2 checked values is below a user-defined

threshold. Usually, this error tolerance is higher for fp16 primitives since

the match between values is looser than fp32, caused by mismatches
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in floating point representations between the two platforms and other

approximation and casting differences.

2.2 The Transformer Architecture

The authors of [1] describe the transformers as an improvement to tra-

ditional sequence transduction methods, which is the machine learning

problem that involves converting an input sequence into another output

sequence, with the 2 potentially having different lengths. It takes inspi-

ration from attention mechanisms used between encoders and decoders

in the recurrent and convolutional networks that were the standard at

the time for this type of problems.

It has an encoder-decoder structure, suitable for sequence-to-sequence

tasks, which works by transforming the input into a different represen-

tation space, and then producing the desired output.

It is based on a self-attention mechanism, also considering previously

generated outputs, and extended with point-wise, fully connected lay-

ers. The overall Transformer architecture is presented in Figure 2, both

the encoder and the decoder being a stack of six layers in the original

implementation.

Attention is abstracted by the authors as being a mapping of a query

and a set of key-value tuples to an output. This is achieved through

a weighted sum of the values, based on a compatibility function be-

tween the query and a certain value’s corresponding key. The attention

function used in this paper is based on the dot-product or multiplica-

tive attention, with an extra scaling factor. This is used as a form of

normalization, to compensate for the increase in magnitude of the dot

product when the size of the key vector also increases.

The mathematical definition of this attention function can be found

in Equation 1, taken from [1], where Q, K, and V are the query, key,
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Figure 2: Transformer Architecture. Source: [1].

and value vectors, KT is the transpose of K, and dk is the size of K.

softmax has its definition from [42], given in Equation 2, where e is

Euler’s number, and x is a set of N values.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

softmax(x) =
ex[i]∑N
j=1 e

x[j]
(2)

Another structure particularity is the use of attention in a ”multi-

headed” fashion. In order to overcome the averaging of attention-

weighted positions, that would diminish the ability of the model to treat

information from different representation subspace at different positions,

the attention mechanism can be split into a number of ”heads”. Each

head will contain an individual set of weights that will be applied to

the input sequence, with the output of all heads being concatenated in

the end. The resulting matrix is going to be passed through a final

linear layer. 8 attention heads are used in the original version, with

dk = dv = 64, and the visual interpretation of a general, h-headed at-
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Figure 3: Scaled Dot-Product Attention and its deployment in the Multi-Head Attention.
Source: [1].

tention can be found in Figure 3.

The type of attention that is used there is called ”self-attention” from

the fact that all three elements, queries, keys, and values, have the same

source. They are obtained by passing the same input through three dif-

ferent linear layers, which means that the attention layers have access

to information belonging to all positions in the input sequence.

Transformer blocks also use position-wise feed-forward networks. These

are essentially blocks with containing three elements, in this order: a

linear layer, a ReLU activation, another linear layer.

Another notable part is the positional encoding applied on the input

sequence before being fed to the encoder layers. This is a way to pass

information about each token’s position inside the sequence by inter-

preting the position through sine and cosine functions, which can be

seen in equations 3 and 4 ([1]), whose results get added to the initial

input vector. In the two equations, pos refers to the position index of

the token inside the input sequence, i is a variable used to differentiate

between even and odd sequences, and dmodel is the dimension of the to-

ken embedding.
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PositionalEncoding(pos, 2i) = sin
pos

10000
2i

dmodel

(3)

PositionalEncoding(pos, 2i+ 1) = cos
pos

10000
2i

dmodel

(4)

Although attention and transformers have been initially designed for

sequence transduction, it has since been successfully extended to other

language problems, such as generative [15] or predictive [2] ones, but

also to other categories of tasks such as audio ([43], [10], [11]) or com-

puter vision ([7], [8], [9]). Regarding the latter, one of the most popular

solutions is the Vision Transformer (ViT).

2.2.1 The Vision Transformer (ViT)

ViT [6], released by Google Research, aims to be a new adaptation to

computer vision tasks of the attention-based architecture [1], with the

aim to reduce the reliance on convolutional neural networks (CNNs).

ViT tries to solve issues such as architectures that are too complex

to work on current hardware accelerators, or solutions only suitable for

small input images. By not using convolutional layers, they also manage

to obtain a solution that is rather robust when it comes to locality and

translation equivariance, resulting in a reduced image-specific inductive

bias.

The computer vision task that the authors focus on is classification,

mainly using two datasets for training: the popular, publicly available

ImageNet [32], and the private, Google-owned JFT-300M dataset. On

ImageNet, they report an increase of 1% in accuracy, while requiring

almost 75% less computation, when compared to the ResNet-based [44]

BiT-L [45].
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Figure 4: Overview of the ViT architecture. Source: [6].

From the original Transformer Architecture, ViT is using the encoder,

but with an increased number of layers, in three variants, Base, Large,

and Huge, with 12, 24, and 32 layers. In order to adapt the images

to the input format required by transformers, they are reshaped into

a sequence of flattened patches. These are then linearly projected into

the required dimension, thus obtaining the patch embeddings that are

fed to the encoder. Also similarly to the original Transformer, an extra

element is added to the encoder input, in the form of a 1D learnable

positional embedding.

The embedded image representation, provided by the encoder, is then

passed through a multilayer perceptron (MLP), with the purpose of ob-

taining the final classifications. This head contains a single linear layer

for fine-tuning, but also an extra hidden layer during pre-training.

A difference from the encoder presented in [1] consists of the intro-

duction of layer normalizations before every block, inspired by [46], and

residual connections after, as seen in [47]. The MLP blocks inside the

transformer encoder also contain GELU activations (defined in a later

section, in equation 9), to introduce non-linearity.
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The authors also propose a hybrid architecture, where the input se-

quence is obtained by using convolutional layers applied straight to the

input image. It’s the activation of these layers that is being fed to the

patch embedding projector.

ViT is tested on a number of popular computer vision benchmarks

and manages to obtain competitive results, and state of the art status,

with lower pre-training costs. An overview of the architecture, also

found in the original paper, is available in Figure 4.

2.3 Continual Learning

Continual learning (CL) represents a dynamic machine learning tech-

nique which uses input data to further train the model even after de-

ployment.

The purpose of this method is to adapt to new data, both in terms of

out-of-training distributions (e.g. performing well in new contexts), but

also in terms of domain shifts (supporting new categories in a classifi-

cation problem, for example), without forgetting the previously gained

knowledge.

And indeed, one of the major issues of incremental learning is catas-

trophic forgetting [25]. This is the phenomenon that happens when a

model overfits the new data, and its performance drops significantly

when evaluated on the initial set. It can be resolved through retraining,

implying increased processing efforts or memory usage.

Another difficulty when dealing with this type of processes is the cost

of the retraining, which may make it unfeasible to run on-device, espe-

cially when working with ultra-low-power computers. Some solutions

that try to explore deployable CL pipelines are SIESTA [48], a data-

driven updating procedure, and Tiny Episodic Memories [49], that gets
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infused into an Experience Replay workflow.

In terms of types of continual learning, [50] splits them into three

categories:

• Rehearsal-based, when training samples are stored over time and

combined with new data for optimization. Some examples are na-

tive rehearsal [51], a basic method that stores the input data in its

raw format and feeds it later, but also more complex ones, such as

Pseudorehearsal [52] or Expeirence Replay [49];

• Regularization-based, introducing new factors in the optimizer, such

that old knowledge degrades slower. Examples include the Adap-

tive Regularization from [53], or Synaptic Intelligence [54], that

makes use of a measure called weight importance, and that it’s

described in detail in one of the following sections;

• Architectural-based, which bring changes to the structure of the

model itself, like DyTox [55], or the dual-memory in [56].

One that may be classified as both architectural and rehearsal is

latent replay. It brings modifications both to the structure of the model

and to its workflow, depending on the type of the provided data. It

works by injecting previously stored activations, if a sample that has

already been processed before is requested, and by keeping the regular

flow of operations when a new input appears. This process of storing

the activations can enable the classification of the method as a rehearsal

one, the patterns replacing the images that are usually stored in the case

of native rehearsal. Its implementation is described in more detail in

one of the following sections.

2.3.1 Latent Replay

The current project takes inspiration from the solutions described in

[57], [30], [51], [50], [33] and [54]. All the experiments employed in that

paper are based on a convolutional neural network, namely MobileNet
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[31], pre-trained on ImageNet-1K [32], and further trained and evaluated

using the NICv2-391 configuration of the CORe50 dataset [33], detailed

in a later section.

The terminology used below regarding the grouping of data is the

following: the term ”batch” is going to be used for a batch of data pro-

vided by the CORe50 ([33], described in another section of this thesis),

with 391 batches used for training, and the term ”mini-batch” for the

batch of data used during any single one of the optimization steps of

the SGD algorithm.

The CWR* method is first introduced in a previous paper of the same

authors, [51], where it was used in a native replay fashion. This is an

improvement of another algorithm from them, called CWR+, described

in [50], which, in turn, develops the initially defined Copy Weight with

Reinit (CWR), from [33].

After determining a baseline, obtained through the Cumulative ap-

proach, they continue with three continual learning approaches: CWR*,

AR1*, and AR1* free. These three approaches are applied in two differ-

ent manners: native replay, introduced in a previous work, and latent

replay.

The Baseline A baseline value, called cumulative upper bound, is ob-

tained by training a full MobileNet on the entire shuffled dataset. This

means that the images in the set can occur in any order, rendering in-

active any continual learning situation. It is the most memory-intensive

scenario, in which all provided images are stored and then used to re-

train a model from scratch. This baseline value is reported to be around

85% in the paper.

CWR The initial CWR algorithm was presented together with the

CORe50 dataset, with the purpose of being used in the new classes
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(NC) situation (described in the Dataset subsection of this thesis), ob-

taining improvements of about 30%, compared to the naive approach.

Experiments have also been performed in the New Instances and Classes

(NIC) scenario, with significantly inferior results when compared to the

cumulative baseline: the accuracy drops to about 50% of the previous

value.

CWR is designed to work on class-specific weights in the ”head” of

the model, namely in the fully connected (FC) layers in the last part of

the model, that are responsible for the final classification. In order to be

able to exactly associate these weights to each class, they remove 2 of

the pre-existent FC layers, named fc6 and fc7 in the official MobileNet

[31]. They end up connecting fc8, which has as output an array with

the length equal to the number of possible classes, to the backbone, and

more precisely to the pool5 pooling layer.

Two sets of weights are used, called consolidated weights (denoted

with cw), and temporary weights (tw). An intuitive description is given

in the paper as cw being a longer-term memory, while tw being the

working, short-term memory. The tw part is randomly re-initialized be-

fore each batch, effectively learning from scratch for exactly one batch.

The cw are initialized to 0 at the beginning of the session, before the

first batch, and then updated after each batch according to the newly

obtained tw.

The procedure, adapted from [50], can be described as in Algorithm

1, where the backbone refers to convolutional layers previous to the

”head” layers, responsible of feature extraction, and wi denotes ”batch-

specific weights”, a multiplicative factor given as hyperparameter and

specific to each batch. Since it’s working in the NC scenario, in each

batch there will be a number of new classes that have never been seen

before. Thus the need of the fourth step that shows how tw starts with

the number of neurons needed for the classes that show up in the first
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batch, and it gets incrementally expanded with the classes specific to

each subsequent batch. In the end, the cw are used for inference, since

the tw are discarded and refreshed during each batch.

Algorithm 1 Copy Weight with Reinit (CWR). Adapted from [50]

1: cw ← 0
2: Initialize backbone weights (randomly or from pre-trained)
3: for each training batch, Bi, with i from 1 to n, where n is the number of batches,

do
4: Expand output layer for the new classes in Bi

5: Randomly re-initialize tw for all neurons
6: if i == 1 then
7: Train backbone + tw with SGD on Bi

8: else
9: Train tw with SGD on Bi (freeze backbone)

10: end if
11: for each class j in Bi do
12: cw[j]← wi ∗ tw[j]
13: end for
14: Validate on backbone + cw
15: end for

CWR+ The CWR+ method brings two modifications to the basic

CWR method that regard both the cw and the tw. They are detailed

in [50].

The first one is replacing the wi hyperparameter, which is sensitive

to tuning, and which led to poor performances during experiments. The

replacement is a mean-shift adjustment, where the multiplication with

wi is replaced by a subtraction with the global average of tw. The au-

thors state that they empirically discovered that the scaling is no longer

necessary when applying this new operation.

The second change regards the initialization of the tw, where it is

recommended to give an equal value to all the weights inside tw, which

helps the training process by equalizing the output of the subsequent

softmax layer. This in turn helps to moderate any large values inside

the errors, during the backpropagation step, that may lead to unnec-

essarily large weight updates. The authors motivate this change both
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through mathematical demonstrations and improved results in experi-

ments. They use 0 as the initialization value for simplicity reasons.

The changes can be observed in Algorithm 2. The symbols and names

have the same meaning as described above for Algorithm 1, with the avg

function representing the global average over all values inside tw.

Algorithm 2 CWR+. Adapted from [50]

1: cw ← 0
2: Initialize backbone weights (randomly or from pre-trained)
3: for each training batch, Bi, with i from 1 to n, where n is the number of batches,

do
4: Expand output layer for the new classes in Bi

5: tw ← 0
6: if i == 1 then
7: Train backbone + tw with SGD on Bi

8: else
9: Train tw with SGD on Bi (freeze backbone)

10: end if
11: for each class j in Bi do
12: cw[j]← tw[j]− avg(tw)
13: end for
14: Validate on backbone + cw
15: end for

CWR* CWR* is introduced in [51], and it is presented as being effi-

cient for both the NC and NIC scenarios.The tw ”0-reset” is replaced

with a loading of the learned weights from cw, thus regaining informa-

tion previously learned on classes that have been present in previous

batches and that reoccur in the current one.

The cw update step is called the consolidation step. It is adjusted by

weighting the updated proportionally to the total number of occurrences

of the class of interest in previous batches, and inversely proportional

to the number of occurrences in the current one.

The changes are included in Algorithm 3, with the entire CWR*

procedure being described. As before, the variables and names keep
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their meanings, current[j] representing the number of occurrences of

class j in the current batch.

Algorithm 3 CWR*. Adapted from [51]

1: cw ← 0
2: past← 0
3: Initialize backbone weights (randomly or from pre-trained)
4: for each training batch, Bi, with i from 1 to n, where n is the number of batches,

do
5: Expand output layer for the new classes in Bi

6: tw ← 0
7: for each class j in Bi do
8: tw[j]← cw[j]
9: end for

10: if i == 1 then
11: Train backbone + tw with SGD on Bi

12: else
13: Train tw with SGD on Bi (freeze backbone)
14: end if
15: for each class j in Bi do

16: w past[j]←
√

past[j]
current[j]

17: cw[j]← cw[j]∗w past[j]+(tw[j]−avg(tw))
w past[j]+1

18: past[j]← past[j] + current[j]
19: end for
20: Validate on backbone + cw
21: end for

AR1 AR1 is described as an architectural and regularization approach,

which extends CWR+ by unfreezing the backbone and applying a reg-

ularization factor to its parameters, namely Synaptic Intelligence (SI).

While in all the variations of the CWR algorithm the weights in

the backbone are only adjusted for the initial batch, here they are also

subjected to training. In order to limit the catastrophic forgetting phe-

nomenon in this part of the network, the regularization factor needs to

be introduced. After being compared with Learning Without Forget-

ting (LWF) from [58], and Elastic Weights Consolidation (EWC), from

[59], SI was selected for its stability and ease of tuning when used with

CWR+, and for the small overhead required.
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All the steps needed for AR1 are described in Algorithm 4, with the

symbols having the same meaning as described in previous Algorithms.

Algorithm 4 AR1. Adapted from [50]

1: cw ← 0
2: Initialize backbone weights (randomly or from pre-trained)
3: F̂ ← 0
4: for each training batch, Bi, with i from 1 to n, where n is the number of batches,

do
5: Expand output layer for the new classes in Bi

6: tw ← 0
7: Train backbone with SGD and SI regularization on Bi

8: Train tw with SGD and no regularization on Bi

9: for each class j in Bi do
10: cw[j]← tw[j]− avg(tw)
11: end for
12: Update F̂ according to the SI requirements
13: Validate on backbone + cw
14: end for

Synaptic Intelligence (SI) is first presented in [54] as a variant of EWC

[59] which computes the weight importance described in the latter on-

line, by making use of elements already required by SGD. This impor-

tance measure defines each weight, and it’s used when updating them,

such that changes to important parameters are penalized. A trivial in-

terpretation may present this as a method to avoid overwriting ”old

memories”, which would lead to catastrophic forgetting.

SI works by storing an array of values representing this importance,

noted with F̂ , accumulating over all the batches with a factor called

batch-specific weight, noted with wi, tunable, similarly to what is used

in the CWR algorithm. The total weight importance is initialized with

0, and updated with a value computed over the current batch that is

directly proportional to the total loss change relative to the weight of

interest, and this weight’s change over the batch. According to [50], it

can be mathematically expressed like below (equations 5 and 6), where

the following notations are used:

• ∆Lk is the change of the loss relative to a single weight k, and over
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a single step of the SGD;

• Σ∆Lk is the sum of these changes of weight k over all the steps

inside a batch;

• ∆θk is the variation of weight k over a step of the SGD;

• Tk is the total variation of the same weight k, but over an entire

batch;

• ∂L
∂θk

is, obviously, the derivative of the loss relative to weight k;

• Fk will end up being the importance of weight k over a batch;

• ξ is a very small constant, set to 1e-7 in experiments, used to avoid

division by 0 errors.

∆Lk = ∆θk
∂L

∂θk
(5)

Fk =
Σ∆Lk

T 2
k + ξ

(6)

A clipping to the final value is also performed, such that values below

0 are set to 0, and values above a threshold (maxF - a hyperparameter)

are set to that value. After the local weight importance is added to the

total value, this latter one is used inside the weight update of the SGD

by changing the traditional procedure (see equation 7) into a version

that uses the weight importance to moderate the scale of the weight

update (like in equation 8).

Most of the symbols are the same to the ones associated when de-

scribing the SGD update step: θkn is weight k used on batch n, λ is

the learning rate, and everything else as described above. The element

of novelty is the regularization term, 1 − F̂kn

maxf
, where F̂kn is the total

weight importance of weight k at the moment n, and maxF the cutoff

25



value, described above.

θkt ← θkt−1
− λ

∂L

∂θkt−1

(7)

θkt ← θkt−1
− λ(1−

F̂kt−1

maxf
)

∂L

∂θkt−1

(8)

AR1* Similarly to CWR*, AR1* is introduced in [51] as an evolution

of AR1 [50], which also includes elements of the previously described

CWR+. It simply replaces the use of CWR+ in AR1 with CWR*, and

it includes the SI regularization. The updated procedure is described in

Algorithm 5, with the same meaning of the symbols as before.

Algorithm 5 AR1*. Adapted from [51]

1: cw ← 0
2: past← 0
3: Initialize backbone weights (randomly or from pre-trained)
4: F̂ ← 0
5: for each training batch, Bi, with i from 1 to n, where n is the number of batches,

do
6: Expand output layer for the new classes in Bi

7: tw ← 0
8: for each class j in Bi do
9: tw[j]← cw[j]

10: end for
11: Train backbone with SGD and SI regularization on Bi

12: Train tw with SGD and no regularization on Bi

13: for each class j in Bi do

14: w past[j]←
√

past[j]
current[j]

15: cw[j]← cw[j]∗w past[j]+(tw[j]−avg(tw))
w past[j]+1

16: past[j]← past[j] + current[j]
17: end for
18: Update F̂ according to the SI requirements
19: Validate on backbone + cw
20: end for
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Figure 5: Accuracy evolution, computed on the test set, during the training process of a
MobileNetV1, on NICv2-391 of CORe50. The transparent regions over the plot represent
the variance in accuracy in each point, since the experiment is repeated 10 times, over all
the available runs available for the subset. The solid lines are the averaged values, also used
in other reported results. Source: [30].

AR1* Free [51] introduces a variant of the AR1* algorithm, where the

SI regularization is removed. This change is motivated by the authors

through the fact that measures against forgetting are already taken

through rehearsal. This leads to a method that’s also analogous to

CRW*, with the backbone unfrozen. Due to these close similarities, an

explicit algorithm for this procedure is not provided.

Native Rehearsal Native rehearsal as it is named in [51], or basic re-

hearsal (REHE) in [50], is a method to combat forgetting in continuous

learning problems. It involves storing part of the data of previous and

current batches to be used in future training steps, together with new

data that is going to be original to future batches.

In [50], basic rehearsal is compared to 2 other rehearsal-based ap-

proaches: Gradient Episodic Memory (GEM) [60], and Incremental

Classifier and Representation Learning (iCaRL) [61]. Both of them have

an inferior performance to the equivalent REHE (up to 1̃2% improve-

ment in accuracy on an NC scenario), meaning when comparing runs

with equally sized external memory.

For native rehearsal, this external memory is the name usually given
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to the storage place of previous data, and the number of stored patterns

is dependent on its size. In these basic cases, the sampling is random,

both in terms of data to be saved from the current batch, but also of

the data to be removed from the external memory. However, sometimes

these choices can also be adjusted to preserve the class ratios that oc-

curred up to a certain iteration in the training loop, and also in terms

of the number of elements to be saved from a certain step.

The authors experiment with the three methods mentioned before,

CWR*, AR1*, and AR1* free, in the current native rehearsal situation,

over multiple rehearsal memory sizes: 500, 1000, 1500, and 3000, by

training on the NICv2-391 scenario of CORe50, with results reported in

Figure 5. They observe how accuracy increases together with memory

size, and they decide that a good trade-off with performance is working

with a rehearsal memory size of 1500, on the best performing technique,

namely AR1* free.

Latent Replay The main focus of [30] is a novel rehearsing method

called latent replay, sometimes shortened as LR, designed for on-the-

edge light devices. The core of the technique is storing intermediate

layer activations, instead of raw input data, with the purpose of reduc-

ing storage space requirements for rehearsal data, and increasing the

speed during training time. More details are given in the next section.
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3 Methodology

3.1 PULP TrainLib

3.1.1 Multi-Head Self Attention (MHSA) Primitve

One of the goals of this project was to be able to deploy a ViT model

on a PULP-based microprocessor through the available PULP Train-

Lib. For this, primitives for a number of layers had to be finalised or

implemented from scratch, the most complex of them being the one for

the Multi-Head Self-Attention (MHSA) layer.

The structure for both forward and backward passes existed, but the

golden-model-specific tests were not accurate enough, due to a com-

bination of operation and memory allocation issues, which had to be

debugged.

Another adjustment for these tests, for the fp16 version, was to switch

from absolute to relative value comparison, due to the wide range of val-

ues that exist in the activations inside the layer. This was needed to

increase the flexibility of the tests, since the error was larger for some el-

ements of the layer that require more approximations, such as softmax,

as detailed in the following subsection.

In order to match the publicly available pre-trained ViT model, the

MHSA TrainLib implementation has been changed from having one

large input projection layer, applied once to the input and outputting a

single matrix for all three required elements (key, query, value) to hav-

ing three smaller ones, one for each element. Like in the original ViT,

the projection layers also include biases, and a visual interpretation of

the projection changes can be seen in Figure 6. Two more transposition

operations had to be added in the forward step, and three vector sum-

mations in the backward step.
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Figure 6: Previous input projection of mhsa, performed using a single, unified linear layer,
vs. current input projection, split into 3 linear layers. The number of cells is just for
illustrative purposes and is not reflective of the absolute values of the dimensions used in
this project’s ViT implementation. The ”x” symbol represents a matrix multiplication.

3.1.2 Other Primitives

Softmax One of the major challenges of the TrainLib part of the project

was identifying and fixing the issue of the softmax activation. Inside of

any such activation, there exists an exponential activation, which was

replaced here, both inside the golden model and in the primitive, with a

different, faster variant, as described in [62], that is an approximation of

the initial function. After experimentation, similar results to the ones

in the paper have been obtained both in terms of error compared to the

regular exponential, and of execution time.

When running a PyTorch [29] module that includes casting of the

type required for this method, the automatic gradient computation is

lost (casting is not a linear function), with the library replacing the miss-

ing gradients with 0. The solution to this was the manual implementa-

tion of the backward step as well, consisting of the actual backward step

of the original, non-approximated exponential function. Consequently,

the back-propagation step does not benefit from the increase in speed

that the approximation provides, but it was possible to replace it for

the forward step since it does not contain any learnable parameters that

might interfere with the publicly available pre-trained weights.
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Figure 7: Comparison of the values obtained with the tanh function at 3 different scales.
The step used for generating the input was 1e-4.

GELU The Gaussian Error Linear Unit (GELU) is used as an activa-

tion function inside the position-wise feed forward layer of ViT. PyTorch

has 2 versions implemented, one raw, which abides by the original def-

inition of GELU (x ∗ Φ(x), where Φ(x) is the Cumulative Distribution

Function for Gaussian Distribution), and one that uses a tanh approxi-

mation to obtain a similar result.

The tanh approximation version is being used in the primitive due

to easier and faster implementation and computation. This is also em-

ployed in the GM layer, and, according to the PyTorch documentation,

executes the computation in Equation 9.

GELU(x) = 0.5 ∗ x ∗ (1 + Tanh(
√
2/π ∗ (x+ 0.044715 ∗ x3))) (9)

As for softmax, a faster version is implemented here, by replacing the

regular exponential function with its approximation described before.

Plots at 3 different scales, comparing the regular tanh function with

this one, can be found in Figure 7.

Layer Normalization The layer normalization primitive is parallelized

and optimized. It works like in the PyTorch implementation, adapted

from the original paper [63], by normalizing across the last n dimensions
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of the input array, where n is the number of dimensions of the normal-

ized shape parameter that must be passed.

The final value in the PyTorch implementation is computed accord-

ing to Equation 10, x and y are the input and output, E[x] is the average

of the values in x, V ar[x] is their variance, ϵ is a constant, left to its

default 1e-05 value (used to avoid division by 0), and γ and β are the

learnable affine transform parameters (the weights and the biases).

y =
x− E[x]√
V ar[x] + ϵ

∗ γ + β (10)

In the TrainLib primitive, the operations are parallelized over the first

dimension, the data being split among the cores in blocks that are as

evenly distributed as possible. The computations required are also op-

timized through a number of mathematical expansions and reductions,

with the process being split in 3 steps:

1. Loop once over the elements in the block to compute the necessary

sums required for subsequent operations, namely their simple sum,

and the sum of their squares.

2. Compute their mean and the square root of the variance, by trans-

forming its formula as described in Equation 11, where |x| is the

number of elements in x.

3. Compute the final value of the output, according to Equation 10.
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V ar[x] =
∑
i

(x[i]− E[x])2

|x|

=
∑
i

x2[i]− 2 ∗ x[i] ∗ E[x] + E2[x]

|x|

=

∑
i x

2[i]− 2 ∗ E[x] ∗
∑

i x[i]

|x|
+ E2[x]

(11)

3.1.3 ViT Golden Model

An initial step towards deploying a ViT continual training loop on PULP

devices has been taken: the creation of a golden model for it. It cur-

rently only supports a forward pass, using fp32 data representation, and

loads all the data in L2 memory. Thus, to obtain a fully deployable ViT

network, that fits on a target board, future steps have to be taken, such

as reducing the size of the model by reducing the number of transformer

blocks, implement loading and tiling of data into L1 memory, and em-

bedding the continual learning methods.

The GM-based test is robustly and flexibly designed, accepting 2

approaches, one that generates a demonstrative model based on dimen-

sions given inside a configuration file, and another one that generates the

golden model and the primitive calls given a PyTorch-specific file, that

should contain information about both the configuration of the model

and the values contained by its parameters.

All the dimensions related to the demo model can be adjusted, in-

cluding the input image size, the number of transformer blocks (between

1 and 12), or the number of heads and the hidden dimension of these

blocks. All the values required to fill both the mock input and the

weights inside the model are randomly generated.

In the case when a pre-trained one is used, these values are automat-

ically obtained and loaded from the given model, as well as given input
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data.

To obtain these features, special calls need to be injected in the for-

ward pass of the model, in order to analyze the values and the dimen-

sions inside of it, as well as the input sources of each layer. This ends up

passing a list of dictionaries that aim to represent the execution graph

of the model. Some user input is also required, in order to match the

layer names inside the PyTorch variant of the model with the primitives

to be used for each of them.

3.2 ViT and pretrained weights adaptations

3.2.1 Available Implementations and Pre-Trained Models

The staple model that has been followed for the ViT architecture has

been made available here [64]. Most details had to remain unchanged,

with some exceptions mentioned throughout this thesis, in order to be

able to also load the weights that the author provided, and which are

strictly connected to the dimensions of the model layers. These weights

had been pretrained on the 1k subset of ImageNet [32], with its main

architecture being shown in Figure 8, in a linearly unrolled fashion.

This condition also established the required input dimension to 384x384.

However, in the CORe50 dataset, the available image sizes are 350x350

and 128x128. For all the experiments reported in this thesis, the 350x350

size has been chosen, and instead of a traditional resizing to 384x384,

a bordering one is applied, with the purpose of not introducing any ar-

tifacts or other scaling issues. The bordering happens with a neutral

gray value (128 when representing it with unsigned 8-bit integers, or

0.5 on a normalized scale), with equally sized borders for left-right and

top-bottom.

For translating the latent replay procedure to the ViT model, inspi-

ration has been taken from [57], a project based on Conda Notebooks.
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Figure 8: A linearly unrolled visualization of the ViT model implemented in this thesis.
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This has been adapted with a more object-oriented command-line-based

application, written in pure Python.

3.2.2 Data Loader Adaptations

The data loader is from the implementation provided by the authors of

the CORe50 set [33]. However, a number of adaptations and improve-

ments had to be made, since the original one would only allow for using

simple batches, loading an entire one in memory, in one of the 3 scenar-

ios (NI, NC, and NIC), which was process intensive.

The first step was to enable loading of custom-sized mini-batches,

down to a size of 1, in order to make it compatible with lighter GPUs,

since a lot of prototyping has been happening on a laptop-grade GPU.

Another element that had to be introduced was support for the two

types of rehearsal used in the current project, native and latent-replay-

based. With this purpose, a boolean flag is now passed, together with

the model input data, that marks for the functions that need to use it,

whether a full input or an activation is involved.

The data loader ends up behaving in 2 different manners, one when

no rehearsal is required, so it only loads an original input, with its corre-

sponding label, and a second one for rehearsal scenarios, when it is also

responsible for storing the rehearsal memory (RM). This latter one can

also be split into 2, one for native rehearsal situations, when the array

representing the RM is populated by raw inputs, and one for the latent

replay situation, when it is populated by activations received from the

model, together with the associated label.

One more feature that was required for certain scenarios was to main-

tain the ratio of original and rehearsal data in the mini-batch as similar

as possible to the batch-level one. The loader is also ready to work with

both label splits, either class-wise or category-wise.
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3.2.3 Model Adaptions

The main differences in the model, from the default ViT, occur in the

handling of the latent replay method. Through the previously men-

tioned flag attached to input data, the input layer is selected to be at

the beginning of the latent replay block, if it has been observed that an

activation has been passed, instead of raw data. Furthermore, based on

the data that was used in the current forward step, it decides whether

it should extract and return the activation from the latent replay layer.

3.2.4 The Training Process

The changes made to the training loop concern especially the optimizer

and the mini-batch handling, which are detailed in the following para-

graphs. Other elements that are not mentioned, such as the used hy-

perparameters, or the 4-epoch iteration over each batch, are left to the

default values found in [30].

The Optimizer The optimizer used for this project was Stochastic Gra-

dient Descent (SGD), which had to be customized for certain exigencies

of the employed continual learning methods. One of them is the differ-

ent treatment of weights belonging to layers that are before the latent

replay one, namely applying a different learning rate or freezing them

altogether. This lead to the need of an extra flag stored for each flag

that would help the model identify its type, with the pre-latent-replay

part being also called backbone in the implementation.

Implementing the Synaptic Intelligence (SI) regularization involved

the storage of more variables, such as the weight importance, and its

application to the weight update step. As it can be seen in Figure 9,

the weight importance for convolutional and transformer-based models

are similar, both in absolute value and in distribution.

The ”Virtual” Batch Size A ”virtual” batch size was used for the train-

ing process, method also known as ”gradient accumulation” [65]. Through
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Figure 9: Histogram of the value distribution of the weight importance. The first row is
taken from [50], and it represents the distribution obtained with CaffeNet on CORe5 SIT. The
second row is the histogram for the implementation described in this thesis. The 3 columns
represent the values obtained after training on each of the first 3 batches (represented in their
original order). The x-axis represents the value defined by each bin, and the logarithmic y-
axis represents the number of values found for each bin.

experimentation, it has been discovered that using the current setup for

the ViT model (cross entropy loss, described below, and stochastic gra-

dient descent), it needs a rather large mini-batch in order to be able to

converge. Different sizes have been tested, starting from 1, with power

of 2 increments. A successful overfit model has only been obtained from

a mini-batch size of 32, and the currently used value is 128, like in other

publicly available ViT implementations.

In the regular implementation of mini-batch learning, a full set of

images is loaded into memory, and the forward and backward passes

happen in parallel, for all the samples inside. Thus, separate storage,

firstly for all the input data, and secondly for all the gradients computed

for all the samples, is required, over all the model parameters. These

gradients are accumulated over and used for weight updating, and thus

released from the memory, only at the end of a step.

However, this already posed issues when trying to train on the laptop

setup, as even the GPU memory there was not enough for loading the

model and one mini-batch. This would become even more problematic
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on lightweight microprocessors, such as PULP’s.

The solution to this issue was the implementation of a so-called ”vir-

tual” mini-batch. Thanks to the lack of batch-wise operations, more

precisely batch normalization, the images inside the mini-batch can be

loaded one-by-one, and the gradients accumulated separately, after each

sample is processed by a forward and a backward pass. The accumula-

tion happens simply through summation in a separate array, together

with a counter of encountered gradients for each weight, such that la-

tent replay strategies, where mini-batches contain both raw inputs and

activations, can be accommodated. In the end, the stored gradients are

averaged over the number of encounters, and this value is used inside

the optimizer step to perform the weight update.

Thus, only a fraction of the previously required memory is needed,

equivalent to that used for a mini-batch of size 1, which enables the

training process to take place even on the lighter, laptop-grade GPU,

from the setup described in a subsequent section of this thesis, and it

prepares it for the training implementation for the microprocessor plat-

form.

Memory and processing time analysis has been undertaken using the

TensorBoard tool, developed by the authors of [66]. The experiments

happened on the server setup described later in this thesis, with the

results available in Figure 10.

Regarding the memory, a number of observations can be drawn, with

the first one would about the accumulation process. For the regular

mini-batch handling (mini-figure ”a” of Figure 10), the allocated mem-

ory steadily increases until a peak is reached, ramp which corresponds

to the forward and gradient computation pass, and which is reflective

of the PyTorch [29] way of storing the gradients. This is followed by a

decreasing slope that represents the weight update moment, when these
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gradients are gradually released from memory, thus the total allocated

memory going down.

In comparison, in the mini-figure ”b” of Figure 10, 32 spikes, sim-

ilar to the single one in ”a”, can be seen. They correspond to the 32

samples in the mini-batch, with each individual spike following a similar

pattern to the single, larger one, in a step of ”a”. The reason behind

this behavior is the same as before since, just like in ”a”, gradients get

accumulated, but this time they get accumulated together instead of

being stored individually. Another similar part pops up at the very end

of a step, when the update of the weights, and the permanent release of

all the gradients, happens.

Section ”c” of Figure 10 is used as a memory reference, since it rep-

resents the memory requirement for a mini-batch of size 1, handled with

the ”virtual” mini-batch procedure. Here, there is the equivalent of a

single spike in ”b”, dilated such that it fills the same width inside the

plot as a step for a mini-batch of size 32, but on a different time-scale.

In terms of memory usage, a mini-batch peaks at a little above 2,030

MB, regardless of its size, while the classic approach requires more than

9 times that, at almost 19,000 MB, for the same mini-batch size of 32,

with this memory requirement scaling alongside mini-batch size.

However, as a drawback, looking at the horizontal axis that measures

the execution time in ms, a slight increase can be observed: a step

needs around 10% more time for an equally-sized mini-batch. A closer

analysis of the report generated by TensorBoard [66] shows that the

operations that increase the most from the regular implementation, both

in number and execution time, are the ones associated to the handling

of the gradients: detaches (so de-allocations of memory) and additions.

The conclusion that can be drawn from here is that the parallelization

probably doesn’t suffer from this, even if the samples of the mini-batch
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Figure 10: Time and memory plots for different mini-batch configurations, over three
consecutive optimizer steps, generically named k, k+1, and k+2. The following setups have
been used:
a) Default mini-batch handling with a mini-batch size of 32;
b) ”Virtual” mini-batch with size 32;
c) ”Virtual” mini-batch with size 1.

are now processed sequentially, but the waiting time to fetch data (albeit

the same amount) from the disk into the RAM is the main culprit.

3.3 Latent Replay

Most of the design in the original latent replay paper, both regarding

the architectural solutions (CWR*, AR1*, and AR1* free), and the

usage of the latent replay itself, has been adapted without changes in

functionality to the ViT model. However, a number of elements had to

be analyzed and, if needed, adapted. Below, the difference regarding

the latent replay layer selection is discussed, and then a case is made

about the lack of need to adapt the batch renormalization layer.
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3.3.1 Latent Replay (LR) Rehearsal

For the batches following the first one, a mix of new input data and acti-

vations is to be used. The activations are extracted from a pre-selected

layer, called the LR layer, that doesn’t change during the training pro-

cess. Also, the training of the layers previous to this one is slowed down

by using a reduced learning rate, set to 10% of the original one in the

experiments conducted by the authors. The reasoning for this design is

that early layers are usually responsible for low-level feature extraction,

and that these usually have generally representative and stable values,

especially in cases of networks pre-trained on large datasets.

The way the training process works is by doing a forward and back-

ward pass through the layers previous to the LR one only for the mini-

batch steps that process full input data, and by doing these passes

through the layers after the LR point for all types of data: new in-

puts and also stored activations. The gradients are accumulated over

a mini-batch, with pre-LR-layer weights accumulating fewer gradients

than post-ones, and at the end of it, the weights are updated accordingly,

all in a similar manner, but with different learning rates, as described

before.

This rehearsal architecture-based technique is then combined with

the during-training technique that performed best with native rehearsal

(AR1* free with a rehearsal memory size of 1500), which is tested on the

MobileNetV1 [31] convolutional network. The results from Table 1 of

[30] are reported in the plots in Figure 11, where accuracy is compared

against the computation and storage requirement relative to a non-LR

situation, based on the selected LR layer. The names of these layers are

the ones from the default MobileNet implementation and can be found

in Table 6 of the same paper.
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Figure 11: Computation-storage-accuracy trade-off for Latent Replay. Results obtained on
MobileNetV1, trained on the NICv2-391 subset of CORe50, with a rehearsal memory size
of 1500, and using AR1* free. The values on the x-axis are relative to the non-LR situation
(so the fraction of computation or storage required when compared to the situation when
full input data is passed), and it’s given for a single mini-batch step. The 85% accuracy step
is marked as being the best possible results obtained by the authors with the chosen model
(trained cumulatively, on the entire set). The accuracy values are obtained as an average
over the 10 runs available in the subset. Data source: Table 1 of [30].

3.3.2 Latent Replay Layer Choice

A decision had to be taken regarding the choice of the latent replay layer

itself. In the initial implementation [30], that was using a convolution-

based MobileNet [31], the latent replay layer was one of the convolutional

layers, situated later in the model. This type of layer can be seen as

an elementary one, while a transformer is rather a block of layers, con-

taining layer normalizations, dropout layers, fully connected ones, and

activations. However, conceptually they represent a single unit, so they

are treated as a single layer. Consequently, the user is only given the

option to choose one of the 12 transformer blocks as a possible ”latent

replay layer”.

3.3.3 Batch Renormalization to Layer ”Renormalization”

A crucial method, according to the authors, that should be included

when training with latent replay is batch renormalization (BRN).

It is simply a replacement of the traditional batch normalization (BN -

[67]), proposed in [68] by the same authors of BN, with the aim to im-

prove performance when working with small and non-i.i.d. mini-batches.

It is different from the original BN because of the introduction of a

43



rolling average, computed during training, that leads to a more stable

normalization.

However, this method would not find a place in the ViT model, since

it lacks any regular batch normalization layers. However, since BRN is

just a modification of BN, a similar change could be translated for the

layer normalization layer.

After an analysis of its implementation in PyTorch [29], which can

be observed in Equation 10, the affine transform parameters γ and β

proved to be proper replacements for the similarly named elements that

differentiate BRN from BN. Since they are also learnable, thus making

them more robust than the user-defined parameters, that are mentioned

as sensitive to tuning in [51], there was no need for the introduction of

new parameters.
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4 Experiments

4.1 The Dataset

All the experiments are based on the CORe50 dataset, initially described

in [33]. It is specialized in continuous learning for image classification,

with each image being assigned to a single class.

There are sequences recorded in 11 different scenarios, 8 indoors and

3 outdoors, 8 of all the sequences used for training, and 3 for testing,

more precisely sessions marked with ids 3, 7, and 10. Each sequence

contains images representing the frames of a 15-second video at 20 fps,

with multiple sizes available. Only images of size 350x350 pixels are

used in current experiments.

In the set, 10 categories of hand-held objects (”Adapters”, ”Phones”,

”Scissors”, ”Light Bulbs”, ”Cans”, ”Sun-glasses”, ”Balls”, ”Highlighters”,

”Cups”, ”Remote controls”) are included, with 5 different objects in

each category (identified inside a category by numerical ids), thus re-

sulting 50 classes. Samples of these can be seen in Figure 12.

Figure 12: Samples of each class from the CORe50 dataset. Different categories are repre-
sented in each column, and different category instances in each row. Source: [33].
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Figure 13: The classes included in each training batch. The horizontal axis represents the
batch id, from 0 to 390, and the vertical one, the class id, from 0 to 49. The object classes
are color-coded by category, as described in the attached legend. The columns marked with
a darker gray represent the batches in which any class is seen for the first time, with that
class being specifically marked with a red rectangle around the corresponding cell. Source:
[30].

The images are split such that the dataset covers three different sce-

narios of this task: new instances (NI) - where new distributions, such

as different environments or poses in which the object of interest ap-

pears are made iteratively available; new classes (NC) - where images

with never before seen classes show up in subsequent batches; and new

instances and classes (NIC) - the scenario closest to reality, which is a

combination of the first 2.

Each scenario includes 10 different runs, a ”run” representing a dif-

ferent shuffle of the data in terms of the classes and images included in

each batch. In [30], the reported results are an average of trainings and

evaluations run on these 10 runs. However, in the current project only

the first run is used for computing the metrics (having the id ”0” in the

original dataset).

The only scenario used for the experiments described in this section

is NIC, and more precisely the NICv2-391 protocol, introduced in [51],

which contains 391 training batches. The first batch contains images

from 10 classes, so a total of approximately 3,000 images, while the re-

maining 390 incremental batches contain only one class each, so around

300 images per batch. There is also a 392nd batch, used for testing, con-

taining images of all classes, from scenarios not included in the training

batches, totaling 44,972 samples. The classes appearing in each batch

are reported in Figure 13, plot which will be useful in finding some cor-

46



relations between this and the confusion matrices reported further down

below.

4.2 Setup and Metrics

4.2.1 Hardware Setup

Two main computers have been used for the development of this project,

both for training and for evaluation models, with an extra discussion

being needed for the PULP simulator that the ViT golden model is

being run on.

Prototyping Laptop For developing and prototyping, a simple Lenovo

laptop has been used. The hardware specifications that are of inter-

est for running the models consists of an AMD Ryzen 5 5600X CPU

(with 3.30 GHz, 6 cores, 12 threads, and a L1/L2/L3 cache split of 384

KB/3 MB/16 MB), 16 GB of RAM, and an NVIDIA GeForce RTX

3060 laptop-grade GPU (6 GB of dedicated memory, and 7.7 GB extra

shared memory).

Training Computer For longer, full training sessions, a desktop com-

puter has been used, one that works as a server, and which has been

accessed through an SSH connection. It benefits from an AMD Ryzen

PRO 5965WX CPU (with 3.8 GHz, 24 cores, 48 threads, and L1/L2/L3

cache split equal to 1.5/12/128 MB), 256 GB of RAM, and two NVIDIA

RTX A5000 GPUs, with 24 GB of memory each. However, due to other

users needing this computer, only one GPU has been used at a given

time.

PULP Simulator For PULP deployment experiments, mainly for imple-

menting the TrainLib primitives and its ViT golden model, a simulator

of the PULP platform has been used. This is run through the PULP

SDK [69], which uses a tool named GVSoC to simulate PULP chips.
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The first obstacle that this project needs to overcome is the limited

amount of memory. Inside the simulator, the memory size has been

set to 128 KB for L1 memory, and to 8 MB for L2, which is predom-

inantly used at the moment. L3 memory is not used at all, and one

of the remaining goals is to move as much as possible of the execution

to the faster L1 memory. Also, increases in speed through improved

parallelization and other model changes are a subject of possible future

improvements.

4.2.2 Metrics

In order to be able to compare with the results in [30], only a sim-

ple accuracy metric has been used. Its classical formula is employed:
correct classifications
all classifications , where a classification is correct if the predicted label

is identical with the ground truth one (when referring to all 50 classes,

not category-wise), and the number of all classifications always is the

number of elements in the test set (44,972, as described in a previous

section).

For all experiments, confusion matrices can also be provided. They

are 2D matrix-shaped plots which give information about the inter-

classification of the categories. The value in cell [i, j] of such a matrix

has the absolute value equal to the number of times an object belonging

to class i has been predicted to be of class j. As the name of the plot

tells, they can be used to observe which classes are more often confused

with others.

4.2.3 Evaluation Procedure

In [51] and [30], the results are generally reported as an accuracy evolu-

tion over the training process. It is measured on the previously discussed

evaluation subset, and reported after the network has trained on each

batch.
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The first paper mentions that, with the purpose of speeding up the

evaluation process, because the images are actually frames of video

sources, taken at 20 fps, so consecutive ones are very similar, they de-

cide to sub-sample the test set. The sampling frequency they choose is

1 Hz, so only a 20th of the evaluation subset images are used.

However, for the current project, only the loss is monitored during

the training loop, and the accuracy of the models is only evaluated at the

end of a full training process. This evaluation happens on the same test

set, but without the sub-sampling, so on all 44,972 images, belonging to

the 3 test sequences, with about 300 frames for each of the 50 classes.

4.3 Results

The reported results can be split into three categories: a performance

comparison between transformer and convolution models when using

native rehearsal, an analysis of the increase in memory requirements

when replacing native rehearsal with latent replay, together with a pos-

sible solution to it, and lastly two studies of how the rehearsal memory

size and LR layer choice influences accuracy in ViT-based latent replay.

4.3.1 Transformers vs. Convolutions, in the Context of Native Rehearsal

The most extensive performance analysis on the three continual learning

methods, CWR*, AR1*, and AR1* free, has been done on the native

rehearsal scenario. Consequently, an equivalent one has been performed

for the current thesis as well, with a different type of report: instead

of showing the evolution of the accuracy during training, the values ob-

tained with the final ViT model will be compared with the ones from

[30], which are convolution-based. It is worth noting the difference in

size between the models: 4.2 million for MobileNet vs. 93.2 million for

ViT

In Figure 14, all 24 configurations are compared based on their ac-
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Figure 14: A plot of accuracy evaluated against the rehearsal memory size, for continual
learning methods, used on convolutional (MobileNet V1) and transformer (ViT) models, with
native rehearsal. The values for the convolutional-based models had to be approximated from
[30], since there they are only reported through plots. The colors of the symbols are not
relevant in the figure’s legend. They are used for correlating the 3 methods (same color used
for each of CWR*, AR1*, AR1* free, regardless if it’s a convolution or a transformer model).

curacy, with the absolute values for the transformer-based models given

in Table 1.

When looking at the differences between identical configurations of

separate model types, convolutions perform better in all cases for the

CWR* method, but transformers take the lead for the 2 variants of

AR1*. The former are, on average, better with 2.34%, while the latter

with 5.79%, and 6.89% respectively. This may be explained by the fact

that CWR* essentially freezes the backbone, so in the case of ViT, the

transformer blocks don’t update. Thus, the superiority of the transform-

ers over convolutions is only enabled when the blocks are also adjusted

during training.
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Rehearsal Size 500 1000 1500 3000
CWR* 61.15% 64.28% 65.85% 68.35%
AR1* 77.64% 80.35% 79.81% 81.84%

AR1* Free 77.20% 79.59% 80.76% 81.00%

Table 1: Accuracy values for the transformer-based model trained with native rehearsal
and the 3 continual learning methods, at different rehersal memory size points.

The accuracy of all configurations grows together with the rehearsal

memory size, as expected, with an anomaly for the transformer-based

AR1*. A particular steep increase happens when going from 500 stored

patterns to 1000 for the convolutional-based AR1* free. In general, for

convolution models, for a given rehearsal memory size, the increasing

order of accuracy for the 3 methods is CWR*, AR1*, and AR1* free.

The transformer ones generally show better values for AR1* than AR1*

free, meaning that the more complex, weight-importance-based, train-

ing method may be better suited for them.

The best overall model is the transformer-based one, trained with

AR1* (as opposed to AR1* free for best with convolutions) and a re-

hearsal size of 3000, reaching 81.84% accuracy. By comparison, the ac-

curacy obtained with the cumulative approach was approximately 85%

for the convolution model, and approximately 86% for ViT. This value

is considered to be the maximum one for a model because it trains by

going through all the data at once, effectively having a rehearsal mem-

ory size equal to the entire set.

It is worth mentioning that the values reported in this subsection for

the ViT model are for a single run only, while the convolutional-based

ones are averaged over 10 runs. Thus, if the variance remains similar

with the one in [30], a change of up to 4% in accuracy may be found for

the transformers, after averaging over the 10 different runs.

When looking at the confusion matrices in Figures 15 and 16, all

methods obtain good results even for the smallest rehearsal memory

size. Some categories, such as ”mobile phone” or ”glasses”, prove to
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have instances that are more difficult to differentiate among themselves.

However, all gain obvious advantages from an increased rehearsal mem-

ory size, with the non-CWR* methods managing almost perfect results.

The only category where all models struggles is ”adapter” and, indeed,

by looking at some examples, in the first column of Figure 12, it can be

observed that they have almost identical colors, and also similar shapes

and particularities, such as the plug holes.

4.3.2 Latent Replay vs. Native Rehearsal

Since the latent replay method is now applied on a different type of

model than in [30], a new memory and speed analysis was needed. As

it is explained in the first paragraph, the memory occupancy of latent

replay, when comparing to native rehearsal, increases considerably, so

the previous advantage becomes a drawback. This leads to an explo-

ration, in the second paragraph, of a way to compensate this decrease in

memory efficiency by analyzing ViT based models with smaller numbers

of transformer blocks.

Memory and Speed Results In terms of memory, the comparison hap-

pens between the size of the input images that get stored in the case of

native rehearsal and that of the activations that are output by the trans-

former layers. The former comes in a shape of 384x384x3 (3 channels,

since the model processes color images), giving a total 442,368 values to

be stored, while the latter has a shape of 577x768, with 443,136 values.

While the absolute number of values is very similar, the activations

need to be stored in floating point format, represented in 32 bits in the

current implementation. In the meantime, the images are traditionally

stored as unsigned integers, with an 8-bit representation, thus giving

the latent replay an increase in memory requirement for the rehearsal

storage of about 4 times, for an identical number of rehearsal items.
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Figure 15: The confusion matrices obtained with ViT models, trained with native rehearsal.
Each column of matrices represents the given rehearsal memory size, either 500 or 1000, while
each row represents one of the 3 continuous learning methods (CWR*, AR1*, AR1* free, in
this order).
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Figure 16: The confusion matrices obtained with ViT models, trained with native rehearsal.
Each column of matrices represents the given rehearsal memory size, either 1500 or 3000,
while each row represents one of the 3 continuous learning methods (CWR*, AR1*, AR1*
free, in this order).
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The convolutional-based method described in [30] behaves differently

from the transformer one, since choosing a later layer leads to a smaller

activation map to be stored, while ViT blocks have an output of con-

stant dimension. However, as seen in Table 1 of the same paper, a

moderate decrease in accuracy, of less than 9%, can only be obtained

with memory requirements about 2.6 times larger. The memory advan-

tage only appears when choosing conv5 6 or later as the latent replay

layer, reducing to about 67% of the native rehearsal size, but with a

decrease of more than 12% in accuracy. These values are obtained by

considering the activations represented also as fp32.

The speed advantage still holds, albeit with lower improvement,

since a later latent replay layer leads to less forward and backward prop-

agations to be computed. In the case of [30], this means a computation

requirement of 59.26% to 22.62% of the original for a moderate decrease

in accuracy, while for ViT, as reported in [57], about 91.72% to 41.73%.

Smaller Model Analysis One solution to decrease the memory needs

described in the previous paragraph would be storing the data by ap-

proximating it into lower-bit formats usually achieved from higher-bit

representations through a process named quantization. There is an en-

tire field studying this type of solutions, sometimes focusing on trans-

formers in general ([70], [71]), on vision transformers in particular ([72]),

or specifically on latent replay layers ([73]).

However, this paragraph focuses on adjusting the model size while

maintaining the same data representation. A ViT model with a vari-

able number of blocks has been trained using the cumulative scenario,

so by passing once over the entire CORe50 dataset, in a randomized

order, starting from the same weights pretrained on ImageNet 1k [32],

as previously described. In the case of a model with n active trans-

former blocks, the weights of the first n blocks have been kept from this

pretrained initial setup.
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Figure 17: Accuracy results (the blue line) when running a ViT model on the cumulative
scenario, having a variable number of transformer blocks included in the model, with the
number of parameters represented by the oragne bars. The model with 12 blocks corresponds
to ViT-base in [6].

# of tr. blocks 1 2 3 4 5 6 7 8 9 10 11 12
M of train params. 8.75 16.43 24.11 31.79 39.46 47.14 54.82 62.55 70.17 77.85 85.53 93.21

Accuracy 11.20% 14.42% 32.81% 42.85% 61.11% 70.04% 78.69% 84.58% 86.43% 86.86% 87.59% 84.17%

Table 2: Accuracy results when running a ViT model on the cumulative scenario, having a
variable number of transformer blocks included in the model.

In Figure 17, the accuracy is reported against the number of active

transformer blocks. It can be noticed that the accuracy already ap-

proaches the 80% value with only 7 blocks, with it being at 3% from the

saturation point by activating one more. Since, as observed in Table

2, the number of trainable parameters in the model increases almost

linearly with the number of active blocks, so does the rehearsal memory

benefit.

For a full ViT model, the parameter memory would represent be-

tween 29.61% and 6.55% of the total needed, when varying its rehearsal

size from 500 to 3000 items in the rehearsal memory, values used in

other experiments in this section. This means a reduction in the total

required memory down to 87.8% of the original, when varying the num-

ber of transformer blocks, keeping a reduction in accuracy of less than

6%.
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Figure 18: Confusion matrices when running a ViT model on the cumulative scenario,
having a variable number of transformer blocks included in the model, between 1 and 6. The
label below each subplot represents the number of blocks used for each model.
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Figure 19: Confusion matrices when running a ViT model on the cumulative scenario,
having a variable number of transformer blocks included in the model, between 7 and 12.
The label below each subplot represents the number of blocks used for each model.
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An analysis has also been done on the classification performance be-

tween categories, with difficulties visible in Figure 18 for a low number

of available blocks. However, in Figure 19, they fade away by the 7-

block mark, and disappear almost altogether from 9 active blocks, even

for the most common wrong classes.

4.3.3 Latent Replay on Transformers

For the latent replay implementation on transformers, two types of ex-

periments have been performed: one that looks at the effect of varying

the rehearsal memory size, and another one that tries to examine the

dependency of the accuracy on the latent replay choice.

LR with CWR* The first test is conducted on a CWR*-infused ViT

model, that consecutively receives 500, 1000, 1500, and 3000 rehearsal

patterns per batch. It manages to obtain accuracies of 29.25%, 36.73%,

28.37%, and 13.58% respectively. The high confusion, seen in the matri-

ces of Figure 23, corresponds to these values, since they are lower than

what has been reported in a similar native rehearsal setup. Possible

causes include the frozen backbone and the unsuitable learning rate, if

one looks at the spiky training loss evolution in Figure 20.

LR with AR1* Free Regarding the AR1* free experiment, the rehearsal

memory size has been set to 1500, and the latent replay layer has been

chosen among the first three blocks of the ViT-Base. The losses in

Figure 21 exhibit a similar training pattern to the previous setup, with

accuracies of 44.859%, 40.401%, 50.291%. This is a counterintuitive

result, since the accuracies should decrease when choosing a later LR

block. Again, looking at the confusion matrices, found in Figure 24, the

accuracies match the ability of the model to differentiate the classes. The

main suspected cause of these inferior performance is again improper

optimization due to poor learning rate choice.
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Losses Sanity Check When comparing the training losses of these two

CL methods with a set from an equivalent native rehearsal procedure

(Figure 22), one can notice that, while the LR ones are more stable, they

have absolute values that are significantly smaller, both a symptom of

overfitting given that the model frequently encounters new classes of

objects. Thus, these preliminary results show that more fine-tuning

of the hyperparameters may be required before these methods can be

declared useful in the case of ViT models.

Figure 20: The loss evolution over the epochs when training ViT with latent replay and
CWR*, at different rehearsal memory size points.

Figure 21: The loss evolution over the epochs when training ViT with latent replay and
AR1* free, with different choices for the latent replay layer.

Figure 22: The loss evolution over the epochs when training ViT with 1500 rehearsal size,
using native rehearsal AR1* free, LR-CWR*, and LR-AR1* free.
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Figure 23: The confusion matrices obtained with ViT, when training with latent replay
and CWR*, at different rehearsal memory size points.
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Figure 24: The confusion matrices obtained with ViT, when training with latent replay
and AR1* free, with different choices for the latent replay layer.
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5 Conclusions and Further Improvements

This work explored a possible solution that would bring together three

branches of machine learning: on-device learning, continual learning,

and transformers applied on computer vision problems.

Sitting at the intersection of the former two, the thesis has ported

a set of continual learning methods from CNNs to the newer, more

powerful, self-attention based ViT. After evaluating on a popular set

for CL, named CORe50, previous results were surpassed by up to 18%.

The memory increase brought by the newer architecture has been ad-

dressed by looking at the block-number/accuracy trade-off in the context

of ViT-Base, trained with native rehearsal, and found that cutting out

as much as 40% of the initial model leads to a drop in accuracy of at

most 6%.

Moreover, the project sets the foundation for a continual learning

pipeline deployment on PULP microcontrollers by expanding the Train-

Lib functionalities with the primitives required for the transformer model,

and by creating a highly flexible and customizable golden model test for

ViT.

As for possible future directions for this project, the most complex

would be finishing the training framework of ViT, inside TrainLib, and

extend its functionality to support some of the analyzed continual learn-

ing procedures. Another useful tool in this context would also be a

general compiler and deployer for ViT and other models, starting from

standardized representations, such as ONNX.

Regarding latent replay, variations on this method may include a

dynamic choosing of the LR layer, such that newer batches are stored

from later points in the model. This may prove to be beneficial, since

once all classes have been already seen by the model, for example, the

early layers should already have a robust representation space.

Finetuning of hyperparameters could also be desired, such that ac-

curacies when using latent replay with ViT are improved. And also,

more stable if the evaluation results would be averaged over the 10 data
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shuffles offered by the CORe50 dataset.

Finally, the ViT model may be replaced with smaller variants, such

as the TinyViT family of models [74], obtained through distillation from

the basic version, and quantization of the latent replay layer [73] may

be tested.
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ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. Pytorch: An imperative style, high-performance deep

learning library, 2019.

[30] Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Da-

vide Maltoni. Latent replay for real-time continual learning. In 2020

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), pages 10203–10209. IEEE, 2020.

68



[31] Andrew G Howard. Mobilenets: Efficient convolutional neu-

ral networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya

Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Im-

ageNet Large Scale Visual Recognition Challenge. International

Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[33] Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset

and benchmark for continuous object recognition. In Conference

on robot learning, pages 17–26. PMLR, 2017.

[34] Gaurav Batra, Zach Jacobson, Siddarth Madhav, Andrea Queirolo,

and Nick Santhanam. Artificial-intelligence hardware: New oppor-

tunities for semiconductor companies. McKinsey and Company, 2,

2019.

[35] Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh

Kurup, and Mohak Shah. A survey of on-device machine learning:

An algorithms and learning theory perspective. ACM Transactions

on Internet of Things, 2(3):1–49, 2021.

[36] Shuai Zhu, Thiemo Voigt, JeongGil Ko, and Fatemeh Rahimian.

On-device training: A first overview on existing systems. arXiv

preprint arXiv:2212.00824, 2022.

[37] Daliang Xu, Mengwei Xu, Qipeng Wang, Shangguang Wang, Yun

Ma, Kang Huang, Gang Huang, Xin Jin, and Xuanzhe Liu. Mand-

heling: Mixed-precision on-device dnn training with dsp offloading.

In Proceedings of the 28th Annual International Conference on Mo-

bile Computing And Networking, pages 214–227, 2022.

[38] Luka Macan, Alessio Burrello, Luca Benini, and Francesco Conti.

Wip: Automatic dnn deployment on heterogeneous platforms: the

gap9 case study. In Proceedings of the International Conference

69



on Compilers, Architecture, and Synthesis for Embedded Systems,

pages 9–10, 2023.

[39] Davide Nadalini, Manuele Rusci, Luca Benini, and Francesco Conti.

Reduced precision floating-point optimization for deep neural net-

work on-device learning on microcontrollers. Future Generation

Computer Systems, 149:212–226, 2023.

[40] Tony Chen and David A Patterson. Risc-v geneology. EECS

Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2016-6, 2016.

[41] Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Al-

fio Di Mauro, Francesco Conti, and Luca Benini. Quentin: an

ultra-low-power pulpissimo soc in 22nm fdx. In 2018 IEEE SOI-

3D-Subthreshold Microelectronics Technology Unified Conference

(S3S), pages 1–3, 2018.

[42] Ludwig Boltzmann. Studien uber das gleichgewicht der lebenden

kraft. Wissenschafiliche Abhandlungen, 1:49–96, 1868.

[43] Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel

Synnaeve, Yossi Adi, and Alexandre Défossez. Simple and control-
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